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Non-equilibrium electrochemistry raises new challenges for atomistic simulation: we need to per-
form molecular dynamics for the nuclear degrees of freedom with an explicit description of the
electrons, which in turn must be free to enter and leave the computational cell. Here we present
a limiting form for electron open boundaries that we expect to apply when the magnitude of the
electric current is determined by the drift and diffusion of ions in solution, and which is sufficiently
computationally efficient to be used with molecular dynamics. We present tight binding simulations
of a parallel plate capacitor with nothing, a dimer, or an atomic wire situated in the space between
the plates. These simulations demonstrate that the new scheme can be used to perform molecular
dynamics simulations when there is an applied bias between two metal plates with at most weak
electronic coupling between them. This simple system captures some of the essential features of an
electrochemical cell, suggesting this approach might be suitable for simulations of electrochemical
cells out of equilibrium.

I. INTRODUCTION

A traditional electrochemical experiment involves at
least two electrodes immersed in an aqueous solution1,
with the reactions that take place depending on the bias
applied between those electrodes. This arrangement can
apply to batteries, electrolysis, and even corrosion. Two
key features of this system are: electrons can flow onto
and off the electrodes; the reactions occur when the sys-
tem is out of equilibrium. To simulate this system we
need to capture these two features.

An appropriate simulation methodology thus must be
able to combine open boundary conditions for the elec-
trons with molecular dynamics (MD) for the solution.
This puts very tight efficiency constraints on the open
boundary formalism as even MD performed with ground
state electronic structure methods can be computation-
ally very demanding. Here we present an open boundary
formalism appropriate for electrochemical problems that
has essentially the same computational cost as ground
state electronic structure methods.

We note that important insights have been arrived at
by means of equilibrium simulations which can address
aspects of the problem. For example, the variation of
interface properties with electron chemical potential can
be investigated by adding electrons to the computational
cell2, and dynamic simulations to determine the symme-
try factor associated with the detachment of an ion have
been performed3.

While there are several well tested codes for open
boundaries4–7, these tend to be computationally too ex-
pensive for non-equilibrium MD. The Hairy Probes (HP)
method8,9 has previously been shown to be an efficient
solution for electron open boundary simulations of nano-
scale systems. However, even the standard HP method

is not efficient enough for MD over larger time scales.
Fortunately, for the specific case of electrochemistry we
can exploit the fact that the current is carried by ions
in solution, rather than ballistic electrons, to produce a
simplified version of HP. It was speculated in an earlier
paper that this might be a possible approach8; here we
illustrate how the method works in practice.

The key point is that the time scale for electron trans-
port from one electrode to another is set by the rate at
which ions diffuse, which is much longer than that for bal-
listic transport of electrons over the same distance. This
allows us to impose the condition that electrons enter
and leave the computational cell slowly without restrict-
ing the net current flow. Mathematically, this translates
to weak coupling of the external leads that connect the
system to electron reservoirs, which in turn permits dras-
tic simplification of the open boundary equations. The
choice of electrochemical potential and temperature of
the reservoirs corresponds to the potentials and temper-
atures of the electrodes, with which the reservoirs are
assumed to be in local equilibrium.

In this limit we regain the familiar single particle pic-
ture with molecular orbitals populated by electrons8, but
the population of a given level is now controlled by the
attached probes and their associated electrochemical po-
tentials. This allows different electrochemical potentials
to operate within the system, producing non-equilibrium
conditions, while retaining the efficiency of traditional
ground state electronic calculations. We note that this
method is very straightforward to incorporate into exist-
ing electronic structure codes.

This approach is similar in spirit to earlier work by
Bonnet et al10. The formalism of Bonnet et al employs a
pseudodynamic set of equations to allow electrons from
a weakly coupled reservoir (it does not modify the elec-
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tronic states) to be added or removed from the system
until the electrochemical potentials of the reservoir and
system equilibrate. Here, we instead treat the injection
of electrons using scattering theory in the long time limit,
and the orbital populations are determined once the elec-
tronic structure of the system is known. An important
practical difference is that with HP we can attach elec-
tron reservoirs possessing different electrochemical po-
tentials to different parts of the system, even when those
parts are coupled electronically to each other. This is
possible because we can define entry and exit points for
electrons, and include the way this modifies the popula-
tion of a given state. This could be important for sim-
ulating complete electrochemical cells, rather than just
half cells.

We have implemented the simplified HP method in the
Tight Binding (TB) package PLATO11,12 (Package for
Linear-combination of Atomic Type Orbitals). We have
investigated a parallel plate capacitor consisting of two
Cu plates, viewing this as the simplest approximation to
an electrochemical cell we could imagine. We note that
at this stage we have not introduced a solution, but have
only allowed weak electron transport between the plates
through the introduction of an atomic wire. Our aim here
is to demonstrate the ability to perform MD under condi-
tions roughly approximating those of an electrochemical
cell (two electrodes at different potentials with at most
weak electron coupling between them). There is no at-
tempt at this stage to introduce the added complexities
of double layers at the electrode interfaces, the transfer of
charge from the electrodes to species in the solvent, and
the drift and diffusion of charged species under potential
and concentration gradients. These are all critical pro-
cesses, and we will study them as soon as possible; but
for now we limit our ambitions to illustrating the ability
to perform MD under appropriate conditions.

We use a simple Empirical Tight Binding model to
study this system, and so inspect the correctness (or oth-
erwise) of the method. We performed static relaxation
calculations of the atomic coordinates of the system un-
der an applied voltage, to show that the forces gener-
ated by the method using the expression from Ehrenfest
Dynamics8,13 are sufficiently close to the derivative of
the expression used for the total energy to allow energy
conserving MD simulations. We were then able to com-
pute the bond length and charge distribution on a copper
dimer between the two capacitor plates as a function of
applied bias; atoms in the capacitor plate as well as the
dimer were free to move. This illustrates the ability of
the method to impose an electric field, and to follow the
dynamics of atoms in that field. Next, we performed
MD simulations in the absence of thermostats for the
dimer between charged plates to illustrate the applicabil-
ity to MD. For closed boundary simulations these would
be constant energy. We find that in this case energy is re-
markably well conserved, even with the presence of open
boundaries. Finally, to demonstrate that the method
continues to perform correctly when there is weak elec-

tron coupling between the plates, we perform MD with
an atomic wire present that couples the two plates to one
another. We find that the plates continue to possess the
net charge we would expect, while lifting the constraint of
requiring the electrodes to be electronically independent.

II. FORMALISM

The method used here is based on the HP formalism,
described in detail in Horsfield et al8. HP is a com-
putational method for imposing an electric current on a
nanoscale system. There are several ways to think about
HP. The term probe, as used here, originates with the
Landauer-Buttiker picture of mesoscopic conductors14.
Each probe can be thought of as an atomic wire that
is coupled at one end to one atomic orbital in the sys-
tem, and at the other end to a reservoir of electrons
with a known electrochemical potential and tempera-
ture. In HP, many probes are used to create sources and
sinks of electrons, and they may not be weakly coupled.
From a formal viewpoint, the electrons entering or leav-
ing the probes are described by scattering theory or non-
equilibrium Green’s functions, but with some important
assumptions: the density of states of a probe is uniform
over a wide energy range (wide band approximation), and
a probe couples to just one atomic orbital. Probe p then
appears as a constant imaginary contribution −iΓp/2 to
one term on the diagonal of the system Hamiltonian ma-
trix (see Eq. 3). The coupling Γp can then be interpreted
as corresponding to a lifetime τp = h̄/Γp for an electron
sitting on the orbital to which the probe is coupled: the
open boundary conditions can then be seen as allowing
electrons to be created and destroyed at those sites where
the probes are attached.

Following the scattering theory arguments of
Todorov15 the following expression for the single
particle density matrix can be derived

ρββ′ = 2
∑
rs

frsχ
(r)
β χ

(s)∗
β′ (1)

where the factor of 2 is for spin degeneracy and

frs =
1

2π

∑
p

Γpζ
(r)∗
βp

ζ
(s)
βp

∫ ∞
Ep,c

f (p)(E)

(E − ε(r))(E − ε(s)∗)
dE

(2)

can be thought of as a generalised occupancy. Here ζ
(r)
β

and χ
(r)
β are left and right eigenstates respectively given

by∑
β′

[
Hββ′ − δββ′

∑
p

i

2
Γpδββp

]
χ
(r)
β′ = ε(r)

∑
β′

Sββ′χ
(r)
β′(3)

δrs =
∑
ββ′

ζ
(r)∗
β Sββ′χ

(s)
β′(4)

where ε(r) is the corresponding eigenvalue. The subscript
β indexes atomic orbitals, Γp is the coupling strength of
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probe p, f (p) is the Fermi function with temperature and
electron chemical potential for that probe, and βp is the
orbital to which the probe is attached. The quantities
Hββ′ and Sββ′ are the Hamiltonian and overlap matrices
respectively.

In the limit of small coupling frs becomes diagonal
with:

frr →
1

2π

∑
p

Γp|ζ(r)βp
|2
∫ ∞
Ep,c

f (p)(E)

|E − ε(r)|2
dE (5)

If we rewrite ε(r) as ε(r) − iη(r) we get:

frr →
1

2π

∑
p

Γp
|ζ(r)βp
|2

η(r)

∫ ∞
Ep,c

f (p)(E)η(r)

|E − ε(r)|2 + η(r)2
dE (6)

→
∑
p

1

2η(r)
Γp|ζ(r)βp

|2f (p)(ε(r)) (7)

From first order perturbation theory we have η(r) =
1
2

∑
p Γp|ζ(r)βp

|2. Substituting this into Eq. 7, and as-

suming Γp is independent of p, finally yields8:

fr = frr →
∑
p|ζ

(r)
βp
|2f (p)(ε(r))∑
p|ζ

(r)
βp
|2

(8)

which can be interpreted as the weighted average of Fermi
functions from each probe.

Eq. 8 works very well for strongly bonded systems,
such as metallic plates. However, in electrochemistry
we encounter systems where solvent molecules are only
loosely connected to the electrodes, which makes it diffi-
cult for electrons to reach solution molecules. A simple
solution to this problem can be achieved by making Γp
dependent on p again, and separating the probes into
the main probes p with coupling strength Γ that impose
the voltage, and solution probes s with coupling strength
αΓ, where α � 1. If the Fermi function for the solution
probes is f̄(ε), then the expression for the occupancy be-
comes:

fr =
αf̄(ε(r))

∑
s|ζ

(r)
βs
|2 +

∑
p|ζ

(r)
βp
|2f (p)(ε(r))

α
∑
s|ζ

(r)
βs
|2 +

∑
p|ζ

(r)
βp
|2

(9)

If the main probes do not couple at all to the state r
then we get fr = f̄(ε(r)), which is the result for a ground
state calculation, and is independent of α. We require α
to be small so that when the main probes are coupled,
their contribution to the level occupancy dominates that
from the solution reservoir, ensuring a bias can be applied
as desired.

It is reasonable to ask: what is the physical mean-
ing of these solution probes? As we have just shown,
they only influence the results if electrons are unable
to find a path from the external reservoirs to the solu-
tion molecules. Without their addition, these molecules
would have no electrons, which is unphysical. In reality

they would have picked up electrons by some other pro-
cess at an earlier stage, and then held onto them. The
electrochemical potential we apply is then that of the sys-
tem with which they were in equilibrium at the time they
acquired their electrons. We take this to be the reference
electrochemical potential of the reservoirs about which
the bias is defined, and which is set to ensure the system
overall is electrically neutral. We also note that these
probes enable charge redistribution between the solution
molecules, which mimics electron tunneling, but without
coherence.

The energy of a system is not well defined when we
have open boundaries. However, in this simplified for-
malism we compute energy using the same expression
as for ground state calculations, but with the molecu-
lar orbital populations given by Eq. 9. The forces are
evaluated using the expression

Fν = −Tr

{
ρ
∂H

∂Rν

}
− ∂Φ

∂Rν
(10)

where Fν is a component of the atomic forces (ν com-
bines the atomic index and direction), Rν is a component
of the atomic positions, ρ is the single particle density
matrix, H is the single particle Hamiltonian, and Φ com-
bines the nuclear-nuclear interaction and double counting
terms. This expression corresponds to treating the forces
as originating from an Ehrenfest Dynamics calculation13.
We note there is an additional subtlety here. For the case
where all probes have the same temperature and electro-
chemical potential, we get back the result for a closed
system, independent of the number of probes and where
they are attached. In this case we would expect the forces
to be the derivative of the free energy16, for which we
would need to include the entropic term in our energy,
something we do not do. So there are in principle two
sources of error (the missing entropy, and the presence of
open boundaries). For small temperatures, the entropic
term will be small. This is explored below.

III. METHOD

The limiting case of the HP method for weakly coupled
probes was added to the TB software PLATO. To study
the behaviour of the new algorithm, we investigated a
parallel plate capacitor consisting of a total of 256 Cu
atoms (128 per plate), with 64 probes attached to the
outer atoms of each plate. The solution probes with cou-
pling of αΓ are then applied to all other atoms (in this
case, the two layers in the plates facing the opposite plate
plus any atoms placed between the plates). We used an
orthogonal tight binding model by Sutton et al.17, where
one s orbital is assigned to each atom. Each atom is al-
lowed to acquire a monopole charge, with the Coulombic
interaction being allowed to extend to infinity; the on-
site repulsion is given by U = 6.80 eV. All probes have
vanishingly small coupling strength and a temperature of
kBTp = 0.0136 eV. The temperature enters through the
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Fermi function assigned to each probe, and determines
the electron population associated with the probe.

In the first step of the simulation, a single arbitrary
electrochemical potential is assigned to every probe. The
algorithm then adjusts this one chemical potential until
the system as a whole is charge neutral. The determined
chemical potential is then used as the reference chemical
potential of the system.

In the next step of the simulation a bias is applied,
which leads to an anti-symmetric shift in the chemical
potential of the two terminals: half the bias is added as
a positive shift in the electron chemical potential to the
probes attached to one plate, while half is added as a
negative shift to the other plate. By varying the applied
bias we determined the net charge on one plate as a func-
tion of applied bias. The setup is illustrated in Fig. 1a.
Note that the plates are far enough apart that there is
zero electron hopping between them. To maintain global
charge neutrality, we adjust the reference electrochemical
potential once a bias is applied.

The process was then repeated for the system shown
in Fig. 1b in which a copper dimer has been added be-
tween the plates. The bond length of the copper dimer
was computed for different voltages. Note that the sepa-
ration between the copper plates was doubled to ensure
the dimer does not form a bond with the copper plates.

Next, the relaxed system with an applied bias of 0.408
V was used to perform a simple molecular dynamics sim-
ulation. Finally, MD was performed with an atomic wire
connecting the inner surfaces of the two plates.

IV. RESULTS

A. Parallel plate capacitor

For a range of values of the coupling coefficient α, we
determined the total charge on one plate as a function
of the applied bias. From the capacitor law Q = CV
(where Q is the charge on a plate, C is the capacitance,
and V is the applied voltage), one would expect a lin-
ear dependence of Q on V . From the slope of the line
relating charge to voltage we can determine the capaci-
tance as a function of α. From Fig. 2 we see that there
is a plateau for low coupling strengths. This occurs be-
cause the left and right chemical potentials have entered
regions of low density of states. Once they re-enter re-
gions of higher density of states the charge continues to
increase with a similar slope as before. For the deter-
mination of the capacitance, we fit a straight line to the
region before the plateau. The capacitance as a function
of solution probe coupling is shown in Fig. 3: the dif-
ference between the two curves is explained below. The
lowering of capacitance as α increases can be explained
as follows. As α increases, the relative contribution of
the main probes (which have a finite bias applied) is low-
ered, while that from the solution probes (with zero ap-
plied bias) increases, leading to a decrease in the effective

(a)

(b)

-V/2 +V/2-V/2 +V/2

(c)

FIG. 1: Capacitor setup for the Hairy Probes
calculations. There is a total of 256 Cu atoms (128 per
plate), with 64 probes attached to the outer two planes
of atoms on each plate. a) The setup for determination

of the charge distribution, and the net charge as a
function of applied voltage. b) The setup for the dimer
bond length calculations. Note that the separation of
the plates was doubled relative to the previous case to
ensure the dimer is not connected to the plates. c) The
setup for the simulations with an atomic wire between

the plates.

applied bias experienced by the plates. Thus we need to
apply a higher external bias to generate a given charge,
leading to a reduced capacitance.

In Fig. 4 we show the charge distribution inside the ca-
pacitor. We see that there is a concentration of charge on
the innermost and outermost planes of atoms. This sug-
gests two definitions of the capacitance, with the two lines
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in Fig. 3 corresponding to these two definitions. One is
the usual definition of capacitance C = Q/V where Q is
the total charge on the plate, and V the applied voltage
between the plates. The other definition is C = Qinner/V
where Qinner is the charge on the two planes in a plate
nearest the opposite plate. This second definition is inter-
esting as it leads to better agreement with the standard
parallel plate capacitor expression C = ε0A/d = 0.16
e/V where ε0 is the permittivity of free space, A is the
area of the capacitor plate, and d is the separation be-
tween the plates. The better agreement follows from the
derivation of this standard expression: it assumes charge
distributed over one face of each plate.

0.0 0.2 0.4 0.6 0.8 1.0
Bias [V]

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Q 

α=0
α=0.001
α=0.01
α=0.1
α=0.5
α=0.8
α=1.0

FIG. 2: The total charge accumulated on a capacitor
plate for different voltages for a parallel plate capacitor.
The capacitor consists of 256 Cu atoms, 128 atoms per
plate. A range of values of the solution probe coupling
α is considered. Note the shoulder for small values of α.

Under an applied bias of 0.816 V, we relaxed the forces
on the atoms in the capacitor as shown in Fig. 1a. We
find that the forces are accurate enough to lower the
system’s energy in a smooth fashion upon relaxation, as
shown in Fig. 5. We see that the energy decreases sharply
over the first 100 steps, and then remains relatively con-
stant at the equilibrium value.

B. Bond length of copper dimer under applied bias

In the next set of simulations we relaxed the forces on
a copper dimer in between the plates of the capacitor,
and determined the bond length as a function of bias. We
used a solution probe coupling strength α of 0.01 for all
of the simulations: this is applied to the dimer and the
atoms in the plates near the surfaces facing the opposite
plates. In Fig. 6a we observe a quadratic dependence of
the bond length with respect to the applied bias. This
simulation can be thought of as a rough approximation
to the inclusion of a solute or solvent molecule between

0.0 0.2 0.4 0.6 0.8 1.0
α

0.15

0.20

0.25

0.30

0.35

0.40

0.45

Ca
pa

cit
an

ce
 [e

/V
]

Cinner

Cfull

FIG. 3: Dependence of capacitance on solution probe
coupling. For the red (upper) line, the capacitance is
given by the total charge on a plate, divided by the

applied voltage. For the blue (lower) line the
capacitance is defined as the charge on the half of the
plates closest to the opposite plates, divided by the

applied voltage.
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FIG. 4: Average charge per atom on each plane of
atoms in the capacitor plates at 0.408 V bias and

solution coupling strength α = 0.0. Note the increased
charge at the outermost and innermost layers of the

plates. The x-axis is the number of the plane of atoms,
starting at zero, with the vacuum treated as a series of
missing planes. The mid-point between the plates lies

between planes 5 and 6.

the plates.

We can understand the dependence of bond length on
applied bias directly from the TB model. Our symmetric
dimer has one s-orbital per site with zero onsite energy,
contains N electrons, a hopping matrix element v(r) =
−v0(r0/r)

q and a pair potential φ(r) = φ0(r0/r)
p. This



6

0 200 400 600 800 1000
step

−59.4

−59.2

−59.0

−58.8

−58.6

En
er
gy

 [R
y]

FIG. 5: Evolution of the energy of the capacitor upon
relaxation under an applied bias of 0.816 V.

gives a total energy E which has the form:

E(N, r) = −Nv0
(r0
r

)q
+ φ0

(r0
r

)p
(11)

Here, r0 is a reference distance, and v0 and φ0 the values
of the corresponding hopping matrix element and pair
potential respectively. These values, plus the powers p
and q, are taken from Sutton et al.17. Note that we
have neglected the Coulombic interactions from the ex-
cess charge, and the interaction of the net charges with
the field from the plates: these turn out to be small ef-
fects.

Because the dimer shares its electron chemical poten-
tial with the two plates, its value, and hence N , depends
on the bias. There will be net charge at non-zero bias,
as can be seen from the following argument. For the
empirical TB model used here, the atom is assigned a
core charge of 0.48608. This leads to partial filling of the
dimer bonding orbital, which in turn means the bonding
orbital is pinned to the reference chemical potential (an
analysis of the DOS can be found in section IV C). The
pinning of the orbital requires the injection of slightly
too many electrons into the dimer, producing a negative
overall charge on the dimer atoms.

The equilibrium bond length r = z corresponds to zero
derivative of the energy with respect to bond length. This
leads to the following dependence of the bond length on
bias:

∆z

z0
=

(
N(0)

N(V )

)1/(p−q)

− 1 (12)

where z0 is the equilibrium bond length at zero bias, and
∆z = z(V )− z0. The results of this model are compared
with the results from the simulation in Fig. 6a, and ex-
cellent agreement is seen. Note that the variation with
bias is nearly quadratic, as seen by the fitted trend line.

We now determine the polarizability αE of the dimer
from the variation of the charge difference between the
two atoms with bias. In a linear approximation we have:

∆Q =
2αEV

z0d
(13)

where ∆Q is defined as Qleft −Qright, where Qleft is the
charge on the left atom, and Qright is the charge on the
right atom. As the field direction is right to left, one
would expect ∆Q to be positive, which is indeed in agree-
ment with the behavior seen in Fig. 6b. However, the
variation is clearly non-linear, which might be a conse-
quence of the net charge of the dimer: this charge leads
to an energy penalty when more electron density is added
to one of the atoms.

As the dependence of Q on V is non-linear, we choose

the initial gradient dQ
dV

∣∣∣
V=0

of the quadratic fitted to the

data to estimate the polarizability. The separation d be-
tween the two plates is 14.388 Å and z0 is 2.15005 Å,
yielding an initial polarizability of 37.03 a.u. (Note that 1
a.u. corresponds to 1.648777×10−41 C m2 V −1). Exper-
imental polarizability values only exist for neutral copper
atoms, so we can only compare the order of magnitude of
the determined αE to atomic values18–22. Calculated val-
ues range from 40.7 a.u. to 58.7 a.u., with 58.6± 4.7 a.u.
being the experimental value18. The smaller value for the
dimer relative to the free atom could well be a result of
the minimal basis set used, which prevents polarization
of individual atoms. However, the order of magnitude is
the same.

There is one important consequence of the net charge
on the dimer we have not yet considered. After relax-
ation, the dimer is only in a metastable state. If relaxed
for long enough, it would eventually be pulled towards
the positively charged plate. This was indeed what we
observed upon increasing the number of relaxation steps.

C. Density of States

As previously mentioned, due to the empirical TB
parametrization17 used, the bonding orbital of the dimer
is pinned to the reference chemical potential, which leads
to high sensitivity of the number of electrons within the
dimer to the bias, and results in a net negative charge of
the dimer in all of our simulations. The density of states
plot in Fig. 7 shows that the dimer’s bonding orbital is
indeed pinned to the reference electrochemical potential,
and is approximately half filled. One can also see the ex-
pected relative shift in density of states of the right and
the left capacitor plate produced by the applied bias.

D. Molecular Dynamics with Hairy Probes

We conclude by considering two sets of molecular dy-
namics simulations. In the first we take the system with
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FIG. 6: a) The fractional change in bond length as a
function of bias. The blue dots are from the simulation,
the red dots are from our simple model, and the line is
a quadratic fit. b) The charge difference between the

dimer atoms as a function of bias; note that the
behavior is not linear.

the relaxed dimer with an applied bias of 0.408 V. For
the second simulation we include a relaxed atomic wire
that stretches between the two plates, linking them elec-
tronically. This simulation is intended to test the effect
of the weak electronic coupling that could exist through a
solution between electrodes. Our two main concerns are
to see how the energy depends on time, as this is a good
indicator of how close our atomic forces are to derivatives
of the anzatz for the energy with respect to atomic dis-
placement, and whether sensible results are still obtained
once the plates are coupled. The mobile atoms are the
Cu atoms in the two planes in each plate facing the other
plate, plus the dimer or wire that sits between the plates.

For the dimer simulation, the total energy evolution
of the system over time is shown in Fig. 8. We used
a time step of 1 fs and an initial atomic temperature of

FIG. 7: The density of states for the setup shown in
Fig. 1b after relaxation of the atomic forces. The upper
(red) plot is the DOS projected onto all the atoms on
the right plate, while the lower (grey) plot is the DOS

projected onto all the atoms on the left plate. The
dimer state is shown in yellow. The solution probe

coupling strength is α = 0.01, and the applied bias is
0.408 V. To make the plot smoother, we have applied a

gaussian smearing of 0.05 eV.

300 K. Note that the atoms to which the main probes
have been attached (but not the solution probes) are not
allowed to move. The fluctuations in energy shown in
Fig. 8 are on the order of 0.001 Ry, with no systematic
drift. This shows that the limiting case of Hairy Probes
provides forces that are close enough to derivatives of
the energy anzatz for us to perform MD simulations with
open boundaries. This simple example simulation can be
performed on a PC within a few hours, which opens the
possibility of simulating larger electrochemical systems
within a reasonable time frame.

For the simulation of the wire between the electrodes,
we first relaxed the atoms in the wire, keeping the atoms
in the plates at fixed positions, to remove large stresses.
We then assigned random velocities corresponding to a
temperature of 300 K to the atoms in the wire, and the
two layers of atoms in each plate closest to the oppos-
ing plate. MD was performed under three sets of condi-
tions: no probes attached (levels populated using a single
Fermi-Dirac distribution with kBT = 0.136 eV); probes
attached, but with a bias of 0 V; probes attached and
a bias of 0.136 V applied. The first two simulations are
equivalent, except that no electron entropy is included in
the energy when probes are attached.

In Fig. 9 we see how the energy varies with time for
these simulations. We note the following points. First,
there is a constant offset between the calculations with
and without probes; this is due to the electron entropy
term that is present in the absence of probes, but is ab-
sent otherwise. Second, the ripples in the energy when
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the bias is applied are an order of magnitude bigger than
for the other cases; their origin is still unclear. In addi-
tion, there are occasional spikes in the energy when the
bias is applied; this is a result of full self-consistency not
being achieved in the number of loops allowed, and re-
flects the increased difficulty of converging the charges.
This might be because the energy is no longer variational,
which would also explain the larger energy fluctuations
under bias. Note that the wire breaks part way through
the simulations; the wire atoms then gather on the sur-
faces of the plates.
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FIG. 8: The variation of energy trace with time from
the molecular dynamics simulation of the system shown

in Fig. 1b. The solution probe coupling strength is
α = 0.01, the bias is 0.408 V, and the initial

temperature of the atoms is 300 K.

V. CONCLUSIONS

Here we have presented a simple open boundary
scheme for electrons that is appropriate for electrochem-
ical simulations in which any electric current is the re-
sult of the diffusion and drift of charged ions in solution.
We note that we have not introduced a solution at this
stage, but have considered various features that we find
important by means of a simple model constructed from
Cu atoms. The two plates approximate electrodes, the
introduction of a dimer approximates a solvent or solute
molecule in the field between the electrodes, and the wire
approximates the weak electron coupling through the so-
lution between the electrodes. These are only approxima-
tions, and key features are missing (notably the double

layer and surface reactions), and these will be addressed
in future work. Our scheme is derived as the limit of
the Hairy Probes formalism in which the coupling of the
probes to the system is weak. We note that the method
evolves seamlessly to the full electron transport scenario
if needed. By means of a simple TB model of a capac-

0 250 500 750 1000 1250 1500 1750
time s ep [fs]
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−59.088

−59.086

En
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gy
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closed boundaries
open boundaries (no bias)
open boundaries (bias)

FIG. 9: The variation of energy trace with time from
the molecular dynamics simulation of the system shown

in Fig. 1c. The solution probe coupling strength is
α = 0.01, and the initial temperature of the atoms is

300 K. The blue line is from a calculation with no
probes; the red line is from a system with probes but

zero applied bias; the purple line is from a system with
probes and a bias of 0.136 V applied.

itor between whose plates a dimer and an atomic wire
have been placed (the simplest approximations to an
electrochemical cell we could envisage), we have shown
that the forces are accurate enough, and the method effi-
cient enough, that MD can be performed this way. This
opens up a route to performing electronic structure sim-
ulations of non-equilibrium electrochemical processes at
the atomic scale.
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