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ABSTRACT
Engineered nanomaterials have a wide range of applications and as
a result, are increasingly present in the environment. While they
offer new technological opportunities, there is also the potential for
adverse impact, in particular through possible toxicity. In this
review, we discuss the current state of the art in the experimental
characterisation of nanoparticle-membrane interactions relevant to
the prediction of toxicity arising from disruption of biological
systems. One key point of discussion is the urgent need for more
quantitative studies of nano-bio interactions in experimental
models of lipid system that mimic in vivomembranes.
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1. Introduction

The rapid development of nanomaterials has led to an increase in the number and variety
of engineered nanoparticles in the environment [1–4]. We are continuously exposed to
products containing engineered nanomaterials (ENMs). Examples include batteries, cata-
lysts, chemical coatings, packaging, electronic devices, biomedicines and cosmetics [5].
The expanding production of ENMs has led to serious concerns regarding their impact
on human health and the environment in general (see for example the considerable
investment made by the EU in nanosafety research in the H2020 programme, via the EU
NanoSafety Cluster [6]). Nanoparticles (NPs) are easily dispersed in air and inhaled
because of their nanoscale size [7,8]. Given their increasing use in sunscreens, cosmetics
and other personal products they may enter the bloodstream by permeation through skin
[1]. NPs are also found in pesticides, food products and packaging, and may enter the
body via digestion [9,10]. Medical implants are another source of NPs in the human body
being released by normal wear. NPs may also enter the body directly as nanomedicines or
magnetic resonance imaging (MRI) contrast agents [11–14]. Given this degree of expo-
sure, it is striking that implications for environmental and human health remain mostly
unknown or poorly understood [15–17]. Identifying ENMs hazardous to natural organ-
isms is difficult, given the wide variety of NPs, their diverse properties (eg particle mate-
rial, size, shape, surface, charge, corona) and the complexity of biological entities (eg
membrane and media composition, type of cell, cell cycle) [18]. The interaction of inor-
ganic NPs with biological systems can lead to severe cytotoxic effects [17,19–24]. This
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cytotoxicity of ENMs is reported across a range of studies that highlight the biological
impact of the NP exposure [5,25–28]. On the other hand, the cytotoxicity of NPs may
also be used to enhance the antibacterial efficacy in light-activated antimicrobial surfaces
[29]. Although there is a vast literature on nanoparticle–cell interactions [30–32], a
detailed physicochemical description of adverse outcomes relevant to in vivo behaviour
does not exist. In fact, most of the published studies offer no conclusive nano-toxicological
data for in vitro models which might make it possible to predict an in vivo response. One
of the main issues for in vitro experiments is the difficulty of recreating the exact environ-
mental conditions that are present in vivo. Many of the end-points determined during in
vitro testing have little or no relevance for the physiological and pathological changes in
man or animals. In order to be able to distinguish between harmless and harmful nano-
materials significant progress must be made in understanding the relevant interactions or
key initiating events at bio-nano interfaces and determining the NM properties relevant
for these interactions.

One route to being able to predict nano-toxicological responses is through in silico
approaches that, based on a detailed understanding of toxicity pathways and nano-bio
molecular structure and dynamics, correlate materials descriptors (physical properties
such as size, shape, electronic energy levels, lipid adsorption energies) with toxicological
outcomes. Such a model is only possible if there exist reliable physical property data either
from experiment or from nanoscale simulation [33–38]. Since one of the first steps in a
toxicological response will be the nanoparticle meeting the cell membrane or lung fluid, it
is clear that, prominent amongst the materials descriptors, will be the nanomaterial-
bilayer interaction characterised by the free energy of adhesion per unit area of contact.

In this review, we discuss the current state of the art in the experimental characterisa-
tion of the nanoparticle-lipid membrane interaction, including structural and thermody-
namic properties. We will also discuss NP uptake within membranes and the studies that
visualise and quantify directly and indirectly, the NP-membrane interaction. One conclu-
sion will be that there is an urgent need for quantitative studies of nano-bio interactions
in experimental models of lipid systems that mimic in vivomembranes. Studies that could
be used for the construction of an in silico model able to predict potential membrane per-
turbations and consequently, cytotoxic effects.

1.1. Nanoparticle–membrane interactions: elastic theory

The cell is separated from the rest of the environment by a phospholipid bilayer barrier,
the membrane. The cell membrane has the role of protecting the cell interior from the
external environment allowing the maintenance of controlled conditions in the cell cyto-
sol. The phospholipid bilayer contains proteins, cholesterol and lipopolysaccharides,
located in the inner membrane or on its surface [39–41]. All these compounds allow the
cell to respond to the external environment and to communicate with other cells. At the
basis of this constant communication between cells and cell-environment, there is the sol-
utes’ transport across the membrane. Smaller and nonpolar molecules such as oxygen can
pass across the membrane via simple Fickian diffusion. Larger and polar molecules
(including ions), instead, need protein carrier mediated transport. In general large macro-
molecules are exchanged between the extracellular environment and the cell cytosol, via
endocytosis (internalisation) and exocytosis (expulsion) [42,43]. These mechanisms are in
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most cases controlled by the cell membrane via specific receptor-mediated interactions
(eg clathrin, caveolin, flotollin mediated endocytosis) [42,44,45]. However, it has been
demonstrated that NPs can also traverse the cell membrane via endocytosis (or exocyto-
sis) without being involved in any specific receptor-mediated interaction [46–49]. Lipid
membranes are highly flexible and the bilayer can be deformed due to NP adhesion on its
surface leading to a full NP engulfment and its final uptake. This non-specific NP uptake
has been also observed in vesicles suggesting that the NP uptake into membranes can be
driven solely by general physicochemical interactions. Figure 1 shows three possible out-
comes for NPs in contact with a cell membrane. If the adhesion energy is not sufficiently
strong the nanoparticle will undergo Brownian collisions with the membrane but not
adhere. Alternatively, the nanoparticle can sit at the membrane interface partially
wrapped by the lipid bilayer. Finally, in the right conditions, the nanoparticle can be
completely wrapped (engulfed) by the membrane and subsequently, detaches from the
inner surface of the membrane, in a process known as fission, leaving a (typically) tran-
sient membrane pore [50].

Applying the model proposed by Helfrich [51,52], the passive NP engulfment process
is governed by three energy contributions: adhesion energy in the contact area between
NP and membrane, Eadh, membrane bending modulus, k and membrane surface tension,
s. Adhesion energy drives the NPs into the membrane while the membrane’s resistance
to deformation, characterised by the bending and elastic moduli, oppose the engulfment
process. Assuming a tensionless membrane and that the non-specific adhesion interaction
is driving the process, NP engulfment occurs when the adhesion energy is sufficient to
overcome the energy cost associated with bending the membrane around the particle sur-
face. For this tensionless case, two parameters, adhesion energy and membrane bending
modulus, define a critical radius, rc, representing the minimum particle size for which the

Figure 1. Three possible end points for NPs in contact with a membrane. Three possible outcomes for
the NP-membrane interaction are illustrated: free NP in the environment, NP adhesion to membrane
and NP complete wrapping and internalisation.
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NP engulfment occurs [47,48,53,54]:

r2c ¼
2k
Eadh

(1)

A NP with a radius equal or greater than the critical radius will undergo complete engulf-
ment once contact has occurred. However, cells possess a membrane tension that ranges
from 0.003 up to 0.4 mN�m¡1 depending on the cell state and type [55–57]. In presence
of membrane tension, an additional energy cost is associated with the wrapping process
and more work is required to pull the membrane towards the NP against the lateral mem-
brane tension, s. In this case, NPs larger than the critical radius will be partially wrapped,
remaining in the membrane, the depth of penetration depending on the value of the sur-
face tension. If we keep increasing the NP size beyond a second critical radius, rc;s , they
will undergo a first order phase transition from partially wrapped to a fully wrapped
(enveloped) state at r ¼ rc;s

r2c;s ¼ 2k
Eadh � s

: (2)

A characteristic length scale, λ, can be constructed based solely on the properties of the
membrane [58]:

λ ¼
ffiffiffiffiffi
2k
s

r
: (3)

Deformations of the membrane on a scale less than λ are opposed primarily by bending
energy, those larger than λ are predominantly opposed by tension energy. For example,
for a cell membrane tension in the order of 0.05 mN�m¡1 and bending modulus values of
15 kBT, the length scale is approximately 50 nm [48]. Simulation [59] and experiment
[60] suggest a bending modulus of k » 23 kBT (»10¡19 J at 300 K for DPPC gives
»60 nm. In what follows, we assume k ¼ 23 kBT (unless otherwise stated) for the
calculation of adhesion energy from the critical radius determined experimentally. The
process is further complicated when multiple NPs are present. Successive engulfment
events can drive up the tension as the membrane is consumed by the formation of a
supported lipid bilayer on the engulfed NPs [61,62]. The tension will also increase when
the NP size is comparable to the size of the cell or vesicle. In this case, the onset of
adhesion will increase the cell’s surface to volume ratio and therefore the membrane
tension [58].

The key descriptors governing passive (non-specific) NP engulfment are thus: NP and
cell size, NP-membrane adhesion energy, membrane elastic moduli and tension. Accurate
nanoparticle size characterisation is therefore a key requirement [63–65]. There are also
other important NP characteristics that can be experimentally controlled and which can
influence the NP-membrane adhesion beside the size. Cationic NPs, for example, are
often cytotoxic due to their attractive interaction with negatively charged membranes that
leads to their rapid internalisation [66,67]. On the other hand, anionic NPs are generally
less cytotoxic but they can easily undergo protein fouling when exposed to biological
media. The rapid formation of a protein corona around the NP surface changes the NP
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surface charge and size (also the tendency to particle agglomeration) which may influence
the cellular uptake [62,68–70]. Another important factor influencing the rate of absorp-
tion and uptake is the NP shape. This is related to the increase of the surface area to vol-
ume ratio for cylindrical or rod shapes with a consequent increase of the surface available
for absorption to the membrane [24,71]. Moreover, it has been recently observed that the
details of the NP surface topology have considerable effect on cellular uptake [21]. The
use of advanced microscopy techniques makes possible to visualise the surface topology
of the most effective nanoscale vector present in nature, the virus and suggests that the
presence of a pattern or domain on the NP surface facilitates cellular endocytosis by
matching specific targets of the cellular surface. This new understanding is opening new
horizons in the development of nanotechnology making it possible to manipulate, control
and mimic membrane properties in order to create fully synthetic, nature inspired systems
[72,73].

Understanding the mechanisms underlying the interaction between NPs and mem-
branes is a complex task due to the numerous properties that characterise them. Figure 2
schematically illustrates these properties and the three dynamically interacting constitu-
ents: NP, surrounding microenvironment and membrane.

The following sections will focus on the experimental methods used to investigate the
NP-membrane interaction.

1.2. ‘Model’membranes

Model membranes are organised lipid structures that mimic the natural arrangement of
lipids in cell membranes (see Figure 3).

These structures facilitate a systematic investigation of the changes of mechanical and
thermodynamic properties of membranes when in contact with nanoparticles. They have
many forms including supported or unsupported planar bilayer, spherical vesicles and
interfacial monolayers [76–78] (Figure 3(A)). The simplified and shape-analogue lipid
model membrane used to simulate a cell-like membrane structure is a spherical vesicle or
liposome. Depending on size, unilamellar liposomes can be classified as small (‘SUV’, up
to 100 nm in diameter), large (‘LUV’, with a diameter between 100 nm and 1 mm) and
giant (‘GUV’, diameter larger than 1 mm). LUV and SUV are typically prepared via extru-
sion after hydration of a dry lipid film [79]. Preparing homogeneous and stable GUVs

Figure 2. Properties that influence the NP-membrane interaction. The intrinsic characteristics of a NP,
the surrounding environment and the biological substrate that influence the interaction between NPs
and biological membranes.
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can be more challenging. One route is to employ microfluidic methodologies an example
of which is the innovative two-phase microfluidic platform shown in Figure 3(B) [74].
Others techniques widely used to create GUVs are gentle lipid film hydration and electro-
formation (Figure 3(C)) [75,80]. By simply rehydrating a dry lipid film with aqueous sol-
vent, it is possible to create multilamellar vesicles with sizes ranging from nano to
microscale (a fluorescence and bright field confocal image of giant multilamellar vesicle is
shown in Figure 3(D)).

2. Measurement of NP-lipid bilayer interaction energies

In this section, we look at quantitative studies of nano-bio interactions in experimental
models of lipid systems that mimic in vivomembranes.

2.1. Isothermal titration calorimetry (ITC)

ITC can be used to measure the heat of interaction (released or absorbed) between NPs
and biomolecules, including lipids. This is a versatile technique able to directly measure
the binding heat of interacting components freely dispersed in solution (no sample

Figure 3. Schematic representation of model membrane structures and examples of lipid vesicle prepa-
ration techniques. Model membranes can be organised in different structures including spherical
vesicles, unsupported and supported planar bilayers and interfacial monolayers (A). Giant unilamellar
vesicles (GUVs) can be formed using microfluidic techniques (B) and via electroformation (C). Multilayer
spherical membranes obtained by simply rehydrating a dry lipid film, confocal image, in fluorescence
and bright field (D).
Source: Figure 3(B) is reprinted with permission from Karamdad et al. [74]. Figure 3(C) is reprinted with permission from
Angelova et al. [75]. Published by The Royal Society of Chemistry. Copyright 1969 Royal Society of Chemistry.

6 C. CONTINI ET AL.

D
ow

nl
oa

de
d 

by
 [

86
.1

90
.2

35
.2

46
] 

at
 0

1:
24

 2
9 

D
ec

em
be

r 
20

17
 



immobilisation required) with no molecular weight limitation or requirement for molecu-
lar labelling. The two interacting components are initially separated: one solution is placed
into the sample cell and the other is loaded in the injection syringe (titrant). On com-
mencing the experiment, the titrant component is injected into the sample cell. As soon
as the two components interact, they pass from free to a bound state and heat is conse-
quently released or absorbed. These heat changes are recorded as the differential power
applied to maintain a zero-temperature difference between the sample and reference cell
(filled with the sample media). In a typical experiment (eg enzyme-substrate), the first
injection usually represents 100% binding and results in a large deviation from the base-
line, which decreases progressively with successive injections until the system is saturated
and the deviation returns to the baseline range. Every heat peak/pulse generated by the
multiple injections is then integrated and normalised for concentration. From this depen-
dence, it is possible to obtain important binding parameters such as stoichiometry, affin-
ity, enthalpy and entropy of interaction. The ITC instrument’s sensitivity depends on the
interacting compounds’ affinity, concentration and instrument noise. For modern ITC
instruments, the noise signal can be as little as 0.15–0.2 ncal.sec¡1 [81]. However, even if
the modern ITC offers user-friendly settings such as control of injection time, number
and titrant amount, measurements of small heats usually requires careful optimisation
steps in order to minimise any heat effects associated with (i) mixing of mismatched sol-
vents, (ii) dilution of the titrant and (iii) dilution of the ligand.

Together with standard enzyme-substrate and other substrate-ligand binding interac-
tions, ITC has been used to investigate the interaction of NPs with diverse biological sub-
strates. Lindman and co-workers used ITC to study the absorption of human serum
albumin (HSA) to copolymeric NPs as a function of the NP hydrophobicity and surface
curvature [82,83]. For this study, they made NPs with different degrees of hydrophobicity
by changing the hydrophilic/hydrophobic monomer composition ratio within the copoly-
mer. These NPs were created in a size range from 70 up to 700 nm. The ITC analysis was
carried out by injecting firstly 1 mL and subsequently 5 mL of 40 mM of HSA solution
into the copolymeric NPs at a concentration of 1 mg.mL¡1 for a total of 60 injections.
The ITC data showed an exothermic trend for all hydrophobicities. However, the system
reached saturation at a lower number of injections for the more hydrophilic particles,
indicating higher protein coverage for the more hydrophobic NPs. The authors also found
that the NP surface curvature had an influence on the HSA binding. Higher curvature
NPs (lower than 120 nm), presented a lower surface coverage than larger NPs. The
authors’ assumption is that larger NPs are comparable to a ‘flat’ surface at the protein
interface. This allows absorbed proteins to interact with their neighbouring proteins sta-
bilising and reinforcing the protein corona. The enthalpy changes calculated for the HSA
titration into the different copolymeric nanoparticles varied from ¡104 § 53 kJ.mol¡1 for
the more hydrophilic NP at 70 nm to ¡828 § 425 kJ.mol¡1 for the more hydrophobic
NPs at 120 nm (note the very large uncertainties).

ITC has also been used to monitor biomolecule-inorganic NP interactions by Joshi and
co-workers [84]. They investigated the interaction between amino acids (ie aspartic acid
and lysine) and borohydride gold NPs (AuNPS). ITC measurements were performed
injecting aliquots of 10 mL of lysine (1 mM at pH 7 and 10 mM at pH 11) or aspartic acid
(1 mM and 2 mM at pH 7) into »1.5 mL AuNP with an unknown concentration. This
interaction between amino acids and AuNPs was exothermic and dependent on the pH in
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the solution. This pH dependency was deduced by the lack or presence of ITC signals dur-
ing the interaction at different solution pH, which indicated that the amino acids bind
AuNPs only when their amine groups are in the unprotonated state. However, it is not
clear which type of bond is involved in the AuNP-amino group interaction.

Loosli and co-workers used a similar approach to investigate and quantify the agglom-
eration process during the interaction between titanium dioxide NPs (TiNPs) and humic
acid [85]. For the ITC study, the authors used 50 nm TiNPs and »380 nm humic acid.
The titrations were performed using two orders of mixing: humic acid into TiNPs (type I)
and vice versa (type II), schematically represented in Figure 4(A,B), respectively. Titra-
tions were performed by injecting 10 mL of titrant into the sample cell (»1.5 mL) for a
total of 28 injections. Figure 4 shows the heat flows obtained by titrating 0.1 g L¡1 TiNPs
with 250 mM humic acid (type I, A) and titrating 37.5 mM humic acid with 0.7 g L¡1

TiNPs (type II, B).
As shown in Figure 4, the ITC raw data show an exothermic trend (note the fluctuating

baseline is not set to zero, heat flow less than the baseline signifies that an exothermic
reaction is occurring) for both types of titration (type I and II) and led to enthalpy
changes of ¡18.3 and ¡11.7 kJ.mol¡1; the free energy of the process was ¡37.9 and
¡32.6 kJ.mol¡1, indicating the spontaneity of the reaction. This interaction depends on
mixing order and concentration. In the type I titration, the humic acid is used at higher

Figure 4. Heat flow and corresponding heat plot as a function of molar charge ratio for the two type of
mixing titration: humic acid into TiNPs (A) and vice versa (B). The ITC data on the right shows the heat
flow and corresponding heat plot of 250 mM humic acid into 0.1 g.L¡1 TiNPs (A) and 0.7 g.L¡1 TiNPs
into 37.5 mM humic acid (B).
Source: Reprinted with permission from Loosli et al. [85]. Published by The Royal Society of Chemistry.
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concentrations. The authors observed that by increasing the concentration of the interact-
ing compounds, the enthalpy became more negative. This can be ascribed to the tendency
of humic acid to self-agglomerate (which is concentration dependent) and to form larger
agglomerates that bind more TiNPs.

We turn now to consider the interaction between lipid membranes and inorganic NP
surfaces. Kettiger and co-workers [86] performed ITC measurements of NPs and SUVs.
The authors used negatively and positively charged silica NPs (SNPS) 120 nm in diameter
and around 30 nm POPC SUVs formed by extrusion and subsequent sonication. Dynamic
light scattering showed that upon initial addition of SUVs to the anionic SNP solution,
large lipid agglomerates were formed with a mean diameter of 1 mm. Upon further addi-
tion of SUVs, a new population began to appear with a size around 0.1 mm which was
interpreted to represent isolated bilayer-coated SNPs. To confirm the agglomeration effect
was caused by the negatively charged SNPs, the authors performed ITC measurements.
Titrations were carried out by injecting 4 mL aliquots of 3.8 and 7.6 mg.mL¡1 SUV sus-
pension into positively (1 mg.mL¡1) and negatively (0.5 mg.mL¡1) charged SNP solu-
tions, respectively. Titration of positively charged SNPs did not show any signal of
interaction. On the other hand, the negatively charged SNP titration showed measurable
heat flux for the first three injections of SUVs only. This indicates that, under these exper-
imental conditions, all the negatively charged SNPs present in the sample cell are
completely bound to SUVs after a few injections. The enthalpy of adhesion per unit sur-
face area was exothermic and constant over the temperature range between 15 and 40 �C.
Given the detected enthalpy of adhesion of 0.04 cal.g¡1, and the authors’ specific surface
area of 35 m2.g¡1 for negatively charged SNP, we estimated an enthalpy of adhesion per
unit surface of 4.8 mN�m¡1.

All these studies are clear examples of how ITC can be exploited as a powerful technique
to probe the interaction between NPs and biomolecules and consequently, their potential
nanotoxicity for organisms and the environment. In principle ITC allows us to determine
all the thermodynamic parameters of interaction (eg enthalpy and entropy contribution,
free energy, reaction stoichiometry and constant of affinity) in one experiment [87]. How-
ever, measuring the NP-biomolecule interaction can be challenging as it is often driven by
unspecific binding, which leads to complex interaction trends (eg endothermic and exother-
mic contribution in the same heat flow or even single peak signals). For this reason, ITC
has been primarily used as a qualitative method to probe the differences in the type of
interaction or presence/absence of interaction. Clearly before it can become a routine tech-
nique for quantifying nanomaterial heats of adhesion, both experimental protocols and the
interpretation of the heat flows needs to be considerably improved, perhaps with the assis-
tance of molecular methods such as molecular simulation and theory.

2.2. Other methods

Another direct method of measuring the adhesion energy between inorganic surfaces and
lipid bilayers is via the surface force apparatus [88], as utilised by Anderson and co-work-
ers [89]. In their study, DMPC SLB formed by Langmuir–Blodgett deposition or vesicle
fusion were interrogated with amorphous silica surfaces made by electron deposition.
Both the silica and bilayer were formed on two mica cylinders approximately 2 cm in
radius. The cylinders were placed in a 908 crossed position with the bottom cylinder
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parallel to the observer’s point of view in Figure 5. The normal force profiles in Figure 5
display an initial repulsion at distances less than 10 nm before the surface and bilayer
jump into contact. The silica surface was then withdrawn and jumps out of contact when
the applied force exceeds the force of adhesion.

The adhesion energy per unit area, estimated from the maximum attractive force
within the Derjaguin approximation [90], was 0.5 and 1 mN�m¡1 for the vesicle fusion
and Langmuir–Blodgett deposition SLB, respectively.

Direct measurements of the adhesion energy of DMPC lipid bilayers on gold electrodes
have been performed in the Lipkowski laboratory [91]. The method relies on the observa-
tion that SLBs change their morphology when a potential difference is applied between
the supporting electrode and another electrode in the aqueous medium. The bilayer struc-
tures, inferred from neutron reflectivity profiles obtained in situ, are represented schemat-
ically in Figure 6 at selected potential differences and surface density charge.

The neutron reflectivity profiles of the bilayer suggested that increasing the Au electrode
charge density results in an increase in the bilayer thickness (membrane swelling) due to
increasing water content inside the bilayer region. It is important to notice that at a relatively
high electrode potential (eg » ¡0.9 V for the 7:3 DMPC/cholesterol mixture shown in
Figure 6) the surface charge curve of the bilayer-covered electrode (ie red and point-dotted
curve in figure) equals the pure electrode profile (ie black and squared-dotted curve in figure)
meaning that the bilayer reversibly desorbs from the surface. By monitoring the current asso-
ciated with stepping the potential, it was possible to calculate the surface charge density. In
this way, the authors constructed surface charge vs. electrode potential curves in both the
absence and presence of a bilayer. Integrating the difference between these two curves gives
the adhesion energy per unit area. For a pure DMPC bilayer this was found to be 40 mN�m¡1.
Unfortunately, this method is inapplicable to insulatingmaterials such as silica.

Figure 5. Schematic representation of the surfaces (A) and force-distance profiles (B) during interaction
between the silica surface and the lipid bilayer on a mica support. The schematic representation (A)
illustrates the distinct stages identified during the silica surface-membrane interaction: approach to
membrane (a), initial repulsion (b), jump-in to adhesive contact (c), surface-membrane separation (d
and e), jump-out with the two surfaces separating apart. The force-distance and adhesion energy pro-
files are shown on the right (B) for bilayers formed by Langmuir–Blodgett deposition (circles) and vesi-
cle fusion (triangles). Reprinted with permission from Anderson et al. [89]. Copyright 2009 American
Chemical Society.
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A similar investigation on the effect of electric field on DOPC lipid layers (mono and
bilayer) was carried out by Vakurov and co-workers [93]. For the experiments, they per-
formed direct AFM measurements of the lipid layers deposited on a wafer-based Hg film
electrode. These AFM measurements allowed the measurement of the lipid layer thickness
and resistance to AFM penetration as a function of the applied potential. The authors
observed the same »1 nm increase of the bilayer thickness reported by the Lipokowski
group [91], at around 1.02 V due to the increase of water content in the interface between
bilayer and surface. However, at higher potentials (more than¡1.35 V), the DOPC bilayer
thickness drastically decreases, compacting on the Hg surface.

3. Observing the NP-lipid bilayer interaction

In recent decades, imaging techniques have been developed to directly visualise the NP-
membrane interaction at the micro and nanoscale and its effect on the membrane integ-
rity. In particular transmission, scanning and cryogenic transmission electron

Figure 6. Applied electrode potential vs. surface density charge and representations of the correspond-
ing bilayer structures. The surface charge density on the supporting Au electrode is plotted against the
applied potential in the absence (black, square-dotted line) and presence (red, point-dotted line) of a
supported lipid bilayer on the electrode. The bilayer was formed by 7:3 DMPC/cholesterol vesicle
fusion. The membrane structure and thickness are schematically represented at selected potentials.
Source: Reprinted with permission from Lipkowski [92]. Copyright 2010 from Royal Society of Chemistry.
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microscopies (TEM, SEM and Cryo-TEM), atomic force microscopy (AFM) and fluores-
cence microscopy are in routine use [94–97]. Depending on the NP material, size and
charge, these techniques allow us to directly investigate different mechanisms of interac-
tion (eg absorption or permeation) by locating the NP position with respect to the mem-
brane and to directly observe the consequences for the membrane, such as changes in
permeability or its complete disruption [98]. In particular, cryo-TEM allows for the inves-
tigation of the interaction of NPs with suspended spherical lipid vesicles and any bilayer
elastic perturbation.

Le Bihan and co-workers [99] captured cryo-TEM images of LUVs composed of
DOPC lipids after incubation with SNPs. SNPs were created using 7 nm diameter maghe-
mite nanocrystals as seeds for growth process in order to improve the NPs’ contrast in the
TEM images. LUVs (ie 200 nm in diameter) were prepared by extrusion. Their work pro-
vides compelling evidence that the particles do indeed translocate the membranes via the
engulfment mechanism (membrane wrapping and internalisation). The authors show
clear images of internalised SNPs exhibiting a SLB on their surfaces. Additionally, they
show that SNPs are able to translocate the outer bilayer of double-layered vesicles but not
the inner bilayer since the SLB generated during the initial engulfment prevents close con-
tact between the particle and the inner bilayer, in effect decreasing the adhesion energy. Of
all the SNPs exposed to the vesicles, with diameters ranging from 15 to 190 nm, only par-
ticles greater than 20 nm were completely engulfed while 15–20 nm particles adhered to
the surface. Clearly, this implies that the critical radius for their particular SNPs is less
than 15 nm, which in turn, using Equation (1) and k = 10¡19 J, sets a lower limit on the
adhesion energy per unit area of approximately 0.8 mN�m¡1.

Michel et al. studied similar solutions containing unilamellar DOPC vesicles and SNPs,
where the vesicles had a hydrodynamic radius of 58 nm and the SNPs were 16 nm in
diameter [100]. By using SNPs close in size to the critical radius they attempted to slow
down the rate of the engulfment process and thereby study the dynamics. They monitored
the system using dynamic light scattering and cryo-TEM (micrographs shown in Figure 7).
Initially, a few SNPs underwent complete engulfment, increasing the vesicle tension as the

Figure 7. Cryo-TEM images of SNPs internalised within a vesicle. The Cryo-TEM images and magnified
detail show the presence of a full lipid bilayer coverage on the SNP surface as a result of the engulf-
ment process.
Source: Reprinted with permissions from Michel et al. [100]. Copyright 2014 from John Wiley and Sons.
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membrane was consumed during SLB formation. The remaining SNPs adhered to the
vesicles but they were not engulfed due to the consequent tension increase. SUV fusion,
occurring on much longer timescales, led to the formation of larger vesicles with lower
tension thereby allowing the remaining SNPs to become fully engulfed. Increasing the
SNP concentration further slowed down the fusion process due to the mutual repulsion
of adsorbed SNPs.

In another study involving SNPs, Roiter and co-workers [101] utilised a geometry
which isolated the balance between adhesion and bending energies without the complicat-
ing factor of membrane tension. SNPs with diameters ranging from 1 to 140 nm were
positioned on a mica wafer and then a DMPC bilayer was deposited by adsorption from
solution. The 3D images shown in Figure 8 were constructed from AFM measurements
conducted on the same areas before and after bilayer deposition.

Only NPs with a diameter less than 1.2 nm and greater than 22 nm were fully covered
by an adsorbed lipid bilayer following the contours of the surface. On the other hand, a
bilayer formed pores around SNPs with diameters in the range from 1.2 to 22 nm. The
formation of pores around NPs sized between 1.2 and 5 nm was barely detectable by
AFM due to the similarity between the bilayer thickness (»5 nm) and the NP diameter
(3.4 nm in Figure 8(B)). To confirm the presence of pores, insulin was added, which
absorbs on the exposed NPs surface where it is readily detected by AFM. The critical
radius of 11 nm identified in this study suggests an adhesion energy per unit area of
approximately 1.5 mN�m¡1 (Equation (1), k = 10¡19 J).

Zhang and co-workers studied the effect of concentrated (500 mg mL¡1) SNP solutions
on DOPC GUVs (4–20 mm in diameter) prepared via electroformation [102]. Confocal
microscopy images of vesicles after exposure to 18 nm diameter SNPs show the presence
of microscale pores as shown in the left panel of Figure 9.

These pores are indicative of large membrane tension, the high density of SNPs adher-
ing to the surface appears to stabilise the vesicles. Large SNPs of 182 nm diameter, on the
other hand, are unable to prevent eventual vesicle rupture. The images are complemented
by calculations of lipid diffusion coefficients based on the mobility of fluorescent probes
within the vesicle membranes. Upon exposure to 18 nm SNPs the diffusion coefficient
decreased from 3.1§ 0.34 to 0.25§ 0.14 mm2 s¡1, whereas the 182 nm particles increased

Figure 8. 3D representation of AFM measurement and correspondent schematics of the lipid bilayer
deposition on SNPs with different size. Schematics of lipid bilayer formation on silica NPs with diameter
smaller than 1.2 (A), between 1.2 and 5 nm (B), up to 22 nm (C) and larger than 22 nm (D) with corre-
sponding AFM 3D reconstructions.
Source: Figures adapted with permission from Roiter et al. [101]. Copyright 2008 from American Chemical Society.
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the diffusion coefficient to 7.14 § 2.4 mm2 s¡1. The origin of these different effects is
unclear. Interestingly, the authors postulate that the smaller SNPs stabilise the pores by
acting as a line-agent reducing the line tension around the pore perimeter.

Strobl and co-workers [103] examined the effect of thermodynamic membrane state (ie
fluid and gel state) on uptake by exposing 123 nm and 42 nm SNPs to DMPC GUVs at
temperatures above and below the lipids’ phase transition temperature. In Figure 10,
images captured by fluorescence microscopy show vesicles in fluid and gel state after incu-
bation with the two populations of SNPs.

Figure 9. Images of vesicles in concentrated SNP solutions. Confocal laser scanning microscopy images
of GUVs and their schematic representation during the interaction with two populations of SNPs (18
and 182 nm, on the left and right, respectively).
Source: Reprinted with permission from Zhang et al. [102]. Copyright 2012 from American Chemical Society.

Figure 10. Fluorescence microscopy images of fluorescent GUV (green, top row)) in fluid and gel state,
interacting with SNPs (magenta, bottom row). Fluid state (left): (A) After 30 min incubation with
123 nm diameter particles, (B) after 10 min exposure to 42 nm diameter particles. Gel state (right):
(A) After 15 min exposure to 123 nm diameter particles, (B) after 10 min exposure to 42 nm diameter
particles.
Source: Adapted with permission from Strobl et al. [103]. Copyright 2014 from Beilstein-Institut.
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In Figure 10, the lipids appear green (top panel) while the particles appear magenta
(bottom panel). When the vesicles were in their fluid state, only 42 nm SNPs were
engulfed while 123 nm SNPs remained suspended in the surroundings showing no signs
of adhesion. On the other hand, when the GUVs were in the gel state, adhesion and
engulfment were strongly observed for both SNP size populations, although the number
of smaller SNPs engulfed seems significantly less than when the vesicles were in the fluid
state. The last observation could be understood in terms of the increase in membrane
rigidity associated with the gel phase (roughly an order of magnitude greater than in the
fluid phase) which can be expected to increase the critical radius from 11 to approximately
35 nm, preventing SNPs in the lower range of the size distribution from adhering. The
authors ascribe the relatively low incidence of engulfment for the larger particles to mem-
brane tension increases associated with membrane consumption for SLB formation.
According to elastic theory up to 9 times as many smaller particles should become
engulfed before tension blocks further internalisation events. This does not explain why
the large particles did not adhere to the fluid phase vesicles.

4. Conclusions

The experiments described in the preceding sections illustrate the progress made in char-
acterising NP-membrane interactions but also demonstrate the paucity of data. Most
experiments are for SNPs in contact with single component membranes for which adsorp-
tion energies are very small, »1 mN�m¡1. The only non-silica data are for gold, where the
adsorption energy per unit area is much larger at 40 mN�m¡1. This last value has been
used to demonstrate the vital importance of accurate experimental data for calibrating
classical interaction potentials. In a molecular dynamics simulation of DMPC membranes
on gold the use of semi-empirical cross terms to estimate interaction potentials resulted
in a discrepancy in the adhesion energy of 25% compared to experiment [34]. For the
experimental adhesion energy on silica, the situation is further complicated by the role
that the atomic structure (for example the silanol density and the degree of ionisation)
plays in determining the adhesion energy. Molecular simulations show that there is a fac-
tor of 4 difference between the adhesion energy of lipid bilayers on a cristabolite surface
and that on an amorphous surface with silanol bonds [104].

Given the large number of different types of engineered nanoparticles of relevance to
toxicological studies, the fact that their properties will vary depending on the environmen-
tal conditions and the lack of experimental data on basic properties such as membrane
adhesion energy, it is clear that we face significant obstacles to progress in developing pre-
dictive toxicological models. Reliable data for well-characterised materials are urgently
required both for mechanistic molecular simulation studies of key initiating events in tox-
icological response as well as for structure/property correlations designed to predict toxi-
cological end points. Indirect methods based on estimating adhesion energy from the
critical radii for membrane engulfment rely on a knowledge of membrane properties
which we may not have. The combination of modern microscopy with direct measure-
ments of heat flows as in ITC is a promising way forward that could in principle provide
the required data on the interactions of nanomaterials with both model and actual cell
membranes.
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