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This paper presents the theory and application of a code called CALLISTO which is used for performing
NPP start-up and power ascension calculations. The CALLISTO code is designed to calculate various values
relating to the neutron population of a nuclear system which contains a low number of neutrons. These
variables include the moments of the PDF of the neutron population, the maturity time and the source
multiplier. The code itself is based upon the mathematics presented in another paper and utilises repre-
sentations of the neutron population which are independent of both space and angle but allows for the
specification of an arbitrary number of energy groups.
Five examples of the use of the code are presented. Comparison is performed against results found in

the literature and the degree of agreement is discussed. In general the agreement is found to be good and,
where it is not, plausible explanations for discrepancies are presented. The final two cases presented
examine the effect of the number of neutron groups included and finds that, for the systems simulated,
there is no significant difference in the key results of the code.
� 2017 The Authors. Published by Elsevier Ltd. This is an openaccess article under the CCBY license (http://

creativecommons.org/licenses/by/4.0/).
1. Introduction

In a nuclear system, each neutron will have a finite probability
of causing a fission, being absorbed, escaping the system and so on.
It is not possible to know in advance or simulate what fate will
befall any given neutron. In addition, the exact time at which a
source releases neutrons is not known in advance even if its aver-
age intensity is known. In most cases where nuclear systems are
being discussed, such as in nuclear power stations under normal
operational conditions, there are very large numbers of neutrons
present and the change in the total number of neutrons over time
may be well approximated by analysing the expected behaviour of
this large population of neutrons. This is because the law of large
numbers means the overall behaviour in such a case tends towards
the mean behaviour.

However, in systems with smaller populations of neutrons, the
number of neutrons will not be predictable and repeating identical
initial conditions may lead to different results. This is relevant in
the case of reactor start-up where it is important to ensure the
probability of an undesired stochastic transient is sufficiently low
for the start-up process to be classed as safe. There are several
methods which have been proposed and, generally, each tends to
have strengths and weaknesses.

The CALLISTO Stochastic Point Kinetics code has been con-
structed based upon the work presented in Williams and Eaton
(2017), which provides an in-depth analysis of the physics and
mathematics represented here. This code is able to simulate an
arbitrary number of prompt neutron energy groups and delayed
neutron precursor groups with no spatial or angular dependence.
It contains multiple modules designed to calculate the moments
and the generating function and its derivatives of the population
density function of the number of neutrons in neutron energy
groups of interest, the maturity time of the system, the kinf and
reactivity of the system and the source multiplier.

This paper summarises the mathematical model contained in
CALLISTO code before presenting various example results pro-
duced using the code in order to validate or verify the code or to
examine the physics simulated by the code.

Mathematical symbols not defined locally in the text are
defined in Appendix B.
2. CALLISTO calculations

Within CALLISTO variables, such as the cross-sections, probabil-
ities of a fission producing different numbers of neutrons and the
delayed neutron fractions are defined by the user and may each
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Fig. 1. The RSDs of the neutron and delayed neutron precursor populations for a
sample system which becomes critical at t � 120 s and prompt super-critical at
t � 350 s (with the system having no neutrons or precursors present at t ¼ 0 and
source which begins releasing neutrons at t ¼ 0). Note that the neutron population
refers to prompt neutrons created in a fission, delayed neutrons produced by the
decay of delayed neutron precursors or neutrons released in source disintegration.
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be functions of time. For a given time-dependent description of a
system, CALLISTO may perform any one of a number of different
calculations, such as calculating the kinf or reactivity of the system.
This section describes some of the calculations which may be con-
ducted by CALLISTO. This section aims only to summarise the gen-
eral method as this has been previously discussed in more detail in
Williams and Eaton (2017). If more detail on the methods
employed or their justification are desired, that paper should be
consulted.

2.1. kinf and reactivity

Both the kinf and reactivity values of the system in question at a
given time are calculated within CALLISTO as a function of time by
solving the eigenvalue equation using the power iteration method.
The value of kinf rather than keff is relevant for the systems pre-
sented as the systems are considered infinite in extent.

2.2. Moments of the probability density function of the number of
neutrons in the system

To calculate the mean and standard deviation of the number of
neutrons in the system at a given time t the system of equations
presented in Appendix A.2 are solved. This solution is performed
backwards in time with the variable s representing the time vari-
able which is being advanced backwards. When s ¼ 0 the solution
is complete. For instance, the variable NSðt;UjsÞ represents the
mean number of neutrons present in the system in energy range
U at a time t due to neutrons released by a source in the time per-
iod between time s and time t. As such, by reducing s from t to zero
the total number of neutrons present in the system at time t due to
neutrons produced by sources since time 0 can be obtained.

This approach means that the calculation of the moments of the
PDF at each value of t is independent of the calculation of the
moments of the PDF at every other value of t.

2.3. Generating functions and derivatives of the probability density
function of the number of neutrons in the system

The generating function of the PDF of the number of neutrons in
the system in energy range U at a time t due to neutrons released
between a time s and a time t is defined by:

GSðz; t;UjsÞ ¼
X1
n¼0

znPðn; t;UjsÞ ð1Þ

where z is the generating function variable and Pðn; t;UjsÞ is the
probability of there being n neutrons in the system in energy range
U at a time t due to neutrons released between a time s and a time t.

To calculate this value and its first and second derivatives with
respect to z at a given time t the system of equations presented in
Appendix A.1 are solved. This solution is performed backwards in
time with the variable s representing the time variable which is
being advanced backwards. When s ¼ 0 the solution is complete.

This approach means that the calculation of the generation
function and derivatives at each value of t is independent of the
calculation of the generating function and derivatives at every
other value of t

2.4. Maturity time

The maturity time is the time at which the rate of change of the
RSD of the number of neutrons in the system becomes small as the
RSD approaches an asymptotic value. This is also the time at which
the RSD in the number of neutrons in the system first becomes
close to the RSD of the number of delayed neutron precursors in
the system, as demonstrated in Fig. 1. What is deemed ‘‘small” or
‘‘close” is not uniquely defined meaning the maturity time is not
uniquely defined and is to some degree subjective.

The maturity time is found by solving the equations presented
in Appendix A.2 with the appropriate final conditions for different
values of t until the time tmat is found such that the following equa-
tion is satisfied:

�mat ¼ RSDneutronðtmatÞ � RSDprecursorðtmatÞ
RSDprecursorðtmatÞ ; ð2Þ

where �mat is the maturity time convergence criterion, which is set
to a value of 1� 10�5 for the calculations performed in this paper.
RSDneutronðtÞ is the RSD of the number of neutrons in the system at
time t and RSDprecursorðtÞ is the RSD of the number of delayed neutron
precursors in the system at time t. The choice of �mat effectively
selects what is considered ‘‘close” in terms of the difference in the
RSDs of the neutrons and delayed neutron precursors.

We may examine Fig. 1 in a little more detail. When we con-
sider the state of the system after a very short period of time dt
the only event that may have occurred is the release of a single
neutron from a source disintegration. This means the PDF of the
number of neutrons in the system is given by:

Pð0Þ ¼ 1� Sdt; ð3Þ
Pð1Þ ¼ Sdt; ð4Þ

PðnÞ ¼ 0 for n > 1: ð5Þ
As a result, both the mean and the variance of the number of

neutrons in the system is equal to Sdt, meaning the RSD is equal
to 1ffiffiffiffiffi

Sdt
p . A similar argument may be applied to the precursor popu-

lation, but here the mean and variance will be proportional to dt2

as both a source emission and a fission must occur to produce the
first precursor. It follows that the precursor RSD will be propor-
tional to 1

dt.
In the middle region of this figure it is helpful to recall that, as

the system is delayed super-critical (i.e 0$ < q < 1$), any chain of
prompt neutrons will die out on a timescale equal to a fairly small
number of prompt neutron lifetimes. As a result, the neutron pop-
ulation is made up of short-lived chains of prompt neutrons caused
by the release of a neutron from a source or the decay of a delayed
neutron precursor (with the latter becoming progressively more
important as the number of delayed neutron precursors increases).
While one of these chains persists it may cause a large number of
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neutrons to be present in the system (of the order of the tens or
hundreds of neutrons at its peak).

Near the start of the middle region, the mean neutron popula-
tion will be low. This corresponds to there being a small probability
of a non-zero number of prompt neutron chains being present in
the system. This means that there is a high probability that there
will be no neutrons present and a small probability of there being
a larger number of neutrons present (of the order of the tens or
hundreds of neutrons that a single chain can cause). For a given
specified history of delayed neutron precursors the number of
chains of neutrons present will be represented by a Poisson distri-
bution with a mean of:

�nchain ¼ SðtÞ þ
X6
1¼1

kiCiðtÞ
 !

schain; ð6Þ

where schain is the duration of a single chain of neutrons. In reality
this will vary from chain to chain but we will assume it constant
for simplicity here. The assumption of a Poisson distribution is valid
if the source intensity, number of delayed neutron precursors and
reactivity do not change on timescales smaller than schain. Thus,
the RSD of the number of chains in a given realisation of the system
is given by 1ffiffiffiffiffiffiffiffi

�nchain
p and this is proportional to the RSD of the number

of neutrons. This represents the RSD in the number of neutrons in a
given realisation but, as different realisations will have different
numbers of delayed neutron precursors, this is only one contribu-
tion to the RSDs of the ensemble of realisations. The remainder is
due to the RSD in the numbers of delayed neutrons precursors
across realisations.

As time increases the number of delayed neutron precursors
will increase, causing the probability of there being zero neutron
chains present to drop and the probability of multiple chains being
present to increase. This causes the RSD to decrease as the mean
number of neutrons chains present increases.

In qualitative terms, the RSD of the delayed neutron precursors
may be expected to be lower as the lifetime of delayed neutron
precursors is much longer (0.1 s–100 s). This causes a much smal-
ler RSD in the number of delayed neutron precursors as their pop-
ulation is not varying so rapidly or to such extremes as the
population of neutrons.

At later times the RSD of both the neutrons and precursors
tends towards the same steady value. This is because the compo-
nent of the RSD of the neutron population relating to uncertainty
due to the different number of neutrons chains for a given number
of precursors becomes small as �nchain increases. This means the only
component of the RSD remaining is that of the number of delayed
neutron precursors themselves.

To examine this mathematically, we use the fact that, for a
highly multiplying medium, the PDF takes the form of a gamma
PDF (Radkowsky, 1964, p.1023):

Pðn; tÞdn ¼ gðtÞ
hnðtÞiCðgðtÞÞ

ngðtÞ
hnðtÞi
� �gðtÞ�1

exp � ngðtÞ
hnðtÞi

� �
dn; ð7Þ

where g ¼ hni2
r2 . We observe that, as t ! 1;g ! g1 (a constant). Thus

we may write (7) as:

Pðn; tÞdn ¼ g1
hnðtÞiCðg1Þ

ng1
hnðtÞi
� �g1�1

exp � ng1
hnðtÞi

� �
dn

¼ P
n

hnðtÞi
� �

dn
hnðtÞi : ð8Þ

Similarly, the PDF of the precursor population in precursor

group i is written P ci
hciðtÞi

� �
dci

hciðtÞi. The variance of the PDF is:
r2
n ¼ hn2ðtÞi � hnðtÞi2 ¼

Z 1

0

dn
hnðtÞi n� hnið Þ2P n

hNðtÞi
� �

: ð9Þ

Setting x ¼ r2
n

hnðtÞi2, we find that Eq. (9) becomes:

r2
nðtÞ ¼ hnðtÞi2

Z 1

0
dxðx� 1Þ2PðxÞ: ð10Þ

Thus, the RSD rn
hni is the same for all self-similar PDFs including

the neutron population and the delayed neutron precursor popula-
tions. As such, the maturity time may be seen as the time at which
these populations may be considered self-similar.

2.5. Source multiplier

The source multiplier is the factor by which the source must be
multiplied such that the probability of the number of neutrons pre-
sent in the system at the maturity time (found with the original
source) is less than or equal to the mean number of neutrons pre-
sent at this time in the system with the original number of neu-
trons is equal to a given probability Q. To illustrate this, consider
the probability that the neutron population is less than n�:

Pðn < n�; tmatÞ ¼
Xn��1

n¼0

Pðn; tmatÞ ð11Þ

If n� is the mean number of neutrons in the system at time tmat

with the unmodified source then the source multiplier may be
thought of as the factor the source must be multiplied such that
the probability calculated in Eq. (11) is equal to some pre-
specified value Q. To put it mathematically:

X�nðoriginal sourceÞ�1

n¼0

Pðn; tmat;multiplied sourceÞ ¼ Q ð12Þ

This value may be used in reactor design in order to account for
the effects of a low number of neutrons in a system on safety. To
demonstrate this, consider a case where a reactor is being switched
on with a linear increase in reactivity in the presence of a source of
a particular intensity. In this case a power peak may be formed as
the neutron population increases until its increase is prevented by
changes in reactivity brought about by the control system or neg-
ative feedbacks in the system due to the high neutron population.
The timing of the first power peak is non-deterministic due to the
low population of neutrons and, in this case, the later the power
peak the larger it will be. This effect is discussed at length in
Cooling et al. (2016).

In the above case, it may found through deterministic analysis
that, during a reactor start-up, a particular combination of reactiv-
ity profile and source intensity produces a mean number of neu-
trons as a function of time which is on the limit of what is
considered safe in terms of the power of the system. However, in
a given realisation of the system, the actual number of neutrons
present is not necessarily equal to the number predicted in the
deterministic model. We proceed by considering the number of
neutrons present in a specific realisation of the system at the matu-
rity time (at which time the neutron population is expected to be
large enough to be considered deterministic), which is before the
power peak. If the number of neutrons in this realisation is lower
than the mean number of neutrons at that time, the power peak
will be later and larger than the deterministic case and, thus,
would be unsafe. As such, it is desirable to limit the probability
of such a realisation occurring to being below a prescribed value.
To achieve this, the source which produced the just-safe power
peak in the deterministic analysis can be increased by a factor
equal to the calculated source multiplier relating to the desired
probability. Increasing the source intensity changes the PDFs such



Table 1
The variables used to define the data for the cases presented in Section 3.1 and
selected derived quantities. R and S refer to the reactivity ramp rate and source
intensity respectively.

Variable Case 1 Case 2

R
k1

0.01$ 0.2$
S
k1

2000 2000

k1 0.1/s 0.1/s
b1 0:008 0:008
Rf 1.868511/m 1.868511/m
Ra ð2:769434� 3:63636� 10�5tÞ/m ð2:769434� 7:27273� 10�4tÞ=m
E1 �21 �21
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that the peak power will occur at an earlier time, thus it reduces
the probability of a dangerous peak power at a later time.

To calculate this value within CALLISTO, the maturity time is
first calculated as described in Section 2.4. Next, the mean number
of neutrons present at that time is calculated as described in Sec-
tion 2.2. Next, a number of different values of the generating func-
tion variable z are sampled until the one which corresponds to the
desired probability Q at the maturity time is found, utilising the
equations in Appendix A.1 and A.3. The number of neutrons this
corresponds to, nprob, is found and the mean number of neutrons
is divided by this number to find the source multiplier.
4:0414� 10 J (0.025 eV) 4:0414� 10 J (0.025 eV)
Rs;1!1 0 0
pf ;1;0 0:0317 0:0317
pf ;1;1 0:1720 0:1720
pf ;1;2 0:3363 0:3363
pf ;1;3 0:3038 0:3038
pf ;1;4 0:1268 0:1268
pf ;1;5 0:0266 0:0266
pf ;1;6 0:0026 0:0026
pf ;1;7 0:0002 0:0002
�m 2:432661 2:432661
S1 200 50
ps;1;m 1 for m ¼ 1

0 otherwise

�
1 for m ¼ 1
0 otherwise

�

2.6. Hurwitz curves

Hurwitz Curves are named after their appearance in Hurwitz
et al. (1963). These curves display the source multiplier as a func-
tion of the related probability Q (see Section 2.5).

To calculate the relevant values, the maturity time is first calcu-
lated as described in Section 2.4. Next, the mean number of neu-
trons present at that time is calculated as described in
Section 2.2. Next, a number of different values of the generating
function variable z are sampled and the related probabilities Q
and the number of neutrons this corresponds to nprob at the matu-
rity time are found, utilising the Equations in Appendix A.1 and A.3.
For each value of z the relevant source multiplier is found by divid-
ing the mean number of neutrons by the related value of nprob.
Finally, the source multiplier is plotted as a function of Q.
3. Results

Within this section, different calculations are performed by
CALLISTO. In some cases these will be compared to results in the
literature or results produced by other codes. In other cases the
results explore the capabilities of the code or the implications
regarding the underlying physics and models.
Fig. 2. Hurwitz curves generated by Case 1 and Case 2 of the systems described in
Section 3.1. The data series entitled ‘‘Hurwitz” were found by reading data from
graphs within Hurwitz et al. (1963) and so there is some error attributed to these
data series from this process.
3.1. Hurwitz curves

Hurwitz et al. (1963) provide a number of Hurwitz curves for
several reactivity ramp insertions. These curves describe the
source multiplier as a function of the corresponding value of Q.
Two of those curves are represented here. The transients which
produced these curves are characterised by the ratios R

k1
(the ratio

of the reactivity ramp rate to the decay rate of the single delayed
neutron precursor group) and S

k1
(the ratio of the source rate to

the decay rate of the single delayed neutron precursor group).
The first case selected has a relatively low reactivity ramp rate,
whilst the second has a relatively fast reactivity ramp rate. Both
have the same source intensity.

The data for these two cases are given in Table 1. Some data is
duplicated directly from Hurwitz et al. (1963) whilst other values,
which are not given in that paper, are approximations. The results
are not expected to be particularly sensitive to the values which
have been approximated.

The results of these two cases are displayed in Fig. 2. The corre-
sponding results from Hurwitz et al. (1963) are also shown for
comparison. The agreement for Case 1 is very good and Case 2 is
fair. One possible explanation for the deviations in Case 2 is that
Hurwitz’s model assumed that prompt neutrons have a negligible
lifetime whilst CALLISTO does not make that assumption. This is
more important in Case 2 as the transient is faster and so the reac-
tivity is changing on a timescale that is closer to that of the dura-
tion of a burst of prompt neutrons, rendering the behaviour of
prompt neutrons more important.
3.2. Multi-group neutron populations

This case is based upon Myers (1995) which presents a number
of stochastic calculations of an infinite extent of 93% enriched ura-
nium utilising four neutron energy groups. The neutronics param-
eters of the system are invariant in time. The calculation neglects
the effect of delayed neutron precursors. A summary of the data
used is presented in Table 2. Some of this data was not present
in Myers (1995) in numerical form but, instead, was present in
bar charts from which the data was read manually. This may result
in some small differences between the data used here and the data
used in the calculations performed by Myers.

The value of kinf , as expected for a static infinite slab of high
enrichment uranium, is very high and is also independent of time.
The exact value is 2.22408987 as calculated by CALLISTO. A corre-
sponding value does not appear to be given by Myers for
comparison.

The mean and standard deviation of the neutron population in
energy group 1 as a function of time as calculated by CALLISTO
are shown in Fig. 3. The source intensity in question is 100n/s
and the time simulated is 1� 10�7 so, in the majority of cases,



Table 2
The variables used to define the data for the case presented in Section 3.2.

Variable g ¼ 1 g ¼ 2 g ¼ 3 g ¼ 4

Rfg 5.5347/m 5.4458/m 5.8239/m 11.392/m
Rag 5.87016/m 6.04295/m 6.74156/m 14.4515/m
Rs;1!g 0/m 1.5736/m 2.6758/m 0.2937/m
Rs;2!g 0/m 0/m 2.6242/m 0.34668/m
Rs;3!g 0/m 0/m 0/mm 0.38722/m
Rs;4!g 0/m 0/m 0/m 0/m
Ffg 0:204 0:344 0:348 0:104
pf ;g;0 0:01 0:025 0:038 0:04
pf ;g;1 0:08 0:118 0:15 0:157
pf ;g;2 0:234 0:315 0:34 0:34
pf ;g;3 0:365 0:325 0:305 0:3
pf ;g;4 0:23 0:178 0:14 0:14
pf ;g;5 0:073 0:037 0:025 0:022
pf ;g;6 0:008 0:002 0:002 0:001
Eg 6:78� 10�13 J 2:72� 10�13 J 7:376� 10�14 J 6:048� 10�15 J

(4:23 MeV) (1:68 MeV) (0:46 MeV) (0:038 MeV)
S1 100/s
ps;1;m 1 for m ¼ 1

0 otherwise

�

Fig. 3. The mean and standard deviation of the number of neutron present in the
system described in Section 3.2 as a function of time.
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no neutrons will have been released. However, due to the high
reactivity, in the instance that a neutron has been released, the
population will grow very quickly. This means the probability dis-
tribution of the number of neutrons in the system will contain a
sharp peak at zero neutrons and a long tail extending to a large
number of neutrons. For this reason, the mean number of neutrons
is low and the standard deviation is much higher than the mean.

The mean and standard deviation of the number of neutrons
present in the system as a function of time due to a single neutron
injected into energy group g at t ¼ 0 is presented in Fig. 4. This
again shows how a single neutron injected in the system will give
rise to a chain of neutrons which rapidly increases in number.

Myers (1995) contains many plots of different variables as a
function of time and many of these are comparable to data pro-
duced here. However, the data presented is in terms of a ‘‘Non-
Dimensional Time t

l” which is not simply converted into a dimen-
sional time as a value for l does not appear to be given by Myers.
Additionally, no instances where a source is present in the infinite
medium are discussed. However, some comparisons may still be
made between Myers’ results and simulations performed by
CALLISTO.

One comparison which may be made is that of the ratio
between the mean number of neutrons present in energy group
1 at a given time (once the system has attained a state of exponen-
tial growth) for neutrons injected into different energy groups at
t ¼ 0. Another ratio that may be compared is the standard devia-
tion divided by the mean for the number of neutrons in energy
group 1 for a neutron of a particular energy group inserted at
t ¼ 0 The results of these comparisons may be found in Table 3.
It should be noted that the ratios fromMyers are obtained by man-
ually reading data from a logarithmic axis in a document repro-
duced from microfilm so there is a considerable uncertainty in
the estimate here of the value obtained by Myers.

Overall, the results of Table 3 show similar overall trends but
the exact agreement is patchy, with some results being very close
and others differing significantly. As noted, obtaining results from
Myers (1995) was an imprecise endeavour and this plausibly
makes up for a considerable amount of this variation, although it
is difficult to quantify this effect.

The results of the third calculation provide the generating func-
tion of both the total number of neutrons present in the system
due to the source and also the number of neutrons present in the
system as a function of time following an insertion of a single neu-
tron of energy group g at t ¼ 0. These results are shown in Fig. 5.
Before considering these results, it is useful to recall the definition
of the generating function relating to the number of neutrons pre-
sent at time t due to source operation since time s and its
derivatives:

GSðz; t;UjsÞ ¼
X1
n¼0

znPSðn; t;UjsÞ; ð13Þ

G0
Sðz; t;UjsÞ ¼

X1
n¼1

nzn�1PSðn; t;UjsÞ; ð14Þ

G00
Sðz; t;UjsÞ ¼

X1
n¼2

nðn� 1Þzn�2PSðn; t;UjsÞ ð15Þ

where PSðn; t;UjsÞ is the probability of there being n neutrons in
energy range U in the system at a time t given a source that has
been present since time s. It is also useful to recall the generating
function of the number of neutrons present at time t due to a single
neutron injected at time s in energy group g:

eGgðz; t;UjsÞ ¼ 1�
X1
n¼0

znPgðn; t;UjsÞ; ð16Þ

where Pgðn; t;UjsÞ is the probability of there being n neutrons in
energy range U in the system at a time t resulting from a single neu-
tron injected in energy group g at time s. For this case, we have



Fig. 4. The mean and standard deviation of the number of neutrons present in the system described in Section 3.2 as a function of time due to a single neutron injected into
energy group g of the system at t ¼ 0.

Table 3
Ratios of different moments of the number of neutrons in energy group 1 during the
exponential growth phase following the injection of a neutron into the system
described in Section 3.2. ni the mean number of neutrons present in the system after a
neutron is injected into energy group i at t ¼ 0 and ri represents the standard
deviation in the number of neutrons present in the system after a neutron is injected
into energy group i at t ¼ 0. Note that difficulty in reading the graphs in which the
data is presented in Myers (1995) contributes a significant potential error to results in
this column.

Ratio CALLISTO Myers (1995)

n2
n1

0:768 0:74
n3
n1

0:54 0:48
n4
n1

0:35 0:33
r1
n1

1:556 1:65
r2
n2

1:722 2:23
r3
n3

1:99 2:43
r4
n4

2:48 2:94
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selected a value for the generating function variable z of 0 and so
these simplify to:

GSð0; t;UjsÞ ¼ Pð0; t;UjsÞ; ð17Þ
G0

Sð0; t;UjsÞ ¼ Pð1; t;UjsÞ; ð18Þ
G00

Sð0; t;UjsÞ ¼ 2Pð2; t;UjsÞ; ð19ÞeGgð0; t;UjsÞ ¼ 1� Pgð0; t;UjsÞ: ð20Þ
In Fig. 5a, the value of GSð0; t;Uj0Þ reduces from 1 to 0.99825

over the 2� 10�7 s over which these values are calculated, imply-
ing that, at t ¼ 2� 10�7 s, Pð0Þ ¼ 0:99825. This matches up well
Fig. 5. The generating functions of the system described in Section 3.2 as a function of tim
the system at t ¼ 0. All results use z ¼ 0
with the fact that source intensity is 1� 104n/s. One would expect
the probability of zero neutrons being present in a system with
time-independent neutronics parameters and with a very short
prompt neutron lifetime to be given by:

Pð0Þ ¼ exp �Stð1� PEÞð Þ; ð21Þ

where PE is the extinction probability for a neutron injected from
the source. Solving this equation for t ¼ 2� 10�7 s gives an estimate
of 0.124 for the extinction probability. We will go on to see that this
is indeed a good approximation.

Fig. 5b also gives information regarding the survival probability.

Recalling that eGgð0; t;Uj0Þ ¼ 1� Pgð0; t;Uj0Þ, we see that the

asymptotic value of eGgð0; t;Uj0Þ should give the survival probabil-
ity for a neutron injected at t ¼ 0 into group g. Similar data is also
available in Myers (1995) and this comparison is tabulated in
Table 4. Again, issues relating to the difficulty of extracting data
from the graphs present in Myers (1995) causes a significant
uncertainty in the values in this column.

The agreement between Myers’ results and CALLISTO’s result in
Table 4 is poor. However, note that the extinction probability esti-
mated in the discussion of Fig. 5a of 0.124 (recalling the source
injects neutrons only in group 1) is close to that of the CALLISTO
estimate in Table 4 of 0.140.

We may form another estimate of the extinction probability
which is actually a lower bound on it by considering the cross-
sections given in Table 2. We may do this by considering the
probability that a neutron in a given energy group will result in a
fission. This may be achieved with the following equations:
e due to either the source or due to a single neutron injected into energy group g of



Table 4
The extinction probabilities for neutrons of group g injected into the system described
in Section 3.2. Note that difficulty in reading the graphs in which the data is presented
in Myers (1995) contributes a significant potential error to results in this column.

Energy Group CALLISTO Myers (1995)

1 0:140 0:03
2 0:175 0:08
3 0:210 0:16
4 0:288 0:23

Table 5
The ratios of the extinction probabilities for a chain following fission caused by a
neutron injected in group g of the system described in Section 3.2. The values marked
‘‘N/A” are values for which it as not able to obtain a positive value from Myers (1995).
It is not clear if this is due to inconsistencies in Myers’ data or difficulties encountered
extracting data from the manuscript available.

g PE;fission;g
PE;fission;1

CALLISTO Myers (1995)

2 1:268 0:587
3 1:524 N/A
4 1:817 N/A

Table 6
The variables used to define the data for the case described in Section 3.3.

Variable Value

Rf 1.868511/m

Ra 4:618165=m for t < 100 s
4:690877� t

2750:62s

� 	
1
m for 100 s 6 t < 500 s

4:472744=m fort P 500 s

8<:
Rs;1!1 0
pf ;1;0 0:0317
pf ;1;1 0:1720
pf ;1;2 0:3363
pf ;1;3 0:3038
pf ;1;4 0:1268
pf ;1;5 0:0266
pf ;1;6 0:0026
pf ;1;7 0:0002
�m 2:4132
E1 4:0414� 10�21 J (0.025 eV)
S1 100
ps;1;m 1 for m ¼ 1

0 otherwise

�
b1 0:0002798
b2 0:001530
b3 0:001263
b4 0:003230
b5 0:001212
b6 0:0004834
b 0:0079982
k1 0.01262/s
k2 0.03116/s
k3 0.1130/s
k4 0.3138/s
k5 1.188/s
k6 3.884/s
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Rtot;g ¼ Ra;g þ
X4
g0¼1

Rs;g!g0 ; ð22Þ

pf ;g ¼
Rf þ

X4
g0¼1

Rs;g!g0pf ;g0

Rtot;g
; ð23Þ

where Rtot;g is the total cross-section of energy group g and pf ;g is the
probability that a neutron in energy group g eventually causes a fis-
sion. Due to the fact that only down-scatter is present we may
easily solve this set of equations to obtain:

pf ;1 ¼ 0:9084; ð24Þ
pf ;2 ¼ 0:8848; ð25Þ
pf ;3 ¼ 0:8598; ð26Þ
pf ;4 ¼ 0:7883: ð27Þ

This provides two pieces of information. Firstly, it provides a
lower limit on the extinction probability for each group. If the neu-
tron that is present at t ¼ 0 does not cause a fission then it cannot
sponsor a persisting chain. This leads to the relation:

PgðEÞ � 1� pf ;1; ð28Þ
where PgðEÞ is the extinction probability of a neutron injected in
group g. As can be seen in Table 4 the results produced by CALLISTO
obey this inequality whilst the results obtained from Myers (1995)
do not for cases where the neutron is injected in groups 1 or 2.
Given the high probability that a neutron will cause a fission, the
number of neutrons produced per fission it is reasonable to expect
that the true extinction probability will be similar to this lower
limit. Again, the CALLISTO simulations are consistent with this
expected result.

The second piece of information that may be gained from the
values of pf ;g relates to the ratios between them. Once a neutron
has caused a fission it will produce a number of neutrons as deter-
mined by the values of pf ;g;m. We define PE;fission;g to be the probabil-
ity that a fission caused by a neutron originally injected in group g
(noting that it may be in a different energy group when it actually
causes a fission) does not produce a chain of neutrons that persists.
We thus form the relation:

PE;g ¼ 1� pf ;gð1� PE;fission;gÞ: ð29Þ
Although PE;fission;g is not easily available we may rearrange and

take the ratio of this expression for neutrons of different energy
groups to obtain the expression:

PE;fission;g

PE;fission;g0
¼

1� 1�PE;g
pf ;g

1� 1�PE;g0
pf ;g0

ð30Þ

We tabulate these ratios for both the results produced by CAL-
LISTO and Myers (1995) in Table 5.

We note here that, as the fission spectrum is identical for each
fission regardless of the energy group of the neutron that caused it,
the difference between the values of PE;fission;g must arise from the
different fission multiplicities for fissions caused by neutrons of
each energy which derive from the values of pf ;g;m in Table 2. A neu-
tron injected in group g is most likely to cause a fission in that
group as opposed to any other so it follows that the more likely
it is that a fission releases a larger number of neutrons the more
likely the chain is to survive. Faster fissions release more neutrons
(for this system a fission caused by a neutron in group 1 will
release an average of approximately 2.98 neutrons and a fission
caused by a neutron in group 4 will release an average of approx-
imately 2.41 neutrons). As a result we expect PE;fission;g to increase
for values of g which correspond to lower energy groups. This
behaviour is observed in the CALLISTO results but not the Myers
results in Table 5.

The analysis of this system using CALLISTO has shown that the
results are self-consistent and conform to what may be expected
from physical reasoning. The comparison with Myers (1995) has
produced mixed results but it has been demonstrated that, where
disagreement exists, there is significant evidence to favour the
results of CALLISTO. The reason for this discrepancy is unclear.
The most obvious explanations are that the system studied by
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Myers has not been precisely replicated here, the results of Myers
could not be read with sufficient accuracy or that there is an error
in the code used to produce the results found by Myers. The first
two options seem particularly plausible given the poor quality of
the available copy of that manuscript.

3.3. Delayed ramp

This case is a single-energy case designed primarily to demon-
strate CALLISTO’s ability to calculate the source multiplier. It con-
tains a ramp reactivity insertion such that the reactivity is as given
by Eq. (31):

RðtÞ ¼
�2$ for t < 100 s
�3þ t

100s

� 	
$ for 100 s 6 t < 500 s

2$ for t P 500 s

8><>: ð31Þ

The full specification of the relevant parameters may be found
in Table 6.

A plot of reactivity against time produced is shown in Fig. 6. The
maturity time of the system was calculated to be 378.194 s and the
source multiplier of the system for Q ¼ 1� 10�8 was calculated to
be 2:41636� 105. For comparison, a separate code was used to
solve the same equations that are solved by CALLISTO. This code
was the code used to produce the data presented in Williams
and Eaton (2017). For this case, that code calculated a maturity
time of 379.2 s and a source multiplier of 2:40� 105. This close
agreement helps to verify CALLISTO.

The slight differences are likely to be primarily due to small dif-
ferences in approach. For example, Williams’ code takes its input
data in a slightly different form (it takes values of vfgn as opposed
to pfgm for example) and this may lead to slight differences in the
parameters propagated through to the ODEs as the data will have
gone through different degrees of rounding and truncation.

3.4. Sixteen group system

This case is intended to explore the multi-group capabilities of
CALLISTO. The physically modelled system is that of an infinite
mixture of 20% enriched uranium of hydrogen when H:U ratio of
400. The cross-sections of this system are modelled using the six-
teen group cross-sections from Hansen et al. (1961) whilst the
delayed neutron group data is taken from Wilson and England
(2002). CALLISTO calculates that this system has a kinf value of
1.02889, which corresponds to a reactivity of approximately 3.85
$. Into this system a source is placed which has a decay rate of
1000 disintegration/s with each disintegration producing exactly
one neutron in the highest energy group.
Fig. 6. The reactivity as a function of time of the systems described in Section 3.3
This system may also be collapsed down into a one-group rep-
resentation using the following equation:

Ronegroup ¼
PG

g¼1vg/gRg

vonegroup
PG

g¼1/g

ð32Þ

where Ronegroup is either the absorption or fission macroscopic
cross-section for the one-group case and Rg is the corresponding
cross-section for energy group g in the sixteen group cross-section
data-set. /g is the neutron flux in energy group g in the sixteen
group representation of the system in the neutron flux eigenvector
of the neutron transport equation solved for the eigenvalue relating
to the growth mode associated with the kinf of the system. This is
calculated by CALLISTO when the kinf of the system is calculated.

The equivalent one-group system is thus also used as an input
to CALLISTO and CALLISTO calculates the reactivity of this system
to be 3.83$, which is close to that calculated for the sixteen group
system. CALLISTO may also calculate the maturity time for both
representations of the system. For the sixteen group case this is
calculated to be 1:189663� 10�2 s and for the one group system
this is calculated to be 1:16218� 10�2 s, showing fairly close
agreement.

The mean and standard deviation of the neutron population as a
function of time may also be compared as in Fig. 7. It can be seen
here that the agreement is fairly good, although the growth in both
the mean and the standard deviation is larger in the one group case
than the sixteen group case, despite the sixteen group case having
a slightly higher reactivity, as noted previously. This is likely due to
the one group case having a different PDF of the generation time of
a neutron as neutrons do not need to be slowed down before they
have a significant chance of causing fission in the one group case.
This also explains the slightly shorter maturity time in the one
group case.

In fact, we see that the mean and standard deviation of the
number of neutrons at the respective maturity times are very sim-
ilar in the sixteen and one group cases. The mean is 8:485� 105

and the standard deviation is 6:245� 106 at t = 1.189663�10�2 s
for the sixteen group case and the mean is 8:442� 105 and the
standard deviation is 6:311� 106 at t ¼ 1:16218� 10�2 s for the
one group case).

Next we may compare the calculated source multiplier for a tar-
get probability of Q = 0.1. In the sixteen group case this is
9:39905� 106 and in the one group case this is 9:53204� 106.
The fact that these values agree fairly closely helps to validate
the multi-group treatment within CALLISTO and to increase
Fig. 7. The mean and standard deviation in the number of neutrons present in the
system as calculated for the sixteen group and one group representations of the
system described in Section 3.4



Table 7
The time taken to perform different calculations for the two representations of the
system described in Section 3.4. These calculations were all performed on the same
computer and include overheads such as reading inputs and creating outputs. These
overheads should only make a significant contribution to the one group calculations.

Calculation Sixteen group One group

Mean and Standard Deviation (Fig. 7) 7200 s 0.40 s
Maturity Time 1902 s 0.033 s
Source Multiplier 24,858 s 0.91 s

Table 8
Relevant neutronics data for the two-group case discussed in Section 3.5

Variable g ¼ 1 g ¼ 2

Rfg 0/m 5/m
Rag 5/m 8.196/m
Rs;1!g 0/m 10/m
Rs;2!g 0/m 0/m
Ffg 1 0
Fdig (for all i) 1 0
pf ;g;0 0 0:0291184725
pf ;g;1 0 0:1664043844
pf ;g;2 0 0:331423879
pf ;g;3 0 0:307604453
pf ;g;4 0 0:1326992016
pf ;g;5 0 0:0296079289
pf ;g;6 0 0:0028953564
pf ;g;7 0 0:0002465584
Eg 1:6� 10�20 J (0.100 eV) 4� 10�21 J (0.025 eV)
S1 1000/s
ps;1;m 1 for m ¼ 1

0 otherwise

�
b1 0:0002422779
b2 0:001343215
b3 0:000952642
b4 0:0029944814
b5 0:0011986784
b6 0:0005610569
k1 0.012474/s
k2 0.0303001/s
k3 0.0955406/s
k4 0.2844131/s
k5 0.9781931/s
k6 3.488824/s

Table 9
The time taken to perform different calculations for the two representations of the
system described in Section 3.5. These calculations were all performed on the same
computer and include overheads such as reading inputs and creating outputs. These
overheads should only make a significant contribution to the one group calculations.

Calculation Two group One group

Maturity Time 752 s 0.237 s
Source Multiplier 1713 s 1.47 s
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confidence that correctly collapsing a complex energy group struc-
ture to a one group approximation can still produce useful values.

A final comparison that may be made is that of the running time
of CALLISTO for these two different representations of the system.
These data are presented in Table 7. As can be seen, the one group
calculations are significantly faster. This is primarily because the
inclusion of even a single fast group dramatically increases the
stiffness of the equation set as a whole, significantly slowing the
solution of the ODEs.

As a result, a user may wish to utilise a one group representa-
tion of a system in order to decrease the solution time, as the loss
in accuracy does not appear to be very large in the simplification to
a one group system. However, the system chosen here was deliber-
ately chosen to be solvable in a reasonable amount of time, even
with all sixteen energy groups represented. Specifically, the speci-
fication of the system ensured that the maturity time was very
small, which reduces the amount of time that must be simulated.
This has, in turn, placed a lower limit on the value of Q which
may be used when calculating the source multiplier. It is not prac-
tical to repeat this comparison for a system with a longer maturity
time as the sixteen group approximation would take a pro-
hibitively long time to solve. This limits the utility of this result,
although Section 3.5 attempts to extend the confidence of the con-
clusions found here over a larger sets of regimes.

3.5. Two group system

Section 3.4 represents a realistic representation of a system
whose material properties are derived from a specific material
composition in an infinite configuration. However, the inclusion
of high-energy groups greatly increases the stiffness of the prob-
lem and prohibited simulating the system for a long simulated
time. This, in turn, prohibited choosing a low value for Q. In this
section a different, less realistic representation of a system without
any high-energy groups is presented with the aim of comparing a
two group and one group representation of the system regarding
the value of the source multiplier obtained. The details of the sys-
tem being simulated are presented in Table 8. This data is also col-
lapsed into a one-group representation (with the resultant group
having an energy of 0.025 eV) using Eq. (32) and the results are
compared. Both systems have a reactivity of approximately 0.5$.

Using the two group representation the maturity time is calcu-
lated to be 59.35 s and the source multiplier is calculated to be
33.40. For the one group case the maturity time was calculated
to be 60.37 s and the source multiplier was calculated to be
33.81 with Q ¼ 1� 10�8. The agreement of these two values pro-
vides a further piece of evidence that the collapse of a multi-
group system to a single group can provide an acceptably close
agreement at a greatly reduced computational cost where the
maturity time is larger and the value of Q is small. The running
times are recorded in Table 9.

4. Conclusions

This paper has presented the CALLISTO code which is based
upon the mathematics formulated in another paper (Williams
and Eaton, 2017). The code has been applied to a series of five
low neutron source verification test cases. In three of these systems
the results have been verified or validated against other methods
or papers. In two cases the agreement was good, whilst the third
case showed significant differences. However, these differences
could be at least partially explained and it was demonstrated that
CALLISTO appeared to be producing plausible and self-consistent
results.

In the fourth system it was demonstrated that, for this system,
the reduction in the number of energy groups from sixteen to one
did not produce large changes in the results produced by CALLISTO
in terms of the reactivity, maturity time, neutron population or
source multiplier. In the fifth system a reduction in the number
of energy groups was reduced from two to one and it was found
that this reduction did not significantly change the maturity time
or source multiplier. This provides supporting evidence that a sin-
gle energy group is sufficient to simulate the effects of a low neu-
tron population in these types of calculations. Both the fourth and
fifth cases are consistent with the fact that one-group models of
fast burst systems such as GODIVA and CALIBAN are found to pro-
vide good comparisons with the available experimental data.

The work performed here could be extended by the introduc-
tion of spatial and angular dependencies for the neutron popula-
tion (Williams and Eaton, 2018). This would allow for the direct
simulation of more complex systems.
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Appendix A. Governing equations

The equations found in CALLISTO are derived from the work
found in Williams and Eaton (2017) and so will not be derived here
anew. The equations relate to solving the backwards generation
function equation for the number of neutrons in energy groups
of interest present in the system at a time t given a single neutron
injected into a particular energy group to delayed neutron precur-
sor of a particular delayed neutron precursor group at time s or
given a known source intensity operating since time s. The gener-
ation function is then inverted using the saddlepoint method. The
definition of variables used in this appendix which are not locally
defined may be found in Appendix B.

A.1. Generating function equations

The generating functions and their derivatives with respect to
the generating function variable z are solved in CALLISTO by the
definition of the known final state of the generating functions at
a time t and then solving backwards in time by reducing the time
variable s from time t to a time of 0 s.

The first set of equations presented describe the generating

functions eGgðz; t;UjsÞ and eGdiðz; t;UjsÞ and their first and second

derivatives with respect to z eG0
gðz; t;UjsÞ; eG00

gðz; t;UjsÞ; eG0
diðz; t;UjsÞ

and eG00
diðz; t;UjsÞ. These generating functions relate to the distribu-

tion of the number of neutrons in an energy range U at time t
caused by the injection of a single neutron in energy group g at
time s and caused by the injection of a single delayed neutron pre-
cursor in delayed neutron precursor group i.

� 1
vg

@eGgðz; t;UjsÞ
@s

¼ � RagðsÞ þ RsgðsÞ
� 	eGg þ RfgðsÞ

þ
XG
g0¼1

Rs;g!g0 ðsÞeGg0 � RfgðsÞHg
eGfg ; eGdi

� �
; ðA:1Þ
� 1
vg

@eG0
gðz; t;UjsÞ
@s

¼ � RagðsÞ þ Rsg
� 	eG0

g þ
XG
g0¼1

Rs;g!g0 ðsÞeG0
g0

� RfgðsÞH0
g
eGfg ; eGdi

� �
; ðA:2Þ
� 1
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@eG00
gðz; t;UjsÞ
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¼ � RagðsÞ þ RsgðsÞ
� 	eG00
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The following ODEs are simultaneously solved for GSðz; t;UjsÞ
and its derivatives with respect to z. This is the generating function
related to the distribution of the number of neutrons in energy
range U of the system at time t due to the neutrons released by a
specified source between time s and time t:
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FsigðsÞeGn
g

þ
XNsource

i

SiðsÞ
Xmmax;si

n¼1

2n

� ð�1Þn
n!

vsinG
0
S

XG
g¼1

FsigðsÞeGn�1
g
eG0

g

þ
XNsource

i

SiðsÞ
Xmmax;si

n¼1

n

� ð�1Þn
n!

vsinGS

XG
g¼1

FsigðsÞeGn�1
g
eG00

g

þ
XNsource

i

SiðsÞ
Xmmax;si

n¼2

nðn� 1Þ

� ð�1Þn
n!

vsinGS

XG
g¼1

FsigðsÞeGn�2
g
eG02

g ðA:18Þ

The sources are modelled as having an average intensity in
terms of the number of disintegrations per second and generally
the statistics of the source are described as Poisson or generalised
Poisson (Pázsit and Pál, 2008). This covers the possibility that more
than one neutron is emitted per disintegration.

This system of equations are solved backwards in time from
s ¼ t to s ¼ 0.

The final conditions for both sets of equations are as follows:

eGgðz; t;UjtÞ ¼ ð1� zÞDðEg ;UÞ; ðA:19Þ

eG0
gðz; t;UjtÞ ¼ �DðEg ;UÞ; ðA:20Þ
eG00

gðz; t;UjtÞ ¼ 0; ðA:21Þ
eGdðz; t;UjtÞ ¼ 0; ðA:22Þ
eG0

dðz; t;UjtÞ ¼ 0; ðA:23Þ
eG00

dðz; t;UjtÞ ¼ 0; ðA:24Þ
GSðz; t;UjtÞ ¼ 1; ðA:25Þ
G0

Sðz; t;UjtÞ ¼ 0; ðA:26Þ
G00

Sðz; t;UjtÞ ¼ 0: ðA:27Þ
A.2. Neutron moment equations

The moments of the various PDFs at a given time t are solved by
the definition of the known final state of the moments at a time t
and then solving backwards in time by reducing the time variable
s from time t to a time of 0s. The equations to be solved are found
by taking the equations in Section Appendix A.1, setting z ¼ 1 and
simplifying the equations. Useful relationships used in the simpli-
fication process include:

eGgðt;UjsÞ




z¼1

¼ 0; ðA:28Þ

eG0
gðt;UjsÞ





z¼1

¼ ��nfgðt;UjsÞ; ðA:29Þ

eG00
gðt;UjsÞ





z¼1

¼ �lfgðt;UjsÞ; ðA:30Þ

eGdiðt;UjsÞ




z¼1

¼ 0; ðA:31Þ

eG0
diðt;UjsÞ





z¼1

¼ ��ciðt;UjsÞ; ðA:32Þ

eG00
diðt;UjsÞ





z¼1

¼ �lciðt;UjsÞ; ðA:33Þ

GSðt;UjsÞjz¼1 ¼ 1; ðA:34Þ
GSðt;UjsÞjz¼1 ¼ NSðt;UjsÞ; ðA:35Þ
GSðt;UjsÞjz¼1 ¼ hNðN � 1Þisðt;UjsÞ: ðA:36Þ

The resulting equations are:

� 1
vg

@�nfgðt;UjsÞ
@s

¼ � RagðsÞ þ Rsg
� 	

�nfgðt;UjsÞ

þ
XG
g0¼1

Rs;g!g0 ðsÞ�npg0

þ Rfg �mgðsÞ
XD
i¼1

biðsÞ�ciðt;UjsÞ þ vfg1ðsÞ
XG
g0¼1

Fpg0 �npg0

 !
;

ðA:37Þ

� @�ciðt;UjsÞ
@s

¼ �ki�ciðt;UjsÞ þ ki
XG
g¼1

FdigðsÞ�nfgðt;UjsÞ; ðA:38Þ

� 1
vg

@lfgðt;UjsÞ
@s

¼ � RagðsÞ þ Rsg
� 	

lfgðt;UjsÞ

þ
XG
g0¼1

Rs;g!g0 ðsÞlpg0

þ RfgH
00
g
eGpðsÞ; eGdiðsÞ
� �

jz¼1; ðA:39Þ

� @lciðt;UjsÞ
@s

¼ �kiliðsÞ þ ki
XG
g¼1

FdigðsÞlfgðt;UjsÞ; ðA:40Þ

where:

H00
g
eGpðsÞ; eGdiðsÞ
� �




z¼1
¼ �m2g

XD
i¼1

bi�ci
X

j¼1;j–i

bj�cj

 !
þ �mg

XD
i¼1

bilci

þ 2vfg1�mg
XG
g¼1

Ffg�nfg

XD
i¼1

bi�ci

þ vfg1

XG
g¼1

Ffglfg ;þvfg2

XG
g¼1

Ffg�nfg

 !2

: ðA:41Þ

To calculate the mean and second moment of the number of
neutrons NSðt;UjsÞ and hNðN � 1Þisðt;UjsÞ in energy range U caused
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by a given source SdðsÞ in the time period between time s and time t
the following equations are used:

� @NSðt;UjsÞ
@s

¼
XNsource

i

SiðsÞvsi1ðsÞ
XG
g¼1

FsigðsÞ�nfgðt;UjsÞ ðA:42Þ

� @hNðN � 1Þisðt;UjsÞ
@s

¼
XNsource

i

2SiðsÞvsi1ðsÞNsðt;UjsÞ
XG
g¼1

FsigðsÞ�nfgðt;UjsÞ

þ
XNsource

i
SiðsÞvsi1ðsÞ

XG
g¼1

FsigðsÞlfgðt;UjsÞ

þ
XNsource

i

SiðsÞvsi2ðsÞ
XG
g¼1

FsigðsÞ�n2
fgðt;UjsÞ

ðA:43Þ
The calculated moments can be used to calculate the standard

deviations rSðt;UjsÞ (of the number of neutrons in the energy
groups of interest caused by a given source SdðsÞ in the time period
between time s and time t), rfgðt;UjsÞ (of the number of neutrons in
the energy groups of interest caused by a single neutron injected
into energy group g at s = 0) and rfgðt;UjsÞ (of the number of neu-
trons in the energy groups of interest caused by a single delayed
neutron precursor injected into delayed neutron precursor group
i at s = 0):

r2
S ðt;UjsÞ ¼ hNðN � 1Þisðt;UjsÞ þ NSðt;UjsÞ � N2

S ðt;UjsÞ ðA:44Þ

r2
fgðt;UjsÞ ¼ lfgðt;UjsÞ þ �nfgðt;UjsÞ � �n2

fgðt;UjsÞ ðA:45Þ

r2
diðt;UjsÞ ¼ lciðt;UjsÞ þ �ciðt;UjsÞ � �c2i ðt;UjsÞ ðA:46Þ
The final conditions to be used are:

�nfgðt;UjtÞ ¼ DðEg ;UÞ; ðA:47Þ

�ciðt;UjtÞ ¼ 0; ðA:48Þ

lfgðt;UjtÞ ¼
1 if delayed neutrons are of interest
0 otherwise

�
; ðA:49Þ

lciðt;UjtÞ ¼ 0; ðA:50Þ
NSðt;UjtÞ ¼ 0; ðA:51Þ

hNðN � 1Þisðt;UjtÞ ¼ 0; ðA:52Þ
Table B.10
Summary of variables and their meanings (Roman letters). Note that a ‘‘0” following a var

Variable Description

c Speed of light
�ciðtjsÞ Mean number of neutrons in energy groups of interest at time t due t

precursor group i
D Number of delayed neutron precursor groups
Eg Characteristic energy of neutron for group g
FfgðsÞ Probability of a fission neutron being in group g
FdigðsÞ Probability of a neutron released by decay of a precursor in precurso
FsigðsÞ Probability of a neutron produced in a disintegration of the ith sourc
G Number of neutron energy groups
Gfgðz;U; tjsÞ Generating function for a neutron beginning at time seGgðz;U; tjsÞ Generating function for a neutron beginning at time s in group g for

neutrons in the energy range U at time t
GSðz;U; tjsÞ Generating function for the neutrons released by a source between tim

time t
mn Mass of a neutron
where DðEg ;UÞ is 1 if the group’s energy Eg is in the energy range U
and 0 otherwise.

A.3. Saddlepoint equations

The saddlepoint method is used to obtain properties of a cumu-
lative probability function from the generating function associated
with the corresponding PDF as discussed in detail in Williams and
Eaton, 2017 for a time t P tmat . For a given z the probability
Qðnprobðz; tÞÞ of there being less than nprobðz; tÞ neutrons present at
time t may be calculated by solving the generating function equa-
tions as described in Appendix A.1. The number of neutrons relat-
ing to the value of z is calculated by the following equation:

nprobðz; tÞ
z

¼ 1

ð1� zÞ2
þ G0

Sðz; t;Uj0Þ
GSðz; t;Uj0Þ ; ðA:53Þ

The probability that there will be less than that number of neu-
trons present in the system is calculated by the following equation:

Qðnprobðz; tÞ;U; tjsÞ ¼ GSðz;U; tj0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2prprobðzÞ

p
znprobðz;tÞð1� zÞ ; ðA:54Þ

where:

rprobðzÞ ¼ nprobðz; tÞ
z2

þ 1

ð1� zÞ2 �
G0

Sðz;U; tj0Þ
GSðz;U; tj0Þ
� �2

þ G00
Sðz;U; tj0Þ

GSðz;U; tj0Þ : ðA:55Þ

This gives the probability of fewer than nprobðz; tÞ neutrons being
present in energy range U at time t caused by neutrons released by
the source(s) between time 0 and time t.

The number of neutrons that a particular value of z corresponds
to is not known before solving the generating function equation. In
order to find the probability of there being less than a specific
number of neutrons present in the system at a particular time or
the number of neutrons which corresponds to a particular proba-
bility it is required to find the value of z relating to that nprobðz; tÞ
or Qðnprobðz; tÞ;U; tjsÞ. This typically involves repeating this process
a number of times for different values of z.

Appendix B. Variable definitions

This appendix contains a concise description of the mathemat-
ical variables used in this paper.
iable name refers to the differential of it with respect to z.

Definition

2.99792458�108 m/s
o a single delayed neutron precursor injected at time s in Variable

Problem-specific
Problem-specific
Problem-specific

r group i being in group g Problem-specific
e being of energy group g Problem-specific

Problem-specificP1
n¼0z

nPðn; t;Ujg; sÞ
neutrons in the energy range U at time t in group g for 1� Ggðz;U; tjg; sÞ

e s and time t for the neutrons in the energy range U at
P1

n¼0z
nPSðn; t;Ujg; sÞ

1:675� 10�27 kg



Table B.10 (continued)

Variable Description Definition

�nfgðt;UjsÞ Mean number of neutrons in groups of interest at time t due to a single neutron injected at time s in group g Variable
nprobðzÞ A threshold number of neutrons in the energy groups of interest. Variable
NSðt;UjsÞ The mean number of neutrons at time t caused by sources present since time s. Variable
Nsource The total number of sources. Problem-specific
pfgm Probability of a fission initiated by a neutron of energy group g producing m neutrons Problem-specific
Pðn; t;Ujg; sÞ Probability of a single neutron injected at time s producing n neutrons in energy range U at time t Variable
PSðn; t;Ujg; sÞ Probability of the neutrons released by a source between time s and time t producing n neutrons in energy range U at time t Variable
psimðsÞ Probability of a source disintegration of the ith source producing m neutrons Problem-specific
Qðnprob; t;UjsÞ Probability that the neutrons released by sources in a time period between time s and time t gives rises to less than nprob

neutrons in energy range U

Pnprob

n¼0 PSðn; t;UjsÞ

SiðsÞ The disintegration rate of the ith source Problem-specific
tmat The maturity time: the time at which the RSD of the number of neutrons in the system rSðt;UjsÞ

NSðt;UjsÞ
has reached a constant value Variable

vg Velocity of a neutron for group g
c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� mnc2

Egþmnc2

� �2� �s
z Generating function variable Variable

Table B.11
Summary of variables and their meanings (Greek letters).

Variable Description Definition

bðsÞ Total delayed neutron fraction for all precursor groups PI
i¼1biðsÞ

biðsÞ Delayed neutron fraction for precursor group i Problem-specific
�mat Maturity time convergence criteria Problem-specific
ki Delayed neutron decay rate for group i Problem-specific
lciðtjsÞ precursors in precursor group i at time t evaluated due to a single delayed neutron precursor injected at time s in precursor group i hciðci � 1Þi
lfgðtjsÞ First order moment in the number of neutrons in group g at time t due to a single neutron injected at time s in group g hnfgðnfg � 1Þi
�mgðsÞ Mean number of neutrons (prompt and delayed) produced per fission caused by a neutron in energy group g vfg1

1�b

mmax;f The maximum number of neutrons (prompt and delayed) produced in a fission User defined
mmax;si The maximum number of neutrons produced in a disintegration of source i User defined
rSðt;UjsÞ The standard deviation of the number of neutrons at time t caused by sources present since time s. Variable
RagðsÞ Macroscopic absorption cross-section for group g User defined
Rs;g!g0 ðsÞ Macroscopic scattering cross-section from group g to g0 User defined
RsgðsÞ Macroscopic scattering cross-section from group g PG

g0¼1Rs;g!g0 ðtÞ
vfgnðsÞ The nth neutron multiplicity (prompt only) of fission caused by neutrons in energy group g Pmmax;f

m¼n
m!

ðm�iÞ! pfm
vsinðsÞ The nth neutron multiplicity of the ith source Pmmax;si

m¼i
m!

ðm�iÞ! psm
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