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Model-Based Speech Enhancement in the
Modulation Domain

Abstract—This paper presents an algorithm for modulation-
domain speech enhancement using a Kalman filter. The proposed
estimator jointly models the estimated dynamics of the spectral
amplitudes of speech and noise to obtain an MMSE estimation
of the speech amplitude spectrum with the assumption that the
speech and noise are additive in the complex domain. In order
to include the dynamics of noise amplitudes with those of speech
amplitudes, we propose a statistical “Gaussring” model that
comprises a mixture of Gaussians whose centres lie in a circle on
the complex plane. The performance of the proposed algorithm
is evaluated using the perceptual evaluation of speech quality
(PESQ) measure, segmental SNR (segSNR) measure and short-
time objective intelligibility (STOI) measure. For speech quality
measures, the proposed algorithm is shown to give a consistent
improvement over a wide range of SNRs when compared to
competitive algorithms. Speech recognition experiments also
show that the Gaussring model based algorithm performs well
for two types of noise.

Index Terms—Speech enhancement, modulation-domain
Kalman filter, statistical modelling, minimum mean-square error
(MMSE) estimator

I. INTRODUCTION

A. Statistical Models for Speech Enhancement

A popular class of speech enhancement algorithm derives
an optimal estimator for the spectral amplitudes based on as-
sumed statistical models for the speech and noise amplitudes in
the short-time Fourier transform (STFT) domain [1], [2], [3],
[4], [5], [6]. In the well-known minimum mean-squared error
(MMSE) spectral amplitude estimator [1], the assumptions
about the speech and noise models are that: (a) the complex
STFT coefficients of speech and noise are additive; (b) the
spectral amplitudes of speech follow a Rayleigh distribution;
(c) the additive noise is complex Gaussian distributed. Under
these assumptions, the posterior distributions of each speech
spectral amplitude has a Rician distribution whose mean is
the MMSE estimate. However, the Rayleigh assumption on
the STFT amplitudes requires the frame length to be much
longer than the correlation span within the signal. For the
typical frame lengths used in speech signal processing, this
assumption is not well fulfilled [7]. Accordingly, a range
of algorithms has been proposed which assume alternative
statistical distributions on either the spectral amplitudes or
the complex values of the STFT coefficients. In [3], super-
Gaussian distributions, including the Laplace and Gamma
distributions, are used to model the distribution of the real
and imaginary parts of the STFT coefficients of the speech
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and noise. The authors derived MMSE estimators for when
the STFT coefficients were assumed to follow Laplacian or
Gamma distributions for speech and Gaussian or Laplacian
distributions for noise. Experiments showed that estimators
based on the Laplacian speech model resulted in lower musical
noise and higher segmental SNR than the MMSE enhancers
in [1] and [2]. The use of the Laplacian noise model does
not lead to higher SNR values than using the Gaussian noise
model but it does result in better residual noise quality.

Instead of an MMSE criterion, estimators can also be
derived with a maximum a posteriori (MAP) criterion [8], [4].
In [4], speech spectral amplitudes are estimated using a MAP
criterion based on the Laplace and Gamma assumption on the
speech STFT coefficients. The parameters of the distributions
are determined by minimizing the Kullback-Leibler divergence
against experimental data and the noise STFT coefficients are
assumed to be Gaussian distributed. It is found that this MAP
spectral amplitude estimator performs better than the MMSE
spectral amplitude estimator from [1] in terms of the noise
attenuation especially for white noise. As a generalization of
the Gaussian and super-Gaussian prior, a generalized Gamma
speech prior was assumed in [6] and, based on this assumption,
estimators for both the spectral amplitude and complex STFT
coefficients were derived. The MMSE amplitude estimator
derived using the generalized Gamma prior included, as spe-
cial cases, the MMSE and MAP estimators which assume
Rayleigh, Laplace, and Gamma priors, and it was found that
this estimator outperformed [1] and gave a slightly better
performance than [4] in terms of speech distortion and noise
suppression.

Rather than using a MAP or MMSE criterion, speech
enhancers have been proposed in which a cost function that
takes into account the perceptual characteristics of speech
and noise is optimized. For example, in [9], [10], masking
thresholds were incorporated into the derivation of the optimal
spectral amplitude estimators. The threshold for each time-
frequency bin was computed from a suppression rule based on
an estimate of the clean speech signal. It showed that this esti-
mator outperformed the MMSE estimator [1] and had reduced
musical noise. In [5], [11] alternative distortion measures were
used in the cost function. In [11] a β-order MMSE estimator
was proposed where β represented the order of the spectral
amplitude used in the calculation of the cost function. The
value of β could also be adapted to the SNR of each frame.
The performance of this estimator was shown to be better
than both the MMSE estimator and the logMMSE estimator
in that it gave better noise reduction and better estimation of
weak speech spectral components. The estimators in [5] and
[11] were extended in [12], where a weighted β-order MMSE
was present. It employed a cost function which combined
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the β-order compression rule and weighted Euclidean cost
function. The cost function was parameterised to model the
characteristics of the human auditory system. It was shown
that the modified cost function led to a better estimator
giving consistently better performance in both subjective and
objective experiments, especially for noise having strong high-
frequency components and at low SNRs.

B. Modulation Domain Speech Enhancement

Although alternative statistical models have been exten-
sively explored for speech amplitude estimation, most existing
estimators do not incorporate temporal constraints on the
spectral amplitudes of speech and noise into the derivation
of the estimators. The temporal dynamics of the spectral
amplitudes are characterised by the modulation spectrum and
there is evidence, both physiological and psychoacoustic, to
support the significance of the modulation domain in speech
processing [13], [14], [15], [16], [17]. Modulation domain
processing has been shown to be effective for speech en-
hancement. In [18] and [19], enhancers were proposed using
band-pass filtering of the time trajectories of short-time power
spectrum. More recently, modulation domain enhancers [20],
[21], [22], [23], [24], [25] have been proposed that are, based
on techniques conventionally applied in the STFT domain. In
[20], the spectral subtraction technique was applied in the
modulation domain where it outperformed both the STFT
domain spectral subtraction enhancer [26] and the MMSE
enhancer [1] in the Perceptual Evaluation of Speech Quality
(PESQ) measure [27]. Similarly, an enhancer was proposed in
[22] that applied an MMSE spectral estimator in the modula-
tion domain. In [21], a modulation-domain Kalman filter was
proposed that gave an MMSE estimate of the speech spectral
amplitudes by combining the predicted speech amplitudes with
the observed noisy speech amplitudes. It was shown that
the modulation-domain Kalman filter outperforms the time
domain Kalman filter [28] when the enhancement performance
is measured by PESQ. In [21], the speech and noise were
assumed to be additive in the spectral amplitude domain.
Thus, there was no phase uncertainty leveraged for calculating
the MMSE estimate of the speech spectral amplitudes. Also,
the speech spectral amplitudes were assumed to be Gaussian
distributed. The modulation-domain Kalman filter enhancer in
[29] extended that in [21] from two aspects. First, the speech
and noise were assumed to be additive in the complex STFT
domain. Second, the speech spectral amplitudes were assumed
to follow a form of the generalised Gamma distribution, which
was shown to be a better model than the Gaussian distribution.
The modulation-domain Kalman filter in [29] only modeled
the spectral dynamics of speech, it was shown to outperform
the version of the enhancer in [21] that also only modeled the
spectral dynamics of speech when evaluated using the PESQ
and segmental SNR (segSNR) measures [29].

C. Overview of this Paper

This paper extends the work in [29] by incorporating
the spectral dynamics of both speech and noise into the
modulation-domain Kalman filter. In order to derive the
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Figure 1. Diagram of proposed modulation-domain Kalman filter based
MMSE estimator.

MMSE estimate, we propose a complex-valued statistical dis-
tribution denoted “Gaussring”. This paper is organized as fol-
lows. In Sec. II, a modulation-domain Kalman filter enhancer
is described that can incorporate one of two alternative noise
models. The update step for the first model is taken from [29]
and is briefly described in Sec. III-B. The update step for the
second model is based on the proposed Gaussring distribution
and is presented in Sec. III-C. Experimental results with the
proposed Gaussring model based modulation-domain Kalman
filter are shown in Sec. IV. Finally, in Sec. V, conclusions are
given.

II. MODULATION-DOMAIN KALMAN FILTER BASED
MMSE ENHANCER

A block diagram of the modulation-domain Kalman filter
based enhancement structure is shown in Fig. 1. The noisy
speech, z(t), is transformed into the STFT domain and en-
hancement is performed independently in each frequency bin,
k. The “noise model estimator” block uses the noisy speech
amplitudes, Yn,k, where n is the index for time frame, to
estimate the prior noise model. The “speech model estimator”
block uses the output from a logMMSE enhancer [2], [30] to
estimate the speech model. The use of a logMMSE enhancer
to pre-clean the speech reduces the effect of the noise on the
estimation of the speech model [21]. The modulation-domain
Kalman filter combines the speech and noise models with the
observed noisy speech, Yn,k, to obtain an MMSE estimate of
the speech spectral amplitudes, Ân,k. The estimated speech
is then combined with the noisy phase spectrum, θn,k, and
the inverse STFT (ISTFT) is applied to obtain the enhanced
speech signal, ŝ(t).

A. Kalman Filter Prediction Step

The “modulation domain Kalman filter” block in Fig. 1
comprises a prediction step and an update step. For frequency
bin k of frame n, we assume that

Zn,k = Sn,k +Wn,k (1)

where Zn,k, Sn,k and Wn,k are random variables representing
the complex STFT coefficients of the noisy speech, clean
speech and noise respectively with realizations zn,k, sn,k and
wn,k. Since each frequency bin is processed independently
within our algorithm, the frequency index, k, will be omitted in
the remainder of this paper. The random variables representing
the corresponding spectral amplitudes are denoted: Yn = |Zn|,
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Ãn = |Sn|, and Ăn = |Wn| with realizations yn, ãn, and ăn.
Throughout this paper, tilde, ∼, and breve, �, diacritics will
denote quantities relating to the estimated speech and noise
signals respectively. The prediction model assumed for the
clean speech spectral amplitude is given by

[
ãn
ăn

]
=

[
F̃n 0

0 F̆n

] [
ãn−1

ăn−1

]
+

[
d̃ 0

0 d̆

] [
ẽn
ĕn

]
,

(2)

where ãn =
[
Ãn, Ãn−1 . . . Ãn−p+1

]T
denotes the state vector

of speech amplitudes. F̃n denotes the transition matrix for the
speech amplitudes. d̃ = [1 0 · · · 0]T is a p-dimensional vector.
The speech transition matrix has the form

F̃n =

[ −b̃T
n

I 0

]
, (3)

where b̃n = [bn1 · · · bnp]T is the LPC coefficient vector, I is
an identity matrix of size (p − 1) × (p − 1) and 0 denotes
an all-zero column vector of length p − 1. ẽn represents the
prediction residual signal and it has variance η̃2. The quantities
ăn, F̆n, d̆ and ĕn are defined similarly for the order-q noise
model. By concatenating the speech and noise state vectors,
we can rewrite (2) more compactly as

an = Fnan−1 +Den. (4)

where the quantities, an, Fn, D and en, have been de-

fined in (2) and an =
[
ãn ăn

]T
, Fn =

[
F̃n 0

0 F̆n

]
,

D =

[
d̃ 0

0 d̆

]
and en =

[
ẽn ĕn

]T
. The Kalman filter

prediction step estimates the state vector mean an|n−1, and
covariance, Pn|n−1, at time n from their estimates, an−1|n−1

and Pn−1|n−1 at time n− 1. The notation n|n− 1 represents
the prior estimate at acoustic frame n given the observation
of all the previous frames 1, . . . , n− 1. The prediction model
equations can be written as

an|n−1 = Fnan−1|n−1 (5)

Pn|n−1 = FnPn−1|n−1F
T
n +DQnD

T, (6)

where Qn =

[
η̃2 0

0 η̆2

]
is the covariance matrix of the

prediction residual signal of speech and noise. The values
of Fn and Qn are determined from linear predictive (LPC)
analysis on modulation frames as described in Sec IV. The
prior mean and covariance matrix are given by

μn|n−1 �
[
μ̃n|n−1 μ̆n|n−1

]T
= DTan|n−1 (7)

Σn|n−1 �
[

σ̃2
n|n−1 ςn|n−1

ςn|n−1 σ̆2
n|n−1

]
= DTPn|n−1D, (8)

where the matrix D has been defined in (4). μ̃n|n−1 and
μ̆n|n−1 denote the prior estimate of the speech and noise
spectral amplitude in the current frame n. μ̃n|n−1 corresponds
to the first element of the state vector an|n−1 and μ̆n|n−1

corresponds to the (p + 1)th elements of the state vector,

an|n−1. σ̃2
n|n−1 and σ̆2

n|n−1 denote the variance of the prior
estimate of the speech and noise and ςn|n−1 denotes the
covariance between them.

B. Kalman Filter Update Step

For the update step, we first define a (p+ q) × (p+ q)
permutation matrix, V, such that Van|n−1 swaps elements
2 and p + 1 of the prior state vector an|n−1 so that the
first two elements now correspond to the speech and noise
amplitudes of frame n. The covariance matrix Pn|n−1 can
then be decomposed as

Pn|n−1 = VT

[
Σn|n−1 MT

n

Mn Tn

]
V, (9)

where Mn is a (p+ q − 2) × 2 matrix and Tn is a
(p+ q − 2)×(p+ q − 2) matrix. We now define a transformed
state vector, xn|n−1 to be

xn|n−1 = Hnan|n−1,

where the transformation matrix is given by

Hn =

[
I(2) 0T

−MnΣ
−1
n|n−1 I(p+q−2)

]
V,

where I(j) is the j × j identity matrix.
The covariance matrix of xn|n−1 is given by

Cov
(
xn|n−1

)
= HnPn|n−1H

ᵀ
n

=

[
Σn|n−1 0T

0 Tn −Mn(Σ
−1
n|n−1)M

T
n

]
.

It can be seen that the first two elements in the transformed
state vector are uncorrelated with other elements. Suppose
the posterior estimate of the speech and noise amplitude and
the corresponding covariance matrix in the current frame are
determined to be μn|n and Σn|n, respectively. The state vector
can be updated as

xn|n = xn|n−1 +D
(
μn|n −DTxn|n−1

)
from which, applying the inverse transformation,

an|n = H−1
n

(
xn|n−1 +D

(
μn|n −DTxn|n−1

))
(10)

The covariance matrix, Pn|n, can similarly be calculated as

Pn|n = H−1
n

[
Σn|n 0T

0 Tn −Mn(Σ
−1
n|n−1)M

T
n

]
H−T

n

= Pn|n−1 +H−1
n D

(
Σn|n −Σn|n−1

)
DTH−T

n (11)

It worth noting that this formulation for the posterior esti-
mate is equivalent to that in [31], [21] if the prior distribution
of the state vector is assumed to follow a Gaussian distribution
but it also allows the use of non-Gaussian distributions for the
prior estimate.
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III. POSTERIOR DISTRIBUTION

A. MMSE estimate

To perform the Kalman filter update step in Sec. II-B, we
need to obtain the posterior estimate of the state vector, μn|n,
and covariance matrix, Σn|n. The MMSE estimate of the state
vector is given by the expectation of the posterior distribution

μn|n = E

([
Ãn Ăn

]T
|Yn

)
= DTan|n

=

[∫ ∞

0

p(ãn|Yn)dãn

∫ ∞

0

p(ăn|Yn)dăn

]T
, (12)

where Yn = [Y1 . . . Yn] represents the observed noisy speech
amplitudes up to time n. The covariance matrix is given by

Σn|n = E

([
Ã2

n ÃnĂn

ĂnÃn Ă2
n

]
|Yn

)
− μn|nμ

T
n|n. (13)

Using Bayes rule, the posterior distribution of speech am-
plitudes, p(ãn|Yn), is calculated as

p (ãn|Yn) = p (ãn|zn,Yn−1) =

∫ π

−π

p (ãn, φn|zn,Yn−1) dφn

=

∫ π

−π
p(zn|ãn, φn,Yn−1)p (ãn, φn|Yn−1) dφn

p (zn|Yn−1)

=

∫ π

−π
p
(
wn = zn − ãne

jφn |ãn, φn,Yn−1

)
p (ãn, φn|Yn−1) dφn

p (zn|Yn−1)

=

∫ π

−π
p
(
wn = zn − ãne

jφn |Yn−1

)
p (ãn, φn|Yn−1) dφn

p (zn|Yn−1)

=

∫ π

−π
p
(
wn = zn − ãne

jφn |Yn−1

)
p (ãn, φn|Yn−1) dφn∫∞

0

∫ π

−π
p (wn = zn − ãnejφn |Yn−1) p (ãn, φn|Yn−1) dφndãn

(14)

where φn is the realization of the random variable
Φn which represents the phase of the clean speech.
p (zn|ãn, φn,Yn−1) = p

(
wn = zn − ãne

jφn |ãn, φn,Yn−1

)
is the observation likelihood and equals the conditional dis-
tribution of the noise, Wn. The distribution p (ãn, φn|Yn−1)
is the prior model of the speech amplitudes and its mean and
variances can be obtained from the Kalman filter prediction
step given in (7) and (8). Analogous to (14), the posterior
distribution of the noise, p (ăn|Yn), can be calculated in a
similar way.

B. Generalized Gamma Speech Prior

In this section, which is based on [29], the distribution of
the prior speech amplitude p (ãn|Yn−1) is modeled using a
2-parameter Gamma distribution

p (ãn|Yn−1) =
2ã2γn−1

n

β2γn
n Γ (γn)

exp

(
− ã2n
β2
n

)
, (15)

where Γ (·) is the Gamma function. The update equations
induced by this prior were first derived in [29]; they are
included here as (23) and (24). The two parameters, βn and
γn are chosen to match the mean μn and variance σ2

n of the
predicted amplitude given by (7) and (8):

(0,0)

μ̃n|n−1

σ̃n|n−1

φn √
ν2
n

2

ansinφn

ancosφn√√
ν2
n

2

(0,0) φn

μ̃n|n−1

σ̃n|n−11
μn|n 1

(0, 0) φn

p (ãn|Yn−1) = Gamma (γn, βn)

p (φn) =
1
2π

zn

p (zn, ãn, φn|Yn−1)

p(zn|ãn, φn,Yn−1) = N (
ãne

jφn ; zn, ν
2
n

)
Figure 2. Statistical model assumed in the derivation of the posterior
distribution. The blue ring-shape distribution centered on the origin represents
the prior model: Gamma distributed in amplitude (15) (denoted as Gamma(·))
and uniform in phase. The red circle centered on the observation, zn,
represents the Gaussian observation likelihood model (19). The green lens
represents the posterior distribution, which is proportional to the product of
the other two.

βn
Γ (γn + 0.5)

Γ (γn)
= μ̃2

n|n−1, (16)

β2
n

(
γn − Γ2 (γn + 0.5)

Γ2 (γn)

)
= σ̃2

n|n−1. (17)

Eliminating βn between these equations gives

Γ2 (γn + 0.5)

γnΓ2 (γn)
=

μ̃2
n|n−1

μ̃2
n|n−1 + σ̃2

n|n−1

(18)

where Γ(· ) is the gamma function. Following [29], the
solution to this equation can be approximated as γn =

tan

(
f

(
μ̃2
n|n−1

μ̃2
n|n−1

+σ̃2
n|n−1

))
where f (·) is a quartic poly-

nomial. The observation noise is assumed to be complex
Gaussian distributed with variance ν2n = E

(
Ă2

n

)
leading to

the observation model likelihood

p
(
wn = zn − ãne

jφn |Yn−1

)
=

1

πν2
n

exp

{
− 1

ν2
n

|zn − ãne
jφn |2

}
.

(19)

Given the assumed prior model and the observation model, the
posterior distribution of the speech amplitude in (14) is given
by substituting (15) and (19) into (14)

p (ãn|Yn) =∫ 2π

0
a2γn−1
n exp

{
− a2

n
β2
n
− 1

ν2
n
|zn − ane

jφn |2
}
dφn∫∞

0

∫ 2π

0
a2γn−1
n exp

{
− a2

n
β2
n
− 1

ν2
n
|zn − anejφn |2

}
dφndan

. (20)

To illustrate (14), the update model is depicted in Fig. 2. The
blue ring-shaped distribution centered on the origin represents
the prior model, p (ãn, φn|Yn−1), where Gamma (γn, βn)
denotes the Gamma distribution from (15). The red circle
centered on the observation, zn, represents the observation
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model p (zn|ãn, φn). As in (14), the product of the two models
gives

p (zn, ãn, φn|Yn−1) =

p (ãn, φn|Yn−1) p
(−wn = ãne

jφn − zn|ãn, φn,Yn−1

)
,

(21)

where the second term, represented by the red circle in Fig. 2,
is the distribution of −Wn but offset by the observation zn.
The green lens-shaped region of overlap represents the prod-
uct of these distributions, p (zn, ãn, φn|Yn−1). The posterior
distribution p (ãn|Yn) is calculated by marginalising over the
phase, φn, in p (zn, ãn, φn|Yn−1) and normalising by the
integral of the green region. Substituting (20) into (12), a
closed-form expression can be derived for the estimator (12)
using [32, Eq. 6.643.2, 9.210.1, 9.220.2]

μ̃n|n =

∫ ∞

0

ãnp(ãn|Yn)dan (22)

=

∫∞
0

∫ 2π

0
ã2γn
n exp

{
− ã2

n
β2
n
− 1

ν2
n
|zn − ãne

jφn |2
}
dφndãn∫∞

0

∫ 2π

0
ã2γn−1
n exp

{
− ã2

n
β2
n
− 1

ν2
n
|zn − ãnejφn |2

}
dφndãn

=
Γ (γn + 0.5)

Γ (γn)

√
ξn

ζn(γn + ξn)

M
(
γn + 0.5; 1; ζnξn

γn+ξn

)
M

(
γn; 1;

ζnξn
γn+ξn

) yn,

(23)

where M is the confluent hypergeometric function [33],
and ξn and ζn are the a priori SNR and a posteriori SNR
respectively, which are calculated as

ζn =
y2n
ν2n

, ξn =
E

(
Ã2

n|Yn−1

)
ν2n

=
μ̃2
n|n−1 + σ̃2

n|n−1

ν2n
=

γnβ
2
n

ν2n
.

The variance associated with the estimator in (23) is given by
[32, Eq. 6.643.2, 9.210.1, 9.220.2]

σ̃2
n|n = E

(
Ã2

n|Yn, φn

)
−

(
E

(
Ãn|Yn, φn

))2

=
γnξn

ζn(γn + ξn)

M
(
γn + 1; 1; ζnξn

γn+ξn

)
M

(
γn; 1;

ζnξn
γn+ξn

) y2
n − μ̃2

n|n−1. (24)

Since the noise is assumed to be stationary and the LPC
order q = 0, the state vector is updated in (10) with D = d̃
and μn|n = μ̃n|n and the covariance matrix is updated in (11)
with Σn|n = σ̃2

n|n .

C. Enhancement with Gaussring priors

In this section, we jointly model the temporal dynamics
of spectral amplitudes of both the speech and noise. In this
case, the observation model assumed in [34], Rn = An + Vn,
can be viewed as a constraint applied to the speech and noise
when deriving the MMSE estimate for their amplitudes. As in
Sec. II, we assume that the speech and noise are additive in the
complex STFT domain. The STFT coefficients of speech and
noise are assumed to have uniform prior phase distributions. To
derive the Kalman filter update, the joint posterior distribution
of the speech and noise amplitudes need to be estimated to
apply in (10) and (11). However, in this case the normalisation
term in (14) is now calculated as

p
(
zn|Yn−1, Ăn−1

)
=

∫ ∞

0

∫ 2π

0

∫ ∞

0

∫ 2π

0

p (zn|ãn, φn, ăn, ψn)

p (ãn, φn, ăn, ψn|Yn−1,Vn−1) dãndφndăndψn, (25)

where Ăn =
[
Ă1 . . . Ăn

]
represents the noise amplitudes up to

time n and ψn is the realization of the random variable Ψn

which represents the phase of the noise. This marginalisation
is mathematically intractable if the generalized Gamma dis-
tribution from (15) is assumed for both the speech and noise
prior amplitude distributions.

In order to overcome this problem, in this section we
assume the complex STFT coefficients to follow a “Gaussring”
distribution that comprises a mixture of Gaussians whose
centres lie in a circle on the complex plane.

1) Gaussring distribution: From the colored noise
modulation-domain Kalman filter described in [21], the prior
estimate of the amplitude of both speech and noise can
be obtained. The idea of the Gaussring model is, to use a
mixture of 2-dimensional circular Gaussians to approximate
the prior distribution of the complex STFT coefficients of
both the speech, p

(
sn|n−1

)
, and the noise, p

(
wn|n−1

)
.

For the speech coefficients, the Gaussring model is defined
as

p
(
sn|n−1

)
=

G̃∑
g̃=1

ε̃
(g̃)
n|n−1N

(
õ
(g̃)
n|n−1, Δ̃n|n−1

)
(26)

where G̃ is the number of Gaussian components and ε̃
(g̃)
n|n−1

is the weight of the g̃th Gaussian component. õ(g̃)n|n−1 denotes
the complex mean of the g̃th Gaussian component and Δ̃n|n−1

denotes real-valued variance (which is common to all compo-
nents). The noise Gaussring model p

(
wn|n−1

)
is similarly

defined with parameters Ğ, ε̆
(ğ)
n|n−1, ŏ(ğ)n|n−1 and Δ̆n|n−1.

In this paper, we assume that the phase distribution is
uniform and hence that all mixtures have equal weights of
ε
(g)
n|n−1 = 1

G . We note however, that the Gaussring model
can be extended to incorporate a prior phase distribution by
using unequal weights for the mixtures. In order to fit the ring
distribution to the moments of the amplitude prior from (7) and
(8), μn|n−1 and σn|n−1, the number of Gaussian components,
G, is chosen so that the mixture centres are separated by
2σn|n−1 around a circle of radius μ in the complex plane.
Accordingly, G is set to be

G =

⌈
πμn|n−1

σn|n−1

⌉
(27)

where �· � is the ceiling function.
Examples of Gaussring models matching a prior estimate

are shown in Fig. 3. The left plot of Fig. 3(a) shows the
Gaussring distribution in the complex plane for the case(
μn|n−1, σn|n−1

)
= (10, 1) for which G = 32. The white cir-

cles indicate the means of the individual Gaussian components.
The two plots on the right of the figure show the marginal
distributions of phase (upper plot) and magnitude (lower plot).
The phase distribution is uniform to within +−0.002 and the
magnitude distribution is almost symmetric with the correct
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Figure 3. Gaussring model fit for targets of (a) μn|n−1 = 10.0 and
σn|n−1 = 1.0, (b) μn|n−1 = 2.0 and σn|n−1 = 1.0 and (c) μn|n−1 = 0.1
and σn|n−1 = 1.0. The left plot shows the Gaussring distribution in the
complex plane. The two plots on the right of the figure show the marginal
distributions of phase (upper plot) and magnitude (lower plot).

target mean and standard deviation (printed above the plotted
distribution). Fig. 3(b) shows the same plots for the case(
μn|n−1, σn|n−1

)
= (2, 1) for which G = 9. In this case

the phase distribution is again close to uniform while the
amplitude distribution has almost the correct target mean and
standard deviation but is now noticeably asymmetric. For a
Rician distribution, the mean μRician and standard deviation
σRician satisfy

μRician

σRician
≥

√
π

4− π
≈ 1.91 (28)

and when μRician

σRician
=

√
π

4−π , it becomes a Rayleigh dis-
tribution. Fig. 3(c) illustrates the case when the target(
μn|n−1, σn|n−1

)
= (0.1, 1) violates this condition. In this

case, the model defaults to a Rayleigh distribution whose mean
square amplitude, μ2

n|n−1+σ2
n|n−1 matches that of the target.

A diagram, analogous to Fig. 3, illustrating a Gaussring
model used for both the speech and noise priors in (14) is
illustrated in Fig. 4. As in Fig. 4, the speech distribution is

(0,0)((00,0))

μ̃n|n−1σ̃n|n−1

μ̆n|n−1

σ̆n|n−1

p
(
sn|n−1

)
=

G̃∑
g̃=1

ε̃
(g̃)
n|n−1N

(
õ
(g̃)
n|n−1, Δ̃n|n−1

)

zn

an sinφn

an cosφn

p
(
wn|n−1

)
=

Ğ∑
ğ=1

ε̆
(ğ)
n|n−1N

(
ŏ
(ğ)
n|n−1, Δ̆n|n−1

)

Figure 4. Gaussring model of speech and noise. Blue circles represent the
speech Guassring model and red circles represent the noise Guassring model.

centered on the origin while the negated noise distribution is
centered at the observation zn.

Supposing that there are G̃ components for the speech and
Ğ Gaussian components for the noise, a total of G̃Ğ Gaussian
components will be obtained for the posterior distribution after
combining the speech and noise prior models. The weighted
product of component of speech and component of noise, is
ε
(g̃, ğ)
n|n N

(
o
(g̃, ğ)
n|n ,Δn|n

)
, is with parameters [35]

Δn|n =
Δ̃n|n−1Δ̆n|n−1

Δ̃n|n−1 + Δ̆n|n−1

(29)

o
(g̃, ğ)

n|n = Δn|n

(
õ
(g̃)

n|n−1

Δ̃n|n−1

+
ŏ
(ğ)

n|n−1

Δ̆n|n−1

)
(30)

ε
(g̃, ğ)

n|n =
1

G̃Ğ
N

(
0; õ

(g̃)

n|n−1 − ŏ
(ğ)

n|n−1, Δ̃n|n−1 + Δ̆n|n−1

)
, (31)

where N (x; o,Δ) denotes the value of the Gaussian distri-
bution N (o,Δ) evaluated at x. The optimal estimate of the
amplitude of speech and noise is calculated as the mean of
the amplitude of posterior Gaussian components as in (12).

2) Moment Matching: In this subsection, we will describe
how the parameters of the Gaussring model are estimated
by matching the moments of the prior estimate. Because
each mixture component in the Gaussring model is circular
Gaussian, its amplitude is Rician distributed [33]; with a 2-
parameter distribution given by

p (an|Yn−1) =
an
δ2

exp
(−(a2n + α2)

2δ2

)
I0

(anα
δ2

)
, (32)

where Ik (·) is a modified Bessel function of the first kind and
an represents the realization of the speech amplitude, ãn, or
noise amplitude, ăn. The parameters of the Rician distribution
are determined by matching the mean and variance to μn|n−1

and σn|n−1 from (7), (8). The mean and variance of the Rician
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distribution in (32) are given by

μRician = δn

√
π

2
exp

(
− α2

n

2δ2n

)
[(

1− α2
n

2δ2n

)
I0

(
− α2

n

4δ2n

)
− α2

n

2δ2n
I1

(
− α2

n

4δ2n

)]
(33)

σ2
Rician = 2δ2n + α2

n − μ2
Rician, (34)

where αn ≥ 0 and δn ≥ 0 are the parameters of the Rician
distribution in (32). It is difficult to invert (33) to determine
α and δ from μn|n−1 and σ2

n|n−1, so instead we use the
Nakagami-m distribution to approximate the Rician distribu-
tion. There are two advantages to using this approximation.
First, the parameters of the distribution can be estimated
efficiently by matching the moments of the prior estimate and
second, the covariance of the amplitudes of the speech and
noise can be approximated efficiently. In [36], the Nakagami-
m distribution is similarly used to approximate the Rician
distribution in order to simplify the MMSE estimator in [1]
and MAP estimator in [8].

The Nakagami-m distribution is a 2-parameter distribution
given by [37]

p (an|Yn−1) =
2mm

Γ (m) Ωm
a2m−1
n exp

(
−m

Ω
an

)
.

The mean and variance of the Nakagami-m distribution are
given by

μNakagami =
Γ(m+ 1

2 )

Γ(m)

√
Ω

m
(35)

σ2
Nakagami = Ω− μ2

Nakagami, (36)

where Ωn and mn are the parameters of the distribution which
satisfy [37]

Ωn = E
(
A2

n

)
(37)

mn =
E2

(
A2

n

)
Var (A2

n)
. (38)

The Nakagami-m distribution is a good approximation to the
Rician distribution when the parameter, m, in the Nakagami-
m distribution satisfies m > 1 [38], [36], [39]. The parameters
of the Rician distribution can be obtained from the parameters
of the corresponding Nakagami-m distribution for m > 1 by
moment matching [39] to obtain

α2 = Ω

√
1− 1

m
(39)

δ2 = 0.5
(
Ω− α2

)
. (40)

In Fig. 5, the Rician distribution and Nakamai-m distribution
are compared for Ω = 0.1, 1, 10 and m = 2, and the
parameters of Rician distribution, α and υ are calculated
from Ω and m using (39) and (40). It can be seen that,
the Nakagami-m distribution is a close approximation of the
Rician distribution for this range of parameters.

It is still not straightforward to invert (35), (36) to determine
(m, Ω) from

(
μn|n−1, σ

2
n|n−1

)
. However, by observing that

Γ(m+ 1
2 )

Γ(m) is tightly bounded by [36]

0 1 2 3 4 5 6
0
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3
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Ω=0.1
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Ω=10
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Nakagami−m

Figure 5. Comparison of Rician and Nakagami-m distribution for Ω =
0.1, 1, 10 and m = 2.

√
m− 1

4
<

Γ(m+ 1
2 )

Γ(m)
< m/

√
m+

1

4
, (41)

we can replace this quantity by its lower bound to obtain

μn|n−1 =

√
Ωn|n−1 −

Ωn|n−1

4mn|n−1

σ2
n|n−1 =

Ωn|n−1

4mn|n−1
,

from which

Ωn|n−1 = μ2
n|n−1 + σ2

n|n−1 (42)

mn|n−1 = 0.25σ−2
n|n−1Ωn|n−1. (43)

The α and δ2 parameters of the corresponding Rician
distribution can then be calculated from Ωn|n−1 and mn|n−1

using (39) and (40). From α and δ2, the mean and covariance
of each mixture of the Gaussring model can be obtained as

õ
(g̃)
n|n−1 = α̃ exp

(
j2πg̃

G̃

)
(44)

ŏ
(ğ)
n|n−1 = zn + ᾰ exp

(
j2πğ

Ğ

)
(45)

Δ̃ = 2δ̃2 Δ̆ = 2δ̆2. (46)

When the inequality in (28) is not satisfied, we use
a single Gaussian component to model the distribution in
(26). In this case, the prior distribution of the amplitude,
p (an|Yn−1), becomes a Rayleigh distribution which is a 1-
parameter distribution. Rather than matching the mean or vari-
ance of this Rayleigh distribution to the corresponding prior,
we estimate the parameter of the Rayleigh distribution by
matching E

(
A2

n|Yn−1

)
, which is calculated in (42) as Ωn|n−1.

Thus, the mean and variance of this Gaussian distribution is
given by on|n−1 = 0 and Δn|n−1 = δ2 =

Ω2
n|n−1

2 . The
plot in Fig. 3(c) shows the Gaussring model with a target(
μn|n−1, σn|n−1

)
= (0.1, 1). We can see that the actual fitted

mean and standard deviation deviate from the actual values
and are (0.89, 0.47). In this case, the model will be fitted
with a mean and standard deviation which satisfy equality in
(28) and give the correct value of μ2

n|n−1 + σ2
n|n−1.
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3) Posterior estimate: In order to determine the mean,
μn|n, and covariance, Σn|n, of the posterior amplitude dis-
tribution in (12), (13), we first calculate the correspond-
ing quantities for each Gaussian component of the product,
N

(
o
(g̃, ğ)
n|n ,Δn|n

)
from (29), (30). We use the Nakagami-m

distribution to model the amplitude distribution of this com-
plex Gaussian, p

(
a
(g̃,ğ)
n |Yn

)
. The Nakagami-m parameters,

m
(g̃, ğ)
n|n and Ω

(g̃, ğ)
n|n , are calculated in (37) and (38) from the

mean and variance of the squared amplitude, denoted here
by μ

(g̃,ğ)
sq = E

(
A

2(g̃, ğ)
n |Yn

)
and σ

2(g̃,ğ)
sq = Var

(
A

2(g̃, ğ)
n |Yn

)
respectively.

We define a 2-element complex Gaussian vector υ �
N

(
μ(g̃, ğ),Σ(g̃, ğ)

)
in which the two elements are fully cor-

related with each other and differ only in their means. The
mean and the covariance matrix of this vector is given by

μ(g̃, ğ) =
[
o
(g̃, ğ)
n|n , o

(g̃, ğ)
n|n − zn

]T
Σ(g̃, ğ) =

[
Δn|n Δn|n
Δn|n Δn|n

]
from [40], [35] we can obtain

μ(g̃, ğ)
sq = diag

(
Σ(g̃, ğ)

)
+

∣∣∣μ(g̃, ğ)
∣∣∣◦2 (47)

Σ(g̃, ğ)
sq =

∣∣∣∣Σ(g̃, ğ) + μ(g̃, ğ)
(
μ(g̃, ğ)

)H
∣∣∣∣
◦2

−
∣∣∣∣μ(g̃, ğ)

(
μ(g̃, ğ)

)H
∣∣∣∣
◦2

,

(48)

in which ◦2 and |·| denote element-wise squaring and absolute
value of matrix elements. These quantities may be decomposed
as

μ(g̃, ğ)
sq =

[
μ̃(g̃, ğ)
sq , μ̆(g̃, ğ)

sq

]T
(49)

and

Σ(g̃, ğ)
sq =

⎡⎢⎣
(
σ̃
(g̃, ğ)
sq

)2

ρ
(g̃, ğ)
sq σ̃

(g̃, ğ)
sq σ̆

(g̃, ğ)
sq

ρ
(g̃, ğ)
sq σ̃

(g̃, ğ)
sq σ̆

(g̃, ğ)
sq

(
σ̆
(g̃, ğ)
sq

)2

⎤⎥⎦ .

(50)
The parameters of the speech amplitude distribution of each
component, p

(
ã
(g̃, ğ)
n |Yn

)
, are obtained using (37) and (38)

as

Ω̃
(g̃, ğ)
n|n = μ̃(g̃, ğ)

sq (51)

m̃
(g̃, ğ)
n|n = Ω̃

2(g̃, ğ)
n|n /

(
σ̃(g̃, ğ)
sq

)2

. (52)

The parameters of the noise amplitude distribution,

p
(
ă
(g̃, ğ)
n |Yn

)
, can be estimated from μ̆

(g̃, ğ)
sq and

(
σ̆
(g̃, ğ)
sq

)2

in
the same manner. As a result, the mean of the amplitudes of
speech and noise, μ̃(g̃, ğ)

n|n and μ̆
(g̃, ğ)
n|n , can be calculated using

(35). Also, the variance of the speech and noise amplitudes,(
σ̃
(g̃, ğ)
n|n

)2

and
(
σ̆
(g̃, ğ)
n|n

)2

, can be calculated using (36).
The remaining task is the calculation of the co-

variance for the speech and noise amplitude of each
Gaussian component, ω(g̃, ğ) � E

(
Ã

(g̃, ğ)
n , Ă

(g̃, ğ)
n |Yn

)
−

E

(
Ã

(g̃, ğ)
n |Yn

)
E

(
Ă

(g̃, ğ)
n |Yn

)
. For two Nakagami-m variables

with different parameters m, there is no analytical solu-
tion for calculating the correlation coefficient, ρ(g̃, ğ) =
E(Ã(g̃, ğ)

n ,Ă(g̃, ğ)
n |Yn)−E(Ã(g̃, ğ)

n |Yn)E(Ă(g̃, ğ)
n |Yn)√

Var
(
Ã

(g̃, ğ)
n |Yn

)
Var

(
Ă

(g̃, ğ)
n |Yn

) . However, ρ(g̃, ğ)

can be well-approximated by the correlation coefficient be-
tween the squared Nakagami-m variables [41], which is
given by ρ

(g̃, ğ)
sq in (50). Thus, we can obtain that ω(g̃, ğ) ≈

ρ
(g̃, ğ)
sq σ̃

(g̃, ğ)
n|n σ̆

(g̃, ğ)
n|n and the covariance matrix, Σ

(g̃, ğ)
n|n , is

thereby given by Σ
(g̃, ğ)

n|n =

[
σ̃
2(g̃, ğ)

n|n ω(g̃, ğ)

ω(g̃, ğ) σ̆
2(g̃, ğ)

n|n

]
.

Finally, given the mean and covariance of each Gaussian
component, the posterior estimate of the speech and noise
amplitudes required in (10) is given by

μn|n =
∑
g̃,ğ

ε
(g̃, ğ)

n|n μ
(g̃, ğ)

n|n =
∑
g̃,ğ

ε
(g̃, ğ)

n|n
[
μ̃
(g̃, ğ)

n|n , μ̆
(g̃, ğ)

n|n
]T

, (53)

and the covariance matrix in required in (11) is given by

Σn|n =
∑
g̃,ğ

ε
(g̃, ğ)

n|n

(
Σ

(g̃, ğ)

n|n + μ
(g̃, ğ)

n|n
(
μ

(g̃, ğ)

n|n
)T

)
− μn|nμ

T
n|n.

(54)
In this section, the entire process of calculating the posterior

estimate of both speech and noise from their prior estimate.
has been described. First, the parameters of the Nakagami-m
distribution are calculated by fitting to the prior estimate of
speech and noise using (42) and (43) and get the parameters
of the corresponding Rician distribution from them using (39)
and (40). Thus, the mean and covariance of each Gaussian
component are obtained from (44) to (46) and the posterior
distribution of the Gaussring components is obtained as the
pairwise product of the components of speech and noise.
Second, the parameters of the amplitude distribution for each
component of the posterior distribution are calculated using
(51) and (52). Given these parameters, the mean vector and
the covariance matrix of the speech and noise amplitudes,
namely μ

(g̃, ğ)
n|n and Σ

(g̃, ğ)
n|n , can be calculated for each Gaussian

component. Finally, the overall mean vector, μn|n, and the
covariance matrix, Σn|n, of the posterior estimate are obtained
using (53) and (54), respectively.

IV. IMPLEMENTATION AND EVALUATION

In this section, the proposed modulation-domain Kalman
filter based MMSE estimator using the update in Sec. III-B is
denoted as MDKM and that using the Gaussring-based update
in Sec. III-C is denoted as MDKR. The performance of the
MDKM and MDKR enhancers are compared with that of a
baseline logMMSE enhancer [2], [30], of a deep neural net-
work (DNN) based enhancer [42] and of the colored-noise ver-
sion of the modulation Kalman filter (MDKFC) enhancer from
[21]. The evaluation metrics comprise segSNR [43], PESQ
[44], the short-time objective intelligibility (STOI) measure
[45] and the phone error rate (PER) from an automatic speech
recognition (ASR) system. For the DNN based enhancer, a
DNN was trained to estimate the ideal ratio mask (IRM) [42]
and it had three 1024-dimensional hidden layers with rectified
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Figure 6. Prediction gain for speech modulation-domain LPC model of
different orders.

Table I
PARAMETER SETTINGS IN THE EXPERIMENTS.

Parameter Settings
Sampling frequency 16 kHz

Speech/Noise Acoustic frame length 32ms
Speech/Noise Acoustic frame increment 8ms

Speech modulation frame length 64ms
Speech modulation frame increment 8ms

Noise modulation frame length 64ms
Noise modulation frame increment 16ms

Analysis-synthesis window Hamming window
Speech LPC model order p 3
noise LPC model order q 4

linear units (ReLU) [46]. Sigmoid activation functions were
applied in the output layer since the targets are in the range
[0, 1]. The average mean square error (MSE) between the
predicted and true IRM was used as the cost function. We used
an adaptive gradient descent algorithm [47] with a momentum
of 0.5. For training the DNN, 2000 utterances were randomly
selected from TIMIT training set as in [42] and they were
corrupted by babble, factory, car and destroyer engine noise
from the RSG-10 database [48] at −10, −5, 0, 5, 10 and 15 dB
global SNR. The input features set was same as that in [42],
which included amplitude modulation spectrogram, relative
spectral transformed perceptual linear prediction coefficients
(RASTA-PLP), mel-frequency cepstral coefficients (MFCC)
and 64-channel Gammatone filterbank power spectra.

The evaluations used the core test set from the TIMIT
database [49] as the test set, which contains 16 male and
8 female speakers each reading 8 sentences for a total of
192 sentences all with distinct texts. In order to optimize
the parameters of the algorithms other than the LPC orders,
a development set was used that comprised of 200 speech
sentences randomly selected from the development set of the
TIMIT database. A summary of the parameter settings is given
in Table I. The speech was corrupted by F16 noise from
the RSG-10 database [48] and street noise from the ITU-T
test signals database [50]. The sampling rate of the speech
signals was 16 kHZ and noise signals were downsampled to
16 kHz. The speech LPC coefficients for the MDKM, MDKR
and MDKFC algorithms were estimated from each modulation
frame of the logMMSE-enhanced speech. In order to estimate
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Figure 7. Prediction gain for modulation-domain LPC models of different
orders of white noise (top), car noise (middle) and street noise (bottom).

the noise LPC models for the MDKR and MDKFC algorithms,
we followed the procedure described in [21] in which the
estimated modulation magnitude spectrum of the noise was
recursively averaged during intervals that were classified as
noise-only. The noise LPC coefficients were then found from
the autocorrelation coefficients of the modulation magnitude
spectrum of the noise. The prediction residual signal of speech
and noise, which were denoted as η̃2 and η̆2 in Qn in (6),
were calculated as the power of the prediction errors for each
modulation frame. To investigate the effect of the order on
the speech modulation-domain LPC model, we calculated the
prediction gain for a range of LPC orders. The prediction gain,
Ξp, is defined as

Ξp �
E
(|Sn,k|2

)
E

((
|Sn,k| − |Ŝn,k|

)2
) (55)

where |Ŝn,k| represents the estimated speech amplitude. The
expectation in (55) was taken over all acoustic frames for each
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Figure 8. Left: Average segmental SNR plotted against the global SNR of the
input speech corrupted by additive F16 noise. Right: Average segmental SNR
improvement after processing by four algorithms plotted against the global
SNR of the input speech corrupted by additive F16 noise. The algorithm
acronyms are defined in the text.

frequency bin. In Fig. 6, we show the prediction gain of clean
speech which was formed using 100 speech sentences from
the development set. From Fig. 6, it can be seen that, when
the order, p, of the modulation-domain LPC model is ≥ 2 ,
the prediction gain exceeds 10 dB at most acoustic frequencies.
For the acoustic frequencies accounting for most of the speech
power (500− 1000Hz), the prediction gain exceeds 15 dB. In
the evaluation experiments, a modulation-domain LPC model
of order 3 was used when a speech LPC model was required.
Similarly, Fig. 7 shows the prediction gain of the noise LPC
model for different orders, q, for white noise, car noise and
street noise. The plots show that the LPC models with of
order ≥ 3 are able to model the noises in the modulation
domain. The prediction gains of white noise are about 10 dB
over acoustic frequencies, which are fairly stable because of
the stationary power distribution of white noise (the sudden
drop of prediction gain at very low and very high frequencies
results from the framing and windowing in the time domain). It
worth noting that the predictability of the spectral amplitudes
of the white noise results from the amplitude correlation that
is introduced by the overlapped windows in the STFT. For car
noise, because nearly all of acoustic spectral power is at low
acoustic frequencies, the temporal acoustic sequences within
these frequency bins are easier to predict from the previous
acoustic frames, therefore the prediction gains are clearly
higher at low frequencies than those at high frequencies, which
are about 12 dB. For the street noise, the gains are similar to
those of the white noise and car noise. At low frequencies (10
to 200 Hz) the prediction gains are higher (about 14 dB) than
those of higher frequencies. In the experiments, a modulation-
domain LPC model of order 4 was used when a noise LPC
model was required.

The speech signals were corrupted with additive F16 noise
from the RSG-10 database [48] and street noise [50] at
−10,−5, 0, 5, 10 and 15 dB global SNR. All the measured
values shown are averages over all the sentences in the TIMIT
core test set. Figures 8 and 9 show the average segSNR of the
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Figure 9. Left: Average segmental SNR plotted against the global SNR of
the input speech corrupted by additive street noise. Right: Average segmental
SNR improvement after processing by four algorithms plotted against the
global SNR of the input speech corrupted by additive street noise.
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Figure 10. Left: Average PESQ plotted against the global SNR of the input
speech corrupted by additive F16 noise. Right: Average PESQ of enhanced
speech after processing by four algorithms plotted against the global SNR of
the input speech corrupted by additive F16 noise.
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Figure 11. Left: Average PESQ plotted against the global SNR of the input
speech corrupted by additive street noise. Right: Average PESQ of enhanced
speech after processing by four algorithms plotted against the global SNR of
the input speech corrupted by additive street noise.
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Figure 12. Left: Average STOI plotted against the global SNR of the input
speech corrupted by additive F16 noise. Right: Average STOI of enhanced
speech after processing by four algorithms plotted against the global SNR of
the input speech corrupted by additive F16 noise.
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Figure 13. Left: Average STOI plotted against the global SNR of the input
speech corrupted by additive street noise. Right: Average STOI of enhanced
speech after processing by four algorithms plotted against the global SNR of
the input speech corrupted by additive street noise.
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Figure 14. Phone Error Rate (PER) reduction plotted against the global SNR
of the input speech corrupted by additive F16 noise. The PERs of the noisy
speech at {0, 5, 10, 15} dB SNR were {86.7, 71.7, 52.2, 38.3}% respectively.
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Figure 15. Phone Error Rate (PER) reduction plotted against the global SNR
of the input speech corrupted by additive street noise. The PERs of the noisy
speech at {0, 5, 10, 15} dB SNR were {64.3, 47.9, 36.9, 28.1}% respectively.

noisy speech and the average segSNR improvement given by
each algorithm over the noisy speech at each SNR for F16
noise and street noise, respectively. It can be seen that, for
F16 noise, the MDKFC algorithm performs better than the
MDKR, MDKM and DNN enhancers at -10 dB SNRs while
at high SNRs, the MDKFR enhancer outperforms MDKFC
by about 1 dB and MDKM algorithms by about 0.5 dB. At
-10 dB, the DNN enhancer performs similarly to the MDKM
enhancer and at other SNRs it performs worse than the
MDKM enhancer by about 1 dB. For street noise, the MDKFR
enhancer gives an improvement of by 2 to 3 dB over the
MDKM and MDKFC enhancers over the entire range of SNRs.
The DNN enhancer performs slight worse than the MDKM
and MDKFC enhancers and it gives about 2.5 dB improvement
over the logMMSE enhancer.

Figures 10 and 11 give the corresponding average PESQ
of the noisy speech and the average PESQ performance
improvement over noisy speech at each SNR. It shows that for
F16 noise, at -10 dB and 15 dB SNRs, the MDKR, MDKM
give similar performance and at other SNRs, the MDKR
enhancer gives an improvement of about 0.1 over the MDKM
and about 0.2 over the logMMSE enhancer. The MDKFC
enhancer performs slightly worse that the MDKM enhancer
and outperforms the logMMSE enhancer by about 0.05. The
DNN enhancer gives a similar performance as the MDKFC
enhancer. For street noise, the MDKR enhancer gives an
improvement of around 0.1 over the MDKM enhancer at -
10 dB SNR and at high SNRs (>10 dB), they give similar
performance. The DNN enhancer gives similar performance
as the MDKM enhancer at -10 dB. At high SNRs, the perfor-
mance of the DNN enhancer is worse than the MDKM and
MDKFC enhancer by around 0.15 and 0.05, respectively.

In order to assess the performance of the enhancers for
speech intelligibility, the STOI measure [45] was used. Figures
12 and 13 give the average STOI of the noisy speech and the
average STOI performance improvement over noisy speech at
each SNR. It can be seen that for F16 noise, the DNN enhancer
performs better than the other enhancers for SNRs in the
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(d) DNN
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(e) MDKFC
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(f) MDKM
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(g) MDKR

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5
Time (s)

-0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5
5.5

6
6.5

7
7.5

8

F
re

qu
en

cy
 (

kH
z)

Figure 16. Spectrograms of speech enhanced by different enhancers. The noisy speech was corrupted by F16 noise at 0 dB SNR.

range [−10, 10] dB. At 0 dB SNR, the DNN enhancer gives an
improvement of around 0.015 over the MDKR enhancer; this
corresponds to an SNR gain of 0.5 dB. The MDKR enhancer
gives a similar performance to the MDKM and MDKFC
enhancers at high SNRs and it gives an improvement of about
0.01 over the logMMSE enhancer. For street noise, the DNN
enhancer outperforms other enhancers at SNRs < 10 dB and
at -10 dB SNR, it gives an improvement of about 0.035 over
the MDKR enhancer which corresponds to an SNR gain of
2 dB. For SNRs < 5 dB, the MDKR enhancer outperforms
the MDKM, MDKFC and logMMSE enhancers and at -10 dB
SNR, it gives an improvement of about 0.018 over the MDKM
and about 0.026 over the MDKFC and logMMSE enhancers.

In addition to metrics for speech quality and intelligibility,
we have compared the performance of the enhancers on a
ASR system trained on the clean speech signals from the
TIMIT dataset. The TMIT core test set was corrupted by
F16 and street noise at 0, 5, 10, 15 dB SNRs. A speaker
adapted DNN-hidden Markov model (HMM) hybrid system
was trained using the Kaldi toolkit [51]. The input features
were 40-dimensional feature-space maximum likelihood linear
regression (fMLLR) transformed Mel-frequency cepstral coef-
ficients (MFCCs). The input context window spanned from 5
frames into the past to 5 frames into the future. The DNN

had 6 hidden layers and around 2000 triphone states were
used as the training targets. Initialisation was performed using
restricted Boltzmann machine (RBM) pre-training. The pre-
trained model was then fine-tuned using the frame-level cross-
entropy criterion. Sequence discriminative training using the
state-level minimum Bayes risk (sMBR) criterion [52] was
then applied. Figures 14 and 15 give the phone error rate (PER)
improvement over noisy speech at each SNR. It shows that for
F16 noise, the MDKR enhancer outperforms other enhancers
at 0, 5 and 10 dB SNRs. At 0 dB SNR, the MDKR gives
an improvement of 1% over the MDKM algorithm and 3%
over the DNN enhancer. At 15 dB SNR, the MDKR enhancer
performs similarly to the DNN enhancer and it outperforms the
MDKM enhancer by 1% and the logMMSE enhancer by 1.7%.
For street noise, the DNN enhancer performs slightly better
than the MDKR enhancer at 0 and 5 dB SNRs and it gives an
improvement of 2% over the MDKR and MDKM enhancer.
However, at 10 and 15 dB, the MDKR enhancer gives similar
as the DNN enhancer and they outperform other enhancers by
0.5% at 15 dB SNR.

The spectrograms of speech that has been enhanced by
different enhancers are shown in Fig. 16. It can be seen
that the MDKR enhancer is better at suppressing noise than
other enhancers, especially in the regions where speech is
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Figure 17. Left: Spectrogram of noisy speech at 10 dB, where the speech is corrupted by street noise. Middle: number of speech GMM components for each
time-frequency cell. Right: number of noise GMM components for each time-frequency cell. The numbers of the GMM components have been transformed
into log10 domain for better visualisation.
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Figure 18. Distribution of number of Gaussians components of speech (top)
and noise (bottom) when speech is corrupted by street noise at −5, 0 and
5 dB SNRs.

absent. On the other hand, the residual noise level of the
DNN enhanced speech is higher than the modulation-domain
Kalman filter based enhancers. Compared to the MDKM and
MDKFC enhancers, the MDKR enhancer results in fewer
musical noise artefacts.

It is interesting to investigate the relationship, for each time-
frequency cell, between the number of Gaussian components
chosen by the proposed Gaussring model and the SNR. In
Fig. 17, the number of Gaussian components for speech and

noise are shown when the same utterance from Fig. 16(a) is
corrupted by street noise at 10 dB SNR. For better visuali-
sation, the numbers of the Gaussian components have been
transformed into log10 domain. We can see that for time-
frequency cells where the speech power is high, the predicted
speech amplitudes have a high confidence and thereby the
ratio of the prior mean and standard deviation μn|n−1

σn|n−1
is large.

Thus, the speech Gaussring model has a large number of
Gaussian components. Conversely, for time-frequency cells
where the noise power is high, the noise Gaussring model
has a large number of Gaussian components. In Fig. 18, the
histograms show the distributions of the number of Gaussian
components of speech and noise respectively for speech that
is corrupted by street noise at −5, 0 and 5 dB SNRs. When
plotting the histograms, for clarity the histogram plots omit the
bars corresponding to G = 1 (i.e. a single GMM component);
these correspond to cells in which the ratio μn|n−1

σn|n−1
< 1√

4
π−1

and the Gaussring model backs off to a Rayleigh distribution.
It can be seen that, as the SNR increases, the number of speech
components in each histogram cell increases while the number
of noise components decreases.

V. CONCLUSION

In this paper, a model-based estimator for the spectral
amplitudes of clean speech based on a modulation-domain
Kalman filter has been proposed. The novelty of this proposed
enhancer over our previous work is that it can incorporate
the temporal dynamics of both the speech and noise spec-
tral amplitudes. To obtain the optimal estimate, a Gaussring
model was proposed in which mixtures of Gaussians were
employed to model the prior distribution of the speech and
noise in the complex Fourier domain, leading to the proposed
MDKR enhancer. Over a wide range of SNRs, the MDKR
enhancer resulted in enhanced speech with higher scores for
objective speech quality measures than competing algorithms.
For speech intelligibility, the MDKR enhancer gave worse
but yet comparable performance when compared to the DNN
enhancer. The ASR experiments showed that the MDKR
enhancer performed better than competing algorithms for F16
noise and for street noise, the MDKR enhancer performed
similarly to the DNN enhancer for SNRs ≥ 10 dB.
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