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Abstract

This paper conducts a comprehensive study of the Lagrangian-based hydrodynamic
model with application to highway state estimation. Our analysis is motivated by the
practical problems of freeway traffic monitoring and estimation using multi-source data
measured from mobile devices and fixed sensors. We conduct rigorous mathematical anal-
ysis on the Hamilton-Jacobi representation of the Lighthill-Whitham-Richards model in
the transformed coordinates, and derive explicit and closed-form solutions with piecewise
affine initial, boundary, and internal conditions, based on the variational principle. A nu-
merical study of the Mobile Century field experiment demonstrates some unique features
and the effectiveness in traffic estimation of the Lagrangian-based model.

Keywords: traffic flow model; Lagrangian coordinates; Hamilton-Jacobi equation; traffic
data fusion

1 Introduction

Highway traffic state estimation is one of the essential components in traffic management.
From an estimation perspective, it is desirable to have a substantial amount of information
available. Technologies of traffic monitoring such as Eulerian sensing (loop detector, video
camera) and Lagrangian sensing (on-board smart phone or GPS) provide large and dense
data sets and potentially lead to more accurate estimation. However, from a modeling point
of view, the inclusion of additional data usually leads to inconsistency with an established
traffic model, such as the Lighthill-Whitham-Richards (LWR) model (Lighthill and Whitham,
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1955; Richards, 1956). Such incompatibility between observations (value conditions) and the
mathematical model is often manifested in the non-existence of entropy solution to the partial
differential equation (PDE).

The well-known hydrodynamic traffic models (Lighthill and Whitham, 1955; Richards,
1956) have been mostly formulated in Eulerian coordinates (time t, location x); see Bressan
and Han (2011, 2012); Claudel and Bayen (2010a,b); Daganzo (2005, 2006); Lighthill and
Whitham (1955); Newell (1993) and Richards (1956). The Eulerian-based model describes
vehicle density and flux using a scalar conservation law. This type of PDE is usually associated
with initial/boundary value conditions which are inherently Eulerian. Initial and boundary
value problems, if well posed, leads to the existence and uniqueness of a solution (Bressan,
2000; Evans, 2010; Garavello et al., 2016).

While a spectrum of mathematical analyses and computational methods exist in the cur-
rent literature that deal with initial/boundary value problems for partial differential equations
(Daganzo, 2005, 2006; Evans, 2010; Le Floch, 1988; LeVeque, 1902), these are insufficient to
address the problems of traffic state estimation and reconstruction arising in the context of
mobile sensing. Indeed, the fast developing and maturing traffic monitoring systems with La-
grangian sensing capabilities through on-board devices, enable higher coverage of the physical
domain and require fast and accurate data fusing techniques. Claudel and Bayen (2010a,b,
2011) took the first step in integrating fixed and mobile sensing into a single Hamilton-Jacobi
equation in Eulerian coordinates. This was done through the notion of internal boundary
conditions (IBC), which are internal to the spatio-temporal domain of the PDE. In order to
avoid the issue of non-existence of solutions, Claudel and Bayen (2010a,b) adapted a more
general solution class known as the Barron-Jensen/Frankowska (BJ/F) solutions (Aubin, 2009;
Barron and Jensen, 1990). This type of solution, in contrast to the viscosity solution, is lower-
semicontinuous, and the corresponding computational method is known as the generalized
Lax-Hopf formula.

The Lagrangian coordinates system (LCS), applied to hydrodynamic modeling, was in-
troduced in Courant and Friedrichs (1948) in the context of gas dynamics and subsequently
studied in, e.g. Leclercq et al. (2007); Laval and Leclercq (2013). It consists of two inde-
pendent parameters: time (t) and vehicle label (n). In contrast to the Eulerian coordinate
system, the LCS is trajectory-based, i.e. it describes the evolution of variables of interest
along a particle trajectory. The hydrodynamic traffic models in Lagrangian coordinates de-
scribes vehicle spacing and vehicle speed using a scalar conservation law. A detailed review of
this model will be presented later in this article. The idea conveyed in the Lagrangian-based
approach, i.e. the trajectory-based description of traffic flow, provides new insights of the
hydrodynamic model. The LCS establishes a natural modeling framework for moving vehicles
regardless of their physical locations, which can be potentially applied to vehicle-based cyber-
physical systems such as mobile networking or mobile internet. With increasing availability of
floating car data as well as car-to-car communication, a vehicle-based traffic model could offer
additional capabilities and insights unavailable in a location-based model. The Lagrangian
coordinate system and its applications to traffic flow theory, network modeling and intelligent
transportation system remain a promising yet less exploited field.

Recent studies (Leclercq et al., 2007; Yuan et al., 2011) showed the computational ad-
vantage of Lagrangian-based PDE over Eulerian-based PDE in terms of finite difference al-
gorithms. The Lagrangian-based conservation law allows only non-negative wave propagation
speed instead of both positive and negative wave speeds as in the Eulerian-based model, which
reduces the Godunov scheme (Godunov, 1959) to a simple upwind scheme. As we will see
later in this article, the Lagrangian-based model also admits a simpler solution representation
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when the Lax-Hopf formula is used as the computational method. Despite these desirable
features, the Lagrangian-based traffic models are not sufficiently studied and understood in
the current literature, especially its potential contributions to real-world traffic estimation,
data assimilation, inverse modeling as well as mobile networking, which has motivated our
work presented in this paper.

This article conducts a comprehensive study of the Lagrangian-based traffic model in
terms of model derivation and justification, value conditions, numerical algorithm as well as
its application to traffic state estimation/reconstruction. In particular, we adapt the notion
of viability episolution (Claudel and Bayen, 2010a,b) to the Hamilton-Jacobi equation. As
previously mentioned, the Lagrangian-based approach yields simpler solution representation
than the Eulerian-based approach. Moreover, the resulting solution in Lagrangian coordinates
provides easy access to vehicle-based information such as vehicle trajectory and velocity field,
which are not directly recovered through Eulerian-based models. Specific technical contents
of this article are as follows.

1 We show the relationship between viscosity solutions of the Eulerian and Lagrangian
based Hamilton-Jacobi equations. To our knowledge, this is the first rigorous results
regarding the equivalence between the H-J equations in these two coordinate systems.

2 We present a framework for fusing both Eulerian (location-fixed) and Lagrangian (vehicle-
fixed) sensing data into the Lagrangian PDE. By applying the viability theory and gen-
eralized Lax-Hopf formula (Aubin, 2009; Claudel and Bayen, 2010a,b) to the Lagrangian
based Hamilton-Jacobi equation. We provide closed-form solution with piecewise affine
value conditions.

3. Through a numerical study of the Mobile Century field experiment (Herrera et al., 2009),
we demonstrate the practicality and convenience of using car label as a free variable in
the highway traffic models and the capability of Lagrangian-based PDE to perform data
fusing, this is applied to highway traffic estimation and reconstruction.

The rest of the article is organized as follows: in Section 2, we discuss the hydrodynamic
traffic model in the transformed coordinate system. Section 3 introduces the viability episo-
lutions of the Hamilton-Jacobi equation and generalized Lax-Hopf formula. Both Eulerian
and Lagrangian sensing data are discussed and integrated into the Lagrangian PDE. Section 4
conducts further investigation of the Lax-Hopf formula in the presence of piecewise affine value
conditions and derives explicit solutions to the Lagrangian PDE with various value conditions.
Finally, in Section 5 we apply the Lagrangian-based model and methodology to a real-world
traffic estimation problem, using data collected from the Mobile Century field experiment
(Herrera et al., 2009).

2 The LWR model in transformed coordinates

In this section, we present and discuss the LWR model in Eulerian and Lagrangian coordinates.
The transformation between these two coordinate systems is made through a function inversion
under minor assumptions. Along with the Lagrangian coordinates comes a new equation
describing the traffic dynamics, which will be related to the original equation in Eulerian
coordinates; the two equations will be respectively presented in Sections 2.1 and 2.2. Result
on the equivalence of solutions of both equations is established in Section 2.3.
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2.1 The LWR model in Eulerian coordinates

Traditionally, the LWR model has been formulated in Eulerian coordinates (t, x) as a scalar
conservation law (Lighthill and Whitham, 1955; Richards, 1956):

∂

∂t
ρ(t, x) +

∂

∂x
f
(
ρ(t, x)

)
= 0 (t, x) ∈ [0, +∞)× [0, L] (2.1)

where the model concerns with vehicle density ρ(t, x) and flow (flux) f
(
ρ(t, x)

)
. The funda-

mental diagram is a concave function of the density ρ:

f
(
ρ
)

= ρ v(ρ) ρ ∈ [0, ρmax] (2.2)

where ρmax is the jam density and the vehicle speed v(ρ) ∈ [0, vmax] is a decreasing function
of density, vmax denotes the free flow speed. The flux function f(·) is assumed to be concave
with maximal value M attained at ρ∗, M is recognized as the flow capacity, and ρ∗ is called
the critical density. See Figure 1 for some examples of the density-flow functional relationship.

We introduce the Moskowitz functionN(· , ·) (Moskowitz, 1965; Claudel and Bayen, 2010a,b),
defined via the following identities

N(t2, x2)−N(t1, x1) = −
∫ x2

x1

−ρ(t1, x) dx+

∫ t2

t1

f
(
ρ(t, x2)

)
dt (2.3)

In other words, N(t, x) is the cumulative vehicle count at location x by the time t, The
properties of the Moskowitz function have been extensively studied, for instance in Newell
(1993), and we have the identities

∂

∂t
N(t, x) = f

(
ρ(t, x)

)
,

∂

∂x
N(t, x) = −ρ(t, x) almost everywhere (2.4)

It is shown, for example in Evans (2010), that if ρ(t, x) is the weak entropy solution to (2.1),
then the corresponding Moskowitz function defined in (2.3) is the viscosity solution to the
following Hamilton-Jacobi equation (2.5) .

∂

∂t
N(t, x)− f

(
− ∂

∂x
N(t, x)

)
= 0 (2.5)

Note that a viscosity solution to the equation (2.5) is Lipschitz continuous, but not neces-
sarily continuous differentiable due to shocks in density ρ(t, x). There exists, however, other
classes of solutions to Hamilton-Jacobi equation (2.5), for example, the lower-semicontinuous
Barron-Jensen/Frankowska solutions derived through viability theory (Aubin, 2009; Barron
and Jensen, 1990; Frankowska, 1993). This type of solution only needs to satisfy the value
condition in the inequality sense, and can be obtained using the generalized Lax-Hopf formula.
We will apply this notion of solutions to the Hamilton-Jacobi equations later in this article.

The model described above is Eulerian-based, i.e. in the coordinates representing space
and time. The goal of Section 2.2 is to express the LWR model in the Lagrangian coordinate
system (t, n), where n represents vehicle label. The Lagrangian coordinates are concerned with
a particular car, and move with it in the space-time domain. Note that in the continuum, n
is treated as a real number. In the Lagrangian system, the focus is no longer the density or
flow at a point (t, x), but instead the velocity and location of the vehicle identified by (t, n).
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2.2 The LWR model in the Lagrangian coordinates

Now we want to make the coordinate transformation from (t, x) to (t, n), where the quantity
n is given by the Moskowitz function

n = N(t, x) (2.6)

representing the cumulative vehicles that has passed location x by time t. Throughout the
rest of this article, we assume the vehicle density is uniformly positive, i.e. there exists δ > 0
such that

ρ(t, x) ≥ δ, ∀ (t, x)

This assumption does not compromise the validity or applicability of the model, because
if a vacuum state occurs in a segment of road, it separates two independent sub problems,
where the solution of one does not affect that of the other. Notice that by this assumption,
n = N(t, ·) is a strictly decreasing function of x, whose inverse will be denoted

x = X(t, n) (2.7)

where X(t, n) represents the location of vehicle labeled n at time t. The transformation of
the Eulerian coordinates (t, x) and Lagrangian coordinates (t, n) is now defined by (2.6) and
(2.7). Notice that the vehicle label n is treated as a continuum.

Denote the velocity of vehicle labeled n at time t to be v(t, n), the spacing (reciprocal of
density) around vehicle labeled n at time t to be s(t, n). Note that s(t, n) can be interpreted
as the space occupied by the vehicle. For t1 > t2, n1 > n2, we deduce the following identities:

X(t1, n)−X(t2, n) =

∫ t1

t2

v(τ, n) dτ, X(t, n1)−X(t, n2) = −
∫ n1

n2

s(t, n) dn (2.8)

The meanings of (2.8) are straightforward: displacement (X) is integral of speed (v) over time
(t); the distance between vehicles n1 and n2 is the integral of car spacings over all cars in
between. Notice that car n1 is ahead of car n2. We can rewrite (2.8) as follows

∂

∂t
X(t, n) = v(t, n),

∂

∂n
X(t, n) = −s(t, n) almost everywhere (2.9)

where X(t, n), v(t, n) and s(t, n) denote the location, velocity and spacing of vehicle labeled
n at time t, respectively.

Remark 2.1. It is well-known that the viscosity solution N(t, x) to (2.5) is Lipschitz con-
tinuous. The assumption of uniformly positive density implies that X(t, n) is also Lipschitz
continuous, then by Rademacher’s theorem it is almost everywhere differentiable, but may have
countably many kinks due to discontinuities (shocks). Thus we need to emphasize “almost ev-
erywhere” for the validity of (2.4) and (2.9).

Before we introduce the Hamilton-Jacobi equation in Lagrangian coordinates, we need to
articulate the spacing-velocity relationship. Given the density-velocity function ρ 7→ v(ρ),
define ψ : [1/ρmax, +∞)→ [0, vmax]

ψ(s)
.
= v

(
1/s
)

(2.10)

then ψ
(
s(t, n)

)
equals velocity v(t, n), we thus deduce from (2.9) that

∂

∂t
X(t, n)− ψ

(
− ∂

∂n
X(t, n)

)
= 0 (2.11)
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The Hamiltonian ψ(·) expresses vehicle velocity as a function of spacing, and we stipulate
that it is a continuous, concave function. ψ(·) is uniquely determined by the density-velocity
relationship, therefore there is a one-to-one correspondence between ψ(·) and the fundamental
diagram f(·). Examples of different fundamental diagrams and their corresponding ψ(·) are
shown in Figure 1.

We also deduce informally from (2.11) the scalar conservation law

∂

∂t
s(t, n) +

∂

∂n
ψ
(
s(t, n)

)
= 0 (2.12)

by the word ‘informally’, we imply that before working with (2.12), one needs to establish
properties of the weak solution such as existence/uniqueness and related it to the entropy
solution of the original conservation law (2.1).

0

Greenshields

ρ
max

ρ

f(ρ)

1/ρ
max

v
max

s

v

0

Triangular

ρ
max

ρ

f(ρ)

1/ρ
max

s

v
max

v

Figure 1: Hamiltonians in Eulerian and Lagrangian coordinates. Left: the Greenshields and Triangular
fundamental diagram. Right: the equivalent spacing-velocity curve.

In the rest of this article, we focus on the Hamilton-Jacobi equation (2.11) in Lagrangian
coordinates, its initial/boundary/internal boundary conditions, numerical solution and appli-
cations to highway traffic estimation. Section 2.3 is devoted to justifying equation (2.11).

2.3 Viscosity solutions to the Hamilton-Jacobi equations

The main purpose of this section is to justify the Hamilton-Jacobi equation in Lagrangian
coordinates (2.11), in the sense of viscosity solutions. Recent work (Leclercq et al., 2007;
Yuan et al., 2011) refers to the equivalence of weak solutions to a system of conservation laws
in gas dynamics (Wagner, 1987), which, however, does not involve Hamilton-Jacobi equations,
and the result does not apply immediately to scalar conservation laws. In order to provide a
solid foundation of our work based on Hamilton-Jacobi equation, we provide a mathematical
analysis of the H-J solutions in both coordinate systems.

We start with a very general definition of viscosity solution of Hamilton-Jacobi equation
in the form

ut +H(∇u) = 0 (2.13)

where the unknown u(t, x) ∈ Rm and ∇u is the gradient of u with respect to x. For simplicity
of notations, the subscript denotes partial differentiation. In what follows, C, C1 denotes the
set of continuous and continuously differentiable functions, respectively.
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Definition 2.2. A function u ∈ C(Ω) is a viscosity subsolution of (2.13) if, for every C1

function ϕ = ϕ(t, x) such that u− ϕ has a local maximum at (t, x), there holds

ϕt(t, x) +H(∇ϕ) ≤ 0 (2.14)

Similarly, u ∈ C(Ω) is a viscosity supersolution of (2.13) if, for every C1 function ϕ = ϕ(t, x)
such that u− ϕ has a local minimum at (t, x), there holds

ϕt(t, x) +H(∇ϕ) ≥ 0 (2.15)

We say that u is a viscosity solution of (2.13) if it is both a supersolution and a subsolution
in the viscosity sense.

Remark 2.3. If u is a C1(Ω) function and satisfies (2.13) at every x ∈ Ω, then u is also a
solution in the viscosity sense. Conversely, if u is a viscosity solution, then the equality must
hold at every point x where u is differentiable. In particular, if u is Lipschitz continuous, then
it is almost everywhere differentiable, hence (2.13) holds almost everywhere in Ω.

The aim of this section is to establish equivalence analysis of the viscosity solutions of

Nt(t, x)− f
(
−Nx(t, x)

)
= 0 (2.16)

Xt(t, n)− ψ
(
−Xn(t, n)

)
= 0 (2.17)

A simple calculation shows that ψ(s) = s f(1/s). The following theorem establishes the
connection between (2.16) and (2.17).

Theorem 2.4. Assume that N(t, x), (t, x) ∈ Ω ⊂ (−∞, +∞) × Rn, is a viscosity solution
to (2.16), furthermore, assume that the density is uniformly positive, i.e. ρ(t, x) ≥ δ >
0, ∀(t, x) ∈ Ω. Then function X(t, ·) obtained by inverting N(t, ·) is a viscosity solution to
(2.17).

Proof. By assumption, N(t, ·) is strictly decreasing with

δ |x1 − x2| ≤ |N(t, x1)−N(t, x2)| ≤ ρmax |x1 − x2| ∀ x1, x2

then X(t, ·) is also strictly decreasing with

1/ρmax|n1 − n2| ≤ |X(t, n1)−X(t, n2)| ≤ 1/δ |n1 − n2| ∀ n1, n2 (2.18)

We start by showing that X(·, ·) is a subsolution. Indeed, given any C1 function Y = Y (t, n)
such that X − Y has a local maximum at (t0, n0). Without loss of generality, we assume
X(t0, n0)−Y (t0, n0) = 0. We focus on the 2-dimensional plane Γ0 by fixing t = t0 (see Figure
2).

Since X − Y attains a local maximum at (t0, n0), by (2.18) there must hold

∂

∂n
Y (t0, n0) < 0

By C1 continuity, there exists a neighborhood Ω1 of (t0, n0) such that

∂

∂n
Y (t, n) < 0 ∀(t, n) ∈ Ω1
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Figure 2: Graphs of X(t0, ·) and Y (t0, ·)

Then, we may define C1 function M(t, x) such that n = M(t0, ·) is the inverse of x = Y (t0, ·)
in Ω1 ∩ Γ0. In addition, N −M attains a local maximum at

(
t0, X(t0, n0)

)
. We use the fact

that N(t, x) is a viscosity solution and apply (2.14) to get

Mt(t, x) ≤ f
(
−Mx(t, x)

)
(2.19)

Differentiating identity Y
(
t, M(t, x)

)
= x w.r.t. t, and using (2.19), we deduce

0 = Yt + YnMt ≥ Yt + Yn f
(
−Mx

)
= Yt + Yn f

(
− 1

Yn

)
= Yt − ψ(Yn) (2.20)

Here we use the fact that M(t, ·), Y (t, ·) are both C1 and inverse of each other,

d

dn

{
n = M(t, Y (t, n)

}
=⇒ 1 = Mx · Yn

Since Y is arbitrary, (2.20) implies that X(t, n) is a subsolution. The case for supersolution
is completely similar.

Remark 2.5. Similar proof can be used to show the reverse: given a viscosity solution X(·, ·)
to (2.17), then N(t, ·) obtained via inverting X(t, ·) provides a viscosity solution to (2.16).

Theorem 2.4 establishes equivalence of Hamilton Jacobi equations in the two coordinate
systems, in the sense of viscosity solution. We proceed in the next section to explore its
applications to traffic data fusion and state estimation. This requires a solution method that
is capable of incorporating mobile and fixed data with large quantity and high dimensions. The
class of viscosity solutions, despite their mathematical rigor, suffer from existence problems in
the presence of multiple value conditions (initial, boundary and internal boundary conditions).
Thus, we turn to a more general solution class known as the viability solutions developed in
Aubin (2009); Aubin et al. (2008); Claudel and Bayen (2010a).

3 Numerical algorithm and value conditions

In this section, we focus on numerical solution to the Hamilton-Jacobi equation

∂tX(t, n)− ψ
(
− ∂nX(t, n)

)
= 0 (3.21)
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given initial/intermediate condition, boundary condition and internal boundary conditions,
to be precisely defined below. One question arises as how to define a proper solution to the
problem when the viscosity solution satisfying (3.21) do not necessarily satisfy the numerous
value conditions. The viability theory (Aubin, 2009; Aubin et al., 2008) provides appropriate
tools to answer this question by constructing a semi-analytical solution to the problem using
the Lax-Hopf formula (Claudel and Bayen, 2010a,b). The resulting solution is the lower-
semicontinuous Barron Jensen/Frankowska solution (Barron and Jensen, 1990; Frankowska,
1993), which will be discussed in Section 3.1. For practical reasons, we only discuss the ap-
plication of viability theory to Hamilton-Jacobi equation (3.21), while referring the readers to
Aubin (2009) for more background on viability theory. Section 3.2 defines the value conditions
and interprets their meanings in relation to the two coordinate systems.

3.1 Viability episolution to the Hamilton-Jacobi equation (3.21)

This section presents the viability episolution (Claudel and Bayen, 2010a) and its solution
method known as the generalized Lax-Hopf formula. We first define the domain of equation
(3.21):

(t, n) ∈ [0, T ]× [N1, N2]

for some T > 0; N1, N2 represent upstream boundary and downstream boundary of the
Lagrangian domain. In the following definition, we define the value condition for (3.21), which
is a generalization of initial condition and boundary condition, and conditions prescribed inside
the domain.

Definition 3.1. A value condition C(·, ·) is a lower-semicontinuous function from a subset Ω
of [0, T ]× [N1, N2] to R

The value condition may be extended to the whole domain by assigning C(t, n) = +∞
whenever (t, n) /∈ Ω. This convention enables us to compare and manipulate value conditions
with different domains. We introduce the concave transformation of Hamiltonian ψ(·):

ψ∗(u)
.
= sup

s∈[1/ρmax,+∞)

{
ψ(s)− u s

}
The following generalized Lax-Hopf formula provides semi-analytical viability episolution
(Aubin et al., 2008; Claudel and Bayen, 2010a).

Theorem 3.2. The viability episolution to (3.21) associated with value condition C(·, ·) is
characterized by the Lax-Hopf formula

XC(t, n) = inf
(u, T )∈Dom(ψ∗)×R+

(
C(t− T, x+ T u) + T ψ∗(u)

)
(3.22)

Proof. See Claudel and Bayen (2010a)

For a solution of the Hamilton-Jacobi equation, we indicate its dependence on the value
condition C by a subscript. Equation (3.22) implies an important inf-morphism property
(Aubin et al., 2008; Claudel and Bayen, 2010a)
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Proposition 3.3. (inf-morphism property) Let C(·, ·) be the minimum of finitely many
value conditions,

C(t, n)
.
= min

i=1,...,m
Ci(t, n) ∀ (t, n) ∈ [0, T ]× [N1, N2]

Then
XC(t, n) = min

i=1,...,m
XCi(t, n) (3.23)

This property allows the PDE to incorporate an arbitrary number of value conditions; it also
decomposes a complex problem involving multiple value conditions into smaller subproblems,
each with a single value condition.

3.2 Value conditions for continuous solutions

The value conditions described in the previous section are mathematical representations of
real traffic measurements; according to the source of data, they can be categorized as Eulerian
sensing and Lagrangian sensing. The former refers to quantities measured with fixed location
such as loop detector and video camera, the latter are obtained from on-board devices with
continuous positioning capabilities. It is demonstrated in Claudel and Bayen (2010a) and
Claudel and Bayen (2010b) that the Eulerian based Hamilton-Jacobi equation is capable
of fusing both Eulerian and Lagrangian data. This section shows that the same holds for
Lagrangian-based equation.

We consider the continuous version of the value conditions associated with the Hamilton-
Jacobi equations.

∂tM(t, x)− f
(
− ∂xM(t, x)

)
= 0 (Eulerian based) (3.24)

∂tX(t, n)− ψ
(
− ∂nX(t, n)

)
= 0 (Lagrangian based) (3.25)

To illustrate the connection between value conditions in the two coordinate systems, we make
a few assumptions on the value condition C.

(A1) The domain of C is a continuous curve parametrized by τ ∈ [τmin, τmax]:

Dom(C) ⊂ [0, T ]× [N1, N2]
(

respectively [0, T ]× [X1, X2]
)

Dom(C) =
(
t(τ), n(τ)

) (
respectively

(
t(τ), x(τ)

))
τ ∈ [τmin, τmax]

(A2) C
(
t(·), n(·)

)
is a continuous function on [τmin, τmax].

Given a continuous value condition C for (3.24), whose domain is a subset of the x− t plane,
question arises as how to fuse this into the Lagrangian based equation. Intuitively, one needs
to switch the domain and range of C before applying it to (3.25). The next proposition shows
that this is indeed the case.

Proposition 3.4. (Sufficient condition for equivalence of value conditions)
Let CE

(
t(τ), x(τ)

)
and CL(t(τ), n(τ)), τ ∈ [τmin, τmax] be two value conditions for (3.24)

and (3.25), respectively. Then the solutions to (3.24) and (3.25) satisfying each value condition
are equivalent if

n(τ) = CE
(
t(τ), x(τ)

)
, x(τ) = CL

(
t(τ), n(τ)

)
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Proof. Let NCE (t, x) be the solution to (3.24) satisfying condition CE , let XCL(t, n) be the
solution to (3.25) satisfying condition CL. For each t, since NCE (t, ·) is strictly increasing, we
denote its inverse by N−1CE (t, ·). Then by Theorem 2.4, N−1CE (·, ·) is a valid solution to the HJ
equation (3.25).

On the other hand, for every τ ∈ [τmin, τmax],

N−1CE
(
t(τ), n(τ)

)
= N−1CE

(
t(τ), CE(t(τ), x(τ))

)
= N−1CE

(
t(τ), NCE (t(τ), x(τ))

)
= x(τ)

(3.26)
(3.26) implies that N−1CE (·, ·) satisfies the value condition CL

(
t(τ), n(τ)

)
and thus is the unique

solution to (3.25) associated with value condition CL. We conclude N−1CE (t, n) = XCL(t, n).

Example 1. Consider an Eulerian sensor (such as a loop detector) that counts the passing
vehicles at location x0 during time interval [t1, t2]. Suppose the domain and measurement of
the value condition CE provided by this sensor are shown in Figure 3, 4, respectively. Let
NCE (t, x) be the viability solution. We define value condition CL with domain depicted in
Figure 4 and value in Figure 3; applying it to the Lagrangian based equation yields equivalent
solution to NCE .

This section addresses two important aspects of the Lagrangian based PDE: numerical
method and value conditions. It is seen from Proposition 3.4 that value conditions in either
coordinate system can be easily integrated into the equation of the other. In the next section,
we articulate the piecewise affine value conditions and compute the analytical solution of
equation (3.25) with these conditions.

tt
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t
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x

 

 

x
0

Figure 3: Domain of CE
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1

n
2

Figure 4: Measurement of CE

4 Solution with piecewise affine (PWA) value conditions

In this section we apply the Lax-Hopf formula (3.22) to obtain closed form solution. We assume
piecewise affine (PWA) initial, boundary and internal boundary conditions for the Hamilton-
Jacobi equation (2.11), which is equivalent to requiring piecewise constant spacing and velocity
values. This assumption enables us to construct closed-form solutions. Due to the fact that
any function with certain regularity (e.g. piecewise continuous) can be well approximated
using linear spline functions, the PWA assumption is not restrictive in application.

It has been observed in Leclercq et al. (2007) and Yuan et al. (2011) that the Lagrangian
based conservation law (2.12) has some numerical advantages over the Eulerian based equation
since the flux function ψ(·) is monotonic, and as a result the Godunov finite difference method
reduces to a simple upwind scheme. In this section we have similar observations by comparing
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the viability solutions in both coordinates: we are able to unify the upstream/downstream
and internal boundary conditions into one type of condition and solve for it using one single
formula.

Section 4.1 explicitly defines piecewise affine initial/intermediate, upstream/downstream
and internal boundary conditions; in Section 4.2, we present explicit formula for viability
episolution with a simple flux function.

4.1 Piecewise affine value conditions

We start with articulating the simple piecewise affine value conditions, including initial (inter-
mediate), upstream, downstream and internal conditions. These are building blocks of more
complicated PWA value conditions.

Definition 4.1. (PWA initial/intermediate condition). Set t = t0 ≥ 0, given real num-
bers si ≥ 0, ni, i ∈ {1, . . . ,mini}, the jth affine component of initial/intermediate condition
is

Cini(t0, n) = − sj n+ dj , n ∈ [nj , nj+1] (4.27)

To ensure continuity, we require

dj = sj nj −
j−1∑
l=1

(nl+1 − nl), j = 2, . . . ,mini

Definition 4.2. (PWA upstream boundary condition). Fix n = N1, given real numbers
vi ≥ 0, ti, i ∈ {1, . . . , mup}, the jth affine component of upstream boundary condition is
defined as

Cjup(t, N1) = vj t+ bj , t ∈ [tj , tj+1] (4.28)

To ensure continuity of upstream boundary condition, we set

bj = − vj tj +

j−1∑
l=1

(tl+1 − tl)vl, j = 2, . . . ,mup

Definition 4.3. (PWA downstream boundary condition). Fix n = N2, given real
numbers vi ≥ 0, ti, i ∈ {1, . . . ,mdown}, the jth affine component of downstream boundary
condition is defined as

Cjdown(t, n) = vj t+ bj , (t, n) ∈ [tj , tj+1]× {N2} (4.29)

where

bj = − vj tj +

j−1∑
l=1

(tl+1 − tl)vl, j = 1, . . . ,mdown

Definition 4.4. (Affine internal boundary condition). Given real numbers α, β, tmin,
tmax, nmin, nmax, and r ≥ 0, the affine internal boundary condition is defined as

Cint(t, n) = β + α (t− tmin) t ∈ [tmin, tmax], n = nmin + r(t− tmin) (4.30)

Recall that the domain of our consideration is [0, T ]×[N1, N2], thus the upstream/downstream
boundary conditions refer to (part of) the trajectories of the first and last car within our scope.
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4.2 Explicit formulae for viability episolutions

In the presence of piecewise affine (PWA) data, the solution of Lagrangian equation (3.25) with
any continuous and concave Hamiltonian can be computed explicitly using Lax-Hopf formula
(3.22), as in Claudel and Bayen (2010a,b). We are going to, in this article, derive formulae
with a simple Hamiltonian ψ(s) corresponding to the triangular fundamental diagram:

f(ρ) =

{
vmax ρ ρ ∈ [0, ρ∗]

vb(ρmax − ρ) ρ ∈ (ρ∗, ρmax]

where vmax > 0 and vb > 0 denote the forward and backward kinematic wave speeds, respec-
tively; vmax also represents the maximum vehicle speed. ρ∗ and ρmax denote, respectively, the
critical and maximum densities. Following these notations, we define smin

.
= 1/ρmax, s

∗ .
=

1/ρ∗, and

ψ(s) =

{
k(s− smin) s ∈ [smin, s

∗]

vmax s ∈ (s∗, +∞)
(4.31)

where k
.
= vb · ρmax, which is immediately derived from the relationship between ψ(·) and the

triangular fundamental diagram f(·), as shown in Figure 1. Moreover, the concave conjugate
of ψ reduces to

ψ∗(u) = s∗ (k − u)− ksmin = s∗ (k − u)− vb u ∈ [0, k] (4.32)

Proposition 4.5. With the affine value conditions defined in (4.27)-(4.30), and assuming a
Hamiltonian (4.31), the solutions to the Lagrangian Hamilton-Jacobi equation (3.25) can be
explicitly expressed as

1. PWA Initial/intermediate value problem

if sj ≤ s∗,

Xj
ini(t, n) =



−sj n+ dj + (t− t0)(ksj − vb),
nj + k(t− t0) ≤ n ≤ nj+1 + k(t− t0);

−sj nj + dj + (t− t0)vmax − s∗ (n− nj),
0 ≤ n− nj ≤ k(t− t0).

(4.33)

if sj > s∗,

Xj
ini(t, n) =



−sj nj+1 + dj + (t− t0)vmax − s∗ (n− nj+1),

0 ≤ n− nj+1 ≤ k(t− t0);

−sj n+ dj + vmax(t− t0),
nj ≤ n ≤ nj+1.

(4.34)

2. Upstream boundary value problem

Xj
up(t, n) =



vjtj+1 + bj + vmax(t− tj+1)− s∗(n−N1),

0 ≤ n−N1 ≤ k(t− tj+1);

vj t+ bj − (n−N1)
vj + vb
k

,

max{0, k(t− tj+1)} ≤ n−N1 ≤ k(t− tj).

(4.35)
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3. Downstream boundary value problem

Xj
down(t, x) = vj tj+1 + bj + (t− tj+1) vmax, (t, x) ∈ [tj+1, +∞)× {N2} (4.36)

4. Internal boundary value problem

Xint(t, n) =



β + α(t− tmin) + (α+ vb)
n− nmin − r(t− tmin)

r − k
r (t− tmin) ≤ n− nmin ≤ k(t− tmin) and

k(t− tmax) < n− nmax;

β +
n− nmin

r
α+ vmax

(
t− tmin −

n− nmin

r

)
0 ≤ n− nmin < r(t− tmin) and n ≤ nmax;

β + α (tmax − tmin) + (t− tmax)vmax − s∗ (n− nmax),

0 ≤ n− nmax ≤ k(t− tmax).

(4.37)

Remark 4.6. (4.37) is well defined even for cases k = r and r = 0.

Proof. Apply the Lax formula to the piecewise conditions (4.27)-(4.30) and ψ∗, verifying
(4.33)-(4.37) are straightforward.

It turns out that the formulae for upstream, downstream and internal boundary conditions
(4.35)-(4.37) can be unified into one. In other words, the upstream and downstream conditions
can be treated as spacial cases of internal boundary conditions. Indeed, since the wave speed
in the Lagrangian equation is always non-negative, the value conditions only influence the
region with larger n; see Figure 5 for an example. This coincides with the observation that
traffic conditions experienced by some vehicles cannot affect vehicles in front of them (with
smaller n).

Proposition 4.7. Each j-th component of (4.28) and (4.29) can be rewritten as (4.30) with
r = 0, nmax = N1 and r = 0, nmin = N2, respectively. Furthermore, with this specification,
(4.35) and (4.36) coincide with (4.37).

Proof. To verify the equivalence between (4.35), (4.36) and (4.37), notice that the second part
of (4.37) is infeasible for s = 0, and the rest is directly checked.

We have so far expressed the solution for each type of condition in Proposition 4.5. To
compute the solution taking into account contributions of all value conditions, we invoke the
inf-morphism property in Proposition 3.3 and take the minimum over all solutions (4.33),
(4.34) and (4.37).

The numerical performance of the aforementioned algorithm is enhanced in two ways.
First, each solution (4.33), (4.34) and (4.37) is expressed explicitly and free of spatial dis-
cretization; second, the algorithm is highly parallelizable: the full problem can be decomposed
into sub-problems involving simple value conditions, and each sub-task is independent of each
other.

In summary, we have established the LWR model in transformed coordinates and justified
the new Hamilton-Jacobi equation; both Eulerian sensing and Lagrangian sensing have been
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Figure 5: Left: range of influence of an internal boundary condition (black line). Regions
represented in (4.37) can be seen clearly. Value of this condition cannot propagate backward
to the region n < 10. Right: 3d demonstration of the solution to the internal boundary value
problem.

integrated into the Lagrangian based equation, whose solution is solved in closed form in con-
junction with various value conditions. As an application of the model and solution method,
we will conduct a numerical study of highway traffic estimation in Section 5.

5 Numerical Study

5.1 The Mobile Century field experiment

On February 8, 2008, an experiment in traffic monitoring, nicknamed the Mobile Century, was
launched between 9:30 am to 6:30 pm on freeway I-880 near Union City in the San Francisco
Bay Area, California. This experiment involved 100 vehicles carrying GPS-enabled Nokia N95
phones, which repeatedly drove loops of 6-10 miles in length continuously for 8 hours.

Carried by each probing vehicle, the smart phone was storing its position and velocity
every 3-4 seconds, which allowed the trajectory of the equipped vehicle to be computed.
In addition to the cell phone GPS data, inductive loop detector data obtained through the
Freeway Performance Measurement System (PeMs) database are available. The readers are
referred to Herrera et al. (2009) for more details of experimental design and data description.

5.2 Numerical implementation

The freeway segment of interest is a 3.45 mile stretch of I-880 North Bound, between PeMS
station 400536 (23.36 postmile), to postmile 26.82. There are two sources of data, the cumu-
lative vehicle count, obtained via loop detector station 400536, which counted passing vehicles
every 30 s, and on-board smart phones recording vehicle velocity and trajectory every 3-4 s.
The time period of our measurement is 1 hour from 11:30 am to 12:30 pm, which involves
approximately 5000 vehicles. We take into account 97 mobile data samples, as well as vehicle
count obtained from Station 400536 in order to label our probing vehicles.

We consider the freeway segment as a homogeneous road, and seek a unique fundamental
diagram f(·) for the density-flow relation or ψ(·) for the spacing-velocity relation. We prefer
to utilize data collected in the experiment for the best functional fitting. Unfortunately, we
do not have access to either the maximal density ρmax, or an appropriate way to measure it
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directly. Instead, we take advantage of the relation

f(ρ) = ρ v(ρ) (5.38)

and collect flow as well as velocity data. More precisely, for appropriate time instance t0, we
estimate the flow through Station 400536 using a 30s vehicle count, and record the velocity
of the probing vehicles passing the same location at t0. Then, density is estimated as the
quotient of flow and velocity. Scatter plots of 324 samples are shown in Figure 6 and 7.
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Figure 6: Density-flow relationship

0 10 20 30 40
5

10

15

20

25

30

35

40

45

Spacing (meters/vehicle)

V
el

o
ci

ty
 (

m
et

er
s/

se
co

n
d
)

Figure 7: Spacing-velocity relationship

For a triangular density-flow relationship depicted in Figure 6, the parameters are chosen to
be

f(ρ) =

{
vmax ρ ρ ∈ [0, ρ∗]

vb (ρmax − ρ) ρ ∈ (ρ∗, ρmax]
(5.39)

vmax = 31.5 m/s, vb = 3.90 m/s, ρ∗ = 0.055 veh/m, ρmax = 0.50 veh/m. (5.40)

where vmax, vb, ρ
∗, ρmax are respectively, free flow speed, backward-propagating kinematic

wave speed, critical density and maximal (jam) density. For the corresponding spacing-velocity
relationship, the parameters are chosen to be

ψ(s) =

{
k(s− smin) s ∈ [smin, s

∗]

vmax s ∈ (s∗, +∞)
(5.41)

k = 1.95 veh/s, smin = 2.00 m/veh, s∗ = 18.15 m/veh, vmax = 31.5 m/s. (5.42)

where smin and s∗ are minimum and critical spacings, respectively.

5.3 Numerical results

As an application of the Hamilton-Jacobi equation in Lagrangian coordinates and viability
episolution, we will reconstruct the traffic state between postmile 23.36 and 26.82, for a time
period of one hour, using only Lagrangian sensing. Figure 8 shows 97 mobile data we utilize
for this numerical experiment. For the viability solution to the Hamilton-Jacobi equation
(3.21), we use internal boundary conditions based on trajectories of 44 probing vehicles, which
account for 0.88% of the total monitored traffic volume. Notice that the on-board sensors
recorded vehicle position every 3-4 seconds, this implies approximately 100-300 sample points
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Figure 8: Plots of probing vehicle trajectories used to cover the freeway segment during the
study period.

per vehicle, among which we only utilize 10 sample points, this is for numerical simplicity and
also shows robustness of the algorithm.

One task of Lagrangian traffic estimation is the construction of vehicle trajectories. Given
the solution X(·, ·), for a car labeled n0, the estimated trajectory is simply X(·, n0). Two
examples, including both estimated trajectory and measurement obtained from mobile sensors,
are shown in Figure 9 and 10.
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Figure 9: Estimated and true trajectory of vehicle
#8685
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Figure 10: Estimated and true trajectory of vehi-
cle #11266

A partial solution based on 8 internal boundary conditions obtained via mobile sensors
are shown in Figure 11. It should be noted that the viability solution only satisfies inequality
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constraints, i.e.
XC(t, n) ≤ C(t, n), (t, n) ∈ Dom(C)

In case of strict inequality, the value conditions and the model are said to be incompatible.
The incompatibility is due to either measurement error or modeling error, this gives rise to
the issues of data assimilation and reconciliation, in which modeling parameters, or sensing
data, are tuned to best fit each other. The readers are referred to Claudel and Bayen (2011)
for full details.

Figure 11: Solution of Hamilton-Jacobi equation (3.21) with 8 internal boundary conditions,
solid lines are vehicle trajectories recorded by mobile sensors.

Based on the solution X(t, n), we can further estimate vehicle-based velocity, via

∂tX(t, n) = ψ
(
s(t, n)

)
= v(t, n) (5.43)

Figure 12 shows the velocity field involving vehicle labels ranging from 7650−7950. From this
picture, we observe time-varying traffic conditions from free flow to congestion then back to
uncongested traffic. This phenomenon is also reflected in Figure 8, where all vehicles seemed
to experience a slow down whithin postmile 25.5− 26.3.

In order to examine the accuracy of travel time estimation, we compare the actual travel
times of 97 probing vehicles with the estimated travel times obtained from the reconstructed
trajectories. The results are summarized in Figure 13. Note that, given the travel times
through the study area ranging from 5-10 min, the errors shown in this figure are considered
minor, which demonstrates the effectiveness of the proposed model in travel time estimation.
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Figure 12: Vehicle velocity (m/s) estimation based on (5.43).
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Figure 13: Summary of errors for travel time estimation

6 Conclusion

This article presents the Lagrangian coordinate system in the hydrodynamic traffic model,
and studies the Hamilton-Jacobi equation describing traffic quantities associated with moving
vehicles. A numerical algorithm capable of fusing high dimensional mobile data is applied to
highway traffic flows and yields promising results in terms of traffic reconstruction and travel
time estimation.

Compared to Eulerian based LWR model, the Lagrangian approach models traffic flows
in a moving reference frame, and the corresponding PDE provides knowledge of vehicle based
quantities such as trajectory and speed. We have also demonstrated a few numerical advan-
tages in the Lagrangian-based Hamilton-Jacobi equation due to monotonic hamiltonian.
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A well-developed theory on Lagrangian-based traffic models will lead to more mature
modeling and computational methodologies as well as more advanced applications to the cyber-
physical traffic systems such as car-to-car networking and mobile internet. For future work,
more refined models need to be developed, taking into account the modeling uncertainty such
as vehicle inhomogeneity and car overtaking. Extension to network will be of great interest,
although this is mathematically more challenging.
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