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Abstract

There are numerous security challenges in cellular mobile networks, many of which orig-

inate from the Internet world. One of these challenges is to answer the problem with

increasing rate of signalling messages produced by smart devices. In particular, many

services in the Internet are provided through mobile applications in an unobstructed man-

ner, such that users get an always connected feeling. These services, which usually come

from instant messaging, advertising and social networking areas, impose significant sig-

nalling loads on mobile networks by frequent exchange of control data in the background.

Such services and applications could be built intentionally or unintentionally, and result

in denial of service attacks known as signalling attacks or storms. Negative consequences,

among others, include degradations of mobile network’s services, partial or complete net-

work failures, increased battery consumption for infected mobile terminals.

This thesis examines the influence of signalling storms on different mobile technologies,

and proposes defensive mechanisms. More specifically, using stochastic modelling tech-

niques, this thesis first presents a model of the vulnerability in a single 3G UMTS mobile

terminal, and studies the influence of the system’s internal parameters on stability under

a signalling storm. Further on, it presents a queueing network model of the radio access

part of 3G UMTS and examines the effect of the radio resource control (RRC) inactivity

timers. In presence of an attack, the proposed dynamic setting of the timers manage to

lower the signalling load in the network and to increase the threshold above which a net-

work failure could happen. Further on, the network model is upgraded into a more generic

and detailed model, represent different generations of mobile technologies. It is than used

to compare technologies with dedicated and shared organisation of resource allocation,

referred to as traditional and contemporary networks, using performance metrics such as:

signalling and communication delay, blocking probability, signalling load on the network’s

nodes, bandwidth holding time, etc. Finally, based on the carried analysis, two mecha-

nisms are proposed for detection of storms in real time, based on counting of same-type

bandwidth allocations, and usage of allocated bandwidth. The mechanisms are evaluated

using discrete event simulation in 3G UMTS, and experiments are done combining the

detectors with a simple attack mitigation approach.
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Chapter 1

Introduction

Mobile communications have become inseparable part of our everyday routines, providing

the means for work, entertainment, and communication. Connecting people, and busi-

nesses, it is important not only to secure the transferred data, but also to secure the

stability and efficiency of the network itself. Therefore, security in mobile wireless net-

works, as an area of computing security, is a crucial research topic. New security issues

constantly arise because of diverse reasons, such as with the unveiling of new communi-

cation technologies and services, introduction of new innovations, software and hardware

updates in networking devices, etc. Another important reason is network interconnection.

Mobile networks were first implemented as independent, closed and isolated systems, un-

der full control of the Mobile Network Operators (MNOs), with tightly controlled security

risks. As mobile networks evolved through time, they became more interconnected and

more Internet Protocol (IP) based. With the introduction of packetised data, and the

interconnection between mobile networks and the Internet, many new security challenges

emerged. Connecting the two networks meant that many threats from the Internet will

also become mobile network threats, and also new ones will appear [1, 2].

This thesis looks at a particular type of threat that appeared as a by-product of the inter-

connection between mobile networks and the Internet, and catalysed by the introduction

of smart devices, called signalling storms or signalling attacks [3, 4, 5]. These attacks

represent a Denial of Service (DoS) type of attack on the control plane of the network

4
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and threaten the system’s availability. The circumstances preceding the emergence of sig-

nalling storms were such that as volumes of mobile data increased rapidly in the past few

years, MNOs concentrated on upgrading the user plane capacity, undermining the parallel

increase in control data [6]. On the other side, smartphone and tablet applications tend

to enable an always-on connectivity feeling for the users, which works with constant net-

work re-connections and high signalling volumes [7]. Instant messaging, social networking

and advertising applications, are especially problematic. Mobile networks of the second,

third and even fourth generations, such as GPRS [8], UMTS [9] and LTE [10], were not

designed for such pattern of data traffic, which has resulted in many service degradations

and network outages [11, 12, 13, 14], and cost MNOs a total of $20 billion per year [14].

Statistics suggest that the problem will disseminate, as mobile data traffic increased by

75% in 2015 and has an estimated compound annual growth rate of 53% until 2020 [15, 6].

The share of smartphones among total devices and connections will rise from 38% in 2015

to 48% by 2020 [6]. These trends in mobile data load have proved to be proportional to

the amount of generated signalling traffic [16]. On the other side, the number of security

threats for mobile devices is rapidly growing [17, 18]. While from a network perspective

the signalling storm would congest the signalling servers in the backbone, it would also

have a negative effect for the users. An infected device would successively trigger back-

ground communication with the network and drain the battery of the device, and perhaps

also create unwanted billing for accessed services [19, 20]. Moreover, with the emerging

use of Machine to Machine (M2M) devices, wearable devices and the Internet of Things

(IoT) concept, the problem is expected to disseminate.

This thesis analyses the performance of networks under such attacks, asking the following

questions:

• Why are signalling storms happening? We identify the vulnerabilities and the cir-

cumstances in which attacks can cause problems for the network.

• What are the bottlenecks, and negative effects in the system? First, we investigate

which parts of the network are mostly affected and are most likely to cause an outage.

Then we look at the influence of the attacks on performance metrics of interest in
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both the control and data plane, quantifying the impact from user and network

perspective. The analysis is done for 3G UMTS systems, and then extended for

more advanced systems beyond 3G.

• How to stop signalling storms? First, we examine if the network is capable of self-

defence i.e., if it can keep its stability by adjusting some of its internal parameters.

Afterwards, based on the preceding analysis, we propose mechanisms for detection

and mitigation of malicious behaviour associated with these attacks.

The analysis approach in this thesis is based on mathematical modelling using stochastic

techniques, and discrete-event simulation. More details on the used methodology are

covered in the following Chapter.

1.1 Thesis contributions

In this thesis we presented our work on analysis of mobile networks’ performance un-

der signalling related attacks, which was carried out using techniques from mathematical

modelling and discrete event simulation. Based on these analyses, we studied if a mobile

network is capable of self-defence, by adjusting some of its internal parameters, and pro-

posed mechanisms for detection of signalling attacks in real time. The main contributions

of our work are listed as follows.

• We proposed mathematical models of mobile networks under signalling attack, which

provided performance results from both user and network perspectives. Based on

stochastic modelling techniques, such as Markov processes and queueing networks,

these models could be further upgraded and adjusted to specific mobile technologies,

and used for studying diverse attacks and performance metrics.

• We showed that the mobile network, in this case 3G UMTS, can adjust its inactivity

timers to lower the impact of signalling attacks. Based on this, we proposed an

approach with dynamic setting of the inactivity timers, as a function of the load in

the network, which manages to lower the signalling load in the network, and increases
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the threshold above which network failure can happen. Mitigation of signalling

storms could be done by delaying the bandwidth requests of malicious users, or

blocking their activity for short time periods.

• We compared mobile networks preceding, and following 3G UMTS Rel.99 which

are respectively characterised with dedicated and shared allocation of bandwidth.

The proposed network model included both aspects of communication: transfer of

user and control data, and provided performance measures from user side and net-

work perspectives. The numerical results showed that post-3G networks have much

greater stability, and much higher signalling impacts are needed to cause service

degradations, or network outages. Anyway, results also showed that looking further

in the future, signalling problems in these technologies could also increase due to the

rise of machine-to-machine and the internet of things trends.

• We proposed two mechanisms for detection of signalling attacks and evaluated them

in a simulation environment. Both mechanisms have low computing and memory

demands and would not impede the normal network operation, even if implemented

on the mobile terminal side. The evaluation results show promising results: the

counter based detector, achieved a probability of false positive detection pfp < 0.3%,

and probability of true positive detection ptp ≈ 40%, while the bandwidth-usage based

detector achieved pfp ≈ 0.04%, ptp > 95%, and detection delay τ ≈ 35s.

• As part of the more technical work in our research, we enabled an interface for

remote running of simulations using Mobile Networks Security Simulator (SECSIM),

described in 2.3.2. This work would contribute in the research world, as researchers

interested in security of mobile networks, through the developed interface, could use

the simulator at Imperial College London from anywhere in the world.

1.2 Thesis outline

The remainder of this thesis is organised as follows. In Chapter 2 we present a landscape

of threats and defensive mechanisms in mobile networks and identify the positioning of
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signalling attacks and storms. We also review previous work described in the literature,

and introduce the scientific tools used during this research. In Chapter 3 we present two

mathematical models of third generation (3G) mobile networks under signalling storm.

The first model looks at the problem from the user-side, recreating the vulnerability in

the mobile terminal, while the second studies the problem from network-side, analysing

the radio access part of 3G. This Chapter mainly addresses the questions of why is 3G

susceptible to signalling storms, and if is it capable of self-defence. Chapter 4 is concerned

about upgrading the proposed network model and analysing the signalling problem in

more advanced mobile technologies, such as HSPA and LTE. It further compares results

for 3G UMTS and 4G LTE networks. Chapter 5 proposes two mechanisms for detection

of signalling storms. Both mechanisms are implemented and evaluated in a simulation

environment for UMTS networks. Finally, Chapter 6 concludes the work, outlining the

contributions and possible future directions. In Appendix A we briefly describe the devel-

oped remote control of our simulator for security of mobile networks.



Chapter 2

Background

In this Chapter we first categorise and describe the most common threats in computer

systems, and in particular in mobile networks, and list some of the available defensive

mechanisms. We identify the positioning of the signalling storms within the threats land-

scape, and compare it with other types of threats. Further on, we concentrate on the

signalling related attacks and review previous research work related to the field. Finally,

we describe the research methodology used in this thesis.

2.1 Review of threats and defensive mechanisms

Mobile networks security represents a wide research area, and as a part of the more broad

term computing security, is based on same principles as legacy computing systems: confi-

dentiality, integrity and availability [21]. These three principles define the three security

goals that need to be satisfied on top of physical security, which is also connected to the

information technology, especially in near-future scenarios [22, 23]. Confidentiality, also

referred to as secrecy or privacy, ensures that system-related assets are accessed only by

authorised parties. Integrity stands for assets being modified only by authorised parties,

while availability ensures that system assets are accessed by authorised parties at appro-

priate times. The opposite of availability is known as Denial of Service (DoS) [24]. Attacks

on confidentiality and integrity nowadays are mainly concerned about data, both user and

9
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control related. These kind of attacks are performed for purposes like identity theft or

economic benefits, while availability attacks are focused on disruption of services or even

whole systems without any direct benefits for the attacker. The positioning of this re-

search is mainly in security of cellular mobile networks from a system design perspective

in terms of availability.

A typical mobile network architecture consists of mobile terminals - also referred as User

Equipment (UE), the Radio Access Network (RAN) part containing the Base Station (BS),

the Core Network (CN) involving the main databases and routers, and interconnections

to external networks, such as the Internet. Threats on security can break into any part of

this architecture, although the most vulnerable points are the mobile terminals and the

external networks, while the core network is the safest point. Mobile terminals are mostly

vulnerable because of the openness of the application layer, enabling easy development of

malicious applications. Moreover, the landscape of mobile devices today is very diverse,

consisting of smartphones, feature phones, tablets, personal assistant devices, sensors, etc.,

and each of them is subject to different security threats, mostly depending of their under-

lying operating systems [25]. The external networks contain the user services and could

be any of the following: Internet, Public Switched Telephone Networks (PSTN), corpo-

rate networks, Voice over IP (VoIP) networks, internet browsing services, interconnected

mobile networks, etc. Threats originated in the external networks are also regarded as

cross infrastructure cyber attacks [26], and can spread and mutate due to differences in

organisation and functionalities. Mobile network attacks originating from the Internet are

very common, knowing that mobile devices can be probed, identified and connected to,

directly from the Internet [1, 2].

Table 2.1: Common security threats in computing systems.

Confidentiality / Integrity Availability

Man-in-the-middle Flooding
Eavesdropping Jamming
Phishing Tampering
Session hijacking De-synchronisation
Alteration Control plane flooding
Fabrication



2.1. Review of threats and defensive mechanisms 11

Table 2.2: Common defensive mechanisms in computing systems.

Defensive mechanism Description

Human authentication Used for both physical and computing security.

• Knowledge based, eg. password, PIN, security ques-
tions

• Ownership based, eg. ID card, hardware or software
token

• Inherence based, eg. signature, face, voice, fingerprint

• Advanced biometrics, eg. retinal scan, DNA sequenc-
ing, electronic keystroke fingerprints

Data authentication
and encryption

Broadly used tools, on multiple protocol layers (eg. applica-
tion, network, physical layers).

• Symmetric cryptography, eg. Advanced Encryption
Standard (AES) (encryption only)

• Asymmetric (public key) cryptography, eg. Transport
Layer Security (TLS) (encryption and authentication)

• Network layer tools, eg. Internet Protocol Security
(IPsec) (encryption and authentication)

• Other, eg. Secure Shell (SSH) (encryption and authen-
tication)

Hosts authentication Authentication of any interconnected device.

• Symmetric and asymmetric protocols, eg. AES, TLS

• Point-to-point protocols, eg. Extensible Authentica-
tion Protocol (EAP)

• Network protocols, eg. Diameter

Software authentication Assuring the software conveys its declared actions, usually
performed by comparing to a database with malicious apps.

• Anti-virus and anti-malware software tools

• Network based solutions, eg. firewalls, gateways

Mobile network specific
mechanisms

Additional layers of encryption and authentication provided
by the MNO.

• Additional authentication and encryption mechanisms,
eg. Temporary Mobile Subscriber Identity (TMSI)

• Network based solutions, eg. gateways, Network Ad-
dress Translation (NAT)

• Deep Packet Inspection (DPI) and honeypots [27]
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In the following we will describe some of the most common threats and defensive mech-

anisms in computing systems, summed up in Tables 2.1 and 2.2, which are also valid

for cellular mobile networks. We then focus on mobile network - specific attacks and

countermeasures. Furthermore, the work in [26], [28] and [29] provides an overview and

classification of the threats in mobile networks and computing systems in general, and can

be used for further reading.

2.1.1 Attacks on confidentiality and integrity

In general threats on confidentiality could easily become threats on integrity of the system,

which is why they are often described together, as in our case. The following threats are

actually broad areas containing many sub-types of threats, and may often originate from

the Internet world, but are also a threat to other networks.

• Man-in-the-middle - a threat that intercepts, relays and possibly alters the com-

munication between two parties [30]. Both parties believe they are communicating

directly. One example is an attack on unencrypted WiFi networks. These kind of

attacks are performed because of economic and information benefits. The counter-

measures are based on mutual authentication between communicating parties, such

as with public key (asymmetric) cryptography where not only data is encrypted, but

also the two parties are authenticated by a common trusted certification authority.

Two often used application layer authentication and encryption tools are Transport

Layer Security (TLS) and Secure Shell (SSH) protocols.

• Eavesdropping - this is generally a threat to data confidentiality, as attackers only

get unauthorised access to data, but don’t modify it. These attacks are common

for any communication technology, intercepting data over telephone lines (known as

wiretapping), web browsing, email, instant messaging, etc. A typical countermea-

sure is encryption, although attackers could also collect unencrypted metadata. A

common cause of these attacks is malware, such as Trojans.

• Phishing - an attack acquiring sensitive information, like usernames, passwords,

credit card information, etc., by an attacker pretending as a trustworthy service.
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These attacks are usually spread by social media, email (as spam messages) or instant

messaging. A common situation is when users enter their details in web sites with

look-and-feel of popular legitimate ones. Some of the countermeasures include: social

awareness, user / website authentication, email spam filtering, etc.

• Session hijacking - an attack in which the parameters of a connection session

between two parties are stolen by a third party. This is also known as cookie hijacking

in the Internet world, because sessions are controlled by HTTP cookies. In mobile

networks, session hijacking can happen as a part of a man-in-the-middle attack on

base stations. The countermeasures used include data encryption and generation of

stronger session keys.

• Alteration - an attack with modification of data in networked devices or communi-

cation links, threatening its integrity. Most vulnerable are some IoT devices which

are less secure due to their low processing and memory capabilities.

• Fabrication - a threat to authentication of digital systems due to attackers inserting

imitation data in a normal functioning network.

2.1.2 Attacks on availability

There’s a great amount of research done on attacks on system’s availability, in different

types of communication networks. The DoS attacks happen when one or more attackers

generate flooding traffic and direct it from multiple sources towards a set of selected nodes

or IP addresses in the global network. While previously these attacks were initiated by

single sources, today they are typically distributed (DDoS), while the attacker uses large

number of compromised devices to attack one or more devices simultaneously. The foreseen

solution for this problem is to create more self-aware networks which are typically packet

networks and are able to monitor their own internal behaviour, as well as the interaction

with external systems, in order to modify their behaviour so as to adaptively achieve

certain objectives, such as detect and react to intrusions, defend against external attacks

and others [31]. The author in [32] lists the network security as one of the top priorities in

future self-aware networks, knowing that the size of the Internet, and its interconnected
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IP networks, are growing rapidly. Furthermore, the authors in [33, 34] propose a DoS

defence system which is specifically designed for self-aware networks. The papers present

experimental results that are obtained on a real networking testbed that runs the self-aware

Cognitive Packet Network (CPN) routing protocol. Moreover, DoS attackers usually need

to target a specific portion of mobile devices, so as to concentrate the attack on a given

area, and to maximise its impact. There is also a need to search for network devices with

a particular vulnerability, in such way that they can be compromised and controlled by

a central point. On many occasions, such attacks have been performed using millions of

IoT devices, such as IP cameras and sensing nodes. For this reason, searching for objects

with particular features in large spaces is an area of interest, and is elaborated further

in [35, 36, 37]. An interesting observation is the way attack detection techniques affect

the search, for instance, when a deep packet inspection slows down the search, as the

malignant search agents approach a given vulnerable node. Such example is presented

in [38], where the authors propose a framework for DoS defence, such that islands of

protection are created around critical information infrastructure. DDoS attacks specific

to mobile networks are analysed in [39], where authors also point the potential bottlenecks

created by the merge of GSM and IP. More extensive details are given for SMS flooding

attacks, Paging attacks and attacks on dedicated channel. The authors outline the main

factors to network vulnerabilities such as: network openness to Internet, deterministic

system’s procedures and design based on typical user behaviour. It also motivates the

use of randomisation, adaptation and prioritisation as central ingredients in the design of

future generation networks. The following describes the attacks on availability mentioned

in Table 2.1, with more focus on attacks on mobile networks, and in particular flooding

attacks which have many things in common with the signalling storms.

• Jamming - creation of radio interference in order to block the communication.

• Tampering - creation of compromised network devices, acting as legitimate hosts

in the network.

• De-synchronisation - disruption of a connection by running incomplete procedures

of the communication protocol.
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• Control plane flooding - attacks specific to networks with a control plane, in

which the flooding of the communication is performed with control messages, rather

than with data packets, such as the signalling storms.

Flooding is the most common attack on availability on mobile networks. It consists a wide

group of attacks characterised with repetitive patterns of communication. The goal of this

attack is to exhaust its resources of the flooded system and cause interruption of its work.

A few examples are:

• Attach floods - also known as Random Access Channel attacks. Before a mobile

terminal starts communicating, it must go through an attach procedure with the

network.The terminal and network authenticate each other, after which the data

send over the radio interface is encrypted. This registration procedure, described in

[40], includes exchange of a few unencrypted messages, which may be a vulnerability

for man-in-the-middle attacks. Nevertheless, the main purpose of the attach flood

is to overload the network with constant repetitions of fake attach requests initiated

by the terminal. This can cause a local base station or local area network outage. If

a fake International Mobile Subscriber Identity (IMSI) number is used, this attack

can overload the operator’s database and possibly cause a complete network outage.

One variation of this attack is the roaming attach flood in which the attacker uses

IMSI numbers of a roaming network operator and the attack is triggered by any

other network partner which can increase the impact of the attack. These types of

attack are easy to perform, for example any smartphone can easily be programmed

to turn on and off its radio interface and re-attach to the network each time. These

attacks exist since the time of GSM, and are still active. Therefore, they’re easy to

detect as network operators have long experience fighting against them.

• Paging floods - the Paging procedure takes place when a mobile terminal is inactive

and has an incoming call or data and the network needs to find its location and

initiate a connection. The terminal is inactive if it’s in state Idle, which is an

RRC state when it does not communicate for a period of few seconds up to few

minutes (depending on MNO’s configuration). In this state the network does not
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know its accurate location. When an incoming call / data needs to be delivered,

the network searches the terminal in its last reported location, called location area.

If it’s not found, the network gradually expands the search area. This procedure

involves a lot of signalling, mainly in the radio access part. A paging flood attack

uses this vulnerability to initiate an attack - most commonly from an external IP

network, such as the Internet. The attacker needs to first discover the IP addresses

of a large group of mobile terminals, which has shown to be feasible in [1, 2], and

then direct some data to them. This attack can cause a complete network outage.

A successful countermeasure would be to hide the terminals’ IP addresses behind

a Network Address Translation (NAT) mechanism, so the attackers could not find

them. Although many operators don’t use NATs, another concern is the use of M2M

devices with public IP addresses. The use of M2M is expanding quickly, allowing

devices such as sensors, tracking and identification devices to communicate with each

other and control centres.

• DNS floods - these DoS attacks use the mobile network infrastructure - its Domain

Name System (DNS) servers, to amplify the impact of attacks. The DNS services

provide domain name to / from IP address translation and are one of the main

components of any communication network. An LTE network for example uses three

types of DNS servers: external (for hosts in external networks - such as Internet),

internal (for the networks’ subscribers) and intra-operator (for mobile terminals of

other MNOs). The vulnerability in DNS is in its stateless procedure - a DNS server

resolves its queries as they come, and cannot deny queries. This is used by attackers

to send repetitive queries in which the sender’s address is modified to have the

address of the attacked host. When the server replies, usually with much bigger

amount of information, it replies to the attacked host. If such host is an important

network node, it can overload and cause full network outage. Some challenges in

securing the DNS system are outlined in [41].

• SIP floods - SIP standing for Session Initiation Protocol, is a signalling protocol in

IP networks for controlling multimedia sessions. As mobile networks tend towards

all-IP implementation, the SIP protocol is used as part of the IMS system. SIP vul-
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nerabilities are a potential cause for many attacks, although its risks to the network

are medium. One possible attack is based on generating SIP INVITE requests at

high rate, such that the SIP server or SIP Proxy would need to store a session for

each request, until its resources are drained.

The DoS / availability attacks are unlike other types of attacks because the attacker can

carry out a successful attack without penetrating the target network, and therefore are

tough to defend against. Defence against distributed DoS attacks is even more complex,

as there are multiple sources of the attack. Moreover, high intensity DoS attacks could

have huge impact in short time duration. These are some of the few reasons why DoS

attacks are rated as the most dangerous type of attacks to network operation. The au-

thors in [42] compare different DoS attacks in terms of impact and risk, classifying many

of them in the medium-to-high impact and risk groups. Some of the attacks described in

the article include: SIP floods (medium-high risk with potential impact of outage of the

voice services), DNS floods (high risk with impact of medium-full network outage), Pag-

ing floods (high risk with impact of medium-full network outage), Attach floods (medium

risk with impact of medium-full network outage), etc. On the other side, there are less

motivational reasons for attackers to trigger a DoS attack, compared with the confidential-

ity and integrity threatening attacks which could be motivated by economic benefits and

information retrieval. Furthermore, the non-DoS attacks would usually target individual

mobile users or network servers, rather than targeting the operation mode of the network.

Most of the attacks on system’s availability have a few things in common. For example, a

repetitive pattern and a requirement to have control over a large amount of mobile devices.

This is not a difficult step knowing the apparent spread of malware apps. Although

DoS attacks are look-alike, many times MNOs need different detection mechanisms to

detect different attacks. This is because attacks target different vulnerabilities. One

common countermeasure is the Deep Packet Inspection (DPI) which comes from the IP

world and is widely used in the telecommunications area as well. This technique works

by placing multiple inspection points through the network that are able to examine the

data and metadata of traversing packets and filter out the packets pertaining possible

threats to the network. This is a powerful tool, although computationally demanding,
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and is used in protecting the mentioned three basic security concepts. Work in [19] uses

DPI on a portion of IP packets to detect signalling attacks. The authors suggest that

monitoring of the signalling data is not enough to effectively detect such attacks. Another

countermeasure is known as honeypot [27]. It works by placing a bait, such as valuable

data or service for cyber criminals, on a legitimate server or client machine and wait for

it to be attacked. This type of tools are mostly used to detect malware, spam email or

spam SMS. Furthermore, a network of interconnected, collaborating honeypots in known

as honeynet or honeyfarm. An interesting approach of a honeypot implemented on a

mobile terminal’s Android system, instead on the network side, is presented in [43]. More

details on the signalling-related attacks on system’s availability are given in Section 2.2.

On top of data encryption in client-server communication, as an application layer coun-

termeasure, additional security mechanisms are also employed directly by the mobile net-

work. Firstly, in order for a mobile terminal to communicate it must go through a certain

procedure with the mobile network like mutual authentication procedure and message en-

cryption (ciphering). The authentication implementation is MNO specific although 3GPP

provides some recommendations. Algorithms used in GSM, GPRS and UMTS have been

broken on multiple occasions, each time triggering the need for new advancements. More

detailed account on the newest security mechanisms used in LTE is presented in [44].

Apart from authentication, the network uses temporary identification numbers in order

to hide important ones. In this way, the terminal is assigned a Temporary Mobile Sub-

scriber Identity (TMSI), a frequently changed number which is used to replace the fixed

International Mobile Subscriber Identity (IMSI) number for each terminal. In such way,

it’s harder for attackers to track or clone legitimate mobile terminals. Another coun-

termeasure used in any IP network, including recent mobile networks, is provided by the

Internet Protocol Security (IPsec). Apart from application layer mechanisms like TLS and

SSH, IPsec works on the Internet (IP) layer of the protocol suite providing authentication

and IP packet encryption. In order to protect information integrity, some measures like

data movement monitoring and data modification logging might be implemented by some

MNOs.
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2.1.3 Malware

Malware is the most frequent cause of attacks on system security in the last couple of years

[45]. It is a malicious software, which gets installed on user equipment using the human

factor as a weak point, and can be used to disrupt the work of the network, gather sensitive

information, get unauthorised access to services, and even display unwanted advertising.

Since the invention of the smartphone, and other smart devices, malware infections started

rapidly spreading in the mobile world as well. It is very often responsible for big network

failures, such as in [11]. This is why, it is important to understand what malware is,

what problems it can cause in mobile networks, and what are the available defensive

mechanisms.

There have been many malware classifications in the last couple of years, like [46, 47, 48].

Anyway, the malware landscape changes very quickly, so this report uses a more top-

view approach to classify malware using its goal: system damage, economic benefits and

information leakage. Some common examples of system damage malware are:

• Rooting - gains control over the attacked device, also known as jailbreak in iOS

systems;

• Toll Fraud - unauthorised usage of services (ex. SMS, voice calls). This malware

can also gain economic benefits, for example with premium SMS sending;

• Botnets - enabling back-door control of devices by a remote command centre. This

is one of the most common causes for DoS attacks.

Some of the malware types with a goal of economic benefits are:

• Spyware - a general term for malware that steals information in order to sell it.

This type can alls be classified in the information leakage group;

• Ransom - steals personal information and publishes it on the internet, demanding

for a ransom price to delete the information. Also belongs to the information leakage

group;
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• Spam - compromises a device in order to send out messages - very often for asking

financial help. Most common examples are SMS spam and email spam;

• Adware - displaying unwanted advertising, which is paid-for by third parties.

And finally the information leakage group of malware consists the following:

• Trojan - a legitimate looking software, which performs malicious actions once run.

This malware can also be run for economic benefits or system damage;

• Monitoring - a program that simply monitors the activity of the device and user

and stores the information.

Malware is the source of a large portion of the attacks on mobile networks’ confidentiality,

integrity and availability. Current solutions require anti-malware and anti-virus software

which work by checking the software’s code for calls to external malicious addresses, or

comparing the software as a whole to a database with previously known malicious software

codes. Apart from typical anti-malware software, there are honeypot-like solutions, like

[49], used for classification of Android applications. As of today, malware is the top

threat to computing systems, and we can confidently claim that software authentication

represents the bottleneck in today’s security mechanisms.

2.2 Signalling attacks and storms

Signalling attacks and storms represent a fairly novel type of attack on mobile network’s

availability. In general an attack is considered a storm if it happens as a result of normal

user activities, and attack if it is performed intentionally. In this thesis, both denomina-

tions are used in parallel. There have been many reported occasions where these attacks

manage to degrade the quality of service, or even cause network outages in 3G UMTS

networks [11, 12, 13, 14]. The cause of such incidents is well known and lies in the way

we started communicating recently. Indeed, smart devices use multiple mobile apps, and

each of them individually triggers communication with corresponding servers, in order to
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provide their services to the customer. Most problematic are chatty Instant Messaging

(IM) apps, and advertising apps. Both use frequent background messages either to pro-

vide an always connected feeling to its customers, or to satisfy its commercial partners

by providing persuasive advertising [45]. All of this would have functioned perfectly well

if mobile phones had PC-like Internet connectivity. On the other side, the vulnerability

in today’s cellular mobile networks is that the RRC mechanism is not designed for such

pattern of frequent repetitive communication. Connections in mobile networks are dynam-

ically created and torn-down to optimise the use of resources and each connection requires

exchanging of multiple signalling messages to setup and reserve network resources.

In short, the vulnerability in the RRC protocol can be described as follows. In mobile

networks RRC is the protocol which is responsible for management of the radio bandwidth

[50]. It defines functions such as the establishment of connections and Radio Bearer (RB),

mobility procedures, power control, etc. The establishment of connections and RBs is

triggered by the mobile terminal, by sending a Connection Request message in UMTS or

Random Access message in LTE. The RRC looks at the available resources and if possible

grants them to the terminal. After the terminal has transmitted / received all data, the

RRC sets up an inactivity timer after which it deducts the granted bandwidth. The length

of the inactivity timers is MNO specific and depends on the RRC state of the terminal.

This type of dynamic granting and deduction of bandwidth worked well in the legacy

telephone systems, but experiences problems with transfer of packetised data. Signalling

attacks use this vulnerability to repetitively acquire and release communication resources

in order to hurt the network. Namely, each of these transitions trigger multiple signalling

messages within the radio access, and even core part of the network, and if repeated by

large number of mobile terminals can overload the signalling servers of the network and

cause complete system failures. Section 3.1 gives more details of the RRC protocol in

UMTS.

There are many possible approaches to solve the problem with excessive signalling by smart

devices. In order to solve the problem on application level i.e., to encourage software de-

velopers to produce network-friendly apps, the Global System for Mobile Communications

Association (GSMA) has issued a guideline for application development [51]. This guide-
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line proposes a few measures including: building offline mode capabilities through caching,

grouping of multiple connections together, asynchronous mode of operation, etc. At the

moment, there still isn’t any globally agreed solution to this problem. Most MNOs tend

to run extensive offline data packet analysis to detect such malware apps, or install ex-

pensive hardware equipment in different points in their network for signalling monitoring

purposes. Few large-scale, expensive, hardware and software based solutions are described

in [52, 53, 54, 55]. These solutions usually work with extensive analysis of IP packets’

content in many points of the network architecture. Although some of these solutions

have proven partial success, network operators cannot afford to buy expensive solutions

for every possible type of attack. The importance of this problem is also tackled in many

international research projects, such as [56, 57]. Research done in the field focuses on

quantifying the impact of such attacks on the network and on finding a simple detection

mechanism. Work here can be categorised as follows:

• Problem definition and attacks classification [16, 26, 58, 39];

• Measurements in real operating networks [59], [60];

• Modelling and simulation [61, 3];

• Impact of attacks on energy consumption [20, 62];

• Attacks detection and mitigation using: counters [63, 64, 65], change-point detection

techniques [66, 67], IP packet analysis [19], randomisation in RRC’s functions [68],

software changes in the mobile terminal [69, 49], monitoring terminal’s bandwidth

usage [70], detection using techniques from Artificial Intelligence (AI) [71, 72], etc.

Analyses of the system under attack are essential to understanding the cause of the problem

and identifying critical system’s parameters that are involved in the attack. Work done

in this area represents a cornerstone for future detection and mitigation of attacks. Some

of the works done in this area are based on analytical models, simulation and traffic

analysis of real-world networks. The authors in [3] use a large Markov chain model for

mathematical modelling of a mobile user’s signalling behaviour. Its objective is to identify

the system’s parameters which should be avoided, namely those that, from an attacker’s
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perspective produce the largest amount of damage through load in the network. Results

show that the load on the access part of the network increases with the increase of the

attack rate, while the load on the core part of the network has a maximum value for a

certain attack rate value. Furthermore, the load on the network depends on the percentage

of misbehaving UEs. Authors in [61, 73] use analytical and simulation approach to analyse

the effect of radio resource control signalling attacks on UMTS networks. The focal point

of interest in the paper is to calculate the load on the RNC and CN in a system under

attack. Additionally, the paper inspects the influence of the attack on the Quality of

Service (QoS) for normal users. Results show that signalling attacks can cause significant

problems in both control and user plane in the network. Furthermore, the paper makes

some suggestions for lowering the impact of the attack, like enabling the cell PCH state,

and provides insight how such attacks can be detected and mitigated. Some analysis of

signalling traffic in real-world UMTS network is presented in [16]. The paper shows a

comparison of signalling traffic by different types of mobile applications and its influence

on the RRC part of the network. It also explores some application and network layer

solutions for controlling application signalling traffic.

Motivated by the fact that signalling storms have repeatedly caused service degradations

and outages in 3G UMTS networks, the authors in [60] conduct a set of experiments on

3G operational mobile network by modifying the software system of the UEs. The authors

manage to discover RRC-related parameters set by the network, and to optimise the attack

rate of a single UE such that it has the maximum impact on the network. Authors in [59]

use real UMTS traffic traces and analyse them offline against different RRC state machine

settings. They further compare the influence of two streaming techniques on the resource

and energy consumption. The effect of the signalling storms on energy consumption and

bandwidth allocation in the mobile terminals in LTE is inspected in [20, 62]. The authors

show that even if small portion of the terminals in the network are misbehaving, the energy

consumption of the radio subsystem of the normal UEs can increase significantly while

the time spent actively communicating increases drastically for a normal data session.

Another research direction is in attacks detection and mitigation which focuses on simple

user or network side solutions based on randomisation, adaptation or change-point tech-
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niques. The search for a simple solution to the problem is ongoing, mostly because today

there are only expensive hardware solutions on the market. One simple approach towards

detection of signalling attacks in 3G networks is covered in [66]. In this publication, the

authors gather signalling data by two approaches: simulation based on theoretical traffic

models, and real traces from emulated 3G on a WLAN network. Attacks are detected

using a statistical CUSUM method for early detection. Good points of the approach are

the simplicity, dynamism and small detection time of the method, although the emulation

of 3G signalling on WLAN is doubtful and some unrealistic assumptions are made. Simi-

larly, authors in [67] work on detection of traditional flooding-based DoS attacks using a

change-point detection approach with the non parametric CUSUM method. The work in

[68] proposes randomisation of Radio Resource Management (RRM) and Mobility Manage-

ment (MM) procedures to hide the parameters which are important to attackers. Authors

try out procedures randomisation using a simple simulation of radio bearer establishment

procedures. Their results suggest that the can be useful to lower the impact of attacks at

the price of slight decrease in performance. The solution proposed in [19] is based on anal-

ysis of a portion of IP packets. The authors suggest that simple analysis of the signalling

traffic is not enough to accurately detect malicious behaviour. Their solution is flexible

in the sense that it can be installed anywhere in the data path i.e., mobile terminal, base

station, gateways, etc. Results indicate that it can detect signalling attacks with more

than 0.9 probability of detection and less than 0.1 probability of false alarm. The work

described in [65] presents analytical analysis of a novel approach for detection and miti-

gation of signalling storms. The detection mechanism is based on a counter of bandwidth

allocations to high speed channels, and should be implemented in each mobile terminal.

When the counter reaches a certain threshold, the terminal is temporarily suspended. A

more detailed description of the detector is presented in [63], while a event driven simu-

lation approach is presented in [64]. An already functional large-scale protection system

based on IP packet analysis is available in [55]. A slightly different approach towards

detection/mitigation of attacks is proposed by [69] using software changes in the kernel of

the mobile phone’s system. The paper proposes a mobile user-side protection mechanism

against signalling attacks and Trojan viruses based on partitioning the software stack into

application operating system and communication partition. The communication partition
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is responsible for monitoring the communication and the actual attacks mitigation. The

solution is implemented in Android enabled smartphone and tried in an isolated GSM

experimental network.

While most of the described work above uses tools from probability theory and queueing

networks, as in the approach of this thesis, there is increasing importance of AI tools in

the recent years, such as Artificial Neural Networks (ANN), which follow as an analog

successor. A link between the two fields have been established in the Random Neural

Network (RNN). The authors in [74] propose a generic approach to detection of DoS

attacks using Bayesian classifiers combined with a Random Neural Network. The Bayesian

classifiers aggregate likelihood estimation of heterogeneous statistical features, while the

RNN combines them and distinguishes between normal and attack traffic during a DoS

attack. The RNN is further used in [71], to detect attacks on the control plane of the

network in real time, using performance metrics on the data plane. The proposed solution

is suitable for implementation on the edge of the network, and does not require modification

of the cellular network equipment. The data plane metrics used include: packet inter-

arrival times, packet size, burst rate, destination address.

2.3 Analytical and simulation frameworks

Mathematical and simulation analysis are probably the most commonly used tools in re-

search on security in mobile networks due to the following reasons: (i) running security

threat analysis on real operating mobile network is infeasible process for protection of the

sable operation of the network, (ii) MNOs usually refuse to share data due to protec-

tion of their customers and (iii) data anonymization is expensive and long process. The

research methodology used in this thesis is also based on mathematical modelling using

stochastic modelling techniques, and discrete-event simulation. Both approaches are sim-

ilar and easily comparable. For example, both define a system state which can change

upon appearance of a random event.
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2.3.1 Stochastic modelling

The modelling approach in this thesis is based on well established stochastic modelling

techniques, such as Markov processes and queueing networks [75, 76]. Markov processes

are stochastic processes with a property that the next value of the process depends on the

current value, but it is conditionally independent of the previous values of the stochastic

process. In other words, the behaviour of the process in the future is stochastically inde-

pendent of its behaviour in the past. The Markovian processes are appropriate for use in

this research as they are mathematically tractable, widely used and often provide reason-

able results. More specifically, we will use Poisson processes, a type of continuous time

Markov processes, which have been used on multiple occasions in the telecommunication

sector for traffic engineering. The Poisson processes are further suitable because of their

memoryless property: the interval between two events, for example two call arrivals, is

a random variable with exponential distribution with parameter λ, or equivalently mean

1/λ.

Although the validity of the Poisson assumption has been questioned on multiple occasions,

it has been extensively used in modelling the arrival of both voice calls and data packets in

mobile networks. One such example is presented in [77] where the authors use the Poisson

process to model the arrivals to a shared, time-slotted random access channel, which

is commonly used in many types of wireless networks: the IEEE 802.11 standards for

Local Area Networks (LANs), the Wideband Code Division Multiple Access (WCDMA)

standards in 3G and the LTE standards in 4G. The Poisson processes are also used in the

earliest protocols for wireless communication over shared channels, such as the ALOHA

protocol [78]. The authors in [79] elaborate on the use of Poisson processes, for both

transmissions and re-transmissions, in Slotted ALOHA networks. They conclude that the

Poisson assumption is valid only when one allows very large packet delays compared to

the slot time.

Tools from queueing theory are also used in the thesis, such as open and closed queueing

networks with multiple classes of calls. The analysis of these systems is first described by

Jackson [80] and Gordon and Newell [81], for finding a product-form stationary distribution
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in open and closed networks with a single class of calls. Then Basket et al. [82] analyse

systems with multiple classes of calls, while Gelenbe develops new product form queueing

networks with negative and positive customers known as G-networks [83, 84]. While

these methods suggest the use of balance equations (equating the probability flux out of

a state with the probability flux into the state) in solving for the product form, more

recently Harrison in [85, 86] proposed a new approach using the Reversed Compound

Agent Theorem (RCAT). The RCAT methodology models the Markov processes as dual

i.e., reversed processes, in which the direction of time is reversed, and manages to find

new product forms for several Markovian networks [87], including G-networks [88]. In a

part of this research, we look at the signalling storms blocking effect on legitimate traffic.

Therefore we are particularly interested in modelling blocking networks. While usually

product forms i.e., a separate solution for the network’s equilibrium state probabilities, do

not exist, the authors in [89] use the RCAT methodology to develop some product forms

for special blocking cases, while a survey can be found in [90]. Within this research, we

will use the traditional approach with balance equations for solving non-blocking systems,

such as in Chapter 3. While the mentioned approaches have managed to find a product

form solution for some special blocking networks, our models described in Chapters 3 and

4, will be solved numerically due to their complexity.

2.3.2 Discrete event simulation

Discrete event simulation is a widely used tool for modelling of computer networks. Unlike

continuous simulation in which the system dynamics change continuously and are tracked

over small time slices, discrete event simulation works with discrete sequence of events in

time, without changes in the system state between events. It is only an event that can

change the state of the system. The simulation must be able to keep track of the simu-

lation time, and to order events chronologically in a queue. Random number generation

(RNG) is an important aspect, as two simulation runs with the same initialisation (seed)

of the RNGs will produce same results. Therefore, results should present an averaged

outcome of multiple simulation runs with different seeds. In this thesis, we use the Mobile

Networks Security Simulator (SECSIM) simulator as a discrete-event simulator specialised
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in security of mobile networks, and developed within the NEMESYS project [91]. 1

SECSIM simulator

The SECSIM simulator represents a tool for modelling, evaluation and simulation of cy-

bersecurity in mobile networks, with a focus on the signalling layer in the radio access

part. Based on Omnet++ it is an object-oriented discrete event simulator [92]. SECSIM

is a modular solution, allowing network components to be easily modified using smaller

components - modules. Network nodes are self-contained and independent entities, which

communicate between each other via messages - modelled according to 3GPP standards

for mobile protocols. Its flexible architecture enables rapid prototyping and testing of

new cellular security solutions, and offers a valuable resource for evaluating different net-

work configurations and settings. Potential users of the simulator include mobile network

operators and vendors, network analysis and security companies, research institutions,

and standardisation bodies. Some details on the modelled capabilities in SECSIM are

summarised in the following.

• Network entities and architectures. SECSIM’s current version contains models

of functional components of UMTS networks, while components of LTE network

are under construction. Some of the built components include: UE, RNC, NodeB,

SGSN, GGSN, eNodeB, SGW, Internet hosts, etc. The number and size of NodeBs

and eNodeBs is configurable, which enables setting up of femto, micro and macro

sized cells. The RNC model has the RRC containing a single signalling server,

RANAP, NBAP and GTP protocols. The signalling server plays a crucial role in

the signalling attacks and their mitigation.

• Control plane models. In the control plane, the UE model consists of the SM,

GMM and RRC layers. The networks side contains models of the corresponding

entities.

1The Mobile Networks Security Simulator - SECSIM was built by Mr Gökçe Görbil PhD from the
Intelligent Systems and Networks (ISN) group at Imperial College in London. I would like to thank
Mr Görbil, and my supervisor Mr Erol Gelenbe, for giving me access to SECSIM for the research work
described in this thesis.
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• Data plane models. In the data plane, it contains the application layer containing

both Circuit Switched (CS) and Packet Switched (PS) applications, the transport

layer with TCP and UDP protocols and a simplified IP layer. Different types of

applications that could be simulated include: web-browsing, SMS, email, multimedia

streaming, VoIP calls, IM, M2M, voice calls and many types of malware apps.

• Radio bearers. RBs are modelled as two pairs of FIFO queues with a single

server, for uplink and downlink transmission. There are signalling and data RBs.

The service times of RB servers depends on the data rate associated with the RB

and the length of the transmitted data.

• Security threats. Some of the security threats currently implemented in the sim-

ulator include, but are not limited to, the following: signalling attacks and storms,

SMS spamming, premium SMS, compromised femtocells, botnets, command & con-

trol servers, etc.

• MAC and PHY layers. The Media Access Control Layer (MAC) and Physical

Layer (PHY) are not modelled, while changes in radio conditions are modelled as

random variations.

We can say that SECSIM generated data is credible, and close to real-world data, be-

cause of the following reasons: network entities of UMTS and LTE simulation models

closely resemble the actual ones; communication procedures are accurately programmed

by the 3GPP specifications; data generator functions on the simulated application layer

are modelled by statistics of real data provided by Google [93]; propagation delays and

interference on the physical layer (although not modelled directly) are represented as ran-

dom variables drawn from probability distributions. Further on, SECSIM’s data has been

used in previous research work and published on multiple occasions [94, 61]. Our choice of

SECSIM is further based on: its broad configurability options, its specialisation in the area

of mobile network security, and because its code is open-source within our research group

- which is an important prerequisite for testing the tools developed within this research.

Nevertheless, SECSIM could still improve in areas such as: more precise modelling of the
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Physical layer, enabling a finite capacity of wireless resources, organising bandwidth using

spectrum reuse strategies, completion of its 4G models, etc.

2.4 Chapter summary

This Chapter first covered an overview of threats specific to mobile networks, which were

categorised according the basic principles in computing security: confidentiality, integrity

and availability. Most common countermeasures for each type of attack were also provided.

A brief overview and classification of malware was also presented, as malware being the

most prevailing threat in the mobile world in the last few years. More attention was given

to attacks on network’s availability, which includes the signalling related type of attacks,

such as signalling storms. We reviewed research work related to the field of signalling

storms and singled out the possible research directions. Finally, we described two research

methodologies used in this work: stochastic modelling and discrete event simulation. The

lessons learned in this Chapter are as follows:

• Looking at the broad field of computing security, we can conclude that the currently

available defensive mechanisms for authentication and encryption would work well if

implemented properly. Anyway, most of the security breaches today happen because

of human error, incompliance with security standards, and poor system design.

• Among the defensive mechanisms in computing security (human, data, host, and

software authentication, and data encryption), the software authentication field cur-

rently represents the bottleneck. Therefore, malware is the primary source of security

problems in today’s information systems.

• Most of the availability attacks in mobile networks, and in the global Internet, follow

a common repetitive pattern, which also plays a key in their detection.

• The mobile network attacks on availability would usually need to have compromised

a huge number of mobile devices in order to make an impact on the network. Anyway,

with the invention of smart devices this task for the attackers is simplified because

devices could be compromised using malware.
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• Most of the vulnerabilities for DoS attacks in mobile networks happen because of

poor protocol design or simply because of protocols being outdated. For example,

the RRC protocol in UMTS was initially designed for voice calls as the primary

type of traffic, but packetised traffic has quickly taken over, which initiated several

problems for UMTS.

• The signalling attacks/storms could happen because of intentional malicious activ-

ity, or as a by-product of a legitimate network functions, for example a signalling-

demanding mobile application becoming too popular or mobile devices re-trying to

connect to a failed server.

• Most of the research in the field of signalling storms works on their detection. Some of

the approaches include: traffic monitoring with change-point algorithms, randomi-

sation of protocol messages, counting repetitive actions, deep packet inspections,

algorithms from anomaly detection, etc.

• There have been very few research publications where analysis are done on data of

real working mobile networks. In the case where real-world data is not available, the

usual approach, as in this research work, is by using mathematical modelling and

simulation tools.

In the next Chapter, we start by describing the Radio Resource Control vulnerability in

UMTS, and then propose two stochastic models (respectively looking from the terminal

and network perspectives) in order to understand the signalling problem better, and find

answers to our first research questions.
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Signalling storms in 3G mobile

networks

Mathematical modelling is an important tool used in research that provides the means for

analysis and synthesis of systems. It is especially important in cases with deficiency of

real-world data. This approach is also suitable in the scope of our work, because it could

represent a smaller part of the system, and focus on the vulnerability, isolated from the

other conditions in the system. As seen in Chapter 2, the problem with signalling related

attacks on networks’s availability lies in the design of communication protocols and is

caused by recent technological advances, such as the invention of smart devices. There

are negative consequences for both the mobile user, and the mobile network operator,

and the problem could be tackled from both perspectives. This Chapter looks at the

signalling storms problem in 3G UMTS from both perspectives using stochastic modelling

techniques, described in Section 2.3. As a starting point, the 3G UMTS system is selected

because of its dominant implementation worldwide, and because of the many documented

signalling problems in the system. The RRC state machine is first described in Section

3.1 identifying the vulnerability of interest. Afterwards, Section 3.2 presents a model of

the vulnerability on the terminal side, while Section 3.3 presents the network side model.

Our conclusions are listed in Section 3.4.

32
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3.1 Radio Resource Control vulnerability

The management of communication resources in UMTS is regulated by the RRC mech-

anism. In general, there are two RRC connectivity modes: Idle and Connected. In Idle

mode there aren’t any radio resources used between the mobile terminal, referred as User

Equipment (UE) in UMTS, and the Radio Network Controller (RNC). The few tasks a

UE performs in Idle mode are related to neighbour cell monitoring, cell re-selection, pag-

ing and reception of broadcast data. In this state, the UE consumes the least amount

of energy. In Connected mode, there is a logical connection established between the UE

and the network, although physical communication channels may or may not be allocated.

RRC’s Connected mode is further divided in four states:

• CELL DCH (in short DCH state) - a state where a dedicated connection exists in

uplink (UL) and downlink (DL) direction. Radio resources are dedicated exclusively

to the UE allowing it to send and receive data at high rates up to around 10 Mbps.

In this state the UE consumes the highest amount of energy;

• CELL FACH (FACH state) - there aren’t any dedicated connections but data can

be transferred via common channels. This state is suitable for transfer of small

amount or bursty data. The data rate achievable is up to around 10 kbps and

there’s moderate battery consumption;

• CELL PCH (PCH state) - similarly to Idle state the UE monitors only the paging

and broadcast channels. The difference is that the logical RRC connection still

exists;

• URA PCH (URA state) - a state similar to CELL PCH where every cell change does

not trigger a cell update procedure in order to decrease the signalling activity.

In UMTS there are two concepts for data communication: the concept of connection,

and the concept of Radio Bearer (RB). When an idle UE wants to make a data call

it needs to establish a connection and obtain communication resources. The UE first

initiates establishment of a RRC connection and then the network creates one or more
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Figure 3.1: RRC states in UMTS. Typical number of generated signalling messages for
state changes (left), energy consumption (middle) and the maximum data rate for the
mobile terminal (right).

RBs depending on the requested and available resources. There can be only one RRC

connection per data call or per UE, but many RBs within one connection. The RB defines

the properties of the connection depending on the requested QoS parameters. For instance,

to transfer low volume data the UE will obtain a common physical channel (FACH state)

and a dedicated physical channel (DCH state) for a higher volume, delay-restricted data.

After data is transmitted, the network then revokes allocated resources after an inactivity

timeout tL in FACH state or tH in DCH state which are in order of few seconds [95].

The vulnerability in the RRC state machine is that moving between these states generates

multiple signalling messages in the radio access and core parts of the network. Moreover,

the frequency of moving is controlled by simple timers defined for each state. Fig. 3.1

shows the four basic RRC states, omitting the URA state, the typical number of signalling

messages generated with each state switch, the approximate energy consumption of the

UE and the maximum data rate achievable.

A UE can send and receive data using either a forward access channel (in FACH state)

or a dedicated access channel (in DCH state) depending on the amount and type of data

it has to send. An attacker could do the same and successively request either a FACH or

DCH channel, therefore we say it performs a FACH attack or DCH attack, respectively. In

order to maximise the number of connections per unit time, in a FACH attack, the usual
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state change is between PCH and FACH states, while in a DCH attack - between FACH

and DCH states.

3.2 Mobile terminal model

This Section models the system’s vulnerability on the mobile terminal side, in order to

analyse the problem at the root of its cause - at the point where signalling is generated.

The goal is to see if the network/system can maintain its stability under an attack by

changing some specific state transition time constants. More precisely we are interested

if the inactivity timers and state transition delays, which are fixed parameters in current

network setups, are able to be configured in a certain way so the impact of the attack

is reduced or completely evaded. The Section first describes the mathematical model of

the RRC mechanism under attack, then defines a cost function regarding the normal and

attacked states of the model which is minimised numerically. Finally results show the

value of the cost function regarding the parameters of interest.

3.2.1 Model description

The modelling approach taken in this Chapter comes from the field of stochastic / random

processes. More precisely, we are using Markov processes with a particular set of states

- the values that the system can take. One property of the Markov processes is that the

next state that the system can take depends only on the current state, but not on previous

states. The system we are modelling in this Chapter is a single user’s RRC part of UMTS

under signalling attack and is described by the state diagram on Fig. 3.2. The figure

depicts a model derived from the conventional RRC state machine in UMTS with added

attack states in the system. The idle state is represented by D - Dormant, PCH and URA

states are represented by a single P state, L (the low state) represents FACH and H (the

high state) represents the DCH state. The corresponding attack states are indicated with

LA and HA for attacks on the respective low and high states.

At any given time and state, the system may receive one of the following four requests
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Figure 3.2: RRC state machine model of UMTS under signalling attack.

triggered by the UE: normal FACH, normal DCH, attack FACH and attack DCH request

which trigger the promotion transitions in the system. Let us denote with λi the rate of

normal requests for state i and with αi the rate of attack ones where i ∈ {L,H}. We

define the attack ratio parameter k as:

k =
αL
λL

=
αH
λH

. (3.1)

State demotion rates from normal states are denoted by δP = 1
tP

, δL = 1
tFACH+tL

and

δH = δF = δV = 1
tDCH+tH

, where tFACH and tDCH represent the average duration of

data transmission in the respective states while tx is the inactivity timeout period in state

x. Transitions denoted by δF and δV represent the fast dormancy mechanisms which

were introduced in later versions of UMTS standards. During a signalling attack, the

attacker usually does not transmit any data because the purpose of the attack is solely

to trigger the signalling transitions. Therefore, the demotion rates from the attack states

are selected as δLA = 1
tL

and δHA = δFA = δV A = 1
tH

. Two specific cases are included

when low-bandwidth (FACH) requests are served in dedicated channel states, represented

by the transitions from H to HA and vice-versa.
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To analyse the system in steady state, one needs to find the equilibrium distributions i.e.,

the state probabilities. Here, we denote the probability of state i with πi. Equating the

probability flux out of a state to the probability flux into the state, we get the following

balance equations:

πD(λL + λH + αL + αH) = πP δP + πHδV + πHAδV A,

πP (λL + λH + αL + αH + δP ) = πLδL + πHδF + πLAδLA + πHAδFA,

πL(λH + αL + αH + δL) = (πD + πP + πLA)λL + πHδH + πHAδHA,

πH(δV + δH + αL + αH + δF ) = (πD + πP + πL + πLA)λH + πHA(λH + λL),

πLA(λL + λH + αH + δLA) = (πD + πP + πL)αL,

πHA(λL + λH + δHA + δFA + δV A) = (πD + πP + πL + πLA)αH + πH(αL + αH).

(3.2)

The system of linear equations could be solved by taking into account the normalisation

condition
∑
i
πi = 1, which would give a solution for the equilibrium distributions. Our

optimisation goal is to minimise the time spent in the attack states i.e., to minimise πLA

and πHA, thus maximising the normal behaviour of the system. To optimise the system,

we can define a cost function C as follows:

C =
πLA + πHA
πL + πH

. (3.3)

The cost function can be considered as a function of two variables: the inactivity timers

tL and tH , and call setup delays txL and txH in promotion transitions to FACH and DCH.

From an implementation perspective, the variables tL and tH are set on the network side

by the MNO, while txL and txH are delays that should be implemented on user side, before

any signalling is triggered. While modifying the inactivity timers is fairly straight-forward,

inserting delay in promotion transitions should be looked at from the system’s perspective.

Let us denote with θi the total request rate for state i seen by the system:

θi = λi + αi, i ∈ {L,H}. (3.4)
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Then the average inter-request interval is:

tθi =
1

θi
. (3.5)

We insert a setup delay txi in transitions to state i and get the delayed inter-request

interval :

t′θi = tθi + txi. (3.6)

Solving for the new - delayed arrival rates we get:

λ′i =
λi

1 + txiλi(k + 1)
, α′i =

kαi
k + txiαi(k + 1)

. (3.7)

which represent the delayed normal and attack rates at state i. In order to minimise C we

can use the partial derivative of C with respect to both variables: ∂C(ti,txi)
∂ti

and ∂C(ti,txi)
∂txi

,

and a function minimisation algorithm, such as gradient descent. The following Section

summaries the numerical results for the system.

3.2.2 Numerical results

The results presented in this Section inspect the value of the cost function C(ti, txi) depend-

ing on the two candidate defensive mechanisms, inactivity timers and call setup delays, in

case of an attack on FACH or DCH state. In the analysis, we use the following values for

the system’s parameters:

• We can calculate the duration of data transmission in FACH and DCH channels,

tFACH and tDCH , as the quotient of the data volume per channel allocation and the

channel data rate. For this purpose, we can take the maximum data rates for a Rel

99 UMTS version of FACH and DCH channels as 32 kbps and 2 Mbps, respectively

[96, 97, 98]. The average data volume per background (FACH) allocation is 100 KB

[99], and 320 KB per high-speed (DCH) allocation as an average web page size [93].

Using these values, we get tFACH = 3.125s and tDCH = 1.28s.

• We select some common values used for the inactivity timers in UMTS, in order of
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Figure 3.3: The cost C as a function of inactivity timeout period at state i for FACH
attacks.

few seconds fro FACH and DCH state timers, tL = 4s and tH = 6s, and in the order

of minutes for the PCH state timer, tP = 20min [4].

• The value of the attack ratio k is only a measure of attack strength, and as so it

only influences the amplitude of C.

First, we look at attack on FACH state and as a defensive mechanism we modify the two

inactivity timers in the system. Three scenarios are considered: (1) we use a fixed value

for tL = 4s and modify tH , (2) we use a fixed value for tH = 6s and modify tL, and (3) we

modify both timers together using tL = tH . Results are presented on Fig. 3.3. For fixed

tL = 4s the cost function decreases with the increase of tH . This simply shows that the

longer the system stays in H state the lower the impact of the attack on FACH state. For

fixed tH = 6s the cost function increases with the increase of tL meaning that the quicker

the system returns to normal state, the lower impact of attack. The cost function for

changing both tL and tH together has a more complex form, rising to a certain point after

which it starts declining. Of course, the cost function has a minimum at tL = tH = 0 i.e.,

when timers are turned off. Anyway, very low timer values have shown to be unsuitable

in practise as it would trigger higher number of timeouts and re-connections. Therefore a
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Figure 3.4: The cost C as a function of setup delay at state i for FACH attacks.

better choice is selecting higher values for the two timers.

On Fig. 3.4 again we look at an attack on FACH state, but now modify the call setup

delays txL and txH , while inactivity timers are kept to their default values. Three scenarios,

analog to the previous figure are inspected: modifying the two parameters together, and

modifying one parameter while the other is fixed to 0s. Results show that setting txH = 0

and increasing txL is a good choice for lowering the attack. In contrast to that, increasing

the delay of DCH requests while an attack is ongoing on FACH state sharply increases

the impact of the attack. Increasing the delay in both FACH and DCH requests at the

same time does not introduce any improvements.

In the following two figures, we will look at a system under DCH attack. Fig. 3.5 shows

the results for using the inactivity timers as a defensive mechanism, while keeping the

setup delays fixed to their default values. Results are analogous to the ones in Fig. 3.3.

Increasing the inactivity timeout in the un-attacked state tL introduces small improve-

ments, while in the two other scenarios the cost function has convex form which suggests

that higher values for the timers are more suitable. There is one difference to the case in

Fig. 3.3: although we would expect constant increase in C with the increase of tH when tL
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is fixed, C drops after a certain point. This is due to normal FACH requests being served

in high bandwidth channels DCH, thus the transition HA to H being more probable than

H to HA.
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Figure 3.6: The cost C as a function of setup delay at state i for DCH attacks.
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Finally, Fig. 3.6 depicts the case of inserting delay in promotion transitions in a system

under DCH attack. Analog to the case of FACH attack, inserting delay in DCH requests

in this case lowers the cost function, while inserting delay in FACH requests increases it.

C also increases if increasing the setup delay for FACH and DCH requests at the same

time.

In general, the cost function has a minimum for FACH attack and tL = 0, or DCH attack

and tH = 0. This result is correct by means of lowering the cost function. Anyway

selecting small timers in both cases means higher number of timeouts i.e., higher number

of transitions. In case of FACH attack, setting the inactivity timer of DCH state to higher

values is a good choice. Similarly, selecting higher values for the inactivity timer in FACH

state slightly improves the security of the system under DCH attack. When adding setup

delay to connections, the conclusion is that delay has to be added only to transitions

towards the attacked state. If the attacked state is not correctly estimated, adding delay

to the wrong transitions would have a negative effect.

3.3 Mobile network model

This Section presents a mathematical model, based on techniques in queueing theory,

of the radio access part of 3G UMTS network under signalling storm. The goal of the

modelling in this Section is: (i) to examine the influence of the attack on the network

and to identify the points with highest impact, and (ii) similarly to Section 3.2, to see to

what extent some system’s parameters can be used in the defence against such attacks, in

particular - the inactivity timers in RRC. This part first describes the general model of

the network, and afterwards focuses in more details on the models of data channels and

the models of normal and malicious user behaviour. Finally a dynamic timer is proposed

and compared with a default static one.
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3.3.1 Model description

The proposed network model is depicted on Fig. 3.7 and focuses on the radio access

part of a typical mobile network with N cells and a single radio network controller. It

represents an open network model with calls joining it with a Poisson arrival rate λr0.

The arrival process does not depend on the state of the system. There are two classes

of calls traversing the network, with classes denoted with r ∈ {n, a} for normal (traffic

for SMS, web-browsing, instant messaging, etc.) and attack (malware-generated malicious

traffic), respectively. There are two types of service centres (nodes) in the model. First,

the Signalling Server (SS) in the network controller is modelled as a first-come-first-served

(FCFS) single queue with infinite waiting places and service rate µs. Second, the data

channels in each cell i are modelled with an M/M/mi/mi queueing model as mi parallel

servers without queueing option. The finite number of servers is due to the limitation

of frequency bands allocated to MNOs. The service times in each node in the network

are exponentially distributed. In the data channel nodes, the service time distribution

is distinct for different classes of calls. This is because of the different bandwidth usage

behaviour of the normal and malicious calls and its model is described in Section 3.3.3.

Furthermore, the service time in the data channel node i is state dependent i.e., depends

on the number of calls in service ni. The service time distribution for the SS node is

same for both classes of calls, because the signalling procedure undertaken by the network

does not distinguish call classes. To simplify the analysis we assume that all rates within

the network are Poisson, although this is not the case with nodes with finite capacity

and possibility of blocking. The rest of the notations used in the model are listed in the

following:

• λrs - the total rate of class r calls coming to the signalling server. It includes the

calls joining from outside the network, the calls that have successfully been served

and return as new calls, and the calls that retry transmitting/receiving data after

not being allowed due to insufficient free channels;

• pbi - the probability of a call at cell i is not admitted i.e., is blocked, for communi-

cation because all data channels are occupied. This quantity is same for both types
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Figure 3.7: Queueing model of the radio access part of a mobile network.

of call classes;

• prbo - the probability that a blocked call of class r leaves the network. pab0 actually

gives the stubbornness of the attacker with values close to 0 denoting an attacker who

triggers repetitive calls although not awarded any data channels for communication.

In a similar way, pnb0 is a measure for human persistence;

• prsi - the probability that a class r call which has finished its signalling procedure,

will join data channels in cell i;

• γri (ni) - the service rate of class r calls at cell i, dependent on the current number

of calls in service ni;

• pri0 - the probability that a class r call leaves the network after successful service;

• prij - the probability that a class r call joins cell j after successful service in cell i.

Note that the superscript in some of the above notations is an indicator of the correspond-

ing class, and not a symbol for exponentiation. Solving the balance equations for our

model would be a complex task given the different class service distributions and FCFS

queueing approach. Therefore, in the rest of this Section we look at numerical analysis of

the proposed model. To solve the system numerically and simplify the exposition, we will

drop the subscript i referring to the cell number. The arrival rate at the signalling server
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of class r calls is given by:

λrs =
λr0 + γr · (1− pr0)

1− pb · (1− prb0)
, (3.8)

while the total arrival rate is a sum of the arrival rates of both classes of calls: λs = λns +λas .

To solve this equation, we need to find γr and pb, which is done in the following.

3.3.2 Data channels model

We can describe the steady state of the system by the pair (nn, na) where nn and na are

the number of normal and attack calls in service. If we denote with µr the service rate of a

single data channel for class r call we get a two-dimensional state diagram as on Fig. 3.8.

Note that the total arrival rate of class r calls requesting a free communication channel is

given with λrs. The cell could have at most m calls in service and so has finite number of

states represented by the M/M/m/m Markov chain model.
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Figure 3.8: State diagram for of the data channels model with m parallel channels.

Lets denote with πij the probability of i normal and j attack calls in the node, we can
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write the following balance equations:

π00λ
n
s = π10µ

n,

π00λ
a
s = π01µ

a,

π10λ
n
s = π20 · 2µn,

...

(3.9)

Solving each equation for π00 and propagating the result as i, j → m, for πij we get:

πij =
(ρn)i(ρa)j

i!j!
π00, 0 < i+ j ≤ m (3.10)

where ρn = λns
µn and ρa = λas

µa are the utilisations of a cell due to normal and attack calls.

Using the normalisation condition
∑

∀i,j;i+j≤m
πij = 1, for π00 we get:

π00 =
1

m∑
j=0

m−j∑
i=0

(ρn)i(ρa)j

i!j!

. (3.11)

We can further define the marginal probabilities for a fixed number i of normal or attack

calls in the node as:

πn(i) =
m−i∑

j=0

πij , πa(i) =
m−i∑

j=0

πji. (3.12)

Finally we can calculate the average number of normal and attack calls n̄n and n̄a in the

node:

n̄n =
m∑

j=1

jπn(j) =
m∑

j=1

m−j∑

i=0

(ρn)j(ρa)i

i!j!
jπ00,

n̄a =
m∑

j=1

jπa(j) =
m∑

j=1

m−j∑

i=0

(ρn)i(ρa)j

i!j!
jπ00.

(3.13)

And for the total average number of calls in the node, regardless of the call type, we get:

n̄ =

m∑

j=0

m−j∑

i=0

(i+ j)πij =

m∑

j=1

m−j∑

i=0

(ρn)i(ρa)j

i!j!
(i+ j)π00. (3.14)
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Here n̄ = n̄n + n̄a is also valid. As mentioned earlier, the call blocking happens regardless

of the call class, so the probability of blocking pb can be calculated as the probability of m

total number of calls in the node:

pb =

m∑

i=0

πi(m−i) =

m∑

i=0

(ρn)i(ρa)m−i

i!(m− i)! π00. (3.15)

The solution for the blocking probability pb, average number of calls in the system n̄, and

the rate λrs is found by solving the system of non-linear equations.

3.3.3 User behaviour model

In general, the two classes of calls, referred to as normal and malicious (or attacking) have

different service time distributions. A normal call, for example a session of web browsing

traffic, would usually happen in bursts which would occupy the channel for a longer period.

Contrary, attack calls would usually transfer only a small portion of data in order to trigger

quick bandwidth allocations and deallocations, as previous research has identified [61]. The

two patterns are depicted on Fig. 3.9 with Tn denoting the normal session duration and

T a the attack session duration. In this context, the inactivity timeout period, denoted with

t0 plays a crucial role. Using this timeout MNOs can control the dynamic allocation and

reuse of bandwidth and is usually a few seconds long. The selection of t0 represents a

trade-off between the amount of used bandwidth and the amount of signalling messages

due to new allocations. The symbols s and q on Fig. 3.9 stand for service and quiet

periods.
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Figure 3.9: The user behaviour model describing the duration of a single data session T r

of class r.

Until now, we’ve modelled the system’s behaviour on a call level, but now we need to look

in more details on a session level, within a given call. Let us denote with λe the effective

normal session rate, which we assume is a Poisson variable. This rate depends on the type
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of traffic generated by the call and influences the session length. For the purpose of this

paper, we will use an estimated value of λe for web-browsing traffic. In real networks, this

value can be measured easily by the MNO.

Referring back to Fig. 3.8, we can find the service rates of a single data channel as µn = 1
T̄n

and µa = 1
T̄a . An average class-r service rate of the whole cell would then be given by:

γr = min(n̄,m) · n̄
rµr

n̄
. (3.16)

The average attack session duration T̄ a is straightforward to calculate. Since malicious

calls send small amount of data, or no data at all, T̄ a could be obtained with the following:

T̄ a = t0, and µa =
1

t0
. (3.17)

In the case of the average normal session duration T̄n, we can calculate its expected value:

T̄n =

∞∑

i=0

diΠi =

∞∑

i=0

(
i

λe
− q̄ + t0)Πi (3.18)

where di is the duration of Tn for i - number of consecutive burst arrivals before a timeout,

Πi is the probability of it happening and q̄ is the average duration of the quiet period.

Since inter-arrival times are exponentially distributed, the probability of i inter-arrivals I

happen before a timeout could be calculated with:

Πi = [Prob(I < t0)]i · Prob(I > t0) =
(
1− e−λet0

)i · e−λet0 . (3.19)

If we look at a quiet q period, it can be interrupted by either an arrival of data burst or

by the inactivity timer. The intervals between burst arrivals are exponentially distributed

with a mean value of 1/λe, and the inactivity timer is an exponential random variable

with mean t0. Therefore, the quiet period q will also be exponentially distributed as the

variable min(t0,
1
λe

). The mean duration of the quiet period is then simply:

q̄ =
1

λe + 1
t0

. (3.20)



3.3. Mobile network model 49

To put it all together, we plug in the equations for q̄ and Πi in the equation for T̄n and

we get:

T̄n =

∞∑

i=0

[ i
λe
−
(
λe +

1

t0

)−1
+ t0

](
1− e−λet0

)i · e−λet0 , (3.21)

which further gives the normal channel service rate as µn = 1
T̄n .

Table 3.1: The default parameters of the model.

m=20 The available simultaneous DCH channels in a working UMTS
cell depend on multiple factors. In the following work the choice
of DCH channels is selected randomly because of the following
reasons: i) this work is not focused on looking at the details
on the physical and data link layers, and ii) the selection of
parameter m only influences the scale of the results.

λn0 =1, λa0=0.5 We keep the value of λn0 to a fixed random value, such that it
doesn’t overload the system, while the value of λa0 is selected
to represent an attack rate that is lower than the total normal
rate. In most of the experiments the value of λa0 is varied.

pn0 =0.9, pa0=0.1 We have selected that normal users have low activity i.e., that
there’s 90% chance that a user will put his phone to sleep after
a successful call. In contrast, there’s only 10% chance for a suc-
cessful attacker to leave the network, because we assume that
successful attackers will keep on sending repetitive requests.

pnb0=0.9, pab0=0.3 Normal users are selected to have low persistence i.e., lower
probability of re-trying a call after being blocked. The attackers
are selected with medium to high persistence indicated by the
lower value of pab0.

λe=0.05 The effective normal session rate would normally be estimated
from usage statistics by the MNO. In our case, it is selected as
the call rate to a single data channel λn0/m.

t0=2s The inactivity timer of DCH channel is usually set to a value
of around few seconds [4]. The proposed mechanism uses a low
value of the timer to enable quick (de)allocation of resources.

3.3.4 Numerical results

One of the goals in the experiment in this Section was to examine the influence of the

attack on the network and to identify the points under highest impact. For that purpose,

we first define two performance metrics: the signalling server load λs as the total call

arrival rate to the SS node, and data channels load λd as the total call arrival rate in the

data channels of a cell:

λs = λns + λas , λd = λs · pb, (3.22)
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Figure 3.10: Load on the signalling server and the data channels for different attack rates.

where λrs is given with Eq. 3.8. For the numerical results presented in the following, we use

the default set of parameters listed in Table 3.1, unless stated otherwise for the particular

experiment.

Both metrics are shown on Fig. 3.10 for different number of data channels m. We can

observe that the limitation of dedicated data channels limits the load imposed on them and

indirectly serves as a self-defensive mechanism. On the other side, the signalling server is

the bottleneck in this situation as λs grows almost linearly with the outside attack arrival

rate λ0a. We can suppose a similar behaviour of the base station nodes, because of their

similar characteristics. More detailed analysis of the bottleneck in the network, regarding

BS and SS capacities is given in Chapter 4.

Another interesting observation is the influence of attack persistency on the network load.

Fig. 3.11 depicts the signalling server load λs and the data channels load λd as a function

of the attack arrival rate λa0 for the following three levels of attack persistency: low (pab0 =

0.8), medium (pab0 = 0.4), and high (pab0 = 0.2). While it is obvious that with the rise of

attack persistency there is an increase in the signalling load in the network, it has little

to no influence on the data channels load.
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Figure 3.11: Network load for different levels of attack persistency.

Next, using the initial conclusions from Section 3.2, we hypothesise that the inactivity

timer t0, if set properly, would alleviate the problem. To see its influence on the system

under attack, Fig. 3.12 shows the normalised loads λs and λd as a function of t0. The

result confirms the conclusions from Section 3.2 that a higher value t0 could be used as

a self-defensive mechanism against signalling storms. This parameter is by default set to

a fixed value by the mobile operators. Anyway, with the emergence of signalling related

attacks, it may be more suitable to use a dynamic inactivity timer, as a function of the

network load. One possible approach is to increase the timer linearly with the load on the

signalling server, after a signalling load threshold value θ is reached:

t0(λs) =





tmin0 λs ≤ θ,
(tmax

0 −tmin
0 )

λmax
s −θ · (λs − θ) + tmin0 λs > θ,

where λmaxs is the maximum allowed load on the signalling server, θ is a load threshold

and tmin0 and tmax0 are the minimum and maximum values that the timer can take. In real

operating network, these parameters should be set by the MNO according to its needs. The

idea is to set the timer to a low value tmin0 for low signalling loads, such that bandwidth

is used efficiently, and to increase the timer only after a predefined load threshold θ is

reached. λmaxs is the point of network outage.
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Figure 3.12: Normalised load on the signalling server and the data channels for different
inactivity timers.

In the following we compare the proposed dynamic inactivity timer with the current static

used in industry. The parameters used in this experiment are listed in Table 3.2, while Fig.

3.13 shows the signalling server load for both static and dynamic timers. The comparison

shows that the proposed approach managed to lower the amount of signalling load for

λs > θ. Although this solution is not capable of evading the possibility of network outage

completely, it gives MNOs control of the amount of load on the signalling server.

Figure 3.13: Signalling server load for static and dynamic inactivity timer.
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Table 3.2: The default parameters of the dynamic inactivity timer.

Static inactivity timer

t0=2s A pretty small value for the timer would enable quicker band-
width de-allocations, and more signalling overhead.

Dynamic inactivity timer

tmin0 =2s We choose the same value as for the static timer, so for
small signalling loads the network will use quick bandwidth
de-allocations.

tmax0 =60s The upper limit of the inactivity timer is set to a large value,
a couple of times larger than tmin0 , so in high signalling loads
the network would prefer to waste bandwidth in order to save
processing power.

θ=3 calls/sec The load threshold should represent the boundary between a
”normal” and ”abnormal” network loads. It is selected to a
value lower than the data channels saturation load which is
around 8 calls/s (see Fig. 3.10).

λmaxs =5 calls/s The maximum load the network can cope with is also selected
to a value lower than the data channels saturation load which
is around 8 calls/s (see Fig. 3.10).

Figure 3.14: Blocking probability for static and dynamic inactivity timer.

One downside of a proposed dynamic inactivity timer is the increased portion of blocked

normal calls, once the threshold θ is achieved. Fig. 3.14 depicts this situation using the

blocking probability pb as a function of the outside attack arrival rate λa0. In the figure,

the threshold θ is achieved around λa0 = 0.2 calls/s, after which the dynamic approach

increases the inactivity timer. The mechanism lowers the impact of the signalling attack,
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at the cost of the increased portion of blocked normal calls. This negative aspect could

be reduced if the parameters of the dynamic timer are set accordingly to the MNO’s call

arrival statistics.

Further improvements in this approach are possible if the dynamic timer is setup for

each mobile terminal individually, such that only potentially malicious terminals will be

assigned long timers. As a bottom line, we can see that the inactivity timer is not just

a trade-off between the bandwidth reuse and number of connections, as discussed earlier,

but also in networks under a signalling attack, it is a trade-off between the signalling load

in the network and the number of unserviced normal calls.

3.4 Chapter summary

The problem with overwhelming signalling messages in mobile networks is mainly created

by the increasing use of smart devices and has negative effects on both the mobile network

and the mobile users. This problem can happen as a consequence of poorly designed mobile

applications, or because of intentionally created malware residing on mobile devices. The

vulnerability of the system lies in the RRC mechanism which is designed to allow dynamic

reuse of wireless communication resources, therefore allowing frequent RRC state changes.

Signalling related DoS attacks are well documented in 3G UMTS networks and can cause

numerous problems: overloading of core parts of a network - which is manifested through

network congestion or even partial or complete network failures, high battery consumption

and low computational performance for infected mobile terminals, service degradations for

uninfected terminals, etc.

This Chapter, using mathematical modelling techniques from probability theory, tried to

understand and tackle some of the problems. First, a mathematical model of the 3G

UMTS RRC mechanism on the side of the mobile terminal was proposed. The model

used Markov chains as a stochastic modelling technique which is suitable for steady-state

analysis of the problem. The model consisted both normal and attacked states and a

cost function was defined to minimise the probability of attacked ones. Two possible

defensive mechanisms were outlined as: modifying the inactivity timers and adding setup
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delay to promoting transitions. Some conclusions in this part are valuable for designing of

attack mitigation mechanisms. Such mechanisms are combined with two attack detection

algorithms in Chapter 5, and are implemented in a simulation environment.

In the second part of this Chapter, we proposed a queueing network model of the radio

access part of 3G UMTS network. It used two classes of calls traversing an open network

model and a limited number of dedicated data channels. The admission control in the

network was based on the availability of data channels, which were modelled as m parallel

servers without queueing possibility. The bandwidth usage patterns of normal and attack

calls was also included in the model. This model confirmed some initial findings earlier in

the Chapter regarding the ability of the network of self-defence using the inactivity timers

and identified the bottlenecks in the network under attack.

The lessons learned in this Chapter are as follows:

• The vulnerability to signalling storms lies in the Radio Resource Control mechanism;

• Inactivity timers and call setup delays are identified as possible network parameters

that could help in reducing the impact of signalling storms;

• The limitation of dedicated data channels indirectly acts as a self-defensive mecha-

nisms in signalling-related attacks;

• The bottleneck in the network under a signalling attack are the signalling servers,

and base stations, depending on their respective capacities, the number of malicious

devices under control and their attack rate;

• Inactivity timers cannot prevent from network outages in signalling storms, but

can decrease their impact. One possible use is the dynamic timer which sets the

inactivity timer as a function of the load in the network;

• The inactivity timer is not just a trade-off between the bandwidth reuse and number

of connections, but also a trade-off between the signalling load in the network and

the number of unserviced normal calls.
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Based on the network model in this Chapter, the following Chapter proposes a generic

network model which is used to represent different network technologies, preceding and fol-

lowing 3G. It adds more details to the model and tries to quantify the impact of signalling

attacks on both - the network and mobile users.



Chapter 4

Signalling storms beyond 3G

mobile networks

The previous Chapter looked at the signalling problem in 3G UMTS, presenting mathe-

matical models of the mobile terminal, and the network under attack. It examined if the

system can keep its stability using some of its internal parameters, such as the inactivity

timer, and identified the bottlenecks in the network. One of the shortcomings in the pre-

vious Chapter is that it looks at a single generation of mobile networks. Therefore, this

Chapter improves the network model proposed in the previous Chapter, so it can represent

different network generations and give more details on the impact of a signalling attack.

The modelled network has a generic architecture and can provide a deeper information

on both the signalling and the data communication stages, covering a typical lifetime of

a call from the moment of joining to the moment of leaving the network. The rest of this

Chapter is organised as follows. Section 4.1 presents the network model and describes how

mobile technologies are grouped in two categories. Section 4.2 presents the user behaviour

model which enables modelling of different types of user traffic. Section 4.3 describes the

modelling details of the two groups of mobile technologies, while Section 4.4 analyses the

network performance under a signalling storm. Finally Section 4.5 lists the conclusions

and lessons learned within this Chapter.

57
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4.1 Network model

In order to examine different network types and multiple performance metrics, the pro-

posed network model from Fig. 3.7 is extended to a more complete and generic model,

with its core part depicted on Fig. 4.1. The core part of the model consists only the

basic elements of the architecture, such as multiple Base Station (BS) nodes, comprising

queueing models in the control and data plane, connected to a single radio network con-

troller, comprising one Signalling Server (SS) node. Comparing with the model in the

previous Chapter, we have made two major modifications: i) we have added the control

plane aspect in the BS nodes which will allow us to calculate some performance metrics

related to the signalling stage, and ii) we represented the communication nodes as black

boxes, such that different communication technologies can be plugged in as sub-models.

To facilitate the analysis, different network types are assigned to one of the two mobile

network groups, depending on the way they handle bandwidth allocations: traditional

and contemporary groups. The traditional group consists networks which provide packet-

switched services through the use of dedicated uplink and downlink radio resources, similar

to the circuit-switched domain. This group includes networks such as: GPRS, EDGE and

earlier versions of UMTS. The contemporary group consists networks which use a sharing

approach of resources with fast scheduling, such as HSPA and LTE networks.

The lifetime of a call could be represented with two stages: a signalling stage where the

call uses the control plane of the network as a signalling connection request message,

and a communication stage where the call is admitted for communication and uses the

data plane for data transmission. The signalling stage of the model is responsible for call

admission control and scheduling according to the bandwidth resources available at the

subsequent communication stage. When a mobile terminal wants to communicate, it sends

a connection setup request which needs to be processed at the BS and SS. If admitted, the

mobile proceeds to communicate in sessions (each comprising multiple data packets) which

we denote as calls in the rest of the Chapter. If a call is blocked, then the mobile may

either leave the network or attempt to reconnect with a probability that depends on the

type of call. There are two types of calls or connection setup requests in the network: i)
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Figure 4.1: Queueing network model of a mobile network where the communication model
is represented as a black box since it depends on the mobile technology.

normal calls representing traffic from legitimate users or applications, and ii) attack traffic

generated by malicious or malfunctioning applications that may overload the network.

The network model is open with calls joining and leaving the network, representing for

example the arrival and departure of mobiles to WiFi areas. Its parameters are defined in

Table 4.1 where the superscript r ∈ {n, a} denotes the class of a call (normal n or attack

a).

We assume calls arrive from outside the network according to independent Poisson pro-

cesses and the service times in each node are independent and exponentially distributed.

Since calls may be blocked at the SS due to congestion, the aggregate arrival processes at

different parts of the network are not Poisson. Nevertheless, to simplify matters so as to

obtain analytical solutions, we make the approximation that all flows within the network

are Poisson. The service time distribution for the BS and SS nodes in the signalling stage

is same for both classes of calls, because the signalling procedure undertaken by the net-

work does not distinguish call classes. On the other hand, in the communication stage,

the service time distribution is distinct for different classes of calls because of the different
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Table 4.1: The main parameters of the model

N Number of cells covered by one signalling server.
λr0i Rate of new class-r calls joining cell i ∈ {1, . . . , N}, which corresponds to mobile

phone activations and handovers by roaming users.
λri Rate of class-r connection requests traversing the i-th BS. These include calls

joining from outside the network, calls that have been successfully served and
return as new calls, and calls that retry connecting after not being admitted at
cell j due to insufficient data channels.

λrs Total rate of class-r calls arriving at the SS, λrs =
∑N

i=1 λ
r
i .

γri Rate of class-r calls that timed out after being admitted to cell i.
prib Proportion of class-r calls not admitted for communication at cell i.
prb0 Probability that a blocked class-r call leaves the network; pab0 represents attack-

ers’ stubbornness while pnb0 reflects human persistence.
pri0 Proportion of class-r calls leaving the network after successful service at cell i.
prij Proportion of class-r calls joining cell j after being blocked at cell i given that

they stay in the network i.e.,
∑N

j=1 pij = 1.

µb Class-independent service rate of connection requests in the BS, representing
the cell signalling capacity.

µs Class-independent service rate of connection requests in the SS, representing
the SS capacity.

1/αr Average communication time of a burst within a class-r session.
1/βr Average duration of a quiet (inactivity) period within a class-r session.
τ r Timeout rate.

bandwidth usage behaviour of the normal and malicious calls.

The flow of calls in the above model could be expressed in a closed form as follows. The

total arrival rate of class-r connection requests at BS i is the sum of the rates of i) new

calls, ii) returning calls that timed out, and iii) calls that were blocked at a cell j by the

SS due to insufficient resources and are attempting to connect at cell i:

λri = λr0i︸︷︷︸
new calls

+ γri (1− pri0)︸ ︷︷ ︸
reconnecting after

timeout

+

N∑

j=1

λrjp
r
jb(1− prb0)prji

︸ ︷︷ ︸
joining after being blocked
at cell j due to congestion

, (4.1)

where the proportion of blocked calls prib and the rate of admitted calls that has timed out

γri depend on λrj , ∀j. These quantities are derived in the rest of this Chapter. Additionally,

the following parameters are congestion-independent and their values can be estimated by

MNOs through statistical observations: the external call rate λr0i, the probability of a

serviced call leaving the network after timeout pri0, the probability of a call leaving the

network after not receiving service prb0, and the probability of a blocked call at the j-th
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cell re-attempting to connect at the i-th cell prij . The total arrival rate of class-r calls to

the SS is then λrs =
∑N

i=1 λ
r
i .

While the signalling stage is common for different network types, the internal parameters of

the BS and SS nodes, such as their capacities and service distributions, can be adjusted to

the network type. Both nodes are modelled as processor sharing (PS) systems with service

capacity µb and µs calls per second, respectively. If we denote with Di the connection setup

time (i.e., the signalling delay) for a user in cell i, then its average value can be calculated

as:

E[Di] =
1

µb − (λni + λai )
+

1

µs − (λns + λas)
. (4.2)

where the both terms provide the delay in the respective nodes. In the rest of this Chapter,

we concentrate on modelling the communication stage and the behaviour of normal and

malicious calls.

4.2 User behaviour model

The traffic (or user behaviour) model described in the following allows us to describe a

wide range of communication patterns for both normal and attacking calls. Data com-

munication typically happens in bursts of packets, with inactivity periods between bursts

that represent thinking or reading times. For example, in the case of web browsing, a user

may request a web site triggering a sequence of packet downloads, then spend some time

reading the web page (inactivity period) before clicking another link and starting a new

download epoch, and so on. This pattern of communication also occurs in other appli-

cations like instant messaging and video streaming, with the latter being characterised

by significantly longer activity periods. While Internet traffic is well-known to exhibit

self-similar characteristics, here we assume that the activity and inactivity times are inde-

pendent and exponentially distributed random variables whose expected values may still

be congestion dependent.

The user behaviour model described in the previous Chapter, and depicted on Fig. 3.9,

showed the duration of a single session T r of class r which comprises a sequence of service
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sri and quiet qri periods (or equivalently, activity and inactivity intervals) ending with a

timeout interval t0, where i = 1, 2, . . . , x, and x denotes the number of bursts within the

session x = inf{i : qri > t0}. If an inactivity interval is longer than a timeout period, set

by the network operator, then the connection is released, requiring the mobile device to

establish a new connection in order to resume sending or receiving data. Thus, the timeout

plays a crucial role in enabling MNOs to optimise the use of bandwidth, but it makes the

network vulnerable to signalling storms, as summarised in Chapter 3. The attack calls

causing signalling storms are characterised with repeated requests for bandwidth which

are not followed by large data transmission or reception so that they are timed out quickly,

triggering repeated signalling to allocate and deallocate radio channels and other resources

in the network. This misbehaviour is represented by a very short activity period (indicating

a small data transfer) followed by a long inactivity period to ensure that the timer expires

with high probability.

Table 4.2: Effect of the user activity rate β

Value Normal traffic Attack traffic

β ≈ 0 User with low activity; M2M
communication

Signalling-intensive malware that
triggers the timeout after 1 burst

β ≈ τ User with medium activity Malware with moderate signalling
load

β � τ User with high activity Malware that occupies bandwidth
rather than causes excessive sig-
nalling

Let αr = 1/E[sri ] denote the data service rate, βr = 1/E[qri ] the user activity rate,

and τ = 1/E[t0] the timeout rate. The parameter αr depends on the characteristics of

the network (the faster the network, the larger αr for the same application), while βr

is assumed to be a function of the type of traffic only. However, in practice βr can be

influenced by network performance such as when users become less inclined to click on web

links if the network is slow and vice versa. Such behaviour can be incorporated into the

model by making the routing probabilities state-dependent, but this would unnecessarily

complicate the analysis since we are interested in network conditions where the volume of

normal traffic is significantly smaller than attack traffic. Table 4.2 lists examples of the

values of βr for both normal and attack calls, where in the latter the parameter can be
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considered as a measure of the attackers’ aggressiveness in terms of signalling traffic.

4.3 Communication models

4.3.1 Traditional networks

Technologies in the traditional cellular networks group, such as GSM and UMTS, were

designed with voice services as the dominant form of mobile traffic, and consequently

they assign dedicated radio resources to mobile users (e.g., the Dedicated Channel DCH

in UMTS). In particular, radio channels are allocated to a given call exclusively for the

entire duration of the session, denoted T r for class r, and they are only revoked when

the timeout interval expires. Although such a circuit-switched paradigm is well suited for

voice calls, it is extremely inefficient for bursty data traffic.

Our model of the communication stage of a cell was presented in Section 3.3.2 with an

M/M/m/m queue, commonly referred to as the Erlang-B loss system [100], with two

classes of calls. The bandwidth that the MNO has on disposal for a given cell is assumed

to be divided into m equal portions, each representing the aggregate capacity of the

dedicated channels assigned to a user on average. Queueing is not possible, which means

that an incoming call is not admitted if all channels are occupied. It should be noted

that decisions regarding call admission and scheduling are performed by the SS which

usually has all the necessary information on data channels usage. Hence, if a call cannot

be admitted into the communication stage, it is dropped immediately at the end of its

service time on the SS. The model is represented with a two-dimensional Markov chain

with (kn, ka), as in Fig. 3.8, denoting the number of normal and attack calls at the cell.

To simplify the exposition, we drop the subscript i referring to the cell number in the rest

of this Section so that λr and γr denote, respectively, the rate of incoming and admitted

class-r calls into the cell. We denote by µr = 1/E[T r] the data channel service rate for

class-r calls, which is derived in the following.

In Section 3.3.2 we derived the quantities of interest, such as: the probability of i normal

and j attack calls in the cell in steady-state, that is πij ≡ Pr[kn = i, ka = j] where
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0 ≤ i+ j ≤ m (see Eq. 3.10), and the probability of a call being blocked due to occupied

channels pnb = pab ≡ pb (see Eq. 3.15). The blocking probabilities are identical for both

traffic types because of our approximation that all flows are Poisson. The quantities pb

and λr are obtained by solving the system of equations (4.1) and (3.15) with the rate of

admitted class-r calls to the cell being:

γr = λr(1− pb) (4.3)

The average number of calls E[kr] = γrE[T r] then follows from Little’s theorem, or can

be calculated directly from Eq. 3.13.

Average Bandwidth Occupation Time

Here we compute the average bandwidth occupation time which is equivalent to the average

session duration E[T r] = 1/µr defined in Fig. 3.9. The user behaviour model described in

Section 3.3.3 is now modified using a simple Markov chain model on Fig. 4.2, such that

can be easily adjusted for the both, the traditional and contemporary network groups.

The analysis is performed by transforming the transient process of starting a session,

switching between active and quiet periods and finally ending the session with a timeout

into a recurrent process with three states:

• S (service) denotes the state where the user actively uses the allocated channel for

sending and receiving data bursts within a session (e.g., downloading a web page,

sending a message, streaming a video, etc.). The time spent in this state is s`, with

mean 1/αr, after which the mobile moves to state Q. As stated earlier, α depends

on the network speed and can be calculated as:

αr =
C

mdr
, (4.4)

where C is the capacity of the cell in bits/s and dr is the average burst size in bits

for class-r sessions;

• Q (quiet) denotes the state where the allocated channel is not utilised by the user
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due to end of session, or pause in the communication (reading the contents of a web

site, writing a message, selecting a video for streaming, etc). From this state, the

user may move to state S with rate βr, signifying the resume of communication, or

the inactivity timer may expire with rate τ and the state changes to F .

• F denotes the end of the session. However, to simplify the computation of the

session’s expected value, we reset the process by introducing an artificial transition

from F to S with rate 1.

S Q F

1

↵r

⌧

�r

Figure 4.2: State diagram of the user behaviour model for traditional networks group.

Let us denote with Πi the probability of the session being in one of the states {S,Q, F},

then the average session duration could be found using the following ratio:

ΠS + ΠQ + ΠF

1 + E[T r]
= ΠF .

Using the balance equations of the system, it is straightforward to show that the stationary

solution of the recurrent Markov process is given by:

ΠS =
1

1 + αr

τ+βr + αrτ
τ+βr

, ΠQ =
αrΠS

τ + βr
, ΠF =

αrτΠS

τ + βr
,

from which we directly obtain E[T r], and the average bandwidth occupation time E[T rB]:

E[T rB] = E[T r] ≡ 1

µr
=

1

αr
+

1

τ
+

βr

αrτ
. (4.5)

In the above expression, one can see that when the timeout is very short, with τ → ∞,

the average session duration tends to the communication time of a single burst 1/αr.

Such configuration can be energy efficient for mobile devices, since connection is released
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and radio powered off if there is no traffic, but it is extremely resource intensive for the

network due to excessive connection setup and release requests. Indeed, some mobile

device manufacturers experimented in the past with such configuration, by introducing

a non-standardised fast dormancy feature that disconnects a mobile device if it does not

immediately have data to transmit. However, this battery-extending solution created a lot

of signalling overload problems that prompted industry bodies to standardise the feature,

allowing the device to resume connection with much lower overhead. Similarly, an aggres-

sive attacker that sends a single burst and waits for the timer to expire is characterised in

the user behaviour model by βr → 0, which after substitution in (4.5) yields an average

session time of 1/αr + 1/τ as one would expect.

4.3.2 Contemporary networks

More recent cellular mobile technologies, like HSPA and LTE, have abandoned the ap-

proach of assigning dedicated communication resources to active sessions, and instead

implemented an approach where resources are shared among sessions using fast schedul-

ing algorithms. In particular, bandwidth resources are allocated in small time-frequency

resource blocks (RBs), which are assigned to data bursts and revoked on demand, thus

reducing idle channel occupation between bursts. While standardisation bodies recom-

mend the basic approaches for bandwidth allocation and admission control, they still vary

among MNO’s implementations. Furthermore, while in practice there are imperfections

in the network measurements for making scheduling decisions, we will make the following

simplifying assumptions to render the analysis more tractable: i) data sessions that are

not sending or receiving traffic do not occupy bandwidth; and ii) the total bandwidth of

a cell is shared equally among active data sessions.

Based on the above assumptions, the communication stage for a single cell can be modelled

as shown in Fig. 4.3. The model consists of a PS queue that captures the physical

allocation of RBs, and an abstract M/M/∞ system that acts as a delay unit to represent

the thinking or reading time described in Sec. 4.2. To incorporate the effect of admission

and congestion control mechanisms, the PS queue is assumed to have a finite capacity
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Figure 4.3: Queueing model of the communication part of a cell in contemporary networks.

m, allowing to accommodate a limited number of simultaneously active calls in order to

maintain QoS. When a data burst completes service at the PS queue it joins the delay

unit, from which it may again trigger a new data burst with rate βr or end the session

with rate τ . If a new call or an inactive ongoing call wants to use bandwidth (i.e., join

the PS queue) but there are currently m active sessions, the call is blocked.

There could be two types of class-r calls that arrive at the PS queue: new connection setup

requests, and idle ongoing calls who want to resume communication. Again dropping the

reference to the cell number i, the total arrival rate of calls to the PS queue which we

denote by Λr is given by the traffic equation:

Λr = λr + Λr(1− prb)
βr

βr + τ
=

λr

1− (1− prb) βr

βr+τ

, (4.6)

where βr/(βr + τ) is the probability that an active call resumes communication (sends or

receives a burst) before its timer elapses, and so the second term in the sum represents

the fraction of admitted calls which attempt to resume communication after at least one

quiet period.

Admitted users are no longer guaranteed a certain data rate like the Erlang-B model of

traditional networks, and it should be emphasised that the average duration of the active

periods 1/αr = E[sri ] in Fig. 3.9 is now a function of bandwidth congestion at the cell.

Instead, calls experience lower QoS as cell load increases (up to a certain level because

of the maximum occupancy constraint m). Consequently, 1/αr represents the average
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response time of class-r calls in the PS queue, while 1/µr denotes its service demand

which depends on the cell capacity C in bits/s and the size dr of the data transferred per

burst:

µr =
C

dr
. (4.7)

Note that µr takes a form similar to αr in the traditional network model, which was

derived in Eq. 4.4.

The state of the PS node is described by the pair (kn, ka) denoting the number of normal

and attack calls that are active, and its stationary probability πij ≡ Pr[kn = i, ka = j] is

given by [101, 102]:

πij =

(
i+ j

i

)
ρinρ

j
aπ00, 0 < i+ j ≤ m,

where ρr = Λr

µr and:

π00 =
[ m∑

i,j=0

(
i+ j

i

)
ρinρ

j
a

]−1
.

The probability of a new or ongoing call being blocked is:

pb =

m∑

i=0

πi(m−i) =

m∑

i=0

(
m

i

)
ρinρ

m−i
a π00. (4.8)

Furthermore, the rate of calls that have timed out after completing at least one service at

the PS queue is:

γr = Λr(1− pb)
τ

βr + τ
. (4.9)

The values of pb, Λr, and λr are subsequently obtained numerically by using the above

expression for γr and solving the system of equations 4.1, 4.6 and 4.8.

The average number of calls occupying the data channels can be calculated as:

E[kn] =
m∑

i=1

i
m−i∑

j=0

πij , E[ka] =
m∑

j=1

j

m−j∑

i=0

πij , (4.10)

from which we directly obtain the average time it takes a class-r traffic burst to complete

communication as:

1

αr
=

E[kr]

Λr(1− pb)
. (4.11)
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Figure 4.4: State diagram of the user behaviour model for contemporary networks group.

Finally, the average session duration can be estimated approximately using the recurrent

Markov approach developed in Section 4.3.1, with a modified transition rates matrix (see

Fig. 4.4): αr and the superfluous rate 1 for, respectively, the transitions S → Q and

F → S as before; τ + βrpb for Q→ F so that a call may exit due to either timeout with

rate τ or being blocked with probability pb after attempting to transfer a burst with rate

βr; and βr(1−pb) for Q→ S to reflect the fact that only a fraction (1−pb) of bursts from

ongoing calls is allowed to communicate. This leads to:

E[T r] =
1 + τ+βr

αr

τ + βrpb
. (4.12)

The bandwidth holding time E[T rB], however, is no longer equal to E[T r] as in the tra-

ditional networks, since bandwidth of contemporary systems is mostly consumed while

sessions are active. Thus, the average time a session occupies bandwidth is the fraction of

the session duration spent in state S:

E[T rB] = ΠSE[T r] =
τ + βr

αr(τ + βpb)
[
1 + αr(τ+βpb)

αr+τ+βr

] , (4.13)

where ΠS is calculated from the modified state diagram in the same way as for the tradi-

tional networks.

4.4 Performance evaluation

In this Section, we compare the behaviour of the two groups of networks as the arrival rate

of misbehaving calls λa0 is varied, under the same conditions (across different technologies)

regarding cell bandwidth B, number of channels per cell m and arrival rate of normal calls
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λn0 and assuming homogeneous cells.

The proposed model can be used to evaluate several performance measures of interest,

including the signalling delay E[Di] given in (4.2); blocking probability pb of (3.15) and

(4.8); communication delay for normal calls, expressed as 1/αn in (4.4) and (4.11); and

bandwidth occupation time of a session in (4.5) and (4.13) which we denoted by E[T rB].

4.4.1 Mapping the models to 3GPP systems

We discuss in this Section how the parameters of the models are obtained. The data

capacity C of a cell (bits/s) can be estimated from the spectral efficiency η which is

defined as the number of bits/s/Hz supported by the corresponding technology, and by

the bandwidth B (Hz) available to the service provider, that is:

C = η ×B. (4.14)

Table 4.3 lists, for different 3GPP generations, typical values of η measured from oper-

ational networks [103] and the corresponding capacities when B = 2 × 20 MHz. Note

that the values of C shown in the table for 2G and 3G cells do not reflect their actual

capacities, since these networks operate on smaller bandwidth (e.g., 10MHz with UMTS).

Table 4.3: Estimated cell data capacity

Technology η [bit/s/Hz] C [Mbps]

2G+ GPRS (Rel 97) 0.04 1.6∗

3G UMTS (Rel 99) 0.19 7.6∗

3G+ HSPA (Rel 6) 0.68 27.2

4G LTE (Rel 8) 1.32 52.8

4G+ LTE-A (Rel 10) 2.6 104
∗ Scaled up according to B = 2 × 20.

The signalling capacities of the BS and SS depend on the configurations set by the MNOs.

In any case, there are major differences between traditional and contemporary networks

concerning where RRC signalling is performed. Indeed, BS in GSM/UMTS are responsible

for a small part of the connection setup and release procedures, acting primarily as dumb
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relays, while a substantially bigger part is managed by the radio network controller (RNC)

which represents the SS in our model. On the other hand, LTE distributes most of the

RRC overhead among BS and does not have RNC in the access network, and uses a

dedicated SS in the core network called the mobility management entity (MME). Thus,

while the MME handles much fewer RRC signalling messages than the RNC, offsetting

some of the load to more intelligent LTE BS, it is still vulnerable to signalling storms due

to the massive number of BS and mobiles under its control.

An estimate of the cell signalling capacity µb for each technology can be found from the

corresponding capacity of the Random Access Channel (RACH). For an LTE normal-sized

cell, with high traffic demand, a RACH preamble sequence could be transmitted three

times per 10 ms frame, giving a signalling capacity of µb=300 calls per second [104]. The

same approach is valid for newer generations of LTE. With the traditional technologies,

however, the calculation is less straightforward, so some vendors simply advise to calculate

or dimension the cell signalling capacity as a fraction (<10%) of the data capacity [105].

Thus, in our evaluation of UMTS, we calculate µb based on 5% signalling capacity and

a 2KB average cumulative size of signalling traffic, yielding µb = 0.05C/2KB = 23.75

calls per second. Similarly, the capacity of the corresponding SS are scaled with the

number of cells i.e., µs = Nµb. Table 4.4 shows the values of the other parameters used

in our numerical results, some of which are based on industry reports as described above.

Note that in real networks, however, the network parameters are dimensioned by MNOs

according to their needs.

Table 4.4: Values used in the numerical results

Parameter Value Remarks

τ=0.2 Common timeout value in real networks

m=20 Approximately 384 kbps per channel in UMTS

λn0 = 1 Fixed external arrival rate of normal calls

pnb0=0.9, pab0=0.3 Attackers are more stubborn than normal users

pni0=0.9, pai0=0.1 Attacks are more likely to reconnect after timeout

dn = 320 KB, da = 20 KB Average size of a web page and of an attack burst

βn = 0.05, βa=0.15 Average reading time for web browsing; medium-
to-high aggressive attack

N = 100 Percentage of attacked cells = 70%
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4.4.2 Numerical results

This Section first compares two candidates of the traditional and contemporary network

groups: UMTS Rel 99 and LTE Rel 8, then uses the model to examine the effect of the

signalling storms on different types of traffic, and finally the UMTS mathematical model

is compared with a simulation run in SECSIM.

Comparison of traditional and contemporary networks

In order to illustrate the differences in performance between the two groups, we focus on

a representative generation from each group, namely UMTS (Rel 99) from the traditional

networks, and LTE (Rel 8) from the contemporary networks. We then present results

comparing the different technologies listed in Table 4.3 with respect to a single metric

that illustrates the main design differences between the two groups.
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Figure 4.5: Average number of normal and attack calls concurrently occupying bandwidth
in a UMTS (left) and LTE (right) cell, where smaller numbers reflect superior performance.

Fig. 4.5 shows the average number of normal and attack calls occupying the bandwidth

of a cell in UMTS (left) and LTE (right), versus the attack rate λa. Note first that calls,

regardless of their type, compete for two finite bandwidth resources: the maximum number

of concurrent calls m that can be supported by a BS and the cell’s data capacity C. Thus,

for UMTS we see that as the attack rate increases more normal calls get pushed out of the

cell. However, the situation is different and more interesting with LTE where initially the
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average number of normal calls grows with λa, reflecting the increased contention for C

and in turn the longer times that calls take to complete, but as λa exceeds a certain value

we observe that attackers start to replace normal users in the PS system (i.e., m becomes

the bottleneck), causing the average number of normal calls to drop.

Attack arrival rate       [call/s] Attack arrival rate       [call/s]

Figure 4.6: Signalling delay, communication time and blocking probability versus the
arrival rate of attack traffic for UMTS-Rel’99 (left) and LTE (right).

Fig. 4.6 shows how the different QoS metrics are affected in UMTS and LTE when the

arrival rate of attack traffic is varied. In the case of UMTS, as λa increases the signalling

delay also increases, first gradually and then exploding once the signalling capacity of

either the BS or the SS is reached. The results suggest that the failure of the SS requires a

much higher aggregate attack rate, but in general the attack does not necessarily saturate

the BS before the SS, in the same way distributed denial of service attacks (DDoS) affect

downstream and upstream servers on the Internet. However, differently from data plane

attacks, we see that the communication time of normal users in UMTS remains constant,

regardless of the attack rate, because of the channel reservation scheme used in those

systems. In particular, during a signalling storm, mobile users find it extremely difficult

to obtain a connection but once successful they experience reasonable QoS – a phenomenon
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which has been observed [106] on real network measurements taken during crowded events.

On the other hand, in the case of LTE, the network can sustain a much higher attack rate

before signalling congestion or blocking probability becomes unacceptably high. Another

major difference between LTE and UMTS is demonstrated with the average communica-

tion time: when the attack rate increases, normal users experience higher communication

delays due to sharing bandwidth with more misbehaving mobiles. However, as the attack

rate grows beyond a certain value we see that communication time drops steadily. This is

due to normal users being pushed out of the system by attackers who have lower bandwidth

demands (as shown in Fig. 4.5), and so the few normal users that manage to access the

bandwidth will share it with less active mobiles; in turn, normal users experience shorter

communication times as λa increases but they may get blocked shortly by the congestion

control mechanism. Therefore, the negative effects that signalling storms have on normal

users are long connection setup times and high blocking probability.
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Figure 4.7: Average bandwidth holding time for normal and attack sessions in the tradi-
tional (left) and contemporary (right) networks, for attack call rate λa0 = 1.

To summarise, there are major differences in performance and stability between tradi-

tional and contemporary mobile networks. Among all the factors responsible for these
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differences, our analysis highlights two: capacity and fast scheduling. Recent mobile net-

works provide higher capacities for the same amount of bandwidth per cell, because of

their higher spectral efficiency which in turn depends on modulation, channel coding, an-

tenna configuration, etc. The second factor is even more important and is underlined in

Fig. 4.7 which plots the average bandwidth holding time per session for different 3GPP

networks. In traditional networks (left) users tend to hold the allocated bandwidth for a

prolonged period of time that includes multiple data transfer and quiet periods followed by

a relatively long inactivity timeout interval. In contrast, contemporary networks employ

intelligent scheduling algorithms in order to quickly recycle unused radio channels so as to

reduce bandwidth wastage. This directly improves the network’s resilience to signalling

storms.

Comparison among different traffic types

In this part we use the proposed model to examine the effect of the signalling attacks

on the traffic generated by different types of normal applications: web browsing, video

streaming and machine-to-machine. The parameters of the model are set as in Table

4.4, except for the session data size dn and the user activity rate βn which are listed in

Table 4.5. Using the same approach as earlier, we show results of the comparison among

the modelled UMTS Rel 99 network of the traditional group, and LTE Rel 8 network of

the contemporary group. The three normal traffic types are examined one-by-one and

independent of each other, and have a fixed rate of arrival λn = 1, while there is an

ongoing signalling attack in the network with medium-high aggressiveness βa = 0.15.

Table 4.5: Values used in the comparison of different traffic types.

βn dn

Video streaming 2 10 MB

Web browsing 0.05 800 KB

M2M 0.001 20 KB

Two performance metrics of interest, communication delay and blocking probability, are

depicted on Fig. 4.8. One general conclusion is that normal traffic with smaller session

data size and smaller user activity rate are less affected by signalling storms, shown by the
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Figure 4.8: Communication delay and blocking probability for UMTS Rel 99 (left) and
LTE Rel 8 (right) using different types of traffic.

lowest values obtained for both blocking probability and communication delay, for both

UMTS and LTE. As expected, the communication delay in UMTS is constant for each

traffic type due to the use of dedicated channels, and traffic types with larger data volumes

per session experience longer delay. The blocking probability increases with the increase

of the attack arrival rate for all traffic types, for both UMTS and LTE. It is interesting

to note that in a UMTS cell, a new video streaming of 10 MB data in an interval of

1/λn = 1 s, produces a blocking probability of nearly 100% without the presence of

signalling storm (for λa = 0) i.e., the cell cannot cope with such volume and rate of data.

In the case of LTE, the blocking probability for video streaming with such volume and

rate, and λa = 0 is around 60%, and increases slowly with the increase of the attack

rate. Finally, communication delay should not be a big concern for LTE, especially for

M2M traffic, as delays reach up only to a few seconds in a signalling storm, while the

blocking probability values get to more substantial levels. The communication delay for

video streaming traffic even drops with the increase of the attack rate. This is probably

due to the fact that unblocked video streams compete for bandwidth with small attack
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packets (with the increase of the attack rate), rather than competing with other large

volume video streams (for lower values of the attack rate).

Figure 4.9: Average number of normal and attack calls in service in a UMTS (left) and
LTE (right) cell, using different types of traffic.

Although according to the communication delay and blocking probability figures, networks

with M2M traffic seem to be ”more resistant” to signalling storms, the results on Fig. 4.9

suggest a different conclusion. Fig. 4.9 shows the average number of normal and attack

calls in service in a UMTS and LTE cell for a range of values for the attack rate. If

we look at the attack rate for which the number of attack calls reaches over 90% of the

available resources (m=20) in UMTS, we can conclude that the the attack is easiest to

spread in a system with M2M normal traffic, then web browsing, then video streaming.

The important conclusion here is that although the M2M traffic itself seems to be the

least impacted by the storm (according to Fig. 4.8), the mobile network with M2M traffic

is more prone to being congested with signalling storm calls. The results for LTE suggest

similar conclusions.

Comparison with UMTS simulation

In this Chapter we use the SECSIM simulator, described in Section 2.3.2 to compare the

results gathered from our model with the simulation results. At the moment of writing,

the simulator hasn’t fully implemented a 4G LTE network, therefore the comparison could
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only be done in terms of the UMTS system. The first step is to adjust the fixed parameters

of the model and the simulation. Within this part, we made the following adjustments:

• The simulator does not support an open-network model with variable number of

mobile terminals which randomly join and leave from/to areas out of the simulated

network. To address this issue, we managed to setup the simulator with a fixed

number of terminals, with their points of activation adjusted such they resemble a

Poisson flow of call arrivals from outside the network (identical to the one used in the

model), and their deactivation resembles the calls departure times. In this context

we modified the probabilities of calls leaving the network to a value calculated for

the simulation: pai0 = pni0 = 0.32.

• One of the biggest differences between the model and the simulator is in the data

capacities of network nodes i.e., the simulator uses unlimited bandwidth in the radio

access part of base stations, while the model uses finite capacities, as explained

in Table 4.3. Part of this issue is addressed with setting pnb0 = bab0 = 1 in the

mathematical model such that blocked calls will not create an extra rate of recurring

calls within the network. Other aspects of this issue require bigger modifications

within SECSIM, and are left for future work, described in Section 6.2.

• A typical session in the web browsing traffic model in the simulator would contain

downloading of random number of web page elements (text content, pictures, html,

style sheets, etc.), with a total average web page size of 817 KB. This adjustment was

inserted in the mathematical model by setting dn = 817 KB, which further triggers

αn = 0.058, calculated with Eq. 4.4. Furthermore, the inactivity parameters of the

normal web browsing and the attack traffic were estimated from the simulator and

set in the model as βn = 0.705 and βa = 5.058.

Having adjusted the web browsing and the fixed network parameters, we can visualise

some of the performance metrics of interest. Fig. 4.10 shows the delay that signalling

messages experience within the signalling server. The figure suggests that both curves

of the simulation and the model have a similar form, and that the simulation values are

higher than the model values for an order of few seconds. This is because the service rate



4.4. Performance evaluation 79

of the signalling server is different for the simulation and the model i.e., in the model we

used an estimated service rate (which was calculated using a BS signalling capacity of

5% of the total BS capacity, and a signalling message size of 2 KB), which does not fully

resemble the service rate in the simulation.

Figure 4.10: Delay in the signalling server (99% confidence interval used).

Figure 4.11: Communication delay for downloading a web page with an average size of
817 KB (99% confidence interval used).

In Fig. 4.11 we depict the communication delay for downloading a web page with an

average size of 817 KB i.e., the response time measured on application layer, from the

moment of generating the page request, until receiving the full web page content. Again
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the simulation and model results are similar, with the simulation values being higher for

an order of few seconds. This should be because of the difference in the capacities of the

physical wireless channels: the simulation uses an infinite capacity for the radio access

part and assigns channel data rates from a probability distribution, while the model uses

a fixed wireless capacity obtained from literature, as in Table 4.3.

Figure 4.12: Average number of normal and attack calls in service in a single BS (99%
confidence interval used).

Lastly, we were interested in the average number of concurrent calls in service in a single

base station, depicted on Fig. 4.12. In this case there is a bigger discrepancy between

the simulation and mathematical results. The average number of attack calls in service

increases with the rise of the attack rate λa for both the mathematical model and the

simulation. Anyway, there is a finite limit m = 20 for the attack calls in the model, while

the attack calls in the simulation rise linearly to infinity. Furthermore, the simulation

shows almost constant number of normal calls in service, independent of the attack rate,

while in the mathematical model the normal calls are pushed out by attack ones and their

number decreases with the increase of the attack rate. We consider that both discrepancies

are due to the unlimited wireless resources in the simulator, and because of the needed

time for implementing these modifications we will work on this issue in the future, as
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discussed in Section 6.2.

4.5 Chapter summary

Mobile networks are becoming the access networks for much of the communication system

infrastructure of the world, and this massive penetration of mobile devices poses many

new problems related to security. One threat, known as a signalling storm, overloads both

the network’s signalling capacity at the cell level, as well as the network servers that are

used for establishing, maintaining and releasing connections.

This Chapter developed a mathematical model for a mobile network with both normal

and misbehaving mobile terminals that repeatedly request bandwidth but quickly time

out because of inactivity, causing a radio resource control signalling storm. The model

was utilised to compare the behaviour and performance of two groups of 3GPP mobile

technologies: traditional networks that incorporate mobile data services using concepts

from the circuit-switching domain, and contemporary networks which allow bandwidth

sharing among users with fast switching. The analysis was conducted i) by abstracting

many of the lower protocol stack details; ii) by making simplifying assumptions such

as identical channel conditions for all users, equal sharing of bandwidth, homogeneous

traffic characteristics within the same traffic class, and perfect scheduling in contemporary

networks; and iii) by assuming all flows inside the network to be Poisson.

The lessons learned in this Chapter are as follows:

• Mathematical modelling techniques are useful in analysing individual parts of com-

plex computing systems, such as mobile networks. Anyway, with the increase of

complexity of the modelled system, certain approximations must be made in order

to facilitate the analysis. Furthermore, such models would not always result in a

closed form solution, which therefore would require the use of numerical analysis.

• The shift in the design of the radio access system, from using dedicated channels to

shared ones, has made mobile networks more resistant to signalling storms. Never-

theless, 4G/LTE networks are still vulnerable to signalling storms.
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• A failure in the control part of the mobile network could happen in different locations

/ nodes (base stations, signalling servers, etc.), and depends on: the signalling ca-

pacities of each node, the number of mobile terminals under control of the node, the

number of malicious terminals in control of the node, the rate of attacking signalling

requests, the design of the radio access system in the data plane and others.

• In mobile networks of the traditional group, a signalling storm would result with high

blocking probability for legitimate mobile users, while in networks of the contempo-

rary group, it would first result in service degradations (increased communication

delays, dropped packets,...), and afterwards in increased blocking probability.

• The comparison of three normal traffic types (video streaming, web browsing and

machine-to-machine) in a network under signalling storm suggested that attacks

most easily reach the bandwidth capacity in networks which usually use small data

volumes and small rates, such as in M2M. On the other side, normal users with this

traffic type would experience lower service degradations (communication delay and

blocking probability) in a network under attack.

• Increasing the signalling capacity is not an effective long-term solution, because

signalling traffic is outpacing the exponentially growing mobile data traffic. These

trends are expected to continue, especially as M2M and IoT applications transition

to mobile broadband.

In outlook for the future, standardisation bodies are trying to solve the signalling overhead

problem generated from M2M and other small data transfer devices through efforts such

as [107, 108, 109, 110, 111]. Some of those proposals have already been included in Release

10-12 specifications. However, most of the solutions require devices to be pre-registered

with the network or to declare their intent to transmit small packets; they may not prevent

signalling storms from chatty mobile applications that do not utilise the proposed features

to reduce their signalling load. Therefore, the signalling overload problem is expected to

remain an open question, while active and real-time detection and mitigation systems are

needed to protect future generation networks. The following Chapter proposes two such

mechanism, based on the lessons learned so far.
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Detection of signalling storms

Besides the mathematical modelling, simulation is another approach towards addressing

security related research in mobile networks. This Section uses the Mobile Networks Secu-

rity Simulator (SECSIM), described in Section 2.3.2, which is a mobile networks simulator

specialised in modelling, simulating and evaluating cyber-security aspects of mobile net-

works. Within this Chapter, SECSIM is used to implement and evaluate two signalling

attack detection mechanisms. The first mechanism is based on counting repetitive con-

nections and applying a pre-defined threshold on the count, while the second mechanism

monitors bandwidth used by mobile terminals, calculates a cost function, and makes a

decision by comparing the cost function to pre-defined thresholds. The ideas come from

some previous research in [63] where a theoretical approach of the counter detection is

presented, and [61] where our analytical and simulation work confirms that terminals per-

forming signalling attacks don’t use efficiently the allocated bandwidth, in order to evade

traditional flooding detection mechanisms. Both mechanisms are implemented and eval-

uated using a 3G UMTS model in SECSIM. Finally the detection mechanisms are used

in parallel with a simple attack mitigation approach and results show its impact on the

mobile network stability and quality of service provided to customers. The counter-based

detector is described in Section 5.1, while the bandwidth usage-based one in Section 5.2.

Section 5.3 concludes the work in this Chapter and looks at possible future improvements

in the area.

83
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5.1 Counter-based detector

The proposed mechanism enables detection and mitigation of signalling attacks and storms

per mobile terminal in real-time. It is based on counting the repetitive bandwidth allo-

cations of same channel type (ex. a shared FACH or dedicated DCH channel in UMTS

network). From an implementation perspective, it is important that the mechanism could

be implemented on both mobile terminal and network/operator side. If implemented on

the mobile terminal side, due to the terminal’s limited resources, some special require-

ments are needed so it does not impose any processing, storage, and memory difficulties

to the terminal. For this purpose, the proposed mechanism is envisioned as lightweight

background process requiring only two input parameters: the time instances of band-

width allocation and the type of bandwidth allocation, which are stored in memory for

the duration of a time window of length tw.

A decision of an attack being detected is simply taken when the number of repetitions

reaches a predefined threshold called counter threshold - n. Repetitions are counted in a

sliding time window manner, where the length of the window tw is chosen according the

threshold n. If we denote with tI the duration of the inactivity timer in the attacked state,

then obviously tw is selected such that tw > n · tI i.e., the window should be large enough

to collect n repetitions. The upper limit of tw is set according the memory and storage

capacities of the device on which it is implemented. While this Chapter looks at the effect

of different thresholds values, research in [63] analyses the problem from an analytical

perspective and shows a way of finding the optimal threshold n. Within the simulation

environment we could combine the detector with an attack mitigator. The idea for attack

mitigation is based on the conclusions in Sec. 3 where the attack impact was lowered by

adding delay to signalling messages asking for bandwidth allocation. In a similar fashion,

we will use a fixed time duration tb called blocking time in which all the communication

of a detected misbehaving terminal will be blocked.

In this Section we will use the SECSIM simulator to: (i) evaluate the detector in Sec.

5.1.2, and (ii) simulate an attack scenario including detection and mitigation of attacks

in Sec. 5.1.3. The simulation scenario is same for both cases except that the mitigation
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mechanism is switched on in the latter case.

5.1.1 Simulation setup

Our simulation setup looks at a part of a mobile network covered by a few UMTS base

stations, under a single radio network controller. All mobile terminals are functioning reg-

ularly using web browsing application, while an attacker manages to compromise a portion

of them and install a second (malicious) application which triggers malicious communi-

cation. The web browsing application is modelled using stochastic techniques, according

to statistical distributions of real world Internet traffic [93]. The malicious application is

present on 20% of terminals, a portion which has showed as big enough to overload sig-

nalling related nodes in the network in [61], and attacks on the dedicated DCH channels in

the network. The attacker is assumed to have estimated the length of the inactivity timer

in DCH channels with an exponentially distributed error with mean value of 3 seconds.

The counter detector uses different values for the counter threshold n, and the detector

window is selected as tw = 3ntDCH , a value which has showed as suitable in the simula-

tions. Each simulation is run multiple times with a different seed for the random number

generators, so results can show the averaged values of the performance metrics or interest.

5.1.2 Detector evaluation

Regarding the RRC states in UMTS, described in 3.1, let us consider that a UE is active

if it is allocated either FACH or DCH channel and inactive if it is in PCH or Idle state.

For the evaluation of the detector, the performance metrics of interest include:

• probability of true negative detection ptn - the portion of normal active duration

which the detector classifies as normal activity;

• probability of false positive detection pfp - the portion of normal active duration

which the detector classifies as attack. This metric is also called probability of false

alarm;
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• probability of true positive detection ptp - the portion of attacking active duration

which the detector classifies as attack. This metric is also called probability of correct

detection;

• probability of false negative detection pfn - the portion of attacking active duration

which the detector classifies as normal.

Of course, it is valid that ptn + pfp = 1 and ptp + pfn=1. The pfp metric is particularly

important because it shows the error the detector makes because of misclassifying normal

data transmissions. In order to protect normal mobile users from being ”punished” it is

important to keep pfp at a small value.

Fig. 5.1 shows the probabilities of false positive and true positive detection. In calculating

the pfp metric, we selected that some normal terminals have activity patterns which are

similar to attack ones i.e., they would successively timeout 3, 4 or 5 times, so we can

compare them to the attacked terminals. In practice, for example, this type of traffic could

resemble machine-to-machine communication, or background control communication of an

application. Results show that terminals which use more repetitive traffic trigger higher

number of false detections. Moreover, as expected, pfp drops with the increase of n. The

true positive probability, shown on Fig. 5.1b, decreases with the increase of n. For larger

n only the more persistent attackers are detected.
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Figure 5.1: Probability of (a) false positive and (b) true positive detection for the counter-
based detector.

The counter threshold n can be used as a control, to adjust the detector’s rigorousness in
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different situations, as small n will improve attack mitigation (such that ptp is maximal)

and large n will improve attack detection (such that pfp is minimal). For example, in a

congested network, it’s better to choose a smaller value for n such that mitigation will

lower the load more efficiently, although pfp-portion of normal UEs will also be punished.

Contrary, in a regularly working un-congested network, large n will enable to protect

normal UEs and only detect persistent attackers. It is also useful to look at the Receiver

Operating Curve (ROC), depicted on Fig. 5.2 as it gives the connection between ptp and

pfp for different n.

0.0 0.2 0.4 0.6 0.8 1.0 1.2

False posit ive detect ion pf p [%]

0

10

20

30

40

50

60

T
ru

e
 p

o
si

ti
v

e
 d

e
te

ct
io

n
 p

tp
[%

]

n =  2

n =  3

n =  4

n =  5

Figure 5.2: ROC curve for the counter-based detector.

In the following, we will use the counter detector in combination with a mitigation tech-

nique which bans detected attackers from communication for a short period of time.

5.1.3 Simulation: detection and mitigation

To mitigate the attack we will use blocking of the attacking terminals for a time duration

of tb = 60s, which is applied in the moment of attack detection. The simulation setup

for this purpose is same as described in Section 5.1.1 with simulated duration of 180

minutes, attacks starting gradually at 45-th minute and mitigation switched on at the



88 Chapter 5. Detection of signalling storms

117-th minute. With this setup, we want to see the effect of the attack and the effect of

detection/mitigation in the time domain. Two performance metrics of interest are shown

on Fig. 5.3: the signalling server load, in messages per second, and the average end-to-

end delay experienced by normal mobile users. From the moment of start of the attack,

the load on the RNC is constantly increasing and after it reaches some maximum value

the normal users start experiencing communication delays. Starting the mitigation with

n ∈ {2, 3} helps in stabilising both the network load and the experienced delay. The

variation in the delay in congested system is due to the TCP retransmission of packets.
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Figure 5.3: The counter-based detector in time domain. Performance metrics: (a) sig-
nalling load and (b) end-to-end delay.

The figures 5.4 and 5.5 show results of the system in steady state. The simulation setup
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is as described in Section 5.1.1, with one difference: attacks and mitigation are active

through the entire duration of the simulation. Fig. 5.4a depicts the average number of

successful bandwidth allocations, or successful attacks, per malicious mobile terminal, per

hour, and its normalised values. As expected, the number of attack allocations increases

with the increase of n because the detector waits for more repetitions to happen before

making a decision. For n ≥ 5 our mechanism shows unsatisfying results. Fig. 5.4b shows

the effect of the attack on the average end-to-end delay experienced by normal terminals.

This is the delay measured on the application layer of the protocol stack. The selected

number of attackers (20% of all terminals) manages to perform a successful signalling

attack and overload the network which results in higher delays for the normal terminals.

Results suggest that using the proposed mechanism with a threshold of n ∈ {2, 3, 4}, the

system is kept stable and normal delays are experienced. Again for n ≥ 5, the mechanism

does not manage to mitigate the attack. The abrupt increase between n = 4 and n = 5

is due to the type of model of normal web traffic. Furthermore, the delay variability for

n ≥ 5 is much higher than for n < 5. This could be a result of packet retransmission using

the TCP protocol in a congested system.
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Figure 5.4: The counter-based detector in steady state. Performance metrics: (a) suc-
cessful attacks per malicious terminal (95% confidence interval), (b) end-to-end delay per
normal terminal (99% confidence interval used).

Finally, we are interested in the amount of communication resources consumed by ma-

licious mobile terminals. The analysis in the previous chapters showed that for mobile

networks with dedicated approach for bandwidth allocation, such as early versions of 3G

UMTS, bandwidth wastage is another negative consequence, on top of the excessive sig-

nalling. Note that in DCH state of UMTS, a bandwidth allowing high-speed transmission
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Figure 5.5: Allocated uplink bandwidth per normal and attacked terminal (95% confidence
interval used).

is dedicated exclusively to the requesting terminal, a feature that is excluded in the fol-

lowing generations of mobile networks, like HSPA and LTE. Fig. 5.5 shows the average

allocated bandwidth in uplink direction in DCH channels for attacked and normal mobile

terminals in duration of one hour, and the corresponding normalised values. Results show

that the amount of resources allocated per attacked terminal is significantly higher than

per normal one, such that for n = 10 the attackers are allocated around 600 MB more than

normal users in a single hour. Looking at this from a billing perspective, these users could

be charged much more than usual, depending on the MNO’s charging strategy. Anyway,

for n ∈ {2, 3, 4} the proposed mechanism manages to lower the amount of ill-consumed

resources to 40-90 MB per terminal per hour. The results for bandwidth usage in the

downlink direction are analog to the uplink and are not presented in this scope.

5.2 Bandwidth usage-based detector

Previous work in [61] has shown that signalling storms can be identified not only by

their repetitive pattern but also by their low usage of communication resources in order

to evade getting detected by traditional flooding security mechanisms. In this Section,

this characteristic is used to develop a simple detection mechanism that is capable of

identifying malicious behaviour in real-time. Similar to the requirements of the counter-
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based detector, this detector should also represent a lightweight mechanism in terms of

memory and processing power when implemented on the mobile terminal side.

5.2.1 Detector description

There are two input parameters that the mechanism needs. The first parameter is the

total time that the terminal spends in a ’high’ state within a given time window tw.

This is a state where communication resources are granted to the mobile terminal and is

equivalent to states DCH or FACH in UMTS. Respectively the time spent in each state

is denoted with tD, and tF . The second parameter is the time which the mobile terminal

spends in ’high’ state but does not transfer any data (stays idle), also in a time window tw,

which is denoted with tDi and tFi for the respective states in UMTS. The detector works

by calculating the ratio tFi+tDi
tF +tD

whenever resources are (de)allocated i.e., for every state

change. Then the Exponential Weighted Moving Average (EWMA) algorithm is used to

calculate the cost function C as:

C[k] = α
tFi[k] + tDi[k]

tF [k] + tD[k]
+ (1− α)C[k − 1], (5.1)

where k ∈ N > 0 is the index of the state change, 0 ≤ α ≤ 1 is a weight parameter

and C[0] = tFi[0]+tDi[0]
tF [0]+tD[0] is the initial cost value. This cost function enables detection of

attacks on both FACH and DCH channels in UMTS, and with suitable adjustments it

could be adapted to any network with similar functionality, like LTE. The calculation of

the cost function is foreseen to run as a background process in each mobile terminal or in

a centralised network node that has the needed information for all terminals, such as the

RNC in UMTS and the eNodeB in LTE.

The decision making is based on the value of the cost function. As defined, C is between

0 and 1 with values closer to 1 indicating higher probability of an attack. To define when

an attack is detected let us suppose that the mechanism is running for long enough time

so that the average value of the cost function Cavg, observed since the mobile activation, is

stable with minor variations. Then, a malicious behaviour is detected if C ≥ βCavg where

β is a value close to, but larger than 1. Our simulations have shown that a suitable choice
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would be β = 1.5 meaning that 50% increase of C above its average value is an indicator

of attack. Note that C is calculated within a time window tw while Cavg is calculated from

the activation of the mobile terminal.

There are two problems with this type of decision making. First, if Cavg > 1/β, an

attack cannot be detected. This could happen if an attack is ongoing from the moment of

activation of the mobile terminal, thus producing high Cavg value such that βCavg > 1. The

second problem appears for heavy traffic users, for example users who use video streaming

or voice communication. These terminals use a big portion of the granted resources and

therefore have very low Cavg. In this case the product βCavg is still very small and normal

usage is often clarified as attack.
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Figure 5.6: Threshold setup on SECSIM simulated data for (a) pfn=0.01 and (b) pfp=0.01.

To address these issues we propose setting up two thresholds for C: an upper threshold

θ+ above which we make a decision of an attack, and a lower threshold θ− below which

we make a decision of normal behaviour. Both decisions are irrespective of Cavg. Setting

up these thresholds should be based on offline traffic analysis by the mobile operators. A

frequently used thresholding technique is one based on a fixed value for the probability of

false positives pfp, which is defined as the fraction of time in which an attack is detected

but not existing. Similarly, the false negatives probability pfn is the fraction of time

in which an attack is ongoing but is not detected. Having the probability distribution

of offline measured C values for bandwidth requests classified as normal, we set θ+ as

the threshold above which statistically 1% of normal requests will be declared as attack.

Similarly, θ− is set up for a 1% fixed probability of false negatives pfn based only on
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offline-measured C values of bandwidth requests classified as attack. Fig. 5.6 shows the

threshold setup on SECSIM generated data, while Fig. 5.7 shows an example of C in time

and the setup thresholds. The proposed two-threshold decision making approach solves

the above mentioned problems. Furthermore, for θ− < C < θ+, an attack could still be

detected by checking if C > βCavg.

Figure 5.7: An example of the cost function C in time, with θ+ = 0.88 and θ− = 0.83,
and two attack intervals.

The proposed mechanism allows detection of signalling attack behaviour in a real-time

manner. It works with calculating the cost function C[k] for each data transmission at

instance k. In any case, single data transmissions are not classified as attack/normal but

rather a decision is made upon a group of data transmissions in a time window tw. This is

because single attack transmissions or attacks with low frequency cannot form a signalling

attack and cause disruptions to the network. The mechanism works in real-time because

the observation window slides through time and the cost function is calculated using the

EWMA averaging.

5.2.2 Detector evaluation

To evaluate the detector, we implemented its functionalities in the SECSIM simulator,

and we setup a simulation as described in 5.1.1 with 500 mobile terminals out of which
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150 are attacked and α ∈ {0.01, 0.1, 0.3, 0.5, 0.7, 1}. The simulation is repeated five times

for each α value with different seeds for the random number generators and results are

averaged over all runs. The rest of the parameters are configured as follows: tw = 60s,

β = 1.5, θ− = 0.83 and θ+ = 0.88. Attacks happen by malicious terminals at a random

time of the simulation and in intervals of random length. Note that the ratio of attacked

/ total terminals does not influence the evaluation of the detector.
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Figure 5.8: Average detection delay for the bandwidth usage-based detector (95% confi-
dence interval used).

One performance metric of interest is the detection delay τ i.e., the delay between the time

instant of attack start and its detection, and is a function of the moving average parameter

α and the width of the sliding window tw. Fig. 5.8 shows the average detection delay for

different values of α. A smaller value for α in the calculation of the cost function gives

more importance to historical than present C values and makes the detection more rigid

which is shown by the high values of the detection delay. Increasing α makes the detector

more flexible and improves the detection delay. However, for higher values of α we expect

the cost function to change too rapidly and increase the number of false detections, a

hypothesis which will be tested in the rest of this Section.

Fig. 5.9a, shows the probability of false positive detection pfp as a function of the EWMA

parameter α. Lower α values not only slow down the detection but also result in high
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Figure 5.9: Probability of (a) false positive and (b) true positive detection for the band-
width usage-based detector.

pfp values. As α increases close to 1, pfp also increases, because the detector makes

faster decisions, which may also be less accurate. The selection for α = 0.3 seems most

appropriate as it minimises the false positives probability, to a value of 0.04%. Fig. 5.9b

depicts the portion of detected attack intervals among all malicious behaviour. Smaller

values of α produce higher ptp values because the detector waits for a longer time interval

before making a decision. Note that in our experiments during an attack, the attack traffic

is mixed with the traffic of normal web browsing application. This causes the ptp to have

lower values as some parts of the attack interval will still be identified as normal. In case

of a deliberate attack with only an attack application installed on mobile devices (without

normal web browsing traffic in the background), the detector’s performance would improve.
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Figure 5.10: ROC curve of the bandwidth usage-based detector.
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(a)

(b)

Figure 5.11: The bandwidth usage-based detector in time domain. Performance metrics:
(a) signalling load and (b) end-to-end delay.

Finally, Fig. 5.10 combines the pfp and ptp metrics into the ROC curve for the proposed

detector. Values in the top-left corner of the graph are most desirable, as it produces

the highest true positive and lowest false positive detection probabilities. The simulation

results suggest that α = 0.3 is the most suitable value, producing 95% true positive and

0.04% false positive detection.

5.2.3 Simulation: detection and mitigation

In this part we use both the detector and the mitigator at the same time, and look at

the attack scenario in the time domain. Same as in 5.1.3, we will use a blocking time

with duration of tb = 60 s, which is done immediately when attack is detected. We set
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the simulated duration to 180 minutes, with attacks starting gradually at 45-th minute

and mitigation switched on at 117-th minute. The metrics of interest are the load on the

signalling server in the RNC in terms of processed messages per second and end-to-end

delay measured on application layer experienced by normal users. The results shown on

Fig. 5.11 show that in the period without attacks (0 - 45 min) the network load has

a small peak because of the activation of mobile terminals (which includes exchange of

signalling messages with the RNC), after which the load stabilises. The end-to-end delay

is also stable. In the period when the attack is ongoing (45 -117 min) the load on the RNC

starts to increase until a certain point when it reaches a maximum value. At this point the

buffers in the signalling server are congested which results in higher delays for the normal

users. Using the proposed detector with the blocking mitigation technique from 117-th

minute manages to decrease the load in the network and stabilise the experienced delay.

5.3 Chapter summary

The proposed detectors are lightweight mechanisms for real-time detection of signalling

storms. Due to their low memory and processing demands, they could easily be imple-

mented on the mobile terminal side, although they could also operate on network side.

The counter detector is based on counting successive bandwidth allocations of same type

and setting a threshold of the number of legitimate ones. The bandwidth detector is

based on the fact that malware applications causing signalling attacks send small por-

tions of data to evade being detected by flooding detection mechanisms. The proposed

cost function uses this fact to map the terminal’s behaviour into a value between 0 and 1,

with the two extremes respectively indicating completely normal and malicious behaviour,

and set thresholds according to which the detection decisions are made. Both detectors

were evaluated using the probabilities of false positive and true positive detection, and the

corresponding receiver operating curve. The lessons learned in this Chapter are as follows:

• A detection mechanism based on a simple counter of consecutive same channel allo-

cations does not provide satisfactory results, with a true positive probability as low

as 40%.
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• Simulation results provided for joint work of the bandwidth usage based detector

and a mitigator show that it is capable of maintaining the network’s stability and

helping in providing good quality of service to the normal users, deducted from a

true positive probability of 95% and false positive probability of 0.04$.

• The counter based detector, combined with a mitigator, manages to lower the net-

work load, but at the expense of increased probability of false detection i.e., at the

expense of blocking normal calls which are detected as attacking.

• An online, simple mechanism with low complexity, low memory and processing de-

mands is capable of solving the problem with signalling storms. Such solutions could

be further improved once implemented in a working mobile network.

To further improve its performance, the counter detector can be upgraded with additional

mechanisms like deep IP packet scans of suspicious terminals. The bandwidth usage-based

detector could make further improvements by dynamically adapting the parameters of the

detector (α, θ+ and θ−) to the type of the communication of the mobile terminal (human

generated, machine to machine communication, sensor data communication, etc.).



Chapter 6

Conclusions and future work

6.1 Conclusions

This thesis described the research done in the field of performance analysis of mobile net-

works under signalling storms. Signalling storms / attacks are a novel type of denial of

service attacks on the control plane of the network. They could be triggered by specially

designed malware for smart devices, or as a byproduct of poorly designed legitimate appli-

cations. Negative consequences on operating 3G UMTS networks have been documented

as either: service degradations, partial, or full network outages. Our research, using math-

ematical modelling and simulation techniques, analysed the impact of the attack on both

3G and post-3G networks. It questioned if the network can defend its stability by adapting

some of its internal parameters, what are the bottlenecks in the network from architectural

perspective, what is the influence on the data plane and normal mobile users, etc. Fur-

ther on, the thesis proposed two detection techniques and evaluated them in a simulation

environment. The following describes in more details the conclusions made through the

thesis.

Chapter 2 categorised threats and corresponding countermeasures in mobile networks,

listed the most common types of malware, introduced the signalling storms and described

the analytical and simulation frameworks used in this work. This Chapter contributed in

having a more complete view of the security aspects of mobile networks and in identifying

99
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the similarities between different types of attacks.

In Chapter 3 the vulnerability in the RRC mechanism in UMTS was described and its

stochastic model from a mobile terminal side was proposed. The model was used to

analyse if the network can use some of its internal parameters to defend against signalling

storms, and a conclusion was made that the inactivity timers and call setup delays can be

used to lower the impact of the attack. Some general recommendations on the choice of

these parameters were also given. Furthermore, to quantify the influence of the inactivity

timers, we proposed a network-side model using tools from queueing theory. It used two

classes of calls traversing an open network model and a limited number of data channels,

alike in UMTS Rel ’99 version. The model allowed us to conclude that: (i) the bottlenecks

in the network are the signalling servers, and base stations, depending on their respective

capacities, the number and malicious devices under control and their attack rate, (ii)

the limitation of dedicated data channels indirectly acts as a self-defensive mechanisms

in signalling-related attacks and (iii) the inactivity timers cannot prevent from network

outages in signalling storms, but can decrease their impact. Regarding point (iii) we

proposed a dynamic timer which sets the inactivity timer as a function of the load in the

network. This approach manages to lower the load in the network under attack, but at

the expense of the number of served normal calls. This means that the inactivity timer is

not just a trade-off between the effective bandwidth usage and number of connections, but

also a trade-off between the signalling load in the network and the number of unserviced

normal calls.

In Chapter 4 we extended the network model proposed earlier such that it represents dif-

ferent network technologies, preceding and following 3G. To facilitate the analysis, we dis-

tinguished two groups of 3GPP mobile technologies: traditional networks that incorporate

mobile data services using concepts from the circuit-switching domain (using dedicated

resource allocation), and contemporary networks which allow bandwidth reuse through

sharing of resources. Numerical analysis of the system led to the following conclusions.

First, the shift in the design of the radio access system, from using dedicated channels

to shared ones, has made mobile networks more resistant to signalling storms. Neverthe-

less, 4G/LTE networks are still vulnerable to signalling storms. More importantly, they
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are more susceptible to the single-point-of-failure problem due to LTE’s non-hierarchical

flat topology in which the main signalling server, located at the core network, is directly

connected to the base stations with no intermediate servers at the access network to pro-

tect it if some of the massive number of mobiles under its control misbehave. Second,

increasing the signalling capacity is not an effective long-term solution, because signalling

traffic is expected to outpace the exponentially growing mobile data traffic, with future

developments in areas like M2M and IoT. Therefore, active and real-time detection and

mitigation systems are needed to protect future generation networks.

Finally, based on conclusions in our earlier work, we proposed two real-time, detection

mechanisms in Chapter 5, which were implemented in the SECSIM simulator on the side

of the mobile terminals. The counter detector is based on counting successive bandwidth

allocations of same type and setting a threshold of the number of legitimate ones, while

the bandwidth detector is based on the fact that malware applications causing signalling

attacks don’t send any data or send small data portions. Both detectors were evaluated

using the probabilities of false positive and true positive detection, which showed satisfying

results: most importantly producing low false positive probability. Further simulation

analysis for joint work of the detectors and a simple mitigation technique showed that both

mechanisms are capable of maintaining the network’s stability and helping in providing

good quality of service to the normal users. Therefore, simple detection mechanisms, like

the ones proposed, could be effectively used in the fight against signalling storms.

6.2 Future work

In this Section we discuss the areas where our work can be extended, and propose possible

future research directions.

In the mobile terminal model in Chapter 3 we defined a cost function based on the prob-

abilities of normal and attack states. Defined this way, the cost function gives a measure

of the attack’s impact, regarding channel occupation time by normal and malicious calls.

Conclusions of this research indicated that duration of malicious channel occupation is not

the only negative aspect of signalling storms, but also the rate of it happening. Therefore,
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we could further improve this part by including the influence of state transition proba-

bilities in the cost function. The work in this Chapter showed that the inactivity timers,

which are usually set to a fixed value by the MNOs, can play an important role in the

defence against signalling storms. While these timers cannot fully alleviate the attack, if

adjusted properly depending on the network load, can serve as a control to lower the effect

of the attack. Therefore, we consider that future mobile networks should employ config-

urable, if not fully automated, inactivity timers which would give MNOs more freedom in

controlling their networks.

In Chapter 4 we studied traditional and contemporary networks under signalling storms

using a queueing network model. Within Section 4.4.2 we first compared two candidates

of both network groups: UMTS Rel 99, and LTE Rel 8. For the next step in this direction,

we could first examine the storms influence on LTE Advanced networks, and then also

incorporate 5G networks in the model. We consider that the data plane part of the

5G model could be used as a new module in our global network model, but any needed

changes in the control plane would also require modifications of the global model too.

In the same Chapter, we examined the storms’ influence on different traffic types: web

browsing, video streaming and machine-to-machine. Further on, we could improve this

part by using more realistic, mixed-traffic models, which will combine the different types

together on a network level, and afterwards on a terminal level. Finally this Chapter

compared the mathematical model of UMTS with the simulation model implemented in

SECSIM. The preliminary results shown in this part did not show a good fit between

the two models, regarding Fig. 4.12. This is mostly because the simulation uses infinite

bandwidth capacity without the possibility of call blocking, while the mathematical model

uses a fixed capacity and number of dedicated channels, and incoming calls are blocked

in case all channels are occupied. Our future work is to implement bandwidth capacities

in the simulation, which will further require modifications in the allocation of shared

channels, and possible changes in the frequency reuse planning when simulating multiple

network cells.

Lastly, in Chapter 5 we proposed two signalling storm detection mechanisms, which were

implemented and evaluated in the SECSIM simulator. While both detectors showed sat-
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isfactory results, they could still be improved. The bandwidth usage-based detector could

further be improved by adjusting its parameters to the type of communication of the ter-

minal (human generated - also taking into account the most frequently used traffic types

by each user, machine-to-machine, sensor reports, etc.). The task for identification of the

traffic type for each terminal would require applying techniques from Machine Learning

(ML), while the devices generating sensor/machine data should be available in a database.

The counter-based detector could be improved by selecting IP packets for deeper inspec-

tion, although it could also be combined with the bandwidth usage-based detector, forming

an ensemble classifier. An important consideration here must be given to attack detection

within future communication types, such as data automatically exchanged by machines.

6.3 Future projects

The research area of attack detection in this field is probably the most important area, as

the signalling problem still exists, and as our analyses showed - it will continue to cause

problems in future network generations. Our future projects will focus on techniques from

the Machine Learning (ML) field, which is selected as a natural switch from the stochastic

modelling area and Markov processes. Machine learning is a sub-field of Artificial Intelli-

gence (AI) that evolved from pattern recognition and computational learning theory. This

area is also very popular in the last few years, both in research and industry. Some of the

ML techniques that could be considered in this research include: neural networks, random

neural networks and deep learning (eg. TensorFlow):

• Neural Networks (NN) - represent computer programs that operate in a sim-

ilar manner to the human brain, with objective to perform cognitive functions as

problem solving [112]. They use networks of interconnected nodes, called neurons

that exchange impulses between each other via synapses (connections). Neurons

are organised in layers which could be input, hidden or output layers. Synapses

store weights, which are used in the computations of data. The learning ability

of NN comes from mathematical optimisation and is based on finding a optimal

function f∗ in a class of functions F . This is done by defining a cost function
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C : F → R, such that the optimal function has the least cost among all functions

C(f∗) 6 C(f),∀f ∈ F . There are three types of learning paradigms: supervised,

unsupervised and reinforcement.

• Random Neural Network (RNN) - networks that build up on top of NN adding

positive (excitatory) and negative (inhibitory) spikes between nodes, or from the

outside to the nodes [113]. In this way RNN closely represents the signals transmitted

in a biological neural network. A potential of each node can be defined as the non-

negative sum of positive spikes received, and each node can fire a spike when its

potential is positive. RNN’s general model consists of connections between all nodes,

so the model represents a recurrent neural network. The product form solution of

the model is presented in [113], while some learning aspects and possible applications

are presented in [114] and [115] respectively.

• TensorFlow - is an open source software library for machine learning developed by

Google Research [116]. Another popular direction of ML is downlink (DL) networks,

or Deep Neural Networks (DNN), which represent NN with multiple hidden layers

[117]. Nowadays, NN and DL are widely used in solving machine learning problems

from big sets of data. It is a successor of DistBelief system, and consists of multiple

algorithms for deep learning neural networks suitable for use in many areas and on

multiple computational platforms. TensorFlow is suitable for fast implementation on

various problems and trying out research ideas, and as such is selected for potential

future research in our field.

Besides these listed techniques, we could also examine other algorithms for anomaly de-

tection and unsupervised learning. The selected technique should initially learn from data

which would be generated with SECSIM, due to lack of data from real networks. Finally,

we could modify the proposed detection mechanisms to work on detection of other DoS at-

tacks, such as: SMS floods, premium SMS, command and control behaviour, compromised

femtocells and others.
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SECSIM remote control

The Mobile Networks Security Simulator (SECSIM), described in Section 2.3.2, played

an important part of the research done for this report. It was used to develop and test

signalling attacks detection and mitigation techniques, and to test many research ideas

within and out of the scope of this thesis. This section presents some the technical work

regarding upgrading SECSIM’s functionalities.

During the work with SECSIM, as part of an international research project, there has

been a need to run simulations from a remote location. Moreover, simulations needed

to be run in an automated way, such that a machine can remotely start simulations and

retrieve results for analysis, in an encrypted communication. To enable this, some of

the functionalities that should be implemented were: simulation configuration should be

simplified using only the most basic parameters, communication should be done using a

client-server approach, authentication of hosts should be provided, simulation data should

be organised and stored in a database, multiple parallel simulations should be able to run

at the same time and data retrieval should be done using the File Transfer Protocol (FTP)

with encryption. The architecture of the provided solution is described on Fig. A.1.
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Figure A.1: The architecture enabling remote control of SECSIM.

The provided solution wraps up the simulator in the SECSIM server. The SECSIM server

further contains the WAPI server which is the central point in the architecture. WAPI is

a shortcut for WOMBAT API, the Application Program Interface for a tool developed in

the WOMBAT FP7 project [118], that enables encrypted and automated remote transfer

of data. The data is organised in a dataset called SECSIM dataset, which also provides

the client methods for data manipulation. Access to the data is asynchronous, provided

by its engine built in Twisted Python, and data transfer is encrypted using asymmetri-

cal encryption techniques. The WAPI server further contains two interfaces: Sim API

for communication with the SECSIM simulator, and DB API for communication with a

database. All of the WAPI server functionalities are developed in Python 2.7 programming

language [119]. The SECSIM simulator has a package called Signaling Storm Detector and

Mitigator (SSDM), as depicted in the figure, which contains the developed detection and

mitigation techniques described in Chapter 5. The SECSIM DB is a NoSQL database with

document-oriented structure, developed in MongoDB [120], and is responsible for storage

of the simulated data, and simulation configurations requested by the client. Finally the

server side contains an Secure File Transfer Protocol (SFTP) server which is responsible
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for transfer of big data files from the server to the client. In this scope, it is important

to note that all of the building blocks on the SECSIM server side were implemented on a

single machine running Kubuntu, version 14.04 LTS. A brief description of the workflow

of the provided solution is provided with the following steps, in correspondence with Fig.

A.1:

1. The client connects to the server using https://<ip_address>:<port>/secsim url,

and asks for a simulation using the request method implemented in the WAPI

server, providing the parameters needed to configure the simulation.

2. The WAPI server checks if it already has the data for the requested simulation in

the database, and if not, it starts a new one.

3. When simulation is done, the WAPI server parses the textual result files and saves

the data in the database.

4. The WAPI server tells the WAPI client that data is available, sending the simulation

identifier simId as a parameter.

5. The client authenticates with the SFTP server using a username/password or a client

certificate.

6. The client retrieves the data from the database through the WAPI server.

The WAPI server is responsible for most of the functionalities in the system, and their

description is given in the following. Firstly, a brief introduction of the WAPI tool is

provided, after which the building blocks of the system are explained in more details.

A.1 WAPI server

The WAPI server represents the focal point of the architecture enabling remote access to

SECSIM. The tasks it is responsible for are: to organise the simulated data in a dataset

SECSIM dataset, provide methods to the WAPI client to query the dataset, to configure

and start simulations, to parse simulation results and save them in a database.
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A.1.1 WOMBAT API description

One of the key goals of the WOMBAT Project [118] consisted in the development of mech-

anisms for the integration and sharing of data generated by the various security related

data feeds developed and maintained throughout the project. The WOMBAT partners

proposed to define a common API, called the WAPI, to be shared among all participants

in order to address the above issues and simplify the task of the data consumer willing

to take advantage of these datasets. The WAPI is a remote API based on Simple Object

Access Protocol (SOAP) that allows data consumers to retrieve remote information from

sources according to a given communication protocol. WAPI facilitates the integration of

information generated by multiple data feeds and enables analysts to write programs that

combine data from several information sources through a uniform set of primitives. WAPI

decouples the structure and the characteristics of each dataset from the clients: dataset

maintainers can decide what they are eager to share, in which format and to whom, and

can dynamically refine their dataset structure (e.g. add new information types to the ex-

isting datasets) without any need to update the querying clients that discover the dataset

modifications at runtime.

A.1.2 SECSIM dataset

The organisation of SECSIM dataset is depicted on Fig. A.2. It contains the following

objects, which are exposed to the client: SECSIM, simulation, scalar, vector, statistic

and simConfig. The SECSIM object is the object the client gets automatically when

connected to the server. Using this object, the client can use the method listSimulations

to get a list of simulation identifiers which are stored in the database, and the method

request with arguments inputParams to start a new simulation. Although one of the

advantages of the simulator is the high configurability, in the scope of this tool there was

a need to simplify the remote configuration of simulations. Therefore, we have selected a

list of the 24 most basic parameters inputParams which are exposed for remote access. A

list of these parameters is given in Table A.1. Finally the SECSIM objects has a method

getSimulation with parameter simId which returns a reference object to the requested
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simulation.

- getStatistics(simId)
- getStatisticsByName(name)
- getStatisticsByModule(module)
- getStatisticByModuleAndName
(module,name)

- getSimConfig()

- getSimulation(simId)

- getVectors(simId)
- getVectorsByName(name)
- getVectorsByModule(module)
- getVectorByModuleAndName
(module,name)

- getScalars(simId)
- getScalarsByName(name)
- getScalarsByModule(module)
- getScalarByModuleAndName
(module,name)

scalar
• _id
• simId
• name
• module
• attributes []
• value

vector
• _id
• simId
• name
• module
• attributes []
• vectorFile

statistic
• _id
• simId
• name
• module
• isHist
• attributes []
• fields []
• bins []

simConfig

• _id
• description
• configFiles []

SECSIM

• identifier

METHs:
• listSimulations()
• request(inputParams)
REF:
• getSimulation(simId)

simulation

• _id
• simId
• version
• description
• scalars []
• vectors []
• statistics []
• vectorFiles []
• vectorIndexFiles[]
• scalarFiles []
• simConfig

• getScalars(simId)
• getScalarsByName(name)
• getScalarsByModule(module)
• getScalarByModuleAndName

(module,name)
• getStatistics(simId)
• getStatisticsByName(name)
• getStatisticsByModule(module)
• getStatisticByModuleAndName

(module,name)
• getVectors(simId)
• getVectorsByName(name)
• getVectorsByModule(module)
• getVectorByModuleAndName

(module,name)
• getSimConfig()

Figure A.2: SECSIM WAPI dataset description.

The object simulation is used to merge all the different types of data belonging to a

simulation in a single object. The three main types of objects storing data are: scalar,

vector and statistic. The scalar object stores results as single numbers, the vector

stores results in arrays of time-series values and the statistic object stores histograms

and statistics related to a given quantity. The attributes scalarFiles, vectorFiles and

vectorIndexFiles represent lists of fileRef objects (Fig. A.3) which contain links to

the actual text files with simulation results. The fileRef and attribute objects on Fig.

A.3 are used for internal data organisation purposes and are not exposed directly to the

WAPI client.

Furthermore, the simulation object contains the simId, version and description at-

tributes which contain the identifier, Omnet++ version and a short user description.

Finally, the simConfig object contains the simulation configuration parameters, by pro-

viding links to the actual configuration files in the filesystem. These values are regarded as

input values for the simulator. The methods that the simulation object provides are used
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fileRef

• _id
• type
• size
• filepath
• url

attribute

• _id
• name
• value

Figure A.3: Objects that are used in the SECSIM dataset but not directly exposed to the
WAPI client.

for retrieval and filtering of data, such as getScalars, getVectors, etc. The names of

the methods are self-explanatory and easily describe their function. The scalar, vector

and statistic objects are the lowest-scale objects that store the actual data. Therefore

they do not contain any methods.

A.1.3 Sim API

The Sim API is an interface inside the WAPI server that is responsible for interaction with

the simulator. It is responsible for: configuration and running of simulations, maintaining a

queue of simulation requests and maintaining the threads run in parallel. The configuration

of each simulation run is done according to the parameters in the request method from

Table A.1. It mainly works by modifying text based files used by SECSIM to configure the

work of entities like UEs and the corresponding servers, while the core parts of the mobile

network models in SECSIM are not configurable remotely. The client requests come to a

First-in-first-out (FIFO) queue with a single server and are executed when a processor is

available. The current implementation uses only a single processor for running simulations

due to the available resources on the machine on which it works. Namely, a computer with

two processors is used, of which one is used for the run of the WAPI server and the second

for running a single simulation at a time. Finally, simulations are started in a parallel

thread in order not to block the work of the WAPI server.
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Table A.1: Input parameters in the request method used to configure simulations.

Parameter name Type Default value Description

scenarioName string ’Default’ A short descriptive name

numUE int 10 Number of UEs in the network

simTimeLimit int 60min Simulated time, in minutes

mobileUE boolean False If UEs are mobile or static

useWebApp boolean False Web browsing app

useRrcAttackApp boolean False RRC attack app

useSmsApp boolean False SMS app

useSmsSpamApp boolean False SMS spam app

useChatApp boolean False IM app

rrcAttackState string ’DCH’ RRC attack state (’DCH or ’FACH’)

numRrcAttackUE int 5 Number of UEs that use RRC attack
application

rrcAttackStart int 0min Time instance at which an RRC attack
starts, in minutes

rrcAttackStop int 99999h Time instance at which the RRC at-
tack stops, in hours

useSsdm boolean False If the SSDM functionality is used

counterDetection boolean False Type 1 detection: counter based

costDetection boolean False Type 2 detection: bandwidth usage
based

counterThreshold int 3 A threshold of consecutive transitions.
Used if useCounter=True

isMitigating boolean False If mitigation is switched On

mitStartTime int 99999min Time instance at which mitigation
should be switched on, in minutes

blockTime int 60s Time duration to block an attacking
UE, in seconds

numSpamUE int 5 Number of spamming UEs

interSpamTime int 5s Average time between two waves of
generated SMSs, in seconds

premiumSmsProb float 0.01 Probability of an SMS sent to a pre-
mium number, in range [0,1]

interChatMsgTime int 3min Average time between two waves of
generated IM messages, in minutes
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A.1.4 DB API

The DB API is the interface that allows the WAPI server to parse simulation results from

their original text format and interact with the database. This interface is needed to

enable automated retrieval of data, instead of transfer of large text files. As mentioned

earlier, MongoDB is used for data storage, while the code that enables interaction with

the database is built in Python. MongoDB was selected as a suitable database because of

its NoSQL document-oriented structure, rather than a traditional table-based relational

structure. It allows us to save objects in a JavaScript Object Notation (JSON) style,

which is widely used in many areas today. The DB API is used to store the three main

type of objects: scalar, vector and statistic, as well as the additional fileRef and

attribute objects. Data regarding the client requests is also saved in the database, as

this information is needed in the SECSIM dataset and Sim API.1

A.2 SFTP server

The vector data files store time series simulation results, and on many occasions these

files grow in the range of tens of gigabytes, which is a problem regarding its parsing

and database storage. First, parsing of these files would take a long time on a two-core

processor, and second, the uncommercial version of MongoDB does not support storage

of items larger than a few gigabytes. For this purpose, the large vector text files are not

parsed and saved in the database. Instead they are provided to the client via FTP transfer.

Since this transfer is not supported by the WAPI server, we provided a parallel service

using an SFTP server, which is selected as the most suitable solution. Furthermore, the

SFTP provides additional host authentication and data encryption, which was a predefined

requirement for the system. There are two possible ways of host authentication: via

username/password or via digital certificates, while the data encryption is done again by

asymmetric encryption techniques. It further sets the client access permissions on the

server for the FTP transfer, configured using the standard tools provided by the Ubuntu

1The author would like to thank Mr Gökçe Görbil and Mr Antoine Husson, from the Intelligent Systems
and Networks (ISN) group at Imperial College in London, for completing most of the work in DB API.
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system. These files can be accessed by the client through the fileRef object in the WAPI

server (Fig. A.3) which keeps a url field with the FTP link to the file.

A.3 Workflow example

The following example code shows a typical workflow for requesting a simulation execution

via the WAPI interface and collecting the simulation results. The simulation has a scenario

with RRC attack, as can be deduced by the parameters in the request method. The

following code is run on the client side in a Python environment. Comments are marked

with ’#’ sign at the beginning of the respective lines.

# make a request for a simulation

> simId = SECSIM.request({numUEs: 1000, simTimeLimit: 180, numAttackers: 300,

isPchEnabled: True, rrcAttack: DCH, attackWaitTime: 2})

# --- simulation is queued and run when a processor is available ---

# get the simulation object, upon receiving the simId of the run simulation

> sim = SECSIM.getSimulation(simId)

# get the number of successful attacks for all UEs and calculate the mean

# number of successful attacks per attacking UE

> attacksUEs = sim.getScalarsByName(dchAttacks:count)

> meanAttacks = numpy.mean(attacksUEs[:numAttackers])

# get time series data for RRC state changes for a particular module (RRC

# module in ue[0]). Note that vector data is not stored in the database so an

# url is returned to get the data via FTP

> vec = SECSIM.getVectorByModuleAndName(GenericNet.ues[0].rrc, rrcState:vector)

> vecFile = vec.vectorFile

> ftpUrl = vecFile.url



114 Appendix A. SECSIM remote control

A similar workflow example for running the SSDM functionality in SECSIM is presented

below. Results are retrieved for a statistic result of UE[0]. In this case the statistic is

a histogram, which can be seen by the stat.bins value, or also by its attribute isHist,

as in Fig. A.2. The histogram can afterwards be plotted using the fields attribute.

# make a request for a simulation

> simId = SECSIM.request({numUEs: 1000, simTimeLimit: 180, numAt-tackers: 300,

rrcAttack: DCH, useMitCounter: True, consTrans: 3, isMitigating: True,

blockTime: 60 })

# --- simulation is run ---

# the following steps are same as in a regular simulation request, get the

# simulation object, upon receiving simId parameter

> sim = SECSIM.getSimulation(simId)

# get a list of all possible scalar results for all modules in the network

> listScalars = sim.getScalars()

# get a particular statistic object for UE[0] containing a histogram of

# response times

> stat = getStatisticByModuleAndName(GenericNet.ues[0].appLayer.tcpApps[0],

responseTime:histogram)

> if stat.isHist:

> histBins = stat.bins

6.3

Further improvements in the remote control of SECSIM could be done in extending the

database storage, enabling running of more complex simulations, or building client side

data visualisation tools. SECSIM as a simulator, as well as the described remote control,

apart from education and research institutions, could also be used by network operators,

in particularly security analysts.
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A.4 SECSIM evaluation

SECSIM’s features are suitable for running the simulations regarding the detection mech-

anisms. Anyway, in order to understand its performance, a small experiment was run in

the scope of this work. The experiment’s goal is to benchmark SECSIM’s speed in terms

of processed events per unit time, and its relative speed in terms of simulated time units

per unit time. The simulator’s performance can vary depending on a number of different

factors:

• Hardware. The performance of the physical machine the simulation is running on.

To this regard, number of CPUs and their speed are the main factors.

• Model size. Number of components in the model. In a mobile network, this is the

number of simulated entities - UEs, RNCs, etc.

• Model setup. This factor incorporates the complexity of a network model (UMTS

or LTE model) and the complexity of the applications used (web browsing, VoIP,

etc.).

In order to calculate the speed and relative speed of SECSIM, a fixed hardware platform is

used including an i5 processor with 3.20GHz speed and four cores, 5.7 GB RAM memory

and Ubuntu 14.04.3 LTS operating system. The model setup is varied using the following

apps: web browsing, SMS, IM, web browsing & RRC attack, SMS & spam. The RRC

attack app refers to a signalling attack used in parallel with a legitimate web browsing

app. The model size is kept fixed in the experiment, because the simulator’s speed does

not depend on it.

Fig. A.4 shows SECSIM’s speed for different type of simulated models/applications and

fixed model size. The speed represented in processed events per second is a measure

of the computation intensiveness of different applications. Among the three basic types

of applications, web browsing, SMS and IM, the web browsing is most computationally

expensive, while SMS is the least expensive to simulate. The combination of web browsing

and RRC attack applications results in a slightly lower speed compared to the web browsing
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case. This decline is probably due to the fact that the RRC attack application has lower

computational complexity, because malicious terminals only occupy the bandwidth and do

not transfer any data. The combination of SMS and spam applications results in higher

speed than the SMS case. This is due to the higher complexity of the spam application.
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Figure A.4: Speed for different type of application models.

Fig. A.5 shows the relative speed for different application models and model sizes. For the

web browsing and web browsing & RRC attacks apps the number of UEs is 100, 500 and

1000, while for the other apps the number of UEs is 1000, 5000 and 10000. The hardware

configuration is fixed, as a single processor is used. The two cases that use web browsing

application show substantially lower relative speed than the rest of the applications. This

indicates that although web browsing performs best in processed events per second (Fig.

A.4), it also contains the highest number of events to be processed, which results in low

relative speed. The SMS and IM models’ relative speed is significantly higher, with IM

having the highest score. As expected, the relative speed decreases with the increase of

the model size.
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Figure A.5: Relative speed for different types of application models.

The described experiments estimate the simulation running time depending on its config-

uration, in particular depending on the selected applications running on mobile devices.

Anyway, there are many more aspects of the simulator that need to be evaluated, such as

the parallel execution of parts of the simulation on different machines, and the processing

and memory complexity of different configurations.



List of abbreviations

AES Advanced Encryption Standard.

AI Artificial Intelligence.

ANN Artificial Neural Networks.

API Application Program Interface.

BS Base Station.

CN Core Network.

CPN Cognitive Packet Network.

CS Circuit Switched.

DCH Dedicated Physical Channel.

DDoS Distributed DoS.

DL downlink.

DNN Deep Neural Networks.

DNS Domain Name System.

DoS Denial of Service.

DPI Deep Packet Inspection.

EAP Extensible Authentication Protocol.
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EDGE Enhanced Data rates for GSM Evolution.

eNodeB Evolved NodeB.

EWMA Exponential Weighted Moving Average.

FACH Forward Access Channel.

FIFO First In First Out.

GGSN Gateway GPRS Support Node.

GMM GPRS Mobility Management.

GPRS General Packet Radio Systems.

GSMA Global System for Mobile Communications Association.

GTP GPRS Tunneling Protocol.

HSPA High Speed Packet Access.

IM Instant Messaging.

IMSI International Mobile Subscriber Identity.

IoT Internet of Things.

IP Internet Protocol.

IPsec Internet Protocol Security.

ISN Intelligent Systems and Networks.

JSON JavaScript Object Notation.

LTE Long Term Evolution.

M2M Machine to Machine.

MAC Media Access Control Layer.
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ML Machine Learning.

MM Mobility Management.

MNO Mobile Network Operator.

NAT Network Address Translation.

NBAP NodeB Application Part.

NN Neural Networks.

PHY Physical Layer.

PS Packet Switched.

PSTN Public Switched Telephone Networks.

QoS Quality of Service.

RAN Radio Access Network.

RANAP Radio Access Network Application Part.

RB resource block.

RB Radio Bearer.

RNC Radio Network Controller.

RNG Random Number Generator.

RNN Random Neural Network.

ROC Receiver Operating Curve.

RRC Radio Resource Control.

RRM Radio Resource Management.

SECSIM Mobile Networks Security Simulator.
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SFTP Secure File Transfer Protocol.

SGSN Serving GPRS Support Node.

SGW Serving Gateway.

SIP Session Initiation Protocol.

SM Session Management.

SMS Short Message Service.

SOAP Simple Object Access Protocol.

SS Signaling Server.

SSDM Signaling Storm Detector and Mitigator.

SSH Secure Shell.

TCP Transmission Control Protocol.

TLS Transport Layer Security.

TMSI Temporary Mobile Subscriber Identity.

UDP User Datagram Protocol.

UE User Equipment.

UL uplink.

UMTS Universal Mobile Telecommunications System.

VoIP Voice over IP.

WAPI WOMBAT API.
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