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Abstract

Concentric tube robots offer the capability of follow-the-leader motion, which is desirable when navigating in cluttered

environments, such as in minimally invasive surgery or in-situ inspections. The follow-the-leader capabilities identified

in the existing literature, however, are limited to trajectories with piecewise constant-curvature segments or piecewise

helical segments. A complete study of follow-the-leader kinematics is, therefore, relevant to determine the full potential of

these robots, and clarify an open question. In this paper, a general analysis of follow-the-leader motion is presented, and a

closed-form solution to the complete set of trajectories where follow-the-leader is possible under the assumption of no axial

torsion of the tubes composing the robot is derived. For designs with constant-stiffness tubes, the precurvatures required

are found to be either circumference arcs, helices, or deformed helices with exponentially varying curvature magnitude.

The analysis developed also elucidates additional motions of interest, such as the combination of follow-the-leader motion

in a robot segment with general maneuvers in another part. To determine the applicability of the assumption regarding

the tubes’ torsion, the general equilibrium of the robot designs of interest is considered, and a closed-form solution to

torsion in two-tube robots with helical precurvatures is derived. Criteria to select a desired torsional behavior are then

extracted. This enables one to identify stable trajectories where follow-the-leader is possible, for potential application to

minimally invasive surgery. An illustrative case study involving simulation and experiment is conceived using one of these

trajectories, and the results are reported, showcasing the research.
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1. Introduction

Concentric tube robots were originally proposed a decade

ago by Sears and Dupont (2006) and Webster et al. (2006),

and since then their popularity has been increasing, pre-

dominantly in the field of minimally invasive surgery. The

rapid uptake of these robots can be credited to the advan-

tages they offer when operating in confined environments.

These advantages include a small diameter similar to that

of a surgical needle, a simple mechanical design requiring

a small number of parts, and singular kinematics that pro-

vide the ability to advance in follow-the-leader motion, i.e.

the robot structure follows the path selected by its distal end,

in specific trajectories.

A concentric tube robot consists of a set of precurved,

super-elastic tubes arranged concentrically. The geometry

of the robot is therefore determined by the elastic equilib-

rium of the tubes that compose it. The control of the relative

insertion and rotation of the tubes enables control of the

robot’s motion. It should be noted, however, that the motion

achievable by a specific robot depends on its design in terms

of the precurvature and stiffness of the tubes that comprise

it.

Research on the different aspects of concentric tube

robots is reported in the literature. The mechanical anal-

ysis of these robots is well established, with traditional

approaches assuming no external loads and no friction,

such as in Dupont et al. (2009) and Webster et al. (2009),

and subsequent studies considering external forces, as in

Mahvash and Dupont (2011) and Rucker et al. (2010), and

also including friction between tubes (Lock and Dupont,

2011). As a result, accurate control of the robots is possible

(Dupont et al., 2010a,b), and stable paths can be planned

(Bergeles and Dupont, 2013; Lyons et al., 2009, 2010).
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In addition, feedback systems based on fiber Bragg grat-

ings have been proposed and incorporated into the robots

(Ryu and Dupont, 2014), enabling closed-loop control with

proprioceptive sensing.

All this established research has allowed applications in

a range of medical procedures, including Burgner et al.

(2011); Butler et al. (2012); Dupont et al. (2012); Gosline

et al. (2012); Vasilyev et al. (2013), which showcase the

capabilities of concentric tube robots. Current work, how-

ever, is focused on the exploitation of robot designs com-

posed of piecewise constant-curvature tubes. A first study

of other trajectories traceable in a follow-the-leader con-

figuration was recently published by Gilbert et al. (2015).

However, this work only offers solutions for some specific

robot configurations, but it does not allow a general study,

leaving general follow-the-leader possibilities as an open

question. A general study is therefore required to determine

the complete follow-the-leader possibilities that concentric

tube robots can offer, based on existing models, thereby

establishing the full potential of these devices.

In this paper, the full follow-the-leader capabilities

achievable with concentric tube robots are analyzed, and a

closed-form solution to the complete set of trajectories that

can be followed in a follow-the-leader configuration under

the assumption of no axial torsion of the tubes is presented.

The validity of such an assumption is subsequently consid-

ered in the set of trajectories discovered, which allows for

the selection of a case study to showcase the work. The

objective of this work is similar to that in Gilbert et al.

(2015), and therefore some parallels are present, as noted

throughout this paper. However, the research presented here

was conducted independently of Gilbert et al. (2015), which

favored the formulation of a different approach that enables

a general study and solution. This clarifies a currently open

question, and broadens the potential of concentric tube

robots with a new set of trajectories that can be exploited in,

for instance, minimally invasive surgery or in-situ inspec-

tions. A crucial part of the approach adopted here is a

specific robot description, which allows a geometrical inter-

pretation of the conditions for follow-the-leader motion.

This enables the formulation of a treatable problem and

the derivation of a general, closed-form solution under the

assumption of no axial torsion of the tubes.

The formulation of the analysis presented in this work

considers robots comprising any number of tubes with any

desired precurvature and stiffness, and any possible con-

trol strategy in terms of rotation and insertion of the tubes.

Discontinuities in robot curvature, which are inherent in

telescopic robot deployment as well as in unconventional

robot designs, are also considered in the study. Thus, the

analysis of follow-the-leader motion reported here, together

with the corresponding solutions, is completely general. In

addition, the geometrical interpretation of follow-the-leader

motion proposed in this paper provides conceptual insight

into these kinematics, which is useful for the future

development of path planning and closed-loop control

algorithms, and for the application of these robots to prac-

tical scenarios, where disturbances are present.

The strategy employed in this work to study the follow-

the-leader possibilities, which involves first studying the

problem assuming no torsion and then determining the

validity of the assumption, is advantageous from both a

theoretical and practical perspective. It establishes the full

capabilities first under the assumption of no torsion, and

then it enables selection of the admissible deviation in

terms of torsion of the tubes. In this manner, useful trajec-

tories with a small deviation away from an ideal follow-

the-leader configuration are not discarded, which can be

advantageous. Furthermore, since the admissible deviation

in terms of torsion can be selected, it can be specified to

be as close to zero as desired. Still, the design of concen-

tric tube robots accepting a relatively small deviation from

follow-the-leader due to torsion is advisable, considering

that it noticeably increases the number of feasible trajec-

tories, and that, in practice, a certain degree of uncertainty

generally exists in the predicted robot behavior. It should

be noted that the focus here is on the deviation in terms

of local curvature from that corresponding to follow-the-

leader motion, but this does not directly imply a specific

deviation in task space. The relation between deviation in

task space and local deviation due to torsion is illustrated

with some simulations of relevant configurations, but the

determination of the specific relation is a question beyond

the scope of this present work. Interestingly, the analysis

assuming no torsion is also applicable to robot designs with

non-annular cross-sections, originally proposed in Green-

blatt et al. (2011), by simply considering controls without

relative rotation of the tubes.

To study the torsion of tubes and then conceive a case

study to showcase this research, the general equilibrium of

the robot is considered in the set of trajectories discovered.

A closed-form solution describing the torsion of the tubes

along the arc length is obtained for two-tube robots with

helical precurvatures, which represent the most relevant

designs in the trajectories discovered. This solution then

allows for identification of the designs that guarantee that

the torsion of the tubes is below a specified value. Interest-

ingly, the torsional behavior is found to depend on two non-

dimensional groups, which indicate that torsional deviation

can be reduced by using helical tubes the precurvatures of

which have significantly different geometric torsion. These

results are used to develop a case study involving simula-

tion and experiment, where the tubes present a small tor-

sional deformation and the robot maintains a near perfect

follow-the-leader configuration, illustrating the capabilities

described in this work.

The set of trajectories found in this work is non-trivial,

and expands the currently known capabilities of concen-

tric tube robots. For robots composed of constant-stiffness

tubes, the corresponding robot designs required are found
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to be composed of tubes with precurvatures that are either

helices or deformed helices with exponentially varying cur-

vature magnitude. For robots with variable stiffness tubes,

robot designs composed of tubes with more general geome-

tries associated with the deformation of helices are found

to be possible. It should be noted that the idea of consider-

ing helical precurvatures for follow-the-leader motion has

been previously proposed by Gilbert et al. (2015), but in

this work it is extended and formalized. Kinematic equiv-

alences that can be exploited within the follow-the-leader

set of trajectories are also extracted from the analysis.

These include concatenation of segments of different tra-

jectories, or the addition of idle tubes that become active

once inserted. Furthermore, various maneuvers that com-

bine follow-the-leader motion along a segment of the con-

centric tube robot with general displacements at its distal

end, which do not correspond to follow-the-leader, are also

distilled from the analysis. These maneuvers are aimed at

applications where the robot end-effector is able work in

a spacious cavity, which can only be accessed through a

narrow path that requires follow-the-leader motion. Such

a situation is common in minimally invasive surgery, as

well as in other fields, such as in-situ inspections, where

the kinematics identified here can offer a significant advan-

tage. It should be noted that the majority of these kinematic

possibilities have already been proposed in the literature for

robot designs composed of piecewise constant-curvature

tubes (e.g. Dupont et al., 2010b, 2012; Gosline et al., 2012).

In this work, these are generalized and integrated into the

analysis developed here.

The paper is structured as follows. The governing equa-

tions of a general concentric tube robot under the assump-

tion of no axial torsion are derived in Section 2. The study

of follow-the-leader motion is presented Section 3, where

the closed-form solution corresponding to the trajectories

traceable in a follow-the-leader configuration is derived.

In Section 4, additional maneuvers of interest that can be

deduced from the analysis of follow-the-leader motion are

described. The structural analysis considering torsion of the

tubes composing a robot is outlined in Section 5, including

the closed-form solution to the tubes’ torsion in a two-tube

configuration. Finally, the case study involving simulation

and experiment is presented in Section 6, together with the

corresponding results, which leads to the conclusion of the

paper in Section 7.

2. Governing equations

The relations that govern the behavior of the robotic system

are derived in this section. The analysis follows a similar

approach to that in the established literature, and Dupont

et al. (2010b) is used as the main reference throughout the

paper to facilitate the reading. However, some variations on

the analysis are introduced in order to adapt it to the aims

of this work, with associated changes in nomenclature.

2.1. Problem characterization

The problem description adopted in this work is crucial to

enable derivation of the solutions presented in the following

sections. In this regard, a detailed characterization of the

problem is presented in this subsection. The geometry of a

tube, or a set of concentric tubes, is described by the curve

corresponding to its centerline. Diameter variations are not

expected, nor relevant to this study, and only the cross-

sectional moment of inertia is necessary, as elucidated in

the following subsection. Vectors, and in particular curva-

ture, are expressed using Bishop reference frames (Bishop,

1975). In particular, a frame W is defined as a Bishop frame

corresponding to the final robot geometry, as initially pro-

posed by Sears and Dupont (2006), and a frame Fi is defined

as a frame materially attached to a tube i that coincides with

a Bishop frame associated with tube i before undergoing

structural deformation.

The following magnitudes are then used to character-

ize a concentric tube robot. The length of the relevant part

of the robot, which generally corresponds to the inserted

robot length, is denoted L. The position along the arc length

is represented by s, relative to the distal end and defined

positive s ∈ [0, L]. An independent variable t, generally

coinciding with time, is used to parametrize the evolution

of the robotic system. The vector curvature of tube i at

cross-section si and instant t is denoted by the first two com-

ponents of u
Fi(si)
i ( si, t) = [uix, uiy, uiz]

T, which is defined as

the angular rate of increment of frame Fi materially attached

to tube i with respect to the arc length, and expressed in

the same frame Fi( si). The third component of u
Fi(si)
i ( si, t)

denotes the torsional deformation of tube i. Similarly, the

first two components of u
W (s)
T ( s, t) define the curvature of

the resulting robot in frame W ( s), while the third compo-

nent of u
W (s)
T ( s, t) is zero, owing to the definition of W . It

should be noted that the vector curvature of a tube before

and after applying external wrenches on it generally varies,

so a circumflex is used to indicate the initial curvature

û
Fi
i ( si). Since the initial geometry of a tube is described

by the curve corresponding to its centerline, expressed in

a Bishop frame, the third component of the initial curva-

ture is zero, by definition û
Fi
iz ( si) = 0. The stiffness matrix

corresponding to a tube i is defined as

ki =





EixIix 0 0

0 EiyIiy 0

0 0 JiGi





where E is the Young modulus and Iix,y is the cross-sectional

moment of inertia in either direction x or y. In this work,

the tubes are assumed to have an annular cross-section,

since this allows relative rotation between the tubes, and

it is therefore the most general case in terms of follow-the-

leader motion analysis. This implies EixIix = EiyIiy; there-

fore, the matrix ki is independent of the Bishop frame used

in the tube or robot description. The length along the robot

centerline between the distal end of tube i and the robot’s
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Fig. 1. General concentric tube robot composed of three tubes

with relevant nomenclature definitions.

distal end is defined as hi. At least one hi must be zero, since

the robot’s distal end must comprise at least one tube, and

here h1 is chosen to be zero in a situation of ambiguity. The

rotation angle between frame Fi and frame W is denoted by

θi. The scalar velocity at which the distal end of the robot

advances through the workspace with respect to t is repre-

sented by v. Finally, the internal moment vector associated

with the resulting cross-sectional stress of tube i is indi-

cated as m
Fi
i . A general concentric tube robot with some of

the magnitudes defined defined is illustrated in Figure 1.

From this problem description, the advantages of using

Bishop frames (Bishop, 1975) are clear. First, Bishop

frames are intrinsic reference frames with one component

always parallel to the curve tangent vector, which is con-

venient, considering that the vector curvature is orthogonal

to the tube’s centerline curve. In addition, they are defined

in any curve that is sufficiently differentiable, even at points

with zero curvature. Finally, for a tube with no axial torsion,

the curvature along the tube can be transformed to another

Bishop frame with a simple rotation that is constant along

the entire tube.

2.2. Governing laws

The behavior of the robotic system is governed by three

laws. First, an elastic constitutive law, which can be

obtained following Dupont et al. (2010b) as

m
Fi
i = ki

(

u
Fi
i − û

Fi
i

)

(1)

Second, a static equilibrium law (assuming a quasistatic

operation of the robot), which can be written as

n
∑

i=1

m
W (s)
i = 0 (2)

Finally, a law preventing the superposition of matter

(using a continuum mechanics description of matter), which

translates into a condition that imposes a common final cur-

vature to the tubes that compose a robot when arranged

concentrically

u
W (s)

1 |x,y = u
W (s)

2 |x,y = . . . = u
W (s)
T |x,y (3)

which only applies to the x, y components of u
W (s)
i , as

indicated by the subscripts x, y.

Assuming no external loads, and no axial torsion of the

tubes, combination of all three laws (equations (1), (2), and

(3)) determines the robot quasistatic model

u
W (s)
T ( s, t) =





n
∑

j=1

kj





−1
n

∑

i=1

R( θi( t) ) kiû
Fi
i ( s − hi( t) )

(4)

where h1 = 0, n is the number of tubes comprising the

robot, and

R( θi( t) ) =





cos( θi( t) ) − sin( θi( t) ) 0

sin( θi( t) ) cos( θi( t) ) 0

0 0 1





expressed in a Bishop frame corresponding to the final

robot curvature with no axial torsion. The orientation of this

final Bishop frame around the z axis is defined by a desired

arbitrary frame in a given cross-section, e.g. the proximal

end of the robot, and the corresponding extension to the

entire curve of the robot centerline. As a consequence, rigid

body rotations of the robot are represented by a simple rota-

tion of all tubes with a common angular velocity. It should

be noted that the composition ( s − hi( t) ) allows the evalu-

ation of each tube’s stiffness and initial curvature in a given

cross-section relative to the robot reference frame.

Equation (4) elucidates the fact that both the tubes and

the robot’s final curvature can be expressed using a vector

with only two components. However, in order to be consis-

tent with literature, and to clarify the use of the assumption

of no axial torsion, a three-dimensional vector is employed.

3. Follow-the-leader

Equation (4) describes all possible geometries that a con-

centric tube robot with design parameters ki, ûi can achieve

by relative rotation and insertion of the tubes that integrate

it, and, therefore, the general movements it can perform.

At each cross-section, the possible robot curvature evolu-

tions with time are given by the functions θi( t) and hi( t)

for all tubes. And for a given instant in time, the shape of

the continuum robot is determined by the curvature values

along s.

In this section, the robot kinematics corresponding to

follow-the-leader motion are studied. The condition for

follow-the-leader motion is first elucidated in Subsection

3.1. This condition is then imposed on the quasistatic model

of a general concentric tube robot in Subsection 3.2, yield-

ing the vectorial equation that must be satisfied for a tra-

jectory to be traceable in follow-the-leader motion. The

complete solutions to this equation are then studied in Sub-

section 3.3, leading to the complete set of trajectories where

follow-the-leader is possible in Subsection 3.4. It should be

noted that the strategy of defining a kinematic condition for

follow-the-leader motion and then imposing it on the robot
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model is similar to that proposed in Gilbert et al. (2015).

However, the specific analysis is markedly different, which

is a consequence of the fact that this research was conducted

independently. In this regard, the study in this paper is com-

plementary to that of Gilbert et al. (2015), and in this case

leads to the solutions derived in the following subsections.

3.1. General condition

Follow-the-leader motion requires the curve corresponding

to the robot centerline to remain in a constant spatial curve,

except for the differential segment that advances with a

differential of t. Thus, the curvature of the robot center-

line must be constant for all spatial locations. Defining a

magnitude x, which corresponds to spatial location in the

workspace, the condition imposing curvature at each spatial

location to remain constant can be expressed as

uT ( x) = constant ∀x ∈ C (5)

where C is the locus of the curve corresponding to the

robot centerline. Considering that the robot curvature can be

expressed as a function of s and t, as described in the previ-

ous section, the expression of curvature at a spatial location

can be differentiated. Since the curvature must be constant

at each spatial location, as expressed in equation (5), dif-

ferentiation yields the condition for follow-the-leader in the

robot segments with differentiable curvature as

−v
∂u

W (s)
T

∂s
= ∂u

W (s)
T

∂t
∀s, t (6)

It should be noted that the time-dependent variables in

u
W (s)
T are θi( t) and hi( t), and therefore the right hand side of

equation (6) corresponds to

∂u
W (s)
T

∂θi, hi . . .

∂θi, hi . . .

∂t

for all i. Equation (6) indicates that, in order to advance

in a follow-the-leader configuration, the curvature of each

cross-section must pass to the immediate adjacent cross-

section toward the proximal end. In a reference frame posi-

tioned at the distal end of the robot, this motion resembles

that of a wave without attenuation traveling toward the base

of the concentric tube robot, as conceptually illustrated in

Figure 2.

For robots with continuous ∂u
W (s)
T /∂s and ∂u

W (s)
T /∂t,

equation (6) is a necessary and sufficient condition for

follow-the-leader motion. For robots with discontinuities in

∇u
W (s)
T , follow-the-leader motion is achieved if and only

if the discontinuity step is finite, constant, and translat-

ing at velocity v away from the distal end, and also equa-

tion (6) is satisfied in the segments of continuity. In other

words, follow-the-leader requires the curvature discontinu-

ity to remain constant in the given position relative to the

workspace, and therefore it must translate away at rate v

from the robot distal end as the robot advances.

Fig. 2. Conceptual illustration of a Curvature field correspond-

ing to follow-the-leader configuration. A vector of motion that

satisfies follow-the-leader is indicated with a black arrow.

3.2. Application to concentric tube robots

The imposition of equation (6) on the quasistatic model of

the robot (equation (4)) restricts the possible robot kine-

matics to those that correspond to perfect follow-the-leader

motion (if any). This yields the condition that suffices for

a trajectory to be traceable by a concentric tube robot in a

follow-the-leader configuration

n
∑

i=1

[

R′( θi) Piû
Fi
i ( s − hi) θ̇i − R( θi)

∂

∂s
( Piû

Fi
i ( s − hi) ) ḣi

]

= −v

n
∑

i=1

[

R( θi)
∂

∂s

(

Piû
Fi
i ( s − hi)

)

]

∀s, t (7)

where

R′( θi( t) ) =





− sin( θi( t) ) − cos( θi( t) ) 0

cos( θi( t) ) − sin( θi( t) ) 0

0 0 0





and

Pi =





n
∑

j=1

kj





−1

ki

and both θ̇i and ḣi are functions of time. The dependence of

θ̇i and ḣi on t is omitted in equation (7) and in the following

equations for brevity, but both θ̇i and ḣi should be consid-

ered to be functions of time in the entire presentation unless

otherwise stated.

The curve describing trajectories where follow-the-

leader is possible can be specified both by the correspond-

ing uW
T ( s, tf), which is parametrized by the arc length and

evaluated at the time at the end of an insertion tf, or by

uW
T ( 0, t), which is parametrized by time and evaluated at the

robot distal end s = 0. Both expressions are equivalent in

a follow-the-leader configuration. In this presentation, the

expression uW
T ( s, tf) is used for clarity of exposition.
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In concentric tube robots, ∂u
W (s)
T /∂s and ∂u

W (s)
T /∂t must

be sectionally continuous since discontinuities can only be

caused by either the end of one tube, or a locally non-

differentiable precurvature, both of which generate constant

discontinuity steps. In this regard, the translation of discon-

tinuity points toward the robot’s proximal end at velocity v,

and satisfaction of equation (7) in the rest of the domain,

are necessary and sufficient conditions for a trajectory to be

traceable in a follow-the-leader configuration.

The complete solution to equation (7) therefore corre-

sponds to the complete set of trajectories where follow-

the-leader is possible under the assumption of no axial tor-

sion. It should be noted that equation (7) is applicable to

any robot design in terms of precurvatures, stiffness, and

number of tubes, for any possible control strategy. Thus, it

represents a general condition for follow-the-leader motion.

The problem description employed in this work allows

the derivation of a closed-form solution to equation (7). The

key to such a solution is to treat equation (7) from a vecto-

rial perspective, rather than decoupling it into a system of

individual differential equations. Considering that all terms

in equation (7) either contain Piû
Fi
i or its derivative rela-

tive to s, and that R and R′ are closely related in terms of

the rotations they represent, geometric relations simplify

the study of equation (7). Such geometric interpretation

also provides insight into the control inputs and geometries

associated with follow-the-leader motion, and facilitates an

intuitive interpretation of the follow-the-leader configura-

tion. The rest of this section is dedicated to the solution of

equation (7).

3.3. Solution cases

The approach adopted here to study the solution to equation

(7) involves dividing the problem into cases of increasing

complexity for clarity of exposition, as presented in this

subsection. Cases with restrictions on the motions allowed

with the tubes are considered first, serving as a foundation

for the subsequent study of more general cases.

3.3.1. Rotation only and different for each tube. Consider-

ing first a case where the rotation of the tubes is the only

input allowed (equal insertion rate of all tubes), and con-

sidering that no groups of tubes are moving together, i.e.

functions θ̇i( t) satisfy θ̇i( t) 6= θ̇j( t) ∀i, j = 1, . . . , n over the

course of an insertion, equation (7) simplifies to

n
∑

i=1

R′( θi) Piû
Fi
i ( s) θ̇i = −v

n
∑

i=1

R( θi)
∂

∂s

(

Piû
Fi
i ( s)

)

(8)

The possible solutions to equation (8) can be divided into

two cases: the terms in equation (8) corresponding to each

tube compensate so that their sum is null, which will be

referred to as “compensating individually”, or the terms

in equation (8) from different tubes combine so that their

sum is zero, which will be referred to as “compensating in

conjunction.”

In the case of compensating individually, equation (8) is

particularized as

R′( θi) Pi





ûix

ûiy

0



 ( s) θ̇i = −vR( θi)
∂

∂s



Pi





ûix

ûiy

0



 ( s)



 (9)

which must be satisfied for all time. The only time-

dependent terms are matrices R and R′ and θ̇i( t). Realizing

that both R and R′ matrices represent a rotation of the x and

y components with a constant difference of π/2, and that

component z is not relevant here, since the vector curvature

always lies in the XY plane, equation (9) reduces to an ordi-

nary differential equation of the vector Piûi with respect to

s

R
(π

2

)

Pi





ûix

ûiy

0



 ( s) θ̇i = −v
∂

∂s



Pi





ûix

ûiy

0



 ( s)



 (10)

The solution to equation (10) can be easily obtained by

realizing that it imposes ∂( Piûi) /∂s to be orthogonal to

Piûi. Specifically, the modulus
∥

∥Piûi

∥

∥ must be constant, and

the direction of the vector Piûi corresponding to tube i in a

Bishop frame must rotate in the local XY plane at a constant

rate with respect to the arc length. In addition, θ̇i( t) must

be constant and proportional to v in order to satisfy equa-

tion (10) for all t. This applies to any individual tube, and

therefore configurations corresponding to robots composed

of individual tubes that satisfy equation (10) correspond to

trajectories that satisfy follow-the-leader.

Follow-the-leader motion using only relative rotation of

the tubes and compensating individually is therefore possi-

ble, and the resulting trajectories expressed as the resulting

geometry of the robot at the time corresponding to the end

of an insertion are

uW
T ( s, tf) =

n
∑

i=1





∥

∥Piûi

∥

∥ cos( wis + φi)
∥

∥Piûi

∥

∥ sin( wis + φi)

0



 (11)

where wi is a variable that can be selected in the robot

design as desired and corresponds to the initial torsion of

tube i, and φi is a parameter related to the relative rotation

of the tubes at the proximal end of the trajectory, which can

also be chosen freely. It should be noted that the trajecto-

ries (equation (11)) are parametrized by s to elucidate that

they correspond to a set of geometric curves, although the

trajectories could also be parametrized by t, since both of

these are equivalent in a follow-the-leader configuration.

In the case of compensating in conjunction, solutions to

equation (8) can also be derived in specific configurations.

Rewriting equation (8), relying on the fact that

R′( θi) = R( θi) R
(π

2

)
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yields

n
∑

i=1

R( θi)

[

R
(π

2

)

Piû
Fi
i ( s) θ̇i + v

∂

∂s

(

Piû
Fi
i ( s)

)

]

= 0

∀s, t (12)

The terms in equation (12) are a sum of planar vectors in

each cross-section, and thus vectors Piû
Fi
i and ∂Piû

Fi
i /∂s

from a set of two or more tubes, defined as tubes i ∈ l, can

be combined so that their sum is zero. For θ̇i( t) 6= θ̇j( t),

however, the relative orientation between vectors corre-

sponding to different tubes changes with t. For follow-the-

leader to be satisfied, these vectors need to compensate in

conjunction at each instant of time and each cross-section

so that their sum is null, despite variations in their relative

orientation from different evolutions of R( θi( t) ).

The magnitude of the vectors in equation (12) is either

fixed, for ∂Piû
Fi
i /∂s, or determined by θ̇i, for θ̇iPiû

Fi
i . The

Piû
W
i of tubes i ∈ l are generally not aligned and therefore

the θ̇i determine the value of the sum of vectors correspond-

ing to tubes i ∈ l in equation (12) in each cross-section. The

θ̇i( t) can thus be selected so that the terms from a set of

tubes l compensate in conjunction despite variations from

different R( θi( t) ), with the values of θ̇i( t) chosen at each

instant of time for each arrangement of vectors Piû
Fi
i and

∂Piû
Fi
i /∂s. This enables a set of specific solutions, which

are discussed in two further cases for clarity of exposition.

Considering first a case with l = 2, two variables θ̇1

and θ̇2 are available to be selected at each instant of time.

Specific functions θ̇1( t) and θ̇2( t) can thus be used to sat-

isfy the two scalar equations implied by equation (12) for

a given cross-section, and all t. The functions θ̇1( t), θ̇2( t)

to satisfy equation (12) are unique for a given set of P1û
F1
1 ,

∂P1û
F1
1 /∂s, P2û

F2
2 , ∂P2û

F2
2 /∂s with a specific relative orien-

tation and relative magnitude between these vectors, corre-

sponding to a given cross-section. The θ̇i( t), however, are

common for all cross-sections. Follow-the-leader is then

satisfied if and only if the arrangement of vectors Piû
Wi
i and

∂Piû
Wi
i /∂s, in terms of relative orientation and relative mag-

nitude of these vectors for tubes i ∈ l, is proportional in all

cross-sections along the arc length.

Two possible design solutions then arise: (i) Piû
W
i and

∂Piû
W
i /∂s of tubes i ∈ l remain proportional along the arc

length with an equal orientation, or (ii) Piû
W
i and ∂Piû

W
i /∂s

remain proportional along the arc length, with an absolute

orientation of all vectors corresponding to i ∈ l rotating

at a constant rate along the arc length when expressed in a

Bishop frame. In solution (i),
∥

∥Piûi

∥

∥ of each tube must vary

exponentially in order to maintain proportionality between

Piû
W
i and ∂Piû

W
i /∂s, and vector orientation must remain

constant. In addition, the exponential increase rate must be

equal for tubes i ∈ l to maintain proportionality between all

vectors corresponding to tubes i ∈ l. In solution (ii),
∥

∥Piûi

∥

∥

must also vary exponentially at an equal rate for all tubes

i ∈ l; in addition, the direction of Piû
W
i and ∂Piû

W
i /∂s must

rotate along the arc length at an equal rate for tubes i ∈ l in

order to maintain proportionality.

Considering a general case with l > 2, an equivalent

analysis applies, although some specific differences are

present. The number of variables θ̇i available in this case is

l. This could suggest that equation (12) could be satisfied in

l/2 different cross-sections (for even l) by selecting specific

values of θ̇i at each instant of time. The design in terms of

vectors Piû
W
i and ∂Piû

W
i /∂s would then be freely selected at

l/2 cross-sections, and designs with all other cross-sections

proportional in terms of the Piû
W
i and ∂Piû

W
i /∂s to any

of the selected l/2 cross-sections, or linear combinations

of them, would maintain follow-the-leader with the same

common θ̇i, as in the previous case for l = 2. However,

designs with vectors Piû
W
i and ∂Piû

W
i /∂s proportional to

the arrangement of these vectors in multiple cross-sections

are not possible. As described for the case l = 2, pro-

portionality in Piû
W
i and ∂Piû

W
i /∂s implies an exponen-

tial variation in
∥

∥Piûi

∥

∥. Thus, proportionality of vectors

Piû
W
i and ∂Piû

W
i /∂s for tubes i ∈ l to any given cross-

section is propagated over all cross-sections, and conse-

quently all cross-sections must be proportional to any given

one. Therefore, also in the case l > 2, the arrangement of

Piû
W
i and ∂Piû

W
i /∂s for tubes i ∈ l in all cross-sections

must be proportional to a given cross-section for follow-

the-leader compensating in conjunction to be possible. The

design of the tubes is then equivalent to that in the case

l = 2, with Piû
W
i and ∂Piû

W
i /∂s for tubes i ∈ l that must

remain proportional along the arc length in terms of relative

orientation and magnitude, and with an absolute orientation

that must either be equal in all cross-sections, or rotating at

a constant rate along the arc length.

The trajectories that can be traced in a follow-the-leader

configuration with robots comprising only a set of tubes

i ∈ l that compensate in conjunction must then correspond

to a uW
T ( s, tf) of either constant direction or constantly rotat-

ing direction, and magnitude varying exponentially. These

trajectories are

uW
T ( s, tf) =

l
∑

i=1





eλs
∥

∥Piûi

∥

∥ cos( ρs + φi)

eλs
∥

∥Piûi

∥

∥ sin( ρs + φi)

0



 (13)

where λ is a parameter corresponding to the increase in

curvature magnitude along the arc length, which can be

selected with the tubes’ design and is common for tubes

i ∈ l, ρ is a parameter corresponding to the geometric tor-

sion of the tubes, also common for tubes i ∈ l, and φi is

related to the tubes’ orientation at the proximal end, as pre-

viously defined. Since ρ and λ are common for tubes i ∈ l,

the trajectories (equation (13)) can also be expressed as

uW
T ( s, tf) =





eλs ‖uR‖ cos( ρs + ν)

eλs ‖uR‖ sin( ρs + ν)

0



 (14)

where ‖uR‖ is the curvature resulting from the interaction

of tubes i ∈ l at a given cross-section, s = 0, and tf, and ν
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is related to the robot orientation at the proximal end, and is

analogous to φi.

Compensating in conjunction requires at least two tubes

in order to have two inputs θ̇i to satisfy the two compo-

nents of equation (12). Configurations with additional tubes

are also possible, and in these cases a degree of freedom

appears for each additional tube. This does not expand the

set of trajectories (equation (14)), but implies that a θi( t)

can generally be freely selected for each additional tube,

which can be exploited in additional maneuvers, described

in Section 4.

Follow-the-leader motion using only relative rotation of

the tubes is thus possible both compensating individually

and in conjunction. Equation (8) is a summation of terms

corresponding to different tubes. Hence, any combination

of solutions corresponding to a set of tubes compensating

individually (equation (11)) and a set of tubes compensating

in conjunction (equation (14)) must also satisfy equation

(8). The resulting set of trajectories is then

uW
T ( s, tf) =

n′
∑

i=1





∥

∥Piûi

∥

∥ cos( wis + φi)
∥

∥Piûi

∥

∥ sin( wis + φi)

0





+
g

∑

j=1





eλjs
∥

∥uR,j

∥

∥ cos( ρjs + νj)

eλjs
∥

∥uR,j

∥

∥ sin( ρjs + νj)

0



 (15)

where g is the number of sets of tubes that involve com-

pensating in conjunction, and n′ is the number of tubes that

compensate individually.

As a particular solution to equation (15), the trajectory

corresponding to a single tube being inserted is a helix

relative to the workspace. In this case, the required tube

precurvature is equal to the resulting trajectory, a config-

uration that corresponds to a common device, namely the

corkscrew. It should be noted that the helix can be degen-

erated to a circumference arc, elucidating the fact that this

result is completely general.

3.3.2. Different rotation and insertion for each tube. Con-

sidering now the case where any independent combination

of insertion and rotation of the tubes as a function of time is

allowed, but no groups of tubes move together, i.e. functions

θ̇i( t) satisfy θ̇i( t) 6=θ̇j( t) ∀ i, j = 1, . . . , n over an insertion,

the possible solutions to equation (7) can also be divided

into two cases, corresponding to the terms in equation (7)

of each tube compensating individually or in conjunction.

In the case of compensating individually, equation (7)

particularizes to

R′( θi) Piû
Fi
i ( s − hi) θ̇i − R( θi)

∂

∂s

(

Piû
Fi
i ( s − hi)

)

ḣi

= −vR( θi)
∂

∂s

(

Piû
Fi
i ( s − hi)

)

∀s, t, i (16)

Regrouping, equation (16) can be rewritten as

R′(θi)Piû
Fi
i (s−hi)θ̇i =(ḣi−v)R(θi)

∂

∂s

(

Piû
Fi
i (s−hi)

)

(17)

which must also be satisfied for all s, t, i. Equation (17)

simplifies the geometrical interpretation of the differen-

tial equation, elucidating the relation that must be satisfied

between vector Piû
Fi
i and its derivative with respect to s.

Two different design possibilities in terms of pre-

curvatures and stiffness of the tubes comprising the robot

arise from equation (17), which depend on whether the

modulus of Piû
Fi
i = qi is designed to be constant or not.

(i) If ‖qi‖ is constant, the directions of R∂qi/∂s and

R′·qi are parallel. This implies that there can be both

ḣi( t) 6=v, 0 and θ̇i( t) 6=0 simultaneously. In this case, the

solution of equation (17) has one degree of freedom

to choose from, either ḣi( t) or θ̇i( t). Regardless of the

choice, provided that ḣi( t) 6=v, equation (17) represents

an ordinary differential equation analogous to that in the

rotation-only case, since the difference between Ri and

R′
i is again constant and equal to π/2, yielding

R
(π

2

)

Piû
Fi
i ( s−hi) θ̇i = −( ḣi −v)

∂

∂s

(

Piû
Fi
i ( s − hi)

)

(18)

The solution to equation (18) is, as in the previous case,

a vector Piû
Fi
i of constant modulus, and direction rotat-

ing in the intrinsic XY plane proportionally to the arc

length. In equation (18), it is patent that the choice of

ḣi( t) is completely equivalent to the choice of v and

θ̇i( t), which determines the pace at which vector qi

rotates with the arc length. Hence, if ‖qi‖ is constant,

the follow-the-leader trajectories that can be obtained by

combining ḣi( t) and θ̇i( t) are equivalent to those achiev-

able using θ̇ ( t) only. Naturally, this is only valid for the

segment of the robot where the tube with ḣi( t) 6=v, 0

is present. The combination of θ̇i( t) and ḣi( t) is only

advantageous in a scenario where a variation of the rel-

ative insertion of a tube is desired. Such a maneuver

does not increase the variety of single trajectories that

can be traced in follow-the-leader. However, it enables

the linkage of some of these single trajectories, which

can be useful in practical applications, as described in

Section 4. The satisfaction of equation (16) for a t and

any s directly implies that equation (16) is satisfied for

all t, since the vector Piû
Fi
i corresponding to each tube

rotates along the arc length at a constant rate. Thus, the

complete set of trajectories achievable for constant ‖qi‖
is exactly equal as those in equation (15).

(ii) If ‖qi‖ is not constant, then R∂qi/∂s generates a vec-

tor in a direction oblique to R′·qi. Therefore, the only

solution is ḣ( t) = v, θ̇ ( t) = 0. This implies that tube i

is fixed with respect to the workspace, while the rest of

the robot advances. Such a configuration may seem idle

in terms of follow-the-leader kinematics, as it does not

contribute to the advancement of the robot. However,

it shows that, once a tube has been inserted to some

extent along the trajectory, it can be left fixed in that

position while the rest of the robot continues forward,

which is useful when linking trajectories composed of
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different numbers of tubes. It should be noted that a

configuration with ḣi( t) = v cannot be simultaneously

adopted in all tubes since there must be at least one tube

that advances the robot’s distal end (functions h( t) are

defined to be non-negative with respect to the robot’s

distal end). It is immediate to see that the solution iden-

tified for the design alternative (ii) holds for all times

and cross-sections.

In the case of compensating in conjunction, specific con-

trol inputs θ̇i and ḣi together with specific designs can also

satisfy equation (7). This can be elucidated by rewriting

equation (7) using the definition qi = Piû
Fi
i as

n
∑

i=1

R(θi)

[

R
(π

2

)

qi(s−hi)θ̇i+(v−ḣi)
∂

∂s
(qi(s−hi))

]

= 0 (19)

which must hold for all s, t.

Equation (19) is a sum of planar vectors with a relative

orientation that varies with t owing to the different R( θi( t) )

in different tubes. The magnitude of these vectors at each

instant of time is determined by θ̇i for vectors θ̇iqi, and by

ḣi for vectors ḣi∂qi/∂s. Thus, for a general design in a given

cross-section, θ̇i and ḣi of a set of tubes i ∈ l can be selected

at each instant of time so that the sum of the corresponding

terms in equation (19) is zero, despite changes in relative

orientation of the vectors.

The selection of θ̇i( t) and ḣi( t) enables the satisfaction

of equation (19) in a specific cross-section. However, θ̇i( t)

and ḣi( t) affect all cross-sections. For follow-the-leader to

be satisfied in all cross-sections, the arrangement of vectors

qi and ∂qi/∂s corresponding to tubes i ∈ l, in terms of rela-

tive orientation and relative magnitude of the vectors, must

be proportional in all cross-sections, in an equivalent man-

ner as in the previous subsection. The corresponding design

of the tubes is then equal to that in the previous subsection,

with Piû
W
i and ∂Piû

W
i /∂s for tubes i ∈ l that must have

a magnitude that varies exponentially along the arc length,

and an absolute orientation either constant or rotating at a

constant rate along the arc length. The trajectories that can

be traced in a follow-the-leader configuration by compen-

sating in conjunction using θ̇i and ḣi are then equal to those

in the previous subsection (equation (14)).

Compensating in conjunction involves two or more tubes.

Configurations with two tubes lead to a robot with two

degrees of freedom, as four inputs (θ̇1, θ̇2, ḣ1, ḣ2) are

available to satisfy the two equations implied by equation

(19). Any additional tubes add two degrees of freedom per

tube. Thus, even though the use of both θ̇i and ḣi does

not increase the follow-the-leader trajectories with respect

to those traceable using θ̇i only, the use of both θ̇i and ḣi

provides additional degrees of freedom. These degrees of

freedom imply that either θ̇i, ḣi, or a combination of them

can be used to maintain follow-the-leader, as in the previ-

ous case, involving tubes compensating individually with θ̇i

and ḣi. As before, this applies to the region of robot that

contains the tubes with θ̇i and ḣi. The exploitation of these

kinematics combining θ̇i and ḣi is described in Section 4.

It should be noted that the trivial solution ḣ( t) = v, θ̇( t) =
0 also satisfies equation (19) for any general design qi. As

in the previous case, this solution does not contribute to the

advancement of the robot in a follow-the-leader configu-

ration, but it can be exploited in the additional kinematics

described in Section 4.

The previous discussion for both configurations compen-

sating individually or in conjunction shows that the use

of the relative tube’s insertion as control input ḣi( t) does

not contribute to the enhancement of the set of trajectories

where follow-the-leader is possible. An alternative argu-

ment for discarding relative tube insertion from contribut-

ing to follow-the-leader kinematics is that any positive ḣi( t)

motion prevents tube i from remaining at the robot’s dis-

tal end, and any negative ḣi( t) implies a certain offset until

the eventual instant of time when the tube becomes part of

the distal end. Thus, a tube with ḣi( t) 6= 0 could only con-

tribute to the distal end’s kinematics during an instant of

time. Nonetheless, the strategy of using ḣi( t) = v remains

useful for the linkage of trajectories achieved with different

numbers of tubes, as previously mentioned.

In the case of compensating individually, the control

input for each tube is also restricted by equation (17). To

satisfy equation (17) at a given time instant, a specific

tube geometry must be selected, as previously discussed.

Once the geometry is specified, equation (17) imposes a

constant relation between θ̇ ( t), ḣ( t), and v at each section

for any time. Assuming constant stiffness of the tubes for

simplicity, this relation can be written as

θ̇i+( ḣi − v) wi = 0 (20)

where wi is the torsion of the tube expressed in m−1.

Equation (20) corresponds to the control input required

in each individual tube to satisfy the follow-the-leader con-

dition (equation (17)). Equation (20) elucidates the afore-

mentioned freedom in the follow-the-leader control of each

individual tube, where different combinations of θ̇i( t) and

ḣi( t) satisfy equation (18) and, similarly, equation (17).

However, ḣi( t) must be either zero or v in the follow-the-

leader configurations where the robot advances in order

to satisfy the requirements on curvature discontinuities

described in Subsection 3.2. Thus, the relation between

θ̇i( t) and v is constant and determined by the geometry of

the specific tube in the scenarios where the robot advances,

with a specific rotation rate of each tube relative to the inser-

tion rate. In particular, each advancing tube must rotate at a

rate of wi relative to the arc length. A common example of

such a configuration is found in the insertion of a corkscrew,

where the rotation rate relative to the insertion is determined

by the helix geometry.

In the case of compensating in conjunction, the required

control inputs θ̇i( t), ḣi( t) to maintain follow-the-leader

motion can be determined from equation (19). In some
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cases, however, this can be complicated, and may lack

insight into the mechanics of the robot. Alternatively, con-

sidering that the evolution of uW
T ( s0, t) at any cross-section

s0 is known for each trajectory (equation (14)), equation (4)

can be used to determine θi( t), hi( t) and thus θ̇i( t), ḣi( t).

θi( t) and hi( t) are the angles and insertions that satisfy that

the sum of vectors Piû
W
i ( s) at a cross-section is equal to

the resulting curvature for all t. The control inputs deter-

mined for a cross-section then apply to the entire robot,

since the relative orientation and relative magnitude of

Piû
W
i and ∂Piû

W
i /∂s in each cross-section must remain pro-

portional along the robot’s arc length for each set of tubes

compensating in conjunction, as previously discussed.

The degrees of freedom of the control inputs can be seen

in equation (4), where both θ̇i( t) or ḣi( t) can be selected

to achieve the desired evolution for the resulting curvature

(equation (14)). As previously mentioned, the conditions

on curvature discontinuities imply that the insertion inputs

must be ḣi = 0 or ḣi = v for a concentric tube robot

to maintain follow-the-leader motion over the entire robot.

Then, only θi( t) can be used to follow the resulting cur-

vature (equation (14)). Interestingly, in designs composed

of two tubes, the θi( t) then involve the curvature vectors

of both tubes monotonically tending toward an aligned or

opposed configuration.

The condition for follow-the-leader (equation (7)) is a

sum of terms corresponding to different tubes. Therefore,

as in Subsection 3.3.1, combinations of configurations that

involve compensating individually and compensating in

conjunction also satisfy equation (7). The complete set of

trajectories that can be traced in a follow-the-leader config-

uration under the assumptions of this second case is then

equal to that in the previous subsection (equation (15)). The

only extension in terms of follow-the-leader motion is the

possibility of leaving tubes static relative to the workspace

while the rest of the robot advances.

3.3.3. General configuration including groups of tubes.

Considering now the most general case, where any control

inputs are allowed, the solutions to equation (7) are gen-

erally equivalent to those in the previous case, with the

exception of configurations where groups of tubes move

with a common θ̇i( t). These configurations are discussed

in the following, both for groups of tubes compensating

individually and in conjunction with other groups.

In the case of each group compensating individually, the

terms of each group must then satisfy

R′( θj)

m
∑

i=1

qi( s − hi) θ̇j − R( θj)

m
∑

i=1

∂qi

∂s
( s − hi) ḣi

= −vR( θj)

m
∑

i=1

∂qi

∂s
( s − hi) ∀s, t (21)

where θj( t) represents the common motion of the group of

tubes, and m is the number of tubes in the group. Equa-

tion (21) admits various solutions, which can be divided

into different configurations.

(i) If θ̇j( t) = 0, two possible solutions arise. First, equa-

tion (21) can be satisfied by selecting ḣi( t) = v for all

tubes, which is an analogous situation to that discussed

in Subsection 3.3.2 case (ii).

Alternatively, by selecting a specific ḣi( t) for each tube,

it is also possible to satisfy equation (21) at each instant

of time in a given cross-section. This solution requires

at least two tubes, since two inputs ḣi( t) are necessary

to satisfy equation (21) for all t. In the case of the group

of tubes coinciding with the robot’s distal end, ḣi( t) of

one tube must always be zero by definition of hi( t),

and then three tubes are necessary. The condition that

ḣi 6= 0 implies that the arguments of qi vary with t. The

inputs ḣi( t), however, apply to all cross-sections. Thus,

the configuration of vectors qi and ∂qi/∂s must be pro-

portional in all cross-sections to satisfy equation (21)

for all s, t. The resulting trajectories are then equiva-

lent to those described in Subsections 3.3.1 and 3.3.2. It

should be noted that this solution enables one to main-

tain follow-the-leader motion in the part of the robot

where the tubes with ḣi( t) 6= 0 are present, which cannot

be all tubes of a robot for a sustained period of time.

(ii) If ḣj( t) = 0, then it is necessary for θ̇j( t) 6= 0, as well as

hj( t) = 0, so equation (21) transforms as

R′( θj)

m
∑

i=1

qi( s) θ̇i = −vR( θi)

m
∑

i=1

∂qi

∂s
( s) ∀s, t

(22)

which is equivalent to case (ii) of Subsection 3.3.2, so

no new trajectories are added.

(iii)If ḣi( t) 6= 0 and θ̇j( t) 6= 0, two possible solutions arise.

First, by selecting hi( t) = hj( t) for all i,j, equation

(21) becomes analogous to equation (16). Then a solu-

tion exists where the group of tubes becomes equiva-

lent to a single tube with the geometry and stiffness of

the group in equilibrium, and thus the trajectories that

can be traced in a follow-the-leader configuration are

equivalent to those in Subsection 3.3.2.

Alternatively, by selecting specific ḣi( t) for each tube at

each instant of time, equation (21) can be satisfied. This

configuration is analogous to the previous case (case (i)

of this subsection) for ḣi( t) 6= v, and therefore the tra-

jectories that can be followed are equivalent to those in

the previous case.

In the case of various groups of tubes compensating in

conjunction, the groups must satisfy

g′
∑

j=1



R( θj)

lj
∑

i=1

[

R
(π

2

)

qiθ̇j +
(

v − ḣi

) ∂

∂s
( qi)

]





= 0 ∀s, t (23)
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where g′ is the number of groups compensating in con-

junction, lj denotes the number of tubes in group j, and

arguments qi( s − hi) apply to qi, although they are omit-

ted for brevity. Equation (23) is analogous to equation (19).

The possible solutions can be divided into two further cases.

(iv)If ḣi( t) are common for all tubes in each group, then the

groups act as single tubes with a geometry and stiffness

equivalent to the combination of tubes in the group. The

various groups can then compensate in conjunction in

an analogous manner as in the previous subsection for

the case of single tubes compensating in conjunction.

Hence, no trajectories are added.

(v) If the ḣi( t) are different for the various tubes in each

group, then the values of ḣi( t) at each instant of time

can be selected, either to achieve a desired evolution for

the sum of terms in equation (23) corresponding to each

tube so that the combination of tubes satisfies equation

(23), or directly to satisfy equation (23) with the com-

bination of terms from each individual tube. In either

case, the arguments of vectors qi and ∂qi/∂s at each

cross-section vary, owing to the different ḣi( t). Specific

control inputs are then required at each instant of time

to satisfy equation (23) in a cross-section, which repre-

sents a case analogous to that in Subsection 3.3.2 when

compensating in conjunction. Thus, the configuration of

vectors qi and ∂qi/∂s must be proportional along the

arc length, and the resulting trajectories are equivalent

to those in Subsection 3.3.2.

From the discussion in this subsection, it can be con-

cluded that the combination of a group of tubes with a

common θi( t) does not expand the trajectories feasible in

follow-the-leader configurations from those derived in the

previous subsections. Nonetheless, the fact that groups of

tubes moving in conjunction are equivalent to a single tube

can be useful for the insertion of various tubes with sin-

gular precurvatures that cannot be inserted individually in

a follow-the-leader configuration, but that in conjunction

result in a geometry that can satisfy follow-the-leader. The

exploitation of this configuration is considered and devel-

oped in the additional maneuvers described in Section 4. It

should be noted that the control input required for the inser-

tion of a group of tubes is that corresponding to the single

tube equivalent to the group, elucidated in equation (20).

3.3.4. Curvature discontinuities. Up to this point, the

study of trajectories where follow-the-leader is possible

considered only continuous curves satisfying equation (6).

However, trajectories with curvature discontinuities can

also be traced in a follow-the-leader configuration, provided

that the conditions described in Subsection 3.1 are satisfied.

An example is the well-established trajectory composed of

circumference arcs (Sears and Dupont, 2006).

In general, the points of curvature discontinuity must

remain in a constant position in the workspace, which

implies that they must translate at velocity v away from

the robot’s distal end as it advances. This requires the tubes

causing the discontinuity to have ḣi( t) = v from the point

where the trajectory discontinuity is reached, onward. Con-

sidering that discontinuities appear at either the end of a

tube or a discontinuous precurvature of a tube, follow-the-

leader motion in trajectories with discontinuities is made

possible by leaving one or more tubes fixed at each point

of curvature discontinuity while the rest of the robot pro-

ceeds forward. Each segment of trajectory between cur-

vature discontinuities must satisfy equation (7). Thus, the

complete trajectory must be a combination of segments

of the trajectories identified in the previous subsections.

These combined trajectories are discussed in more detail in

Subsection 4.1.

3.4. Set of trajectories summary

The trajectories found in Subsections 3.3.1 to 3.3.3,

together with their combinations in Subsection 3.3.4, con-

stitute the set of trajectories that can be traced in a follow-

the-leader configuration, since all possible cases solving

equation (7) have been considered, in addition to curvature

discontinuities. The trajectories, excluding combinations of

them, can be synthesized in a single expression

uW
T ( s, tf) =

n′
∑

i=1





∥

∥Piûi

∥

∥ cos( wis + φi)
∥

∥Piûi

∥

∥ sin( wis + φi)

0





+
g

∑

j=1





eλjs
∥

∥uR,j

∥

∥ cos( ρjs + νj)

eλjs
∥

∥uR,j

∥

∥ sin( ρjs + νj)

0



 (24)

where
∥

∥Piûi

∥

∥, wi,
∥

∥uR,j

∥

∥, λj, and ρj are selected in the robot

design, and φi and νj are determined by the rotational ori-

entation of the tubes at the beginning of the trajectory. The

modulus
∥

∥Piûi

∥

∥ must be constant according to the previous

discussion, but its value can be chosen as desired by select-

ing an appropriate initial stiffness and curvature for each

tube. Similarly, the
∥

∥Piûi

∥

∥ of the tubes that compensate in

conjunction to create
∥

∥uR,j

∥

∥ must vary exponentially, but

the rate λj and the magnitude of
∥

∥uR,j

∥

∥ can be selected as

desired with the design of these tubes. The values of wi and

ρj, which correspond to the initial torsion of either tubes i or

j, can also be freely selected provided that they are constant.

The initial designs of the individual tubes or groups

of tubes comprising a concentric tube robot capable of

follow-the-leader motion must satisfy Piû
Fi
i and ∂Piû

Fi
i /∂s

to remain proportional along the arc length, as discussed

in the previous subsections. In the case of compensating

in conjunction, the relative orientation and proportional-

ity of Piû
Fi
i and ∂Piû

Fi
i /∂s must be equal for all tubes that

compensate. Interestingly, for the common configuration of

tubes with constant stiffness along the arc length, the ini-

tial geometry of the tubes that compensate individually is

a helix, whereas that of tubes that compensate in conjunc-

tion is a deformed helix with continuously varying curva-

ture magnitude. A particular case of degenerated helix is a
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circumference arc. Thus, equation (24) includes the well-

established robot designs consisting of constant-curvature

tubes. It should be noted that the use of helical tubes has

been previously introduced in Gilbert et al. (2015). In this

work, the concept is extended and formalized by deriv-

ing it from a general study, as described in the previous

subsections.

The robot designs corresponding to equation (24), how-

ever, are not limited to tubes with helical precurvatures.

If tubes with variable stiffness are used, the precurvatures

can present more general geometries that correspond to the

deformation of helices, provided that the aforementioned

relations on Piû
Fi
i are satisfied. These designs are equivalent

to those of constant-stiffness tubes in terms of follow-the-

leader capabilities, but they can be exploited in additional

maneuvers described in the next section, which combine

follow-the-leader motion with other general kinematics in

different parts of the robot, to increase the possibilities of

motion and geometry in the parts of the robot that do not

remain in a follow-the-leader configuration.

It should be noted that Pi is a non-dimensional stiff-

ness determined by the stiffnesses of all tubes comprising

a robot. In this regard, the design of the tubes in a robot

is not decoupled, and instead a concentric tube robot must

be designed, considering all the tubes that comprise it. In

addition, in the case of configurations including tubes with

λj 6= 0, which involve compensating in conjunction, two

or more tubes are required for each term that involves a

specific set of λj and ρj in the trajectories (equation (24)).

Equation (24), together with combinations of the trajec-

tories linked as introduced in Subsection 3.3.4, represent

the complete set of trajectories that can be traced in follow-

the-leader motion under the assumption of no axial torsion

of the tubes. A broad variety of trajectories can therefore be

followed. However, it should be noted that a generic robot

design cannot be used to follow any desired trajectory in the

set (equation (24)), and instead a robot must be designed

to follow a desired, small subset of the trajectories deter-

mined by variations in the φi, νj and the insertion lengths

of the tubes. In the particular case of using a robot with the

minimum number of tubes necessary to follow a desired tra-

jectory, the desired trajectory would require a specific robot

design in terms of the initial Piûi of the tubes. It should also

be noted that the length of trajectories involving terms with

λ 6= 0 is typically limited, as the curvature in these terms

increases exponentially, rendering the trajectories prone to

instability and of limited practical interest.

The control input required in each tube or group of tubes

to maintain follow-the-leader motion over an entire concen-

tric tube robot is given by equation (20) with ḣi( t) = 0 for

all tubes that are advancing and compensating individually

in a possibly combined trajectory. The inputs required in

tubes or groups of tubes compensating in conjunction is

also ḣi( t) = 0, and a value of θi( t) that can be determined

from equation (4), so that the curvature resulting from the

tubes compensating in conjunction follows the evolution of

the corresponding term in equation (24). In both cases, the

control input for tubes that remain stationary at the end of a

segment of a combined trajectory is ḣi( t) = v, θ̇i( t) = 0.

The set of trajectories summarized in equation (24) is

broad, and torsion can be expected to occur in some of

the trajectories. This can render some of the trajectories

partially inaccurate or completely unfeasible, as studied

in Section 5. Before the analysis of torsion, additional

kinematics of interest are considered in the following sec-

tion, completing the general study of motion related to

follow-the-leader.

4. Additional maneuvers

The kinematic analysis presented up to this point focused

on follow-the-leader motion. However, some potentially

exploitable kinematic possibilities were also found in the

discussion. The applicability of these kinematics, together

with additional motions related to follow-the-leader motion,

are described in this section. The majority of these kine-

matics have been previously proposed in the literature for

robots comprising a set of piecewise constant-curvature

tubes. This work simply extends some of these kinematic

possibilities to the new trajectories found here, and inte-

grates them into the derivation in this paper to complete the

analysis.

4.1. Trajectory linking

The possibility of inserting one or more tubes that com-

pose a robot with ḣi = 0, θ̇i 6= 0, and, at a certain point,

switching the control of some of these tubes to ḣi = v,

θ̇i = 0, was mentioned in Subsection 3.3.2. This involves

inserting one or more tubes to some extent together with

the rest of the robot, and leaving these specific tubes fixed

at a certain point while the rest of the robot proceeds for-

ward, maintaining follow-the-leader motion throughout the

entire robot (including the segment of the robot in which

some tubes are left stationary).

This concept of telescopic deployment to enable follow-

the-leader motion is well established in the literature

(Dupont et al., 2012; Gosline et al., 2012) and was origi-

nally introduced a decade ago by Sears and Dupont (2006)

for tubes with piecewise constant curvature. In this work,

the concept is extended to general trajectories composed

of segments of trajectories from the equation (24). More

specifically, this deployment strategy can be exploited to

follow trajectories in which the geometry of the first seg-

ment is determined by equation (24) for any desired num-

ber of tubes with selected precurvatures, and the geometry

of the subsequent segments corresponds to equation (24)

for equal precurvatures but a reduced number of tubes. In

this manner, different trajectories from the set summarized

in equation (24) can be linked and followed with a sin-

gle robot, expanding the follow-the-leader kinematics. The
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telescopic insertion of tubes with piecewise constant curva-

ture and no torsion is included as a particular case of linked

trajectories. However, this deployment strategy is applica-

ble to the broader set of trajectories discovered in this work

(equation (24)).

The linkage of trajectories also enables the reachability

of concentric tube robots to be extended. Tubes with signif-

icant precurvatures, which are generally prone to torsional

instability, can be inserted a short length at the beginning

of the trajectory, while tubes with shallower precurvatures

can proceed forward. This is particularly relevant in key-

hole surgery, where reaching a desired location can require

follow-the-leader motion in regions with clearly differenti-

ated kinematic requirements. Typical examples can be sce-

narios where entry into the body at a specific angle is a

challenge, and the subsequent trajectory requires shallower

curvatures, as can be the case of interventional magnetic

resonance procedures where access to the patient within

the bore of the scanner is restricted. Specific examples of

this can be focal ablation, brachytherapy, tissue sampling,

or drug delivery, performed under live magnetic resonance

imaging.

4.2. Combined follow-the-leader and general

motion

One of the results drawn from the analysis in Subsection

3.3 is that both θ̇i and ḣi can be used to maintain follow-

the-leader motion in the parts of the robot where the tubes

with θ̇i and ḣi are present. This applies both to configu-

rations compensating individually, where it leads to one

degree of freedom per tube, and configurations compen-

sating in conjunction, where it leads to 2l − 2 degrees of

freedom. Once a robot has been inserted, it is then possible

to operate individual tubes (or subsets of tubes in the case

of compensating in conjunction) independently by using

ḣi 6= v, 0 and the corresponding control input θ̇i, determined

from equation (20), for tubes compensating individually, or

from equation (4), for tubes compensating in conjunction,

as previously described. Follow-the-leader motion is then

maintained throughout the part of the robot that contains

the tubes controlled with ḣi 6=v, 0. Similarly, it is possible

to independently operate some of the tubes composing a

group that has been inserted with common θ̇i and ḣi, and

maintain follow-the-leader motion provided that their indi-

vidual design satisfies equation (17), or that the combina-

tion of designs of a subset of the tubes in the group satisfies

equation (19). In the case of a tube or subset of tubes satis-

fying the design requirements for follow-the-leader motion

in their proximal region only, their independent operation

enables follow-the-leader motion in the part of the robot

that contains the corresponding region of the tubes.

These kinematic equivalences enable general motion of

the robot’s distal part while maintaining a follow-the-leader

configuration of the body of the robot once it has been

inserted. In particular, there exist two main alternatives. The

first involves varying the insertion of a tube or a subset

of tubes using follow-the-leader control in a configuration

where the tubes being actuated present some offset hi > 0,

i.e. the tubes are not at the robot’s distal end. This leads

to general, transversal motion of the robot’s distal segment

s ∈ [0, hi], while the rest of the robot, which contains the

tube being actuated, remains in a follow-the-leader config-

uration. The second alternative involves using a group of

tubes that satisfies the design requirements for follow-the-

leader as a group, but is composed of tubes that, either

individually or in conjunction for a subset of the tubes in

the group, only satisfy the follow-the-leader requirements in

the proximal part of the robot, presenting a general design

in the distal part of the robot. In this configuration, the inde-

pendent operation of the tubes using a follow-the-leader

control corresponding to the proximal region of the tubes

also enables follow-the-leader motion in the proximal part

of the robot, combined with general motion of the distal

region of the robot. The selection of the general curvature

function in the distal part of the individual tubes determines

the general motion generated at the robot.

It should be noted that the strategy of maintaining the

proximal part of the robot in a steady configuration while

the distal part is used as a manipulator was already proposed

by Dupont et al. (2010b). In this regard, the contribution of

this work is to expand the strategies to achieve this type of

motion as well as the possible trajectories and kinematics

under a common framework.

A relevant advantage of the kinematics proposed in this

subsection, in particular, the use of groups of tubes, is that,

during the insertion, the group behaves as a single tube with

θi( t) = θj( t). Thus, it can contribute to the follow-the-leader

kinematics during the robot insertion, reducing the number

of tubes required, and then the group can be split for general

maneuvers. Furthermore, the kinematics described in this

subsection enable smooth variations of the robot’s distal end

configuration during insertion, which do not correspond to

a follow-the-leader configuration. These can be particularly

useful during insertions through soft tissue where trajectory

corrections are required.

4.3. Idle tubes

The quasistatic model (equation (4)) shows that the combi-

nation of two tubes with opposite precurvatures results in a

tube with zero curvature since the tubes’ curvatures com-

pensate at each cross-section. Thus, a tube with a general

desired curvature near the distal end and a straight geom-

etry toward the proximal end can be integrated in a robot

as a straight tube by combining it with its opposite, in an

idle configuration shown in Figure 3(a). The incorporation

of the resulting straight tube does not affect the possibility

of follow-the-leader motion; it simply increases the robot’s

stiffness.

Once the robot is inserted, the idle tubes can be activated

by modifying their relative rotation or insertion, as shown in
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Fig. 3. Idle tubes concept corresponding to: (a) two tubes (red and

yellow) with opposite curvatures, resulting in a straight geometry

(green) useful for insertion; (b) the same tubes with aligned curva-

tures, which corresponds to an active configuration with bending

in the segment near the distal end.

Figure 3(b). The active tubes only present curvature in the

segment near the distal end, which is determined by their

design. The result is the possibility of general motion at the

robot’s distal end once inserted, while maintaining a follow-

the-leader configuration throughout the rest of the robot.

The general motion achievable at the distal end is deter-

mined by the geometry of the idle tubes, which is selected

by design. As in the previous subsections, the idea of using

idle tubes has been proposed previously in the literature.

Here, the idea is generalized to the precurvatures and trajec-

tories discovered in this paper, and the concept is extracted

from the analysis in the previous sections, leading to a more

complete study.

The advantage of using idle tubes relative to the maneu-

vers described in the previous subsection is that idle tubes

do not impose any restrictions on their control, since their

proximal part is straight. Conversely, idle tubes cannot

contribute to the follow-the-leader kinematics, unlike the

groups of tubes described in the previous subsection. In this

regard, idle tubes lead to a noticeable increase in robot stiff-

ness, requiring higher precurvatures in the robot design to

follow a specified trajectory. This results in devices prone

to torsional instability, which is discussed in Section 5.

Thus, the practical applicability of the idle tubes concept

is relatively limited.

5. Torsion

The analysis presented in the previous sections is predi-

cated on the assumption of no axial torsion of the tubes

composing the robot. Such an assumption can be used in

the kinematic study of concentric tube robots, and it leads

Fig. 4. Example of trajectory from the set (equation (24)), illus-

trating the fact that the assumption of no axial torsion can lead

to intriguing predictions, but a study of torsion is required to

determine feasibility.

to the solutions described in previous sections. However, a

certain degree of torsion is generally present in concentric

tube robots, and therefore a certain deviation from follow-

the-leader can occur in the trajectories previously identified.

When torsion is significant, concentric tube robots can even

become unstable in some of the previously identified tra-

jectories, owing to the so-called snap-through instability

described in Dupont et al. (2010b). Thus, even though some

of the trajectories found under the assumption of no torsion

can be tempting, as that shown in Figure 4, they may not be

viable.

The torsion of concentric tube robots is studied in this

section to determine the validity of the assumption of no

axial torsion, and therefore allow for the selection of robot

configurations where such an assumption is an accept-

able approximation. The study of torsion requires a gen-

eral equilibrium analysis, which is derived in this section

using special Cosserat rod equilibrium theory, following the

approach in Dupont et al. (2010b). The study is then made

specific to trajectories of interest in Subsection 5.2, and a

closed-form solution for a two-tube robot is presented. The

implications of such a solution are subsequently discussed

in Subsection 5.3, and criteria to ensure that the torsion of

the tubes is less than a specified value are extracted. The

relation between torsional deformation and deviation in task

space is illustrated with some cases of interest in Subsection

5.4, serving for the selection of a robot design for the case

study described in Section 6.
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5.1. General formulation of torsional study

The derivation of the general differential equation govern-

ing torsion presented in this subsection is analogous to that

in Dupont et al. (2010b). However, the main steps of the

derivation are included for completeness, serving as a foun-

dation for the subsequent analysis in this paper. To facilitate

the integration of this work with existing literature, a new

variable is defined, ζ = L − s, which corresponds to the arc

length relative to the robot’s proximal end. The study of tor-

sion in the following is derived using ζ as the independent

variable.

The equilibrium of a tube i subjected to distributed

external forces f and moments τ can be imposed as

[

ṁi

ṅi

]

=
[

τ

f

]

−
[

[ui] [vi]

0 [ui]

] [

mi

ni

]

(25)

where ui and vi represent the angular and linear deforma-

tions, respectively, mi and ni denote the internal moments

and forces associated with the stress in the tube cross-

section, and the square brackets denote a skew-symmetric

matrix. The derivatives, indicated by a dot, are relative

to the arc length of the curve describing the tube center-

line, ζ ; all the variables are a function of ζ . The variables

corresponding to a tube are expressed in the tube’s refer-

ence frame, although the superscript indicating the frame is

omitted for simplicity in the notation.

In this work, the focus is on the robot equilibrium result-

ing from the interaction between tubes. Thus, f and τ cor-

respond to the forces and moments exerted on a tube by

the adjacent tubes. Assuming the friction between the tubes

comprising the robot to be negligible, τ = 0, the equilib-

rium equation corresponding to the torques in equation (25)

is

ṁi = −[ui]mi − [vi]ni (26)

Considering the derivative of the constitutive relation

(equation (1)) with respect to arc length

ṁi = ki

dui

dζ
+ dki

dζ
ui − d( kiûi)

dζ
(27)

and combining equations (26) and (27) yields

ki

dui

dζ
= −[ui]mi − [vi]ni − dki

dζ
ui + d( kiûi)

dζ
(28)

The angular strains can be assumed to be the prevailing

deformation modes over linear strains, following Dupont et

al. (2010b), leading to

[vi] =





0 −1 0

1 0 0

0 0 0



 (29)

Recalling that the initial curvature of a tube is defined in

Section 2 as the curvature of the curve corresponding to its

centerline, the z component of ûi is zero, and therefore the z

component of d( kiûi)/dζ is null. The tubes comprising the

robot can be assumed to have an annular cross-section with

constant stiffness for convenience, which implies dki/dζ =
0 and kx = ky. Using the constitutive relation (equation (1)),

after some manipulation, the z component of equation (28)

can be written as

u̇iz = kx

kz

( uixûiy − uiyûix) (30)

which describes the torsional derivative of a tube with

respect to ζ as a function of its initial and deformed bend-

ing curvatures. It should be noted that this expression is

equivalent to that presented in Dupont et al. (2010b), as it

is applicable to any concentric tube robot design under the

aforementioned assumptions.

Considering a robot composed of two tubes, the relative

twist angle can be defined as

α( ζ ) = θ2( ζ ) −θ1( ζ ) (31)

where θi represents the torsional displacement of tube i.

Combining the derivatives of equation (31) with equilib-

rium of moments (equation (2)), the constitutive law (equa-

tion (1)), and equation (30), the second derivative of the

twist can be related to the initial and final curvatures of

tube 2. The reader is referred to Appendix A for details.

The resulting expression is

α̈ =
(

k2x

k2z

+ k2x

k1z

)

( u2xû2y − u2yû2x) (32)

The variables u2x and u2y can be expressed as functions of

the initial curvatures of the tubes and the relative twist using

the governing equations in Section 2. Taking equation (4) in

combination with equation (3), and expressing the relations

in the Bishop frame associated with tube 2, F2, consider-

ing that in such a case R( θ1) = R( −α) and R( θ2) = I, the

following relations are obtained

u2x = 1

k1x + k2x

( k1xû1x cosα + k1yû1y sinα)

u2y = 1

k1y + k2y

( −k1xû1x sinα + k1yû1y cosα) (33)

Substituting equation (33) into equation (32), and after

some manipulation, including the aforementioned assump-

tion that kx = ky, the expression governing the relative

twist of the tubes as a function of their initial curvatures

is obtained

α̈ =
(

k2x

k1z

+ k2x

k2z

)(

k1x

k1x + k2x

)

(

( û1xû2y − û2xû1y) cosα+( û1xû2x + û1yû2y) sinα
)

(34)

A first boundary condition can correspond to the twist

at the proximal end of the robot, i.e. at ζ = 0, which can

generally be used as a control input

α( 0) = θ2( 0) −θ1( 0) (35)
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The second boundary condition can be obtained by con-

sidering that the torsional moment at the distal end of each

tube must be zero, which implies no torsion of the tubes at

ζ = L and therefore

α̇( L) = 0 (36)

It should be noted that equation (34), together with the

boundary conditions (equations (35) and (36)), is general,

and therefore valid for any two-tube robot design satisfying

the assumptions used in the derivation.

5.2. Torsion in particular configurations

Equation (34) can be made specific to trajectories in the

set (equation (24)) in order to determine the validity of

the assumption of no axial torsion in practice. The most

relevant trajectories in practice are those corresponding to

tubes compensating individually since they only require

one tube per component in equation (24), which enables a

wide variety of non-trivial trajectories to be followed with

a small number of tubes, and they offer lengths and cur-

vature values of typical practical interest. The following

derivation is thus focused on robots composed of tubes with

helical precurvatures. Substituting these helical precurva-

tures from equation (24) into equation (34), and after some

manipulation

α̈ = c sin( ( w2 − w1) ζ + α( ζ ) +φd) (37)

where

c =
∥

∥û1

∥

∥

∥

∥û2

∥

∥

(

k2x

k1z

+ k2x

k2z

)(

k1x

k1x + k2x

)

in which
∥

∥ûi

∥

∥ is constant considering tubes with constant

stiffness, φd = φ2−φ1, and the boundary conditions remain

equal to those in equations (35) and (36). Defining a change

of variable

f ( ζ ) =( w2 − w1) ζ + α( ζ ) +φd (38)

equation (37) transforms into

d2f ( ζ )

dζ 2
= c sin( f ( ζ ) ) (39)

with boundary conditions

f ( 0) = α( 0) +φd

ḟ ( L) = w2 − w1 (40)

Equation (39), with boundary conditions (40), is simi-

lar to that obtained in Dupont et al. (2010b), but differs in

one of the boundary conditions, requiring a different solu-

tion. The solution to equation (39), and its application to

solve equation (37) by reversing the change of variable in

equation (38), are derived in Appendix B.

Thus, defining

b = ( w2 − w1)2

2c
+ cos( f ( L) ) +1

and Ke =
√

( 2/b), the closed-form solution to the relative

twist α( ζ ) of two tubes in the trajectories where follow-the-

leader motion is possible for given design parameters can be

obtained in two intervals of Ke. For 0 ≤ Ke ≤ 1

α(ζ )=(w1−w2)ζ−π−φd +2tan−1









sn

(

( ζ − L)

√

cb
2

+ F
(

α(L)+(w2−w1)L+φd+π
2

, Ke

)

, Ke

)

cn

(

( ζ − L)

√

cb
2

+ F
(

α(L)+(w2−w1)L+φd+π
2

, Ke

)

, Ke

)









(41)

where F( x, K) denotes the incomplete elliptic integral of

the first kind, and sn and cn correspond to the Jacobi elliptic

functions. And for Ke > 1

α(ζ )=(w1 −w2)ζ −π−φd +2sin−1

{

1

Ke

sn

[

(ζ −L)
√

c+

F

(

sin−1

[

Kesin

(

α(L)+(w2 −w1)L+φd +π
2

)]

,
1

Ke

)

,
1

Ke

]}

(42)

where the transition at Ke = 1 is smooth.

It should be noted that the solution is expressed as a

function of the relative twist at the distal end of the robot,

instead of the proximal end as in the boundary condition

(equation (35)). An equivalent result can be obtained using

α( 0) as the independent variable instead of α( L) following

an analogous derivation. However, α( L) is selected as the

independent variable in this case since it facilitates the dis-

cussion on torsional stability, which is the final aim of this

torsional study.

5.3. Torsion discussion

The implications of equations (41) and (42) are analyzed in

this subsection. The focus is on the torsional magnitude in

order to determine the validity of the assumption of no axial

torsion employed in the previous sections of this paper, and

thus identify stable trajectories.

Equations (41) and (42) allow the determination of the

relative twist at any cross-section of a two-tube robot com-

posed of helical tubes as a function of α( L) as well as the

robot design parameters and φd . The evaluation of equa-

tions (41) and (42) at s = 0 provides the relation between

α( 0) and α( L) for a given robot design and φd . The effect

of φd on the relation between α( 0) and α( L) is simply a

translation of the origin about α( 0) = α( L), which is a

consequence of the fact that φd corresponds to the relative

rotation of the tubes at the proximal end. Since the tor-

sional behavior of the tubes is cyclic with period 2π , the
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Fig. 5. Evolution of the relative twist between the distal and prox-

imal ends of robots composed of two tubes with three different

designs, which present a stable and approximately linear relation

(green), a stable but non-linear evolution (blue), and an unstable

behavior in the interval α( 0) ∈ [2.8, 3.8].

effect of φd is not relevant and is not considered further.

Conversely, the influence of the design parameters on the

torsional behavior is through two non-dimensional groups:

L
√

c and ( w2 − w1) L. The relation between α( 0) and α( L)

can therefore be plotted for different values of the non-

dimensional groups in order to study the tubes’ torsional

behavior.

Three illustrative examples of different relations between

α( 0) and α( L) are shown in Figure 5, which correspond

to three different cases in terms of values of the non-

dimensional groups. As can be seen, for two of the cases,

the evolution of α( L) as a function of α( 0) is stable,

whereas in the third case the robot presents a torsional

instability corresponding to a snap-through instability. The

two stable examples, however, present markedly different

evolutions of relative twist. The relation shown in blue is

strongly non-linear, which implies that the assumption of

no axial torsion is not an accurate representation of the

torsional behavior. Instead, the relation shown in green is

closer to linear, and therefore can be approximated well by

the assumption of no axial torsion of the robot.

Studying the evolution of α( L) as a function of α( 0) for a

range of values of the non-dimensional groups in combina-

tion with equations (41) and (42), criteria to attain a desired

torsional behavior can be extracted. The domain considered

here is selected to include the configurations of practical

interest, with L
√

c ∈ [0, 3π/4] and ( w2 − w1) L ∈ [0, 24].

In general, the robot is stable if L
√

c ≤ π/2, although

greater values can be reached in a stable manner by increas-

ing ( w2 −w1) L. Similarly, it can be seen that greater values

of ( w2 − w1) L lead to a relation between α( L) and α( 0)

that is closer to α( L) = α( 0). The deviation from α( L) =
α( 0), quantified as the average deviation error squared, is

plotted in Figure 6 as a function of the non-dimensional

groups in the region of stable configurations of interest

L
√

c ∈ [0,π/2] and ( w2−w1) L ∈ [0, 24]. The plot confirms

the trends identified for ( w2 − w1) L and shows that they

Fig. 6. Average squared deviation from α( L) = α( 0) as a function

of L
√

c, ( w2 − w1) L in the domain of interest. The plot elucidates

the trends identified, and confirms that they are monotonic in the

domain of interest.

are monotonic over the region considered. Interestingly, for

the case of w2 = w1 = 0, the results from equations (41)

and (42) converge with the results reported by Dupont et al.

(2010b). In this regard, equations (41) and (42) represent a

generalization of the work in Dupont et al. (2010b) for two-

tube robot designs with helical tubes, which correspond to

equation (24).

A torsional deviation in the relation between α( 0) and

α( L) can therefore be selected to be less than a specified

value in order to ensure that the assumption of no axial

torsion is an acceptable approximation. It should be noted,

however, that a boundary on torsional deformation does not

directly imply a specific boundary on the deviation with

respect to follow-the-leader motion in the resulting trajec-

tory. The torsional deformation affects the local curvature

values, whereas the deviation in the resulting trajectory is

determined by the integration of the local curvature along

the robot length. Thus, torsional deformation and resulting

deviation in task space are related, but the relation depends

on an integral.

Equations (49) and (50) can be substituted into the well-

known robot model including torsion, e.g. that described in

Dupont et al. (2010b), to determine the deviation in local

curvature due to torsion in a two-tube robot. This can then

be particularized to the robot designs and configurations

found in this work to determine the local curvature devia-

tion in the trajectories of interest (equation (24)). However,

to determine the resulting position deviation due to torsion

in task space, the local curvature needs to be integrated.

A closed-form solution to such an integral is not available.

Thus, the specific deviation in task space due to torsion can-

not be directly determined from the current analysis. The

possibility of approximating this integral or finding bound-

aries on the deviations in task space from boundaries on

local curvature deviations will be addressed in future work.
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Nonetheless, in some practical cases, the typical devia-

tion in task space due to torsional deformation can be con-

sidered to follow certain trends that can be approximated

for a specific family of designs based on experience. In such

cases, boundaries on torsional deformation can be used to

identify the trajectories where follow-the-leader is possible

within an admissible deviation. To exploit any trajectories

of interest, however, these must be subsequently verified to

ensure that the deviation in task space is within the expected

values. In more general cases, a hypothesis on the admissi-

ble torsional deformation in the specific scenario of interest

can be formulated by exploring the effect of torsion on the

resulting trajectory in some relevant configurations. The

corresponding trajectories where approximate follow-the-

leader is possible can then be identified, and trajectories of

interest can be selected. However, any selected trajectory

must be subsequently verified. This procedure can, there-

fore, require some iteration. In all cases, it should be noted

that boundaries on torsional deformation typically involve

using tubes with lower curvatures. In particular, in designs

composed of tubes with planar precurvatures, this always

applies, as torsional deformation is determined by a single

parameter, L
√

c.

5.4. Illustration of torsion effects

A set of examples of torsional deformation and the corre-

sponding deviations in task space are presented in this sub-

section. These are aimed at illustrating the relation between

torsion and the resulting deviation for some designs of

interest.

Three simulated insertions are first used to show the

behavior of three exemplary robot designs corresponding to

the torsional relations shown in Figure 5, and then to quan-

tify the follow-the-leader deviation in task space due to tor-

sion. The simulations are implemented using the robot qua-

sistatic model considering torsion (equation (4)) together

with the solutions of torsion along the arc length (equations

(41) and (42)). The robot configuration is evaluated at 10

regular intervals during an insertion. The three designs are

all composed of two helical tubes with equal stiffness, a

length of 20 cm, and
∥

∥û1

∥

∥ = 11 m−1,
∥

∥û2

∥

∥ = 8 m−1, w1 =
8 m−1, w2 = 12 m−1 for the first design,

∥

∥û1

∥

∥ = 9 m−1,
∥

∥û2

∥

∥ = 7 m−1, w1 = −12 m−1, w2 = 9 m−1 for the second

design, and
∥

∥û1

∥

∥ = 6 m−1,
∥

∥û2

∥

∥ = 5 m−1, w1 = −18 m−1,

w2 = 9 m−1 for the third design.

The resulting simulated insertions are shown in Fig-

ure 7. As can be seen, follow-the-leader is maintained in

some parts of the trajectories, but significant deviations are

present in both the first and second designs. In this work,

the deviation, defined ε, is quantified as the maximum of

the minimum distances between any point on the robot cen-

terline at any of the configurations during an insertion and

the centerline at any other configuration. The maximum

deviations for the insertions shown in Figure 7 are then

Fig. 7. Simulated insertions corresponding to three different

designs: (a) significant deviation from follow-the-leader, including

a snap-through instability; (b) noticeable deviation due to torsional

deformation of the tubes; (c) low deviation.

ε1 = 40.7 mm, ε2 = 16.0 mm, and ε3 = 2.8 mm, respec-

tively. The error in these three cases thus increases with the

magnitude of torsion, as can also be observed in the plots.

Interestingly, the snap-through instability appears in the first

design at approximately 75% of the insertion, as can be seen

in Figure 7(a), where the geometry of the robot in the last

three configurations is markedly different from that in the

previous configurations.

Equivalent simulations can be conducted to explore the

relation between torsion boundaries and deviation in task

space in any set of designs. This is presented here for a rel-

evant subset of designs corresponding to two-tube robots

with helical tubes of equal stiffness, a length of 20 cm,

curvatures of each tube varied within
∥

∥ûi

∥

∥ ∈ [3, 7], and

torsion varied within wi ∈ [−30, 15], with w1 6= w2 for

each design. This subset of designs is selected as it results

in trajectories of potential practical interest, which present

complex geometries with variations of curvature along the

arc length, in both magnitude and direction. The maxi-

mum deviation from follow-the-leader is measured in each

insertion as in the previous three cases.

The maximum deviation in task space is plotted in Figure

8 as a function of the maximum torsional deviation, defined

as 1αM = max ‖α( L) −α( 0) ‖ over α( 0) ∈ [0, 2π ], for

all designs in the subset. As can be seen in Figure 8, the

maximum deviation in task space tends to increase with

the maximum torsional deformation. Interestingly, the tor-

sional deviation of some of the designs coincides, which
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Fig. 8. Maximum deviation from follow-the-leader in task space

as a function of maximum torsional deviation for a wide variety of

designs.

is because the non-dimensional groups coincide. In some

specific cases, the deviation is small despite significant tor-

sional deviation. These are designs where w1 and w2 are

close, and therefore the robot behaves practically as a single

helix with limited relative tube rotation. Still, in the cases

explored, torsion boundaries translate as bounded deviation

in task space.

Torsion boundaries can then be defined in the subset

of designs explored so that the assumption of no torsion

is an admissible approximation, and thus the correspond-

ing follow-the-leader trajectories can be followed within an

acceptable deviation. This can be exemplified by consider-

ing admissible the relations between α( 0) and α( L) that lie

within two boundaries depicted as dashed lines in Figure

5, and without snap-through. These boundaries are arbi-

trarily set to be parallel to α( 0) = α( L) with an offset of

±1/2 m−1, and correspond to maximum deviations in the

task space of close to 4 mm. It should be noted, however,

that these bounded deviations are only guaranteed in the

specific configurations explored. Deviations on any other

configuration, even if similar, must be verified.

The trajectories corresponding to the configurations

explored within these bounds are plotted in Figure 9 for a

common initial pose at the base. It should be noted that the

trajectories shown in Figure 9 can also be rotated around the

base z axis while maintaining the base pose, increasing the

follow-the-leader possibilities for that pose, although they

are not plotted, for clarity of illustration. It should also be

noted that equations (41) and (42) do not depend on the

length units in the robot design variables; therefore, any

isotropic scaling of the trajectories shown in Figure 9 results

in a trajectory that can also be traced in an approximate

follow-the-leader manner with a deviation that scales with

L. Figure 9 illustrates the potential of the trajectories dis-

covered in this work for surgical applications, showcasing

the capability of following trajectories with a continuous

variation of curvature, in both magnitude and direction,

in an approximate follow-the-leader configuration to reach

targets in different locations from a specified initial pose.

Fig. 9. Set of stable trajectories where follow-the-leader is pos-

sible using a robot composed of two tubes, with a common base

pose.

6. Case study: simulation and experiment

The results on torsional stability presented in the previous

section allow for the selection of a robot design together

with a trajectory to showcase the research reported in this

paper. The performance of the selected robot is presented in

this section in the form of a case study involving simulation

and experiment. This serves to illustrate both the capabil-

ity of follow-the-leader motion in a trajectory that is unique

and representative of the research on follow-the-leader con-

trol, as well as the validity of the assumption of no axial

torsion in such a trajectory.

6.1. Robot design and trajectory

The case study involves a two-tube robot advancing in

follow-the-leader motion along a trajectory with continu-

ous variation of curvature, in both direction and magnitude,

in the proximal part of the trajectory, and a helical geom-

etry in the distal part. The trajectory selected is a combi-

nation of two trajectories in the set (equation (24)) linked

as described in Subsection 4.1, whereby one of the tubes

remains static at the linkage between trajectories while the

other proceeds forward. The case study therefore serves

to demonstrate the research reported in Section 3, as well

as some of the work on additional exploitable kinematics

described in Section 4. The behavior of the robot in the first,

proximal, part of the trajectory is studied with simulations,

whereas that in the second, distal, part of the trajectory is

shown with an experiment.

The geometry of the complete selected trajectory can

be described by the curvature κi, torsion wi, and stiffness

of the two tubes comprising the robot, together with their

respective insertion lengths. The tube’s characteristics are

summarized in Table 1. The total insertion of the outer tube,

tube 2, is 19 cm, whereas that of the inner tube is 26 cm. The

complete trajectory is shown in Figure 10. As can be seen,

it is a trajectory that cannot be followed using conventional



20 The International Journal of Robotics Research 00(0)

Table 1. Characteristics of tubes corresponding to the case study.

κ (m−1) w (m−1) Outer Inner

diameter diameter

(mm) (mm)

Tube 1 6.79 −26 0.9652 0.8128

Tube 2 6.22 4 1.1938 1.1176

Fig. 10. Complete trajectory selected for the case study. The first,

proximal, part of the trajectory presents continuous variation of

curvature in both direction and magnitude; the second, distal, part

of the trajectory presents a helical geometry.

constant-curvature tubes, as it presents continuous variation

of curvature in the part corresponding to two tubes, and

helical geometry in the part corresponding to a single tube.

The tube’s characteristics are selected to minimize tor-

sion. The evolution of α( L) as a function of α( 0) can

be predicted using equations (41) and (42), as shown in

Figure 11. In this case, the design parameters summa-

rized in Table 1 result in the approximately linear relation

between α( L) and α( 0) shown in Figure 11. Thus, torsion

is expected to be low in the entire trajectory.

Fig. 11. Predicted evolution of the relative twist at the distal end

as a function of the proximal end of the robot design selected for

the experiment.

6.2. Simulation

The first part of the trajectory corresponds to both tubes

advancing with ḣ1 = ḣ2 = 0 from the insertion point

until full insertion of tube 2. The behavior of the robot in

this part of the trajectory is studied by simulating it at a

set of 20 configurations corresponding to insertion lengths

between L = 9.5 mm and L = 19 cm at regular intervals.

This enables evaluation of the deviation from follow-the-

leader and the magnitude of torsional deformation as the

robot advances.

The geometry of the robot in each of these 20 config-

urations is simulated as in Subsection 5.4, by combining

equations (4), (41), and (42). The effects of friction between

tubes and gravity are neglected, and the tubes are assumed

to be made of nitinol with a Poisson ratio of ν = 0.33.

The desired control inputs at the insertion point for this

part of the trajectory are determined from equation (20)

with ḣi = 0. Thus, the rotation of each tube at the inser-

tion point should be constant and at a rate corresponding to

its torsion. In practice, the tubes must be controlled by an

actuation system; therefore, part of the tube will be inside

this actuation system. The part of the tubes inside the actu-

ation system may then undergo torsion as well, leading to

a rotation at the insertion point different from that at the

proximal ends where the tubes actuated. Considering an

actuation box that constrains the tubes to remain straight

inside it, the torsion in the part of the tubes inside the

box is constant, according to the generalization of equa-

tion (30) for any number of tubes described in Dupont et

al. (2010b). The specific torsion is then determined by the

torsion at the cross-section immediately after the insertion

point, uiz( ζ = 0, t), which can be determined from equa-

tions (45) and (49). The desired constant rotation of θi at

the insertion point can then be achieved with a rotation of

γi = θi( ζ = 0) − uiz( ζ = 0, t) di at the point where tube

i is actuated, where di is the tube length between the point
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Fig. 12. Simulated insertion of robot in the first part of the

trajectory.

of actuation and the insertion point. The simulations then

assume ideal actuation inputs, and thus a constant rotation

at the insertion point at a rate corresponding to the torsion

of each tube.

The resulting simulated robot configurations are shown

in Figure 12. As can be seen, an approximate follow-the-

leader motion is maintained over this entire first part of

the trajectory, although a certain degree of deviation is

present. The deviation from follow-the-leader is relatively

low near the insertion point and increases toward the dis-

tal parts of the trajectory. The maximum deviation in task

space, quantified as in the previous section, is 3.5 mm, and

occurs between the configurations at 85% and 100% of

the insertion, at an arc length of 163.9 mm of the final

configuration.

The deviations shown in Figure 12 are due to torsion. The

simulated torsional deviation along the arc length1α( ζ ) =
α( ζ ) −α( 0) is shown in Figure 13 for the robot configu-

rations corresponding to the 20 insertion lengths. As can

be seen, the torsional behavior varies as the insertion of

the robot increases, which results in changes in the local

curvature along the arc length, and ultimately leads to devi-

ations from follow-the-leader in task space. The relation

between deviations in local curvature and follow-the-leader

error in task space is determined by the integration of cur-

vature along the arc length, and therefore the effect of local

curvature deviations is amplified with the arc length, which

Fig. 13. Simulated torsional deviation as a function of arc length

for 20 robot configurations during an insertion.

results in the larger errors in the distal parts of the trajectory

shown in Figure 12.

6.3. Experiment

The second part of the trajectory is a continuation of the

first one. It begins with both tubes inserted as described in

the previous subsection. One of the tubes is then advanced

to trace this second part of the trajectory while the other

tube remains stationary relative to the task space. The robot

behavior in this second part of the trajectory is demon-

strated experimentally to illustrate follow-the-leader motion

in practice.

The experiment starts with the distal end of both tubes

coinciding, which corresponds to the end of the first part

of the trajectory. Tube 1 is subsequently advanced, which

involves a combination of insertion and rotation of the tube

at a rate of w1 m−1, while tube 2 remains stationary. The

geometry of the complete device is measured as tube 1

advances in order to evaluate the satisfaction of follow-

the-leader motion over the entire device. The experiment

proceeds until full insertion of tube 1, which corresponds to

the end of the complete trajectory shown in Figure 10.

The design of the tubes used in the experiment

matches the description in Subsection 6.1, summarized

in Table 1. Both tubes are made of nitinol, supplied by

Nitinol Devices and Components Inc., with part numbers

TSE0380X0320GS and TSE0470X0440GS, respectively. It

should be noted that the stiffness of both tubes is practically

equal, which requires the result in equation (24) to be cor-

rect for follow-the-leader motion to occur throughout the

entire robot.

Starting the experiment from the point of linkage

between the two parts of the complete trajectory enables

follow-the-leader motion to be achieved without the need

for an actuation system. Tube 1 can be simply advanced

with free rotation, relying on the elastic equilibrium of the

system to rotate it naturally at the required rate w1.
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Fig. 14. Experimental set-up with device held vertically inside 3D

laser scanner.

This rotational behavior is necessary in this configura-

tion, corresponding to follow-the-leader, where the curva-

ture at each point in the workspace must be constant. For

tubes with constant stiffness, as in this experiment, follow-

the-leader requires the curvature vector of each tube to

remain constant at each point in the workspace. Since the

tubes are in a minimum energy equilibrium at the beginning

of the experiment, tube 1 is expected to rotate to remain

in the minimum energy equilibrium as it is being inserted.

Considering that the tubes have a helical geometry, remain-

ing at a minimum energy configuration implies maintaining

a constant-curvature vector at each point in the workspace,

and therefore rotating at the follow-the-leader rate w1. This

structural behavior can therefore be exploited to design a

simpler experiment that suffices to illustrate the research on

follow-the-leader, which is the strategy adopted in this work

for the implementation.

The experimental set-up used in the implementation is

shown in Figure 14. The shape of the device is measured

at regular intervals during advancement using a 3D laser

scanner (PICZA LPX-250, manufactured by Roland). The

desired initial geometry of the tubes was achieved by means

of a shape-setting process. Since the tubes’ stiffness is con-

stant, their precurvatures are helical, and the shape-setting

process simply involved constraining each tube to a cylin-

drical fixture of the specified diameter, heating the assem-

bly in air to 550 ◦C under free convection for 10 min, and

quenching it in water. The assembled device with both

tubes arranged concentrically was held vertically to mini-

mize deformation due to gravitational forces. In this work,

the set-up was placed inside the 3D laser scanner, and tube 1

was advanced manually while tube 2 remained fixed relative

to the scanner workspace.

Fig. 15. Exemplary measurement of the 3D device geometry as a

cloud of orange points, with a fitted 3D curve in blue.

Six robot shape measurements were recorded using the

3D laser scanner as tube 1 was advanced. Each measure-

ment consists of a set of points describing the device shape,

as shown in Figure 15 for the third measurement, with

the corresponding projections on the XZ and YZ planes,

shown in Figures 16 and 17, respectively. A curve is fitted

to determine the geometry of the curve corresponding to the

device centerline, which is also shown in Figures 15 to 17,

for the same measurement. As can be seen, the measure-

ment presents a certain degree of noise, which is mainly

caused by the vibrations induced in the device by the rota-

tion of the 3D scanner. The noise is zero mean, and the fitted

curve allows for reliable extraction of the geometry of the

device. The fitted curves of the different measurements are

subsequently used to assess the follow-the-leader motion.

The result of the experiment is an accurate follow-the-

leader configuration throughout the entire device. The 3D

points from the different measurements recorded during

device advancement, together with their corresponding fit-

ted curves, are shown in Figure 18, using specific colors

for each measurement. The projections of the fitted curves

on the XZ and YZ planes are shown in Figures 19 and

20, respectively. As can be seen, the motion in both parts

of the trajectory, corresponding to two tubes and one tube,

remains within a follow-the-leader configuration. The max-

imum deviation estimated from the fitted curves in each

measurement is 4 mm. This can be partially attributed to



Garriga-Casanovas and Rodriguez y Baena 23

Fig. 16. Projection on the XZ plane of the recorded points

describing the geometry of the device in one exemplary measure-

ment, with the corresponding fitted curve.

Fig. 17. Projection on the YZ plane of the measured points corre-

sponding to the device shape in a specific configuration during the

experiment, and fitted curve.

the limited accuracy of the experimental set-up, 3D scan-

ner, and shape-setting process, as well as small discrepan-

cies between the idealized robot behavior and the practi-

cal implementation, mainly in terms of external forces or

friction between the tubes.

The trajectory displayed by the device in the experi-

ment presents the same approximate characteristics as the

planned trajectory, as shown in Figure 21, although there

are some discrepancies. The discrepancies are considered to

be related to imperfections in the experimental implementa-

tion, as well as small inaccuracies in the assumptions used

in the derivation. Interestingly, in the experimental imple-

mentation, tube 1 presented an estimated rotation at the

expected rate as it was being inserted, according to visual

observation of the rotation at the base of the tube aided by

markers. The apparent torsion of the tubes, also estimated

from visual observations at α( 0) and α( L − h2) aided by

markers, was minimal, as predicted. Overall, and despite

Fig. 18. Experimental measurements of the device geometry dur-

ing the advancement of one of the tubes, plotted as a point

cloud with a different color for each recorded configuration.

The different measurements overlap, confirming follow-the-leader

motion throughout the entire device. The curves fitted to each

measurement are also displayed.

Fig. 19. Projection on the XZ plane of the curves fitted to the

experimental measurements during advancement of one of the

tubes.

practical imperfections, the experiment satisfactorily illus-

trates the research on follow-the-leader kinematics and on

torsion of the tubes.
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Fig. 20. Projection on the YZ plane of the curves fitted to the

experimental measurements during advancement of one of the

tubes.

Fig. 21. Planned and measured trajectories.

7. Conclusions

Follow-the-leader motion using concentric tube robots is

possible in a broader set of trajectories than those currently

being exploited. The complete set of trajectories where

follow-the-leader motion is possible under the assumption

of no axial torsion within the robot was derived in this work,

yielding a closed-form solution. The solution obtained

showed that the majority of trajectories in the set present

a continuous variation of curvature along the arc length, in

both direction and magnitude; still, the solution includes all

currently known piecewise constant-curvature trajectories

as a particular case. The analysis presented in this paper

also elucidated the control required for a robot to advance

in a follow-the-leader configuration, where the individual

tubes must either be static or advancing as part of the robot’s

distal end. Furthermore, additional maneuvers of interest

were extracted from the study of follow-the-leader kine-

matics. These include the possibility of combining follow-

the-leader motion in the proximal part of the robot with

general motion at the distal end, or the linkage of trajec-

tories that can be traced in follow-the-leader configuration.

The general analysis of follow-the-leader motion was devel-

oped under the assumption of no axial torsion of the tubes.

To determine the validity of such an assumption, and then

select a stable robot configuration to showcase follow-the-

leader motion in practice, the torsion of the tubes was con-

sidered in the trajectories of interest. A closed-form solu-

tion describing the torsion of the tubes in the most relevant

trajectories where follow-the-leader is possible using two-

tube robots was derived. Criteria for the structural stability

of the robot were then extracted from such a solution, and a

relevant subset of designs was explored. This allowed for

the identification of stable trajectories that can be traced

in follow-the-leader motion within an admissible deviation

value, which can be specified as desired. A suitable stable

trajectory was selected as a case study of a prototypical,

two-tube concentric tube robot. The case study was devel-

oped with simulations and an experiment, showcasing the

capability of follow-the-leader motion in a trajectory with

continuous curvature variation, in both direction and mag-

nitude. This capability in the wider set of trajectories found

in this work expands the potential of concentric tube robots

in minimally invasive surgery, offering the possibility for

new or improved procedures.
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Appendix A

The derivation of equation (32) is described here. Recalling

the definition of uiz as the torsional strain, the derivative of

equation (31) with respect to the arc length relates the twist

rate to the torsion of the tubes

α̇ = u2z − u1z (43)

Combining the equilibrium of moments (equation (2)) in

the z direction and the constitutive law (equation (1)), the

following relation in the z direction can be obtained

k1zu1z + k2zu2z = 0 (44)

Substituting equation (44) into equation (43), the twist

rate between both tubes can be related to the torsion of one

of the tubes

α̇ =
(

1 + k2z

k1z

)

u2z (45)

It should be noted that the twist rate can also be directly

related to the torsion of the other tube using equation (44).

Finally, the derivative of equation (45) can be combined

with equation (30), yielding

α̈ =
(

k2x

k2z

+ k2x

k1z

)

(

u2xû2y − u2yû2x

)

(46)

Appendix B

The derivation of the solution to equation (39) with bound-

ary conditions (equation (40)), and its application to solve

equation (37), are described in the following.

The approach adopted in this work relies on the fact that

equation (39) is analogous to the equation of a non-linear

pendulum. Thus, the solution to a non-linear pendulum is

adapted here for the specific boundary conditions (equation

(40)). Considering that

d2f ( ζ )

dζ 2
= f̈ = ḟ

dḟ

df

equation (39) can be integrated

∫ ḟ (ζ )

˙f (0)

ḟ dḟ = c

∫ f (ζ )

f (0)

sin( f ) df (47)

and evaluated as

ḟ ( ζ )
2 = ḟ ( 0)

2 + 2c( cos( f ( 0) ) − cos( f ( ζ ) ) ) (48)

This expression can be evaluated at ζ = L, considering

the boundary conditions (equation (40)), and substituted in

equation (48), resulting in

ḟ ( ζ )
2 =( w2 − w1)2 +2c( cos( f ( L) ) − cos( f ( ζ ) ) ) (49)

Using separation of variables, the integral of equation (49)
can be considered in the following interval

ζ − L = 1√
2c

∫ f (ζ )

f (L)

df
√

(w2−w1)2

2c
+ cos( f ( L) ) − cos( f ( ζ ) )

(50)
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Considering the variable definitions

b = ( w2 − w1)2

2c
+ cos( f ( L) ) +1

Ke =
√

( 2/b), and using the change of variable h( ζ ) =
f ( ζ ) +π , equation (50) can be rewritten as

ζ − L = 1√
2cb

∫ h(ζ )

h(L)

dh
√

1 − Ke
2 sin2 h(ζ )

2

(51)

This integral corresponds to the incomplete elliptic inte-

gral of the first kind F( x, K), which is defined for 0 ≤
K ≤ 1. The closed-form solution to equation (51) can be

obtained in two intervals of Ke.

If 0 ≤ Ke ≤ 1, equation (51) can be directly integrated

according to the definition of F( x, K), yielding

( ζ − L)

√

cb

2
= F

(

h( ζ )

2
, Ke

)

− F

(

h( L)

2
, Ke

)

(52)

Using the Jacobi elliptic functions sn and cn, the incomplete

elliptic integral of the first kind

F

(

h( ζ )

2
, Ke

)

can be inverted, which allows one to solve for h( ζ ) as

h( ζ ) = 2 tan−1









sn

(

( ζ − L)

√

cb
2

+ F
(

h(L)
2

, Ke

)

, Ke

)

cn

(

( ζ − L)

√

cb
2

+ F
(

h(L)
2

, Ke

)

, Ke

)









(53)

If Ke > 1, a change of variable can be defined using

ψ( ζ ) = sin−1

(

Ke sin
h( ζ )

2

)

(54)

which can be differentiated as

dψ cosψ = Ke

√

1 − sin2 ψ

Ke
2

dh

2
(55)

and guarantees that the incomplete elliptic integral is well

defined. Applying such a change of variable to equation

(51) yields

( ζ − L)
√

c =
∫ ψ(ζ )

ψ(L)

cosψdψ
√

1 − sin2 ψ

Ke
2

√

1 − sin2 ψ

(56)

which can be integrated using the definition of the incom-

plete integral of the first kind, resulting in

( ζ − L)
√

c = F

(

ψ( ζ ) ,
1

Ke

)

− F

(

ψ( L) ,
1

Ke

)

(57)

Using Jacobi elliptic functions, and reversing the change of

variables, equation (57) can be solved for h( ζ ) as

h( ζ ) = 2 sin−1

{

1

Ke

sn

[

( ζ − L)
√

c

+ F

(

sin−1

[

Ke sin

(

h( L)

2

)]

,
1

Ke

)

,
1

Ke

]}

(58)

The change of variable h( ζ ) = f ( ζ ) +π can be reversed

to obtain the solution to equation (39) from equations (53)

and (58), which is immediate. Finally, reversing the change

of variable (equation (38)), the solution to equation (37) can

be obtained for 0 ≤ Ke ≤ 1 as

α(ζ )=(w1 −w2)ζ −π−φd +2tan−1







sn
(

(ζ −L)

√

cb
2

+F
(

α(L)+(w2−w1)L+φd+π
2

,Ke

)

,Ke

)

cn
(

(ζ −L)

√

cb
2

+F
(

α(L)+(w2−w1)L+φd+π
2

,Ke

)

,Ke

)







(59)

and for Ke > 1 as

α(ζ )=(w1 −w2)ζ −π−φd +2sin−1

{

1

Ke
sn

[

(ζ −L)
√

c

+F

(

sin−1

[

Kesin

(

α(L)+(w2 −w1)L+φd +π
2

)]

,
1

Ke

)

,
1

Ke

]}

(60)




