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Abstract

The value of infrastructure investments is frequently influenced by enormous uncertainty

surrounding both exogenous and endogenous factors. At the same time, however, their

value is generally driven by much flexibility – i.e. options – with respect to design, financ-

ing, construction and operation. Real options analysis aims to pro-actively manage risks

by valuing the flexibilities inherent in uncertain investments. Although real options gen-

erally occur within portfolios whose value is affected by both exogenous and endogenous

uncertainty, most existing valuation approaches focus on single (i.e. individual) options

and consider only exogenous uncertainty.

In this thesis, we introduce an approach for modelling and approximating the value of

portfolios of interdependent real options under exogenous uncertainty, using both influence

diagrams and simulation-and-regression. The key features of this approach are that it

translates the interdependencies between real options into linear constraints and then

integrates these in a portfolio optimisation problem, formulated as a multi-stage stochastic

integer programme. To approximate the value of this optimisation problem we present

a transparent valuation algorithm based on simulation and parametric regression that

explicitly takes into account the state variable’s multidimensional resource component.

We operationalise this approach using three numerical examples of increasing complex-

ity: an American put option in a simple single-factor setting; a natural resource investment

with a switching option in a one-factor setting; and the same investment in a three-factor

setting. Subsequently, we demonstrate the ability of the proposed approach to evaluate a

complex natural resource investment that features both a large portfolio of interdependent

real options and four underlying uncertainties. We show how our approach can be used to

investigate the way in which the value of that portfolio and its individual real options are

affected by the underlying operating margin and the degrees of different uncertainties.

Lastly, we extend this approach to include endogenous, decision- and state-dependent

uncertainties. We present an efficient valuation algorithm that is more transparent than

those used in existing approaches; by exploiting the problem structure it explicitly ac-

counts for the path dependencies of the state variables. The applicability of the extended

approach to complex investment projects is illustrated by valuing an urban infrastructure

investment. We show the way in which the optimal value of the portfolio and its single,

well-defined options are affected by the initial operating revenues, and by the degrees of

exogenous and endogenous uncertainty.
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4.10 Value of opened mine, Ḡ0(S0) (in US$ millions), under the two-factor model

for the three specifications of Table 4.9 according to different numerical

methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
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4.7 Value of opened mine, Ḡ0(S0) (in US$ millions), and volatility in two-

factor model (σ2
M2

) as a function of correlation between convenience yield

and copper price process (ρx,δ). . . . . . . . . . . . . . . . . . . . . . . . . . 69
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6.5 Value of investment project, Ḡ0(S0) (in £millions), with portfolio of real

options and without options as well as portfolio’s most valuable individual

option (filled circles), as a function of degrees of revenue (σv) and technical

(σk) uncertainty. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
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Chapter 1

Introduction

1.1 Background and Motivation

Although investments in modern and efficient infrastructures are widely recognized to play

a key role in managing the world’s transitions towards a resilient, low-carbon future, in-

sufficient spending as well as inefficient prioritization and delivery in the last few decades

have led to a substantial global infrastructure investment gap (World Economic Forum,

2012, 2013). Addressing this gap, which is estimated at US$ 1-1.5 trillion per year (World

Bank Group, 2015), and meeting the estimated future demand will require annual invest-

ments of US$ 5-6 trillion in infrastructure assets between 2015 and 2030, totalling around

US$ 90 trillion over this 15-year period (Bhattacharya et al., 2015). While the specific

development strategies may vary between countries – emerging and developing countries

often have to build new infrastructure, whereas countries with already existing yet often

ageing infrastructure need to either rebuild or maintain their assets (World Economic Fo-

rum, 2014) –, the public financing of infrastructure is becoming increasingly challenging

for most countries due to ever more constrained budgets, unsatisfactory experiences with

public expenditures and inefficient management of infrastructure (Della Croce and Gatti,

2014).

Whatever sources of finance governments access, further infrastructure investments will

have to be made in the context of enormous uncertainties1. Indeed, as noted by Arrow and

Lind (1970); Flyvbjerg et al. (2003, 2009), there are various sources of uncertainty that

may affect – both adversely and beneficially – the performance of real investment projects.

Uncertainty sources include (geo)political, regulatory, technical, and economic conditions;

direct and indirect environmental impacts including climate change; future technological

innovation and behavioural adaptation/change; future demographic trends; and the true

effects and impacts of the new investment projects themselves. A recent example that

highlights some of these challenges can be found in Edinburgh, the capital of Scotland.

Having started operation in May 2014 more than six years after construction began in

1Even though some researchers treat the concepts of “risk” and “uncertainty” as if they were equivalent,
even interchangeable, we acknowledge that there may be reasons for having significant distinction
between risk and uncertainty, as discussed, for example, in the seminal work of Knight (1964).
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2007, the Edinburgh tram route, which cost £776 millions and covers around 14km from

Edinburgh’s city centre to Edinburgh Airport, BBC (2014) noted that

“In the decade since the first money was allocated to the project, the price

has doubled, the network has halved and it has taken twice as long to build as

originally planned.”

Making sound investment decisions in the context of uncertainty and irreversibility is

a challenging problem for decision makers in both the public and private sectors. It is

essential for decision makers to understand both the value of and the risks inherent in

investment projects (Borgonovo et al., 2010; Borgonovo and Gatti, 2013), whether it is a

government investing in public infrastructure while facing budget constraints or a corpora-

tion launching a new service under uncertain demand. The value of an investment project

and its exposure to risks are generally affected directly by both a sequence of decisions,

which may be strategic, operational or tactical (Vidal and Goetschalckx, 1997; Chevalier-

Roignant et al., 2011; Azevedo and Paxson, 2014), and their interactions (e.g. between

financing and investment decisions (Myers, 1974)). In addition, decisions makers often

have to make such sequential decisions simultaneously with respect to several interacting

projects, thus have to manage portfolios of investment projects, rather than individual

ones. Classifying the risks of an investment into non-diversifiable (or systematic, market)

and diversifiable (or unsystematic, specific) risks, the former can be managed through

applying a risk-adjusted discount rate and the latter through using a portfolio approach,

thereby making use of diversification (Ben-Horim and Levy, 1980). In the light of these

risks, Hirshleifer (1961) stressed the importance of applying appropriate techniques to

evaluate risky investment propositions.

While there exist a range of capital budgeting techniques that can be used by decision

makers to appraise and analyse investment projects, the valuation methods based on simple

temporal discounting – also referred to as discounting cash flow (DCF) methods – such as

net present value (NPV) have become standard and widely accepted among practitioners

(Ryan and Ryan, 2002; Hermes et al., 2007; Bennouna et al., 2010). For example, “Cost-

Benefit Analysis” (CBA), which is one of the most widely applied appraisal frameworks

in the public-sector, determines the NPV as part of its decision rule if applied correctly

(Pearce et al., 2006). According to Garvin and Cheah (2004), the NPV metric is the

preferred method to value infrastructure investment projects. Given their popularity and

prevalence, DCF methods have been extended considerably in order to allow for more

accurate investment analyses. Popular extensions include the Weighted Average Cost of

Capital, or WACC (Miles and Ezzell, 1980); the Capital Asset Pricing Model, or CAPM

(Ben-Horim and Levy, 1980); Monte Carlo simulation (Borgonovo and Gatti, 2013); and

sensitivity analysis (Borgonovo and Plischke, 2016). Despite all these extensions, however,

the inherent limitation of DCF methods remains: they do not correctly take into account
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the value of managerial flexibility by assuming investment decisions are “now-or-never”

propositions, thereby undervalue uncertain investment projects.

Overcoming the limitation of DCF methods by valuing the managerial flexibility in-

herent in investment projects, real options analysis (ROA), or real options valuation, has

received widespread attention over the last four decades. As a consequence, the umbrella

of ROA comprises nowadays a range of different valuation approaches and techniques that

can be applied to a wide range of risky investment projects with inherent managerial flex-

ibility (De Reyck et al., 2008). Popular textbook introductions to ROA include Trigeorgis

(1996); Dixit and Pindyck (1994). For an overview of applications see Trigeorgis (2005).

However, recent surveys indicate that ROA is mostly used used by companies and in-

dustries where more sophisticated analyses are generally being conducted anyway (Block,

2007) and when financial uncertainty is high (Verbeeten, 2006). Lander and Pinches

(1998) offered some challenges for the practical application of ROA using option pricing

techniques: corporate decision makers and practitioners often do not have the knowl-

edge to apply option pricing theory; modelling assumptions of ROA approaches are in

many practical applications violated; and assumptions made to allow for mathematical

tractability constrain the applicability of ROA.

Widening and enhancing its applicability, ROA has extended its focus beyond the con-

sideration of single real options alone to portfolios of real options. However, while the

consideration of portfolios of interdependent real options has been considered to have

great potential to widen the applicability of ROA to many practical situations (Trigeorgis,

1995), a decade later Trigeorgis (2005) stated that the development of a “more credible

general portfolio theory for (possibly interdependent) options” remains a research challenge

to be addressed. Zapata and Reklaitis (2010) noted there are several limitations inherent

to ROA when used in a portfolio context which include path-dependency of options, curse

of dimensionality and combinatorial burden. Despite some recent advances, however, the

modelling and valuation of portfolios of interdependent real options remains a challeng-

ing problem. This is because ROA generally aims at valuing single, well-defined options

yet fails to find the portfolio of options (Wallace, 2010) and traditional option valuation

techniques (e.g. binomial/lattice and finite difference) become impractical (Longstaff and

Schwartz, 2001; Gamba, 2003).

A fundamental issue in ROA and decision-making under uncertainty is how to account

correctly and adequately for the multiple sources of uncertainty occurring in most practical

real-life situations. In these situations it is generally assumed that the effective sources

of uncertainty are purely exogenous and, as such, are independent of both the actions

taken by the decision maker and the state of the underlying system affected by these

decisions. For example, in the case of investment in a new wind farm, while the wind

farm’s performance depends on factors such as location, time of day and the wind turbines’

height, parameters such as the wind speed to which the turbines will be exposed to, and
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consequently the amount of power generated, are independent of the investor’s decision

of whether to build the wind farm or not. Likewise, if the amount of power generated

by such wind farm is sufficiently small and/or the relevant wholesale electricity market

to which the power is sold is comparatively large, then the underlying wholesale price of

electricity, and consequently the investor’s revenues are also independent of the investor’s

decision.

There are, however, many practical situations in which the relevant sources of uncer-

tainty are endogenous, i.e. dependent on the decision maker’s actions or the underlying

system’s state, or both. In the case of the wind farm example, if the above-mentioned

conditions are violated, i.e. if the new wind farm is sufficiently large and/or the elec-

tricity market relatively small, then the introduction of a new wind farm will affect the

wholesale price of electricity and hence the investor’s future revenues. Similarly, although

the “off-the-shelf” cost of new wind turbines may be known and a feasibility study may

provide a construction cost estimate, the actual cost of building a new wind farm will not

be known until the investor actually builds it. During the building process, the investor

reveals and learns its true capital cost. If the investor wants to sell the wind farm at the

end of its lifetime, in the absence of a second hand market, the resale value will depend

on its “state”, which may include such factors as its lifetime, asset value, wear and tear,

and decommissioning cost.

Despite the ubiquity of exogenous and endogenous uncertainties in many real-life sit-

uations, there remains a need for a unified approach that accounts for both when real

options analysis is used to evaluate practical investment problems. Including both types

of uncertainty in a real options approach has rarely been studied in the related literature

(Ahsan and Musteen, 2011). Although portfolio of real options approaches have been

applied when there is only exogenous uncertainty, there is a need to include both types

because that enables decision-makers to manage the two uncertainty types simultaneously

(Otim and Grover, 2012). Some authors have therefore suggested that future work should

examine the relationship and interactions between different sources of uncertainty and

the portfolio’s individual options. For example, Tiwana et al. (2006) stated that future

research should investigate how the comparative performance of individual real options

is affected by multiple sources of uncertainty, and Li et al. (2007) called for studies to

investigate how investment decisions are affected individually and interactively by multi-

ple uncertainty sources. More recently, the critical review of Trigeorgis and Reuer (2017)

has suggested four extensions, three of which are addressed in this thesis: portfolios of

interdependent real options, multiple sources of uncertainty, and endogenous resolution of

uncertainty through learning.
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1.2 Research Aim and Objectives

Investment decisions in infrastructure systems such as in transport, water, waste, energy

and ICT are frequently made in the context of enormous uncertainty surrounding both

the investments intrinsic risks and the highly volatile supply and demand patterns. Tradi-

tional investment appraisal techniques such as those based on simple temporal discounting

are widely regarded as inadequate since they do not correctly take into account the value

of flexibilities (i.e. real options), therefore undervalue infrastructure investments under

uncertainty. Given that these investments are not only being made in the context of sig-

nificant uncertainty but also contain many flexibilities, a portfolio of real options approach

is needed to correctly value such infrastructure investments whilst pro-actively managing

the many risks involved.

The overall aim of this thesis is to develop a real options-based framework for the

valuation of infrastructure investments as portfolios of interdependent real options under

both exogenous and endogenous sources of uncertainty, and to illustrate its application.

The specific core objectives, which guide the development process of this research, consist

of:

1. To develop an approach for the modelling and valuation of a portfolio of inter-

dependent real options under exogenous uncertainty that is capable of accounting

for multiple, possibly interdependent real options and various, possibly interlinked,

sources of uncertainty.

2. To operationalise the approach using practical, relevant examples of increasing com-

plexity in terms of both the portfolio of real options and the uncertainties considered,

and to comprehensively evaluate the comparative performance of the conventional

and new approach.

3. To demonstrate the ability of the approach to evaluate a complex natural resource

investment project that features both a large portfolio of interdependent real options

and multiple underlying uncertainties.

4. To extend the portfolio-based real options approach to include endogenous, decision

and state dependent uncertainties, and to illustrate the applicability of the extended

approach by valuing a district heating network expansion investment.

1.3 Structure of the Thesis

This thesis is divided into seven chapters. Chapter 2 contains a review of the relevant lit-

erature, that is the one related to both the application area of this research in general and

relevant ROA approaches in particular, covering simulation-and-regression and portfolio
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of real options approaches, as well as uncertainty classification and modelling. Chapter 3

presents the conceptual framework, describes the approach that a decision maker can ap-

ply to model inherent flexibilities and formulates the corresponding portfolio optimisation

problem, and then presents a valuation algorithm that approximates the optimal value

of portfolios of interdependent real options. Chapter 4 delivers the operationalisation of

the new approach by considering the numerical examples of valuing a simple American

put option and evaluating a natural resource investment (i.e. a copper mine), firstly, un-

der copper price uncertainty alone, and subsequently under three sources of uncertainty.

Chapter 5 demonstrates how the approach can be applied to the example of evaluating

a complex natural resource investment, which represents a substantial extension of the

third example of Chapter 4 in terms of both options portfolio and uncertainties consid-

ered. Chapter 6 contains the further development of the framework presented in Chapter

3 to include endogenous sources of uncertainty and its application to the real-case of a

district heating network expansion investment in the London borough of Islington. Fi-

nally, Chapter 7 concludes this thesis by providing a summary of the contributions of this

research, a discussion of its limitations and suggestions for future research.
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Chapter 2

Literature Review

The purpose of this chapter is to review the relevant literature and provide the necessary

background for this thesis. The rest of this chapter is organised as follows: Section 2.1

briefly reviews the state of the practice with regard to ROA applied in the context of in-

frastructure investments. Section 2.2 reviews simulation-and-regression methods proposed

to solve real option problems. Section 2.3 reviews the relevant literature on portfolios of

real options. Section 2.4 reviews the classification of uncertainties into exogenous and

endogenous with an emphasis on the operational research as well as on the finance and

management literature. Lastly, Section 2.5 concludes this chapter by summarising the

gaps in the literature relevant to this research.

2.1 Real Options Analysis in Infrastructure Investments

It is widely acknowledged that Real Options Analysis (ROA) has substantial potential

as a framework for the adequate appraisal of infrastructure investments given that these

investments are not only being made in the context of significant uncertainty, but also –

naturally or intentionally – “ripe with flexibility” (Cheah and Garvin, 2009). Common

uncertainties are exogenous volatility in supply and demand conditions as well as intrinsic

technical and other endogenous risks. Flexibilities are commonly represented through real

options and generally exist in the form of managerial flexibility, but also in other forms like

design flexibility. The former includes options that, for example, allow decision makers to

alter an infrastructure’s scale of operation – see Trigeorgis (1996) for a list of traditional

types of real options –, whereas the latter relates to integrating flexibility into the design

of an infrastructure, for example, through product design modularity (de Neufville, 2003;

Gil, 2007; de Neufville and Scholtes, 2011).

Even some governments recently realised the potential benefits of ROA. For example,

appraisal guidelines of the United Kingdom’s Treasury Department state that “it is im-

portant to incorporate the value of flexibility” (HM Treasury, 2015) and that ROA may

be appropriate “if an activity has uncertainty, flexibility and learning potential” (HM

Treasury, 2009). The Office of Gas and Electricity Markets (Ofgem), which is the UK’s

independent national regulatory authority, is considering the incorporation of ROA within
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their investment and policy appraisal framework (Grayburn, 2012) stating ROA “should

help decision making where the investment environment is characterised by uncertainty

and management flexibility in responding to investment needs”. Furthermore, even though

solely presenting the Black-Scholes-Merton approach to options pricing, the European In-

vestment Bank (2013) recognised in “The Economic Appraisal of Investment Projects at

the EIB” that managerial flexibility becomes valuable when facing both high uncertainty

and irreversible investments. The authors justified their choice of valuation method by

succinctly noting that “it is the simplest to apply”.

Most of the recent infrastructure-related applications of ROA fall into one of two cate-

gories: physical and digital infrastructure investment projects. With regard to the former,

Zhao and Tseng (2003) appraised flexible design alternatives for the construction of public

parking garages. Arguing with the inappropriateness of complex option valuation tech-

niques, de Neufville et al. (2006) proposed a simple spreadsheet approach for the valuation

of the flexibility incorporated in the design of a parking garage. Another early study (Gil,

2007) on infrastructure design investigated the effects of modularization – that is product

design modularity – in airport expansions programmes. Garvin and Cheah (2004) ap-

plied options pricing in a case study of a toll road project to comparatively evaluate the

project’s economic viability under the NPV and options approach (deferment option). A

few years earlier, Rose (1998) valued complex interacting real options that represent con-

tractual agreements using Monte Carlo simulation. Investments into urban transportation

infrastructure have been considered by Saphores and Boarnet (2004), whose modelling ap-

proach took into account the impact of the variation of a city’s population on land rents

and prices as well as on transportation costs. More recently, Munoz et al. (2014) applied a

two-stage stochastic programming approach to transmission planning under uncertainty,

where the added value of the first-stage transmission investment quantifies the real option

value.

ROA has also been applied in the context of digital infrastructures such as information

technology (IT) infrastructures. Benaroch (2002) mentioned that real options generally

must be intentionally planned in an IT investment project, rather than being “inherently”

embedded like in physical infrastructure. One of the first works in this area was pre-

sented by Kambil et al. (1991), who recognised the growth options often embedded in

such investments. Panayi and Trigeorgis (1998) applied a multi-stage (compound) real

options approach to the case of an IT infrastructure investment faced by CYTA, the state

telecommunications authority of Cyprus. Benaroch and Kauffman (1999) argued that in-

vestments in IT infrastructures generally do not result in immediate expected paybacks,

but rather can provide the basis for profitable future investment opportunities. Miller et al.

(2004) applied ROA to evaluate the “Korean Information superhighway infrastructure”

investment project. Subsequently, Benaroch (2002) claimed that there exists a number of

gaps between real options theory and what is required to adequately model and appraise
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real-world IT investments. One of these gaps has been tackled by Kumar (2004), who

developed a novel evaluation framework based on the “asset valuation” literature.

In addition to the above applications, a number of papers have dealt with issues related

to the provision and ownership of infrastructure systems. Considering different private

sector participation arrangements available under the umbrella of Public Private Part-

nership (PPP), Cheah and Garvin (2009) discussed the potential application of ROA in

infrastructure projects, noting typical options are call, put, switching, timing, compound,

and learning options. Ho and Liu (2002) proposed a quantitative model based on real op-

tions theory to evaluate the economic viability of privatised (build-operate-transfer, BOT)

infrastructure projects from the perspective of both the government and the project pro-

moter. Cheah and Liu (2006) investigated the case of the Malaysia-Singapore Second

Crossing and developed a methodology to value governmental support in BOT infrastruc-

ture projects by modelling the government guarantee as a put option and the potential

repayment – i.e. a cap on the return – from the private sector participant to the govern-

ment as a call option. In contrast, Chiara et al. (2007) argued that a revenue guarantee in

a BOT infrastructure project should be modelled as an American-style real option rather

than the European-style option used by Cheah and Liu (2006). Alonso-Conde et al. (2007)

applied ROA to analyse the contractual terms associated with the case of the PPP of the

Melbourne CityLink Project, whereas Krüger (2012) analysed the implications of PPP

agreements on the execution of expansion options in road infrastructure.

A few researchers even extended ROA approaches in the context of infrastructure invest-

ments by considering either game theoretic interactions or multiple objectives. As noted

by Smit and Trigeorgis (2009), option games support strategic capital investments through

actively accounting for multiple decision makers, thereby improving strategic planning in a

competitive environment. Considering the case of the Amsterdam Airport Schiphol, Smit

(2003) applied a real options game approach to value airport expansion, i.e. its growth

option. Suttinon et al. (2012) illustrated their methodology through a game setting where

the public sector (Government of Thailand) may invest in tap and industrial water sup-

ply, whereas the private sector firm may invest into recycled-water development. Despite

the potential usefulness of game theory for risk management in infrastructures (Cox Jr,

2009), its combination with real options theory has not been widely used yet to strategi-

cally assess and analyse investments into both technology (Smit and Trigeorgis, 2007) and

infrastructure systems (Smit and Trigeorgis, 2006a). On the other hand, considering mul-

tiple objectives when evaluating electricity infrastructure investments, Cesena and Davalos

(2011) extended the real options approach and illustrated the proposed methodology by in-

vestigating the case of a distribution network investment in Mexico. Marques et al. (2015)

developed a real options-based approach for water distribution network investments that

takes into account both design and cost uncertainty.

However, despite its great potential and evidence (Martins et al., 2015) of the large
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growth in the past 15 years in the number of publications advocating the use of ROA

in infrastructure projects, the absolute number is still comparatively low when compared

with most other areas of applications. Indeed, Garvin and Ford (2012) noted that it is

not widely applied in practice and, as Gil and Beckman (2009) pointed out, applying

ROA to infrastructure design “is still in its infancy”. There remains a need for a practical

and powerful investment appraisal technique that is capable of valuing the portfolio of

possibly interdependent real options generally available in complex infrastructure projects

whilst, at the same time, takes into account multiple exogenous and endogenous sources

of uncertainty. Such an approach would have to overcome several limitations inherent to

ROA when used in a portfolio context, particularly path-dependency of options, curse of

dimensionality, and combinatorial burden (Zapata and Reklaitis, 2010).

2.2 Simulation-and-Regression Methods

Simulation-based option pricing methods have received considerable attention over the

past four decades. Introduced to the pricing of European call options by Boyle (1977),

subsequent works1 have presented simulation-based approaches to value American (Tilley,

1993; Barraquand and Martineau, 1995; Broadie and Glasserman, 1997) and Asian options

(Broadie and Glasserman, 1996; Grant et al., 1997). Despite adding computational com-

plexity, simulation techniques have significant advantages over more traditional option

pricing techniques such as analytical and numerical methods – including lattice/tree and

PDE/finite difference – since they are flexible and relatively easy to apply, which makes

them suitable in (complex) situations where traditional methods cannot be used (Longstaff

and Schwartz, 2001; Broadie and Glasserman, 2004). For example, simulation (i.e. Monte

Carlo sampling) allows the consideration of multiple stochastic factors – also referred to as

uncertain or random variables –, stochastic processes of the underlying assets with com-

plex characteristics, as well as possibly interdependent real options with complex exercise

features (Pringles et al., 2015). Reviews of existing simulation methods were presented by

Boyle et al. (1997); Glasserman (2003); Broadie and Detemple (2004); Kind (2005).

Even though initial attempts demonstrated that simulation is a powerful tool to value

higher-dimensional American-type options, which were long believed to be computation-

ally intractable (Broadie and Glasserman, 2004), accurately and efficiently pricing options

with multiple exercise features – American in continuous and Bermudan2 in discrete time

– remained a challenging problem. This is because simulation generally generates sam-

ple paths forward in time, whereas pricing an American option, i.e. solving the optimal

stopping problem by determining the optimal exercise policy, requires a backward-style

dynamic programming approach (Broadie and Detemple, 2004). Yet applying backward

1Other important works include (Rust, 1997; Keane and Wolpin, 1994; Broadie and Glasserman, 2004).
2To value a Bermudan option, the optimal stopping problem in continuous time, which is solved when

valuing an American option, is replaced by its discrete time equivalent.
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dynamic programming requires the determination of the conditional expected payoff to

the optionholder from continuation – that is the value of the option if not exercised imme-

diately –, which is practically impossible to calculate in multi-dimensional, multi-period

settings (Powell, 2011). In mathematical terms, assuming the option can still be exer-

cised at time t, its current value given stock price Xt(ω) along path ω ∈ Ω, Vt
(
Xt(ω)

)
, is

determined by:

Vt
(
Xt(ω)

)
=

Πt(Xt(ω)), if Πt(Xt(ω)) ≥ Φt(Xt(ω)),

Φt(Xt(ω)), if Πt(Xt(ω)) < Φt(Xt(ω)),
(2.1)

where Πt(Xt(ω)) is the immediate payoff from exercising the option at t, and

Φt(Xt) = E
[
e−k∆Vt+∆(Xt+∆)

∣∣Xt

]
, (2.2)

is the (usually hard or impossible to compute) continuation function, with k and ∆ being

the risk-free rate and time step, respectively.

To overcome this limitation, a variety of regression-based methods have been developed

that approximate the continuation function with a statistical model of the future. In fact,

already Bellman and Dreyfus (1959) advocated for the use of functional approximations in

dynamic programming to decrease computation time requirements, with the early works

of Bellman et al. (1963) and Daniel (1976) using polynomial (i.e. a parametric model) and

spline approximations (i.e. a non-parametric model), respectively. For an overview see

Rust (1996); Judd (1996). The three most-widely cited works in this area are (Carriere,

1996; Tsitsiklis and Van Roy, 1999, 2001; Longstaff and Schwartz, 2001), which can be

classified as approximate dynamic programming (ADP) strategies (Powell, 2011). Of

these works, Carriere (1996) applies a non-parametric approach by using regression with

both splines and a local polynomial smoother, whereas Tsitsiklis and Van Roy (1999,

2001); Longstaff and Schwartz (2001) apply parametric models and a least-squares method

to estimate the continuation function. Stentoft (2014) compared the regression-based

algorithms of Carriere (1996); Tsitsiklis and Van Roy (2001); Longstaff and Schwartz

(2001) and recommends the least squares Monte Carlo (LSM) method of Longstaff and

Schwartz (2001) noting that it has a “a smaller absolute bias and less error accumulation”,

thereby justifying its popularity among both academics and practitioners.

The main idea behind the LSM approach is to estimate the options’ expected payoff from

continuation using a parametric regression model. This model is obtained by regressing the

discounted payoff from optimally exercising the option on functions of the state variables

– i.e. the stochastic factor(s) –, more specifically, on linear combinations of so-called basis

functions. Using the optimal coefficients of these functions, which are obtained through

a least squares method, the fitted value of the parametric model can then be used to

determine the optimal exercise strategy of the option. In mathematical terms, this means
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Φt(Xt) at time t is approximated by the following parametric model:

Φ̂L
t (Xt) =

L∑
l=0

α̂tlφl(Xt), (2.3)

where L is the model’s (finite) dimension, the functions {φl(Xt)}Ll=0 are called basis func-

tions (or features), and the optimal values of the coefficients (or weights) at time t, (αtl)
L
l=0,

are estimated using least-squares regression as follows:

(
α̂tl
)L
l=0

= arg min
(αtl)

L
l=0

{∑
ω∈Ω

[
e−k∆V̄t+∆(Xt+∆(ω))−

L∑
l=0

αtlφl(Xt(ω))

]2
}

(2.4)

Adapting the decision criteria in (2.1) by replacing Φt(Xt) with Φ̂L
t (Xt), the approximated

option value at time t given stock price Xt(ω) along path ω ∈ Ω, V̄t
(
Xt(ω)

)
, is determined

by:

V̄t
(
Xt(ω)

)
=

Πt(Xt(ω)), if Πt(Xt(ω)) ≥ Φ̂L
t (Xt(ω)),

Φt(Xt(ω)), if Πt(Xt(ω)) < Φ̂L
t (Xt(ω)).

(2.5)

Proceeding backwards to t = 0, the approximated option value is determined by taking

averages of the path-wise continuation values over all |Ω| paths, giving V̄0(X0). It is

important to note that the algorithm proposed by Longstaff and Schwartz (2001) uses

only “in-the-money paths”, i.e. paths ω ∈ Ω where Πt(Xt(ω)) > 0, both when estimating

the coefficients by the least squares regression (2.4) and when determining the optimal

exercise decision at each exercise time and path in (2.5). As noted by the authors, this is

sufficient because the exercise decision is only required for in-the-money-paths.

Given its popularity, various researchers have investigated the quality of the approxi-

mation of the LSM method in a range of different settings. Considering a one-dimensional

setting (i.e. a single stochastic factor), Longstaff and Schwartz (2001) presented conver-

gence results limited to two exercise dates, whereas Clément et al. (2002) showed that, for

an arbitrary number of option exercise times (implied by ∆)3 and for fixed {φl(·)}Ll=0 and

L, the approximation obtained by the LSM algorithm almost surely converges to the true

option value as |Ω| goes to infinity. Although still focusing on one-dimensional problems,

Glasserman and Yu (2004a) investigated the convergence of the LSM method as both L

and |Ω| increase, and for a Brownian motion found that |Ω| needs to grow exponentially in

L to ensure worst case convergence. Under general assumptions and applying the family

of shifted Legendre polynomials, Stentoft (2004b) proved that the LSM algorithm also

converges in a multi-dimensional setting (i.e. with multiple stochastic factors) if both

L→∞ and |Ω| → ∞ provided that L3/|Ω| → 0. For a recent discussion of related works

3Obviously, the value of the Bermudan option converges to the one of the American option as the time
step, ∆, goes to 0. However, although true in theory, Tsitsiklis and Van Roy (2001) found that, due to
accumulation errors, the overall approximation error of their algorithm increased when ∆ was reduced.
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see Zanger (2013).

Other works have numerically analysed computational issues related to the LSM method’s

valuation performance. To the best of our knowledge, the first authors to do so were

Moreno and Navas (2003), who analysed the method’s robustness to the choice of para-

metric model – i.e. to the polynomial family of {φl(·)}Ll=0 and L – and, for an American

put option using different polynomials with fixed L (3 ≤ L ≤ 20), found that the method is

very robust, but noted that using more terms (i.e. L > 20) may lead to numerical problems

related to the least-squares regression in (2.4). For more complex options – call option

on the maximum of five uncorrelated assets and call option on the arithmetic average of

the stock price – the authors concluded that the choice of parametric model is not clear

and robustness of the LSM method may not be guaranteed. Also considering a complex,

multi-dimensional setting, Stentoft (2004a) examined the LSM method’s comparative per-

formance and found that it is not only much easier to extend than Binomial techniques,

but also superior when it comes to the trade-off between precision and computational cost.

More recently, Areal et al. (2008) studied a range of different approaches to improve the

LSM method: two different regression techniques4 – LFIT (general linear least-squares

fit) and SVD (singular value decomposition); 11 different polynomial families5; and three

variance reduction techniques6 – antithetic variates, control variates and moment match-

ing, as well as low discrepancy sequences, which are also known as quasi-Monte Carlo or

quasi-random numbers.

Besides the error caused by the discretisation of the state space through Monte Carlo

sampling, there are two valuation biases directly related to the LSM method. According

to Fabozzi et al. (2017), the downward bias of this method is caused by the finite-, and

usually low-dimensional polynomial approximation of the continuation function, whereas

the upward bias stems from the circumstance that the same paths are used in (2.5) both

to make the exercise decision and to update the option value (in-sample overfitting). To

reduce the low (downward) and high (upward) bias, Létourneau and Stentoft (2014) sug-

gest to increase L/|Ω| and |Ω|, respectively. Doing the latter has the additional advantage

of reducing the standard error of the simulated paths, thereby reducing the overall val-

uation error (Areal et al., 2008). Interestingly, Moreno and Navas (2003) performed an

out-of-sample analysis of the LSM method but did not find any substantial high bias when

comparing in- and out-of-sample option values noting “prices are very similar and stan-

dard errors are low in both cases”. Referring to the earlier work of Glasserman and Yu

(2004a), Areal et al. (2008) found that with a certain value for L, further improvement in

4In comparison, Longstaff and Schwartz (2001) used the double precision DLSBRR algorithm and men-
tioned the QR-algorithm and Cholesky-decomposition least-squares techniques.

5These are: weighted Laguerre, Powers, Legendre, Laguerre, Hermite-A, Hermite-B, Chebyshev 1st kind
A, Chebyshev 1st kind B, Chebyshev 1st kind C, Chebyshev 2nd kind A and Cheybshev 2nd kind B.

6For a more thorough discussion of and comparison between these see Boyle et al. (1997), who additionally
considered stratified and latin hypercube sampling.
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accuracy can only be achieved by increasing |Ω|. Nevertheless, Létourneau and Stentoft

(2014) conclude that reducing the two biases to a reasonable level will not always be pos-

sible as a large L may result in both numerical errors (and hence a reduced option value

approximation) due to the least-squares regression algorithm and in an increased high bias

due to increased in-sample overfitting. As a consequence, several authors including Wang

and Caflisch (2010); Létourneau and Stentoft (2014); Fabozzi et al. (2017) have presented

extensions of the original LSM algorithm to partly address these biases.

Although positively influenced by a number of advantageous parameter choices, the

LSM method still relies on an approximation of the conditional expectation. This leads

almost inevitably to non-optimal exercise decisions and consequently to a non-optimal

option value. In other words, the approximated option value, V̄0, is a lower bound on

the true option value, V0, as it follows a sub-optimal exercise policy. To provide perfor-

mance bounds, several researchers presented valuation approaches that provide an upper

bound on the option price, which, together with the lower bound, can then be used to

characterise the quality of solutions. Applying duality-theory, Haugh and Kogan (2004);

Rogers (2002) developed upper-bound algorithms that generate high-biased approxima-

tions whilst formulating the American option pricing problem as a minimisation problem.

Unlike the optimal stopping problem, which represents the American option pricing prob-

lem as a problem of maximising over stopping times, Haugh and Kogan (2004); Rogers

(2002) formulated the dual problem as one of minimising over a class of martingales or

supermartingales (Glasserman, 2003).

Subsequently, Andersen and Broadie (2004); Meinshausen and Hambly (2004) proposed

computationally efficient methods to generate bounds on the true option value. More

recently, Broadie and Cao (2008) noted that many existing duality-based, upper bound

algorithms require time-consuming nested simulations to approximate the option’s contin-

uation value at every possible exercise date. Nadarajah et al. (2017) claimed that this is

due to their origin in continuation function approximation as applied by the LSM method

and known as “regression now”. By contrast, the non standard LSM method proposed by

Glasserman and Yu (2004b), also known as “regression later”, which applies value function

approximation instead, avoids these computationally expensive calculations when estimat-

ing duality-based upper bounds as shown by Broadie and Cao (2008). Nadarajah et al.

(2017) also compared the regression now and later variants, as well as provided numerical

evidence that confirms the computational advantages of the latter when it comes to es-

timating dual (upper) bounds. See Kohler (2010) for a recent review of regression-based

Monte Carlo methods for American option pricing.
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2.3 Portfolios of Real Options Approaches

Early studies on portfolios of real options7 explored the concept rather qualitatively and

in the context of corporate strategy and planning (Myers, 1984; Trigeorgis and Kasanen,

1991; Bowman and Hurry, 1993; Luehrman, 1998). For example, Smit and Trigeorgis

(2006b); Anand et al. (2007) presented strategic planning frameworks that aim at sup-

porting corporations with the management of portfolios of real options. Using a generic

example, Trigeorgis (1993a) investigated the nature of interactions between a firm’s real

options and found that options’ individual values are generally non-additive; in other

words, their combined value within a portfolio differs from the sum of the real options

valued independently. More recently, Trigeorgis (2005) argued that investment decision

problems represented by a portfolio of interdependent real options can be decomposed into

a few basic-building blocks (i.e. individual real options) and then combined by one of four

commonly encountered basic decision operators. These are “or” (max), “and”, “average”

and “multi-stage” (or compound), and represent choosing the maximum of mutually ex-

clusive alternatives, the sum of independent options, the probabilistically weighted sum

of options and the value of a sequential option, respectively.

Various scholars have presented approaches to value portfolios of real options in the

context of specific practical applications. One of the first publications to do so was Rose

(1998), who valued two interacting options embedded in a toll-road project and found

that ignoring the embedded options’ interactions results in significantly underestimated

project values. Other relevant articles presented portfolio approaches in the context of

R&D projects (Vassolo et al., 2004; McGrath and Nerkar, 2004; van Bekkum et al., 2009;

Zapata and Reklaitis, 2010), maritime investments (Bendall and Stent, 2007), IT invest-

ments (Pendharkar, 2010), and transmission network expansion (Loureiro et al., 2012).

While these approaches have applied ROA in a portfolio context, they have developed

rather inflexible and restricted quantitative approaches since they are tailored to specific

applications and limited to problems instances with specific features in terms of both op-

tions portfolio and uncertainties; by contrast, this work takes a fundamentally different

approach by proposing a holistic and general valuation approach for portfolios of interde-

pendent real options applicable to a wide range of complex practical investment problems.

A number of publications aimed at presenting more general quantitative frameworks for

the problem of valuing portfolios of real options. In an important early theoretical contri-

bution, Childs et al. (1998) provided closed-form (analytic) solutions for the value of two

investment project that can be developed either in parallel or in sequence. Also Smith and

Thompson (2008) provided analytic solutions whilst considering the problem of valuing a

portfolio of sequencing options that represent projects. Considering one underlying source

of uncertainty, Meier et al. (2001) proposed two models: the first combines contingent

7For a synthesis of the concept of portfolio decision analysis see Salo et al. (2011).
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claims analysis (replicating portfolios) with the well-known Knapsack problem to select

projects, whereas the second is essentially an “Asset Liability Model” solved by means of

stochastic programming whilst combining Monte Carlo simulation with a binomial tree for

scenario generation. Despite having presented more general portfolio-based real options

approaches, neither of these publications addresses this work’s problem in such a holistic

and general way we do. Furthermore, these approaches are simply impractical in most

real-life situations.

Several recent articles that to some extent propose holistic approaches similar to ours

include Gamba (2003); Wang and de Neufville (2004); Brosch (2008). Most recently, the

work of Brosch (2008) addressed portfolios of real options by proposing a forward-backward

looking algorithm based on stochastic mixed-integer programming and lattice/tree mod-

elling, where the forward looking element captures the budget constraint by making sure

only feasible paths can be chosen from. The framework presented by Wang and de Neufville

(2004) consists of an options identification stage which contains a screening and simula-

tion model, as well as of an options analysis stage which applies a stochastic mixed-integer

programming model and a binomial technique for scenario generation. Interestingly, both

authors discussed computational issues with respect to the optimality of solutions, but

only Brosch (2008) also discussed simulation, yet dismissed it as an alternative technique

in his model. While these works have presented important contributions, for example the

global, dynamic budget constraints in (Brosch, 2008) as well as the identification and def-

inition of real options in physical systems by Wang and de Neufville (2004), the combined

complexity of applying both binomial techniques for scenario generation and stochastic

mixed-integer programming for optimal real options timing as well as the resulting adverse

computational issues make both of them impractical in most real-life situations.

In contrast, the framework presented by Gamba (2003) overcomes the computational

limitations of the binomial techniques used in Wang and de Neufville (2004); Brosch (2008)

by applying simulation and parametric regression. In fact, the author considered a portfo-

lio of interdependent real options that can be decomposed into a set of simple real options,

which can be independent, mutually exclusive, compound, or of the switching type, and

presented decision rules for each of the four cases. These rules were then used within

a valuation procedure that applies the LSM algorithm to analyse the four sub-problems

individually. Although this author has proposed an interesting extension of the LSM al-

gorithm, his paper neither addresses the modelling of portfolios of interdependent real

options, nor presents a holistic and general approach. Our work differs in a number of

ways when compared with (Gamba, 2003; Wang and de Neufville, 2004; Brosch, 2008).

For example, we use influence diagrams (IDs) to model portfolios of interdependent real

options and mathematically translate the interdependencies into linear constraints. Fur-

thermore, we integrate both the linear constraints and the directly modelled dynamics of

all underlying uncertainties into a portfolio optimisation problem which is formulated as
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a multi-stage stochastic integer programme.

2.4 Uncertainty Classification and Modelling

The classification of uncertainties into exogenous and endogenous has received considerable

attention in different branches of literature, and importantly in the operational research

as well as in the finance and management literature. With regard to the former, to the

best of our knowledge, the work of Jonsbr̊aten et al. (1998) was the first to classify8 the

formulation of stochastic programs into “standard” formulations with decision independent

random variables and “manageable” formulations, in which the distribution of the random

variables is dependent on decisions. Calling the former “exogenous uncertainty” and the

latter “endogenous uncertainty” (Goel and Grossmann, 2004), Goel and Grossmann (2006)

specified the way in which decisions can affect the stochastic process – which describes

the evolution of an uncertain parameter (see Kirschenmann et al. (2014)) – by presenting

two types of endogenous uncertainty. The first is when the decision alters the probability

distribution (e.g. parameters of family), whereas the second relates to the decision affecting

the timing of uncertainty resolution, a process often described as information revelation.

Considering the above specification of endogenous uncertainties, several relevant works

have appeared in the operations research literature over the last few decades. As for

the first type of endogenous uncertainty, Pflug (1990) was the first to take into account

decision dependent probabilities in a stochastic optimization problem by considering a

controlled Markov chain where the transition operator depends on the control, i.e. the

decision. Other relevant articles related to this type are in the context of stochastic network

problems (Held and Woodruff, 2005; Peeta et al., 2010), global climate policy (Webster

et al., 2012) and natural gas markets (Devine et al., 2016). By contrast, the second type

of endogenous uncertainty has received considerably more attention in the literature. The

first work related to this type was (Goel and Grossmann, 2004), who presented a stochastic

programming approach for the planning of an investment into a gas field with uncertain

reserves represented through a decision-dependent scenario tree. Similar studies in terms

of both uncertainty representation and application domain include (Tarhan et al., 2009;

Terrazas-Moreno et al., 2012; Gupta and Grossmann, 2014). Other relevant works include

the optimisation of R&D project portfolios (Solak et al., 2010) and clinical trial planning

in the pharmaceutical R&D pipeline (Colvin and Maravelias, 2008, 2010, 2011).

Moreover, several works have incorporated both the second type of endogenous un-

certainty and exogenous uncertainty in the formulation of stochastic programmes. For

generic problem formulations and solution strategies see the rather theoretical works of

Dupačová (2006); Goel and Grossmann (2006); Tarhan et al. (2013). Recent advances

8Another well-known uncertainty classification is to distinguish between aleatory and epistemic uncer-
tainty (Kiureghian and Ditlevsen, 2009).
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and summaries over existing computational strategies have been presented by Apap and

Grossmann (2016); Grossmann et al. (2016). However, although almost all publications

of this branch of literature refer to the classification and specification of Jonsbr̊aten et al.

(1998) and Goel and Grossmann (2006), respectively, Mercier and Van Hentenryck (2011)

argued that problems in which merely the observation of an uncertainty depends on the

decisions, but the actual underlying uncertainty is still exogenous (= second type of en-

dogenous uncertainty) should be classified as “stochastic optimization problems with ex-

ogenous uncertainty and endogenous observations”. According to their redefined classifi-

cation, problems with exogenous and the first type of endogenous uncertainty are referred

to as purely exogenous and purely endogenous, respectively.

Unlike the operational research literature, the finance and management literature ap-

pears to be rather ambiguous, even somewhat inconsistent when it comes the classification

of uncertainties. Indeed, although both the classification of uncertainties into exogenous

or endogenous (Hirshleifer and Riley, 1979) and the importance of taking this distinction

into account have been widely recognised in this branch of literature, especially in works

related to the field of real options (Bowman and Hurry, 1993; Folta, 1998; Li et al., 2007;

Li, 2007; Oriani and Sobrero, 2008), there is no clear and widely accepted definition. For

example, Pindyck (1993); Dixit and Pindyck (1994) distinguish between technical and in-

put cost uncertainty while noting their different effects on investment decisions as these

incentivise investing and waiting, respectively. Building upon this distinction, McGrath

(1997) called for a third form of uncertainty that lies in-between, and Folta (1998) stated

(italics in their work) that “exogenous uncertainty can be decreased by actions of the firm”,

while “endogenous uncertainty is largely unaffected by firm actions”. Furthermore, Mc-

Grath and Nerkar (2004) refers to the exogenous and endogenous resolution of uncertainty

through the passing of time and learning, respectively. By contrast, Van der Hoek and

Elliott (2006) took note of uncertainties that are state-dependent rather than dependent

on the option holder’s actions (i.e. decisions).

A few studies aimed at presenting a more continuous classification of how various sources

of uncertainty are affected by the option holder’s actions. Based on the overview of Mical-

izzi and Trigeorgis (1999), Scialdone (2007) presented an “uncertainty-mapping” (similar

to Bräutigam et al. (2003)) that indicates the extent to which uncertainty categories (e.g.

operational, market demand, price, financial, and industry) are exogenous or endogenous.

In addition, the author qualitatively showed the categories’ relevance to single well-defined

real options (e.g. options to wait, stage, switch and abandon). While these studies have

linked different sources of uncertainty to individual option’s relative performance, they

have presented rather unsatisfactory and ambiguous qualitative approaches; in contrast,

this work takes a fundamentally different approach by presenting a holistic and general

portfolio of real options approach that accounts for multiple, possibly interacting, exoge-

nous and endogenous sources of uncertainty, as well as their influence on the performance
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of the portfolio’s interdependent real options.

Various researchers have applied real option approaches to valuation problems with both

exogenous and endogenous uncertainty9. Generalising the work of Roberts and Weitzman

(1981), Pindyck (1993) evaluated a staged-investment with technical (endogenous) and in-

put cost (exogenous) uncertainty using a finite difference method. Other relevant articles

considered both types of uncertainty in the context of information technology investment

projects (Schwartz and Zozaya-Gorostiza, 2003), patents and R&D projects (Schwartz,

2004), pharmaceutical R&D projects (Hsu and Schwartz, 2008; Pennings and Sereno,

2011), product platform flexibility planning (Jiao, 2012), and nuclear power plant invest-

ments (Zhu, 2012). With regard to state-dependent uncertainty, Sbuelz and Caliari (2012)

studied the influence of state-dependent cashflow volatility on the investment decisions re-

lated to corporate growth options, whereas Palczewski et al. (2015) examined optimal

portfolio strategies under stock price dynamics with state-dependent drift. Despite hav-

ing applied real option approaches to valuation problems with both types of uncertainty,

these quantitative approaches are rather inflexible and restricted in terms of the size of

the real options portfolio, the number and types of uncertainties as well as the valuation

technique(s) applied. Furthermore, they do not provide the holistic and unified approach

presented in this thesis.

2.5 Summary

This literature review provided a selection of relevant works in areas directly related and

important to this thesis. The chapter began with presenting a brief overview of ROA

applied to infrastructure investments in order to provide both background and context

for this research. It found that despite the growing number of publications over the last

one-and-a-half decades addressing a range of applications in this area, the great poten-

tial of ROA remains largely unexploited. Since infrastructure investments are “ripe with

flexibility” and have to be made in the context of enormous uncertainty, we argued that

a practical and powerful appraisal technique will have to be capable of valuing the in-

vestments’ underlying portfolio of interdependent real options whilst accounting for the

multiple sources of uncertainty. Based on these requirements, this chapter subsequently

presented an overview of simulation-and-regression-based option pricing methods. Com-

bining simulation (i.e. Monte Carlo sampling) and parametric regression, these meth-

ods are widely regarded flexible and powerful, and more importantly capable of dealing,

amongst other things, with multiple sources of uncertainty and possibly complex inter-

dependent real options. So they have the potential to be profitably used in real options

applications relevant for this research.

9Interestingly, Adner and Levinthal (2004); Cuypers and Martin (2007, 2010) argued that real options
theory cannot be applied to problems with endogenous uncertainty since, amongst other things, the
real options’ discrete nature would be eroded.

30



From a methodological perspective, a comprehensive review of portfolio of real options

approaches and endogenous uncertainties was presented in Sections 2.3 and 2.4, respec-

tively. With regard to the former, starting with a presentation of early studies on option

portfolios, which explored the concept rather qualitatively, and moving towards more quan-

titative approaches, it identified three works that presented holistic portfolio approaches

similar to the one proposed here and it critically discussed their limitations. As mentioned,

the present study differs in a number of important ways when compared with these three

works. Most importantly, in the approach presented here IDs are used to graphically model

portfolios of interdependent real options and the options’ interdependencies are mathe-

matically translated into linear constraints and then integrated in a portfolio optimisation

problem. This problem is formulated as a multi-stage stochastic integer programme and

is approximately solved by a simulation-and-regression-based valuation algorithm. Lastly,

the classification of uncertainties into exogenous and endogenous in the related literature

was reviewed and the limitations of relevant real option approaches were examined. In

contrast to these approaches, the one proposed here, which extends our portfolio of real

options approach to include endogenous uncertainty, is powerful and flexible in terms of

the size of the real options portfolio as well as the number and types of uncertainties that

can be considered.
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Chapter 3

Modelling and Valuing Portfolios of

Interdependent Real Options

In this chapter we present a new approach to model and approximate the value of port-

folios of interdependent real options using influence diagrams (IDs) and simulation-and-

regression. This chapter is organised as follows: In Section 3.1 we present the conceptual

framework to model and value portfolios of interdependent real options. We proceed in

Section 3.2 with the problem formulation, which contains the modelling of flexibilities us-

ing IDs, the formulation of the portfolio optimisation problem as a multi-stage stochastic

integer programme, and a discussion of the underlying curses of dimensionality. Section

3.3 then presents the valuation algorithm by both describing how the optimisation prob-

lem’s continuation function is approximated through parametric regression and developing

a simulation-and-regression-based algorithm, as well as discusses the algorithm’s compu-

tational efficiency and numerical accuracy in light of Section 2.2. Finally, Section 3.4

summarises this chapter.

3.1 Conceptual Framework

Although it is rarely used by real options analysts, the ID is a promising alternative to

the traditionally-applied decision tree1/lattice and has many advantages as a framework

for identifying, defining, and modelling interdependent flexibilities inherent in investment

projects. For example, IDs are intuitive and can be readily applied by decision makers

to identify flexibilities (Lander and Shenoy, 1999), thereby focusing on the decisions the

manager can make, rather than the risk modelling (Sick and Gamba, 2010). From a mod-

elling perspective, IDs allow a more compact representation than lattice/tree techniques

(Charnes and Shenoy, 2004), particularly in situations where there are multiple sources of

uncertainty and a sequence of decisions, or path dependency (Demirer et al., 2003). This

is because IDs do not scale with the number of uncertainties and grow linearly rather than

combinatorially in the number of decision variables considered (Lander and Pinches, 1998).

Finally, ID representations are simple, intuitive, transparent and flexible. In our approach,

1See (Howard and Matheson, 2005) for a recent discussion from a decision analysis perspective.
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we use IDs to graphically model the flexibilities contained in a portfolio of interdependent

real options. The interdependencies between flexibilities are then mathematically trans-

lated into linear constraints and integrated into a portfolio optimisation problem, which

is formulated as a multi-stage stochastic integer programme.

In order to approximate the value of portfolios of interdependent real options we apply

simulation combined with parametric regression. It is widely acknowledged that Monte

Carlo simulation2 techniques, despite their computational complexity, have significant

advantages over traditional option pricing techniques such as analytical and lattice-based

methods. Amongst other things, simulation allows the consideration of many sources

of uncertainty and the direct modelling of the uncertainties’ risk-neutral dynamics as

well as real options with complex features (Pringles et al., 2015). Several authors have

proposed numerical methods for the valuation of American options using simulation and

regression; Stentoft (2014) recently compared the approaches of Carriere (1996); Tsitsiklis

and Van Roy (2001); Longstaff and Schwartz (2001) and recommends the least squares

Monte Carlo (LSM) approach of Longstaff and Schwartz (2001) for computational reasons.

Like the LSM approach, which was developed for single American-style options, we apply

“continuation function approximation” by using both a parametric model and a least-

squares method3. In this way, we are able to approximate the complex continuation

functions that describe the expected future contributions associated with transitions in

the ID. These approximations are then used in a simulation-based valuation algorithm to

determine optimal pathwise decisions for all available transitions at each possible resource

state, subject to the linear constraints that describe interdependencies.

3.2 Problem Formulation

In this section, we present our approach to both the modelling of portfolios of interdepen-

dent real options and the formulation of the related portfolio optimisation problem as a

multi-stage stochastic integer programme. A summary of the notation used is presented

in Appendix A.

3.2.1 Modelling Flexibilities with Influence Diagrams

We consider the valuation of an investment project that is represented by a portfolio of

interdependent real options. The flexibilities contained in this portfolio of interdependent

real options are then modelled through an ID, which is composed of both a graphical and a

numerical part. The former is composed of two elements: a set of (decision and terminal)

nodes N = {1, 2, . . . , N}, which may represent stages of development or operating modes,

2Another related article is Charnes and Shenoy (2004), which applies simulation to solve IDs using local
computation.

3In fact, functional approximations have been used at least since Bellman and Dreyfus (1959) to increase
the computational efficiency of dynamic programming, which is widely applied in decision analysis.
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as well as a set of directed edges H = {1, 2, . . . ,H}, which represents the transitions

linking the nodes in the ID, or in other words the flexibilities available to the decision

maker. Unlike most modelling approaches for IDs in the context of real options (e.g.

see Lander and Pinches (1998); Lander and Shenoy (1999); Charnes and Shenoy (2004),

we allow for cycles in the ID, which is then represented through a directed cyclic graph

(N ,H) instead of an acyclic one. Although we only consider decision nodes, so apply the

deterministic use case of IDs as noted by Howard and Matheson (2005), our specification

can be easily extended to the probabilistic use by including chance nodes in the ID, as

shown by Charnes and Shenoy (2004), thus allowing for the consideration of influencing

factors such as technical uncertainty. Figure 6.1 contains an example of a district heating

network expansion investment to illustrate the graphical part of the modelling approach.

The numerical part of the ID is specified by information associated with both nodes

and transitions. Let the state of the system at time t, St, be composed of a resource

and an information component denoted by Rt ∈ Rt and It ∈ It, respectively, thus having

St = (Rt, It), where Rt and It are the corresponding state spaces. In general, Rt is an

endogenous component (evolves deterministically), whereas It is an exogenous component

(evolves stochastically). The former is modelled to contain at least information about

the current decision node Nt ∈ N , but, generally, will contain further problem-dependent

resource state variables. On the other hand, It contains one or several stochastic factors (or

random variables) that describe the value of the problem’s uncertain parameters at t whose

evolution can be modelled directly using (Markovian) stochastic processes. Most existing

real option valuation approaches consider It to represent the “state” and do not explicitly

model Rt. The few exceptions usually only consider either a discrete (Nadarajah et al.,

2017) or continuous (Denault et al., 2013) scalar for the endogenous component. Here, in

order to deal with complexities of portfolios of real options, including path-dependencies

and interdependencies between options, we explicitly model Rt to be a vector made up of

multiple resource state variables that characterise the valuation problem.

With regard to the information associated with nodes, in order to simplify the valuation

algorithm presented in the next section, we assume that N contains exactly one beginning

node (no incoming transition(s)), but may have several terminal nodes, which are charac-

terised through not having outgoing transitions. The value of a terminal node at t is given

by its terminal value GTt (St), for all St ∈
{
S′t ∈ St : bD(N ′t) = ∅

}
, where the action space

bD(Nt) gives the set of outgoing transitions of node Nt. The set of decision times, which

is often referred to as decision epochs in the Markov Decision Process (MDP) literature,

is denoted by T .

With regard to the information associated with transitions, there are three elements to

any transition h ∈ H:

1. The feasible region ASt , which is composed of one or more linear constraints that

describe the interdependencies between flexibilities, defines the transition(s) one can
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make given state St. Let the decision to make any transition h ∈ bD(Nt) at node

Nt be represented by a binary decision variable ath ∈ {0, 1}, where ath = 1 means

transition h is made at time t and vice versa, as well as let the duration of transition

h be ∆h. Then, the vector at = (ath)h∈bD(Nt) has to satisfy all constraints defined

in ASt , in other words at ∈ ASt .

2. The transition function, which is generically written as SM (St, at,Wt+∆h
), describes

the evolution of the state St from time t to t + ∆h when making transition h and

given new exogenous information Wt+∆h
that is learned between t and t + ∆h. In

terms of the state’s two components, SM (·) can be interpreted as a composition

of both a resource transition function SR(·) and an information transition function

SI(·) which describe individually the evolution of Rt and It to Rt+∆h
and It+∆h

,

respectively, when making transition h at time t.

3. The immediate payoff Πt

(
St, at

)
is obtained at time t when making decision at =

(ath)h∈bD(Nt) given state St. Note that Πt(·) depends only on variables whose value

is known at time t, so is deterministic, and is being received at the beginning of the

period t to t+ ∆h.

3.2.2 Portfolio Optimisation Problem

Building upon the numerical part of the ID, the problem of determining the optimal value

of the portfolio of interdependent real options is formulated as a multi-stage stochastic

integer programme. Unlike the approach taken by Gamba (2003), who decomposed a port-

folio of interacting real options into a set of independent, compound, mutually exclusive

and switching options and then valued these sub-problems individually, this work proposes

a single framework to value a portfolio of interdependent real options whilst using both

linear constraints and binary decision variables to model strategic interdependencies and

exercise decisions of real options. This modelling approach opens up the realm of inte-

ger programming with its powerful and flexible modelling techniques, see (Wolsey, 1998;

Williams, 2006). Let the optimal value of the portfolio of real options at time t given

state St be denoted by Gt(St). The optimal value of the portfolio of interdependent real

options, G0(S0), is determined by the following multi-stage stochastic integer programme:

G0(S0) = max
(at)t∈T

E
[∑

t∈T
e−ktΠt(St, at)

∣∣S0

]
, (3.1)

where S0 is the state at time 0, at = (ath)h∈bD(Nt), at ∈ ASt , ath ∈ {0, 1}, k is the risk-free

rate, and St+∆h
= SM (St, at,Wt+∆h

).

The above optimisation problem with objective (3.1) can be solved recursively by using
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the following value function for each state St ∈
{
S′t ∈ St : bD(N ′t) 6= ∅

}
at time t:

Gt(St) = max
at

Πt(St, at) + E
[
e−k∆hGt+∆h

(St+∆h
)
∣∣St, at] (3.2)

s.t. at ∈ ASt , (3.3)

ath ∈ {0, 1}, ∀h ∈ bD(Nt), (3.4)

St+∆h
= SM (St, at,W t+∆h

), ∀h ∈ bD(Nt), (3.5)

with the boundary (terminal) condition Gt(St) = GTt (St), for all St ∈
{
S′t ∈ St : bD(N ′t) =

∅
}
, t ∈ T . Ultimately, the aim of the valuation problem is to determine the optimal value

of the portfolio of interdependent real options given state S0 at time 0, G0(S0). It is

important to note that, unlike traditional solution approaches for MDPs, the boundary

condition used in (3.2)-(3.5) is not directly dependent on time t, but on whether the

current node Nt in the ID is a terminal node, which may or may not has to be reached

at a certain t ∈ T . In the context of portfolios of real options discussed here, one may

decide, for instance, to irreversibly abandon a project at any point in time t ∈ T , thereby

reaching the corresponding terminal node potentially well before max T .

3.2.3 Curses of Dimensionality

In general, solving the recursion in the (3.2)-(3.5) can be computationally expensive, even

intractable due to at least three curses of dimensionality: (i) the high dimensionality of

the resource state space Rt and information state space It; (ii) the inability to (exactly)

compute the conditional expectation in (3.2); and (iii) the high-dimensionality of the

decision vector at and the feasible region ASt . Of these, the curses related to both It
and (ii) are being addressed through the simulation and parametric regression approach4

described in Section 3.3. Also, although a vector, in most practical real option portfolio

problems at will be a rather low-dimensional vector of binary variables and ASt will be

small in size and only depend on the resource state Rt, so (iii) can be neglected. In the

context of real option portfolios, however, Rt is generally a vector of discrete variables

(e.g., instead of a discrete scalar as in (Nadarajah et al., 2017)) with a possibly large

state space Rt. However, as demonstrated by the complex problem considered in Chapter

5, in which Rt has 4 dimensions, in general by appropriately modelling the problem at

hand and carefully choosing relevant parameters a large state space Rt is prevented and

a computationally manageable valuation process is ensured.

4As noted by Tsekrekos et al. (2012), however, such a parametric regression approach is not entirely
free of the curse of dimensionality related to It because the number of basis functions needed (e.g.
multivariate polynomials) and the computational cost of estimating the parametric model’s coefficients
are not linear in the dimension of It. The authors offered the approach of Rust (1997) to overcome
this issue.
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3.3 The Valuation Algorithm

This section contains the approach to approximate the value of portfolios of interdependent

real options as well as the corresponding simulation-based valuation algorithm.

3.3.1 Approximating the Continuation Function by Parametric

Regression

The strategy chosen in this work is to approximate the value of the conditional expectation

in (3.2), which represents the continuation value, using a parametric regression model.

Using such an approximation of the continuation value is a commonly used strategy in the

“Approximate Dynamic Programming” literature (Tsitsiklis and Van Roy, 2001; Longstaff

and Schwartz, 2001; Glasserman, 2003; Powell, 2011) and directly tackles the curses of

dimensionality related to It5 and the outcome space, as highlighted by Powell (2011). In

particular, conditional upon being in state St = (Rt, It) at time t and making decision

at ∈ ASt , we approximate

Φt(St, at) = E
[
e−k∆hGt+∆h

(St+∆h
)
∣∣St, at], (3.6)

by the following finite-dimensional, continuous function:

Φ̂L
t (St, at) =

L∑
l=0

α̂tl(S
R(Rt, at))φl(It), (3.7)

where L is the parametric model’s dimension, the functions {φl(It)}Ll=0 are called basis

functions or features, which are assumed to be independent of t and Rt, and the optimal

values of the coefficients (or weights) at time t, (αtl(S
R(Rt, at)))

L
l=0, are estimated for

all at ∈ ASt using least-squares regression as described in the following subsection. See

Figure 6.2 in Powell (2011) for a simple illustration of a function approximation using

basis functions.

3.3.2 The Simulation-and-Regression-based Valuation Algorithm

To approximate the value of the multi-stage stochastic integer programme (3.2)-(3.5),

we apply a simulation-based algorithm that consists of both a forward and a backward

induction procedure. Having specified all required inputs including the resource and in-

formation state at time 0, R0 and I0, respectively, the number of sample paths |Ω|, as well

as the number (implied by L) and set of basis functions {φl(It)}Ll=0, the forward induction

procedure initialises (and discretises) the state space St for all t ∈ T . More specifically,

using the numerical part of the ID and starting at t = 0, the state space of the resource

5See comment in previous footnote.
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state variable, Rt, is being initialised for all t ∈ T through simple “exploration” to find

all feasible resource states subject to ASt , and by using the resource transition function

SR(·) to step forward in time. On the other hand, the state space of the information state

variable It, which contains the realisations of the problem’s random variable(s), is gener-

ated by simulation (i.e. Monte Carlo sampling) while applying the information transition

function SI(·), resulting in a set of |Ω| independent sample realisations {It(ω) : ω ∈ Ω}
for all t ∈ T . Subsequently, the value of all terminal nodes St ∈

{
S′t ∈ St : bD(N ′t) = ∅

}
in the ID is then initialised with GTt (St), for all t ∈ T . While the latter part of the above

forward induction procedure is standard in the literature (e.g. see Glasserman (2003)),

the former is a direct necessity of our portfolio approach yet uncommon in the real options

literature, in which resource states are either not modelled explicitly or scalar.

The backward induction procedure determines an approximate value Ḡ0(S0) of the

portfolio optimisation problem given by (3.2)-(3.5). Starting at time max T and moving

backwards to time min{T \0}, at each time t do the following three steps for each resource

state Rt ∈
{
R′t ∈ Rt : bD(N ′t) 6= ∅

}
:

(i) Applying least-squares regression, determine the optimal values of the coefficients(
αtl(S

R(Rt, at))
)L
l=0

for all at ∈ ASt6:

(
α̂tl(Rt+∆h

)
)L
l=0

= arg min
(αtl(·))Ll=0

{∑
ω∈Ω

[
e−k∆hḠt+∆h

(St+∆h
(ω))−

L∑
l=0

αtl(Rt+∆h
)φl(It(ω))

]2
}
,

(3.8)

where Rt+∆h
= SR(Rt, at) and St+∆h

(ω) = (Rt+∆h
, It+∆h

(ω)).

(ii) Using the result of (i) with Φ̂L
t (St, at) as in (3.7), compute the pathwise optimisers

ât(ω) of the pathwise approximation of the problem (3.2)-(3.5) for all ω ∈ Ω:

ât(ω) = arg max
at(ω)

Πt

(
St(ω), at(ω)

)
+ max

{
Φ̌t

(
Rt, at(ω)

)
, Φ̂L

t

(
St(ω), at(ω)

)}
(3.9)

s.t. at(ω) ∈ ASt(ω), (3.10)

ath(ω) ∈ {0, 1}, ∀h ∈ bD(Nt). (3.11)

where Φ̌t

(
Rt, at(ω)

)
is a lower bound on the continuation value, given Rt and at(ω).

(iii) Using the result of (ii), approximate the optimal portfolio value Gt(St) given St at time

t along each path ω ∈ Ω by:

Ḡt(St(ω)) = Πt

(
St(ω), ât(ω)

)
+ e−k∆hḠt+∆h

(
SR(Rt, ât(ω)), It+∆h

(ω)
)

(3.12)

6For simplicity, the special case of transitions leading to terminal nodes with deterministic values is
not treated separately here. See Algorithm 2 in Chapter 6 for a simple and straightforward way to
algorithmically deal with such a case.
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At time 0, however, the above three steps cannot by applied as S0 = S0(ω), for all

ω ∈ Ω, but now the conditional expectation in (3.6) can be computed directly by taking

the average over all |Ω| pathwise continuation values Ḡ∆h

(
SR(R0, a0), I∆h

(ω)
)
, so the

approximate value of the portfolio of interdependent real options is then:

Ḡ0(S0) = max
a0∈AS0

(
Π0(S0, a0) +

1

|Ω|
∑
ω∈Ω

e−k∆hḠ∆h

(
SR(R0, a0), I∆h

(ω)
))
, (3.13)

where a0,h ∈ {0, 1}, for all h ∈ bD(N0).

In the first and third step above as well as in (3.13), the pathwise (approximated) con-

tinuation values Ḡt+∆h
(·) and Ḡ∆h

(·) are already known at times t and 0, respectively,

since these are defined recursively. Importantly, unlike Tsitsiklis and Van Roy (2001),

we use Φ̂L
t (·) only for the sake of computing the pathwise optimal decisions in step (ii),

but the actually realised, pathwise continuation values, Ḡt+∆h
(·), to approximate Gt(·) by

Ḡt(·) as in step (iii), which is in accordance with the approach of Longstaff and Schwartz

(2001) and results in a comparatively smaller absolute bias as well as less and much slower

accumulation of approximation errors, as recently demonstrated by Stentoft (2014). In

addition, assuming a deterministic lower bound exists, we correct obviously erroneous ap-

proximations of the continuation value by replacing Φ̂L
t (·) in (3.9) with max{Φ̌t(·), Φ̂L

t (·)};
e.g., Φ̌t = 0 for an American option, as in Glasserman (2003). A summary of the backward

induction procedure is shown by Algorithm 1.

Although backward induction procedures are widely and standardly applied, the one

described above contains several important features that allow us to approximate the

value of a portfolio of interdependent real options. Firstly, the backward induction has

to applied for each resource state Rt ∈ Rt that does not correspond with a terminal

node (no decision needed there), which is a direct consequence of our portfolio approach.

By contrast, this is generally not needed for the regression-based pricing of single (real)

options, where Rt is commonly not modelled explicitly. Secondly, two of the procedure’s

three nested loops perform particular portfolio-related tasks.

In step (i), the optimal coefficients
(
α̂tl(S

R(Rt, at))
)L
l=0

are determined for every feasible

decision at, given Rt, which consequently satisfies the linear constraints describing the in-

terdependencies between real options in the portfolio. But this is generally not necessary

for the pricing of single, well-defined options, which often feature trivial decision spaces;

for instance, consider the simple “hold vs. exercise” decision underlying an American-type

real option. Also, unlike the approach of Longstaff and Schwartz (2001), we include in

the regression (3.8) all |Ω| simulation paths thereby improving approximation accuracy

(Gamba, 2003; Areal et al., 2008; Tsekrekos et al., 2012; Stentoft, 2014). It is important

to note, however, that doing so is in fact necessary (Areal et al., 2008) here as the struc-

ture and pathwise value of Πt(·) generally differ for compound (i.e. path-dependent) real

options within the portfolio.
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Algorithm 1: Approximation of optimal value of problem (3.2)-(3.5)

Data: From forward induction procedure and problem specific inputs
Result: Ḡ0(S0)

1 for t = max{T \ 0} do
2 forall Rt ∈

{
R′t ∈ Rt : bD(N ′t) 6= ∅

}
do

3 forall at ∈ ASt do
4 Use both Φ̌t

(
Rt, at

)
and (3.7)-(3.8) to determine:

Ft(St(ω), at)← max
{

Φ̌t

(
Rt, at

)
, Φ̂L

t (St(ω), at)
}
, ∀ω ∈ Ω

5 end
6 forall ω ∈ Ω do
7 Compute pathwise optimisers:

ât(ω)← arg max
at(ω)∈ASt(ω)

{
Πt(St(ω), at(ω)) + Ft(St(ω), at(ω))

}
8 Approximate optimal portfolio value along each path ω:

Ḡt(St(ω))← Πt(St(ω), ât(ω)) + e−k∆hḠt+∆h

(
SR
(
St(ω), ât(ω)

)
, It+∆h

(ω)
)

9 end

10 end
11 T ← T \ t
12 end
13 At t = 0, determine:

Ḡ0(S0)← max
a0∈AS0

{
Π0(S0, a0) + 1

|Ω|
∑
ω∈Ω

e−k∆hḠ∆h

(
SR
(
S0, a0

)
, I∆h

(ω)
)}

In step (ii), the optimal decision ât(ω) along path ω is computed by optimally solving the

integer programme (3.9)-(3.11) for each path ω ∈ Ω, giving |Ω| pathwise optimisers ât(ω).

These represent the binary decisions that maximise the pathwise approximated portfolio

value given St at time t whilst satisfying the linear constraints in ASt(ω). In contrast,

the decision-making process underlying most existing regression-based pricing algorithms

boils down to simply comparing Πt(·) with Φ̂L
t (·), e.g. by max{Πt(·), Φ̂L

t (·)}, under total

enumeration of all mutually exclusive alternatives; e.g., two in the case of an Ameri-

can/Bermudan option (Glasserman, 2003), several in the case of switching (Tsekrekos

et al., 2012) and swing options (Nadarajah et al., 2017). Hence, in these existing algo-

rithms the actual pathwise optimal decision generally plays a secondary role, rather than

a fundamental one as in our algorithm.

3.3.3 Computational Efficiency and Numerical Accuracy

The efficiency of the simulation-based algorithm presented here and the accuracy of the

approximation depend on a number of influencing factors as discussed in Section 2.2. With

regard to the latter, a number of advantageous results obtained using the LSM approach

are also relevant to our approach, which shares a comparable continuation function approx-
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imation. For example, convergence results have been provided by Longstaff and Schwartz

(2001); Clément et al. (2002); Stentoft (2004b); Glasserman and Yu (2004a). The robust-

ness of the approach to different choices of basis functions has been shown by Moreno and

Navas (2003) and more recently by Tsekrekos et al. (2012), as well as with an emphasis on

the tade-off between computational time and precision by Stentoft (2004a). More recently,

Areal et al. (2008) have demonstrated various ways to improve the accuracy of the val-

uation approach by investigating the influence of different regression algorithms, several

variance reduction techniques, various polynomial families, as well as varying numbers of

both model dimension (L) and paths (|Ω|). Furthermore, Longstaff and Schwartz (2001)

recommend appropriate scaling before performing the least-squares regression in order to

avoid numerical errors and computational underflows.

By its nature, the proposed algorithm applies the same strategy regarding mutually

exclusive options as the one of Areal et al. (2008), who has shown that this strategy

provides faster and more accurate results than the algorithm presented by Gamba (2003).

It is important to note that despite providing a lower bound on the value of the portfolio

of interdependent real options, like the approaches of Tsitsiklis and Van Roy (2001);

Longstaff and Schwartz (2001), our approach can be extended by applying duality theory

(e.g. see (Haugh and Kogan, 2007)) to allow for the estimation of precise and accurate

upper (dual) bounds as shown by Andersen and Broadie (2004); Nadarajah et al. (2017).

Furthermore, the integer programming problem (3.9)-(3.11) can be solved efficiently by

standardly available solvers applying such algorithms as branch and bound (Ahmed et al.,

2003). Lastly, while more advanced regression methods such as nonparametric models (e.g.

kernel regression, local averaging, smoothing splines, and neural networks (Carriere, 1996;

Judd, 1998; Powell, 2011)) can lead to more accurate results with lower computational

efforts (see the review of Kohler (2010)), they are generally not readily applicable in high-

dimensional settings and even low-dimensional problems can be comparatively complex

(Pizzi and Pellizzari, 2002; Kohler, 2010; Powell, 2011).

3.4 Summary

This chapter presented a new approach for modelling and approximating the value of

portfolios of interdependent real options using both IDs and simulation-and-regression.

With regard to the proposed conceptual framework, IDs and simulation are powerful

frameworks for representing flexibilities and valuing risky investments, respectively. They

can be used in tandem in an optimisation framework to efficiently and correctly value

portfolios of interdependent real options. Using IDs to model the flexibilities provided by

portfolios of interdependent real options, their graphical and numerical part were specified.

Our modelling technique is intuitive and compact; strategic interdependencies between

real options are translated into linear constraints and the risk-neutral dynamics of all
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underlying uncertainties are directly modelled using (Markovian) stochastic processes as

proposed. These are then easily implemented in a portfolio optimisation problem which

is formulated as a multi-stage stochastic integer programme.

To approximate the value of this optimisation problem, we apply simulation and para-

metric regression and have presented a transparent valuation algorithm. In contrast to

existing regression-based valuation algorithms, ours explicitly takes into account the state

variable’s multidimensional resource component that generally occurs in real option port-

folios. In addition, the valuation algorithm presented here contains several important

features specific to option portfolios; these features are adequately described and high-

lighted as well as compared with the state-of-the-art literature, thus clearly illustrating

our contribution. In general, the corresponding valuation technique, which applies contin-

uation function approximation, is accurate, flexible, robust and computationally efficient.

To operationalise the presented approach, its application to three relatively simple numer-

ical examples is presented in the next chapter, and Chapter 5 demonstrates its ability to

evaluate complex and risky investment projects by evaluating a complex natural resource

investment that features both a large portfolio of interdependent real options and four

stochastic factors.

Given its generality, the presented approach can be applied to a wide range of com-

plex and risky investment projects which have both inherent interdependent flexibilities

and many sources of underlying uncertainties (such as in infrastructure), and it has the

potential to lay the basis for further theoretical developments. For example, Chapter 6

demonstrates how to extend the approach presented in this chapter by integrating other

types of uncertainties. This chapter also presented a discussion of limitations with respect

to the three curses of dimensionality potentially affecting the computational tractability of

the sequential decision problem as well as the computational efficiency and numerical ac-

curacy of the simulation-and-regression-based valuation algorithm presented here. These

discussions are not only relevant for informing (modelling-related) decisions surrounding

the present work – e.g. possibilities to improve the algorithm’s efficiency in the presented

applications –, but also indicate potentially rewarding directions for future research by

giving rise to many interesting research questions.
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Chapter 4

Numerical Examples

This chapter presents the operationalisation of the portfolio of real options approach pre-

sented in Chapter 3 in the context of three relevant examples. It is organised as follows:

In Section 4.1 the approach is applied to the simple example of valuing an American put

option and Section 4.2 demonstrates its ability to accurately model and correctly value

a slightly more complex real option problem by evaluating a natural resource investment

with a switching option – a portfolio of interdependent call and put options. This copper

mine example is then extended from a one-factor to a three-factor setting in Section 4.3,

which also presents an analysis of the effect of correlation on the investment’s value. Sec-

tion 4.4 discusses the relationship of the proposed approach to existing option pricing and

decision analysis approaches. Finally, Section 4.5 provides some summarising remarks.

4.1 Valuing an American Put Option

4.1.1 Problem Setting

To illustrate the use and implementation of the developed approach, we apply it to the

simple numerical example of an American put option in a one-factor setting. Originally

proposed by Longstaff and Schwartz (2001), this example has more recently been used by

Stentoft (2014) to compare the methods of Carriere (1996); Tsitsiklis and Van Roy (2001);

Longstaff and Schwartz (2001). A slightly modified yet almost identical example was used

in (Powell, 2011) to illustrate the use of regression models to American option pricing.

While this is clearly not a portfolio of options nor does it contain multifactor features,

this simple example of an American put allows us to demonstrate the mechanics of our

approach in a clear and easily comprehensible manner. In addition, since options with

such an exercise feature are often integrated in more complex portfolios (e.g. see Chapters

5 and 6), this example will contribute to a better understanding of the bigger picture in

more complex situations. Furthermore, options with (discrete) American-style exercise

features, whether put or call, are arguably the most important problems in theory, so

there is academic value in demonstrating the wide range of applications of our approach.
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4.1.2 Modelling

The managerial flexibility provided through an American put option – the discrete-time

version of this real option is sometimes referred to as Bermudan option – is represented by

the ID in Figure 4.1. The ID consists of three nodes termed Holding (1), Exercised (2), and

1Holding

3
Expired

2
ExercisedHold (1)

Exercise (2)

Expire (3)

Figure 4.1: Influence diagram for American option.

Expired (3), of which only the first is a decision node, as well as three transitions termed

Hold (1), Exercise (2), and Expire (3). Consequently, the sets of nodes and transitions are

given by N = {1, 2, 3} and H = {1, 2, 3}, respectively, and the the duration of transition

h ∈ H is ∆h time period(s). With regard to the underlying sequential decision problem,

when Holding at time t > 0, the decision maker has to decide whether to exercise the put

option immediately by making transition 2 to become Exercised, or to hold the option

until t + ∆1 and thus remain Holding. However, the latter decision can only be made at

times t < Tmax, whereas at the expiration date, Tmax (i.e. the option’s maturity date),

this put option automatically expires if not exercised, which corresponds with making

transition 3 to the Expired node. No (exercise) decision is made at t = 0.

Let the decision node at time t be denoted by Nt as well as let the stock price (of

the underlying asset) at time t along path ω be denoted by Xt(ω). The endogenous

part (resource component) of the state is then represented by Rt = (t,Nt), whereas the

exogenous part (information component) is given by It = Xt, which equals the set of stock

price realisations at time t, {Xt(ω) : ω ∈ Ω}, where Ω is the set of sample realisations. In

the case of the American put option, the state variable is then given by St = (t,Nt, Xt).

The decision variables available at node Nt, at = (ath)h∈bD(Nt), where the action space

bD(Nt) is given by

bD(Nt) =

{1, 2, 3}, if Nt = 1,

{}, otherwise,
(4.1)

are defined in such a way that ath = 1 means transition h is made at time t and 0

otherwise. The decision variables have to satisfy the following linear constraints, which
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define the feasible region ASt :
at1 + at2 + at3 = 1 if Nt = 1, (4.2)

at1t < Tmax, (4.3)

at2 ≤ t, (4.4)

at3T
max ≤ t, (4.5)

where ath ∈ {0, 1},∀h ∈ H. The meaning of these four constraints1 is as follows: the

first constraint, which could equally have been written as
∑

h∈bD(1) ath = 1, enforces that

exactly one transition is made when Nt = 1; (4.3) and (4.4) ensure the option cannot be

held until t = 4 and cannot be exercised at t = 0, respectively; and (4.5) makes sure the

option can only expire at t = Tmax but not before.

The transition function SM (·) is composed of a resource transition function SR(·) and

an information transition function SI(·). With regard to the former, the evolution of t

is straightforward as it simply evolves from t to t + ∆h after having made transition h,

and the transition of Nt is implicitly given by the adjacency matrix of the directed graph

(N ,H) underlying the ID:


1 2 3

1 1 2 3

2 − − −
3 − − −


, where row and column indices represent starting and ending nodes, respectively, and the

matrix’s elements describe the transitions linking these nodes (“–” means there is no such

transition). The information transition function, on the other hand, is represented by the

information given in Table 4.1 of the next subsection.

The deterministic payoff obtained at time t when making decision at given St is:

Πt

(
St, at

)
=


0, if at1 = 1,

K −Xt, if at2 = 1,

0, if at3 = 1,

(4.6)

where K is the option’s strike price. Note that this payoff function models the “intrinsic

value” of the American put option more generally than the commonly used notation in

literature of max(0,K−Xt), which inherently assumes a decision maker would not exercise

the option if its payoff was negative. While this feature could be easily implemented

into the payoff function, e.g. to ensure non-negative option payoff values, we believe

our formulation is more general and transparent with regard to the valuation problem’s

underlying sequential decision process.

1It should be noted that all constraints in this thesis that are modelled as strict inequalities – such as
(4.3) – can be easily transformed into (weak) inequality constraints if needed.
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4.1.3 Valuation

For valuation, we use the same parameter values as Longstaff and Schwartz (2001): the

put option’s strike price is 1.10 (K); the risk-free rate is 6% (r); the option can be held

up to its final expiration date at time 3 (Tmax); and the following durations of transitions

(in periods): ∆1=1 and ∆2=∆3=0, giving T = {0, 1, 2, 3}. In addition, Table 4.1 contains

the 8 (|Ω|) sample realisations of stock price paths, {Xt(ω) : ω ∈ {1, 2, . . . , 8}}, over four

time periods (|T |), which were pre-generated by Longstaff and Schwartz (2001) under the

risk-neutral measure using X0 = 1.00. As a consequence, since the information state space

Table 4.1: Sample realisations of stock prices Xt(ω) over four time periods.

ω t = 0 t = 1 t = 2 t = 3

1 1.00 1.09 1.08 1.34
2 1.00 1.16 1.26 1.54
3 1.00 1.22 1.07 1.03
4 1.00 .93 .97 .92
5 1.00 1.11 1.56 1.52
6 1.00 .76 .77 .90
7 1.00 .92 .84 1.01
8 1.00 .88 1.22 1.34

is given in this simple example, the forward induction procedure described in Section 3.3

is only used to generate the resource state space Rt for all t ∈ T with R0 = (0, 1). In

particular, we have:

Rt =



{
(0, 1)

}
, if t = 0,{

(1, 1), (1, 2)
}
, if t = 1,{

(2, 1), (2, 2)
}
, if t = 2,{

(3, 1), (3, 2), (3, 3)
}
, if t = 3.

Hence the full resource state space is given by R = ∪3
t=0Rt. Note that for the sake of

both clarity and comprehensibility we included in R also the resource states that do not

correspond with decision nodes (only Nt = 1 here), but this is in general not needed when

initialising R as no decisions need to be made at these resource states.

As described in Section 3.3, we proceed with determining the pathwise portfolio values

of states that correspond with terminal nodes. Since there is no value in being at the

Exercised and Expired node, the terminal value GTt (St) associated with these nodes is

zero. That is, for all St = (Rt, It), Rt ∈ {(1, 2), (2, 2), (3, 2), (3, 3)}, we have Gt(St) = 0.

To illustrate the dynamics of the system, Figure 4.2 shows the relation between states

and transitions (i.e. actions/decisions). Finally, we use as basis functions, as in (Longstaff

and Schwartz, 2001), a constant term, the stock price and the square of this value, hence
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0,1,X0 1,1,X1 2,1,X2 3,1,X3

3,3,X3

1,2,X1 2,2,X2 3,2,X3

1 1 1

2 2 2

3

Figure 4.2: State transition diagram with nodes and arcs representing states St =
(t,Nt, Xt) an transitions h ∈ H, respectively.

L = 2 and

φl(It) =


1, if l = 0,

Xt, if l = 1,

X2
t , if l = 2.

(4.7)

Having initialised all necessary inputs, the backward induction procedure starts with

computing the pathwise optimal portfolio values at resource state R3 = (3, 1) at time

t = 3. In doing so, the decision whether to exercise the option (a3,2 = 1) or to allow it

to expire (a3,3 = 1) is made along each path ω ∈ Ω by optimally comparing the pathwise

values associated with each of these transitions subject to the constraints in AS3(ω). Hence,

for all ω ∈ Ω:

â3(ω) = arg max
a3,2(ω),a3,3(ω)

{
Π3

(
S3(ω), a3(ω)

)
+F3

(
S3(ω), a3(ω)

)
: a3,2(ω)+a3,3(ω) = 1

}
(4.8)

The pathwise optimisers â3(ω) = (â3,2(ω), â3,3(ω)) are then used to determine the optimal

portfolio value given resource state R3 at time 3 along every path ω ∈ Ω, Ḡ3(S3(ω)). The

steps undertaken are shown in Table 4.2.

Table 4.2: Steps performed at resource state R3 = (3, 1) at time t = 3.

Π3(S3(ω), a3) F3(S3(ω), a3)† â3(ω)

ω a3,2 = 1 a3,3 = 1 a3,2 = 1 a3,3 = 1 â3,2(ω) â3,3(ω) Ḡ3(S3(ω))

1 −0.24 0.00 0.00 0.00 0 1 0.00
2 −0.44 0.00 0.00 0.00 0 1 0.00
3 0.07 0.00 0.00 0.00 1 0 0.07
4 0.18 0.00 0.00 0.00 1 0 0.18
5 −0.42 0.00 0.00 0.00 0 1 0.00
6 0.20 0.00 0.00 0.00 1 0 0.20
7 0.09 0.00 0.00 0.00 1 0 0.09
8 −0.24 0.00 0.00 0.00 0 1 0.00

† Considering Φ̌3

(
R3, a3

)
= 0.00 for both a3,2 = 1 and a3,3 = 1.

In resource state R2 = (2, 1) at time t = 2, the optionholder has to decide whether
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to exercise the option immediately by making transition 2 (i.e. a2,2 = 1) or to hold the

option by making transition 1 (i.e. a2,1 = 1), thereby keeping it alive until t = 3. In order

to make these pathwise decisions, the continuation function Φ2(S2, a2), which represents

the value of being in state S3 at time 3 conditional upon S2 = (2, 1, X2) and a2,1 = 1, is

approximated by Φ̂
(2)
2 (S2, a2). The fitted parametric model (R2 =0.695) is:

Φ̂
(2)
2 (S2, a2) = 0.8215− 1.1383 ·X2 + 0.3896 ·X2

2 , (4.9)

where the coefficients of the basis functions were determined by applying the least-squares

regression method of (3.8) and using the Ḡ3(S3)-values of Table 4.2. On the other hand,

for a2,2 = 1, no approximation is needed as the pathwise continuation values in this case

are simply zero, resulting in F2(S2(ω), a2) = 0, ∀ω ∈ Ω. Then, for all ω ∈ Ω:

â2(ω) = arg max
a2,1(ω),a2,2(ω)

{
Π2

(
S2(ω), a2(ω)

)
+ F2

(
S2(ω), a2(ω)

)
: a2,1(ω) + a2,2(ω) = 1

}
(4.10)

Applying both the pathwise optimal decisions, â2(ω), and the actually realised cash flow

along path ω, Φt(S2(ω), â2(ω)), instead of the approximation F2

(
S2(ω), â2(ω)

)
, the path-

wise optimal values of the portfolio given S2(ω) = (2, 1, X2(ω)), Ḡ2(S2(ω)), are presented

in the rightmost column of Table 4.3.

Table 4.3: Steps performed at resource state R2 = (2, 1) at time t = 2.

Π2(S2(ω), a2) F2(S2(ω), a2)† â2(ω)

ω a2,1 = 1 a2,2 = 1 a2,1 = 1 a2,2 = 1 â2,1(ω) â2,2(ω) Ḡ2(S2(ω))

1 0.00 0.02 0.0466 0.00 1 0 0.00
2 0.00 −0.16 0.0058 0.00 1 0 0.00
3 0.00 0.03 0.0496 0.00 1 0 0.0659
4 0.00 0.13 0.0839 0.00 0 1 0.13
5 0.00 −0.46 0.0000‡ 0.00 1 0 0.00
6 0.00 0.33 0.1760 0.00 0 1 0.33
7 0.00 0.26 0.1402 0.00 0 1 0.26
8 0.00 −0.12 0.0127 0.00 1 0 0.00

† Considering Φ̌2

(
R2, a2

)
= 0.00 for both a2,1 = 1 and a2,2 = 1.

‡ max{0.00,−0.0061}.

In resource state R1 = (1, 1) at time t = 1, again, a decision needs to be made whether

to immediately exercise the option or to continue its life (hold) until time 2. Like in the

previous resource state, the decision to do the latter is based on an approximation of the

discounted continuation value along path ω ∈ Ω, which is given by the following fit of the

parametric regression model (R2 =0.602) conditional upon S1 = (1, 1, X1) and a1,1 = 1:

Φ̂
(2)
1 (S1, a1) = 2.6881− 4.7491 ·X1 + 2.1113 ·X2

1 (4.11)
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Subsequently, determining the optimal decisions â1(ω) = (â1,1(ω), â1,2(ω)) for all ω ∈ Ω

by solving the integer programme

â1(ω) = arg max
a1,1(ω),a1,2(ω)

{
Π1

(
S1(ω), a1(ω)

)
+ F1

(
S1(ω), a1(ω)

)
: a1,1(ω) + a1,2(ω) = 1

}
,

(4.12)

and using the actually realised cash flow along path ω, Φ1(S1(ω), â1(ω)), instead of the

approximation F1

(
S1(ω), â1(ω)

)
, the pathwise optimal portfolio values given state S1(ω) =

(1, 1, X1(ω)), Ḡ1(S1(ω)), are shown in the rightmost column of Table 4.4.

Table 4.4: Steps performed at resource state R1 = (1, 1) at time t = 1.

Π1(S1(ω), a1) F1(S1(ω), a1)† â1(ω)

ω a1,1 = 1 a1,2 = 1 a1,1 = 1 a1,2 = 1 â1,1(ω) â1,2(ω) Ḡ1(S1(ω))

1 0.00 0.01 0.0200 0.00 1 0 0.00
2 0.00 −0.06 0.0201 0.00 1 0 0.00
3 0.00 −0.12 0.0366 0.00 1 0 0.0621
4 0.00 0.17 0.0975 0.00 0 1 0.17
5 0.00 −0.01 0.0179 0.00 1 0 0.00
6 0.00 0.34 0.2982 0.00 0 1 0.34
7 0.00 0.18 0.1059 0.00 0 1 0.18
8 0.00 0.22 0.1439 0.00 0 1 0.22

† Considering Φ̌1

(
R1, a1

)
= 0.00 for both a1,1 = 1 and a1,2 = 1.

4.1.4 Results and Discussion

Finally, the approximated value of the American put option is determined by discount-

ing the pathwise optimal portfolio values Ḡ1(S1(ω)) given state S1(ω) = (1, 1, X1(ω)) at

time t = 1 back to time t = 0, and then taking the average over all 8 paths, that is

1/8
∑8

ω=1 e
−0.06Ḡ1(S1(ω)), totalling 0.1143. This is, not surprisingly, in line with the re-

sults previously obtained by Longstaff and Schwartz (2001); Stentoft (2014). However,

unlike Longstaff and Schwartz (2001), who only used in the money paths, the algorithm

proposed in this work and applied here uses all paths in the regression, as in Stentoft

(2014), so the coefficients of the basis functions obtained here are slightly different. Also,

as mentioned earlier, our payoff function defined in (4.6) allows negative intrinsic values,

meaning we compare the pathwise values of holding (e.g., given by the sum of the second

and fourth column of Table 4.3) with potentially negative exercise values (sum of third and

fifth column of Table 4.3), which is in contrast to Longstaff and Schwartz (2001); Stentoft

(2014), who only considered non-negative intrinsic values. Therefore it is important that

F2(S2(ω), a2) is bound below by Φ̌2

(
R2, a2

)
= 0. If this was not the case, that is if we had

not corrected for erroneous continuation function approximations, then this could have

potentially resulted in incorrect and hence non-optimal pathwise decisions. For example,
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consider the row ω = 5 of Table 4.3 but let us assume the option payoff from exercising

(i.e. a2,2 = 1) was −0.0061 < Π2(S2(5), a2) < 0 rather than −0.46, then without lower

bound the optimal decision for path ω = 5 would have been to (incorrectly) exercise this

put option (i.e. â2,2(5) = 1), though obviously out-of-the-money, resulting in a negative

option value for this path, which clearly would not make sense as it contradicts using such

an option in the first place.

4.2 Re-evaluating Natural Resource Investments

4.2.1 Problem Setting

In this section we demonstrate how the proposed approach can be used to evaluate a nat-

ural resource investment by considering the classical example of valuing a copper mine,

which was originally proposed by Brennan and Schwartz (1985). Modelled and solved by

the authors using partial differential equations and a finite difference method, respectively,

this is one of the most highly cited works in the field of ROA. Furthermore, this example

has been used by Gamba (2003); Abdel Sabour and Poulin (2006); Cortazar et al. (2008);

Tsekrekos et al. (2012) as a benchmark to assess the LSM approach. While the opera-

tional flexibility available in this copper mine example represents a (small) portfolio of

interdependent real options – a portfolio of interdependent call and put options –, it only

contains one stochastic factor (copper price) and can be valued using finite differences.

However, given the availability of widely-confirmed numerical results and the readily com-

prehensible setting, this well-known example is perfectly suited to allow the demonstration

of the ability of the proposed approach to correctly value a risky investment slightly more

complex than the previously considered American put option.

In this copper mine example, the decision maker has several possibilities to affect the

mine’s operation. Representing these flexibilities as a portfolio of interdependent real

options, which we refer to as the option to switch, this and the portfolio’s constituent real

options are:

(a) Option to switch: In addition to extracting the copper immediately until the mine

inventory, Q0, is exhausted, the decision maker may decide to temporarily close the

(operating) mine, to maintain or reopen the mine when it is currently closed, and/or

to irreversibly abandon the copper mine before its inventory is fully exhausted, i.e.

before Q0/q years of operation at an annual output rate of q.

(i) Option to temporarily mothball the mine: If the copper spot price at time t, Xt,

is too low in relation to the mine’s production costs, At, the decision maker can

close down the opened (i.e. operating) mine at a cost of Kc
t , maintain the closed

mine at an annual maintenance cost of Mt, and, if the copper price becomes

favourable again, reopen the closed mine at a cost of Ko
t at time t.

(ii) Option to abandon the mine: Whether opened or closed, the decision maker
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retains the right to irreversibly abandon the copper mine at any time t without

incurring any cost.

The value of this portfolio of interdependent real options is affected by the uncertainty

surrounding future commodity prices, in other words by copper price uncertainty. The

copper spot price at time t, Xt, is assumed to evolve according to the following discretised

version of the continuous stochastic process used by Brennan and Schwartz (1985):

Xt+∆ = Xt exp

{(
r − δ − σ2

x

2

)
∆ + σx

√
∆εxt+∆

}
, (4.13)

where ∆ is the time step, r is the price trend, δ is the instantaneous convenience yield, σx

is the standard deviation of price changes, and εxt+∆ is the driving zero-mean process – a

standard normal random variable (mean 0, variance 1) whose increments are iid.

4.2.2 Modelling

The flexibilities inherent in the copper mine are illustrated by the ID in Figure 4.3. It con-

1Opened 4 Closed

2
Abandoned

3Exhausted

Operate (1) Idle (6)

Close (3)

Open (5)

Abandon (4) Abandon (7)

Closure (2)

Figure 4.3: Influence diagram for the mine development project.

tains two decision nodes (Opened (1) and Closed (4)) and two terminal nodes (Abandoned

(2) and Exhausted (3)), as well as seven transitions that link these nodes, resulting in

N = {1, 2, 3, 4} and H = {1, 2, . . . , 7}. The duration (in years) of transition h ∈ H is ∆h,

with ∆1 = ∆3 = ∆5 = ∆6 and ∆2 = ∆4 = ∆7 = 0; in other words the durations of tran-

sitions h ∈ {1, 3, 5, 6} are equal and positive, whereas the ones of transitions h ∈ {2, 4, 7}
are zero. When the mine is Opened, the decision maker has to decide whether to Operate

(1) for ∆1 year(s) whilst extracting q∆1 of copper, temporarily Close (3), or irreversibly
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Abandon (4) the copper mine project. On the other hand, if the mine is Closed, the avail-

able transitions are to keep the mine Idle (6), Open (5) it, or irreversibly Abandon (7)

the project. However, the mine closures (2) if the commodity inventory is fully depleted

and, as such, becomes Exhausted. Also, for the sake of definiteness, the mine has to be

Abandoned when reaching its maximum lifetime of Tmax years, thereby preventing the

mine from having an infinite lifetime, e.g. by keeping it always closed.

Let the the decision node and the inventory of the mine at time t be denoted by Nt and

Qt, respectively, as well as let the copper spot price at time t along path ω be denoted by

Xt(ω). Then, the resource and information component of the state variable St are given

by Rt = (t,Nt, Qt) and It = Xt, respectively, with the latter representing the set of copper

price realisations at time t, {Xt(ω) : ω ∈ Ω}, where Ω is the set of sample realisations.

The state variable is then written as St = (t,Nt, Qt, Xt). Since the mine’s commodity

inventory can be depleted at an annual output rate q, which is assumed constant, it takes

at least Q0/q years to empty the finite inventory. While the assumption of a finite horizon

(through finite Tmax) may result in an approximated numerical solution compared with the

solution of Brennan and Schwartz (1985), which assumes not only continuous decisions

(i.e. ∆ → 0) but also an infinite time horizon (i.e. Tmax → ∞), this assumption is

necessary due to the nature of our computational algorithm. However, adverse effects can

be minimised, even avoided fully, by choosing Tmax � Q0/q.

The binary decision variables associated with the transitions available at decision node

Nt at time t, which are given by the action space:

bD(Nt) =


{1, 2, 3, 4}, if Nt = 1,

{5, 6, 7}, if Nt = 4,

{}, otherwise,

(4.14)

have to satisfy the feasible region ASt , which is defined by the following linear constraints:

at1 + at2 + at3 + at4 = 1 if Nt = 1, (4.15)

at5 + at6 + at7 = 1 if Nt = 4, (4.16)

athq∆h ≤ Qt, ∀h ∈ {1, 5}, (4.17)

0 < at2 +Qt ≤ 1 +Qt(1−Q−1
0 ), (4.18)

t− Tmax < at2 + at4, (4.19)

t− Tmax < at7, (4.20)

where ath ∈ {0, 1},∀h ∈ H. These constraints accomplish the following: (4.15) and (4.16)

ensure that exactly one transition is made at decision node 1 and 4, respectively; (4.17)

makes sure the inventory does not become negative2; (4.18) requires the mine to closure

2For simplicity, we assume Qt mod (q∆h) = 0.
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if and only if Qt = 0; (4.19) ensures that if t = Tmax and QTmax > 0 then aTmax4 = 1;

and, lastly, (4.20) makes sure the mine is abandoned if closed at t = Tmax.

After having made a decision subject to these constraints, the resource state Rt evolves

deterministically to Rt+∆h
according to SR(·), whereas the information state It evolves

stochastically to It+∆h
under the risk-neutral measure represented by SI(·). With regard

to SR(·), the evolution of t is straightforward as it simply evolves from t to t + ∆h, the

evolution of Nt is implicitly described by the adjacency matrix of the directed graph

(N ,H):



1 2 3 4

1 1 4 2 3

2 − − − −
3 − − − −
4 5 7 − 6


and the evolution of Qt is specified by the following transition equation for all h ∈ H:

Qt+∆h
= Qt − q∆1(at1 + at5), (4.21)

Since decisions to exploit the mine may be made several times per year, the number of

possible values Qt can take is 1 +Q0/(q∆1). On the other hand, the copper price at time

t, Xt, evolves stochastically to Xt+∆h
according to the following discrete diffusion process:

Xt+∆h
= Xt exp

{(
r − δ − σ2

x

2

)
∆h + σx

√
∆hε

x
t+∆h

}
(4.22)

The deterministic payoff obtained at time t when making decision at given state St is:

Πt

(
St, at

)
=



q∆1(Xt −At)− f(Xt)∆1, if at1 = 1,

0, if at2 = 1,

−Mt∆3 −Kc
t , if at3 = 1,

0, if at4 = 1,

q∆5(Xt −At)− f(Xt)∆5 −Ko
t , if at5 = 1,

−Mt∆6, if at6 = 1,

0, if at7 = 1,

(4.23)

where At = A0e
πt is the average (per unit) production cost at time t with inflation rate

π; f(Xt) = τ1qXt + max{τ2q(Xt(1 − τ1) − At), 0} is the sum of royalties and income tax

paid at time t with τ1 the royalty rate and τ2 the income tax rate; Mt = M0e
πt is the

maintenance cost at time t; and Kc
t = Kc

0e
πt and Ko

t = Ko
0e
πt are the costs to switch to

the Closed and Opened node at time t, respectively.
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4.2.3 Valuation

With regard to the valuation of this natural resource investment, we used the same param-

eter values as Brennan and Schwartz (1985), which are shown in Table 4.5. Furthermore,

Table 4.5: Input data for hypothetical copper mine of Brennan and
Schwartz (1985).

Description Parameter Value Unit

Mine
Output rate q 10 · 106 lbs/year
Initial inventory Q0 150 · 106 lbs
Initial average production cost A0 0.50 US$/lbs
Initial cost of opening Ko

0 200 · 103 US$
Initial cost of closing Kc

0 200 · 103 US$
Initial maintenance cost M0 500 · 103 US$/year
Cost inflation rate π 8% year−1

Copper
Convenience yield δ 1% year−1

Price variance σ2
x 8% year−1

Nominal interest rate r 10% year−1

Taxes
Royalty τ1 0% –
Income τ2 50% –
Property, Opened/Closed λ1 2% year−1

Property, Abandoned λ3 0% year−1

we considered five decisions to be made per year (i.e. ∆h = 1/5, h ∈ {1, 3, 5, 6}) and

the first six (i.e. L = 5) generalized Chebyshev polynomials as basis functions. Also, we

considered 100,000 (=|Ω|) sample paths (half of which antithetic for variance reduction),

as in Tsekrekos et al. (2012). While the inventory of the mine can be depleted as early

as 15 years (=Q0/q) after starting operation, a finite time horizon of Tmax = 60 years

was chosen for the time by which the right to extract copper from the mine expires. As

mentioned earlier, while this could potentially result in slightly different values when com-

pared with the infinite horizon solution of Brennan and Schwartz (1985), having chosen a

sufficiently large time horizon is expected to eliminate the effects of this approximation. In

fact, choosing Tmax=45, i.e. three times the minimum time to depletion, already resulted

in identical results, making it extremely unlikely that choosing Tmax > 60 would further

increase the value of the mine. For the sake of simplicity and since there is no payoff

associated with transitions 4 and 7 nor a terminal value with the Abandoned node, we use

a constant risk free rate of 12% (= r+ λ1) in our computations instead of a different rate

of 10% (= r + λ3) for values associated with transitions leading to the Abandoned node.
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The forward induction procedure3 consists of the following steps:

1. Determine the set of decision times, TNt , for all decisions nodes Nt ∈ {1, 4}, forming

subsets of T :

TNt =


{
i∆1 : i ∈ Z≥0, 0 ≤ i∆1 ≤ Tmax

}
, if Nt = 1,{

i∆1 : i ∈ Z≥0,∆1 ≤ i∆1 ≤ Tmax
}
, if Nt = 4,

(4.24)

2. Use (4.22) to sample |Ω| paths of Xt giving
(
Xt(ω)

)
ω∈Ω

,∀t ∈ T
3. Generate the possible resource state space Rt for each decision node and decision time:

Rt =


{

(t, 1, i∆1q) : i ∈ Z≥0, Q0 −min(Q0, tq) ≤ i∆1q ≤ Q0 − qmin(∆1, t)
}
, if t ∈ T1,{

(t, 4, i∆1q) : i ∈ Z≥0, Q0 −min(Q0, tq) + ∆1q ≤ i∆1q ≤ Q0

}
, if t ∈ T4.

(4.25)

Figure 4.4 shows the evolution of Xt for five generated paths considering X0 = 0.70.

0 10 20 30 40 50 60
0

20

40

60

80

100

t (in years)

X
t
(i
n
U
S
$
/
lb
s)

Figure 4.4: Selection of 5 equally likely paths for the evolution of the copper price, Xt.

Applying the backward induction procedure, results are presented and discussed in the

following subsection.

4.2.4 Results and Discussion

This section begins with an analysis of the way in which the value of the (initially) opened

and closed mine, Ḡ0(S0), characterised by S0 = (0, 1, Q0, X0) and S0 = (0, 4, Q0, X0),

respectively, are affected by the initial price of copper, X0. The results are shown in Table

4.6 and compared with the ones obtained by Brennan and Schwartz (1985), who applied

finite differences. In terms of the mine values (the switching decisions), our numerical

results converge very closely (are identical) to the ones obtained by Brennan and Schwartz

(1985) and are in line with the conclusions reached by Abdel Sabour and Poulin (2006);

3Assuming the mine is opened at time t = 0, i.e. N0 = 1.
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Table 4.6: Value (in US$ millions) of mine for different copper prices
according to alternative numerical methods.

Price
(US$/lbs)

Brennan-Schwartz Simulation-and- Relative error
Finite Difference regression-based (in %)

X0 Opened Closed Opened Closed Opened Closed

0.30 1.25† 1.45 1.250† 1.450 -0.020 -0.020
0.40 4.15† 4.35 4.174† 4.374 0.568 0.542
0.50 7.95 8.11 7.975 8.164 0.314 0.667
0.60 12.52 12.49 12.548 12.524 0.224 0.270
0.70 17.56 17.38 17.585 17.399 0.143 0.109
0.80 22.88 22.68‡ 22.914 22.714‡ 0.150 0.151
0.90 28.38 28.18‡ 28.439 28.239‡ 0.208 0.210
1.00 34.01 33.81‡ 34.101 33.901‡ 0.268 0.269

† Optimal to close mine.
‡ Optimal to open mine.

Tsekrekos et al. (2012), thus confirming the adequacy of the proposed approach to correctly

value complex and risky investment projects. In contrast, the switching decisions obtained

by Gamba (2003); Cortazar et al. (2008) are not in line with (Brennan and Schwartz, 1985)

and, as noted by Abdel Sabour and Poulin (2006), even confusing. This is because the

switching policy of Gamba (2003) is cyclic in the initial copper price, X0, rather than

being linear, and the policy implied by Cortazar et al. (2008) indicates that it is optimal

to open the mine at X0 = 0.70 since the difference between the value of the opened and

closed mine equals Ko
0 . Section B.1 contains a brief analysis of the effects of the copper

price and its uncertainty on the value of this natural resource investment.

In order to demonstrate how the approach proposed here can be used to evaluate the

individual real options available in this natural resource investment project, this section

now analyses the extent to which the mine value with different configurations of option

portfolios depends on the initial copper price, X0. Table 4.7 shows the sensitivity of the

value of different portfolio configurations when X0 is in the range form US$ 0.30 to 1.00

per pound. Column (–) gives the expected value of the fixed-output-rate mine, which

assumes it is opened at time t = 0 (i.e. N0 = 1) and then operated at the rate of 10

million pounds per year until the 15-year inventory is fully exhausted. As can be seen, the

value of the fixed-output-rate mine is negative for copper prices of US$ 0.50 per pound

and below, making operation unprofitable4. As described in Subsection 4.2.1, columns

(a-i) and (a-ii) display the value of the mine if it can be temporarily mothballed and

irreversibly abandoned, respectively. Having the flexibility provided by the former (latter)

4It should be noted that these are not the critical copper prices, i.e. the point at which it becomes optimal
to invest, which largely depend on the chosen input data as mentioned by Brennan and Schwartz (1985);
however, our approach can easily be used to accurately estimate these critical prices.

56



T
ab

le
4.

7:
V

al
u

e
(i

n
U

S
$

m
il

li
on

s)
of

co
p

p
er

m
in

e
fo

r
d

iff
er

en
t

co
p

p
er

p
ri

ce
le

ve
ls

.

C
op

p
er

P
ri

ce
(U

S
$/

lb
s)

V
al

u
e

of
F

ix
ed

-O
u

tp
u

t-
R

at
e

M
in

e

In
Is

ol
at

io
n

V
al

u
e

of
O

p
ti

on
to

S
w

it
ch

In
P

or
tf

ol
io

V
a
lu

e
w

it
h

O
p

ti
o
n

to
M

o
th

b
a
ll

V
a
lu

e
w

it
h

O
p

ti
o
n

to
A

b
a
n

d
o
n

V
a
lu

e
w

it
h

P
o
rt

fo
li

o
o
f

O
p

ti
o
n

s
V

al
u

e
of

O
p

ti
on

to
V

al
u
e

of
O

p
ti

o
n

to
M

ot
h
b

al
l

A
b

an
d

on
M

ot
h
b

al
l

A
b

a
n

d
o
n

X
0

(–
)

(3
)

(4
)

(5
)

(6
)

(7
)

(a
-i

)
(a

-i
i)

(a
)

0.
30

−
22
.8

31
*

18
.7

93
22

.8
31

24
.0

80
1.

25
0

5
.2

8
8

−
4
.0

3
8*

0
.0

0
0

*
1
.2

5
0

(-
)*

*
(-

)
(-

)
(5

.1
9)

(2
1
.9

6
)

0.
40

−
13
.3

38
*

13
.3

22
15

.5
15

17
.5

12
1.

99
7

4
.1

9
0

−
0
.0

1
6

*
2
.1

7
7

4
.1

7
4

(-
)

(-
)

(-
)

(1
1.

40
)

(2
3
.9

3
)

0.
50

−
4.

75
7*

9.
20

5
11

.2
59

12
.7

32
1.

47
3

3
.5

2
7

4
.4

4
8

6
.5

0
2

7
.9

7
5

(-
)

(-
)

(-
)

(1
1.

57
)

(2
7
.7

0
)

0.
60

2.
95

0
6.

58
2

8.
52

7
9.

59
8

1.
07

1
3
.0

1
6

9.
5
3
2

1
1
.4

7
7

1
2
.5

4
8

(2
23

.1
2)

(2
89

.0
7)

(3
25

.3
7)

(1
1.

16
)

(3
1
.4

3
)

0.
70

10
.1

42
4.

83
6

6.
71

6
7.

44
3

0.
72

7
2
.6

0
7

1
4.

9
7
8

1
6
.8

5
8

1
7
.5

8
5

(4
7.

68
)

(6
6.

22
)

(7
3.

39
)

(9
.7

7)
(3

5
.0

3
)

0.
80

17
.0

17
3.

61
8

5.
44

1
5.

89
8

0.
45

7
2
.2

7
9

2
0.

6
3
5

2
2
.4

5
7

2
2
.9

1
4

(2
1.

26
)

(3
1.

97
)

(3
4.

66
)

(7
.7

5)
(3

8
.6

5
)

0.
90

23
.6

85
2.

78
4

4.
48

1
4.

75
4

0.
27

3
1
.9

7
0

2
6.

4
7
0

2
8
.1

6
6

2
8
.4

3
9

(1
1.

76
)

(1
8.

92
)

(2
0.

07
)

(5
.7

4)
(4

1
.4

3
)

1.
00

30
.2

13
2.

21
0

3.
73

6
3.

88
8

0.
15

2
1
.6

7
8

3
2.

4
2
3

3
3
.9

4
9

3
4
.1

0
1

(7
.3

1)
(1

2.
36

)
(1

2.
87

)
(3

.9
1)

(4
3
.1

6
)

*
N

o
in

v
es

tm
en

t.
*
*

A
d
d
ed

va
lu

e
o
f

o
p
ti

o
n
(s

)
in

%
.

N
o
te

:
th

e
se

ts
o
f

tr
a
n
si

ti
o
n
s

av
a
il
a
b
le

in
th

e
d
iff

er
en

t
se

tt
in

g
s

a
re

a
s

fo
ll
ow

s:
H
−

=
{1
,2
}

in
(–

);
H
−
∪
{3
,5
,6
}

in
(a

-i
);
H
−
∪
{4
}

in
(a

-i
i)

;
a
n
d
H

in
(a

).

57



option enables the copper mine to become economically viable for copper prices of US$

0.50 (0.40) per pound and above, thus allowing the mine with such options to become

viable in situations where the fixed-output-rate mine is not. By contrast, with the option

to switch, whose value is shown in column (a) and which can be interpreted as the portfolio

of options to mothball and abandon, the mine is economically viable for all copper prices

under consideration. The IDs corresponding with the setting of columns (–), (a-i), (a-ii)

and (a) are shown by Figures 4.5a, 4.5b, 4.5c and 4.3, respectively5.

In addition to reporting the value of the mine with different portfolio configurations,

Table 4.7 also displays the value added by the portfolio’s individual options – both in

isolation and within the portfolio of options. Columns (3), (4) and (5) report the value

of the option to temporarily mothball the mine, to abandon the mine and to switch,

respectively. These values were determined by the difference between the mine values with

these individual options – shown in columns (a-i), (a-ii) and (a) – and column (–), which

gives the value of the fixed-output-rate mine. As can be seen, the real options considered

add substantial value to this natural resource investment. For all copper prices under

consideration, abandoning the mine was found to be more valuable than mothballing, and

switching more valuable than abandoning. Importantly, the option to switch, which in

itself is a portfolio of options containing the other two options, will always be at least as

valuable than its constituent options. As expected, the values of these options decrease

as the operating margin increases since operational flexibility becomes less attractive.

Nevertheless, the added value of switching is still almost 13% for the highest copper price

considered, which is twice the cost of production of US$ 0.50 per pound.

Columns (6) and (7) of the table give the value of the option to mothball and to abandon

the mine, respectively, within the portfolio of options. In other words, these columns report

how much an individual real option adds to the portfolio assuming that the other individual

option is already contained in the portfolio. To determine the value of one option, the

value of the mine with the options portfolio was measured against the value of the mine

with the other option. For example, the difference between column (a) and (a-ii) results

in the values shown in column (6). Comparing the values shown in column (6) with the

ones of column (7) shows that, while the value of either option in the portfolio generally

decreases as X0 increases6, abandoning adds substantially more value to the portfolio than

mothballing, especially for high copper prices. This result is very intuitive given the above

presented valuation of the portfolio’s individual options – i.e. the options to mothball

and abandon in isolation. It is interesting to note that, the relative portfolio value of

mothballing – i.e. opening, closing and maintaining the closed mine – generally decreases

as the initial price of copper increases, whereas the relative value of adding the option to

5Although not shown here for simplicity, the ID in Figure 4.5a (4.5b) also contains one (two) transition(s)
to the Abandoned node, respectively, for the case t = Tmax.

6The initial increase displayed in column (6) is due to the non-negative value of the mine with the option
to abandon – see column (a-ii) –, which is bounded below by zero.
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1Opened 4 Closed

2
Abandoned

3Exhausted

Operate (1) Closure (2)

(a) Without any flexibility.

1Opened 4 Closed

2
Abandoned

3Exhausted

Operate (1) Idle (6)

Close (3)

Open (5)

Closure (2)

(b) With the option to mothball the mine.

1Opened 4 Closed

2
Abandoned

3Exhausted

Operate (1)

Abandon (4)

Closure (2)

(c) With the option to abandon the mine.

Figure 4.5: Influence diagrams for different copper mine settings.
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abandon to the option to mothball the mine always increases in X0. This indicates that

adding strategic flexibility (to limit downside risk by abandoning the mine early) to the

mine that already has operational flexibility (to exploit upside risk by deviating from the

immediate extraction of copper) is more valuable in this portfolio context than the other

way around.

Although Brennan and Schwartz (1985) attempted to provide some insights into the

valuation of this small options portfolio, there are some technical errors in their analysis

and the respective results the authors presented are unfortunately incorrect. Table 4.8

reports the results of their analysis. According to Brennan and Schwartz (1985), the

Table 4.8: Value (in US$ millions) of copper mine for
different copper price levels according to Brennan and
Schwartz (1985).

Copper
Price
(US$/lbs)

Value of
Fixed-Output-

Rate Mine

Value of
Closure
Option

Mine Value

Open Closed
X0 (2) (3) (4) (5)

0.30 1.25† 1.45 0.38 1.07
0.40 4.15† 4.35 3.12 1.23
0.50 7.95 8.11 7.22 0.89
0.60 12.52 12.49 12.01 0.51
0.70 17.56 17.38 17.19 0.37
0.80 22.88 22.68‡ 22.61 0.27
0.90 28.38 28.18‡ 28.18 0.20
1.00 34.01 33.81‡ 33.85 0.16

† Optimal to close mine.
‡ Optimal to open mine.

relevant columns of their table are defined as follows:

“Column 4 gives the value of the mine assuming that it cannot be closed down

but must be operated at the rate of 10 million pounds per year until the inventory

is exhausted in 15 years. The difference between column 4 and the greater of

the values shown in columns 2 and 3 represents the value of the option to close

down or abandon the mine if the price of copper falls far enough. The value of

this closure option is shown in column 5”.

However, while the values reported in columns (2) and (3) have been widely confirmed

in the literature including this thesis (see Table 4.6), there are technical errors related to

both the definitions of and values shown in columns (4) and (5).

Firstly, the value of the fixed-output-rate mine shown in column (4) is incorrect. As can

be seen, the authors found, somewhat counter-intuitively, this value to be positive and
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convex in X0 for all copper prices under consideration. By contrast, as we would expect,

we have found that the expected value of the mine assuming copper must be extracted

immediately until the 15-year inventory is fully exhausted is highly negative if operating

margins are low and is an increasing yet concave function of X0. As seen in column (–) of

Table 4.7, the value of the fixed-output-rate mine is negative for copper prices of US$ 0.50

per pound and below. The nature of our results is in line with (Cortazar et al., 2008), who

performed a comparative static analysis and showed, considering a three-factor commodity

model (Cortazar and Schwartz, 2003), that the expected NPV of the mine without any

flexibility (i.e. of the fixed-output-rate mine) is negative for low spot prices of copper and

only breaks even at a price between US$ 0.50 and 0.52 per pound. In addition to noting

that the value of the opened and closed mine with the option to switch is convex in X0,

the figure shown by Cortazar et al. (2008) also seems to illustrate that the value of the

fixed-output-rate mine is concave in X0, whilst converging to the value of the opened mine

for high commodity prices.

Fortunately, the comprehensive numerical analysis presented here gives insights into

what might have gone wrong. Comparing the values shown in column (4) of Table 4.8

with our results of Table 4.7 shows that there is some similarity between these values

and the ones we have obtained for the value of the mine with the option to abandon –

see column (a-ii). Even though our results tend to be slightly low-biased, particularly

for low copper prices, in relation to theirs, e.g. we obtained a mine value of zero for

X0 = 0.30 compared with their US$ 0.38 millions, the patterns are arguably very similar.

Surprisingly, our hypothesis even seems to be confirmed by Brennan and Schwartz (1985)

themselves, who stated in their paper, two paragraphs below the one we cited above, that:

“Ownership of a mine that is not currently operating involves three distinct

types of decision possibilities or options: first, the decision to begin operations;

second, the decision to close the mine when it is currently operating (and possi-

bly to reopen it later), which we have referred to as the closure option; and third,

the decision to abandon the mine early, before the inventory is exhausted.”

According to this statement, which is clearly inconsistent with the authors’ earlier defini-

tion presented above, the case of their fixed-output-rate mine represents actually a mine

with the early abandonment option, which we have referred to as the option to abandon

the mine, and their closure option does not correspond with “the option to close down or

abandon the mine” (Brennan and Schwartz, 1985), which we have referred to as the option

to switch, but rather with an option that looks like our option to temporarily mothball the

mine. Using IDs to graphically illustrate this inconsistency, for the fixed-output-rate mine,

Brennan and Schwartz (1985) have incorrectly considered the case that corresponds with

the ID of Figure 4.5c instead of the correct ID shown by Figure 4.5a, and the flexibility of

their closure option, which is problematic in itself as discussed in the following paragraph,

corresponds somewhat with the ID of Figure 4.5b rather than with the one of Figure 4.3.
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Secondly, not only is its value incorrect, but the closure option is also ill-defined. Given

by the “difference between column 4 and the greater of the values shown in columns 2

and 3” (Brennan and Schwartz, 1985), the value of this closure option is determined by

subtracting a benchmark mine value – i.e. the value of the “fixed-output-rate mine” –

from the maximum value of two different mines – and opened and a closed one. However,

performing this subtraction is misleading, even incorrect, as the minuend of this subtrac-

tion is inconsistent with its subtrahend. This is because the latter assumes the mine is

opened at time t = 0 (N0 = 1), whereas the former represents a mine that is either opened

(N0 = 1) or closed (N0 = 4) at the beginning. Comparing apples and oranges, this is,

as a consequence, an ill-definition regardless of the benchmark applied, that is whether

the (real) value of the fixed-output-rate mine (see Figure 4.5a) or the value of the mine

with the option to abandon (see Figure 4.5c) is being used since both have the same ini-

tial state. Moreover, since their benchmark in column (4) seemingly corresponds, albeit

inaccurately, with the value of the mine with the option to abandon, the values shown in

column (5) do not represent, as implied by the authors’ definition, the value of the closure

option in isolation but instead within the portfolio that contains the early abandonment

option. Our analysis – the relevant values are given by column (6) of Table 4.7 – seems

to confirm this when taking into account the above mentioned bias and ill-definition.

4.3 Re-evaluating Natural Resource Investments under

Different Model Dynamics

4.3.1 Problem Setting

In this section we extend the example of valuing a copper mine presented in the previous

section by considering three stochastic factors (i.e. random variables). In doing so we ap-

ply the well-known and highly cited three-factor model of Schwartz (1997), which builds

upon the, also highly cited, two-factor model of Gibson and Schwartz (1990). The effects

of both models have been investigated in the context of the original copper mine example

by Tsekrekos et al. (2012), who applied the LSM approach. While the original copper mine

example of Brennan and Schwartz (1985) considered a small portfolio of interdependent

real options (option to temporarily mothball the mine and option to irreversibly abandon

the mine), it only treated the commodity price, i.e. the price of copper, to be stochastic.

Here we extend their example by additionally considering both the instantaneous conve-

nience yield and the instantaneous interest rate to be stochastic. As such, in terms of

options portfolio considered this setting is the same as the one described in Subsection

4.2.1.

In terms of uncertainties considered, however, we replace the one-factor setting of Bren-

nan and Schwartz (1985) by the three-factor model of Schwartz (1997). Let the copper
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spot price, the instantaneous convenience yield, and the instantaneous interest rate at time

t be denoted by Xt, δt, and rt, respectively. As described in (Tsekrekos et al., 2012), the

discretised versions of the stochastic processes for the three stochastic factors of Schwartz

(1997) are:

Xt+∆ = Xt exp

{(
rt − δt −

σ2
x

2

)
∆ + σx

√
∆εxt+∆

}
, (4.26)

δt+∆ =
(

1− e−κδ∆
)
θδ + e−κδ∆δt + σδ

√
1− e−2κδ∆

2κδ
εδt+∆, (4.27)

rt+∆ =
(

1− e−κr∆
)
θr + e−κr∆rt + σr

√
1− e−2κr∆

2κr
εrt+∆, (4.28)

where ∆ is the time step; σx, σδ and σr are the standard deviations of changes in Xt, δt and

rt, respectively; κδ and κr are positive mean reversion (speed of adjustment) coefficients;

θδ and θr are the long run mean of convenience yield and interest rate, respectively; and

εxt+∆, εδt+∆ and εrt+∆ are correlated standard normal random variables (mean 0, variance

1). Note that the two-factor model (copper price and convenience yield are stochastic) of

Gibson and Schwartz (1990) is nested in the above presented three-factor model, and is

obtained by making the interest rate constant, i.e. by setting rt = r, ∀t ∈ T .

4.3.2 Modelling

The modelling of this investment problem is to a large extent identical to the modelling of

the previous example presented in Subsection 4.2.2. However, adaptations are necessary

in the following two areas: the information state and its transition function. Let the

copper spot price, the instantaneous convenience yield, and the instantaneous interest

rate at time t along path ω be denoted by Xt(ω), δt(ω), and rt(ω), respectively. The

information state component is then given by It = (Xt, δt, rt) and represents the set of

discrete random numbers {Xt(ω), δt(ω), rt(ω) : ω ∈ Ω}, where Ω is the set of realisations.

Hence, St = (t,Nt, Qt, Xt, δt, rt). The information state It evolves to It+∆h
according to

the following joint stochastic process:

Xt+∆h
= Xt exp

{(
rt − δt −

σ2
x

2

)
∆h + σx

√
∆hε

x
t+∆h

}
, (4.29)

δt+∆h
=
(

1− e−κδ∆h

)
θδ + e−κδ∆hδt + σδ

√
1− e−2κδ∆h

2κδ
εδt+∆h

, (4.30)

rt+∆h
=
(

1− e−κr∆h

)
θr + e−κr∆hrt + σr

√
1− e−2κr∆h

2κr
εrt+∆h

, (4.31)
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with correlation matrix (= covariance matrix Σ here, see Glasserman (2003)): 1 ρx,δ ρx,r

ρx,δ 1 ρr,δ

ρx,r ρr,δ 1


4.3.3 Valuation

For the valuation of this extended copper mine example, we used the parameter values pre-

sented in Subsection 4.2.3 for the copper mine and, to ensure comparability, of Tsekrekos

et al. (2012) for the three-factor model. For the sake of the numerical analysis presented

here, yet without loss of generality, we focus on the three combinations of parameters of

the convenience yield process shown in Table 4.9. These three specifications correspond

Table 4.9: Parameters of convenience yield process for different specifications as of
Tsekrekos et al. (2012).

Spec.# θδ = δ0 σδ κδ

1 0.01 0.05 0.30
11 0.01 0.10 0.50
21 0.01 0.15 0.80

with the 1st, 11th, and 21st specification of Tables 3-6 of Tsekrekos et al. (2012) and are

the most relevant specifications used by the authors, who analysed 81 different specifi-

cations in total. Our choice is sufficient for this analysis, more specifically, for studying

the effects of different ρx,δ-values on the investment value under both the two- and three-

factor model. Additional parameters used for the three-factor model are: κr = 0.50,

θr = r0 = 0.10, σr = 0.015, ρr,δ = 0.10 and ρx,r = 0.15. Also, as Tsekrekos et al. (2012),

we considered 100,000 paths (half of which antithetic) and the complete set of polynomials

in the parametric model, but unlike the authors used generalised Chebyshev polynomials

with L = 5.

The adapted forward induction procedure consists of the following steps:

1. Determine the set of decision times, TNt , for all decisions nodes Nt ∈ {1, 4}, forming

subsets of T :

TNt =


{
i∆1 : i ∈ Z≥0, 0 ≤ i∆1 ≤ Tmax

}
, if Nt = 1,{

i∆1 : i ∈ Z≥0,∆1 ≤ i∆1 ≤ Tmax
}
, if Nt = 4,

(4.32)

2. Use (4.30) and (4.31) to sample |Ω| paths of δt and rt, respectively, giving(
δt(ω), rt(ω)

)
ω∈Ω

,∀t ∈ T
3. Use (4.29) to sample |Ω| paths of Xt giving

(
Xt(ω)

)
ω∈Ω

,∀t ∈ T
4. Generate the possible resource state space Rt for each decision node and decision time:
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Rt =


{

(t, 1, i∆1q) : i ∈ Z≥0, Q0 −min(Q0, tq) ≤ i∆1q ≤ Q0 − qmin(∆1, t)
}
, if t ∈ T1,{

(t, 4, i∆1q) : i ∈ Z≥0, Q0 −min(Q0, tq) + ∆1q ≤ i∆1q ≤ Q0

}
, if t ∈ T4.

(4.33)

Figures 4.6a, 4.6b and 4.6c show the evolution of Xt, δt and rt, respectively, for five

generated paths using X0 = 0.70, which was used throughout this section. To simplify the
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Figure 4.6: Selection of 5 equally likely paths for the evolution of the three stochastic
factors with specification # 11 and ρx,δ = 0.60.

presentation of the following Results and Discussion section, without loss of generality, we

only present results for the opened mine, i.e. considering N0 = 1 at t = 0.

4.3.4 Results and Discussion

The main purpose of this extended copper mine example is to operationalise our approach

in the context of an investment project that represents a portfolio of interdependent real
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options in a multi-dimensional setting. This subsection begins with an investigation of

the way in which the value of the (opened) mine is affected by the different dynamics

and stochastic behaviours of the two presented models. Tables 4.10 and 4.11 summarise

the results under the two-factor model of Gibson and Schwartz (1990) – described by

(4.29)-(4.30) with rt = r0, ∀t ∈ T – and the three-factor model of Schwartz (1997) given

by (4.29)-(4.31), respectively, whilst considering the three specifications of Table 4.9 and

three different values of the correlation between the copper price and convenience yield

process, ρx,δ. In addition, these tables report the corresponding results from Tsekrekos

Table 4.10: Value of opened mine, Ḡ0(S0) (in US$ millions), under the two-factor model
for the three specifications of Table 4.9 according to different numerical methods.

Spec.#
Our results Tsekrekos et al. (2012)†

ρx,δ = 0.40 ρx,δ = 0.60 ρx,δ = 0.80 ρx,δ = 0.40 ρx,δ = 0.60 ρx,δ = 0.80

1 16.210 13.960 11.958 22.625 23.221 25.060
11 16.703 13.518 10.768 23.497 25.095 27.271
21 16.328 13.239 10.500 23.532 24.079 25.789

† Obtained from Table 3 on page 552.

Table 4.11: Value of opened mine, Ḡ0(S0) (in US$ millions), under the three-factor model
for the three specifications of Table 4.9 according to different numerical methods.

Spec.#
Our results Tsekrekos et al. (2012)†

ρx,δ = 0.40 ρx,δ = 0.60 ρx,δ = 0.80 ρx,δ = 0.40 ρx,δ = 0.60 ρx,δ = 0.80

1 16.301 14.043 12.042 24.072 24.865 25.225
11 16.759 13.587 10.844 23.747 25.245 28.174
21 16.403 13.300 10.580 24.545 24.576 26.177

† Obtained from Table 5 on page 557.

et al. (2012). Comparing their results with ours shows that results are noticeably different.

Not only are our mine values consistently lower than theirs, they also exhibit the opposite

behaviour with respect to changes in ρx,δ. Indeed, our mine values decrease in ρx,δ, whereas

Tsekrekos et al. (2012) found values to be increasing in ρx,δ. This behaviour is confirmed

by the authors7, who stated that:

“For the given set of parameters for the short-rate process, project values are

found to be increasing [ . . . ] in the correlation between spot price and conve-

nience yield changes, [ . . . ] much like in Section 3 where interest rates were

assumed constant.”
7By contrast, results reported in an earlier yet similar conference paper (Tsekrekos et al., 2003) of the

same authors, which only considered the two-factor model though, are in agreement with our results
as far as the effect of ρx,δ on the mine value is concerned; however, their mine values are problematic
as discussed by Abdel Sabour and Poulin (2006).
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In general, the impact of correlation on investment value depends “critically on the

assumed stochastic process of the underlying” factors (Schwartz, 1997) and on the specific

investment problem at hand. While the value of a portfolio of interdependent real options

can be affected positively or negatively by correlation between the underlying stochastic

factors (Brosch, 2008), there is a non-negative relationship between real option value and

underlying volatility, so higher volatility in the underlying asset generally results in a higher

option value as flexibility becomes more valuable (Dixit and Pindyck, 2012). Considering

the volatility of commodity futures returns, Schwartz (1997) derived expressions that

describe the volatilities implied by the two- and three-factor model, which, in the limiting

case8, converge to:

σ2
M2

= σ2
x +

σ2
δ

κ2
δ

− 2ρx,δσxσδ
κδ

, (4.34)

and

σ2
M3

= σ2
x +

σ2
δ

κ2
δ

+
σ2
r

κ2
r

− 2ρx,δσxσδ
κδ

+
2ρx,rσxσr

κr
− 2ρr,δσδσr

κδκr
. (4.35)

Even though equations (4.34) and (4.35) describe the volatility of futures returns in the

two- and three-factor model, respectively, so consider commodity (i.e. copper) futures

contracts rather than a natural resource investment project with managerial flexibility,

it is reasonable to assume that the total volatility of the copper mine with the portfolio

of options could be represented by a comparable functional relationship in terms of the

two models’ parameters involved. In fact, since these were obtained by Schwartz (1997)

from the solution to the partial differential equation that must be satisfied by futures

prices in the respective model, the concept of contingent claims analysis (Schwartz, 1998)

suggests that if the contingent claim is an investment project – in our case the copper

mine with the options portfolio – instead of a futures contract, then term structure of

the volatility may be obtained by expanding the valuation model’s partial differential

equation(s) accordingly9. In this sense, it can be expected that, in the two-factor setting,

(4.34) reflects the mine project’s actual volatility more accurately than (4.35) does in the

three-factor setting, because in the former δt affects the valuation only indirectly through

Xt, whereas when using the more complex three-factor model rt has both indirect (through

Xt) and direct (as a discount factor) effects on the valuation.

From (4.34) and (4.35) we can observe that the correlation coefficient ρx,δ negatively

affects the volatility in both the two-factor (σ2
M2

) and three-factor model (σ2
M3

). As such,

an increase in ρx,δ generally results in a decrease of the value of the mine as total volatility

in the underlying decreases, which is, however, in contrast to what has been found by

Tsekrekos et al. (2012). Intuitively, we would expect such a negative relationship con-

8For simplicity, we consider the case when time to maturity (of the futures contract) is infinity; the
approximation error is negligible though.

9With regard to their valuation model, Brennan and Schwartz (1985) noted “in general there exists no
analytic solution to the valuation model, though it is straightforward to solve it numerically”
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sidering the way in which δt of (4.30) is nested in the dynamics of Xt in (4.29). For

non-negative10 ρx,δ, Figures 4.7 and 4.8 plot both the value of an opened mine (Ḡ0(S0))

and the volatilities implied by the two- and three-factor model, respectively, as a function

of ρx,δ. It can be seen from these figures that the implied volatilities σ2
M2

and σ2
M3

and hence Ḡ0(S0) decrease as ρx,δ increases, for the three specifications under considera-

tion. While the implied volatilities decrease linearly in ρx,δ, as evident from (4.34)-(4.35),

Ḡ0(S0) is a nonlinear function of ρx,δ and it is apparent that the decline in mine value,
∂Ḡ0(S0)
∂ρx,δ

, is larger – i.e. more negative – for lower (higher) values of ρx,δ (σ2
M2

and σ2
M3

).

This is consistent with the results reported in Figure B.1a and the nonlinear relationship11

is in line with the discussion of Schwartz (1997), who predicted that

“When the option element of the investment is considered, the values obtained

under the different models will be nonlinear functions of the spot price (and

also of the other factors in the particular model)”

To further the numerical analysis of the impact of the correlation coefficient ρx,δ on the

mine value we perform an equilibrium analysis of the three stochastic models. In doing so

we investigate the influence of parameters of the convenience yield (σδ, κδ, ρx,δ and ρr,δ)

and interest rate process (σr, κr, and ρx,r) described by (4.30) and (4.31), respectively, on

the implied volatilities of (4.34)-(4.35). In fact, we can eliminate the contribution of the

convenience yield process to σ2
M2

of (4.34) and the contributions of both the convenience

yield and interest rate process to σ2
M3

of (4.35) by determining the values of ρx,δ at which

both σ2
M2

and σ2
M3

equal σ2
x. In other words, we can find the respective ρx,δ-values such

that the sum of the 2nd and 3rd term of the right hand side of (4.34) becomes zero, and

such that the sum of the 2nd to 6th term of the right hand side of (4.35) becomes zero, thus

having σ2
M2

= σ2
x and σ2

M3
= σ2

x. Analytical expressions for these values of the correlation

coefficient ρx,δ, which we refer to as equilibrium correlations, are given by:

ρ∗x,δ =
σδ

2κδσx
, (4.36)

and

ρ∗x,δ =
σδ

2κδσx
+
σr
κr

[
σrκδ

2κrσδσx
+
ρx,rκδ
σδ

− ρr,δ
σx

]
. (4.37)

Hence, when ρx,δ equals the respective ρ∗x,δ then the volatilities in the two- and three-

factor model equal the copper price variance, σ2
x, of the one-factor model of Brennan and

Schwartz (1985), in which only the price of copper (Xt) is stochastic. The mine value from

(Brennan and Schwartz, 1985) is therefore used as benchmark in this equilibrium analysis.

10As argued for by Schwartz (1997).
11It should be noted that it is not entirely clear why Tsekrekos et al. (2012) obtained different results.

Intuitively, one might expect results to converge at ρx,δ = 0. However, comparing their results in
Tables 4.10 and 4.11 with ours of Figures 4.7 and 4.8, respectively, indicates that our mine values are
substantially larger than their values at ρx,δ = 0, which, although not reported by the authors, can be
estimated through extrapolation.
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(b) Specification # 11.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
5

10

15

20

25

30

 0.295

17.589

0.08

ρx,δ

Ḡ
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(c) Specification # 21.

Figure 4.7: Value of opened mine, Ḡ0(S0) (in US$ millions), and volatility in two-factor
model (σ2

M2
) as a function of correlation between convenience yield and copper price

process (ρx,δ).

The results of our equilibrium analysis are shown by Table 4.12 and are also included

in Figures 4.7 and 4.8. It can be observed in Table 4.12 that the values of opened mine,

Ḡ0(S0), under the two-factor model converge very closely to the benchmark mine value,

Ĝ0(S0), for all three specifications under consideration. Even though mine values under
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(c) Specification # 21.

Figure 4.8: Value of opened mine, Ḡ0(S0) (in US$ millions), and volatility in three-factor
model (σ2

M3
) as a function of correlation between convenience yield and copper price

process (ρx,δ).

the three-factor model are marginally below the benchmark value from the one-factor

model, these results are in line with the previously mentioned (to be expected) differences

in quality of the implied volatilities as predictors of the mine project’s actual volatility

due to the higher complexity of the three- over the two-factor model as well as other
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Table 4.12: Results of equilibrium analysis for both the two- and three-factor
model with the three specifications of Table 4.9.

Spec.#
One-factor model† Two-factor model Three-factor model‡

σ2
x Ĝ0(S0) ρ∗x,δ σ2

M∗2
Ḡ0(S0) ρ∗x,δ σ2

M∗3
Ḡ0(S0)

1 0.08 17.56 0.295 0.08 17.589 0.321 0.08 17.335
11 0.08 17.56 0.354 0.08 17.560 0.373 0.08 17.269
21 0.08 17.56 0.331 0.08 17.526 0.353 0.08 17.217

† Obtained from Table 2, row X0 = 0.70, of (Brennan and Schwartz, 1985).
‡ With κr = 0.50, θr = r0 = 0.10, σr = 0.015, ρr,δ = 0.10 and ρx,r = 0.15.

influencing factors. These factors are related to both the numerical procedure applied

here and non-linearities in parameters such as X0, δ0 and r0 (e.g., see Figure B.1a).

According to the above analysis, consistent with option pricing theory, the value of

the opened copper mine decreases in the correlation coefficient ρx,δ as a consequence of

the decrease in volatility in the models that describe the evolution of the underlying

stochastic factors. Tsekrekos et al. (2012) also claimed that “values under a stochastic

mean reverting convenience yield will be higher than those under a constant convenience

yield assumption”. Unlike claimed by the authors, our analysis demonstrates that this

is not always the case. As shown by our equilibrium analysis and indicated in Figures

4.7 and 4.8, for ρx,δ-values below the equilibrium correlation (0 ≤ ρx,δ < ρ∗x,δ), Ḡ0(S0)-

values under both models are indeed higher than the benchmark mine value under the

one-factor model, Ĝ0(S0), which assumes a constant convenience yield. At ρx,δ = ρ∗x,δ, we

approximately have Ḡ0(S0) = Ĝ0(S0). However, for ρ∗x,δ < ρx,δ ≤ 1, mine values Ḡ0(S0)

are lower than Ĝ0(S0) and, as ρx,δ approaches 1, these are even considerably lower than the

constant benchmark, which was obtained under a deterministic convenience yield setting

and is therefore independent of ρx,δ.

With regard to the three-factor model, Tsekrekos et al. (2012) have also analysed how

variations in both the standard deviation of changes in the interest rate (σr) and the

correlation between the interest rate and convenience yield process (ρr,δ) affect the value

of the opened mine. The authors stated12:

“Moreover, Panel (a) of Figure 3 demonstrates that the value of the investment

is increasing in the volatility of the short rate and its correlation with conve-

nience yield changes, since higher variability in expected project cash flows

makes the flexibility to alter the operating mode of the project more valuable.”

We also performed this analysis and report results for θδ equalling 0.15 and 0.12 in Figures

4.9 and B.2, respectively. The figures on the left-hand (right-hand) side show σ2
M3

-values

12It should, however, be noted that their statement is not consistent with their illustration because from
their Figure it can be seen that the investment value is actually decreasing in the correlation coefficient.
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Figure 4.9: Volatility in three-factor model (σ2
M3

) and value of opened mine, Ḡ0(S0) (in
US$ millions), as a function of both the standard deviation of the interest rate (σr) and the
correlation between the interest rate and convenience yield process (ρr,δ), with θδ = 0.15.
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(Ḡ0(S0)-values). Since the authors’ choice of κδ is unclear, we ran our valuation algorithm

for all three possible κδ-values of 0.30, 0.50 and 0.80, with results shown in Figures 4.9a,

4.9b and 4.9c, respectively. Of these, it appears that the results for κδ = 0.80 are qualita-

tively most similar to the ones of Tsekrekos et al. (2012). It is evident that the mine value

surfaces obtained here are in exceptionally good agreement with the volatility surfaces

implied by the three-factor model. For σr = 0, Ḡ0(S0)-values are constant because σ2
M3

is, as evident from (4.35), independent of ρr,δ. Also, as is apparent from Panel (a) of their

figure, we also find that Ḡ0(S0)-values are decreasing in ρr,δ.

In contrast to Tsekrekos et al. (2012), however, our results demonstrate that the invest-

ment value is not always increasing in the volatility of the interest rate process. As we

can see from Figures (4.9a) and (4.9b), which consider κδ=0.30 and κδ=0.50, respectively,

Ḡ0(S0)-values are increasing in σr for low values of ρr,δ, yet decreasing for relatively high

ρr,δ-values. Interestingly, we observe from Figure 4.9c (κδ=0.80) that while Ḡ0(S0)-values

increase in σr for the four lowest ρr,δ-values under consideration, there is a twofold effect

of the degree of σr on the investment value for 0.4 ≤ ρr,δ ≤ 0.8: Ḡ0(S0)-values actually

decrease in σr for low σr-values, but increase in σr for high σr-values; this change from de-

crease to increase seems to occur at higher σr-values the higher the value of the correlation

coefficient ρr,δ. The evidence provided by our analysis, particularly the illustration on the

left-hand side of Figure 4.9c, seems to confirm that the nonlinear dependency of σ2
M3

on σr

is the cause of this twofold effect. It can be inferred therefore that the volatility surfaces

constructed using (4.35) can accurately describe how the value of the opened mine will be

affected by changes in parameters of the stochastic processes.

4.4 Discussion

In this section, we discuss the significance and validity of the proposed portfolio of real

options approach as well as its relationship to existing approaches used for modelling

and valuing real options and, more generally, investments under uncertainty. We believe

that the insights gained by this discussion are valuable not only in the fields of ROA

and investment under uncertainty, but also when decision-makers need to select the best

approach to model and value risky investment propositions.

In this work, we have developed a holistic approach for the modelling and valuation

of portfolios of interdependent real options using both IDs and simulation-and-regression.

Despite having many advantages as a framework to represent decision problems, IDs have

rarely been used in the context of ROA. A reason for this might be, as Wallace (2010) sug-

gests, that real option analysts, like their financial counterparts, are generally interested in

determining the value of a single well-defined option, rather than identifying and defining

the portfolio of options. This focus on valuing single options is perhaps derived from finan-

cial option theory, which addresses decision making problems in which the representation
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of the investment proposition requires less sophistication than when considering complex

physical assets. For example, as we have shown in Section 4.1, the ID (see Figure 4.1) that

represents the sequential decision problem underlying the valuation of an American put

option – i.e. optimal stopping problem – is quite simple and straightforward. However,

realistic and practical real option problems are generally more complex, so their analysis

benefits from the more sophisticated representation of their underlying decision problems

that can be addressed via IDs. Indeed, as we have demonstrated in Section 4.2 for the

valuation of a natural resource investment, the flexibilities available to decision makers

can be simply and intuitively represented graphically by an ID (see Figure 4.3).

In order to approximate the value of portfolios of interdependent real options, we applied

simulation in combination with parametric regression. The simulation procedure consists

of directly modelling the risk-neutral dynamics of all the underlying uncertainties of the

investment project, and then using simulation to generate sample paths that describe

the evolution of all uncertainties over time. While more advanced parametric models

may be considered, the valuation algorithm presented in Section 3.3 used a parametric

regression model and a least-squares method to approximate the complex continuation

functions that describe the expected future contributions associated with transitions in

the ID. These approximations are then used in our portfolio optimisation framework to

determine optimal decisions for all available transitions at each possible state, subject

to the constraints that describe interdependencies. In contrast, the valuation approach of

Gamba (2003), which also applied simulation and parametric regression whilst considering

four types of strategic interdependencies between real options, only presented decision rules

for each of the four cases to be applied within a valuation procedure, thereby decomposed

the valuation problem into sub-problems that can be analysed individually. By contrast,

our portfolio approach, which can be easily implemented13 and efficiently applied (e.g.

using parallel computing), represents a single, coherent and flexible valuation framework

to approximate the value of portfolios of interdependent real options.

A controversial issue in the real options community is whether to apply option pricing

or decision analysis approaches. Adequately evaluating complex investments under uncer-

tainty involving real options requires the proper modelling of the corresponding sequential

decision problem, including a representation of both the flexibilities available to the deci-

sion maker and the investment project’s underlying uncertainties. Only then is it possible

to devise and apply adequate and powerful strategies and algorithms for the computa-

tional valuation of complex and risky investments like portfolios of real options. We agree

with Wallace (2010) in that option pricing theory has traditionally tended to focus on

valuation, whilst neglecting the modelling of the underlying sequential decision problem,

whereas decision analysis and the related tools generally have the decision context as a

starting point. An example of this can be found in Christiansen and Wallace (1998), who

13Requirements are a standardly available solver (integer programming) and simple least squares.
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compared a decision analysis approach (decision tree solved via dynamic programming)

and an option pricing approach (valuation by arbitrage via a replication argument) using

a simple example, and showed that although both approaches deliver the same result, they

are methodologically different, with the latter focusing on determining the optimal value

whilst delivering the optimal decisions as a consequence, and vice versa.

So are option pricing and decision analysis approaches just two sides of the same coin?

This question not only highlights one of the more contentious debates in the field of

ROA, but also implies that the approach taken here of directly modelling the risk-neutral

dynamics of all the underlying uncertainties may well be the more appropriate approach.

Smith and Nau (1995) were one of the first to integrate an option pricing (contingent claims

analysis) and a decision analysis method (decision tree) whilst distinguishing between the

nature of risks (private, market, or a mix). Addressing the work of Smith and Nau (1995),

Brandão et al. (2005b) claim that there exist investment projects where “uncertainties

fall somewhere in between the notions of private and market risks”. To address this

limitation, Brandão et al. (2005b) presented an alternative approach based on traditional

decision analysis tools, and after Smith (2005) criticised their proposed approach from a

fundamental perspective, Brandão et al. (2005a) responded by agreeing that a fully risk-

neutral approach, which does not separate between public (hedged) and private (unhedged)

risks, like the one proposed here, should be the first choice when valuing a risky project.

To conclude this discussion, we believe our proposed portfolio of real options approach

directly addresses and responds to a number of open and important research questions

in the field of ROA, both in terms of modelling and valuation. While there is certainly

no “magic bullet” (Smith, 2005) for simplifying complex real option problems, this study

presented a simple yet powerful approach to both model and value a portfolio of inter-

dependent real options. Furthermore, given its generality and holistic nature, we believe

the proposed approach presents an important contribution to a more credible portfolio

theory for interdependent real options, thus addressing one of the long-standing research

challenges identified by Trigeorgis (2005). Lastly, Triantis and Borison (2001) predicted

convergence among “the ‘decision analytic’ and ‘option pricing’ approaches”. Based on

the above discussions, we believe the proposed approach, which focuses equally on mod-

elling and valuation, may be regarded as a decision analysis approach as well as an option

pricing approach, and hence represents convergence among these approaches.

4.5 Summary

In this chapter we operationalise the framework presented in Chapter 3 in the context

of three well-known relevant examples of increasing complexity. First, we consider the

widely studied example of valuing an American put option in a simple single-factor setting.

While this example does clearly not contain any portfolio characteristics nor does the put
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option’s value depend on multiple stochastic factors, it is perfectly suited to demonstrate

the individual steps – i.e. modelling and valuation – of our proposed approach in a clear

and easily comprehensible manner. Moreover, since real options with an American-style

exercise feature are important in both the theory and practice of option pricing, the

consideration of this example is also valuable from an academic perspective as well as

contributes to a better understanding in more complex situations.

Secondly, we demonstrate the ability of the proposed approach to accurately and cor-

rectly value a slightly more complex real option portfolio by re-evaluating a natural re-

source investment. Proposed by Brennan and Schwartz (1985) and modelled/solved by the

authors using PDEs/finite differences, and although still a single-factor setting (stochastic

copper price), the flexibilities available in this copper mine indeed represent a portfolio

of options: to temporarily mothball the mine and irreversibly abandon the mine. Using

the approach presented here we obtain results for both the mine values and the switching

decisions that are in line with the ones of their work and of other works. Quite unexpect-

edly, however, we detect and highlight some technical errors when re-assessing the results

in (Brennan and Schwartz, 1985). Using the comprehensive portfolio analysis – enabled

by our holistic approach –, we provide detailed insights into their flawed analysis and the

reasons for this as well as evidence of the benefits of our portfolio of real options approach.

In the third example we replace the one-factor setting of the previous example of valuing

the portfolio of options available in the copper mine by the three-factor model of Schwartz

(1997). Investigated by Tsekrekos et al. (2012) using the LSM approach, this problem

setting features both a portfolio of interdependent real options and three stochastic fac-

tors: the copper spot price, the convenience yield and the interest rate. Combining the

seminal work of Brennan and Schwartz (1985) with the highly cited paper of Schwartz

(1997), Tsekrekos et al. (2012) bridge an important gap in literature. Unfortunately, how-

ever, we detect several errors when re-examining some of the analyses of Tsekrekos et al.

(2012). Applying our proposed numerical approach together with analytical expressions

from literature that describe the volatilities in the stochastic models applied, we perform

a creative and simple yet powerful equilibrium analysis that enables use to disprove the

related findings of Tsekrekos et al. (2012) whilst strongly confirming our own results.

Finally, we also discuss our approach in the context of existing option pricing and deci-

sion analysis approaches. In doing so, we show that the theoretical grounding of existing

approaches may determine and possibly restrict the way in which the investment project’s

underlying sequential decision problem and uncertainties are modelled and, subsequently,

how the relevant investments are valued. In addition, this theoretical basis may limit the

ability of existing approaches to tackle complex real option problems. This comparison

with existing approaches demonstrates that our approach is not only more transparent and

intuitive, but also resolves many important research challenges by creating a convergence

between a decision analysis and an option pricing approach.
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Chapter 5

Evaluating Complex Natural Resource

Investments

In this chapter we present the application of the proposed portfolio of real options ap-

proach to the example of evaluating a complex natural resource investment. This chapter

is organised as follows: Section 5.1 describes the investment problem whilst specifying

both the portfolio of interdependent real options and the underlying uncertainties as well

as states five hypotheses to be tested. The modelling of this investment problem as a

sequential decision problem is described in Section 5.2, and the parameter values used

and the forward induction procedure applied for valuation are presented in Section 5.3.

Section 5.4 presents and discusses the results in the light of the five hypotheses. Finally,

Section 5.5 summarises this chapter.

5.1 The Investment Problem

The problem considered in this chapter is a complex yet important and realistic extension

(Savolainen, 2016) of the classic example of valuing a copper mine, which was originally

proposed by Brennan and Schwartz (1985) and solved by the authors using a finite differ-

ence method, and which has been used by Abdel Sabour and Poulin (2006); Cortazar et al.

(2008); Tsekrekos et al. (2012) as a benchmark to assess the LSM approach. The original

copper mine example of Brennan and Schwartz has only considered a limited set of options

(option to temporarily close the mine and possibly reopen as well as early abandonment

option) and only treated the price of copper to be uncertain. Here we substantially ex-

tend their example by considering both a large portfolio of interdependent real options

and four stochastic factors (or uncertain/random variables). It is important to note that

traditional valuation methods (e.g. binomial/lattice and finite difference) are impractical

for the problem considered here given its large size in terms of both portfolio of options

and sources of uncertainty.

77



5.1.1 Portfolio of Interdependent Real Options

In terms of portfolio of real options considered, we extend the setting of Brennan and

Schwartz by integrating the option to defer (or delay) the development of the copper mine

as proposed by Gamba (2003) and valued by the author using the LSM approach; however,

Abdel Sabour and Poulin (2006) discussed the findings of Gamba and showed that there

are some inconsistencies related to both numerical results (mine value cyclic in copper

price) and switching decisions obtained. In addition to the option to defer, our example

takes into account the option to irreversibly expand production capacity of the copper

mine, which was proposed by Cortazar and Casassus (1998) and solved by the authors

using partial differential equations; however, the authors did not consider the option to

abandon the mine project.

This investment’s portfolio of interdependent real options is composed of the following

single, well-defined options:

(a) Option to defer development: Instead of developing the copper mine immediately

(i.e. at time 0), the decision maker may choose to defer the development of the

mine until the expiration of the right to develop the mine in Tmax1 years, without

incurring any direct costs associated with deferring; with Idt being the development

cost at time t.

(b) Option to switch (during operation – mode I): Once developed, the decision maker

may decide to temporarily close the (operating) mine, to maintain or reopen the

mine when it is currently closed, and/or to irreversibly abandon the copper mine

before its inventory, with initial level Q0, is fully exhausted.

(i) Option to temporarily mothball the developed mine: If operation of the mine

becomes unprofitable – e.g. because the copper spot price at time t, Xt, is too

low in relation to the mine’s production costs, At – the decision maker can close

down the opened (i.e. operating) mine at a cost of Kc,I
t , maintain the closed

mine at an annual maintenance cost of M I
t , and, if the copper price becomes

favourable again, reopen the closed mine at a cost of Ko,I
t at time t.

(ii) Option to abandon the developed mine: Whether opened or closed, the decision

maker retains the right to irreversibly abandon the copper mine at any time t

without incurring any cost.

(c) Option to expand: Once developed, and if operating, the decision maker can increase

(scale up) the mine’s annual output rate from qI to qII at a cost of Iet at time t,

thereby expanding production capacity.

(d) Option to switch (during operation – mode II): After the expansion, the (operating)

copper mine can also be temporarily closed, maintained or reopened when closed,

and/or abandoned altogether, before the inventory is exhausted.

(i) Option to temporarily mothball the expanded mine: As in (b-i), if immediate

extraction becomes unprofitable, the opened mine can be closed down at a cost
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of Kc,II
t , the closed mine can be maintained at an annual cost of M II

t , and, if

profitable again, the mine can be reopened at a cost of Ko,II
t at time t.

(ii) Option to abandon the expanded mine: Whether opened or closed, the decision

maker retains the right to irreversibly abandon the expanded copper mine at no

cost.

To improve the presentation of this chapter – i.e. the demonstration of the ability of the

proposed approach to evaluate the above presented portfolio of interdependent real options

under four sources of uncertainty –, several testable hypotheses are considered. The five

hypotheses, tested using the subsequent numerical example, are: (H1) the value of the

option to defer development (in isolation) decreases as the operating margin increases; (H2)

switching is at least as valuable than both mothballing and abandoning; (H3) the option

to expand is the only individual option whose value (if positive) increases as the operating

margin increases; (H4) the value of the mine with the options portfolio is positively affected

by the underlying volatility; (H5) the option to defer development is the most valuable

individual option within the portfolio.

5.1.2 Characterisation of Uncertainties

In terms of uncertainties considered, we replace the one-factor setting considered in Bren-

nan and Schwartz (stochastic copper price) by applying the three-factor model (copper

price, instantaneous convenience yield and instantaneous interest rate) of Schwartz (1997),

which extends the two-factor model of Gibson and Schwartz (1990). Both models have

been analysed in the context of the original copper mine example by Tsekrekos et al.

(2012) using the LSM approach. In addition to these three stochastic factors, we intro-

duce a fourth factor by treating the extraction (production) costs of copper to be uncertain,

as argued for by Slade (2001). Let the copper spot price, the instantaneous convenience

yield, the instantaneous interest rate, and the (per-unit) production cost at time t be

denoted by Xt, δt, rt, and At, respectively. Table 5.1 summarises the stochastic factors

considered in this example of a complex natural resource investment.

Table 5.1: Summary of stochastic factors considered in this example.

Description Factor Defining eq. Dynamics Driving processa

Copper spot price Xt (5.1) Exogenous GWN, correlated with (5.2),(5.3)
Convenience yield δt (5.2) Exogenous GWN, correlated with (5.1),(5.3)
Interest rate rt (5.3) Exogenous GWN, correlated with (5.1),(5.2)
Production cost At (5.4) Exogenous GWN, independent of (5.1)-(5.3)

a Gaussian white noise (GWN).

As reported by Tsekrekos et al. (2012), the discretised version of the joint stochastic
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process for the three factors of Schwartz (1997) is given by:

Xt+∆ = Xt exp

{(
rt − δt −

σ2
x

2

)
∆ + σx

√
∆εxt+∆

}
, (5.1)

δt+∆ =
(

1− e−κδ∆
)
θδ + e−κδ∆δt + σδ

√
1− e−2κδ∆

2κδ
εδt+∆, (5.2)

rt+∆ =
(

1− e−κr∆
)
θr + e−κr∆rt + σr

√
1− e−2κr∆

2κr
εrt+∆, (5.3)

where ∆ is the time step; σx, σδ and σr are the standard deviations of changes in Xt, δt and

rt, respectively; κδ and κr are positive mean reversion (speed of adjustment) coefficients;

θδ and θr are the long run mean of convenience yield and interest rate, respectively; and

εxt+∆, εδt+∆ and εrt+∆ are correlated standard normal random variables (mean 0, variance

1). For the evolution of At, as suggested by Slade (2001), we consider a mean-reverting

process, in particular we use an Euler approximation (e.g. see Glasserman (2003)) of the

geometric mean reversion described by Metcalf and Hassett (1995) giving:

At+∆ =
(
A0e

πt −At
)
κaAt∆ + eπ∆At + σaAt

√
∆εat+∆, (5.4)

where π is the cost inflation rate, κa is a positive mean reversion coefficient, σa is the

standard deviation of the production cost, and εat+∆ is a standard normal random variable

(mean 0, variance 1), which is assumed to be uncorrelated with the ones above and whose

increments are independently and identically distributed.

5.2 Modelling

The flexibilities inherent in the copper mine project are represented by the ID in Figure

5.1. It contains 5 decision nodes (1, 3, 5, 7, and 8) and 3 terminal nodes (2, 4, and

6), as well as 18 transitions that link these nodes, resulting in N = {1, 2, . . . , 8} and

H = {1, 2, . . . , 18}. The duration of transition h ∈ H is ∆h year(s). When the mine is

Undeveloped, the decision maker may decide either to Defer (1) development or Develop

(2) the mine, both of which can be done for up to Tmax1 years, after which the right to

develop the mine expires. Once developed and in mode Opened-I, the decision maker has

to decide whether to Operate (4) for the duration of ∆4 while extracting an amount qI∆4

of copper, irreversibly Expand (5) the mine operation by increasing extraction rate from

qI to qII , temporarily Close (6), or irreversibly Abandon (7) the project. On the other

hand, if the mine is Closed-I (or Closed-II), the available transitions are to keep the mine

Idle (9 or 15), Open (8 or 14) it again, or irreversibly Abandon (10 or 16) the project. In

either operating mode, however, the mine closures if the commodity inventory with initial
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Closure (17)

Closure (18)

Figure 5.1: Influence diagram for the complex mine development project.

inventory Q0 is fully depleted. Also, the project has to be Abandoned when reaching its

lifetime of Tmax2 years.

Let the decision node, the inventory of the mine, and the remaining time to develop the

mine/lifetime of the mine at time t be denoted by Nt, Qt, and Tt, respectively, as well as let

the copper spot price, the instantaneous convenience yield, the instantaneous (risk-free) in-

terest rate, and the (per-unit) production cost at time t along path ω be denoted by Xt(ω),

δt(ω), rt(ω), and At(ω), respectively. Thus, the resource and information state component

are given by Rt = (t,Nt, Qt, Tt) and It = (Xt, δt, rt, At), respectively, with the latter repre-

senting the set of discrete random variables at time t, {Xt(ω), δt(ω), rt(ω), At(ω) : ω ∈ Ω},
where Ω is the set of sample realisations. Hence, the state at time t is then written as

St = (t,Nt, Qt, Tt, Xt, δt, rt, At).

The binary decision variables related to the transitions available at decision node Nt at

time t, at = (ath)h∈bD(Nt), have to satisfy the feasible region ASt , which is defined by the
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following set of constraints:

∑
h∈bD(Nt)

ath = 1, ∀Nt ∈ N \ {2, 4, 6}, (5.5)

at1T
max
1 < Tmax1 + Tt, (5.6)

at3Tt = 0, (5.7)

athq
I∆h ≤ Qt, ∀h ∈ {4, 8}, (5.8)

athq
II∆h ≤ Qt, ∀h ∈ {11, 14}, (5.9)

ath1 + ath2 + Tt > 0, ∀(h1, h2) ∈ {(7, 17), (13, 18)}, (5.10)

ath + Tt > 0, ∀h ∈ {10, 16}, (5.11)

ath +Qt > 0, ∀h ∈ {17, 18}, (5.12)

athQt = 0, ∀h ∈ {17, 18}, (5.13)

where ath ∈ {0, 1}, ∀h ∈ H, and the action space is:

bD(Nt) =



{1, 2, 3}, if Nt = 1,

{4, 5, 6, 7, 17}, if Nt = 3,

{8, 9, 10}, if Nt = 5,

{11, 12, 13, 18}, if Nt = 7,

{14, 15, 16}, if Nt = 8,

{}, otherwise.

(5.14)

Subsequently, the resource state Rt evolves deterministically to Rt+∆h
, with the tran-

sition of t being rather trivial as it simply evolves from t to t + ∆h after having made

transition h. The evolution of Nt is implicitly described by the adjacency matrix of the

directed graph (N ,H), which is not shown here for the sake of brevity. The evolution of

Qt and Tt is specified by the following transition equations for all h ∈ H:

Qt+∆h
= max

{
Qt − qI∆h(at4 + at8)− qII∆h(at11 + at14), 0

}
, (5.15)

Tt+∆h
=

Tmax2 − (Tmax1 − Tt)−∆2, if at2 = 1,

max(Tt −∆h, 0), otherwise,
(5.16)

where T0 = Tmax1 . On the other hand, the information state It evolves stochastically to

It+∆h
under the risk-neutral measure according to the following discrete diffusion pro-

cesses:

Xt+∆h
= Xt exp

{(
rt − δt −

σ2
x

2

)
∆h + σx

√
∆hε

x
t+∆h

}
, (5.17)
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δt+∆h
=
(

1− e−κδ∆h

)
θδ + e−κδ∆hδt + σδ

√
1− e−2κδ∆h

2κδ
εδt+∆h

, (5.18)

rt+∆h
=
(

1− e−κr∆h

)
θr + e−κr∆hrt + σr

√
1− e−2κr∆h

2κr
εrt+∆h

, (5.19)

At+∆h
=
(
A0e

πt −At
)
κaAt∆h + eπ∆hAt + σaAt

√
∆hε

a
t+∆h

, (5.20)

with correlation matrix (= covariance matrix Σ here, see Glasserman (2003)): 1 ρx,δ ρx,r

ρx,δ 1 ρr,δ

ρx,r ρr,δ 1


The deterministic payoff obtained at time t when making decision at given It is:

Πt

(
It, at

)
= − Idt at2 +

[
qI(Xt −At)− f I(Xt, At)

]
∆h(at4 + at8)−Kc,I

t at6 −Ko,I
t at8

−M I
t ∆h(at6 + at9)− Iet at5 +

[
qII(Xt −At)− f II(Xt, At)

]
∆h(at11 + at14)

−Kc,II
t at12 −Ko,II

t at14 −M II
t ∆h(at12 + at15),

(5.21)

where Idt = Id0e
πt is the development cost at time t, f I(Xt, At) = τ1q

IXt+max{τ2q
I(Xt(1−

τ1)−At), 0} is the sum of royalties and income tax paid at time t with τ1 the royalty rate

and τ2 the income tax rate; M I
t = M I

0 e
πt is the maintenance cost at time t; Kc,I

t = Kc,I
0 eπt

and Ko,I
t = Ko,I

0 eπt are the costs to switch to the Closed-I and Opened-I node at time t,

respectively; and Iet = Ie0e
πt is the expansion cost at time t. For costs/revenues related to

the Closed-II and Opened-II nodes simply replace “I” with “II” in the above definitions.

For the sake of simplicity, if Qt < qII∆h then the payoff associated with transitions 11

and 14 equals the one of transitions 4 and 8, respectively.

5.3 Valuation

For the valuation of this natural resource investment, we used the parameter values of

Brennan and Schwartz (1985) for the copper mine and of Tsekrekos et al. (2012) for

the three-factor model. The initial development cost and the initial expansion cost

are estimated at US$ 8 millions (Id0 ) and US$ 4 millions (Ie0), respectively. In addi-

tion, we consider the following: the possibility to defer development for up to two years

(i.e. Tmax1 =2); a lifetime of 45 years (Tmax2 ); and 5 decisions to be made per year (i.e.

∆h = 1/5, h ∈ H \ {3, 7, 10, 13, 16, 17, 18}, and 0 otherwise). Also, we considered 100,000

(|Ω|) sample paths (half of which antithetic for variance reduction) and complete sets of

the first five (i.e. L = 4) Legendre/Hermite polynomials, as well as applied a singular value

decomposition (SVD) algorithm with properly scaled basis functions to avoid numerical
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problems when solving the least-squares regression in (3.8). For an analysis of the effects

of different parametric models and their validation see Appendix C.1. The chosen input

data for this example are summarised in Table 5.2.

Table 5.2: Input data for complex mine development project adapted from Brennan and
Schwartz (1985); Tsekrekos et al. (2012) and own estimates.

Description Parameter Value Unit

Mine
Output rate qI (qII) 10 (20) Mlbs/year
Initial inventory Q0 150 Mlbs

Initial cost of opening Ko,I
0 (Ko,II

0 ) 0.20 (0.40) US$m

Initial cost of closing Kc,I
0 (Kc,II

0 ) 0.20 (0.40) US$m
Initial maintenance cost M I

0 (M II
0 ) 0.50 (1.00) US$m/year

Cost inflation rate π 8% year−1

Initial development cost Id0 8 US$m
Initial expansion cost Ie0 4 US$m
Expiration of development right Tmax1 2 year
Lifetime of copper mine project Tmax2 45 year

Production cost
Initial average cost of production A0 0.50 US$/lbs
Speed of mean reversion in production cost κa 0.20 –
Standard deviation of production cost σa 15% year−1

Coppera

Price variance σ2
x 8% year−1

Initial convenience yield δ0 1% year−1

Speed of mean reversion in convenience yield κδ 0.30 –
Long-run mean convenience yield level θδ 1% year−1

Standard deviation of convenience yield σδ 5% year−1

Initial short-term interest rate r0 10% year−1

Speed of mean reversion in interest rate κr 0.50 –
Long-run mean interest rate level θr 10% year−1

Standard deviation of interest rate σr 1.5% year−1

Taxes
Royalty τ1 0% –
Income τ2 50% –
Propertyb, Opened/Closed λ1 2% year−1

Property, Abandoned λ3 0% year−1

a The values of the correlation coefficients are: ρx,r = 0.15, ρx,δ = 0.40, and ρδ,r = 0.10.
b The value of the discount rate at time t, kt, is rt + λ1.

The forward induction procedure consists of the following steps:

1. Determine the set of decision times, TNt , for all decisions nodes Nt ∈ {1, 3, 5, 7, 8},
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forming subsets of T :

TNt =



{
i∆1 : i ∈ Z≥0, 0 ≤ i∆1 ≤ Tmax1

}
, if Nt = 1,{

i∆1 : i ∈ Z≥0, τ1 ∈ T1, τ1 + ∆1 ≤ i∆1 ≤ Tmax2 , if Nt = 3,{
i∆1 : i ∈ Z≥0, τ1 ∈ T1, τ1 + 2∆1 ≤ i∆1 ≤ Tmax2 , if Nt ∈ {5, 7}{
i∆1 : i ∈ Z≥0, τ1 ∈ T1, τ1 + 3∆1 ≤ i∆1 ≤ Tmax2 , if Nt = 8,

(5.22)

2. Use (5.18), (5.19) and (5.17) to sample |Ω| paths of δt, rt and Xt, respectively, giving(
Xt(ω), δt(ω), rt(ω)

)
ω∈Ω

,∀t ∈ T
3. Use (5.20) to sample |Ω| paths of At, giving

(
At(ω)

)
ω∈Ω

,∀t ∈ T
4. Generate the possible resource state space Rt for each decision node and decision time:

Rt =



(
t, 1, Q0, T

max
1 − t

)
, if t ∈ T1,{(

t, 3, i∆1q
I , Tmax2 − t

)
: τ1 ∈ T1, i ∈ Z≥0, τ1 ≤ t−∆1,

Q0 −min
(
(t− τ1 −∆1)qI , Q0

)
≤ i∆1q

I ,

i∆1q
I ≤ Q0 − qI min

(
∆1,max(t− Tmax1 −∆1, 0)

)}
, if t ∈ T3,{(

t, 5, i∆1q
I , Tmax2 − t

)
: τ1 ∈ T1, i ∈ Z≥0, τ1 ≤ t− 2∆1, Q0−

min
(
(t− τ1 − 2∆1)qI , Q0 −∆1q

I
)

min(1, t/∆1 − 2)

≤ i∆1q
I ≤ Q0

}
, if t ∈ T5,{(

t, 7, i∆1q
I , Tmax2 − t

)
: τ1 ∈ T1, i ∈ Z≥0, τ1 ≤ t− 2∆1,

Q0 −min
(
(t− τ1 − 2∆1)qII , Q0

)
≤ i∆1q

I ,

i∆1q
I ≤ Q0 − qI min

(
∆1,max(t− Tmax1 − 2∆1, 0)

)}
, if t ∈ T7,{(

t, 8, i∆1q
I , Tmax2 − t

)
: τ1 ∈ T1, i ∈ Z≥0, τ1 ≤ t− 3∆1, Q0−

min
(
(t− τ1 − 3∆1)qII , Q0 −∆1q

I
)

min(1, t/∆1 − 3)

≤ i∆1q
I ≤ Q0

}
, if t ∈ T8,

(5.23)

Figures 5.2a, 5.2b, 5.2c and 5.2d illustrate for X0 = 0.70 the evolution of Xt, δt, rt and

At, respectively, for five generated paths.

5.4 Results and Discussion

This section begins with an analysis of the way in which the mine value with different

configurations of option portfolios is affected by the initial copper price, X0. Table 5.3

summarises the results when X0 is in the range from US$ 0.30 to 1.00 per pound. Columns

(†) and (‡) give the expected values of the mine under “now-or-never strategies”, which

assume it must be either (developed and in case (‡) expanded immediately and then)

operated at the rate of 10 and 20 Mlbs/year, respectively, until the inventory is fully

exhausted, or left undeveloped. As can be seen, the value of the mine with fixed-output-
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Figure 5.2: Selection of 5 equally likely paths for the evolution of Xt, δt, rt and At.

rate qI (qII) is positive for copper prices of US$ 0.70 (0.80) per pound and above, making

development (and expansion) of the mine viable, but only for X0 = 1.00 is it optimal to

have an expanded mine with fixed-output-rate qII . While these price levels are not the

critical prices (i.e. the point at which it becomes optimal to invest, which largely depends

on the input data), these can be estimated simply and accurately through simulation.

As can be seen from Table 5.3, the flexibility provided by individual real options can add

considerable value. Column (a) displays the value added to the mine with fixed-output-

rate qI when development can be deferred for up to 2 years. Determined by the difference

between the value of the fixed-output-rate mine with the option to defer (not shown here)

and column (†), the value of the option to defer is positive for all copper prices listed. This

means it adds value in every situation. Its adds sufficient value even when X0 ≤ 0.60,

enabling the mine to become economically viable by allowing the mine’s development to
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be deferred. For X0 ≤ 0.60, the value of this option would be much higher if we had used

the actual NPV (which is highly negative in these situations) as a benchmark instead of

the non-negative value of the fixed-output-rate mine. Considering this circumstance, as

expected (see H1), the value of this option decreases as X0 increases because the ability

to defer development is economically less attractive when prices are high.

Considering a developed but not expanded mine, columns (b-i), (b-ii) an (b) report

the value of the option to temporarily mothball the operation, to abandon the project

during operation and to switch, respectively. These values were determined such that the

mine values with these individual options were measured against the value of the mine

with fixed-output-rate qI as the benchmark. Having either of these individual options is

valuable for copper prices of US$ 0.60/lbs and above, showing the mine to be viable in

situations where the fixed-output-rate mine does not. At the same time, abandoning the

project was found to be more valuable than mothballing, and switching more valuable than

abandoning. In fact, representing the portfolio of the option to mothball and to abandon,

the option to switch will always be at least as valuable as its constituent options, thereby

confirming H2. Although the values of these three options decline as the price increases,

their levels remain comparatively high and they decline less strongly than the value of

the option to defer. This indicates that operational flexibility is more beneficial than the

flexibility associated with investment timing when price levels are high.

Column (c) reports the value of the option to expand, which enables the mine to double

its fixed-output-rate to 20 Mlbs/year at any point during operation. Its value is given by

the difference between the value of the mine with the option to expand and the maximum

of the values shown in columns (†) and (‡). Considering a developed and immediately

expanded mine, columns (d-i), (d-ii) an (d) give the value of the option to temporarily

mothball the operation, the value of the option to abandon the project during operation

and the value of the option to switch, respectively. These values were determined in a

similar way to those shown in columns (b-i), (b-ii) an (b), but now measured against the

value of the mine with fixed-output-rate qII . Comparing the values of columns (d-i), (d-ii)

an (d) with the ones of columns (b-i), (b-ii) an (b) shows that mothballing, abandoning

and switching during operation of the developed but not expanded mine is more valuable.

This implies that operational flexibility to deviate from the extraction of copper is less

beneficial if the mine is expanded.

The value of the mine with the portfolio of interdependent real options is shown in

column (a,b,c,d). As seen in Table 5.3 in most cases its value is considerably larger

than the value of the mine without options or with only an individual real option. This

highlights the substantial added value achieved by considering such a complex portfolio.

While the value of the mine with the portfolio increases in X0, the absolute difference

between this value and the value of the best-performing fixed-output-rate mine decreases

as X0 increases. This is because flexibility to deviate from the static now-or-never strategy
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becomes less valuable. However, the relative difference is still over 28% for the highest

copper price considered. Comparing the values of the individual options of columns (a) to

(d) shows that the option to expand is the only option whose value increases in the copper

price, all other options diminish in value, which confirms H3. These results, which are in

line with the real options literature, demonstrate the ability of the option to expand to

exploit upside potential, and the ability of the other options (i.e. to defer, to mothball, to

abandon, and to switch) to limit downside risk when operating margins are lower.

To illustrate the effects of the degrees of different uncertainties on the value of the

copper mine, Figure 5.3 shows for X0 = 0.70 the way in which the standard deviations

of the production cost, σa, and the copper price, σx, affect the investment value. As we

0
0.1

0.2
0.3

0.4
0.5

0
0.06

0.12
0.18

0.24
0.3

0

5

10

15

20

 

σx
σa

 

Ḡ
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Figure 5.3: Value of investment project, Ḡ0(S0) (in US$ millions), with portfolio of real
options and without options as well as portfolio’s most valuable individual option (filled
circles), as a function of degrees of production cost (σa) and copper price (σx) uncertainty.

would expect, the value of the mine without options, which applies the best-performing

static now-or-never strategy (always with fixed-output-rate qI here) and hence does not

consider any flexibility, decreases as price uncertainty increases and eventually reaches

zero at σx = 0.30 (σx = 0.35 for 0.09 ≤ σa ≤ 0.24, σx = 0.40 for σa ≥ 0.27). On the other

hand, the (expected) value of the mine without options, if positive, slightly increases in σa

because, although production cost uncertainty increases, average production cost slightly

decreases due to the characteristics/parameters of the stochastic process in (5.20).

Taking into account the portfolio of interdependent real options and thus allowing the

decision-maker to exploit flexibilities adds substantial value to the investment project

for all degrees of uncertainties considered, especially for high degrees of uncertainties1.

1Note that at σx = 0, Xt still evolves stochastically due to its dependence on the stochastic factors δt
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Increasing σa from 0 to 0.30 generally results in appreciably higher values of the investment

project with the portfolio and this effect tends to be stronger for lower σx. In contrast,

there is a twofold effect of the degree of price uncertainty on the value of the mine with

portfolio of options: values actually decrease in σx for low σx-values, but, beginning at a

σx of 0.15 (0.20 for σa ≥ 0.24), increase in σx; this decrease (increase) tends to be steeper

for higher (lower) σa-values. The reasons for this counterintuitive result (disproving H4)

and somewhat intriguing twofold effect are believed to be the overall volatility in the three-

factor model, which depends non-linearly on σx (see (4.35)) and features a similar pattern

to the one shown in Figure 5.3, as well as portfolio effects which, as mentioned earlier

and indicated by the coloured circles in Figures 5.3 and C.1, means that the portfolio’s

individual options are affected differently (beneficially or adversely) by changes of the

underlying conditions resulting in positively or negatively affected portfolio values. As

can be seen, the option to defer development is not always the portfolio’s most valuable

individual option as there are situations in which mothballing during operation of the

developed mine is most valuable, which disproves the prediction of H5.

5.5 Summary

The main purpose of this chapter is to demonstrate the ability of the proposed portfolio of

real options approach to evaluate a complex natural resource investment that features both

a large portfolio of interdependent real options and multiple underlying stochastic factors.

The options are to defer development, to temporarily mothball the developed mine, to

irreversibly abandon the developed mine, to expand the mine’s production capacity, to

temporarily mothball the expanded mine, and to irreversibly abandon the expanded mine.

The four underlying stochastic factors are the copper spot price, the instantaneous conve-

nience yield, the instantaneous interest rate, and the cost of production. It is important

to reiterate that this represents a setting where traditional methods (e.g. binomial/lattice

and finite difference) are impractical.

Despite its complexity, the modelling and valuation of this complex yet realistic mine

example are very cost-effective and straightforward. This example in some way combines

the characteristics of the three examples studied in Chapter 4. In terms of portfolio of

real options considered, it can be considered to contain twice the flexibility provided by

the American-type option of Section 4.1 – for deferring and expanding – and, in addition,

twice the flexibility provided by the option to switch of Section 4.2 – for mothballing and

abandoning before and after expansion –, resulting in 6 individual options. In terms of

uncertainties considered, this example can be considered as an extension of the three-factor

model described in Section 4.3 to include an uncorrelated fourth stochastic factor.

and rt in the three-factor model, with the value added by the portfolio at σa = σx = 0 amounting to
almost 46% of the value without options.
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Table 5.4 presents a comparison of the modelling complexity of the American option, the

copper mine under the one- and three-factor model, and the complex mine development

project of this chapter. As can be seen, with regard to the range of real option prob-

Table 5.4: Modelling complexity of different (real) option problems.

Stochastic
factor(s)

ID State
variablesc

Basis
functionsExample Option(s) |N |a |H|b Constraints

American option 1 1 3(1) 3 4 2/1 3
Copper mine (I) 2 1 4(2) 7 7 3/1 6
Copper mine (II) 2 3 4(2) 7 7 3/3 56
Complex mine 6 4 8(5) 18 19 4/4 70

a Number of decision nodes in brackets.
b Equals the number of decision variables.
c Resource/Information component.

lems considered in this work, our approach scales favourably as the problem’s complexity

increases. While the number of basis functions used in the parametric model is directly

linked to the number of information states (i.e. stochastic factors), which is an inherent

characteristic of the parametric regression approach applied (see footnote in Subsection

3.2.3), the number of constraints and resource states, which are key elements when mod-

elling sequential decision problems, as well as the size of the ID remain comparatively low.

All valuation problems were implemented in Matlab, with the computational effort (time)

required to solve the “Complex mine” and “Copper mine (II)” problem on average ap-

proximately 175% and 25% higher, respectively, than the requirements for “Copper mine

(I)”. This complex mine example thereby demonstrates that our modelling technique is

intuitive and compact, and capable of efficiently valuing complex and risky investments.

Using this example and considering five hypotheses, this chapter also demonstrates how

the approach presented here can be used to investigate the way in which the value of

the portfolio and its individual real options are effected by the underlying copper price

level and the degrees of different uncertainties. This enables both the illustration and the

interpretation of portfolio effects as well as the analysis of the comparative performance

of our new approach and the expected NPV approach, which applies a static now-or-

never strategy and hence does not take into account any flexibility. For example, the

results demonstrate the ability of the complex portfolio considered here to pro-actively

manage the risks involved – i.e. to exploit upside potential and to limit downside risk

when operating margins are relatively high and low, respectively. Furthermore, using this

example, we analyse the effect of different parametric models on the value of the portfolio of

options by comparing different commonly used univariate orthogonal polynomial families

and different numbers of basis functions (implied by L), discuss their choice in the light

of approximation accuracy and computational time, as well as list potential limitations.
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Chapter 6

Extending the Framework to Endogenous

Uncertainties

In this chapter we extend our existing framework for modelling and approximating the

value of interdependent real options to include endogenous, decision- and state-dependent

uncertainties. This chapter is organised as follows: Section 6.1 presents the extension

of the conceptual framework presented in Section 3.1 to include endogenous uncertainty.

Section 6.2 describes the investment problem by specifying both the portfolio of interde-

pendent real options and the set of uncertainties considered. In Section 6.3 we present the

modelling and Section 6.4 contains the valuation approach together with the simulation-

and-regression-based valuation algorithm. The approach and the algorithm are then ap-

plied to the real-case of a district heating network expansion investment in the London

borough of Islington (Section 6.5). Results are presented and discussed in Section 6.6.

Finally, some concluding remarks are provided in Section 6.7.

6.1 Extended Conceptual Framework

This chapter introduces a valuation approach for portfolios of interdependent real options

under exogenous and endogenous sources of uncertainty. Considering the problem of a

sequential and partially reversible investment project, we study a portfolio of options:

to defer investment; stage investment; temporarily halt expansion; temporarily mothball

the operation; and abandon the project during either construction or operation. In the

problem studied here, the portfolio’s value is affected by four underlying uncertainties. Of

these, the project’s actual cost to completion and its salvage value, are decision- and state-

dependent, respectively. These uncertainties evolve endogenously, whereas the operating

revenues and their growth rate evolve exogenously. The portfolio of real options approach

presented in Chapter 3 proposed a multi-stage stochastic integer programming approach

using influence diagrams and simulation-and-regression. To value such a complex portfolio

under both types of uncertainty, we extend this approach to include endogenous sources

of uncertainty. The dynamics of all four underlying uncertainties, which are modelled as

stochastic (Markovian) processes, and the linear constraints modelling the interdependen-
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cies between options are also integrated in this optimisation problem.

Our decision model is a stochastic dynamic, discrete-time (Markovian) model: the tran-

sition of the state St of the underlying system at time t to state St+∆ after a time in-

crement ∆ is driven by our decisions as well as by the random processes describing the

uncertainties. Importantly, we distinguish between exogenous and endogenous sources of

uncertainty. Modelled as stochastic Markovian processes, the evolution of endogenous

uncertainties depends on the decision maker’s strategy or the system’s state, or both,

while those of exogenous uncertainties are unaffected by decisions and states. Compared

to standard models, models with decision/state dependent random variables are much

more difficult to solve by simulation-optimisation methods since it is generally impossi-

ble to use random deviates which have been sampled once at the beginning. Thus, for

a successful implementation, the optimization step(s) should be interleaved with random

sampling steps. It should be mentioned, however, that for single-stage problems, if the

objective is an expectation, one may use the likelihood ratios as correction terms and thus

rely on just one sample, but the simulation error may get big and the likelihood ratio

may be difficult to calculate. This change of measure technique is also known as Rubin-

stein’s “push-out method” (see (Rubinstein, 1992)). In our work, this method cannot be

used because we deal with a multi-stage problem, so we have to resort to an interleaved

simulation-optimisation method.

To approximate the value of this optimisation problem, we extend the simulation-

and-regression-based valuation algorithm developed in Section 3.3 to include endogenous

sources of uncertainty. Unlike the algorithms of Miltersen and Schwartz (2004); Schwartz

(2004); Hsu and Schwartz (2008); Zhu (2012), which are plain extensions of the algorithm

proposed by Longstaff and Schwartz (2001) for American-style options, our algorithm takes

into account the numerical implications of the state variables’ path-dependencies on the

accuracy of the approximation. In order to avoid the negative numerical implications, we

exploit the structure of the problem to be solved through dynamically and appropriately

adapting the set of basis functions used in the parametric regression. Using an illustrative

example of an urban infrastructure investment in London, we investigate the sensitivity

of the optimal value of the portfolio and its individual options to the level of the initial

annual revenues, as well as to the degrees of exogenous and endogenous uncertainty. In

contrast to Miltersen and Schwartz (2007), who noted that the numerical solution tech-

niques used by Miltersen and Schwartz (2004); Schwartz (2004); Hsu and Schwartz (2008)

“cannot easily handle temporary suspensions of the” investment project nor isolate the

options’ values, this example demonstrates that our approach is flexible and powerful, and

can be applied to value complex portfolios and their individual real options under both

types of uncertainty.
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6.2 The Investment Problem

In this section, we present the investment problem studied here by specifying both the

portfolio of interdependent real options and the underlying set of uncertainties.

6.2.1 Portfolio of Interdependent Real Options

We study the problem of a decision maker wanting to determine the value of a sequential

and partially reversible investment in a project whose stage-wise expansion (development)

can be deferred, temporarily halted and/or abandoned altogether, and, once operating,

whose cash flow generating asset can be used until the end of the asset’s project life in

Tmax3 time periods, temporarily mothballed and/or abandoned early.

Representing the set of flexibilities as a portfolio of interdependent real options, the

portfolio’s single, well-defined options are:

(a) Option to defer investment: Instead of starting immediately at time 0, the decision

maker may choose to defer the start of the expansion until the expiration of the right

to undertake this investment in Tmax1 time periods, without incurring any direct costs

associated with deferring.

(b) Option to stage investment: As the development takes time to complete, the de-

cision maker can invest at a rate of 0 < Ct ≤ Imax in period t as long as the

remaining investment cost at the beginning of period t, Kt, is greater than 0, i.e.

while the project is under construction, where Imax and K0 are the maximum rate

of investment and the initial (expected) cost of completion, respectively.

(i) Option to temporarily halt expansion: If conditions turn out to be unfavourable,

the decision maker can halt the expansion (i.e. set Ct = 0) at a cost of Cd,h,

maintain the halted expansion for a total of Tmax2 time periods at a periodic cost

of Ch, and, if desirable, resume development at a cost of Ch,d.

(ii) Option to abandon the project during construction (i.e. when Kt > 0): Whether

developing or halted, the project can be permanently abandoned at any given

point in time t for the salvage value Xt, which is assumed to contain any costs

that abandonment during construction involves.

(c) Option to temporarily mothball the operation: If operation of the asset becomes

uneconomic, the decision maker can mothball the operating asset at a cost of Co,m,

maintain the mothballed asset at a periodic cost of Cm, and, if conditions become

favourable again, reactivate the asset at a cost of Cm,o.

(d) Option to abandon the project during operation (i.e. when Kt = 0): Whether oper-

ating or mothballed, the decision maker retains the right to permanently abandon

the project at any time t for its salvage value Xt, which is assumed to contain all

costs related to abandoning during operation.

The above described individual real options are well-known and have been widely ex-
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amined in the real options literature, for overviews see Trigeorgis (1993b, 1996). The

first one, (a), is arguably the most-widely studied type of real option in the literature1,

e.g. see Trigeorgis (1993a); Tsitsiklis and Van Roy (2001); Longstaff and Schwartz (2001).

Sequential investments, as per (b), have been studied in (Roberts and Weitzman, 1981;

Majd and Pindyck, 1987; Pindyck, 1993; Trigeorgis, 1993a). Of these, the works of Majd

and Pindyck (1987) and Pindyck (1993) explicitly and implicitly, respectively, considered

the possibility to temporarily halt and later resume expansion – (b-i) – yet these authors

ignored any direct costs associated with these decisions. With regard to (b-ii), these four

works also allowed for abandonment during construction, but they neglected the project’s

salvage value, which is over-simplistic; Trigeorgis (1993b, 1996) referred to (b-ii) as the

“option to default during construction”. Categorised as an option “to alter operating

scale” (Trigeorgis, 1993b), Brennan and Schwartz (1985) valued the option to temporar-

ily shut down operations of a copper mine, which is practically the same as (c). Lastly,

several works have analysed the flexibility related to (d). For example, building upon

(Robichek and Van Horne, 1967; Dyl and Long, 1969) and considering an existing project

with uncertain salvage value, Myers and Majd (1990) valued such option as an American

put; Trigeorgis (1993a,b) referred to (d) as the “option to switch use”, where the salvage

value represents the project’s value in its best alternative use.

6.2.2 Characterisation of Uncertainties

This study considers four sources of uncertainty – also referred to as stochastic factors or

random variables – denoted by Kt, Vt, µt and Xt, representing the project’s actual cost to

completion at time t, the revenues (net cash flow) generated by operation in period t, the

growth rate of revenues in t and the salvage value at time t, respectively. The first and the

fourth uncertainty are decision- and state-dependent, respectively. These uncertainties

evolve endogenously, whereas the dynamics of the second and third factor are exogenous.

The four stochastic factors are described by discrete-time random walks with drift, in a

general form by:

Mt+∆ = ϕtMt + ft(Mt, θ1)∆ + σt(Mt, θ2)
√

∆εmt+∆, (6.1)

where ∆ is the time step, ϕt is a multiplier, ft(·) is the drift function, σt(·) is the diffusion

function, and εt+∆ is the driving zero-mean process. Note that for endogenous stochastic

factors, the parameters θ1 or θ2, or both depend on the decisions or states, or both.

The driving process εmt+∆ is always Gaussian white noise (GWN), i.e. a standard normal

random variable whose increments are iid, but drivers for different stochastic factors may

be correlated. Table 6.1 summarises the stochastic factors considered here.

1The continuous- and discrete-time version of this option are generally referred to as American and
Bermudan call option, respectively
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Table 6.1: Summary of stochastic factors considered in this investment problem.

Description Factor Defining eq. Dynamics Driving processa

Cost to completion Kt (6.2) Decision-dep. GWN, independent of (6.3)-(6.5)
Operating revenues Vt (6.3) Exogenous GWN, correlated with (6.4),(6.5)
Growth rate µt (6.4) Exogenous GWN, correlated with (6.3),(6.5)
Salvage value Xt (6.5) State-dep. GWN, correlated with (6.3),(6.4)

a Gaussian white noise.

The dynamic of the project’s actual cost to completion, Kt , depends on the rate of

investment, 0 ≤ Ct ≤ Imax, chosen by the decision maker, and is given by:

Kt+∆ = Kt − Ct∆ + σk
√
CtKt∆ε

k
t+∆, (6.2)

where σk is the degree of technical uncertainty. The above equation is a discrete approx-

imation of the controlled diffusion process proposed by Pindyck (1993). As analytically

shown by Pindyck (1993); Schwartz and Zozaya-Gorostiza (2003) and referred to as “bang-

bang policy” by Schwartz (2004), since the process (6.2) and the processes (6.3)-(6.5) are

uncorrelated, the optimal rate of investment, Ct, is either Imax or 0.

The revenues received at time t for operation between t and t+ ∆, Vt, and their rate of

growth, µt, evolve exogenously according to:

Vt+∆ = e−κv∆Vt +
(
1− e−κv∆

)
V0(1 + µtt) + σv

√
1− e−2κv∆

2κv
εvt+∆, (6.3)

µt+∆ = e−κµ∆µt +
(
1− e−κµ∆

)
µ+ σµ

√
1− e−2κµ∆

2κµ
εµt+∆, (6.4)

where σv and σµ are the standard deviations of changes in Vt and µt, respectively, as well

as κv and κµ are positive mean reversion coefficients that describe the rate at which the

corresponding factors converge to their linear trend, V0(1 + µtt), and long-term average,

µ, respectively. The nested model (6.3)-(6.4) is similar to the one of Schwartz and Moon

(2001), who also used an Ornstein-Uhlenbeck process2 to describe the evolution of µt. For

the evolution of Vt, however, we apply an (arithmetic) Ornstein-Uhlenbeck model3 with

linear – time-varying and stochastic – trend , which is adapted from the geometric mean

reversion with exponential – constant and deterministic – trend of Metcalf and Hassett

(1995).

The state-dependent salvage value obtained for abandoning the project at time t, Xt, is

a function of both the expected asset value at time t, Zt, which is a deterministic function

2This is the “simplest mean-reverting process” according to Dixit and Pindyck (1994).
3This model is more realistic, e.g., than a geometric Brownian motion, in the context of district heating

networks as the level of Vt reflects both natural gas and electricity prices as well as heat demand.
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of the state St (see (6.6)), and a homoscedastic noise term4 (i.e. error independent of the

state), which is random and describes the percentage deviation as follows:

Xt+∆ = Zt+∆ + σxZt+∆ε
x
t+∆, (6.5)

where σx is the standard deviation of Xt. Unlike the existing approaches that allow for

stochastic salvage (or abandonment) values, e.g see the works of Myers and Majd (1990);

Adkins and Paxson (2017) and literature cited therein, which assume these values evolve

exogenously, we introduce a state-dependent salvage value, as suggested in (Van der Hoek

and Elliott, 2006). This example therefore represents one of the many practical situations

in which the salvage value depends on endogenous factors (see (Trigeorgis, 1993a,b)),

more specifically, on the state-dependent expected asset value. It is important to note

that by “state” we actually mean its “resource” component (see Section 6.3), rather than

its “information” component, specifically the latter’s three stochastic factors of (6.2)-(6.4),

which are, of course, state-dependent too because Markovian.

6.3 Problem Formulation

This section contains the modelling of the investment problem as a sequential decision

problem and the formulation of the valuation problem as a multi-stage stochastic integer

programme.

6.3.1 Modelling Flexibilities with Influence Diagrams

The flexibilities available to the decision maker when having the portfolio of interdependent

real options of Subsection 6.2.1 are shown by the ID in Figure 6.1. It contains nine nodes

of which five are decision nodes and four are terminal nodes, as well as 18 transitions

that link these nodes. The set of nodes and transitions is given by N = {1, 2, . . . , 9} and

H = {1, 2, . . . , 18}, respectively, and the duration of transition h ∈ H is ∆h time period(s).

The state of the investment project at time t is written as:

St = (t,Nt, Tt, Qt︸ ︷︷ ︸
Rt

,Kt, Vt, µt, Xt︸ ︷︷ ︸
It

), (6.6)

where Nt ∈ N is the node at time t; Tt is the time left at t to defer investment/halt

expansion/use the developed asset; Qt is the amount invested up to time t; and Kt, Vt,

µt and Xt are as defined in Subsection 6.2.2. The first four variables of St are part of the

resource state Rt, which is deterministic, whereas the information state It is made up of

4For a brief description of the modelling of both homoscedastic and heteroscedastic (i.e. state-dependent)
noise see (Powell, 2011).
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Figure 6.1: Flexibilities provided by portfolio of interdependent real options.

the problem’s four random variables, two of which are exogenous and two are endogenous,

decision- and state-dependent.

To each decision node we associate binary (0-1) variables ath in such a way that ath = 1

indicates that transition h is made at time t an 0 otherwise. It is clear that the action

space bD(Nt) at node Nt is given by

bD(Nt) =



{1, 2, 3}, if Nt = 1,

{4, 5, 6, 7}, if Nt = 3,

{8, 9, 10}, if Nt = 5,

{11, 12, 13, 14}, if Nt = 6,

{15, 16, 17, 18}, if Nt = 8,

{}, otherwise.

(6.7)

The decision variables at = (ath)h∈bD(Nt) must then satisfy the feasible region ASt , given
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St, which is defined by the following set of constraints:

∑
h∈bD(Nt)

ath = 1, ∀Nt ∈ {1, 3, 5, 6, 8}, (6.8)

at1T
max
1 < Tt + Tmax1 , (6.9)

athTt = 0, ∀h ∈ {3, 12, 16}, (6.10)

at5Kt = 0, (6.11)

(1− at5 − at7)K0 < Kt +K0, (6.12)

athT
max
2 < Tt + Tmax2 , ∀h ∈ {6, 9}, (6.13)

(1− ath)Tmax3 < Tt + Tmax3 , ∀h ∈ {12, 16}, (6.14)

where ath ∈ {0, 1}, ∀h ∈ H.

The transition function, which is generically written as SM (St, at,Wt+∆h
) and describes

the evolution of St from t to t + ∆h after having made decision at with respect to ASt
and learned new information Wt+∆h

, is composed of the resource transition function

SR(·) : Rt → Rt+∆h
as well as the information transition function SI(·) : It → It+∆h

.

With regard to the former, the transition of t is trivial as it simply evolves to t + ∆h;

the transition of Nt is implicitly given by the adjacency matrix (not shown here) of the

directed graph (N ,H) underlying the influence diagram; the transition of Tt is given by:

Tt+∆h
=



max{Tt −∆h, 0}, if ath = 1, h ∈ H1,

Tmax2 , if at2 = 1,

Tmax3 −∆5, if at5 = 1,

Tt, otherwise,

(6.15)

where T0 = Tmax1 and H1 = {1, 6, 9, 11, 13, 15, 17}; and the transition of Qt is given by:

Qt+∆h
=

Qt + Imax∆h, if ath = 1, h ∈ {2, 4, 8},
Qt, otherwise,

(6.16)

where Q0 = 0. In contrast to the deterministic transitions of the variables of Rt, the

information state variables evolve generally stochastically according to:

Kt+∆h
=

max
{
Kt − Imax∆h + σk

√
ImaxKt∆hε

k
t+∆h

, 0
}
, if ath = 1, h ∈ {2, 4, 8},

Kt, otherwise,

(6.17)

Vt+∆h
= e−κv∆hVt +

(
1− e−κv∆h

)
V0(1 + µtt) + σv

√
1− e−2κv∆h

2κv
εvt+∆h

, (6.18)

99



µt+∆h
= e−κµ∆hµt +

(
1− e−κµ∆h

)
µ+ σµ

√
1− e−2κµ∆h

2κµ
εµt+∆h

, (6.19)

Xt+∆h
= Zt+∆h

(St+∆h
) + σxZt+∆h

(St+∆h
)εxt+∆h

, (6.20)

where Zt(St), the expected asset value at time t, is given by:

Zt(St) =



−αImax, if Nt = 3 ∧Kt > 0,

γQt, if Nt = 3 ∧Kt = 0,

−βImax, if Nt = 5,

γQte
−ξ(Tmax3 −Tt), if Nt = 6,

δQte
−ξ(Tmax3 −Tt), if Nt = 8,

0, otherwise,

(6.21)

where α ≥ 0 and β ≥ 0 define the expected abandonment cost when Developing or Halted,

respectively; γ ≥ 0 and δ ≥ 0 are pay-out ratios determining the expected asset value when

Operating or Mothballed, respectively; and ξ is the periodic depreciation rate describing

the asset value’s decline over time.

Lastly, the pay-off function is represented by:

Πt(St, at) =− Imax(∆2at2 + ∆4at4) + Vt(at5 + at11) +Xt(at7 + at10 + at14 + at18)

− Cd,hat6 − (Ch,d + Imax∆8)at8 − Ch∆9at9 +Xt(at12 + at16)

− Co,mat13 + (Vt − Cm,o)at15 − Cm∆17at17.

(6.22)

Note that, for the sake of simplicity, it is assumed that completing the project – by making

either transition 12 (when Operating) or transition 16 (when Mothballed) – results in a

pay-off of Xt, which thus represents the project’s residual value.

6.3.2 Portfolio Optimisation Problem

Having fully modelled the sequential decision problem, similar to Section 3.2, the value of

the portfolio of interdependent real options at time 0 given state S0, G0(S0), is obtained

by solving the following multi-stage stochastic integer programme:

G0(S0) = max
(at)t∈T

E
[∑

t∈T e
−rtΠt(St, at)

∣∣S0

]
, (6.23)

where S0 = (0, 1, Tmax1 , 0,K0, V0, µ0, X0) , at = (ath)h∈bD(Nt), at ∈ ASt , T is the set of

decision times (or decision epochs), St+∆h
= SM (St, at,Wt+∆h

), and r is the risk-free rate.

Applying Bellman’s well-known “principle of optimality”, the optimisation problem in
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(6.23) can be solved recursively with the optimal value of being in state St given by:

Gt(St) = max
at

Πt(St, at) + E
[
e−r∆hGt+∆h

(St+∆h
)
∣∣St, at] (6.24)

s.t. ath ∈ {0, 1}, ∀h ∈ bD(Nt), (6.25)

at ∈ ASt , (6.26)

St+∆h
= SM (St, at,Wt+∆h

), ∀h ∈ bD(Nt), (6.27)

where Wt+∆h
=
(
εkt+∆h

, εvt+∆h
, εµt+∆h

, εxt+∆h

)
describes the information that arrives be-

tween time t and t + ∆h. The aim is then to determine G0(S0), given the boundary (or

terminal) condition Gt(St) = 0, ∀t ∈ T , Nt ∈ {2, 4, 7, 9}.

6.4 The Valuation Algorithm

In this section we describe the approach to approximate the value of portfolios of inter-

dependent real options under both exogenous and endogenous uncertainties as well as the

simulation-based valuation algorithm and the solution procedure.

6.4.1 The Simulation-and-Regression-based Valuation Algorithm

In order to approximate the value of the portfolio of interdependent real options given

by the optimisation problem (6.24)-(6.27), we extend the simulation-and-regression-based

valuation algorithm presented in Section 3.3 to include endogenous sources of uncertainty.

Furthermore, our proposed algorithm is both a generalisation and formalisation of the

solution procedures offered by Miltersen and Schwartz (2004); Schwartz (2004); Hsu and

Schwartz (2008); Zhu (2012), which are plain extensions of the algorithm proposed by

Longstaff and Schwartz (2001) for single American-style options. While our algorithm also

consists of an induction procedure with a forward and a backward pass as in Subsection

3.3.2, the procedure’s individual steps were adapted to include endogenous uncertainty and

to explicitly account for the negative numerical implications of the state variables’ path

dependencies on the accuracy of the approximation. See Subsection 6.4.2 for a description

of the solution procedure’s steps in which we assumed, for the sake of simplicity, that

∆1 = ∆2 = ∆4 = ∆6 = ∆8 = ∆9 and ∆5 = ∆11 = ∆13 = ∆15 = ∆17.

The forward induction procedure generates the discrete state space St through “ex-

ploration” of the resource state space Rt and simulation (Monte Carlo sampling) of the

information state space It for all t ∈ T . However, in addition to the path dependency of

Rt because of the sequential decision process underlying the portfolio of real options (see

Chapter 3), now both Rt and It are path-dependent because of the decision-dependent

cost to completion, Kt. In fact, whether a resource state and its corresponding information

state can be reached at time t (and are therefore part of Rt and It, respectively) does
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not solely depend on the sequence of decisions made up to this point, but also on how Kt

evolves stochastically; for instance, it might be that a particular Rt can be reached in only

ΩRt ⊆ Ω, where |ΩRt | < |Ω|. Moreover, since the stochastic cost to completion can be

directly translated into a stochastic time to completion, the decision times in T are also

path-dependent.

As a strategy in our procedure to overcome the curse of dimensionality related to both It
and the outcome space (for a discussion see Subsection 3.2.3 and Powell (2011); Nadarajah

et al. (2017)), whenever needed we approximate the conditional expectation in (6.24),

which represents the continuation function

Φt(St, at) = E
[
e−r∆hGt+∆h

(St+∆h
)
∣∣St, at], (6.28)

by the following continuous, finite-dimensional function (“the parametric model”):

Φ̂
LSt
t (St, at) =

LSt∑
l=0

α̂tl(S
R(Rt, at))φStl(It), (6.29)

where LSt is the model’s dimension; {φStl}
LSt
l=0 are called basis functions (or features),

which depend only on It and not the full St; and the coefficients
(
α̂tl(S

R(Rt, at))
)LSt
l=0

are obtained by the least-squares regression in (6.33). Unlike the parametric model of

Subsection 3.3.1, here LSt and φStl depend on St, which enables us to reduce the model’s

dimension if Nt = 1 (Nt = 3 ∧ Kt = 0 or Nt ∈ {6, 8}) by omitting functions of Kt and

Xt (Kt) in the regression, thus reducing computational cost. Importantly, the function

(6.29) is determined separately for each relevant and feasible decision at, given state St,

whilst taking into account the set of paths ΩRt in which Rt can actually be reached. By

contrast, in the setting of Chapter 3, every Rt can be reached along each path ω ∈ Ω as

it only considered exogenous uncertainty.

The valuation procedure shown in Algorithm 2 applies a standard backward induction

to approximate the value of the multi-stage stochastic integer programme (6.24)-(6.27).

Starting at t = max T and moving backwards to t = min T \ 0, for each state St ∈ St per-

form the following three steps: (i) approximate (6.28) by both (6.29)-(6.33) and Φ̌t(Rt, at)

separately for all feasible at that do not lead to a terminal node, otherwise set them to 0,

where Φ̌t(Rt, at) is a deterministic lower bound on Φt(St, at), given Rt and at (lines 3-9 );

(ii) compute the pathwise optimisers ât(ω) for all ω ∈ ΩRt in which Rt can be reached (line

11 ); (iii) using these pathwise optimisers, determine the approximation Ḡt(St(ω)) for each

path ω ∈ ΩRt (line 12 ). At t = 0, we have (K0, V0, µ0, X0) = (K0(ω), V0(ω), µ0(ω), X0(ω)),

so we can simply calculate the value of (6.28) by taking averages of the path-wise continu-

ation values over all |Ω| paths, and make optimal decisions based on these average values,

giving Ḡ0(S0) (line 17 ).
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6.4.2 Solution Procedure

The forward induction procedure consists of the following steps:

1. Starting at time 0 and using (6.17), sample |Ω| paths of Kt conditional on at2 = 1

or at4 = 1 until Kt(ω) = 0, ∀ω ∈ Ω, where ∆con(ω) = {min t : Kt(ω) = 0} and

T con = {∆con(ω) : ω ∈ Ω} denote the construction time in path ω and the set of

construction times, respectively.

2. Determine the set of decision times, TNt , for all decisions nodes Nt ∈ {1, 3, 5, 6, 8},
forming subsets of T :

TNt =



{
i∆1 : i ∈ Z≥0, 0 ≤ i∆1 ≤ Tmax1

}
, if Nt = 1,{

τ1 + ∆1(1 + i+ 2j +m) : τ1 ∈ T1, i, j,m ∈ Z≥0,∆1(1 + i+ j) ≤ max T con,
∆1(j +m) ≤ Tmax2 max(0,min(1, j))

}
, if Nt = 3,{

τ1 + ∆1(2 + i+ 2j +m) : τ1 ∈ T1, i, j,m ∈ Z≥0,∆1(1 + i+ j) < max T con,
∆1(1 + j +m) ≤ Tmax2

}
, if Nt = 5,{

τ1 + τ con + ∆1i+ ∆5(1 + j) : τ1 ∈ T1, τ
con ∈ T con, i, j ∈ Z≥0,

∆1i ≤ Tmax2 ,∆5(1 + j) ≤ Tmax3 , if Nt = 6,{
τ1 + τ con + ∆1i+ ∆5(2 + j) : τ1 ∈ T1, τ

con ∈ T con, i, j ∈ Z≥0,

∆1i ≤ Tmax2 ,∆5(2 + j) ≤ Tmax3 , if Nt = 8,

(6.30)

3. Generate the possible resource state space Rt for each decision node and decision time:

Rt =



(t, 1, Tmax1 − t/∆1, 0), if t ∈ T1,{
(t, 3, T,Q) : τ1 ∈ T1, T,Q ∈ Z≥0, t = τ1 +Q/Imax + Tmax2 − T,

τ1 < t,∆1 ≤ Q/Imax ≤ ∆con(ω),∃ω ∈ Ω,

0 ≤ Tmax2 − T ≤ max(t− τ1 − 2∆1, 0)
}
, if t ∈ T3,{

(t, 5, T,Q) : τ1 ∈ T1, T,Q ∈ Z≥0, t = τ1 +Q/Imax + Tmax2 − T,
τ1 < t,∆1 ≤ Q/Imax < ∆con(ω),∃ω ∈ Ω,

∆1 ≤ Tmax2 − T ≤ max(t− τ1 −∆1,∆1)
}
, if t ∈ T5,{

(t, 6, T,Q) : τ1 ∈ T1, τ
con ∈ T con, T,Q, i ∈ Z≥0, Q = τ conImax,

T = Tmax3 − t+ τ1 + τ con + ∆1i, T ≤ Tmax3 −∆5,

T mod ∆5 = 0, i ≤ Tmax2

}
, if t ∈ T6,{

(t, 8, T,Q) : τ1 ∈ T1, τ
con ∈ T con, T,Q, i ∈ Z≥0, Q = τ conImax,

T = Tmax3 − t+ τ1 + τ con + ∆1i, T ≤ Tmax3 − 2∆5,

T mod ∆5 = 0, i ≤ Tmax2

}
, if t ∈ T8,

(6.31)

5. For all Rt ∈ Rt, t ∈ T , compute the set of paths ΩRt in which resource state Rt =
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(t,Nt, Tt, Qt) is reachable:

ΩRt =



Ω, if Nt = 1,{
ω ∈ Ω : t− τ1 − Tmax2 + T ≤ ∆con(ω), Q/Imax ≤ ∆con(ω), τ1 ∈ T1

}
, if Nt = 3,{

ω ∈ Ω : t− τ1 − Tmax2 + T < ∆con(ω), Q/Imax < ∆con(ω), τ1 ∈ T1

}
, if Nt = 5,{

ω ∈ Ω : ∆con(ω) = Q/Imax}, if Nt ∈ {6, 8}.
(6.32)

6. Use (6.19) and (6.18) to sample |Ω| paths of µt and Vt, respectively, giving(
Vt(ω), µt(ω)

)
ω∈Ω

, ∀t ∈ T
7. Use (6.20)-(6.21) to sample |ΩRt | realisations of Xt

giving
(
Xt(ω)

)
ω∈ΩRt

,∀Rt ∈ Rt, t ∈ T .

It is important to note that, unlike the forward induction procedure applied when there

is only exogenous uncertainty, now the generation of the resource state space has to be

interleaved with the random sampling steps (see Section 6.1 and Subsection 6.4.1).

The backward induction procedure is shown by Algorithm 2, with the optimal values of

the coefficients
(
αtl(S

R(Rt, at))
)LSt
l=0

, given Rt and at, in line 7 determined by (6.33).

(
α̂tl(Rt+∆h

)
)LSt
l=0

= arg min

(αtl(·))
LSt
l=0

{ ∑
ω∈ΩRt

[
e−r∆hḠt+∆h

(St+∆h
(ω))−

LSt∑
l=0

αtl(Rt+∆h
)φStl(It(ω))

]2
}
,

(6.33)

where Rt+∆h
= SR(Rt, at) and St+∆h

(ω) = (Rt+∆h
, It+∆h

(ω)). Figure 6.2 illustrates the

main steps of the solution approach given state St at time t.

St = (Rt, It)

(i) Determine Ft(St(ω), at), ∀ω ∈ ΩRt

(ii) Compute ât(ω), ∀ω ∈ ΩRt

S
im

u
la

ti
on

(iii) Determine Ḡt(St(ω)), ∀ω ∈ ΩRt

∀at ∈ ASt

Rt

ΩRt

ΩRt

ΩRt

Figure 6.2: Main steps of interleaved solution approach given we are in state St at time t.
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Algorithm 2: Approximation of optimal value of problem (6.24)-(6.27)

Data: From forward induction procedure and problem specific inputs
Result: Ḡ0(S0)

1 for t = max{T \ 0} do
2 forall St ∈ St do
3 forall at ∈ ASt do
4 if ath = 1, h ∈ {3, 7, 10, 12, 14, 16, 18} then
5 Ft(St(ω), at)← 0,∀ω ∈ ΩRt

6 else

7 Use both (6.29)-(6.33) and Φ̌t(Rt, at) to determine:

Ft(St(ω), at)← max
{

Φ̌t(Rt, at), Φ̂
LSt
t (St(ω), at)

}
, ∀ω ∈ ΩRt

8 end

9 end
10 forall ω ∈ ΩRt do
11 Compute pathwise optimisers:

ât(ω)← arg max
at(ω)∈ASt(ω)

{
Πt(St(ω), at(ω)) + Ft(St(ω), at(ω))

}
12 Approximate optimal portfolio value along each path ω:

Ḡt(St(ω))← Πt(St(ω), ât(ω)) + e−r∆hḠt+∆h

(
SM
(
St(ω), ât(ω),Wt+∆h

(ω)
))

13 end

14 end
15 T ← T \ t
16 end
17 At t = 0, S0 = (0, 1, Tmax1 , 0,K0, V0, µ0, X0), determine:

Ḡ0(S0)← max
a0∈AS0

{
Π0(S0, a0) + 1

|Ω|
∑
ω∈Ω

e−r∆hḠ∆h

(
SM
(
S0, a0,W∆h

(ω)
))}

6.4.3 Computational Efficiency and Numerical Accuracy

While the efficiency and the accuracy of simulation and (parametric) regression approaches

generally depend on a range of factors (e.g., see Subsection 3.3.3 for a discussion), here

the actual number of paths (|ΩRt |) available in the regression for state St = (Rt, It) is

particularly critical. Indeed, although disregarded by Miltersen and Schwartz (2004);

Schwartz (2004); Hsu and Schwartz (2008); Zhu (2012), the additional path-dependency

of both Rt and It caused by the decision-dependent uncertainty Kt may result in |ΩRt | �
|Ω|, which, in turn, generally reduces the accuracy of the parametric regression model5.

Considering polynomials as basis functions in the parametric model, Glasserman and

Yu (2004a) examined the relationship between the number of simulated paths and the

number of basis functions (implied by LSt), and showed that the required |ΩRt | for ensuring

5A fundamentally different approach is to use the simulated evolution of Kt to determine the probability
distribution that describes the probability that construction will be completed after a certain amount
of cumulative investment, e.g. see (Cortazar et al., 2001; Pennings and Sereno, 2011).
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convergence increases exponentially in LSt . However, Cortazar et al. (2008) have shown

that taking advantage of the problem structure and carefully choosing an appropriate set

of basis functions (e.g. call and put options on the expected spot price (Andersen and

Broadie, 2004; Nadarajah et al., 2017)), rather than simply using high-order polynomials

of information state variables as in (Glasserman and Yu, 2004a), allows one to substantially

reduce the required LSt for a given level of accuracy, and is computationally more efficient.

Hence, in general by exploiting the structure of the problem to be solved and choosing the

set of basis functions appropriately, both the efficiency of the algorithm and the accuracy

of the approximation are improved.

6.5 Case Study

This section provides specific details about the numerical example and computational

implementation of the presented algorithm as well as presents the stochastic input data.

6.5.1 Expansion of District Heating Network

We consider the real case of an investment into the expansion of the district heating

network in the London borough of Islington. We focus here on the development of the

network’s “north extension”, as identified in a recent report (Grainger and Etherington,

2014) which investigated the development of a borough-wide network on behalf of the

local council. According to this report, the capital expenditure of this expansion and

the initial, annual operating revenues are estimated at £9.94 millions (K0) and £564,600

(V0), respectively. The report also noted that the asset can be used for up to 25 years

(i.e. Tmax3 =300). The risk-free rate, used to discount monetary values, is 3.5% per year

(i.e. r = 3.5%/12), as recommended by HM Treasury (2011). In addition, we assume

the following: a maximum rate of investment of £1.0 million per month (Imax); the

possibility of deferring development for up to one year (i.e. Tmax1 =11); the possibility

of halting expansion for up to one year (i.e. Tmax2 =11); and the following durations of

transitions (in months): ∆h = 1,∀h ∈ {1, 2, 4, 6, 8, 9}; ∆h = 12,∀h ∈ {5, 11, 13, 15, 17};
and 0 for the remainder of the transitions. Table 6.2 summarises the chosen input values

for this example.

6.5.2 Generated State Space and Utilised Basis Functions

The discrete state space was generated by applying the forward induction procedure de-

scribed in Subsection 6.4.1 (and 6.4.2) and using the data of Subsection 6.5.1. More

specifically, 100,000 paths (|Ω|) were generated to describe the stochastic evolution of the

four factors Kt, Vt, µ and Xt for all t ∈ T . Figure 6.3 shows the evolution of these for

5 equally likely paths. As can be seen in Figure 6.3a, while the expected duration of the
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Table 6.2: Input data for district heating network expansion adapted from
Grainger and Etherington (2014); HM Treasury (2011) and own estimates.

Description Parameter Value Unit

Network expansion
Cost of halting Cd,h 10 · 103 £
Cost of resuming Ch,d 10 · 103 £
Maintenance cost (halted) Ch 10 · 103 £/month
Cost of mothballing Co,m 20 · 103 £
Cost of reactivating Cm,o 20 · 103 £
Maintenance cost (mothballed) Cm 20 · 103 £/month
Risk-free rate r 0.035/12 month−1

Expiration of development right Tmax1 11 month
Maximum period to halt expansion Tmax2 11 month
Project life of developed asset Tmax3 300 month

Investment cost
Initial (expected) cost to completion K0 9.94 · 106 £
Maximum rate of investment Imax 1.0 · 106 £/month
Degree of technical uncertainty σk 35% –

Revenuea

Initial annual operating revenue V0 564, 600 £
Speed of mean reversion in revenue κv 0.90 –
Standard deviation of revenue σv 10% month−1

Initial revenue growth rate µ0 0.10% month−1

Speed of mean reversion in growth rate κµ 0.90 –
Long-run mean growth rate level µ 0.10% month−1

Standard deviation of growth rate σµ 0.01% month−1

Salvagea

Depreciation rate ξ 0.50% month−1

Cost ratios α, β 0.30 –
Pay-out ratios δ, γ 0.70 –
Standard deviation of salvage value σx 25% –

a The correlations between processes are: ρv,µ = −0.8, ρv,x = 0, and ρµ,x = 0.

expansion is 10 months, the actual time to build can vary substantially. Figures 6.4a and

6.4b show the total number of resource states |Rt| for all t ∈ T and the number of paths

|ΩRt | in which every Rt ∈ Rt can be reached at t ∈ T , respectively, supporting the claim

made in Subsection 6.4.1 that some resource states may not be reachable in every simu-

lation path. Furthermore, the total number of resource states, i.e.
∑

t∈T |Rt|, increased

more than tenfold6 (from 3,635 to 41,815) as σk increased from 0.00 to 0.35, highlighting

the computational complexity (cost) introduced by the decision-dependent uncertainty.

6At the same time, the computational effort (time) required to solve the valuation problem increased by
approximately 165%.
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(d) Salvage Value at Rt = (t, 6, Tt, 9).

Figure 6.3: Selection of 5 equally likely paths for the evolution of Kt, Vt, µt and Xt.

With regard to the parametric model in (6.29), we apply as basis functions polynomials

of the information state variables as well as both call and put options on the expected value

of these variables partially based on (Longstaff and Schwartz, 2001; Andersen and Broadie,

2004; Cortazar et al., 2008; Nadarajah et al., 2017). In case (Nt = 3 ∧Kt > 0) ∨Nt = 5,

we use a set of 51 basis functions composed of a constant term, the four information state

variables, polynomials of degree two (i.e. the squares of each variable and their cross

products), polynomials of degree three, as well as the value of call and put options on

the expected value of each variable and the square of this value. Otherwise, if Nt = 1

(Nt = 3 ∧ Kt = 0 or Nt ∈ {6, 8}), as mentioned in Subsection 6.4.3, we can reduce the

number of basis functions used to 18 (32) by eliminating all the functions of Kt and Xt

(Kt) because Kt = K0 and Xt is non-existent (Kt = 0), so these variables do not add any

information value to the least-squares regression. In order to avoid numerical problems the

basis functions were properly scaled before performing the least-squares regression, which
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Figure 6.4: Results of reachability analysis.

is based on a singular value decomposition (SVD) algorithm. The valuation algorithm was

implemented in Matlab.

6.6 Results and Discussion

In order to illustrate the extent to which the profitability of the district heating invest-

ment project depends on the initial value of the annual revenues, V0, Table 6.3 shows the

sensitivity of the value of different portfolio configurations to varying levels of V0. As can

be seen, for values of V0 of £0.50 millions and below, the value of the investment project

without options, configuration (-), is 0. This is because the expected NPV of the project

is -£2.2060 millions, -£1.2751 millions, and -£0.3441 millions for values of V0 of £0.40

millions, 0.45 millions, and 0.50 millions, respectively, so the optimal “now-or-never strat-

egy”, which does not take any flexibility into account, is to leave the project undeveloped.

The same strategy is optimal for the project with portfolio of options (a,b,c,d) for the

lowest value of V0 under consideration. However, for levels of V0 of £0.45 millions and

0.50 millions, the value of the project with (a,b,c,d) is positive, reflecting the substantial

value of having the flexibility provided by the portfolio of interdependent real options.

Interestingly, in the first case, although the portfolio with all options achieves a positive

value there is no individual option that provides sufficient added value on its own (i.e.

in isolation), whereas in the case V0 = £0.50 millions, having the option to defer alone –

configuration (a) – also results in an economically viable project.

As can be seen from Table 6.3, beginning at a V0 of £0.55 millions, the values of both

the project without any flexibilities and almost all portfolio configurations are positive.

In most cases the value of the project with (a,b,c,d) is considerable larger than without
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options (-), revealing the significant added value that is obtained by considering such a

complex portfolio. While the values of the project without any options and the portfolio

with all options both increase in V0, the values of almost all of the individual options in

isolation show a different trend. Indeed, the values of the options to defer (a), to halt (b-i),

and to abandon the project during construction (b-ii) and operation (d) are decreasing

in V0, meaning there is less value in deferring, halting, and abandoning as the value

of initial annual revenues increases. This is because the annual revenues, although still

uncertain (i.e. stochastic), revert now to a linear trend that is shifted upwards, so their

level is generally higher, which makes deviating from the static now-or-never strategy,

and consequently the flexibility provided by individual real options less valuable. For

all values of V0 under consideration, the option to temporarily mothball the operation –

configuration (c) – is of no value as the simulated values of Vt are always positive.

The effects of the degrees of exogenous and endogenous uncertainty on both the value

of the portfolio of options and the comparative performance of the portfolio’s individual

options are particularly important for understanding the influence of different underlying

uncertainties. In order to illustrate these effects for the exogenous annual revenues, Vt,

and the endogenous, decision-dependent cost to completion, Kt, Figure 6.5 shows for

Co,m = Cm,o = Cm = 0 the way in which the standard deviation of changes in revenues,

σv, and the degree of technical uncertainty, σk, effect the value of the investment project.

While the effects of changes of σv on the value of the project without options is negligible,
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Figure 6.5: Value of investment project, Ḡ0(S0) (in £millions), with portfolio of real options
and without options as well as portfolio’s most valuable individual option (filled circles),
as a function of degrees of revenue (σv) and technical (σk) uncertainty.
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the value of the portfolio is generally increasing in σv, particularly steep for higher levels

of σv and it seems the increase is more pronounced for lower values of σk. This increase

in project value results from the flexibilities provided by the portfolio of real options,

which allow a decision maker to exploit the upside potential of increased annual revenues,

as compared to the negligibly affected value of the investment project without options,

which applies a static now-or-never strategy.

On the other hand, increasing σk from 0 to 0.05 (i.e. introducing some construction cost

uncertainty) results in a sharp decline in values of the investment project, but the decline is

smaller for the project with the portfolio of real options. The reason for this sharp decline

is mainly due to the increase in actual cost of completion caused by the introduction of

technical uncertainty, but also because of the discretised investment expenditures. Unlike

the investment project without options, whose value is always decreasing in σk, beginning

at a σk of 0.1, the value of the portfolio is increasing in σk. This is because the flexibil-

ity provided by the portfolio, particularly by its option to abandon during operation (d),

allows one to partially reverse the investment by recovering increased investment expen-

ditures in situations with high values of σk, thereby taking advantage of relatively high

state-dependent salvage values. This seems to explain why option (d) is the portfolio’s

most valuable individual option when the degree of technical uncertainty is high, whereas

in most other situations, the option to defer (a) is the portfolio’s most valuable option.

Interestingly, for high values of σv, there are even situations in which options (b-i) and

(c) are most-valuable, reflecting the ability of such a complex portfolio of real options to

manage exogenous and endogenous uncertainties simultaneously in a wide range of uncer-

tain environments. Figure D.1 displays the portfolio’s least valuable individual option in

these situations.

To show the effect of the endogenous, state-dependent salvage value, Xt, on investment

decisions, Figure 6.6 shows the extent to which the value of the investment project is

affected by the pay-out ratios γ and δ as well as by the standard deviation σx. The value

of the project without options – where Xt is received as residual value when completing

the project after 25 years of operation – is positive for all parameters under consideration.

Furthermore, its value increases virtually linearly in (γ, δ) because of the linear dependence

of the expected asset value, Zt, on (γ, δ), but is practically unaffected by changes in σx

simply because the expected value of Xt does not change. Although the value of the project

with the portfolio of options is always greater than the value of the project without options,

the difference remains relatively constant for low values of (γ, δ) and for both low σx and

moderate (γ, δ), with the option to defer (a) being the portfolio’s most valuable individual

option in these situations (see Figure D.2 for its least valuable individual option). As can

be seen, however, for high expected asset values and fairly high yet risky salvage values,

the portfolio considered here is capable of extracting considerable value from flexibilities,

especially from abandoning the project during either construction (b-ii) or operation (d).
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Figure 6.6: Value of investment project, Ḡ0(S0) (in £millions), with portfolio of real options
and without options as well as portfolio’s most valuable individual option (filled circles),
as a function of pay-out ratios (γ, δ) and standard deviation of salvage value, σx.

The above results therefore highlight the importance of applying such a portfolio of real

options approach when there is both exogenous and endogenous uncertainty.

To reveal the effects of the depreciation rate (ξ) and the pay-out ratios (γ and δ; only in

the case of Figure 6.5) on the valuation, Figures D.3 and D.4 illustrate the same analyses

as Figures 6.5 and 6.6, respectively, but with a higher depreciation rate – now ξ = 0.80%

(before 0.50%) – and lower pay-out ratios – now γ = δ = 0.50 (before 0.70). Comparing

Figures 6.5 and D.3a as well as Figures 6.6 and D.4a, it is obvious that the values of the

investment project – both with options portfolio and without options – are, as expected,

substantially lower due to lower and faster-depreciating (and hence more rapidly devalu-

ing) expected asset values. At the same time, the option to abandon the project during

operation (d) is comparatively less valuable within the portfolio of options. The plotted

trends are qualitatively identical to those obtained using ξ = 0.50% and γ = δ = 0.70, and

the results are in line with the previously discussed effects of uncertainties and pay-out

ratios on the value of the investment project.

6.7 Summary

This chapter presents an approach for approximating the value of portfolios of interdepen-

dent real options under both exogenous and endogenous uncertainties. The approach is il-

lustrated by valuing a complex urban infrastructure investment in London. Unlike existing
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valuation approaches, which have considered only exogenous uncertainty or rather inflex-

ible and restricted portfolios, this chapter has studied a complex yet practical portfolio of

real options under conditions of four underlying uncertainties. The options were: to defer

investment; stage investment; temporarily halt expansion; temporarily mothball the oper-

ation; and abandon the project. Two of the underlying uncertainties, decision-dependent

cost to completion and state-dependent salvage value, were endogenous, whereas the other

two, operating revenues and their growth rate, were exogenous. We have extended our pre-

viously presented approach for valuing portfolios of interdependent real options to include

endogenous uncertainties. In the extended approach, the directly-modelled dynamics of

all four uncertainties and the linear constraints modelling the real options’ interdepen-

dencies are also integrated in a multi-stage stochastic integer programme. This chapter

has presented an efficient valuation algorithm to approximate the value of this portfolio

using simulation and parametric regression. In contrast to existing valuation algorithms,

ours explicitly accounts for the negative numerical implications of the state variables’ path

dependencies on the accuracy of the approximation. We do so by exploiting the structure

of the investment problem to be solved by dynamically and appropriately adapting the

basis functions used in the parametric model. The illustrative example shows that our

approach is flexible and powerful, and can be used to value both complex portfolios and

their individual real options under both types of uncertainty.
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Chapter 7

Conclusions

Addressing historically unprecedented global challenges including mitigation of and adap-

tation to climate change, ensuring urban resilience and liveability, as well as ageing pop-

ulations, infrastructures and supply networks, will require massive capital investments

globally over the next few decades in efficient and resilient, low-carbon infrastructures

(Hoornweg, 2010; Bhattacharya et al., 2015). However, infrastructure investments are

very capital intensive (sunk costs), involve a range of timescales – e.g. long lead times

and even longer lifespans alongside ultra-rapid operational decisions regarding services

and innovations (Flyvbjerg et al., 2009) –, and must be made in the context of enormous

uncertainty engendered by increasingly complex economic, technological and policy envi-

ronments. The valuation of infrastructure investment needs to account correctly for the

multiple sources of uncertainty inherent in these investments. The real options analysis

(ROA) approach aims to pro-actively manage risks by valuing the flexibilities (or options)

inherent in uncertain and irreversible investments (e.g. with respect to design, financing,

construction and operation). However, most existing ROA approaches consider only sin-

gle, well-defined options and a few (exogenous) sources of uncertainty, so are inadequate

and of little value when it comes to valuing infrastructure investments.

The aim of this study has been to develop a real options-based framework for the

valuation of infrastructure investments as portfolios of interdependent real options under

both exogenous and endogenous sources of uncertainty, and to illustrate its application.

The four research objectives defined in the Introduction of this thesis, restated here to

ease their mapping to this work’s contributions, are:

1. To develop an approach for the modelling and valuation of a portfolio of inter-

dependent real options under exogenous uncertainty that is capable of accounting

for multiple, possibly interdependent real options and various, possibly interlinked,

sources of uncertainty.

2. To operationalise the approach using practical, relevant examples of increasing com-

plexity in terms of both the portfolio of real options and the uncertainties considered,

and to comprehensively evaluate the comparative performance of the conventional

and new approach.
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3. To demonstrate the ability of the approach to evaluate a complex natural resource

investment project that features both a large portfolio of interdependent real options

and multiple underlying uncertainties.

4. To extend the portfolio-based real options approach to include endogenous, decision

and state dependent uncertainties, and to illustrate the applicability of the extended

approach by valuing a district heating network expansion investment.

These four objectives were addressed in Chapters 3 to 6. Chapter 3 presented a simple

yet powerful new approach for modelling and approximating the value of portfolios of

interdependent real options under multiple, possibly interlinked exogenous uncertainties,

using both influence diagrams and simulation-and-regression. Chapter 4 presented the op-

erationalisation of our portfolio of real options approach using three well-known relevant

examples: an American put option in a single-factor setting; a natural resource invest-

ment with a switching option (i.e a portfolio of options to mothball and abandon); and

the same natural resource investment considering three stochastic factors instead of just

one. Chapter 5 demonstrated the ability of this approach to evaluate complex and risky

investment projects by considering a complex natural resource investment that features

both a large portfolio of interdependent real options containing 6 individual options and

four stochastic factors, of which three are correlated. Lastly, Chapter 6 presented an ex-

tension of the approach in order to approximate the value of portfolios of interdependent

real options that include endogenous, decision and state dependent uncertainties. The

extended approach was illustrated by valuing a complex urban infrastructure investment

in the London borough of Islington. In this investment problem the options portfolio con-

tained five individual options; two of the underlying uncertainties were exogenous and the

other two were endogenous.

In conclusion, this research project has successfully achieved its four objectives. Section

7.1 summarises the main contributions of this research, while Section 7.2 discusses its

limitations and suggests directions for further research.

7.1 Summary of Contributions

The main contributions of this research project are in the following areas:

• This work introduces a framework for modelling and valuing portfolios of interde-

pendent real options using influence diagrams and simulation-and-regression. To

approximate the value of this portfolio optimisation problem, which is formulated

as a multi-stage stochastic integer programme, we present a transparent valuation

algorithm that consists of a forward and backward induction procedure whilst ap-

plying simulation and parametric regression. In contrast to existing regression-based

pricing methods, the valuation algorithm presented here contains several important
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features specific to option portfolios; for example, ours explicitly takes into account

the state variable’s multidimensional resource component that generally occurs in

real option portfolios.

• We illustrate the application of the portfolio of real options approach presented here

using the example of an American put option, and demonstrate its ability to accu-

rately model and correctly value more complex real option problems by re-evaluating

a natural resource investment in a one-, two- and three-factor setting. We show in

detail how to model – e.g. how the portfolio’s real options and their interdependen-

cies can be mathematically translated into linear constraints – and value – e.g. the

specific steps of the forward induction procedure – these relevant examples. While

re-evaluating a well-known copper mine example, we detect multiple errors in a

highly-cited seminal work and in another important study. Using our approach and

analytical solutions from literature, we perform a combined portfolio and equilibrium

analysis which enables us to disprove their results whilst validating and confirming

our own. In addition, this analysis provides interesting insights into the relationship

between portfolio value and underlying volatility. We also discuss our approach in

the context of existing option pricing and decision analysis approaches and highlight

some key restrictions and limitations in existing approaches.

• We demonstrate the ability of the proposed approach to evaluate a complex yet real-

istic and important natural resource investment that features both a large portfolio

of interdependent real options and four underlying uncertainties; importantly, this

represents a setting where traditional methods (e.g. binomial/lattice and finite dif-

ference) are impractical. Using this example, we show how the approach presented

here can be used to investigate the way in which the value of the portfolio and its

individual real options are effected by the underlying operating margin and the de-

grees of different uncertainties, enabling both the illustration and the interpretation

of portfolio effects. In addition, we analyse the effect of different parametric models

on the value of the portfolio of options by comparing different commonly used uni-

variate orthogonal polynomial families and different numbers of basis functions, and

discuss their choice in the light of approximation accuracy and computational time.

• This work also presents an extension of the framework for modelling and valuing

portfolios of interdependent real options to include endogenous uncertainty. Unlike

existing valuation approaches, which have considered only exogenous uncertainty or

rather inflexible and restricted option portfolios, this extension studies a complex

yet practical portfolio of real options under conditions of four underlying uncertain-

ties – two exogenous and two endogenous (one decision- and one state-dependent)

uncertainties. To our knowledge, it is the first work to present a holistic and uni-

fied approach to model and value portfolios of interdependent real options under
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exogenous and endogenous uncertainties. We present an efficient valuation algo-

rithm to approximate the value of this portfolio using simulation and parametric

regression. In contrast to existing valuation algorithms, ours explicitly accounts for

the negative numerical implications of the state variables’ path dependencies on the

accuracy of the approximation by exploiting the structure of the investment problem

to be solved by dynamically and appropriately adapting the basis functions used in

the parametric model. We demonstrate the applicability of the proposed approach

by valuing an urban infrastructure investment in London and show, for example,

how the optimal value of the portfolio and its individual options are affected by the

degrees of exogenous and endogenous uncertainty.

It is important to note that, although motivated by the valuation of infrastructure in-

vestments and the challenges surrounding them, our portfolio of real options approach

is generic, so can be applied to a wide range of complex and risky investment projects

which have both inherent interdependent flexibilities and many sources of underlying un-

certainties. In conclusion, we believe our approach has the potential both to contribute to

the methodology of decision making under uncertainty and to enhance the applicability

of real options analysis to a wide range of important investment problems (such as in

infrastructure), as well as to lay the basis for further theoretical developments.

Elements of this thesis have been submitted for consideration for publication in peer-

reviewed journals and disseminated at various national and international conferences; see

Appendix E for a list of publications relating to this thesis.

7.2 Limitations and Future Work

This research has mainly focused on the development of a new portfolio of real options

approach and the demonstration of its applicability in multiple contexts, so naturally

it has some limitations – both from a theoretical and practical perspective – and these

provide suggestions and directions for future research. Relevant limitations are related to

the modelling, valuation and numerical analyses, whereas potential future work concerns

both methodological extensions and illustrating the wide applicability of the approach in

terms of scope and scale.

The main limitation of the developed modelling approach is that it only considers bi-

nary (decision) variables and discrete resources states. While these considerations are

sufficient and adequate to address many important real option problems – as demon-

strated in this thesis –, there are problems that require a more nuanced modelling of the

underlying sequential decision problems. In addition (or in contrast) to binary actions

and discrete resource states, decisions may be discrete (i.e. general integer) or continuous,

scalar/vector-valued and possibly high-dimensional, and resource state variables may take

on continuous values. For example, real option problems that involve optimal capacity
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choice generally involve decisions that are either discrete (e.g., see Décamps et al. (2006)

or continuous (e.g., see Dangl (1999)) and resource state where one of the dimensions is

continuous. In general, it should be relatively straightforward to model option problems

with such features using our portfolio of real options approach; for example, by adding

and/or adapting the relevant decision and resource state variables and then modifying

the constraints accordingly. Further investigations are needed to analyse, amongst other

things, the implications of such considerations on the computational tractability in the

light of the discussed curses of dimensionality.

There are several limitations relating to the valuation approach presented. Many of these

concern the approximation technique applied in the valuation algorithm. The computa-

tional efficiency and numerical accuracy of our simulation-and-regression-based algorithm

is influenced by a variety of factors. These include the number of sample paths used as

well as the number and type of basis functions used in the parametric model to approxi-

mate the continuation function. As discussed, the effects of these factors have been widely

studied in literature using the LSM approach, confirming the method’s robustness and

convergence of results. Since our approach also uses a continuation function approxima-

tion, it shares a number of desirable properties with the LSM approach. However, this

work considers portfolios of interdependent real options which generally require complex

sequential decision problems to be solved where sub-optimal decisions at a given state,

e.g. due to non-optimal approximations at earlier states, may propagate through this

process given the path-dependency of decisions in the portfolio, possibly leading to larger

errors in the approximated portfolio values. In addition to the preliminary analysis of the

effect of parametric model choice on portfolio value presented in this thesis, future work

might therefore further analyse – both computationally and theoretically – our portfolio of

real options approach, particularly with respect to robustness, convergence and efficiency

as well as the free (or exercise) boundary and validation of the continuation function

approximation.

Furthermore, the approximated value determined by our simulation-and-regression-

based algorithm is a lower bound on the true value of the portfolio of interdependent

real options. Although one could argue that such a low-biased value is sufficient when

valuing infrastructure investments given the prevalence of the standard NPV method,

which does not take into account any flexibility and as such provides generally much lower

values, this circumstance can be unsatisfactory, even problematic for different reasons. For

example, there could be a situation where our low-biased portfolio value is just below zero

but the actual, true value is positive, thereby potentially contributing to the decision not

to invest in an actually worthwhile infrastructure. From a computational perspective, in

the (inevitable) absence of an exact benchmark value for comparison, having only a lower

bound on the true value somewhat impedes the characterisation of the quality of our ap-

proximation. To provide a performance bound, future work will explore the extension of
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our approach by applying duality theory to determine upper (dual) bounds. Also, in the

context of endogenous uncertainty, the implications of our reachability analysis and, in

particular, the benefits of dynamically adapting the set of basis functions – to account for

the negative numerical implications of path dependencies in our algorithm – remain to be

fully investigated and analysed.

The third set of limitations is related to the numerical examples and their analyses.

Given that our quantitative valuation approach is numerical in nature (or rather by con-

struction), there are obviously some unavoidable limitations inherent in the numerical

analyses. For example, although we performed myriad sensitivity analyses to illustrate

how the options portfolio’s value is affected by changes in parameters, this cannot replace

the rigour and insights provided by analytical solutions with respect to real options anal-

ysis (e.g. whether values are convex/concave in input parameters). It should, however, be

reiterated that such analytical solutions will not be attainable in most complex yet practi-

cal real-life situations, so we have to rely on numerical approaches like ours. Furthermore,

even though being highly promising and encouraging, our numerical analysis of the re-

lationship between volatility and value of the options portfolio was based on equations

describing the volatility of futures returns implied in the two- and three-factor model, and

only focused on the influence of a few parameters. Also, the equilibrium analysis was

performed with respect to one specific correlation coefficient, but could have been easily

extended to other parameters to further demonstrate its powerfulness. Future work should

therefore develop the theoretical foundation and a general theory of the relationship be-

tween total volatility and portfolio value, thereby contributing to a more general portfolio

theory, perhaps partially grounded in optimisation theory.

In addition to the future studies suggested to address limitations, other possible di-

rections are methodological extensions and wide-ranging applications. With regard to

extending the methodology, there are several fruitful directions. For example, the per-

formance of infrastructure investments (and many other investments for that matter) is

frequently affected by strategic interactions of multiple decision makers with often com-

peting interests. Also, their performance is often affected by multiple interdependencies

among real options and/or investment projects. In addition to the considered strategic

interdependencies between options in the portfolio, interdependencies can be physical, dig-

ital, geographical and financial. Future work will investigate ways to integrate other types

of interdependencies into the modelling framework presented here as well as explore pos-

sibilities to extend the current approach from a single-decision maker to a multi-decision

maker context and to account for a decision maker’s attitude to risk (e.g., risk aversion

(Chronopoulos et al., 2011)). Given its genericity, the proposed portfolio of real options

approach can be applied to a wide range of important applications. Future work will eval-

uate the operational flexibility in interdependent district energy systems and the flexibility

in complex natural resource investments under endogenous uncertainty.
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Appendix A

Nomenclature

This appendix contains a summary of the notation used in Chapter 3.

Sets and indices

N Set of nodes, {1, . . . , N}
H Set of edges (or transitions), {1, . . . ,H}
t Time index

T Set of decision times (or epochs)

St State space at time t

Rt Resource state space at time t

It Information state space at time t

ω Sample path

Ω Set of sample paths

l Index of summation, l = 0, . . . , L, used to specify the l-th dimension of

the parametric model, where l = 0 generally refers to a constant term

Parameters

N Number of nodes

H Number of edges (or transitions)

∆h Duration of transition h ∈ H
k Risk-free rate (discount factor)

GTt (St) Terminal value given St at time t

φl(It) A basis function (or feature) that extracts information from It

L Dimension of parametric model

Φ̌t(Rt, at) A lower bound on the continuation value at time t given that we are

in resource state Rt and take action at

Variables

St State at time t

S0 Initial state (i.e. state at time 0)

Rt Resource state variable

It Information state variable

Nt Node at time t
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ath (Binary) decision at time t for transition h

at Action (or decision) at time t

ASt Feasible region when in St at time t

αtl(S
R(Rt, at)) Regression coefficient (or weight) when we are in resource state Rt at

time t and take action at

Wt Exogenous information that first becomes known at time t

Functions and mappings

bD(Nt) Set of outgoing transitions of node Nt

SM (St, at,Wt+∆h
) Transition function, giving state St+∆h

given that we are in state St,

take action at (i.e. make transition h), and then learn Wt+∆h
, which

is revealed between t and t+ ∆h

SR(Rt, at) Resource transition function, giving resource state Rt+∆h
given that

we are in resource state Rt and take action at (i.e. make transition h)

Πt

(
St, at

)
Payoff at time t given we are in state St and take action at

Gt(St) Value of portfolio of real options when in state St at time t

Ḡt(St) Approximation of Gt(St)

Φt(St, at) Continuation value at time t when in state St and taking action at

Φ̂L
t (St, at) Approximation of Φt(St, at)

138



Appendix B

Additional Analyses of Chapter 4

B.1 Effect of Copper Price and Uncertainty on Mine Value

To illustrate the combined effects of the degrees of the operating margin and copper price

uncertainty on the value of the opened mine, Figure B.1 shows the way in which the initial

copper price, X0, and the standard deviation of the copper price, σx, effect the investment

value. As we would expect, once positive, the value of both the mine with the portfolio

of options (i.e. the option to switch , see Figure B.1a) and the mine without options

(see Figure B.1b), which applies a static “now-or-never strategy”, increases in the initial

price of copper, X0, and the value of the former also increases as copper price uncertainty

increases, whereas the latter decreases in σx. This is simply because the consideration of

the option to switch enables the decision maker to pro-actively manage price uncertainty

by exploiting managerial flexibilities, thereby limiting downside risk whilst benefiting from

upside potential; but such risks cannot be managed when flexibilities are neglected, which

explains why the mine without options is adversely affected by price uncertainty. It is

interesting to note that, as can be seen in Figure B.1c, the flexibility provided by the

option to switch is most valuable for average copper prices – more precisely, both slightly

below average X0 and low σx, both average X0 and average σx, as well as both slightly

above average X0 and high σx –, that is in areas where the mine with the options portfolio

is already of value but where the mine without options is still worthless.

B.2 Effect of Interest Rate Uncertainty and Correlation on

Mine Value

Figure B.2 illustrates the same analysis as in Figure 4.9 but using θδ = 0.12 instead of

θδ = 0.15, with results for κδ equalling 0.30, 0.50 and 0.80 shown by Figures B.2a, B.2b

and B.2c, respectively. While the volatility surfaces on the left-hand side of Figure B.2

are independent of θδ and therefore equal to the ones of Figure 4.9, the mine values and

consequently the mine value surfaces for θδ = 0.12, which are shown on the right-hand

side of Figure B.2, are as expected consistently above those obtained for θδ = 0.15.
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Figure B.1: Value of (opened) copper mine with portfolio of options and without options
as well as added value of portfolio as a function of initial copper price (X0) and copper
price uncertainty (σx) – all values are in US$ millions.
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Figure B.2: Volatility in three-factor model (σ2
M3

) and value of opened mine, Ḡ0(S0) (in
US$ millions), as a function of both the standard deviation of the interest rate (σr) and the
correlation between the interest rate and convenience yield process (ρr,δ), with θδ = 0.12.
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Appendix C

Additional Analyses of Chapter 5

C.1 Effect of Parametric Model Choices on Portfolio Value

In this appendix we investigate the effect of different parametric models on the value

of the copper mine investment project. In particular, we study the Power series, La-

guerre, Hermite, Legendre and generalized Chebyshev polynomials of degree L, with

L ∈ {1, 2, 3, 4, 5, 6}. Considering the complete set of polynomials as described by Judd

(1998) and the families of orthogonal polynomials as defined in (Abramowitz and Stegun,

1972), as well as using the parameters of Table C.1, Table C.2 shows the portfolio value for

different univariate orthogonal polynomials and different dimensions, L, of the parametric

model. Independent of the chosen family of polynomials, since we have four stochastic

Table C.1: Parameters of convenience yield process for different specifications of Tsekrekos
et al. (2012).

Spec. ρx,δ θδ = δ0 σδ κδ

1 0.40 0.01 0.05 0.30
41 0.60 0.10 0.10 0.50
81 0.80 0.15 0.15 0.80

factors, setting L to 1, 2, 3, 4, 5, and 6, results in 5, 15, 35, 70, 126, and 210, respectively,

basis functions (or regressors) in the respective parametric model.

It is evident from the results that in general the approximated value of the mine in-

vestment project (which is a lower bound on its true value) improved as the parametric

model’s dimension, L, increased, regardless of the family of polynomials used in the para-

metric model. This is in line with the multidimensional convergence results of Moreno and

Navas (2003); Stentoft (2004b); Areal et al. (2008). As can be seen, the results for spec-

ifications 41 and 81 are essentially the same across polynomial families, suggesting that

any polynomial family with sufficient degree L can be used in these two cases. In the case

of specification 1, however, our analysis revealed considerable value differences amongst

different polynomials for high model dimensions, with differences between the highest and

lowest project values at around US$ 32k and US$ 83k for L = 5 and L = 6, respectively.
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Table C.2: Value of investment project with portfolio of options (in US$ millions) for the
specifications of Table C.1 and different parametric models.

Complete set of polynomials

Panel A: Power series
Spec. L = 1 L = 2 L = 3 L = 4 L = 5 L = 6

1 10.385 (0.083)* 10.742 (0.096) 10.858 (0.107) 10.993 (0.118) 11.091 (0.126) 11.201 (0.131)
41 0.546 (0.016) 0.602 (0.016) 0.637 (0.017) 0.650 (0.017) 0.655 (0.017) 0.661 (0.017)
81 0.002 (0.001) 0.020 (0.003) 0.020 (0.003) 0.023 (0.003) 0.024 (0.003) 0.026 (0.003)

Panel B: Laguerre
Spec. L = 1 L = 2 L = 3 L = 4 L = 5 L = 6

1 10.385 (0.083) 10.742 (0.096) 10.870 (0.107) 10.988 (0.117) 11.098 (0.124) 11.241 (0.133)
41 0.546 (0.016) 0.602 (0.016) 0.637 (0.017) 0.650 (0.017) 0.654 (0.017) 0.661 (0.017)
81 0.002 (0.001) 0.020 (0.003) 0.020 (0.003) 0.023 (0.003) 0.024 (0.003) 0.026 (0.003)

Panel C: Hermite
Spec. L = 1 L = 2 L = 3 L = 4 L = 5 L = 6

1 10.385 (0.083) 10.742 (0.096) 10.858 (0.107) 10.996 (0.117) 11.097 (0.126) 11.174 (0.129)
41 0.546 (0.016) 0.602 (0.016) 0.637 (0.017) 0.650 (0.017) 0.655 (0.017) 0.661 (0.017)
81 0.002 (0.001) 0.020 (0.003) 0.020 (0.003) 0.023 (0.003) 0.024 (0.003) 0.026 (0.003)

Panel D: Legendre
Spec. L = 1 L = 2 L = 3 L = 4 L = 5 L = 6

1 10.385 (0.083) 10.742 (0.096) 10.858 (0.107) 10.997 (0.118) 11.106 (0.123) 11.181 (0.129)
41 0.546 (0.016) 0.602 (0.016) 0.637 (0.017) 0.649 (0.017) 0.654 (0.017) 0.662 (0.017)
81 0.002 (0.001) 0.020 (0.003) 0.020 (0.003) 0.023 (0.003) 0.024 (0.003) 0.026 (0.003)

Panel E: Gen. Cheyshev
Spec. L = 1 L = 2 L = 3 L = 4 L = 5 L = 6

1 10.385 (0.083) 10.742 (0.096) 10.870 (0.107) 10.992 (0.116) 11.074 (0.123) 11.158 (0.128)
41 0.546 (0.016) 0.602 (0.016) 0.637 (0.017) 0.650 (0.017) 0.655 (0.017) 0.661 (0.017)
81 0.002 (0.001) 0.020 (0.003) 0.020 (0.003) 0.023 (0.003) 0.024 (0.003) 0.026 (0.003)

* Standard error in parentheses.

This suggests that the approximation can be improved considerably by choosing an ap-

propriate polynomial family. Note that while standard errors in specification 1 are higher

than in the other two specifications, project values are proportionally even higher.

Compared with values obtained for specifications 41 and 81, which eventually levelled off

at high L, the trends corresponding with specification 1 seem to indicate that values have

not converged yet. This suggests that an increase in L would further improve the lower

bound. Although the Power series was found to perform surprisingly well and reduced

computational time by about 40-45% (which is similar to the reduction found by Areal

et al. (2008)), the number of basis functions used in the regression grows exponentially
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in L. This substantially increased both the complexity of the parametric model and

computational cost; e.g., plus 84 basis functions and 50% more time when L is increased

from 5 to 6. In Section 5.4, complete sets of Legendre and Hermite polynomials with L = 4

are used for Table 5.3 and Figure 5.3, respectively. Although different parametric model

choices may result in better approximations, our choice, which presents the best trade-

off between accuracy and computational time amongst all models tested, is sufficient for

the purposes of demonstration. Future work might therefore investigate the convergence

properties and the computational efficiency of different parametric models in situations

with both complex portfolios of interdependent real options and multiple stochastic factors.

C.2 Effect of Production Cost and Copper Price

Uncertainty on Mine Value

Figure C.1 demonstrates the way in which the value of the copper mine (with options

portfolio and without options) is affected by the standard deviations of the production

cost and the copper price whilst highlighting the least valuable individual option in the

portfolio – through colour of filled circles; by contrast, Figure 5.3 highlights the portfolio’s

most valuable individual option.
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Figure C.1: Value of investment project, Ḡ0(S0) (in US$ millions), with portfolio of real
options and without options as well as portfolio’s least valuable individual options (filled
circles), as a function of degrees of production cost (σa) and copper price (σx) uncertainty.
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Appendix D

Additional Analyses of Chapter 6

D.1 Effect of Revenue and Technical Uncertainty on

Investment Value

Figure D.1 demonstrates the way in which the standard deviation of changes in revenues,

σv, and the degree of technical uncertainty, σk, effect the value of the investment project

whilst displaying the portfolio’s least valuable individual option, compared to Figure 6.5

showing its most valuable individual option.
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Figure D.1: Value of investment project, Ḡ0(S0) (in £millions), with portfolio of real
options and without options as well as portfolio’s least valuable individual option (filled
circles), as a function of degrees of revenue (σv) and technical (σk) uncertainty.
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D.2 Effect of Pay-out Ratios and Salvage Value Uncertainty

on Investment Value

As in Figure 6.6, Figure D.2 shows the extent to which the value of the investment project

is affected by the pay-out ratios γ and δ as well as by the standard deviation σx, but

displays the portfolio’s least valuable individual option instead.
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Figure D.2: Value of investment project, Ḡ0(S0) (in £millions), with portfolio of real
options and without options as well as portfolio’s least valuable individual option (filled
circles), as a function of pay-out ratios (γ, δ) and standard deviation of salvage value, σx.

D.3 Effect of Depreciation Rate on Portfolio Value

Figure D.3 illustrates for ξ = 0.80% and γ = δ = 0.50 the way in which the standard

deviation of changes in revenues, σv, and the degree of technical uncertainty, σk, effect

the value of the investment project. It is important to note that many of the portfolio’s

least valuable options displayed in Figure D.3b are not unique; in other words, in these

situations several individual options are of equally little value in the portfolio (or even

worthless).

Figure D.4 shows for ξ = 0.80% the extent to which the value of the investment project

is affected by the pay-out ratios γ and δ as well as by the standard deviation σx.
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Ḡ
0
(S

0
)

With Portfolio
Without Options
Halt (b-i)
Abandon (b-ii)
Mothball (c)
Abandon (d)

(b) Portfolio’s least valuable individual option (filled circles).

Figure D.3: Value of investment project, Ḡ0(S0) (in £millions), with portfolio of real
options and without options as a function of degrees of revenue (σv) and technical (σk)
uncertainty, for ξ = 0.80% and γ = δ = 0.50.
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Figure D.4: Value of investment project, Ḡ0(S0) (in £millions), with portfolio of real
options and without options as a function of pay-out ratios (γ, δ) and standard deviation
of salvage value, σx, for ξ = 0.80%.
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