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Abstract

The study of light-matter interaction has led to many fundamental discoveries as well as

to the development of new technology. In this thesis, we investigate the interaction between

light and matter in different mesoscopic systems such us Fabry-Perot cavities with fixed and/or

moving mirrors (optomechanical cavities) and superconducting circuits. In the context of op-

tomechanical cavities, we isolate genuine quantum contributions of the interaction between an

optical field and a mechanical mirror and study how to probe nonlinearities of the mechanical

motion. We also investigate dynamical corrections, arising from an initial non-equilibrium con-

figuration of the system, to the Casimir energy induced by the interaction between a quantum

multimode field and the quantum fluctuations of the movable mirror. In a cavity scenario,

we further consider such kind of dynamical corrections for the Casimir-Polder force between

an excited atom and a perfectly conducting mirror, finding new features that can allow for an

easier way to single-out the dynamical Casimir-Polder effect. In the context of superconducting

circuits, we explore the light-matter interaction between microwave fields and artificial atoms

in the ultrastrong coupling regime, where the system displays a high degree of entanglement.

We show how to extract these (otherwise inaccessible) quantum correlations, and how such

correlations can potentially be exploited as a resource for entanglement-based applications. In

all these investigations we provide feasible experimental scenarios where such new effects can

be probed.
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5.3 (a) General pulse sequence for the qubit parameters ωq(t) and g(t) considered
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5.8 Tunability of the qubit. a) Transition frequency of the qubit, ωq, as a function

of the external fluxes in the SQUID-loops in units of the resonator frequency. b)

Normalized coupling constant g/ωr of the qubit to the LC-resonator. Parameters

used to produce this plot are given in the text. . . . . . . . . . . . . . . . . . . . 149
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Introduction

Quantum mechanics is usually associated with the study of microscopic objects such as elemen-

tary particles or atoms, in contrast to classical mechanics, which studies the motion of macro-

scopic objects such us billiard balls or planets. However, recent theoretical and experimental

developments have allowed to extend the domain in which quantum mechanical phenomena

arise and can be probed, thus challenging our common understanding of macroscopicity. These

remarkable achievements have represented a fertile ground for the discovery of new quantum

mechanical effects as well as the study of the interaction between electromagnetic fields and

matter in unexplored limits. On the other hand, the interaction between light and matter,

which has been studied for decades, still plays a prominent role in physics and it is not com-

pletely understood. Microscopic particles such us photons can now be coupled to mesoscopic

objects with dimensions ranging in the micro-nano scale, which can still be considered mascro-

scopic in the sense that they contain a large number of microscopic entities and need to be

described by many degrees of freedom. Understanding how quantum mechanics plays a role in

the dynamics of objects with such dimensions and how these systems interact with quantum

light sources, not only represents a fundamental goal in many areas of physics, but it is also

very relevant for the development of new technologies.

One of the novel platforms where light interacts with mesoscopic objects is optomechanics.

Here, electromagnetic fields interact with micro-nano mechanical degrees of freedom and many

different optomechanical systems can be experimentally realized and studied [1]. Of particular

interest, both from a historic perspective and a theoretical point of view, is the archetypal

Fabry-Perot cavity, which can have fixed or moving mirrors. In this last case the system has

revealed to be so fundamental that now represents a subfield of quantum optics on its own that

we now call cavity optomechanics [2]. In an optomechanical cavity, field and mirror can interact

through the radiation pressure force (given by the photons inside the cavity) or by vacuum

fluctuations. The mechanical motion of the mirror can be described with the laws of classical
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physics or quantum mechanics. In the first case, the movement of the mirror is governed by a

prescribed equation of motion, and interesting phenomena can appear under specific physical

conditions. One example is represented by the dynamical Casimir effect: a production of

photon pairs from the vacuum of the electromagnetic field [3]. This, in turn, paves the way

to fundamental questions related to the concept of vacuum and to the experimental challenges

which need to be faced when aiming to probe this tiny radiation field. In the second case, that

is when we attempt to describe the mirror as a quantum mechanical object, the mechanical

degrees of freedoms need to be included in the overall system dynamics. This means that the

system must follow a quantum dynamics induced by a Hamiltonian, which should describe the

interaction between field and mirror [4]. In this thrilling scenario it is possible to utilize the

optomechanical cavity as a tool to investigate various fundamental physical questions related

to the quantum-to-classical-transition, the interface between quantum mechanics and gravity,

and relevant aspects of the quantum vacuum [2].

In the context of the quantum-to-classical transition, it becomes really interesting to un-

derstand to what extent a mesoscopic object such us the moving mirror in an optomechanical

cavity can behave as a quantum object. The main task in this respect is to find features, if any,

that can be used as signatures of the quantum interaction of the mirror with the light and that

can highlight differences between a classical and quantum description of the mechanical motion.

The first Chapter of this thesis is devoted to such questions. We study the quantum-classical

comparison in an optomechanical cavity by looking at the phase acquired by the electromag-

netic field after its (pulsed or continuous) interaction with the mechanical mirror. We discover

that many of the features, which have been previously considered quantum peculiarities in

many recent proposals, can be actually reproduced within a fully classical description of the

model. At the same time, we isolate peculiarities which cannot be explained classically, thus

providing new ways to identify the quantum regime of an optomechanical cavity.

The ability to manipulate and control physical systems on the micro-nano scale has increased

during the last years. This has attracted the attention of physicists working in different fields,

since such mesoscopic systems offer not only the possibility to explore new aspects of the

light-matter interaction, but also to test fundamental aspects of quantum-mechanics and its

interplay with other theories. Recently, a great attention has been focused on the chance to

probe possible deviations in the quantum mechanical description of the mechanical motion [5].

For example, by assuming a mirror described as a quantum harmonic oscillator, it has been
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suggested an optomechanical experiment which aims to probe a possible modification of the

standard commutator between position and momentum operators of the mechanical oscilla-

tor [6]. In this context, it becomes very relevant to investigate the effect of other possible

modifications in the system dynamics, for example intrinsic anharmonicities. In the second

Chapter, we then consider an optmechanical cavity with an anharmonic mechanical oscillator,

and propose a scheme to probe such anharmonicity. Our protocol offers a very general proce-

dure which can be used to measure other possible nonlinearities in the system dynamics, for

example those which might arise from a different interaction Hamiltonian.

Optomechanical cavities and, more in general, nano- and microelectromechanical systems

are also an attractive platform for the research in Casimir physics [7]. In fact, Casimir and

Casimir-Polder forces are electromagnetic forces (usually attractive) of purely quantum origin

between metallic or dielectric macroscopic objects placed in the vacuum space (even at zero

temperature), which become significant at submicrometre scales. They originate whenever a

field is confined in a specific geometric configuration, which requires imposing boundary con-

ditions on the field, and are ultimately related to a dependence of the vacuum energy from the

geometric configuration [8]. The advance of the experimental achievements in the miniatur-

ization of mechanical objects has led to a new understanding of such electromagnetic forces in

complex microstructured geometries [7]. In the third Chapter of this thesis we start to study

the Casimir energy (or force) in the context of the optomechanical cavity. In particular, start-

ing from a non-equilibrium configuration of the system, we investigate dynamical corrections

to the static Casimir energy between the two mirrors of the cavity, which originate because of

the quantum fluctuations of the mechanical mirror. We then enlarge our study to a different

scenario, where we consider the interaction between an excited atom and a fixed mirror me-

diated by the vacuum of the electromagnetic field. This configuration is actually a standard

scenario in cavity quantum-electro-dynamics (cavity QED), where the light-matter interaction

with two-level atoms coupled to radiation modes is studied. In this case, we explore dynamical

corrections to the static Casimir-Polder force. We show novel features which should allow for

an easier way to single-out and observe the dynamical Casimir-Polder effect.

Over the last decades, in the study of light-matter interaction, major strides have been made

in increasing the strength of interaction (even at the single-photon level), leading to a perpetual

exploration of new physics and applications. The most promising platform in this direction is

probably represented by superconducting circuits [9]. In this field, one can study interactions
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between one (or many) artificial two-level atoms or qubits (represented by charge or flux circuits

built according to certain specifications) with radiation fields (usually LC resonators). Because

of the very strong analogy between the physics of superconducting circuits and cavity QED,

the area of research studying light-matter interactions in such systems is now called circuit

QED. Here, it is possible to reach the regime where these artificial atoms can be coupled

ultrastrongly to microwave resonator modes and the features of the light-matter interaction

drastically change [10, 11]. The last Chapter of this thesis analyzes a multi-qubit circuit QED

system in the regime where the qubit-photon coupling dominates over the system’s bare energy

scales. We propose a feasible scheme that can be used as a probe for otherwise non-accessible

correlations in strongly-coupled circuit QED systems and that clearly shows how such quantum

correlations can potentially be exploited as a resource for other entanglement-based applications

and quantum information-processing.

In Fig. 1 we provide a pictorial overview of this thesis and how it may be read. Central to all

our investigations is indeed the study of the light-matter interaction. Chapters 2 and 3 consider

an optomechanical cavity where a mechanical mirror interacts with an optical field, focusing

our attention on the classical-quantum comparison of the system dynamics and on the study

of mechanical nonlinearities. In Chapter 4 we move to a multimode optomechanical scenario,

which naturally offers the possibility to explore modifications to the Casimir energy in a cavity.

In the same Chapter we also enlarge our study to the dynamical Casimir-Polder force between

an excited atom and a multimode electromagnetic field in the presence of a perfectly reflecting

mirror (a typical scenario of cavity QED). Finally, Chapter 5 is dedicated to the study of a

circuit QED system, where it is possible to achieve ultrastrong interactions between artificial

atoms or qubits (represented by charge or flux circuits) and microwave fields.
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Figure 1: Pictorial overview of this thesis and how it may be read. The lines with arrows

connecting the four large boxes (describing the main topics of the work) together with the

scale of the colors would like to indicate a recommended route for this thesis. Of course, all

these fields of research are actually connected one with the other. For example superconducting

circuits have actually allowed to detect the dynamical Casimir effect [12]. The figures on the

left and right, inside the “Cavity Optomechanics” box, are imported from Refs. [13] and [14].

They respectively represent a photograph of a SiN membrane (1mm × 1mm × 50nm) on

a silicon chip used within an optomechanical cavity and a scanning electron micrograph of

a circular (high-reflective) Bragg mirror used as the end mirror of a Fabry-Perot cavity. In

the panel “Casimir Physics” the figure on the left is taken from Ref. [15] and represents a

scanning electron micrograph of a micromachined torsional device with a particular close-up

to the torsional rods anchored to a substrate. This device has been used to measure the static

Casimir force with high-precision. While, in the box “Circuit QED” the two figures on the

left and right are imported from Refs. [9, 16] and represent a micrograph of a Cooper-pair box

(SCB) and of a three-junction flux qubit, respectively.
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Chapter 1

Background

1.1 Overview

This Chapter provides all the background information needed for the following chapters of this

thesis, and it is organized as follows. There are three main Sections, each of them describing

one of the main topics treated in this work: “Cavity Optomechanics”, “Casimir Physics” and

“Circuit QED”. In each of these Sections we give a brief introduction to the field mostly in

relation to our interests, present the main ingredients that will constitute the starting points

for our investigations, and finally provide some basic instruments that will be used in the

corresponding chapters.

In the first Section, we present the general Hamiltonian formulation of the optomechanical

interaction, which considers a multimode field inside a cavity with a mobile ending mirror.

From this result we derive the Hamiltonian for the case of a single mode field, which is the

optomechanical interaction commonly used in quantum optics applications and current exper-

iments. For this last case, we also describe the three main interaction regimes in which an

optomechanical cavity can operate. Finally, the last two paragraphs deal with the main detec-

tion schemes used to measure the optical field in the cavity and some basic tools of quantum

estimation theory.

In the second Section, we start by studying the interaction between an atom and an elec-

tromagnetic field, which is at the heart of all the investigations in cavity QED and, more in

particular, of many results in the field of Casimir and Casimir-Polder forces. In the next two

paragraphs we then discuss two basic examples of Casimir Physics: the Casimir force between

two fixed mirrors in the vacuum and the Casimir-Polder force between an atom and a fixed
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mirror, both mediated by the electromagnetic field. These are basic scenarios in cavity QED.

To derive such forces one could calculate the net interaction between all the atoms in the spe-

cific configuration. However, this procedure is quite demanding in terms of calculation. For

this reason, both the forces will be derived by using a different approach: the Casimir force is

calculated through the standard renormalization procedure of a quantum field in presence of

boundaries, while the atom-wall Casimir-Polder force by exploiting the interaction between the

atom and the electromagnetic field with a boundary condition on the wall’s position. These

two paragraphs will be relevant for the first and second part of Chapter 4, respectively.

In the third Section, we describe the classical Hamiltonian formulation of the dynamics

of electrical circuits and show the standard procedure of quantization. We then present the

basic circuits which constitute the fundamental building-elements of every more complex circuit

system. In the language of circuit QED, the quantized quantum LC resonator models an

electromagnetic microwave field, while charge, transmon or flux circuits (qubits) artificial atoms.

In the final Chapter of this thesis we will couple an array of flux qubits to the same LC resonator,

and study the systems dynamics in the ultrastrong coupling regime. The resulting quantum

Hamiltonian will be be formed by a Dicke-like term (usual interaction between a single mode

electromagntic field and an atom) plus some interactions between qubits (similar to the dipole-

dipole interactions between atoms).

1.2 Cavity Optomechanics

1.2.1 Introduction

The growing field of quantum optomechanics studies the coupling of optical fields with nano-

or micro-mechanical degrees of freedom. It exploits the radiation pressure force, applied by the

electromagnetic field on any object, to create a coupling between light and matter or a mutual

interaction between mechanical objects mediated by the electromagnetic field. An optomechan-

ical coupling can be engineered in different platforms, some examples are Fabry-Perot cavities

(relevant to this work), suspended mirrors or membranes, optical microspheres, microtoroids,

photonic crystals, cold atoms and even micro-fabricated superconducting resonators [1]. In Fig.

1.1 we provide scanning electron micrographs of some of these mesoscopic systems.

Thanks to advances in materials science and nano-fabrication, in particular the rise of nano-

and microelectromechanical systems (MEMS), the ability to miniaturize mechanical elements
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has considerably increased during the last years. The mass of these mechanical objects now

ranges from 10−6 to 10−22 Kg (and even 1g) [2]. This, combined to the possibility of cooling

these systems to temperatures of the order of a few millidegrees Kelvin (almost to their ground

state of motion), provides a new arena in which to explore the boundary between quantum and

classical mechanics and fundamental questions interfacing different areas of physics and paves

the way to technological applications. Also, the increasing level of control, manipulation and

detection of the mechanical motion at the quantum regime by using light, the great flexibility

in design and the potential to realize on-chip architectures could boost applications in quantum

information processing, where optomechanical systems could be used as light-matter interfaces

to transfer and convert information. As an example, it has been shown as strong optomechanical

interactions in a multimode setup can be exploited to generate single photons and to perform

controlled gate operations between photonic or mechanical qubits [17].

Another striking virtue of optomechanical systems is that they can be naturally hybridized

to other (microscopic) quantum systems such as trapped atoms or ions, solid-state spin qubits,

or superconducting devices. It has then been suggested that hybrid mechanical systems can

enable new approaches to the quantum control of mechanical objects, precision sensing, and

quantum information processing [18]. Also, they might provide suitable scenarios to explore the

strong coupling regime of light and matter. In the next future, with more ambition, mechanical

elements might be functionalized with electrodes, magnets, or mirrors and serve as universal

transducers (intermediaries) between otherwise incompatible systems [19].

A part from all the technological applications, all this moves the research towards funda-

mental tests of the quantum theory for objects whose size and mass was previously unaccessible.

In fact, optomechanical systems have been proposed as a table-top platform to also explore the

boundary between quantum mechanics and gravity at low energies, in particular gravitation-

ally induced decoherence mechanisms [20, 21] and even possible modifications to the standard

quantum rules (for example modifications of the commutation relations) [5, 6].

On the other hand, optomechanical systems and more in general micro/nano -mechanical

devices, have a natural potential to probe extremely small forces often with spatial resolution

at atomic scales [19]. A remarkable example is given by recent high precision measurements

of the Casimir force in different microstructured environments. Such quantum forces can be

then used to control the motion of mechanical components of a system to prevent unwanted

interactions such as ‘stiction’ between moving parts [7, 22].
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Figure 1.1: Optomechanical systems widely range in mass and size. This figure from Ref. [1]

shows some of these devises. From left to right: a suspended 1g mirror which is part of a Fabry-

Perot cavity [23], a suspended micro-mirror on a silicon resonator [24], a suspended 50nm thick

dielectric membrane inside a cavity [13], a micro-mechanical resonator which is attached to

µm-scale mirror [14], a silica micro-toroid that couples optical whispering-gallery modes to

radial mechanical modes [25], and a nano-mechanical oscillator coupled to a superconducting

microwave cavity [26].

In this Section we focus our attention on cavity optomechanics, whose archetypal system

consists of a Fabry-Perot cavity formed by two mirrors, one fixed and and the other free to

move, though subjected to an external potential. In fact, we recall that historically the first

well-understood optomechanical systems were the early gravitational-wave detectors developed

in the late 1970s [27, 28]. Cavity optomechanics now represents a promising and prolific field

on its own [2], where the radiation pressure force, given by the photons of a single- or multi-

mode field inside the cavity, has been employed for many purposes.

Among them we mention: the cooling of the mechanical oscillator, which has provided

the chance to explore quantum interactions at very low temperatures [29], the investigation of

standard quantum limits for position detection for quantum metrology and sensing applications,

which have been essential for gravitational wave detectors such us LIGO or VIRGO [19, 28];

and, the access to strong quantum Kerr nonlinearities enhanced by the optomechanical coupling

[30,31], which realize nonclassical and entangled states of light and mechanics. At the heart of

all these applications, one can find the most relevant advantage of cavity optomechanics, that is

the readout of the mechanical motion through the light field transmitted through (or reflected

from) the cavity, which gives the possibility to measure the displacement of a mechanical

resonator via the transmitted or reflected optical phase shift [2].

1.2.2 Hamiltonian formulation of the optomechanical interaction

Here we briefly follow a very general Hamiltonian formulation of the optomechanical interaction,

which holds in the non-relativistic regime [4]. Consider a scalar field A(x, t) in a cavity formed
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by two perfectly reflecting mirrors: one fixed at the position x = 0, while the other of mass M

free to move within a potential V (q) around the equilibrium position x = L. The motion of the

movable mirror is also influenced by the radiation pressure force of the field inside the cavity.

A(x, t) is defined in the region 0 ≤ x ≤ q(t), and its dynamics is described by (c = 1)

∂2A(x, t)

∂x2
=
∂2A(x, t)

∂t2
, (1.1)

where we impose Dirichlet boundary conditions: A(0, t) = A(q(t), t) = 0. We highlight that

A(x, t) can also be the potential vector of a one-dimensional electromagnetic field. On the other

hand, the mirror equation of motion (in the non-relativistic regime) is

Mq̈ = −∂V (q)

∂q
+

1

2

(
∂A(x, t)

∂x

)2

x=q(t)

. (1.2)

The second term in (1.2) is the radiation pressure force which can be evaluated by com-

puting the xx component of the energy momentum tensor of the field in the mirror co-

moving frame. Let us now define a set of (instantaneous) generalized coordinates Qk ≡√
2/q(t)

∫ q(t)
0

dxA(x, t) sin[kπx/q(t)] (with k is a positive integer), which decompose the field

modes in terms of basic functions (usually called mode functions) determined by the instanta-

neous position of the wall: A(x, t) =
∑∞

k=1 Qk

√
2/q(t) sin[kπx/q(t)]. By using this expansion

and the orthogonality of the mode functions, Eqs. (1.1) and (1.2) are equivalent to

Q̈k = −ω2
kQk + 2

q̇

q

∑
j

gkjQ̇j +
q̈q − q̇2

q2

∑
j

gkjQj +
q̇2

q2

∑
jl

gjkgjlQl,

Mq̈ = −∂V (q)

∂q
+

1

q

∑
kj

(−1)k+jωkωjQkQj,

(1.3)

in which ωk(q) = kπ/q and gkj = (−1)k+j2kj/(j2 − k2) for k 6= j, and vanishes for k = j § .

The dynamics of system in the non-relativistic limit is completely described by the equations

(1.3). We remark that following this very general approach the mechanical degrees of freedom

of the mirror have been included in the overall systems dynamics. Indeed, we can construct

the Lagrangian of the system

L(q, q̇, Qk, Q̇k) =
1

2

∑
k

[
Q̇2
k − ω2

k(q)Q
2
k

]
+

1

2
Mq̇2 − V (q)

− q̇
q

∑
jk

gkjQ̇kQj +
q̇2

2q2

∑
jkl

gkjgklQlQj,
(1.4)

§gkj = q
∫ q

0
dxϕj

∂ϕk
∂q with ϕ =

√
2
q sin kπx

q
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which, in the non-relativistic limit for the motion of the wall, gives Euler-Lagrange equa-

tions equivalent to (1.3). The associated Hamiltonian is H(Pk, Qj, p, q) ≡ pq̇ +
∑

k PkQ̇k −

L(q, q̇, Qk, Q̇k), where Pk = Q̇k − (q̇/q)
∑

j gkjQj and p = Mq̇− (1/q)
∑

jk gkjPkQj are the con-

jugated momenta to Qk and q, respectively. Note that the canonic momentum of the mirror p

is not equal to the (mechanical) momentum related to the kinetic energy. The explicit form of

the Hamiltonian is thusH = (1/2M)
(
p+ (1/q)

∑
j,k gkjPkQj

)2

+V (q)+(1/2)
∑

k [P 2
k + ω2

kQ
2
k],

which represents the actual total energy of the system H = Hf + Mq̇2/2 + V (q), where Hf is

the total field energy defined as Hf = (1/2)
∫ q(t)

0
dx
[
(∂A(x, t)/∂t)2 + (∂A(x, t)/∂x)2].

Let us now proceed to quantize the field-mirror model following the canonical procedure.

We promote the dynamical variables p, q, Pk, Qk to operators subject to the commutation rules

[q,Qj] = [q, Pk] = [p,Qj] = [p, Pk] = 0, [q, p] = i~ and [Qj, Pk] = iδjk~. To specify the

quantum state of the system, we define creation and annihilation operators for each mode of

the cavity as ak(q) =
√

1/2~ωk(q) [ωk(q)Qk + iPk], a
†
k(q) =

√
1/2~ωk(q) [ωk(q)Qk − iPk], which

depend on the cavity length. This indicates that there is a different set of Fock states for each

position taken by the moving mirror. Substituting these expressions into the hamiltonian H

and following the usual renormalization procedure to treat the infinite zero point energy of the

field, we finally get the Hamiltonian which describes the quantum interaction between field and

mirror:

H =
(p+ Γ)2

2M
+ Ṽ (q) + ~

∑
k

ωk(q)a
†
k(q)ak(q), (1.5)

where

Γ =
i~
2q

∑
k,j

gkj

[
k

j

]1/2 [
a†k(q)a

†
j(q)− ak(q)aj(q) + a†k(q)aj(q)− a

†
j(q)ak(q)

]
, (1.6)

and Ṽ (q) = V (q)−ECas(d) is now the new potential which includes the Casimir energy ECas =

~cπ/(24q) for a one-dimensional cavity. This energy originates after subtracting two infinite

quantities: the zero point energy fluctuations of the scalar field inside the cavity and the ones

in free space (without the presence of boundary conditions). Note that, in this renormalization

procedure, we have actually considered the field outside the cavity to compensate the infinite

energy variation of the zero point fluctuations inside the cavity. Therefore, to have a consistent

theory we should also include the dynamical degrees of freedom of the outside field. Hamiltonian

(1.5) results then an approximation, since we are only taking into account the static part of

the interaction between the mirror and the outside field, which is enclosed in the Casimir

energy. The dynamical contribution of such interaction, which should describe the changes
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of the outside field, has been neglected. In the majority of physical cases, this represents a

good approximation, since we commonly have a dominant field inside the cavity. A simple

case is for example represented by a cavity containing (initially) a considerable number of

photons, so that the dynamical effects of the outside field become negligible. We, however,

remark that if the movable mirror is perfectly reflective on both sides, we could generalize the

above formulation to obtain a full Hamiltonian including the outside field. We will consider

this delicate aspect in Chapter 4, where we will discuss dynamical corrections to the Casimir

energy in an optomechanical cavity. While, in the subsequent Section of this Chapter we will

clarify the derivation of the Casimir force between the two walls in the more general case of a

three-dimensional cavity.

As we can see from Eqs. (1.5) and (1.6) the resulting interaction is highly nonlinear. How-

ever, in this form, such nonlinearity is difficult to exploit. On the other hand, in the majority

of cases, we can consider that the radiation pressure force acts as a very small perturbation on

the mechanical motion around its equilibrium position x = L, such that the mirror position

x = q − L is much smaller than L. In this scenario (1.5) can be linearized. We can thus write

Γ ≈ Γ0 = Γ|q=L, ak(q) ≈ ak − (x/2L)a†k, ωk(q) ≈ ωk (1− x/L), where now ak and ωk (without

an explicit dependence on q) are the annihilation operator and the frequency associated with

the equilibrium position of the mirror, respectively. For the sake of simplicity, we also consider

the moving mirror bounded by a harmonic potential of frequency ω0 around its equilibrium po-

sition, and introduce annihilation and creation operators b† and b such that the mirror position

and momentum are:

x =

√
~

2Mω0

(b† + b),

p =

√
~Mω0

2
i(b† − b).

(1.7)

Using all these expressions and applying the unitary transformation T †HT → H with T =

exp (ixΓ0/~), we finally obtain

H ≈ ~ω0b
†b+ ~

∑
k

ωka
†
kak − xF − ECas, (1.8)

where

F =
~

2L

∑
kj

(−1)k+j√ωkωj
(
akaj + a†ka

†
j + a†kaj + a†jak

)
(1.9)

indicates the normally ordered force due to the radiation pressure. The result of the unitary

transformation T is to transform the canonical momentum into the kinetic one and to translate
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this change into an interaction between field and mirror and an interaction between different

field modes due to the motion of the wall. Also, Eq. (1.9) results linearized in the form

xF , as the well-known dipole interaction between atom and field. In fact, this transformation

closely recalls the Power-Zienau-Wolley transformation used in cavity QED (we will see this

transformation in the subsequent Section, paragraph 1.3.2).

It is worth mentioning that the Hamiltonian (1.8) is only valid in the non-relativistic regime

for the mirror dynamics and, therefore, does not describe physical phenomena that involve

arbitrary high field frequencies. To be consistent with such approximation, we need to introduce

a cutoff frequency ωcut such that ~ωcut is much smaller than the rest energy of the wall Mc2.

Moreover, the use of a cutoff frequency is fully justified also for another reason: any real mirror

is characterized by a plasma frequency and for field frequencies larger than the cutoff, the

mirror becomes transparent to the radiation field. We then consider a cutoff frequency equal

to the plasma frequency of the mirror.

In conclusion, Hamiltonian (1.8) describes the effective non-relativistic interaction between

a field inside a one dimensional cavity and a perfect reflecting moving mechanical mirror. The

linearization procedure has allowed us to accurately describe the coupling strength, thus elimi-

nating the effects of this interaction on the geometry of the system: the volume of quantization

is fixed at the equilibrium position of the wall. This fact has consequences on local properties

of the field that can derive from the model. For example, the field must satisfy the particular

boundary conditions at the location of the mirror, but since the mirror is free to move, these

conditions should be distributed around the region swept by the mirror motion [32, 33]. This

effect is not described by (1.8).

1.2.3 Single mode Hamiltonian

Let us now focus on the simplest model in cavity optomechanics, which, on the other hand, has

been successfully used to describe most of current experiments [2]. We restrict our attention to

one of the many optical modes within the cavity, which, from an experimental point of view,

means to consider the one closest to resonance with a driving laser entering into the cavity.

More specifically, we consider all physical situations where the cavity field is dominated by a

single mode of frequency ωf and the motion of the mirror is adiabatically slow, which implies

that the frequency of the moving mirror has to be much smaller than the frequency spacing of

neighboring cavity modes. Under these assumptions, we can ignore the scattering of photons
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between different field modes [4,34]. In fact, more generally this optomechanical setup has also

been considered for discussions of the dynamical Casimir effect (DCE), where pairs of cavity

photons are created by a non-adiabatic mechanical modulation of the boundaries [3]. However,

by assuming an adiabatic motion for the mirror, the mechanical frequencies are too small for

the DCE to play a role. As a result, the interaction term in Eq. (1.8) can be approximated as

xF ≈ x
~ωf

L
a†a, (1.10)

such that the full single-mode Hamiltonian reads

H = ~ωfa
†a+ ~ω0b

†b− g0a
†a(b† + b), (1.11)

where the coupling strength is defined as

g0 =
ωf

L
x0 =

ωf

L

√
~

2Mω0

, (1.12)

with x0 the zero-point fluctuation amplitude of the mechanical vacuum state. We highlight

that g0 is a fundamental parameter in cavity-optomechanics, since it quantifies the interaction

between a single phonon and a single photon [2].

It is possible to show that the time evolution operator U = e−iHt/~ associated with Hamil-

tonian (1.11) can be written as

U(t) = e−iωfa
†ateik

2(a†a)2(ω0t−sin(ω0t))eka
†a(ηb†−η∗b)e−ib

†bω0t, (1.13)

where k = g0/ω0 is the ratio between the single photon optomechanical coupling rate and the

mechanical resonance frequency and η = (1 − e−iω0t). Equation (1.13) shows that the effect

of the nonlinear interaction ∝ a†a(b† + b) is translated into a self Kerr nonlinearity [35] of the

field ∝ (a†a)2 (in the second exponential). To look closer to the dynamics induced by (1.13),

we consider the system initially prepared in the state |Ψ(0)〉 = |α〉f ⊗ |γ〉m where |α〉f and

|γ = γR + iγI〉m are coherent states for field and mirror ‡, respectively. In a frame rotating with

the optical field, the resulting time evolution of the state is given by [30]

|Ψ(t)〉 = e−
|α|2

2

∞∑
n=0

αn√
n!
eik

2n2(ω0t−sinω0t)eikn[γR sinω0t+γI(1−cosω0t)]|n〉f ⊗ |Γn(t)〉m , (1.14)

where |n〉f is a Fock state for the cavity field and |Γn(t)〉m = |γe−iω0t + kn(1− e−iω0t)〉m a dis-

placed coherent state of the mechanical oscillator. As we can see from Eq. (1.14), after t = 0,

‡We remind that a coherent state in the Fock basis |n〉 is written as |φ〉 = e−
|φ|2
2

∑∞
n=0

φn√
n!
|n〉

31



field and mirror result correlated, i.e. in an entangled state. During the evolution the state accu-

mulates a phase and the mechanical oscillator is found in a mixture of coherent states. However

when the time is equal to integer multiples of the period of the mechanical motion, t = `τ0

with τ0 = 2π/ω0 and ` = 1, 2, . . ., field and oscillator completely decouple. Moreover, this light-

matter decoupling does not depend on the initial mechanical state, as Eq. (1.13) demonstrates.

In fact, at t = `τ0, the unitary operator reduces to U = e−i2π`(ωf/ω0)a†aei2π`k
2(a†a)2

e−i2π`b
†b. This

feature of the system is at the heart of many proposals and it will also be a key point for our

investigations in Chapters 2 and 3.

Finally, to give a more concrete idea on the system, we provide the range of variation of the

experimental parameters already achieved for the optomechanical cavity analyzed above. We

have: ω0/2π = [103, 109]Hz, M = [1, 10−22]Kg and g0/2π = [10−3, 105]Hz. Given these values

the length of the cavity usually ranges in the interval [10−2, 10−5]m [2].

1.2.4 Temporal interaction regimes

We now briefly present the main temporal interaction regimes in optomechanics: the continu-

ous, the long-pulsed and the pulsed [2,36]. Such regimes can be differentiated by comparing the

interaction time τi with the time of the mechanical evolution τ0. Specifically, when the interac-

tion time is much larger than the mechanical evolution time τi � τ0, we are in the continuous

regime, where, in principle, the interaction between optical field and mirror can occur for many

mechanical periods, and a steady state can be analyzed. In this case the evolution of the system

is described by the unitary operator in Eq. (1.13). To realize such a scenario, we experimen-

tally require the decay rate of the cavity κ < ω0, which means demanding a good cavity with

negligible photon losses. Decreasing the interaction time we approach the long-pulsed regime

τi > τ0, where again the optomechanical interaction proceeds for many mechanical periods, so

that the motion of the mirror is always able to modulate the field dynamics (optical sidebands

are generated). Even in this case we demand the decay rate of the cavity to be lower than the

mechanical frequency. In contrast, in the pulsed regime the interaction between mirror and

optical field is much faster than a mechanical period τi � τ0 and the position of the mirror

is essentially fixed during the interaction time. In this regime, the optical field is not modu-

lated by the mechanics (no optical sidebands are produced) and the evolution of the system is

described by the unitary operator [36]:

U = eiλa
†a(b†+b), where λ =

g0

κ
(1.15)
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is the rescaled (dimensionless) coupling strength. (Note that 1/κ is the photon lifetime, i.e.

the time spent by the photon inside the cavity before leaving it). Contrarily to the previous

regimes, in this last case, we require the decay rate of the cavity to be much larger than the

mechanical frequency κ� ω0, which means to consider a bad cavity, so that the light can enter

and escape the cavity after the interaction time. In Chapter 2 and 3 of this thesis we will focus

our attention on the continuous and the pulsed regime.

1.2.5 Detection schemes

To address many questions in cavity optomechanics, one needs to extrapolate information on the

optical field after its interaction with the mechanical oscillator both in the cases of a continuous

or a pulsed interaction. This will be very relevant in our investigations developed in Chapters 2

and 3. Here, we analyse the two most common detection schemes: homodyne and heterodyne.

Homodyne detection

In order to extract information about the phase of a field, one needs to rely on an interference

scheme where the field can be mixed with a reference beam, which is usually called local oscil-

lator (LO). When this reference has the same frequency of the field we want to measure, then

the method is called homodyne detection [37]. Such mixing is realized by using a generalised

beam-splitter BS with phase ϕ as shown in Fig. 1.2(a). (Note that a generalized beam-splitter

is obtained by using a standard beam-splitter sandwiched between two retarding plates induc-

ing opposite phase shifts −ϕ and ϕ on the input mode.) The input field in mode a is described

by the density operator ρs, while the LO is in the mode b and initially prepared in a coherent

state |β〉 = |β0e
iφ〉. The intensities of the reflected LO beam and the transmitted signal are

detected by counting the mean number of photons na in the perfect detector Da. While, at the

same time, the transmitted LO beam and the reflected signal are received by another detector

Db, which counts the mean number of photons nb. We use the Heisenberg representation where

field operators are transformed, while field states remain unchanged. Considering the following

transformation for the output modes of a beam splitter

a′ = cos(θ/2)a+ ieiϕ sin(θ/2)b,

b′ = ie−iϕ sin(θ/2)a+ cos(θ/2)b,
(1.16)
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and setting θ = π/2 (balanced homodyne detection) and ϕ = π/2, we obtain

nab =
1

2
Tr[ρs |β〉 〈β| (a† ∓ b†)(a∓ b)]

=
1

2
[〈β| b†b |β〉+ Tr(ρsa

†a)]∓ 1

2
Tr[ρs |β〉 〈β| (a†b+ b†a)].

(1.17)

By subtracting the outputs measured in Da and Db, we then find

na − nb = β0Tr[ρs(a
†eiφ + ae−iφ)] =

√
2β0 〈Xφ〉s , (1.18)

which provides a measure for the expectation value (in the field state described by ρs) of the

signal field quadrature

Xφ
f =

1√
2

(ae−iφ + a†eiφ), (1.19)

in phase with the LO. We however remark that the difference in phase between LO and input

field is a consequence of our choice for ϕ. Indeed, ϕ = 0 gives a homodyne detection of the

quadrature π/2-out-of-phase with LO. Importantly, by varying the phase of the LO, one can

obtain a measure for the expectation value of any field quadrature.

This detection scheme has the ability to provide much more information on the input field.

By considering an ensemble of identically prepared fields or a single realization where the

measurement is performed many times, the distribution of the difference in the photocounts

between the two output channels naturally reconstructs the probability distribution of the field

quadrature around its average value. But this is true only when the LO amplitude is very large,

such that our reference is essentially a classical field with a negligible amount of fluctuations [38].

Heterodyne detection

While homodyne detection is a projection over quadrature operators, heterodyne corresponds

to a projection over coherent states. Here we show how we can achieve this measurement by

making use of a (balance) double-homodyne scheme [39].

As depicted in Fig. 1.2(b) a quantum state ρs in mode a is mixed with the vacuum state

of an ancillary system in mode b at a balanced beam splitter. Similarly, a′ and b′ indicate the

bosonic operators for the modes in the transmitted and reflected arms. After the interaction

of the two input modes at the beam splitter, we can jointly measure the quadrature operators

qa′ = a′ + a′† = cos(θ/2)qa − sin(θ/2)qb,

pb′ = −i(b′ − b′†) = sin(θ/2)pa + cos(θ/2)pb,
(1.20)
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Figure 1.2: a) Scheme of the homodyne detection. An unknown field described by the density

operator ρs (mode a) is mixed with a coherent state (the LO, given by mode b) at a beam splitter.

The output modes a′ and b′ are measured in the two detectors Da and Db. b) Measurement

scheme for a general-dyne detection: the quantum state ρs (mode a) is coupled to the vacuum

(mode b) at a beam splitter. On the output modes a′ and b′, homodyne measurements of the

quadratures qa′ and pb′ are performed.

since [qb′ , pb′ ] = 0. Considering a balanced beam-splitter, i.e. θ = π/2, the joint measurement

of qa′ and pb′ results in the measurement of the non hermitian operator Z = qa′ + ipb′ = a− b†,

which has eigenstates of this form

|z〉〉 = D(z) |1〉〉, (1.21)

with D(z) = eza
†−z∗a a displacement operator and |1〉〉 =

∑
n |n〉 |n〉 an unnormalized maximally

entangled state (superposition of correlated Fock states |n〉). It is possible to show that the

probability of obtaining the result z = z1 + iz2 is

p(z) = Trab[ρs ⊗ |0〉b 〈0| |z〉〉〈〈z|] = Tra[ρs |z〉 〈z|], (1.22)

where |z〉 = b〈0|z〉〉 is a coherent state such that a |z〉 = z |z〉. Therefore, as previously an-

ticipated, a balance double-homodyne detection corresponds to a projection over the coherent

states |z〉 = D(z) |0〉, which is exactly what we aim to obtain in a heterodyne detection scheme.

1.2.6 Estimation theory tools

We now review some basic tools of quantum estimation theory which will be useful in the

following part of the thesis (Chapter 3). We are interested in providing the ultimate quantum
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bounds on the estimation precision of a parameter, and in comparing them with the ones that

can be obtained in feasible measurement schemes such us homodyne and hetorodyne detections.

Estimation theory is a branch of statistics whose aim is to estimate the values of parameters

based on measured empirical data with a random component. The solution of a general esti-

mation problem is to find an estimator θ̂ = θ̂(x1, x2, ...) from a set X of measurement outcomes

into the space of parameters, which attempts to approximate the unknown parameters using

the measurements. The common approach in estimation theory is generally the probabilistic

one, i.e. the measured data are assumed random with probability distribution dependent on

the parameters of interest. In classical estimation theory we say that an estimator is optimal

when it saturates the Cramer-Rao inequality [40]

V(θ) ≥ 1

MFθ
, (1.23)

where V(θ) = Eθ[(θ̂({x}) − θ)2] is the mean square error, M is the number of measurements

and Fθ is the Fisher Information (FI), defined as

Fθ =

∫
dx p(x|θ)

(
∂ ln p(x|θ)

∂θ

)2

=

∫
dx

1

p(x|θ)

(
∂p(x|θ)
∂θ

)2

, (1.24)

with p(x|θ) the conditional probability of obtaining x given the value θ for the parameter.

Equation (1.23) provides a lower bound on the mean square error V(θ) for any estimator of the

parameter θ. In all the common situations, we deal with unbiased estimators, i.e. estimators

whose mean square error is equal to the variance Var(θ) = Eθ[θ̂
2]− Eθ[θ̂]2.

When switching to quantum mechanics all the estimation problems can be tackled by con-

sidering a family of quantum states ρθ defined on a Hilbert space and labelled by a parameter

θ, which, in general, does not correspond to a quantum observable. The mapping θ → ρθ gives

the coordinate system. The scope is to estimate the value of θ by measuring some observable

on ρθ. We then naturally define a quantum estimator as a selfadjoint operator Oθ for θ, which

describes a quantum measurement followed by a classical data processing on the outcomes.

This means that the parameter estimation is an indirect procedure involving an additional

uncertainty for the measured value which, even in optimal conditions, cannot be avoided. Op-

timizing this procedure of inference by minimizing this additional uncertainty, represents the

ultimate goal of quantum estimation theory.

More specifically, let us consider the elements of a positive measure (POVM) Πx, such that∫
dxΠx = I and p(x|θ) = Tr[Πxρθ] with ρθ the density operator parametrized by the quantity
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we want to estimate. We also define the symmetric logarithmic derivative Lθ: a self-adjoint

operator given by the equation (Lθρθ + ρθLθ)/2 = ∂ρθ/∂θ, such that ∂θp(x|θ) = Tr[∂θρθΠx] =

<(Tr[ρθΠxLθ]). Using these expressions the FI becomes

Fθ =

∫
dx
<(Tr[ρθΠxLθ])

2

Tr[ρθΠx]
. (1.25)

For any given POVM (a quantum measurement), Eqs. (1.24) and (1.25) settle the classical

bound on the precision reached by a proper data processing. However, the evaluation of the

ultimate bounds follow only when we maximize the Fisher information over all the quantum

measurements. One can show that the FI of any quantum measurement can be bounded by

the Quantum Fisher Information (QFI)

Fθ ≤ Qθ = Tr[ρθL
2
θ], (1.26)

which brings to the quantum version of the Cramér-Rao bound

V(θ) ≥ 1

MQθ
(1.27)

for the variance of any estimator. Equation (1.27) is independent of the geometry of the

quantum statistical model and on the measurement, thus providing an ultimate bound for

the estimation of the parameter. We then say that a POVM represents an optimal quantum

measurement for the estimation of θ when its FI approaches the QFI. In other words, for

measurements saturating Eq. (1.26).

In the specific case of a family of pure states ρθ = |ψθ〉 〈ψθ|, we have ∂θρθ = (∂θρθ)ρθ + ρθ(∂θρθ)

and Lθ = 2∂θρθ = |ψθ〉 〈∂θψθ|+ |∂θψθ〉 〈ψθ|, and the QFI assumes the following simple form

Qθ = 4
(
〈∂θψθ|∂θψθ〉 − |〈∂θψθ|ψθ〉|2

)
. (1.28)

When assessing the performance of an estimator, which aims to measure a small parameter,

and then the overall estimability of a parameter, another important figure of merit is the signal-

to-noise ratio [40]. Indeed, while a large signal can be easily estimated, a quantity with a value

very close to zero can be inferred only when the corresponding estimator results very precise.

This means that we must demand the variance of the estimator to be small, since the relevant

figure of merit is the scaling of the variance with the mean value rather than its absolute

value. The signal-to-noise ratio will then compare the level of a desired signal to the level of

background noise and (for a single measurement) can be defined as

Rθ =
θ2

Var(θ)
. (1.29)
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The larger is this quantity, the better is the estimator. By using now the Cramér-Rao bound

theorem in Eq. (1.27), we can find the following upper bound for the signal-to-noise ratio of

any estimator

Rθ ≤ Q̄θ ≡ θ2MQθ, (1.30)

which, on the other hand, defines the quantum signal-to-noise ratio. Quantum-mechanically,

we then state that a parameter θ can be efficiently estimated if the correspondent Q̄θ is large.

1.3 Casimir Physics

1.3.1 Introduction

In classical physics, for vacuum we intend a region of space where we have removed all matter

and radiation, thus completely empty. In quantum physics, on the other hand, the vacuum is

quite far from being empty. It is full of quantum fluctuations: virtual particles which continu-

ously appear and disappear violating the energy conservation law and that cannot be observed

directly in an experiment [8]. However, once created it is natural to suppose they follow the

same physical laws of real particles. One can then make predictions on the effects originated

by their interaction with microscopic or mesoscopic objects. For example, virtual photons

are nothing more than electromagnetic waves. We then expect that when they impinge on a

perfectly conducting wall they must satisfy a boundary condition. As a result, if we put two

infinite perfectly conducting walls in the vacuum, then we expect that the number of virtual

particles outside the walls will be higher than inside, where, on the other hand, only photons

with specific wavelengths can exist. Although the random creation of the particles both outside

and inside is continuous, at any time, there is a net imbalance between the inside and outside

photons, which originates an attractive force between the walls. The walls have then disturbed

the quantum vacuum allowing for the observation of a quantum macroscopic effect: the Casimir

force [41].

Let us now consider a different physical scenario: two atoms (or molecules) with the same

amount of negative and positive charges in the quantum vacuum. Classical physics tells us

that the force between the two atoms is zero. Quantum mechanics, however, gives a different

answer. The Heisenberg principle says that the motion of the charges has to be random.

Instantaneously, positive and negative charges in each atom are separated, and this, in turn,
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influences the charge distribution of the other atom. These continuous rearrangements of charge

lead to a net imbalance between repulsive and attractive forces, which gives rise to an attractive

force between the atoms not classically predicted. This is called van der Waals force [8, 42].

Have the aforementioned forces some connections? They actually seem very different in

nature. One is originated from an imbalance of the vacuum fluctuations of the electromagnetic

field because of the boundary conditions imposed on the walls, while, the other from an imbal-

ance in the charge distribution of the atoms. In other words, the latter is a force originated by

the same charges, while the former a force arising from how the walls disturb the vacuum, and

not from a direct interaction between them. Looking closer into the two cases, some strong

similarities can be found. First of all, charges create electromagnetic fields, which originate

forces between the same charges. Secondly, the mirror is a real object, thus it is constituted

by charges, which are actually responsible of the boundary conditions on the field. In fact,

the charges oscillate following the fluctuating fields inside the cavity to then emit the same

fluctuating fields. It is this mechanism that gives the vanishing value of the field on surfaces.

We can now see that the Casimir force is not only originated by fluctuating fields but even

by fluctuating charges. Viceversa, fluctuating charges in one atom create a fluctuating electro-

magnetic field, which then interacts with the other atom. The two atoms actually interact via

the electromagnetic fields produced by the fluctuating charges.

Casimir and van der Waals forces are actually two sides of the same coin, and today we

commonly refer to them as dispersion forces, i.e. effective electromagnetic forces acting be-

tween well-separated neutral, unpolarised and unmagnetised atoms, molecules or bodies in the

complete absence of applied electromagnetic fields † [42]. Historically, the notion of dispersion

forces has been referred to objects in the ground state. Today, we use this term also to describe

situations with excited atoms (or molecules) and thermal electromagnetic fields.

We can distinguish between three kinds of dispersion forces: van der Waals, Casimir-Polder,

and Casimir. The first is referred to interatomic forces, the second to atom-body interactions,

and the third to forces between macroscopic bodies (such as two walls). Dispersion forces can

be also differentiated in terms of the distance between the two objects. We have non-retarded

forces when distances are much smaller than the atomic transition wavelength, and retarded in

the opposite case.

†With well-separated we mean that the wave-functions of the electrons (of the two objects under scrutiny)

do not overlap (for smaller distances Coulomb and Pauli exchange forces rule the dynamics)
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Nowadays, it is recognized that dispersion forces play an important role in many different

areas of physics, ranging from chemistry, atomic and surface physics, colloid science, biology

and even cosmology. Competing with repulsive Coulomb and Pauli exchange interactions,

van der Waals forces contribute to the creation of a stable equilibrium between two atoms

or molecules, which was heuristically described by the Lennard-Jones potential [43]. Similarly,

Casimir-Polder forces have an important role in the description of the adsorption of single atoms

(or molecules) to surfaces: they compete with Coulomb and exchange interactions allowing the

atom to find a stable equilibrium distance from the surface [44]. This role becomes even

more important in macroscopic physics, especially at interfaces between different media, where

atoms and molecules are very sensitive probes to these forces. From an accurate study of such

interactions one can motivate many different properties of materials [44,45]. In colloid science,

a suspension of micro- or nano-particles in a medium is subjected to attractive van der Waals

forces and repulsive Coulomb forces, which determine the stability of the colloidal suspension

[46]. In biology, Casimir-Porder potentials allow us to understand the interaction of molecules

within cells and also their transport through cell membranes [47]. More fundamentally, it has

been suggested that the Casimir energy due to vacuum fluctuations might contribute to the

cosmological constant [48].

Being dominant at nanoscale separations, dispersion forces have also a significant role in the

interaction with nano-structured materials and in applications in micro- and nano- technologies,

for example MEMS [7]. In fact, Casimir interactions give rise to unwanted ‘sticking’ between

mechanical surfaces, and are usually exploited to design contact-less micro-mechanical devices.

Most importantly, Casimir forces between a probe particle and a surface are the principle

behind atomic force microscopy, which now represents the most used diagnostic instrument to

probe unknown surfaces [49].

In this thesis, we will explore Casimir interactions in an optomechanical setup, which is

very close to MEMS, and the Casimir-Polder force between an atom and a wall in a cavity.

1.3.2 Atom-Photon interaction in the Coulomb gauge

Consider a neutral atom, described by a non-relativistic matter field ψ(r) modeling the electrons

in a static nuclear potential, coupled to the electromagnetic field described by the transverse

vector potential A in the Coulomb gauge. The matter field acts as a source for the electro-

magnetic field and viceversa. The atom of mass m is usually modelled as a positive charge
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Ze concentrated in a point-like nucleus and surrounded by Z spinless electrons each of charge

q = −e. The nucleus, which is considered fixed at the point R in space, is treated classically in

view of its relatively large mass. The Hamiltonian built from this model takes this form [50,51]

H =− 1

2m

∫
ψ†(r)

[
~∇+ i

e

c
A(r)

]2

ψ(r)d3r− Ze2

∫
ψ†(r)

1

|R− r|
ψ(r)d3r

+
1

2
e2

∫ ∫
ψ†(r)ψ†(r′)

1

|r− r′|
ψ(r′)ψ(r)d3rd3r′ +

1

8π

∫ {
1

c2
Ȧ2(r) + [∇×A(r)]2

}
d3r,

(1.31)

which is commonly referred as the minimal coupling representation. The first term includes

the kinetic energy of the atomic charges and their interaction with the electromagnetic field.

The second and third terms are the electrostatic contributions to the energy: the electrostatic

interaction between electrons and nucleus and the electrostatic repulsion among electrons. The

last term represents the energy of the electromagnetic field. We now express the fields explicitly

in terms of operators as

ψ(r) =
∑
n

cnun(r),

A(r, t) =
∑
kj

√
2π~c2

V ωk
[êkjakje

i(k·r−ωkt) + ê∗kja
†
kje
−i(k·r−ωkt)],

(1.32)

where we assume that the electron field can be expanded in terms of the atomic eigenfunctions

un(r). c†n (cn) is the one-electron creation (annihilation) operator of the matter field, a†kj

(akj) the creation (annihilation) operator of one photon in the field mode kj, V the volume

of quantization and êkj an electromagnetic polarization unit vector. The quantum minimal

coupling Hamiltonian in Eq. (1.31) can be thus rewritten as H = Hmin
a +Hmin

f +Hmin
int , where

Hmin
a =

∑
n

Enc
†
ncn,

Hmin
f =

∑
kj

~ωk
(
a†kjakj +

1

2

)
,

Hmin
int =

e

m

√
2π~
V

∑
nn′

∑
kj

1
√
ωk

(
êkj ·

∫
eik·xu∗n(r)

~
i
∇un′(r)

)
akjc

†
ncn′

+
e2

2m

2π~
V

∑
nn′

∑
kk′jj′

1
√
ωkωk′

{
(êkj · êk′j′)

∫
d3rei(k+k′)·r

× u∗n(r)un′(r)akjak′j′c
†
ncn′ + (êkj · ê∗k′j′)

∫
d3rei(k−k

′)·r

× u∗n(r)un′(r)akja
†
k′j′
c†ncn′

}
+H.c. .

(1.33)
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Hmin
a is the atomic Hamiltonian where the En come from the eigenvalue problem Hmin

a un(r) =

Enun(r), Hmin
f is the field Hamiltonian, while Hmin

int the atom-field interaction. The interaction

is formed by two terms. The first H(1)
int , which originates from the double product in the first

term of Eq. (1.31), is of the order e and describes processes by which one of the atomic electrons

absorbs one photon kj and jumps from a state n′ to n. This Hamiltonian term also takes into

account the Hermitian conjugate process, where the electron jumps from n to n′ emitting one

photon kj. The second term H(2)
int comes from the term A2 in Eq. (1.31) and is of the order e2.

It describes processes involving two photons kj and k′j′: the atomic transition from state n′ to

n accompanied by absorption of two photons, and the opposite process: the atomic transition

accompanied by the absorption of one photon and the emission of another.

If the wavelengths of the photons involved in the processes are much larger than the atomic

dimension (Bohr radius), or in other terms, the vector potential does not change appreciably in

a spherical region centered on the nucleus, we can perform the so called dipole approximation.

This approximation is quite good for optical photons (λ ∼ 103Å), which, on the other hand,

are those expected to strongly interact with the atomic electrons. Equation (1.33) can then be

simplified, since the integrals can be evaluated at the atomic position. Specifically, the transition

amplitudes of the processes in H(1)
int become proportional to

∫
u∗n(r)~

i
∇un′(r)d3r, which gives

origin to the selection rules in spectroscopy, and the integrals in H(2)
int can be calculated as∫

u∗n(r)un′(r)d3r = δnn′ . We obtain:

Hmin
int =i

∑
nn′

∑
kj

√
2π~
V ωk

(
ωn′nµnn′ · êkjeik·Rc†ncn′akj −H.c.

)
+
π~e2

mV

∑
n

c†ncn
∑
kk′jj′

1
√
ωkωk′

{
(êkj · êk′j′)akjak′j′ei(k+k′)·R

+ (êkj · ê∗k′j′)akja
†
k′j′
ei(k−k

′)·R + (ê∗kj · êk′j′)a
†
kjak′j′e

−i(k−k′)·R

+ (ê∗kj · ê∗k′j′)a
†
kja
†
k′j′
e−i(k+k′)·R

}
,

(1.34)

where µnn′ =
∫
u∗n(r)µ(r)un′(r)d3r with µ(r) = −e(r−R) is the matrix element of the electric

dipole moment connecting single particle states un and u′n; while, ωnn′ = (En′ − En)/~ the

corresponding transition frequency with En′(n) the eigenvalue of Hmin
a for the single particle

state un′(n). Eq. (1.34) shows that the operator for the total number of electrons commutes

with the total Hamiltonian: it is a constant of motion. The term
∑

n c
†
ncn, which also includes

a summation over the continuum of the ionized states, is thus equivalent to a constant which

is Z for a neutral atom. As a result, the term proportional to A2 in Eq. (1.34) does not
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contain the electron coordinates and, for many purposes, can be included in Hmin
f . This gives a

quadratic form in the creation and annihilation operators of the electromagnetic field, which can

be diagonalized exactly yielding to a new set of operators a′kj and a
′†
kj, and a new diagonal field

Hamiltonian H′min
f =

∑
kj ~ω

′

k

(
a
′†
kja
′
kj + 1/2

)
. By following this procedure, the interaction

Hamiltonian in the minimal coupling scheme and within the dipole approximation just reads

Hmin
int = i

∑
nn′

∑
kj

√
2π~
V ω

′
k

(
ωn′nµnn′ · êk′je

ik·Rc†ncn′a
′
kj −H.c

)
. (1.35)

Another equivalent description of the atom-photon interaction, which is commonly referred

as the multipolar coupling representation, can be derived by performing the so called Power-

Zienau-Wolley unitary transformation T †HT on the minimal coupling Hamiltonian (1.31),

with [52,53]

T = ei
∫
ψ†(r)( 1

~c
∫
p(x,r)·A(x)d3x)ψ(r)d3r, (1.36)

and p(x, r) the polarization field. The resulting interaction Hamiltonian has the useful feature

that the coupling between charges and radiation is expressed in terms of the electric and

magnetic fields rather than in terms of the vector potential. We highlight that, because of

such transformation, one is led to define new set of fermion and field creation and annihilation

operators (c
′†
n , c

′

n′) and (ã†kj, ãkj). While (ã†kj, ãkj) coincide with the previous after being

transformed by T , (c
′†
n , c

′

n′) are introduced accordingly to the definition of a new set of single-

electron states u′n(r), which take into account all the effects coming from non-hydrogenic terms

in the atom Hamiltonian.

In the electric-dipole approximation, the resulting interaction term in the multipolar scheme

takes the very simple and elegant form

Hmul
int = −µ ·D(R), (1.37)

where

D(r, t) =
1

c
Ȧ(r) + 4πp(r) = i

∑
kj

√
2π~ωk
V

[êkj ãkje
ik·r − ê∗kj ã

†
kje
−ik·r], (1.38)

is the electromagnetic displacement field, while µ =
∫
ψ̃†(r)µ(r)ψ̃(r)d3r the overall electric

dipole moment. Using Eq. (1.32) and substituting (1.38) in (1.37) we finally have

Hmul
int = −i

∑
nn′

∑
kj

√
2π~ωk
V

(
µ′nn′ · êkjeik·Rc

′†
n c
′

n′ ãkj −H.c
)
. (1.39)
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As already remarked the two formulations of the atom-photon interaction give the same physical

predictions. The only difference is how the energy is partitioned: Hmin
a 6= Hmul

a , Hmin
f 6= Hmul

f

and Hmin
int 6= Hmul

int . However, in the multipolar scheme, the form of the interaction in Eq.

(1.37) is much simpler than in the minimal coupling representation (1.31), and also physically

clearer. In fact, it is directly connected to measurable quantities such us the electric dipole

moment and the displacement field. Moreover, in the case of more atoms, the multipolar scheme

naturally includes the static interaction between the atomic dipoles. We finally remark that in

the following section and in Chapter 4 we will refer to the atomic and field Hamiltonians as Ha

and Hf , without making any explicit difference between the multipolar or minimal scheme; in

fact, there is not ambiguity as long as we do not change from the minimal to the multipolar

scheme or viceversa during the calculations.

Two level approximation

In many physical situations only two atomic levels are relevant to the atom-photon dynamics.

This allows us to consider a two-level atom with two non-degenerate energy eigenvalues E1 and

E2 (with E2 > E1) corresponding to the bare atomic eigenstates |1〉 and |2〉 of the Hamiltonian

Ha. In a two-dimensional subspace, by using the fermion anti-commutation rules, it is possible

to verify that the electron field operators satisfy the following relations: [c†1c2, c
†
2c1] = c†1c1−c†2c2,

[c†1c2, c
†
1c1− c†2c2] = −2c†1c2, [c†2c1, c

†
1c1− c†2c2] = 2c†2c1, (c†1c2)2 = (c†2c1)2 = 0, which coincide with

the spin 1/2 angular momentum commutation relations for the following pseudospin operators:

S+ = c†2c1, S− = c†1c2, Sz =
1

2
(c†2c2 − c†1c1), with c†1c1 + c†2c2 = 1. (1.40)

In fact, one can easily verify that the commutation rules for the electron field operators are

equivalent to

[S+, S−] = 2Sz, [S+, Sz] = −S+, [S−, Sz] = S−, S2
+ = S2

− = 0. (1.41)

It then follows that c†1c1 = 1/2− Sz, c†2c2 = 1/2 + Sz, and

Ha = E1c
†
1c1 + E2c

†
2c2 =

1

2
(E1 + E2) + (E2 − E1)Sz ≡ ~ωaSz, (1.42)

where ωa = ω21 and a constant (and unobservable) energy shift of the atomic energy levels has

been neglected in the final step. By assuming real polarization vectors, within the dipole and

the two levels approximation, the two equivalent formulations of the atom-photon interaction
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finally read

Hmin = Ha +Hf +Hmin
int

Hmul = Ha +Hf +Hmul
int ,

(1.43)

where

Ha = ~ωaSz,

Hf =
∑
kj

~ωk
(
a†kjakj +

1

2

)
,

Hmin
int = −i

∑
kj

√
2π~ω2

a

V ωk
µ21 · êkj(S+ − S−)(eik·Rakj + e−ik·Ra†kj),

Hmul
int = −i

∑
kj

√
2π~ωk
V

µ21 · êkj(S+ + S−)(eik·Rakj − e−ik·Ra†kj).

(1.44)

We remark that the similarity between the two schemes is formal, since atom and photon refer

two different objects in the two prescriptions: this is indicated by the dependence of the coupling

constants on ωk and ωa [51]. It is also important to observe that the interaction in (1.44) contain

four products of atomic and photon operators. The terms proportional to S−a
† and S+a are

called rotating and induce transitions between atom and field conserving the energy in the

single process (one excitation is created in the field and the other is annihilated in the atom,

and viceversa). While, the others proportional to S−a and S+a
† are known as counter-rotating

and do not conserve the energy at the level of a single process: these are responsible for the

creation or annihilation of two excitations in atom or field, and for the dressing or self-dressing

of the atom, which will be investigated in the fourth Chapter of this thesis. Finally, we recall

that the two forms in Eqs. (1.44) are often called Dicke Hamiltonians [51,54].

1.3.3 Casimir force

Let us now consider an empty rectangular cavity of dimensions Lx = Ly = L and Lz, where the

electromagnetic field inside the cavity is in its vacuum (ground) state. The walls of the cavity

are discharged, perfectly conducting and two by two parallel. We know that the tangential

component of the electromagnetic field must vanish on the surface of the walls. This means

that inside the cavity only specific field modes (wavelengths) can survive. In terms of the
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potential vector, the mode functions satisfying these boundary conditions are [8]

Ax(r) =

(
8

V

)1/2

ax cos(kxx) sin(kyy) sin(kzz),

Ay(r) =

(
8

V

)1/2

ay sin(kxx) cos(kyy) sin(kzz),

Az(r) =

(
8

V

)1/2

az sin(kxx) sin(kyy) cos(kzz),

(1.45)

where kx = lπ/L, ky = mπ/L, kx = nπ/Lz, with l,m, n = 0, 1, 2..., and ax, ay, az are the

normalization coefficients such that
∫ L

0
dx
∫ L

0
dy
∫ Lz

0
dz
[
A2
x(r) + A2

y(r) + A2
z(r)

]
= 1 (a2

x + a2
y +

a2
z = 1). Also, in order to satisfy ∇·A = 0, we have kxAx+kyAy+kzAz = (π/L)(lAx+mAy)+

(π/Lz)(nAz) = 0. This condition implies that there are only two independent polarizations if

l,m and n are not zero and only one if one of these integers is zero.

The quantity of interest is the zero point energy of the electromagnetic field inside the

cavity, which is given by∑
l,m,n

′

(2)
1

2
~ωlmn =

∑
l,m,n

′

π~c
[
l2

L2
+
m2

L2
+
n2

L2
z

]1/2

, (1.46)

where the subscript above the sum indicates that when one of the integers l,m, n is zero, the

expression should not be multiplied by (2). We can now take the continuous limit in the x, y

directions (L � Lz = d), which means to consider only two walls in the vacuum. Equation

(1.46) can be rewritten as

Evac(d) =
~cL2

π2

∑
n

′ ∫ ∞
0

dkx

∫ ∞
0

dky

(
k2
x + k2

y +
n2π2

d2

)1/2

. (1.47)

As we can see, the vacuum energy of the electromagnetic field (1.47) results to be infinite for

every volume V of the cavity. If we take the continuous limit also in the z direction, we get

Evac(∞) =
~cdL2

π3

∫ ∞
0

dkx

∫ ∞
0

dky

∫ ∞
0

dkz
(
k2
x + k2

y + k2
z

)1/2
, (1.48)

which coincides with the vacuum energy of a free electromagnetic field. We can now find the

potential energy of the system, that is the energy we spend to build it. This coincides with

the amount of energy required to bring the two walls of the cavity from an infinite to a finite

distance d:

U(d) = Evac(d)− Evac(∞)

=
~cL2

2π

[∑
n

′ ∫ ∞
0

du u

(
u2 +

n2π2

d2

)1/2

−d
π

∫ π/2

0

dϑ

∫ ∞
0

dkz

∫ ∞
0

du u
(
u2 + k2

z

)1/2

]
,

(1.49)
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where we have used polar coordinates (u, ϑ) with u2 = k2
x + k2

y and tan(ϑ) = ky/kx. Equation

(1.49) is a difference between two infinite quantities, but as we are going to see it gives a finite

value. To calculate it, we first introduce a cutoff function f(k) = f([u2 + k2
z ]

1/2) such that

f(k) = 1 for k � kcut and f(k) = 0 for k � kcut. On the other hand, the introduction of a

cutoff wavelength is physically sound, since our assumption of perfectly reflecting walls does not

hold for field modes with wavelength smaller than the atomic dimension. In fact, as we have

briefly discussed in the previous paragraph, the boundary condition on the field is the result

of an annihilation between the field inside the cavity and the one emitting by the oscillations

of the atoms in response to the the same intracavity field. Supposing then kcut ≈ a0, with

a0 the Bohr radius, when k � kcut the atoms of the walls do not respond to the cavity field;

in other words, the field does not see boundaries and we actually recover the case of a free

field in the quantum vacuum. This also says that the Casimir force we are about to derive is

a non-relativistic effect, essentially due to the field modes of low frequency. Equation (1.49)

becomes

U(d) =
π2~c
4d3

L2

[∑
n

′ ∫ ∞
0

dx
(
x+ n2

)1/2
f
(π
d

[x+ n2]1/2
)

−
∫ ∞

0

dξ

∫ ∞
0

dx
(
x+ ξ2

)1/2
f
(π
d

[x+ ξ2]1/2
)]

=
π2~c
4d3

L2

[
1

2
F (0) +

∑∞

n=1
F (n)−

∫ ∞
0

dξ F (ξ)

]
,

(1.50)

where we have also performed a change of variables, x = u2d2/π2 and ξ = kzd/π, and defined

F (ξ) ≡
∫∞

0
dx (x+ ξ2)

1/2
f
(
π
d
[x+ ξ2]1/2

)
. By using the Euler-Maclaurin summation formula∗

we calculate
∑∞

n=1F (n)−
∫∞

0
dξ F (ξ) = −(1/2)F (0)− (4/720), and finally obtain the potential

energy at a distance d:

U(d) = −
(
π2~c
720d3

)
L2, (1.51)

from which we can derive the expression of the force between the two walls

F (d) = −∂U(d)

∂d
= − π2~c

240d4
A. (1.52)

Equation (1.52) is the Casimir force, which is an attractive force proportional to the area A = L2

of the walls and inversely proportional to the fourth power of the distance. While the zero point

∗∑∞
n=1F (n)−

∫∞
0
dξ F (ξ) = − 1

2F (0)− 1
12F

′(0) + 1
720F

′′′(0) + . . ., valid when F (∞)→ 0. The derivates are

calculated at ξ = 0. By using the fact that F (ξ) =
∫∞
ξ2
dv
√
vf(πd

√
v) =

∫∞
0
dv
√
vf(πd

√
v) −

∫ ξ2
0
dv
√
vf(πd

√
v),

we obtain F ′(ξ) = d
dξ

(∫∞
0
dv
√
vf(πd

√
v)−

∫ ξ2
0
dv
√
vf(πd

√
v)
)

= − d
dξ

∫ ξ2
0
dv
√
vf(πd

√
v) = −2ξ2f(πd ξ), and as

a result, we have F ′(0) = 0, F ′′′(0) = −4 and Fn(0) = 0, having assumed that all the derivates of the cutoff

function vanish at ξ = 0.
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energy inside and outside the cavity are both infinite, their variation, which is a consequence

of having imposed boundary conditions on the quantum vacuum, gives a finite value. This is

an example of a more general procedure in quantum field theory: the renormalization. In fact,

we have actually renormalized the vacuum energy with respect to the vacuum energy of a free

field, and the same thing can be done on the field itself or on the field Green function [34]. Also,

the Casimir force between the two walls can equivalently be found as a difference between the

outside and inside radiation pressure of the vacuum fluctuations on the walls [55]. For typical

values of the systems: A = 1cm2, d = 1µm the force results around 10−7N. Although the weak

value, it has been measured with high precision [15,56,57].

We finally highlight that the Casimir force between two walls in (1.52), but more in general

between objects, can be equivalently derived as a result of all the interactions between the many

fluctuating dipoles within the bodies mediated by the electromagnetic field [15, 42]. Here, for

simplicity, we have preferred to present a much simpler derivation closer in spirit to standard

procedures used in quantum field theory [34,58].

1.3.4 Casimir-Polder force between an atom and a wall

We now want to study the Casimir-Polder force between a two-level atom and a neutral perfectly

conducting infinite wall in the presence of a quantum electromagnetic field in its vacuum state.

This force is well-known in the literature, both for ground- and excited-state atoms [8, 59–61].

Here we follow the point of view of Refs. [62,63], which will represent our starting point for the

evaluation of dynamical (time-dependent) atom-wall interaction in the second half of Chapter

4.

We have seen that in the multipolar coupling scheme and within the dipole approximation,

the atom-field interaction is described by the Hamiltonian in Eq. (1.44) (last line). However,

in this case, the field must satisfy the boundary condition at the position of the wall. The

interaction Hamiltonian is thus written as (where we have omitted the subscript indicating the

multipolar scheme, since we will always adopt such representation) [51]

Hint = −i
∑
kj

√
2π~ck
V

[µ · fkj(r)], (S+ + S−)(akj − a†kj). (1.53)

where fkj(r) are the field mode functions evaluated at the atomic position which take into

account the boundary conditions of the field. As usual in cavity QED, the quantization of the

field is performed within a finite volume of space. We imagine the atom placed inside a cubic
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Figure 1.3: Pictorial representation of the system. An atom is placed inside a cubic cavity

of side L at a distance d from a perfectly conducting wall at z = 0. The other walls are not

represented since d� L.

cavity of side L near the wall at z = 0, with the other walls located at x = ±L/2, y = ±L/2

and z = L (see Fig. 1.3). At the end of the calculation, the case of a single wall at z = 0 can

be recovered by taking the limit L→∞. The mode functions fkj, which satisfy the boundary

conditions of the field on such geometry with the wall in the xy plane, take the form

(fkj)x =
√

8(êkj)x cos

[
kx

(
x+

L

2

)]
sin

[
ky

(
y +

L

2

)]
sin[kzz],

(fkj)y =
√

8(êkj)y sin

[
kx

(
x+

L

2

)]
cos

[
ky

(
y +

L

2

)]
sin[kzz],

(fkj)z =
√

8(êkj)z sin

[
kx

(
x+

L

2

)]
sin

[
ky

(
y +

L

2

)]
cos[kzz], (1.54)

where kx = lπ/L, ky = mπ/L, kz = nπ/L (with l,m, n positive integers) are the wave-vectors,

and êkj the polarization unit vectors.

The atom-wall potential can be calculated from the second-order energy shift of the bare

ground state |0kj, ↓ (↑)〉B, where |0kj〉 is the vacuum state of the field, while |↓ (↑)〉 is the ground

(excited) state of the atom. By using time-independent perturbation theory at the first order

in the coupling constant we obtain the true ground state of the system:

|0kj, ↓ (↑)〉D = |0kj, ↓ (↑)〉B −
∑

|ψ〉6=|0kj ,↓(↑)〉

〈ψ|Hint |0kj, ↓ (↑)〉B
Eψ − EB

|ψ〉 , (1.55)

where EB is the energy of the bare state. Such state is an example of a dressed state, i.e. a state

covered by virtual particles due to the interaction Hamiltonian. We will discuss this general
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aspect more in detail in Chapter 4 (section 4.2). The corresponding second order energy shift

(Casimir-Polder potential) thus results

E (2)
↓(↑) =

1

2
D 〈{0kj}, ↓ (↑)|Hint |{0kj}, ↓ (↑)〉D

=− 4π

V

∑
kj

k

k ± ka

(µ21 · f(kj, r))2,
(1.56)

where ka = ωa/c and the plus (minus) sign is for a ground (excited) state atom. We underline

that this result (obtained within the multipolar scheme) can be easily generalized to include

a multilevel atom. We also remark that the first line of Eq. (1.56) is a general result in

perturbation theory [51].

In the quasi-static approach, the Casimir-Polder force can be obtained by taking the derivative

of the interaction energy (1.56) with respect to the atom-wall distance d and changing its sign

as ¶

F↓(↑)(d) = −
∂E (2)
↓(↑)

∂d
. (1.57)

For isotropic atoms (µ2
x = µ2

y = µ2
z = µ2/3) and after summation over the orientations of

the atomic dipole in (1.56), the expressions for the Casimir-Polder force for a ground- and an

excited-state atom are

F↓(d) =− µ2

12πd4
[8kad− 6(2k2

ad
2 − 1)g(2kad)− 4kad(2k2

ad
2 − 3)h(2kad)],

F↑(d) =
µ2

12πd4
[8kad− 6(2k2

ad
2 − 1)(g(2kad)− π cos(2kad))+

− 4kad(2k2
ad

2 − 3)(h(2kad)− π sin(2kad))],

(1.58)

where g(z) = Ci(z) sin(z)− (Si(z)−π/2) cos(z) and h(z) = −Ci(z) cos(z)− (Si(z)−π/2) sin(z)

are auxiliary functions of the sine and cosine integral functions [64]. The results in Eq. (1.58)

are valid for any atom-wall distance d. For a ground state atom, the force is attractive (negative)

for any atom-wall distance d. In the near zone limit (d � k−1
a ) it decreases like d−4, while in

far zone (d � k−1
a ) like d−5. This is the original result obtained by Casimir and Polder for

a ground state atom in the physical situation here analyzed [59]. For an excited-state atom,

Eq. (1.58) shows spatial oscillations, with regions where the force is attractive (negative) and

regions where it is repulsive (positive). The oscillations have periodicity related to ka.

¶Quasi-static approximation means that we calculate the force as F = −∇E supposing that the object (the

atom) is fixed. In other words, we do not include effects due to an infinitesimal movement of the object during

the derivative, namely effects coming from the dynamics (for example magnetic effects). The force is derived

from a potential energy and not as a variation of the momentum in time.
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For completeness, we mention that the Casimir-Polder potential energy between two ground-

state atoms behaves as d−6 for interatomic distances smaller than typical atomic transition

wavelengths (near zone) and as d−7 for larger distances (far zone) [51, 65].

Finally, we highlight that, although its small intensity, the atom-wall Casimir-Polder force

has been measured with high precision both in the near and the far zone [66–72]. On the

other hand, the atom-atom van der Waals/Casimir-Polder potentials are still too weak to be

detected, even though there are many indirect experimental observations of them in agreement

with theoretical predictions [73]. Additionally, direct measurements of the retarded van der

Waals attraction in mesoscopic systems have been obtained [74]. Recently, it has also been

suggested that the presence of boundary conditions and resonance conditions can enhance such

interactions [75,76].

1.4 Circuit QED

1.4.1 Introduction

Superconducting circuits are electrical circuits macroscopic in size (being hundreds of nanome-

ters wide) that contain trillions of electrons and can operate at milli-degrees temperatures [77].

They exhibit observable quantum features such as quantized energy levels, superposition of

states, and entanglement, which are commonly associated with particles or atoms. The access

to such interesting properties is made possible because they can be engineered to be almost

completely isolated form the (electrical) environment. This makes superconducting circuits

very robust against decoherence phenomena, which, on the other hand, is responsible of the

quantum-to-classical transition. In addition, their quantum states can be manipulated with very

high precision by varying electric charges or the phase difference across a Josephson junction (a

device with nonlinear inductance and no energy dissipation), or even applying electromagnetic

pulses to control the magnetic flux which crosses the circuit [9].

A recent direction in the research on superconducting circuits is based on the correspondence

between these chip systems and cavity QED, which, on the other hand, studies the interaction

between electromagnetic fields and matter (atoms or molecules) in the vacuum space or in

structured environments such as photonic crystals, waveguides and cavities [78]. One of the

most basic elements in circuit QED is probably the LC-resonator, which in the quantum do-

main (where thermal fluctuations are much smaller than the quantum energy associated to the
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resonance frequency of the system) is described as a mechanical oscillator. This circuit models

an electromagnetic microwave field. However, this system shows trivial quantum effects and to

exploit the richness of circuit QED one usually relies on a nonlinear component. An example

is given by the Josephson tunnel junction, whose nonlinearity is very fundamental since it is

related to the discreteness of the charge which realizes quantum tunnelling through an insu-

lating barrier [77]. This system is then used to build very fundamental circuital elements such

as the charge or the flux qubit, both modeling an artificial atom. All these elements can be

assembled together to engineer very specific atom-photon interactions used to describe cavity

QED systems [79].

Circuit QED now represents a novel platform, where it is possible to explore new quantum

phenomena arising from the interaction between light and matter. In fact, these circuits allows

us to study new domains, where light and matter are ultra-strongly coupled, which (given the

current technology) cannot be experimentally tested with atoms and fields. Not only they

can be designed and built to tailor specific frequencies and couplings very easily, but such

frequencies and couplings can be controlled by changing external parameters and even turned

on and off almost at will. Another advantage of circuit QED is that an atom (a superconducting

qubit) does not move inside an actual cavity, thus giving the chance to probe at any time the

light-matter interaction without losing the atom. These are the main reasons why circuit QED

has been so incredibly successful. Relevant experimental results include the achievement of the

strong coupling [10, 80–82], the mapping of the discrete nature of a quantized field [83], the

generation of single photon sources [84], and the realization of more complex circuits which

couple many qubits using intermediate buses [85].

Moreover, given that the basic components of superconducting circuits are quantum bits

(qubits) of information, the interest in such devices is not only fundamental, but also important

from a technological point of view. In fact, thanks to their potential for quantum computing,

scalable architectures towards the creation of quantum computers based on circuit QED have

already been proposed [86] and realized [87]. It is now believed that such systems can be

considered as primitive building blocks for the next generation of quantum computers.

For all these reasons superconducting quantum circuits are now subjected to an intense

research, which leads to flexible realizations of quantum optics on a chip and potentially opens

the door to new intriguing domains of mesoscopic physics.
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Figure 1.4: The element of each branch b is determined by two physical quantities: the voltage

Vb and the current ib, whose sign are determined by the orientation of the branch b as indicated.

These quantities are defined from the underlying electromagnetic fields: Vb =
∫ end of b

beginning of b
E ·ds

and ib = (1/µ0)
∮

around b
B · ds, with µ0 the free space permeability.

1.4.2 Classical Hamiltonian formulation of the dynamics of electri-

cal circuits

An electrical circuit can be thought as a network composed by branches which contain electrical

elements, for example capacitors and inductors. At any time, each branch b is described by

the voltage Vb(t) and the current ib(t) (see Fig. 1.4), which are the analogue of velocities and

forces in classical mechanics. The first step towards a Hamiltonian formulation of the circuit

dynamics is to introduce the branch fluxes and charges [77]

φb(t) =

∫ t

−∞
Vb(τ)dτ,

qb(t) =

∫ t

−∞
ib(τ)dτ,

(1.59)

where we suppose that the rest configuration of the circuit is at t = −∞ (this means that

any external field has been turned on adiabatically from t = −∞ to t = 0). Through the

fundamental relations of any electrical element, the current and voltage variations in a branch

are related to the charges and fluxes, respectively. For capacitive and inductive elements we,

respectively, have

Vb = f(qb),

ib = g(φb),
(1.60)

where in the simple case of a linear circuit, f(qb) = qb/C and g(φb) = φb/L. For a nonlinear
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inductive element such us a Josephson tunnel junction g is a sine function, in fact it is charac-

terized by the following current-flux relation: i(t) = I0 sin[φJ(t)/Φ0], where Φ0 = (~/2e) is the

flux quantum, I0 = EJ/Φ0 with EJ the Josephson energy ‖. Given that the power flowing in

any branch b is Vbib = Vbq̇b = ibφ̇b, we can also define the energy of any capacitive or inductive

element as

E(qb) =

∫ qb

0

f(q)dq,

E(φb) =

∫ φb

0

g(φ)dφ,

(1.61)

which give the following energies for the specific circuital element:

Capacitor : E =
q2
b

2C
=
C

2
φ̇2
b ,

Inductor : E =
φ2
b

2L
,

Junction : E = −EJ cos

(
φb
Φ0

)
.

(1.62)

However, branch fluxes and charges are not suitable to describe the degrees of freedom of

a circuit, since being related by the constraints imposed by Kirchhoff’s laws they are not

independent variables. We then define a new set of variables, called node variables, which only

depend on the particular topology of the circuit. We first need to identify all the nodes in the

circuit, which are defined as the intersections where different elements are connected. One node,

called ground, is then taken as a starting point to build an open spanning tree running through

all nodes in the circuit, without creating loops. All the other nodes are referred as active

nodes and are connected to the ground node by only one path along the tree. The branches

not included in the spanning tree are called closure branches and each of them is associated

‖A Josephson tunnel junction is formed by two superconductors separated by a thin oxide layer and can

be modelled as nonlinear inductor element (called Josephson tunnel element, represented by a cross in circuit

diagrams) in parallel with a capacitance. The non-linearity of the current relation is due to the discreteness

of charge which tunnels the insulating barrier. For temperatures of around 10mK the electrons in the two

superconductors are condensed in Cooper pairs and the junction is described by two collective degrees of

freedom, the charge in the capacitance q(t) and the number of Cooper pairs which have tunneled across the

junction. If the junction is not connected to other electrical elements, the charge on the capacitor coincides

with the one flowing through the element, i.e. q(t) = −2eN(t). Equivalently, the Josephson tunnel junction

can be described by the flux φJ defined as in (1.59), which gives the current i(t). The nonlinearity is then set

by the superconducting flux quantum Φ0 = ~/2e related to the Cooper pair charge 2e. To observe tunneling

typical values for I0 and the capacitance are µA-nA and pF-fF, respectively.

54



to a circuital loop realized by joining the ends of the branch by using a minimal path on the

spanning tree. We call C the set of closure branches and T the one of all the branches forming

the spanning tree. Taking into consideration the orientation initially chosen for the branch, we

associate to each circuital element (or branch) of C and T the following fluxes

φb∈T = Φn − Φn′ ,

φb∈C = Φn − Φn′ + Φ̃l(b),
(1.63)

where Φn(n′) are the (node) fluxes, defined by the time integral of the voltage measured along

the path connecting the node to the ground on the spanning tree, at the end nodes n and n′ of

the branch, and Φ̃l(b) is the magnetic flux that runs through the l loop of the branch b. We point

out that the definition of node flux is intimate connected to the concept of superconducting

phase ϕ defined at a given point of a superconducting circuit. These quantities are related as

follows [77,88]

ϕ =
2e

~
Φ mod(2π), (1.64)

such that the difference between the fluxes at two different nodes can also be expressed as:

Φn − Φn′ = Φ0(ϕn − ϕn′), (1.65)

where (ϕn − ϕn′) is the phase difference across the branch. We however remind that the phase

ϕ is introduced only in superconducting systems, while the concept of node flux is more general

and holds for any circuit.

Once the branch fluxes have been defined, by using Eqs. (1.59) and (1.60) we can express

the currents flowing through the branches in terms of the node variables for the specific circuital

element:

Capacitor : ib = CV̇b = Cφ̈b = C(Φ̈n − Φ̈n′)

Inductor : ib =
φb
L

=
Φn − Φn′ + Φ̃l(b)

L

Junction : ib = I0 sin

[
2e

~
φb

]
= I0 sin

[
2e

~
(Φn − Φn′ + Φ̃l(b))

]
;

(1.66)

and obtain a set of differential equations of motion of the circuit by equating, for each active

node, the sum of currents arriving from inductive elements and the sum of currents flowing into

capacitive elements. These equations, which have the following form∑
n,n′∈capacitor

Cnn′δΦ̈nn′ =
∑

n,n′∈inductor

δΦnn′ + Φ̃l(b)

Lnn′
+

∑
n,n′∈junction

I0 sin

[
2e

~

(
δΦnn′ + Φ̃l(b)

)]
,

(1.67)
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with δΦnn′ = Φn − Φn′ , can be derived as the Euler-Lagrange equations associated with the

Lagrangian L(Φn, Φ̇n). The latter is obtained as a difference between the capacitive and the

inductive energy of the circuit in Eq. (1.62) in terms of the node fluxes. We can then find node

charges Qn, which are the conjugate momenta of node fluxes:

Qn =
∂L
∂Φ̇n

. (1.68)

Each of them gives the sum of the charges on the capacitances linked to the node n. We remark

that node charges are always defined, since parasitic capacitances are always present between

nodes. This ensures that a Legendre transformation of the Lagrangian with respect to Qn can

be always performed. The resulting Hamiltonian of the circuit H(Φn, Qn) =
∑

nQnΦ̇n − L

(where the Φ̇n are replaced in terms of charges) will be the sum of the electrostatic energy of

the circuit expressed in terms of node charges and the magnetic energy in terms of node fluxes.

It is also possible to verify that

Φ̇n =
∂H
∂Qn

,

Q̇n = − ∂H
∂Φn

.

(1.69)

While the Hamiltonian always gives the total energy of the circuit, its functional form can

depend on the choice of the spanning tree. However, the Poisson brackets of fluxes and charges

of a branch are independent of this choice:

{φb, qb} =
∑
n

∂φb
∂Φn

∂qb
∂Qn

− ∂qb
∂Φn

∂φb
∂Qn

= 1. (1.70)

Finally, we highlight that in the node representation, node fluxes and charges play the same

role of position and momentum coordinates in classical mechanics. Accordingly, electrostatic

and magnetic energies substitute kinetic and potential energies. However, more generally, the

Hamiltonian can contain additional terms which do not have a direct mechanical correspondence

(for example electrostatic cross-terms).

1.4.3 Quantum description

The quantum mechanical formulation of a circuit simply follows the procedure developed in

the previous paragraph. The classical variables are promoted to operators, the Hamiltonian

becomes a function of operators, and the operators, which represent position coordinates and
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commute between them, determine a Hilbert space. We also impose that each pair of flux-charge

variables satisfies the canonical commutation relation [77]

[Φn, Qn′ ] = i~δnn′ . (1.71)

Following the Dirac quantization procedure, which establishes that Poisson brackets are re-

placed by corresponding commutators, fluxes and charges of a branch verify the following

commutator [φb, qb] = i~, although they are not conjugate coordinates.

1.4.4 Quantum LC resonator

Let us consider the LC circuit in Fig. 1.5 where a capacitor Cr is coupled in parallel to an

inductor Lr. This system has a trivial topology with only one active node. Following the

procedure previously described, we can write down the Lagrangian of the circuit in terms of

the node flux for the active node r as [77]

Lr =
Cr
2

Φ̇2
r −

Φ2
r

2Lr
, (1.72)

which is the difference between the capacitive (kinetic) and the inductive (potential) energy of

the circuit. The node charge then is Qr = ∂L/∂Φ̇r = CrΦ̇r. Expressing Φ̇r in terms of the

charge, the Hamiltonian results

Hr =
Q2
r

2Cr
+

Φ2
r

2Lr
, (1.73)

which coincides with the total energy of the system as trivially expected. The commutator for

flux and charge variables expressed in (1.71) establishes a correspondence between charge-flux

and momentum-position which can be used to diagonalize the Hamiltonian using Fock creation

and annihilation operators such that [a, a†] = 1. We obtain

Φr =

√
~Zr

2
(a+ a†),

Qr =

√
~

2Zr
i(a† − a),

Hr = ~ωr
(
a†a+

1

2

)
,

(1.74)

with ωr =
√

1/LrCr the oscillator frequency and Zr =
√
Lr/Cr. From the expression of ωr it

is clear that the capacitance Cr and the inductance Lr correspond to the mass and the inverse

of the trapping strength of a harmonic oscillator, and combine such that the quantization of

the oscillator is in terms of units of ωr. This means that the electric energy (confined in the
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Figure 1.5: a) Circuit model for a LC resonator with inductance Lr and capacitance Cr where

Φr is the flux corresponding to the only active node of the circuit, while the other bullet point

indicates the ground. b) Schematic representation of a Josephson tunnel junction with a non-

linear inductor element with energy EJ (called Josephson tunnel element and represented by a

cross) in parallel with a capacitance CJ . The overall circuital element will be indicated with a

box (also called Cooper-pair-box).

resonator and typically within the microwave regime) can be extracted or inserted in units,

adding or subtracting a quasi-particles with energy ~ωr. Given their statistics, we will refer to

these particles as photons.

1.4.5 Charge qubit

We now want to study a simple circuit formed by one superconducting island, that is a node

whose charge can vary only by electron tunneling. We then consider the circuit in Fig. 1.6(a),

where a single island is connected to a superconducting electron reservoir by a tunnel junction

modelled as a non-linear inductor (a Josephson tunnel element) in parallel with the capacitor

CJ (see also Fig. 1.5(b)). The Josephson element allows charges to enter and exit the island,

while a voltage source VG connected to the island through a gate capacitance Cq creates an

induced charge that shifts the equilibrium state of the system. Also in this case, the topology of

the circuit is trivial. Identified the node flux Φq, the Lagrangian of the circuit, which includes

the nonlinear inductive energy of the junction, results [77,79]

Lq =
CΣ

2

(
Φ̇q − VG

)2

+ EJ cos

(
Φq

Φ0

)
, (1.75)

where CΣ = CJ + Cq is the total island capacitance. The associated node charge is given by

Qq = ∂L/∂Φ̇q = CΣΦ̇q − CqVG, where CqVG is the amount of charge induced by the external
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electrical potential in the island. This allows us to find the following Hamiltonian

Hq =
(Qq + CqVG)2

2CΣ

− EJ cos

(
Φq

Φ0

)
. (1.76)

Supposing that both island and reservoir are good superconductors, such that their energy gap

for single-particle excitation is much larger than the energy kBT of the thermal fluctuations

and the Coulomb energy e2/2CΣ of the island, all electrons in the island will be bounded in

Cooper pairs [89]. The total number of such pairs n with charge q = −2en defines the degree

of freedom of the island. As in cavity QED for the number of photons, the variable n is

discrete, but it can take both positive and negative values (n = 0 corresponding to the case of

a neutral island). Given that Cooper pairs can tunnel in and out the island, n can fluctuate

quantum-mechanically and can be described as an operator with eigenvectors |n〉 such that

q |n〉 = 2en |n〉. The electrostatic term of the Hamiltonian in Eq. (1.76) can be then written

as [89]

Hel = EC
∑
n

(n− ng)2 |n〉 〈n| , (1.77)

where ng = CqVg/(2e) is the dimensionless gate voltage and EC = (2e)2/2CΣ the Coulomb

energy of a Cooper pair on the island. In the same number basis, the Josephson coupling

Hamiltonian (the second term of (1.76)), which describes the hopping of charge pairs in and

out of the superconducting island, has the following form

HJ = −EJ
2

∑
n

(|n〉 〈n+ 1|+ |n+ 1〉 〈n|) , (1.78)

where the Josephson energy EJ is actually proportional to the area of the tunnel junction∗∗.

In Fig. 1.6(b) we compare the energy levels of Hel with the ones of the full Hamiltonian

Hq = Hel +HJ for EJ � EC (charge limit), as a function of the applied gate voltage. In this

limit, the effect of the Josephson Hamiltonian is to remove the degeneracy at the intersections

of each parabola and create avoided crossings. For temperatures such that kBT � EC
†† we

can restrict our attention to the lowest energy states |0〉 and |1〉 (see Fig. 1.6(c) for the classical

charge configuration corresponding to these states). Also, given the periodicity of the system

with respect to the addition of a Cooper pair, the variation of the applied gate voltage can be

considered in the interval 0 < ng < 1. Under these assumptions, the dynamics of the circuit

can be mapped into the Hamiltonian of a particle with spin 1/2 interacting with an effective

∗∗If GT is the junction conductance, EJ = (hGT /8e
2)∆, where ∆ is the superconducting gap.

††For T=1K, this requires CΣ to be much less than 1fF.
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Figure 1.6: a) Circuit model of a charge qubit, where a single Josephson junction with energy EJ

is coupled via a capacitance Cq with the external voltage VG. Φq is the node flux corresponding

to the active node of the circuit. It is also shown a scanning electron micrograph of charge qubit

in an experimental realization, where a superconducting island (single-Cooper-pair box (SCB))

is coupled to a transistor (SET), scale bar 1µm (imported from Ref. [16]). b) Energy levels

of the charge qubit without Josephson junction (dashed lines) and with tunnelling amplitude

EJ � EC as a function of the displaced charge ng = CqVG/(2e) (continuous lines). c) Classical

charge configuration in the island (box in grey) for the two states of the qubit.

magnetic field whose (x, y, z) components are (~ωq = EJ , 0, ~ε = 2EC
(
ng − 1

2

)
). We thus

have

Hq =
~ε
2
σz +

~ωq
2
σx, (1.79)

where ~ε and ~ωq correspond to the difference between the electrostatic energy of the two lowest

states and the minimum gap, respectively; while, σx,z are the standard Pauli spin matrices,

which, in terms of the states of the basis, are defined as

σx = |↓〉 〈↑|+ |↑〉 〈↓| ,

σz = |↑〉 〈↑| − |↓〉 〈↓| ,
(1.80)

with |↑ (↓)〉 ≡ |1(0)〉. The σx operator describes a flip operation between the two states and

replace the tunneling term in Eq. (1.78). When ε = 0, that is ng = 1/2, the true eigenstates of

the system are |±〉 = (|↑〉±|↓〉)/
√

2 separated by a frequency ωq, where |−〉 is the ground state.
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Also, in this Cooper pair box - spin 1/2 correspondence the average value of the z-component

of the spin provides the average charge in the island. In fact we have:

〈n〉 =
1

2
(1 + 〈σz〉) , (1.81)

where for an operator A the average is given by 〈A〉 = Tr[e−βHqA] at the equilibrium tempera-

ture T = 1/(kBβ).

Typical parameters for a fabricated charge circuit might be EC/h ' 10GHz (EC/kB = 0.5K),

and EJ/EC ' [0.4, 1[GHz [16].

1.4.6 Transmon qubit

The transmon qubit circuit actually coincides with the one for a charge qubit. The only differ-

ence is that it operates in the regime EJ � EC . For this reason, in literature, we equivalently

refer to it as a regime of the charge qubit, i.e the transmon regime. The Hamiltonian of

the transmon qubit can be derived from Eq. (1.76) by expanding the cosine function of the

Josephson element. At the second order we obtain

Hq '
(Qq + CqVG)2

2CΣ

− EJ
(

1− 1

2

Φ2
q

Φ2
0

+
1

24

Φ4
q

Φ4
0

)
. (1.82)

This expansion is physically sound since, for EJ � EC , the potential energy (Josephson energy)

is more important than the kinetic energy (electrostatic energy). This means that the dynamics

of the system is restricted within the minima of the parabolas in Fig. 1.6(b) and that we are

considering small oscillations around these values. Introducing the following operators,

Qq =i

√
~ωqCΣ

2
(b† − b),

Φq =Φ0

√
~ωq
2EJ

(b† + b),

(1.83)

with ~ωq =
√

8EJEC , the Hamiltonian in (1.82) can be cast in the form of a Duffing oscillator

[90]

Hq = ~ωq
(
b†b+

1

2

)
− EC

12

(
b† + b

)4
, (1.84)

where b and b† denote the regular annihilation and creation operators for the harmonic oscillator

approximating the transmon, we have removed the constant energy −EJ and set ng = 1/2.

More in general, one can define ñq = nq + Qenv/2e, where Qenv represents the environment-

induced offset charge. The initial experiments with charge qubits revealed to be too much
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sensitive to electromagnetic fluctuations and charge noises, whose effects can be encoded in ñq.

And actually, it was to overcome such experimental challenge that the first transmon qubit was

realized [90]. By means of the additional capacitance, which acts as an increased effective mass

of the qubit, the ratio EC/EJ can be decreased, so that the relative strength of the coupling to

the environment decreases as well, without losing the anharmonicity of the system. This has

allowed to achieve higher dephasing times with respect to original experiments [91]. However,

decreasing the ratio EC/EJ makes the energy levels less and less anharmonic, until the point

in which the energy difference between the second and the third level ω12 = E2 − E1 is too

close to ωq to experimentally resolve the qubit levels without inducing unwanted transitions

to the second excited state. If we further decreased the ratio EC/EJ , the fluctuations of n

would become so large that the one would recover the standard description of the Josephson

effect, where the phase on the island is a good-quantum number, without the presence of the

anharmonicity in Eq. (1.84). Typical experimental values for the relevant parameters of a

chip-fabricated 2D transmon are EJ/EC ' [50, 100], ωq ' [5, 10]GHz and δω = ωq − ω12 '

[4, 5]×102MHz [79,90], such that it is possible to experimentally access the qubit levels without

introducing unwanted processes. We finally highlight that a transmon qubit can also be used to

implement quantum operations and store information in different ways with respect the charge,

since one can take advantage of the extra levels in the anharmonic ladder, which are in principle

manipulable and allow the circuit to operate, for example, as a qutrit [92].

1.4.7 Flux qubit

We now would like to study the circuit in Fig. 1.7(a) consisting of a superconducting loop formed

by three Josephson junctions crossed by an external magnetic flux Φext (Fig. 1.7(b) shows an

experimental realization). This circuit, which is based on three (or four) junctions, is commonly

called flux qubit. For simplicity, two Josephson junctions are identical with capacitance CJ and

energy EJ , while the other has capacitance αCJ and energy αEJ with α < 1. As depicted in

Fig. 1.7(c) the circuit has two active nodes a and b and three branches whose fluxes are defined

as [77,79]

φa =Φa,

φb =− Φb,

φc =Φa − Φb + Φext = φa + φb + Φext.

(1.85)
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Figure 1.7: a) Circuit model for three junction flux qubit. Two junctions are characterized by

the same capacitance CJ and energy EJ , while the remaining has energy αEJ and capacitance

αCJ . Φext is the external potential passing through the circuit. b) A three junction flux qubit

in an experimental realization (figure imported from Ref. [9]). c) Schematic representation of

the circuit in a) where the phase differences across the junctions have been indicated together

with the active nodes of the circuit. d) Potential of the three junction flux qubit as a function

of the variable Φ+ having fixed the value of Φ−. The dashed lines indicate the energies of the

three lowest qubit states and the corresponding wavefunctions.

Note that φa,b,c are also referred as the phase differences across the junctions accordingly to the

definition in Eqs. (1.64) and (1.65). This terminology will be convenient in the final Chapter

of this thesis.

By using Eq. (1.85), the Lagrangian of the circuit results

Lq =
CJ
2

(φ̇2
a + φ̇2

b) +
αCJ

2

(
φ̇a + φ̇b

)2

+ EJ

[
cos

(
φa
Φ0

)
+ cos

(
φb
Φ0

)
+ α cos

(
φa + φb + Φext

Φ0

)]
,

(1.86)

which introducing the new flux variables Φ± = (φa ± φb), becomes

Lq =
CJ
2

(
α +

1

2

)
Φ̇2

+ +
CJ
4

Φ̇2
− + EJ

[
2 cos

(
Φ+

2Φ0

)
cos

(
Φ−
2Φ0

)
+ α cos

(
Φ+ + Φext

Φ0

)]
.

(1.87)

We can now find the conjugate charges Q± of the fluxes Φ±: Q+ = ∂L/∂Φ̇+ = CJ(α+ 1/2)Φ̇+

and Q− = ∂L/∂Φ̇− = (CJ/2)Φ̇−, which, by following the standard Legendre transformation,
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give the Hamiltonian

Hq =
Q2

+

2CJ(α + 1/2)
+
Q2
−

CJ
+ V (Φ+,Φ−), with

V (Φ+,Φ−) = −EJ
[
2 cos

(
Φ+

2Φ0

)
cos

(
Φ−
2Φ0

)
+ α cos

(
Φ+ + Φext

Φ0

)] (1.88)

the resulting nonlinear potential of the circuit. For a given value of the external magnetic flux

Φext, the minimum of V (Φ+,Φ−) occurs at Φ− = 0. This is the result of the interplay between

the cosine function containing Φext, which has minima at Φ+ = nπΦ0 − Φext, and the term

cos(Φ+/2Φ0) with minimum at Φ+ = 0. For an external flux Φext/Φ0 = π the total potential

displays a double-well structure for the variable Φ+, as displayed in Fig. 1.7(d). For values

of the external potential around that point, we can introduce the external flux shift and the

tunneling gap

~ε ∝ Φext − πΦ0

~ωq = E1 − E0,
(1.89)

with E0 and E1 the eigenvalues of the first two levels of the Hamiltonian, and define the basis

states |L〉 and |R〉. We then recover the Hamiltonian found for the charge-qubit in Eq. (1.79):

Hq =
~ε
2
σz +

~ωq
2
σx. (1.90)

By diagonalizing this Hamiltonian, one can see that for values of α within the interval ∼ [0.6, 1],

the lowest energy states of the Hamiltonian are very close and well-separated from the rest of

the spectrum. In contrast, if the Josephson energy αEJ is too small, the third energy level of

the Hamiltonian becomes too much close to the first level E21 = E2 − E1 ' E1 − E0, which is

not ideal, since in such a situation we cannot address transitions between the first two levels

without having leakage to higher levels. On the other hand, having α arbitrarily high is also

not desirable. In this case, not only the gap ∆ approaches the zero value cancelling one of the

two Hamiltonian terms, but the sensitivity of the qubit to the fluctuations of the magnetic field

increases.

Typical parameters to realize the double-well potential qualitatively shown in Fig. 1.7(d)

are: CJ = 4fF, EJ/h = 500GHz and α = 0.8 [79,93]. For such parameters the two lowest qubit

states are the symmetric and antisymmetric superposition of the ground states on the left and

right of the potential well, which are separated by a tunneling splitting of ωq/(2π) ' 3.8GHz.

The next level is instead split by E21 ' 46.5GHz, such that the two level approximation is

justified.
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1.4.8 Single qubit operations

As we have seen, charge and flux qubits can be reduced (in the two level approximation) to the

effective Hamiltonian

Hq =
~ε
2
σx +

~ωq
2
σz, (1.91)

which has two control parameters: ε and ωq. Note that here we have rotated the state of the

qubit: this can be always done by applying a strong and uniform (or small time-dependent)

external field. At the degeneracy point ε = 0, the qubit gap is minimal and given by the

frequency ωq: this is the usual assumption when we start to work with these systems.
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Chapter 2

Quantum-classical comparison in

optomechanics

2.1 Introduction

An important goal in quantum optics is to generate nonlinearities. These are at the heart of

non-Gaussian operations and, therefore, essential to deeply explore non-classicality. One way of

achieving such target is to use available operations directly connected to the Hamiltonian under

study, which manipulate the motion of one of the subsystems so that it undergoes a loop in

its phase space. The result of the overall operation allows for the generation of a deterministic

effective nonlinearity on the other subsystem. Some platforms where this technique has been

employed very efficiently are trapped-ion systems [94–96], superconducting circuits [97], and

photonic systems [98,99]. In all these cases, the subsystem where the nonlinearity is generated

acquires a phase which has an elegant geometric interpretation in the phase space of the other

subsystem.

The interest in generating nonlinearities is now spread even in the emerging field of cavity

optomechanics, where it is strongly combined to the study of non-classical properties of me-

chanical motion [2]. Here, the motion of the mechanical oscillator is manipulated by using the

radiation pressure force and, nonlinearities can be realized by enclosing loops in the phase space

of either the optical [100] or the mechanical degrees [6] of freedom. Actually, the idea of a closed

loop, in which the mechanical oscillator evolves returning to its initial quantum state and the

light field picks up a geometric-like nonlinear phase, was already encoded in the fundamental

works of Mancini and Bose [30,31]. In these studies, it was highlighted for the first time that, in
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the strong coupling regime between light and matter, a continuous quantum interaction can be

used to generate nonclassical states of light and mechanics. It was also found that, at certain

interaction times, the optical field decouples from the oscillator independently from the initial

mechanical state. This very important feature of the system was then proposed as a key to

probe the decoherence of the oscillator [101]. A very similar idea was also leveraged for the

case of a micro-mechanical resonator capacitively coupled to a Cooper-pair-box [102], for an

interferometric scheme built with an optomechanical cavity [20], and for an atom coupled to a

mechanical oscillator [103,104].

More specifically, it has been suggested that the creation of correlations between a single-

photon path-entangled light source and a mechanical oscillator can be used to discriminate

between different decoherence mechanisms, for example due to gravitational effects or wave-

collapse [20,21]. To address such a very subtle issue the interferometric visibility is invoked. In

fact, this quantity is widely believed a measure of coherence (degree of correlations) between

two components of the system. It actually works as a witness of mechanical coherence, which

can be then affected by standard decoherence models or more exotic mechanisms. The key

point is the observation of the revival of the interferometric visibility, which happens when

light and matter are completely decoupled (disentangled) and the mechanical oscillator has

undergone a closed loop in its phase space. The complete recovery of visibility proves the fact

that light and mechanics have been entangled for previous times, while a partial recovery can

happen whether the environment remembers the state of the oscillator, thus providing a way

to quantify and test the decoherence of the mirror.

In all the aforementioned works, the optomechanical interaction has been described quantum

mechanically. However, it is quite interesting to ask whether or not all the features, which are

believed to be a consequence of quantum mechanics, are really of quantum origin. On the

other hand, quantum mechanics encapsulates classical physics and, in a quite broad range of

parameters, classical physics provides equal or very similar answers. In this Chapter, we want

to address the non-classicality of the optomechanical interaction by comparing the quantum

predictions with the ones obtained within a fully classical model. In particular, since the

phase acquired by the optical field after its interaction with the mechanical oscillator is at the

heart of all the fundamental previous studies, we begin our classical-quantum comparison for

such phases within a quite general mathematical framework, and compare our results with the

previous relevant proposals (Refs. [6,20]). Starting from the pulsed interaction regime [36,105],
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we then discuss the continuous interaction regime, where we enlarge our classical-quantum

comparison to the interferometric visibility [20,21].

The results of our analysis clearly show that many of the peculiarities, which have been

considered of quantum origin in the previous setups, can be actually recovered by classical

means. In particular, the two most important features of the optical quantum phase are still

found in the classical scenario: the independence of the oscillator at some interactions times,

which coincide with the mechanical periods, and the phase nonlinearity induced by the light-

matter interaction [30,31]. We will also see how these properties allow us to prove that the loss

and revival of the visibility pattern in an interferometric scheme can have a completely classical

explanation. Nevertheless, our classical-quantum comparison singles out genuine non-classical

components of the system dynamics (not reproducible classically or semi-classically), which

could be probed in todays cavity optomechanical experiments.

More specifically, the following Chapter is organized as follows: in Sec. 2.2 we briefly

describe the model and the basic pulsed interaction. In Sec. 2.3 we explore the quantumness of

the phase acquired by the optical field both in a pulsed and continuous regime. We also show

how it is possible to recover the continuous regime from the pulsed one via a Trotter-Suzuki

expansion on the unitary evolution operator of the system. In Sec. 2.4 we then complete our

classical-quantum comparison for the interferometric visibility. To completely address the non-

classicality of the optomechanical interaction, in Sec. 2.5 we compare our results with the ones

found within a semiclassical picture. Finally, Sec. 2.6 summarizes our findings.

We highlight that in this Chapter we use the convention that all the quantum operators are

indicated with the hat symbol as Ô, to avoid confusion in our classical-quantum comparison.

2.2 The model

We consider the optomechanical cavity described in paragraph 1.2.3, where a single mode field

and a mechanically oscillating mirror are coupled inside a cavity as depicted in Fig. 2.1(a).

The effective Hamiltonian that describes this system dynamics is given by Eq. (1.11), which,

in a frame rotating at the field frequency, can be rewritten as

Ĥ = Ĥ0 + Ĥint, (2.1)
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Figure 2.1: a) Optomechanical cavity with a harmonic oscillating mirror at one end. b) Rep-

resentation of the four displacement operation in the phase space of the mechanical oscillator.

with

Ĥ0 =
~ω
2

(
X̂2 + P̂ 2

)
,

Ĥint = −~g̃0n̂X̂.

(2.2)

Ĥ0 gives the mechanical free energy of the mechanical mirror where

X̂ =
1√
2

(b̂† + b̂),

P̂ =
i√
2

(b̂† − b̂)
(2.3)

are the quadrature operators of the mirror, Ĥint is the interaction energy where n̂ = â†â is the

number operator of the optical field, while g̃0 = g0

√
2 is the new coupling constant with g0

defined in Eq. (1.12). For the sake of simplicity, in this Chapter we have removed the subscript

to the mechanical frequency, which is now indicated with ω.

As discussed in paragraph 1.2.4, in the case of a pulsed regime, the time of the interaction

is much smaller than the period of the mechanical motion τ = 2π/ω and the system is required

to operate in the bad cavity limit, that is κ� ω. To correctly neglect additional effects due to

the coupling of the mechanical mirror to the environment, we also demand the characteristic

mechanical decoherence time lower than the mechanical period. Under these assumptions we

can then safely neglect the free evolution of the mirror during its interaction with the light.

The overall dynamics can be described by the unitary operator [36]

ÛX = eiλn̂X̂ , where λ =
g̃0

κ
(2.4)

is the rescaled (dimensionless) coupling strength, which can be seen as a displacement operation

by λn/
√

2 along P in the phase space of the mechanical oscillator. We remark that the sentence
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is rigorous when the cavity field is prepared in a Fock state |n〉. As soon as the interaction

vanishes, the oscillator is free to evolve under the Hamiltonian Ĥ0 and X̂ and P̂ start to

interchange themselves accordingly. The pulse interaction then allows us to drive the oscillator

along closed loops in phase space by selecting the appropriate time between consecutive pulsed

interactions. More specifically, we imagine that the same light pulse enters the cavity, escapes

after a short interaction lasting a time 1/κ = (2L/c)Nrt, where Nrt = F/π is the round trip

time with F the cavity finesse, and waits in an engineered loop before being injected again. This

situation is commonly realized by using a cavity formed by a small ending mirror vibrating in a

harmonic potential and a massive rigid mirror with lower reflectivity. This experimentally allows

the light to enter and exit the cavity passing the large rigid mirror with minimal transmission

through the movable mechanical mirror [2].

2.3 Quantum vs classical dynamics

2.3.1 Four pulsed interactions

We start to consider a sequence of four interactions (with the same pulse), where each interac-

tion given by (2.4) is separated by a quarter of the mechanical period. The same scheme has

been previously proposed in Ref. [6]. The full procedure corresponds to ÛX , followed by ÛP ,

Û−X and Û−P . As represented in Fig. 2.1(b), this sequence of four pulses generates a square

loop in mechanical phase space with a photon-number-dependent side-length. The effective

interaction generated by the overall sequence is described by the unitary

ξ̂ = e−iλn̂P̂ e−iλn̂X̂eiλn̂P̂ eiλn̂X̂ , (2.5)

which, by using Baker-Campbell-Hausdorff formula§ can be calculated as

ξ̂ = eλ
2n̂2[X̂,P̂ ] = eiλ

2n̂2

. (2.6)

The above operation yields a highly self-Kerr nonlinear operation only acting on the optical

field, as we have already found for the evolution operator in the case of a continuous interaction

(Eq. (1.13)). This type of nonlinearity is very close to controlled gate operations in trapped

ion qubits where the phononic mode of the harmonic oscillator is used as a mediator [94–96].

§The Baker-Campbell-Hausdorff formula states that when [x̂, [x̂, ŷ]] = [ŷ, [x̂, ŷ]] = 0, the exponential of the

sum of the two operators x̂ and ŷ can be calculated as: ex̂+ŷ = e−
1
2 [x̂,ŷ]ex̂eŷ = e

1
2 [x̂,ŷ]eŷex̂ [106].
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To explore the effect of such nonlinearity, let us apply the four-pulse operator ξ̂ to the initial

state of the system |ψ0〉 = |α〉f ⊗ |φ(0)〉m, where the field is in a coherent state |α〉f and the

mirror in a generic initial state |φ(0)〉m, and calculate the mean value of the optical field which

results

〈â〉 = 〈ψ0| ξ̂† â ξ̂ |ψ0〉

= 〈α| eiλ2(2n̂+1)â |α〉f

= α e−Np(1−cos 2λ2)ei(λ
2+Np sin 2λ2),

(2.7)

where Np = |α|2 is the mean value of the intracavity photon number. We can immediately

observe that both modulus and phase of the optical field are changed by the Kerr nonlinear

interaction of the Hamiltonian. More specifically, the magnitude of the mean value of â is

strongly reduced because of the coherent state spreading out in phase-space ‡, while the mean

phase shift results to be

ϕq = (λ2 +Np sin 2λ2), (2.8)

and provides information on the interaction, because of the dependence from the coupling con-

stant and photon number. Importantly, Eq. (2.8) is independent of the particular initial state

of the mechanical mirror, and depends on the intensity of the optical field. These observations

are going to play a crucial role in the forthcoming discussions.

In addition, Eqs. (2.5) and (2.7) show that the quantum phase derives from the commutation

rules of both field and mirror operators. In particular, it is connected to the commutator

between mirror quadratures operators when we calculate the effective interaction (Eq. (2.6));

and to the the bosonic commutation rule for the field annihilation and creation operators when

we evaluate the mean value of the optical field (second line Eq. (2.7)). In Ref. [6] it has

been proposed that the four-pulse scheme can be employed to probe possible modifications to

the standard commutator between X̂ and P̂ , which translate into an additional phase shift

in the optical field in Eq. (2.7). It then becomes quite interesting to explore the deviation

of the optical phase from a fully classical perspective, to determine to what extent it can be

considered as a mean to infer non-classicality in the system dynamics.

From a classical point of view, to calculate the phase acquired by the optical field we need

to track the path of the light during the overall dynamics. Following Refs. [107,108], we know

that the phase associated with a single reflection of a field on a movable mirror is proportional

‡For small coupling this effect scales as O(e−Npλ
4

)
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to the product of the field wave vector kf times the mirror position at that particular time. A

radiation-pressure kick, i.e. a pulse that transfers a momentum I to the mechanical oscillator,

can be classically depicted as the sum of Nrt round trips of the light inside the cavity. In the

pulsed regime, the position of the movable mirror is essentially fixed during the Nrt reflections,

and, as already discussed, the field enters the cavity, escapes after a time equal to the inverse

of the decay rate 1/κ, and then waits in an engineered loop before the successive injection.

During the time between consecutive kicks the movable mirror is free to evolve accordingly

to the equation of motion of a harmonic oscillator as x(t) = x(t0) cosωt + p(t0)/(Mω) sinωt.

Without losing generality, we suppose the mirror initially at the origin: at the first kick we

have x(t0) = 0, p(t0) = I, and consequently the position evolves as x(t) = I/(Mω) sinωt until

the second kick. For every radiation-pressure kick, the field picks up an additional phase due

to the movable mirror dynamics. The overall classical phase, acquired by the field escaping the

cavity after the four light kicks on the mirror, results

ϕc = 2kfNrt

3∑
j=0

x(tj), (2.9)

where x(tj) are the positions of the mirror at times tj = jτ/4. Solving the equations of motion

during this dynamics (the details on this calculation will be provided in the next paragraph

where we generalize the present scheme to N interactions), we obtain for the classical phase

ϕc = 4kfNrt
I
Mω

, (2.10)

which linearly depends on the light intensity as described by a classical nonlinear Kerr effect

[109, 110]. Also, even the classical phase does not depend on the initial conditions of the

mechanical oscillator. Hence, the two features which are at the heart of quantum operations also

recur in the classical picture. In order to quantitatively compare Eq. (2.10) with the quantum-

mechanical prediction, we firstly substitute the transferred momentum I = 2Nrt(E0/c), where

E0 = ~ωfNp is the field energy, and then rephrase the result in terms of the characteristic

parameters of the optomechanical system. We obtain ϕc = 2λ2Np: the quantum and classical

predictions for the optical phase shift generally differ, but for small coupling strengths this

difference is in the form of a (small) offset λ2.
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2.3.2 From the pulsed to the continuous interaction: phases and

Trotter-Suzuki expansion

By reducing the waiting time between subsequent pulses, we can generalize the previous four-

pulse scheme to N kicks (i.e. N field-mirror consecutive interactions), where the mechanical

oscillator is driven along loops which have the shape of N -sided polygons. For this purpose

we need to define a general displacement operator ξ̂N corresponding to a loop (in the quantum

phase space of the oscillator) shaping a regular polygon of N sides

ξ̂N =
N−1∏
j=0

eiη̂{cos(θ·j)x̂+sin(θ·j)p̂}, (2.11)

where θ = 2π/N . After some tedious algebra, Eq. (2.11) can be calculated by using Baker-

Campbell-Hausdorff formula as

ξ̂N = eiΦ̂(η̂,N ), with

Φ(η,N ) =
1

4
η2N cot

( π
N

)
,

(2.12)

where Φ(η,N ) (without the hat) is the area mapped out by the sequence of displacement

operations of amplitude η = 〈η̂〉 in the phase space of the mirror. If we now take the limit

N → ∞ in Eq. (2.11) and, accordingly rescale η → η/N , we can define the continuous

displacement

ξ̂cont = lim
N→∞

ξ̂N = ei
η̂2

4π , (2.13)

which corresponds to a circle in the phase space with radius η/2π. In the case of the optome-

chanical interaction considered here, we have η̂ = λn̂. Applying the displacement ξ̂N to the

state |ψ0〉, we measure the mean value of the optical field as

〈â〉 = 〈ψ0|ξ̂†N â ξ̂N |ψ0〉 = α e−Np(1−cos 2c)ei(c+Np sin 2c), (2.14)

where c = (λ2/4)N cot(π/N ). The first exponential factor represents the change of the am-

plitude size of the optical field, while the second gives the change of phase in the case of N

kicks:

ϕq =
λ2

4
N cot

( π
N

)
+Np sin

[
λ2

2
N cot

( π
N

)]
, (2.15)

which, when the coupling is small, is approximated as follows:

ϕq '
λ2

4
N cot

( π
N

)
(1 + 2Np). (2.16)

74



Figure 2.2: Phase space description of the dynamics of the light pulse-mechanical oscillator

interaction in the classical picture. a) Four pulse interaction model: the oscillator is assumed

at rest at the origin of the phase space. The oscillator gains a momentum I due to the

interaction at t = t0. Then it freely evolves to the maximum amplitude x(t1) when the second

pulse happens, this causes another momentum gain of the oscillator at time t1. At this time

the oscillator evolves to x(t2) = x(t1) where the third pulse interaction brings its momentum

to zero. Now, it evolves to x(t3) = 0 where its momentum becomes −I. Finally, the oscillator

is brought back to the origin of the phase space by the last pulse-oscillator interaction. b) A

similar dynamics is plotted for the six pulse interaction.

As for the four-pulse case, the quantum phase does not depend on the initial mirror state. This

is a consequence of having driven the mechanical oscillator along closed loops (polygons) in its

phase space [30,31].

We now generalize the pulsed scheme to N kicks from a classical perspective. Without

loosing generality, we again start with the mirror initially at the origin (such that x(t0) = 0,

p(t0) = I at the first kick), then the position evolves as x(t) = I/(Mω) sinωt until the second

kick. The additional phase shift acquired by the field escaping the cavity after N light kicks on

the mirror, occurring at times tj = 2jπ/(Nω), results ϕc = 2kfNrt

∑N−1
i=0 x(ti), where x(ti) are

the classical positions of the mirror at times ti. Fig. 2.2 shows the loops in the classical phase

space of the harmonic oscillator for four and six kicks. We remark that the generalization to a

generic initial condition is straightforward by simply applying a translation in phase space. The
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positions appearing in ϕc can be computed through geometric considerations, and represented

in the classical phase space of the mirror with polar coordinates (R(ti), ϑ(ti)). At the first kick

we have R(t0) = 0 and ϑ(t0) = 0 while, for the consecutive kicks, i.e. i = 1, ..., (N − 1)

R(ti) =
√
ζ2 + 2R(ti−1)ζ cos (ϑ(ti−1)) +R(ti−1)2

ϑ(ti) =
2π

N
+ arcsin

[
R(ti−1)

R(ti)
sin (ϑ(ti−1))

]
,

(2.17)

where ζ = I/(Mω) quantifies the classical displacement. Since x(ti) = R(ti) sin(ϑ(ti)), by

numerically solving this recurrence, it can be shown that the sum of the oscillator positions

gives (I/2Mω) N cot (π/N ), and the classical phase results

ϕc = kfNrt
I
Mω
N cot

( π
N

)
. (2.18)

In order to compare classical and quantum results, we substitute the expressions previously

used for the transferred momentum at each kick and the field energy, and then rephrase the

result in terms of the optomechanical parameters. We get

ϕc =
2~N2

rtk
2
fNp

Mω
N cot

( π
N

)
=
λ2Np

2
N cot

( π
N

)
.

(2.19)

By comparing Eqs. (2.15) and (2.19) we can see that quantum and classical optical phases gen-

erally differ. In fact, the quantum phase in Eq. (2.15) is also valid for strong coupling regimes.

Besides, the +1 term in Eq. (2.16) reveals quantum peculiarities connected to the quantization

of both field and mechanical oscillator, which cannot be recovered in a fully classical picture.

Nevertheless, for the most common experimental conditions, i.e. small coupling (λ � 1) and

strong laser sources (Np � 1), the quantum and classical phases coincide.

We now want to mathematically derive the description of a continuous interaction from

the pulsed one. We firstly note that the rescaled limit N → ∞ in Eq. (2.11) reminds the

Trotter’s expansion [111,112] for the total evolution operator Û = e−iĤt/~. Indeed, by algebraic

manipulations we have

e−
i
~ Ĥt = lim

N→∞
(e−

i
~ Ĥ0t/N e−

i
~ Ĥintt/N )N

= lim
N→∞

N−1∏
j=0

(e−
i
~ Ĥ0tj/N e−

i
~ Ĥintt/N e−

i
~ Ĥ0tj/N )

= lim
N→∞

N−1∏
j=0

eig̃0n̂(X̂ cos θj+P̂ sin θj)
t
N ,

(2.20)
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where θj = ωjt/N . Considering an interaction lasting τ and bearing in mind that κ = ω/2π,

it follows that n̂g̃0τ = n̂λ = η̂, therefore the displacement operation related to the unitary

operator in Eq. (2.20) coincides with the circle loop in Eq. (2.13). We have thus demonstrated

that the continuous dynamics can be recovered from the pulsed regime: it is sufficient to

keep the light inside the cavity for an interaction time equal to the mechanical frequency in

order to implement a displacement ξ̂cont. We however remark that going from the pulsed to

the continuous dynamics, which corresponds to take the limit N → ∞, is not experimentally

feasible with the same apparatus: we should be able to continuously switch from the bad cavity

limit to the good one. On the other hand, given that we have established a close link between

a continuous displacement operation and the unitary operator of the system, we expect that

the correspondence between classical and quantum phases remains valid even in the case of a

continuous interaction.

2.3.3 Continuous interaction

As we have seen, the continuous dynamics can be theoretically recovered when we mathemat-

ically take the limit N → ∞ in the pulsed scheme. This corresponds to a physical situation

where the light escapes the cavity after a mechanical period. Considering field and mirror

initially in the state |Ψ(0)〉 = |α〉f ⊗ |γ〉m where |γ = γR + iγI〉m is a coherent state of the

oscillator, we solve the quantum dynamics determined by Û [30,31] obtaining the result in Eq.

(1.14) where k = g̃0/(
√

2ω) is the ratio between the single photon optomechanical coupling

rate and the mechanical resonance frequency. From Eq. (1.14) we find the total density matrix

of the system and then by tracing out the mechanical degrees of freedom, we get the reduced

density matrix for the field

ρ̂f(t) = e−|α|
2
∑
m,n

αnα∗m√
n!m!

eik
2(n2−m2)(ωt−sinωt)e−k

2(n−m)2(1−cosωt)

× ei2k(n−m)[γR sinωt+γI(1−cosωt)] |n〉f 〈m| ,
(2.21)

from which we can calculate the mean value of the optical field

〈â(t)〉 = Tr[âρ̂f(t)] = α e−k
2(1−cosωt)e−Np{1−cos[2k2(ωt−sinωt)]}

× ei{2k[γR sinωt+γI(1−cosωt)]+k2(ωt−sinωt)+Np sin[2k2(ωt−sinωt)]}.
(2.22)

As in the case of a pulsed interaction (Eq. (2.7) and (2.14)), both modulus and phase of the

field change: the modulus is suppressed by the Kerr nonlinearity of the particular interaction
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Ĥint, which causes the spreading of the coherent state in phase-space, while the acquired phase

ϕq(γ, t) = 2k [γR sinωt+ γI(1− cosωt)] + k2 (ωt− sinωt) +Np sin
[
2k2(ωt− sinωt)

]
, (2.23)

encodes all the information on the overall dynamics: the initial condition of the mechanical

oscillator and the values of coupling constant and number of photons †.

On the other hand, from a classical perspective, the dynamics might be well-described by

the Hamiltonian

Hc =
1

2
Mω2x2 +

p2

2M
− E0

L
x, (2.24)

where the continuous interaction is depicted as constant force during the whole evolution whose

intensity is given by the field energy. As a result, the classical phase can be accordingly

generalized to the integral over the positions of the mirror as ϕc(t) = 2(kf/dt̃)
∫ t

0
x(t′)dt′ with

dτ̃ = 2L/c the single round trip time of the light. By working out the classical continuous

dynamics, we obtain the equation of motion

x(t) = x(0) cosωt+
p(0)

Mω
sinωt+

E0

Mω2L
(1− cosωt). (2.25)

Therefore, the classical phase at time t in the case of a continuous interaction results to be

ϕc(x(0), p(0), t) =
ωf

Lω

[
x(0) sinωt+

p(0)

Mω
(1− cosωt)

]
+

ωf

ω3ML2
E0(ωt− sinωt). (2.26)

By using the optomechanical parameters (and E0 = ~ωfNp) Eq. (2.26) can be rephrased as

ϕc(x(0), p(0), t) = k

√
2Mω

~

[
x(0) sinωt+

p(0)

Mω
(1− cosωt)

]
+ 2Npk

2(ωt− sinωt), (2.27)

which, in the case of a closed loop, gives ϕc = 4πk2Np. Remembering that an initial dis-

placed gaussian quantum state |γ〉m corresponds to the classical boundary conditions x(0) =
√

2γR
√

~/(Mω) and p(0) =
√

2γI
√
~Mω, we observe that the classical and quantum phases in

Eq. (2.23) and (2.27) coincide at every time t (for every initial condition) in the limit λ � 1

and Np � 1. In the next paragraph we will see that it is because of this equality at every time

that we will find the same loss and revival for the classical and quantum visibilities.

In the specific case of a closed loop, the main difference between the classical and quantum

predictions for the phase is an offset, which is equal to λ2 for the four pulse case and depends

†Note that in the case of a single photon source, the optical phase is actually related to the modulus of the

off diagonal terms of the reduced density matrix of the field, which is indeed a measure of coherence [113].
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on k2 for the continuous case. We anticipate that this offset is not predicted within a semi-

classical description of the model where either the light or mechanics are quantized and the

other is treated classically. Experimentally observing this phase offset would therefore certify

the quantum nature of the interaction between light and mirror. This witness could be found

by measuring the phase as a function of the photon number per pulse and fitting the obtained

data to get an estimate for the offset. Against our intuition, a large optomechanical coupling

is not strictly necessary to achieve our goal, as long as the phase can be measured with a high

precision. Indeed, uncertainty is mainly amenable to the quantum noise of the coherent state

probe, which scales approximately as δϕq ∼ 1/
√
NpNr, where Nr is the number of averages.

We thus require δϕq < λ2 to provide a good estimate for the quantum offset, which can be

easily achieved with current experiments (10−5 . λ . 10−1 and Np ∼ 108) [114,115].

Aside from this small phase shift that demostrates the quantum nature of the interaction,

we pinpoint that, in the context of pulsed interactions, the nonlinear phase of the optical field is

mainly due to the classical contribution. If the quantum nature of the system is relevant for the

interpretation of an experiment, it might be necessary, in order to also verify the non-classical

nature of the interaction, to rely on quantum state preparation of the mechanics, to study the

non-classical photon statistics after the interaction or to observe the quantum offset discussed

above. For example, this is the case for Ref. [6], where the phase acquired by the optical field

after four pulsed interactions with the mirror is used to extract quantum information from the

system.

2.4 Interferometric visibilities

We have observed that for closed loops in both classical and quantum pictures the phase does

not depend on the initial conditions of the mechanical oscillator. Here we are going to see how

this property has a non-trivial implication on the quantum-classical comparison.

Let us consider the Michelson interferometer depicted in Fig. 2.3 where the ending mirror

of the cavity in arm 1 interacts with an incoming coherent state via the Hamiltonian (2.1). We

start with calculating the quantum dynamics in the case of a movable mirror initially prepared

in a thermal state ρ̂th = (πn̄)−1
∫
d2γ e−|γ|

2/n̄ |γ〉m 〈γ|, where n̄ = 1/(eβ~ω − 1) is the average

thermal occupation number and β = (kBT )−1 with kB the Boltzmann constant and T the

initial mirror temperature. We now solve the Liouville equation ˙̂ρ = −(i/~)[ρ̂, Ĥ]. The time
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Figure 2.3: Michelson interferometer: a coherent field |α〉f is split by a beam splitter (BS) in

the two arms of the interferometer. Arm 1 ends with an optomechanical cavity with an end

movable oscillator, while arm 2 is composed by a phase shifter and a stationary cavity.

dependent density matrix of the system results

ρ̂(t) = e−|α|
2
∑
m,n

αnα∗m√
n!m!

eik
2(n2−m2)(ωt−sinωt)ekn(γb̂†−γ∗b̂)ρ̂the

km(γ∗b̂−γb̂†) |n〉f 〈m| , (2.28)

from which, by tracing out the mechanical degrees of freedom, we get the reduced density

matrix of the field

ρ̂f(t) = e−|α|
2
∑
m,n

αnα∗m√
n!m!

eik
2(n2−m2)(ωt−sinωt)e−k

2(n−m)2(1−cosωt)(2n̄+1) |n〉f 〈m| , (2.29)

and, in turn, the mean value of the optical field in the case of an initial thermal mechanical

state

〈â(t)〉 = Tr[âρ̂f(t)] = α e−k
2(1−cosωt)(2n̄+1)e−Np{1−cos[2k2(ωt−sinωt)]}

× ei{k2(ωt−sinωt)+Np sin[2k2(ωt−sinωt)]}.
(2.30)

We can note that Eq. (2.30) is exactly the average over all the possible initial configuration

given by the thermal distribution of the mean value of the optical field in Eq. (2.22) for an

initial coherent state. As we have seen for the Homodyne detection in paragraph 1.2.5, it can

be easily shown that the Michelson interferometer represented in Fig. 2.3 corresponds to a

measure of the expectation value 〈X̂φ
f 〉 = Tr[X̂φ

f (t = 0)ρ̂f(t)] = Tr[X̂φ
f (t)ρ̂f(t = 0)] for the field

quadrature operator in Eq. (1.19), which now reads X̂φ
f (t) = (1/

√
2)[â(t)e−iφ + â†(t)eiφ] with

â(t) in Eq. (2.30) is the time evolution of the field operator entering the cavity at time t = 0

and escaping it at time t. Therefore, by using Eqs. (1.17) and (1.18), together with (2.30), the
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Figure 2.4: Quantum visibility νq(t) in Eq. (2.33) for T = 10−5K (blue dotted line), T = 10−2K

(red continuous line) and T = 1 K (green dashed line); optomechanical coupling k = 10−2,

number of photons Np = 105 and period τ = 10−5s. For relatively high temperature the

visibility is strongly suppressed within every single oscillating period. Instead, in the low

temperature limit, the visibility is slightly lowered and the main effect is due to the Kerr

nonlinearity experienced by the field.

two intensities on detectors a and b result

Iab (t) =
I0

2

(
1± 〈X̂

φ
f 〉√
2

)
=
I0

2
{1∓ e−{k2(1−cosωt)(2n̄+1)+Np[1−cos(2k2(ωt−sinωt))]}

× cos[k2(ωt− sinωt)−Np sin(2k2(ωt− sinωt))− φ]}.

(2.31)

We are now interested in evaluating the interference visibility, which is defined as the ratio

ν =
Imax − Imin

Imax + Imin

, (2.32)

where Imax and Imin are the maximum and minimum intensities on the detectors. By using

Eq. (2.31), the quantum prediction for the visibility can be written conveniently as νq(t) =

νcor
q (t)νKerr

q (t), where

νcor
q (t) = e−k

2(1−cosωt)(2n̄+1),

νKerr
q (t) = e−Np[1−cos(2k2(ωt−sinωt))].

(2.33)

In Fig. 2.4 we plot the time-dependent dynamics of the quantum visibility νq(t). We can

see that it results the composition of two periodic functions (with distinct frequencies), which
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cause two different set of revivals: the short ones of period τ due to the term νcor
q (t), while

the long ones of period τ ′ = τ/(2k2) related to νKerr
q (t). The former revivals of the visibility

occur because of the decoupling between field and mirror at integer multiples of the mechanical

period, that is when we drive the oscillator along closed loops in its phase space. In fact,

they are considered as a proof of correlations at intermediate times, that is when field and

mirror are in an entangled state, as it can be seen from the expression for the state of the

system in Eq. (1.14). These revivals are clearly manifested in Fig. 2.4. On the other hand, the

term νKerr
q (t) coincides with the second exponential term in Eq. (2.30), which is responsible

of the suppression of the modulus of the mean optical field, and it is then originated by the

nonlinear Kerr interaction experienced by the field when entering into the cavity because of

Hamiltonian (2.1). This contribution to the quantum visibility is responsible for a reduction of

the interferometric pattern. In other words, this reduction of visibility stems from the squeezing

of the coherent optical state due to the Kerr nonlinearity. As a result, even if mirror and field

are completely uncorrelated after an interaction that lasts a mechanical period, we still cannot

fully recover visibility.

Now that we have explored the quantum prediction for the interferometric visibility, we

would like to explore its classical counterpart. We already anticipate that even within a fully

classical treatment we can explain a recovery of the visibility at some specific times. Let us

then consider a classical mirror that at time t = 0 is subjected to classical thermal fluctuations

around the origin described by a Maxwell-Boltzmann distribution. This is the analogue of the

initial thermal state considered quantum-mechanically. The initial position and momentum of

the oscillator can be parameterized by using polar coordinates (θ, %) as follows

x(t = 0, θ, T ) =
√

2/(Mω2)%(T ) cos θ,

p(t = 0, θ, T ) =
√

2M%(T ) sin θ,

%2(T ) =
Mω2

2
x2(0, θ, T ) +

p2(0, θ, T )

2M
,

(2.34)

where %2(T ) is the initial thermal energy of the oscillator at temperature T . Consequently, the

classical phase acquired by the field after an interaction time t in Eq. (2.26) will depend on

these initial conditions:

ϕc(%, θ, t) =
√

2χ% [cos θ sinωt+ sin θ(1− cosωt)] +
ω

ωf

χ2E0 (ωt− sinωt) , (2.35)

where χ = ωf/(ω
2L
√
M). Indicating with I0 the intensity of the incoming field, the classical

intensities on the detectors Da and Db depend on the phase difference between the two arms
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as

Iab (%, θ, t) =
I0

2
[1± cos(ϕc(%, θ, t)− φ)]. (2.36)

If we now average over all the initial mechanical states given by the thermal distribution, we

obtain the final result for the intensities

〈Iab (t)〉 =
β

π

∫∫
% d% dθ Iab (%, θ, t) e−β%

2

=
I0

2

[
1± e−

χ2

β
(1−cosωt) cos

(
ω

ωf

E0χ
2(ωt− sinωt)− φ

)]
,

(2.37)

which gives the classical visibility

νc(t) = e−
χ2

β
(1−cosωt). (2.38)

Equation (2.38) reveals fully classical revivals at times equal to integer multiples of the me-

chanical oscillator, i.e. t = jτ with j = 1, 2 . . .. The reason why we have these revivals even

in a classical picture can be traced back to the particular property of the phase acquired by

the field, which still holds in the classical scenario: its independence from the initial mirror

conditions after periods of the mechanical oscillator. Indeed, the loss of classical visibility has

to be attributed to the uncertainty on the initial conditions due to the initial thermal fluctua-

tions of the mirror, which appear in the same form both classically and quantum-mechanically.

For times equal to integer multiples of the mechanical period, even the classical phase does

not depend on the initial conditions of the oscillator, and the maximum value of visibility is

recovered. We however highlight that, in the case of zero temperature, the classical visibility

will result equal to one at all times.

We now want to compare the quantum result νq(t) with the fully classical one in Eq. (2.38).

By manipulating the optomechanical parameters we find k = χ
√

~ω/2, and, as a result, the

classical visibility can be rewritten as

νc(t) = e−
2k2

β~ω (1−cosωt). (2.39)

The first observation we can make is that, in the limit kBT � ~ω, the quantum thermal part

of the visibility νcor
q (t) approaches the classical expression. However, the difference between

νcor
q , which comes from mirror-field correlations, and the classical visibility is insignificant even

when the temperature is very low. For example, when T = 10−6K and ω = 2π×105Hz we have

|νcor
q − νc| ≤ |e−2k2 − 1| ∼ 0.01, even pushing the coupling to k = 0.1. Differences appear when

further increasing the coupling strength: the parameter k is thus crucial to get access to the
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Figure 2.5: Comparison between quantum (red continuous line) and classical (blue dotted line)

visibilities in Eqs. (2.33) and (2.38) for T = 5× 10−2K. All the other parameters are as in Fig.

2.4.

quantum behavior in these setups, as also stressed in Refs. [20, 116]. We also note that within

a hybrid framework where light is treated quantum-mechanically and the mechanics classically

and in case of a single photon source, a similar result was found in Ref. [117].

Apart from identifying parallelisms between the classical and quantum results, our analysis

naturally identifies quantum peculiarities, specifically in νKerr
q . This additional term in the

quantum result is due to the quantum-mechanical description of the Kerr nonlinear interaction.

In fact, as Fig. 2.5 clearly shows, unlike the classic result, where a complete revival occurs after

every mechanical period τ , the quantum Kerr nonlinearity lowers the visibility giving rise to a

partial revival.

Since coherent states are minimum uncertainty states having the same uncertainty associ-

ated with each quadrature, the noise in a coherent state has an intrinsic quantum origin [106].

Nevertheless, we can bring our classical model closer to the quantum scenario. To this scope,

we assume that our classical coherent field is affected by a Gaussian noise [110] such that the

field energy in the (classical) Hamiltonian Hc can be written as E(ε) = E0(1 − ε) where the

dimensionless parameter ε is described by the normal distribution

P(ε) =
1√

2π∆
e−

ε2

2∆2 , (2.40)

with ∆2 the variance. The classical phase in Eq. (2.35) and, in turn, the intensities in Eq.

(2.37) will now depend on the noise parameter ε. Equation (2.37) can be then averaged over
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the gaussian distribution (2.40), obtaining

〈Iab (t)〉 =
I0

2

{
1± e−

χ2

β
(1−cosωt)e

−ω
2

ω2
f

χ4E2
0∆2(ωt−sinωt)2

×
[

cos

(
ω

ωf

E0χ
2(ωt− sinωt)− φ

)
− ω

ωf

χ2E0∆2(ωt− sinωt) sin

(
ω

ωf

E0χ
2(ωt− sinωt)− φ

)]}
.

(2.41)

By selecting φ = ω
ωf
E0χ

2(ωt− sinωt) through the phase shifter of the interferometer (see Fig.

2.3), the expression of intensity can be simplified, and the new classical visibility results

ν̃c(t) = e−
χ2

β
(1−cosωt)e

−ω
2

ω2
f

χ4E2
0∆2(ωt−sinωt)2

. (2.42)

Contrarily to the classical result obtained in Eq. (2.39), the classical visibility in Eq. (2.42) now

shows a loss due to the second exponential, which is due to the the (classical) Kerr-nonlinearity

experienced by the noisy field. By rephrasing Eq. (2.42) in terms of the optomechanical

parameters, and using χ =
√

2/~ωk and E0 = ~ωfNp,

ν̃c(t) = e−
2k2

β~ω (1−cosωt)e−2N2
pk

4∆2(ωt−sinωt)2

. (2.43)

We can now note that the field energy distribution E(ε) = E0(1− ε) is equivalent to the photon

distribution N(ε) = Np(1− ε) which has variance N2
p∆2. Therefore, to make our classical result

even closer to the quantum prediction, we consider a Poissonian distribution of the noise and

set ∆2 = 1/Np, obtaining

ν̃c(t) = e−
2k2

β~ω (1−cosωt)e−2Npk4(ωt−sinωt)2

= νc(t)e
−2k4Np(ωt−sinωt)2

.
(2.44)

This result clearly shows that the introduction of a classical noise permits to exploit the classical

Kerr-nonlinearity of the phase (encoded in Eq. (2.10) as previously discussed) to recover a

reduction in the classical visibility, which exactly coincides with the quantum result νKerr
q in

Eq. (2.33) in the limit k2ωt � 1 and of large intensities. However, while νKerr
q is periodic

so to cause revivals, the classical Kerr nonlinearity in Eq. (2.44) only lowers the visibility.

This comparison further highlights the great importance of the parameter k to regulate the

quantum behavior in optomechanical systems. It is worth mentioning that having taken the

mirror initially at its rest position does not affect the generality of our result in Eq. (2.43): the

interference in Eq. (2.41) can always be obtained by adapting the phase shifter φ to cancel out

the extra initial contribution coming from Eq. (2.26).
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Quantum and classical visibilities show qualitatively the same behavior and to observe

significant deviations in current optomechanical experiments, i.e |νq − νc| & 10−4 within a

mechanical period, we should increase the coupling constant or the number of intracavity

photons to k & 10−3 and Np & 106, respectively (keeping fixed all the other parameters as in

Fig. 2.5). This is valid independently of the initial temperature of the mechanical oscillator.

Moreover, we should note that, while νq tends to νc in the limit k2Np � n̄ and kBT � ~ω, in

the same limit, the classical visibility and its quantum counterpart (for an initial coherent state

for the field) coincide with the quantum visibility for a single photon as input, as obtained

in Refs. [20, 116]. Importantly, this makes clear that just looking at the visibility patter is

not sufficient to extrapolate non-classicality in the system dynamics. To truly interpret the

results within a quantum framework it becomes essential to rely on additional assumptions.

For example, in Refs. [20, 116], where the cause of the collapse of visibility is referred to the

entanglement between oscillator and field, one has to rely on the initial state preparation of the

field (single photon source) and the mechanical oscillator (ground state). On the other hand,

form a classical perspective, in the case of zero effective temperature, the visibility is always one

without a collapse. However, we have seen that any small initial thermal noise in the mechanics

causes a reduction of the visibility. Therefore, an unequivocal proof of quantumness might

require additional measurements, for example the verification of the entanglement between

field and mechanics.

2.5 Semiclassical approach

Here we want to explore what happens when we use a semiclassical approach to describe the

interaction between light and mechanical oscillator. We anticipate that a semiclassical descrip-

tion of such interaction will produce the results obtained within the full classical framework,

therefore, even a semiclassical description is insufficient to describe all features of the full in-

teraction.

Firstly, let us consider the case of a quantum field and a classical mechanical oscillator.

In a frame rotating with the field frequency, the interaction Hamiltonian can be written as

Ĥf = εâ†âx(t) where x(t) indicated the classical equation of motion of the oscillator, while ε

the resulting coupling constant. Taking the field initially prepared in a coherent state, the field
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density matrix results

ρ̂f(t) = e−|α|
2
∑
n,m

αnα∗m√
n!m!

e−
i
~ ε(n−m)

∫ t
0 x(τ)dτ |n〉f〈m| (2.45)

and, as a result, the mean value of the optical field, which provides the acquired optical phase,

is

〈â〉 = αe−
i
~ ε

∫ t
0 x(τ)dτ . (2.46)

If we now describe the classical oscillating mirror as a harmonic oscillator subjected to a constant

force E0/L as in Eq. (2.24), we can safely substitute the dynamics in Eq. (2.25) into Eq. (2.46)

obtaining

〈â〉 = αe−iϕ(t), (2.47)

where the phase ϕ(t) coincides with the classical phase given in Eq. (2.26). Equation (2.47)

thus shows that when we consider a quantum field and a classical oscillator, the full classical

result for the phase is recovered.

Secondly, we consider the inverse situation where the field is described classically and the

mirror quantum-mechanically. In this case, the phase acquired by the optical field can be

written as

ϕ(t) = 2
kf

dτ̃

∫ t

0

〈x̂(τ)〉dτ, (2.48)

that is the integral over the interaction time of the mean value of the mechanical position. If

we assume the mirror initially prepared in a coherent state |Ψ̃(0)〉 = |γR + iγI〉, its evolution

under the quantum hamiltonian Ĥm = ~ωb̂†b̂− (E0/L)
√

~/(2Mω)(b̂† + b̂) reads

|Ψ̃(t)〉 = eik
2N2

p (ωt−sinωt)ei2kNp[γI(1−cosωt)+γR sinωt]|γe−iωt + kNp(1− e−iωt)〉, (2.49)

where we have used kNp = E0/(Lω
√

2~Mω) to express the result in terms of the characteristic

optomechanical parameters. Easily, one can verify that the mean value of the position operator

over the state (2.49) gives the results we obtain within a fully quantum and/or classical de-

scription of the interaction. As a consequence, the phase acquired by the optical field given in

Eq. (2.48) coincides with the classical result showed in Eq. (2.27). Once again, a semiclassical

description of optomechanical interaction for the optical phase shift returns the same result

obtained in the case of a fully classical picture. We can thus conclude that a semiclassical
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approach (as the classical one) is not able to capture all the feature given by a full quantum in-

teraction. Similar considerations can be extended to the visibility, since the visibility is strictly

connected to the phase.

2.6 Conclusions

Central to a variety of optomechanical schemes is the ability to change and read-out the phase of

a system by exploiting the particular nonlinear light-matter interaction. This natural advantage

of the system has also been used to investigate fundamental questions of quantum mechanics.

In this Chapter, we have explored the non-classicality of such phases by comparing the quantum

predictions to the ones obtained within a fully classical description of the system dynamics.

This has allowed us to transparently analyze the classical and quantum nature of the phase

acquired by an optical field during the nonlinear light-matter interaction. We have found

that some of the key features, which have been assumed to have a quantum origin in recent

proposals, also occur in classical physics; in particular: the Kerr nonlinearity of the interaction

induced by the mechanical oscillator and the complete decoupling of light and mechanics at

specific interactions times. Moreover, the results on the classical phase have further allowed

us to extend the classical-quantum comparison to the interferometric visibility, which, on the

other hand, has been always used as a witness to probe the quantum signature of the system

dynamics. Our approach to tackle the classical-quantum comparison has revealed that in the

common (and also current) optomechanical experimental regimes, i.e. large photon numbers

and small coupling constants, classical and quantum descriptions essentially coincide. However,

we have also been able to isolate genuine quantum signatures of the optomechanical interaction,

which appear in the dynamics of both phase and visibility. We have argued how these quantum

trademarks could be probed in future optomechanical setups, without necessarily requiring a

strong coupling regime.
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Chapter 3

Probing anharmonicity of a mechanical

oscillator

3.1 Introduction

As we have discussed in Chapter 1, the ability to control and probe the motion of a massive

mechanical object, which can be a moving mirror [24,118], a cavity membrane [13], or a levitated

nanosphere [119–121], has increased in the last years. This combined to the possibility to

access very low temperatures has allowed to exploit the quantum features of these systems in

a variety of contexts [2]. On this route, optomechanical systems seem to be a natural test

bench to address many fundamental questions. For example, it has been proposed that they

might be used to probe collapse models of quantum mechanics [122, 123], and even to explore

the interface between quantum mechanics and gravity at low energies [6, 124]. In particular,

by pushing our ability to build more sensitive experiments, it has been suggested that a table-

top quantum optics experiment with a standard optomechanical cavity might be able to test

deformations induced by gravity to the standard quantum commutators [6]. At the heart of

these challenging proposals, one can find the widely used and probably principal advantage of

cavity optomechanics: the high-precision readout of the mechanical motion via the light field

reflected from the cavity [2].

In all the above mentioned cases, the motion of the mechanical oscillator has been considered

harmonic. However, when one is interested in studying how to probe possible modifications in

the dynamics of the mechanical mirror due to exotic effects (one example might be represented

by different commutation rules), it becomes very important to verify whether there could be
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other kinds of modifications due to intrinsic properties of the oscillator. In fact, both the two

kinds of modifications (intrinsic and exotic) are often translated into mechanical nonlinearities.

Therefore, even though these nonlinearities might be very different in nature, they could, in

principle, give rise to similar effects, and it could be experimentally hard to understand their

origin.

On the other hand, anharmonicity gives rise to new interesting features on its own. Milburn

and Holmes by studying the properties of the quantum and classical dynamics for an anharmonic

oscillator have been able to demonstrate a decoherence reduction in the quantum-to-classical-

transition [125]. Also, it is a common believe that, in general, anharmonicities might provide

an important resource to generate non-classical quantum states [126–128]. In the same spirit,

the problem of how to quantify the nonlinearity of a quantum oscillator has been recently

addressed [129]. Moreover, nonlinearities in the mechanical motion have been recently accessed

in many different physical platforms, which range from standard mechanical resonators [130]

and cantilivers based on graphene and carbon nanotubes (see [131,132] and references therein)

to levitated nanospheres [133, 134], where the thermal energy has been proven to be sufficient

to reach such regime.

All this suggests that it would be very useful to design an experimentally feasible protocol

able to provide a measure for the mechanical anharmonicity. In this Chapter, we study how

we can probe the anharmonicity of the mechanical oscillator in an optomechanical cavity. We

show that by measuring the phase shift acquired by the field after its multiple interactions with

the anharmonic oscillator, one gets access to all the fundamental parameters of the system and,

in particular, to the anharmonic constant. Only requiring an easily achievable initial mechan-

ical cooling, we find the protocol robust versus possible losses, and we provide the ultimate

quantum bounds on the achievable precision. We then compare such ultimate bounds with the

ones obtained via feasible experimental phase-measurements like homodyne and heterodyne

detections.

The Chapter is organized as follows: in Sec. 3.2 we analyse the model of the optomechanical

cavity and recall the useful and more specific principles of pulsed-optomechanics underlined in

Chapter 1 (paragraph 1.2.4). In Sec. 3.3 we calculate the unitary operator which describes

an effective anharmonic interaction between field and oscillator. This net nonlinear operation,

which under some assumptions acts only on the field mode, naively corresponds to a sequence

of displacement operations on the mechanical state. Indeed, the oscillator results to be driven
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along a closed path in its phase space. We thus explore the effect of such a nonlinear dynamics

on the phase acquired by the optical field. Moreover, in Sec. 3.4, by using the basic tools

of quantum estimation theory described in 1.2.6, we explore the performance of our protocol.

In Sec. 3.5 following the same procedure we reproduce all the previous results for a cubic

mechanical anharmonicity, and argue how we can in principle discriminate it from the quartic

one. To address the robustness of our protocol we then study the effect of possible losses in the

system in Sec. 3.6. Finally, Sec. 3.7 summarizes our findings and conclusive remarks.

3.2 The model

Let us now consider again the optomechanical cavity described in paragraph 1.2.3, which is

now formed by a quantum anharmonic oscillator coupled to the single mode optical field. The

effective Hamiltonian obtained in Eq. (1.11) can thus be rewritten as H = H0 +Hint, where, in

a frame rotating with the optical field, Hint is the interaction Hamiltonian given in Eq. (2.2),

while the free Hamiltonian of the mechanical oscillator is now

H0 =
1

2
~ω0

(
X2 + P 2

)
+
γ

4
~ω0X

4, (3.1)

with X and P defined as in Eq. (2.3), and γ � 1 the quartic anharmonic parameter.

We again investigate the system dynamics in the pulsed regime, where, as we have previously

discussed in paragraph 1.2.4, the interaction time between field and oscillator is much faster

than the mechanical motion: the mirror position is practically fixed during each interaction.

Within this regime, it is possible to neglect the free evolution of the mechanics and the evolution

operator of the system is given by Eq. (2.4). When the light is out of the cavity, the oscillator

can evolve accordingly to H0, conversely, it can be driven along closed paths in phase space by

engineering the times between subsequent light-pulse interactions. We indeed imagine that a

light pulse can enter the cavity, leave it after a certain time and then wait in a fiber-loop before

its next injection into the cavity, as depicted in Fig. 3.1.

3.3 The estimation scheme

Now we utilise the scheme with four pulsed interactions as described in paragraph (2.3.1) to

drive the mechanical oscillator along a loop in its phase space, where each pulse represents a
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Figure 3.1: Representation of the model. A laser pulse enters an optomechanical cavity and

then escapes going into a delay loop for an engineered time. In order to rotate the polarization of

the light before and after a pulse, we require polarizing beam splitters (PBSs), a λ/4 wave plate

and an Electro-optic Modulator (EOM). Immediately after the last interaction the EOM does

not rotate the polarization anymore and the light pulses are free to leave the optomechanical

cavity.

field-oscillator interaction described by U . The resulting operation is modelled as

Uanh = eiλnX( 3τ
4

)eiλnX( τ
2

)eiλnX( τ
4

)eiλnX , (3.2)

where τ = 2π/ω is now the mechanical period of the quantum anharmonic oscillator and

X(t) = (1/
√

2)(b†(t) + b(t)). In order to calculate the operation in Eq. (3.2), we need to obtain

the evolution for the mechanical operators. By using the method of successive approximation

where the frequency shift due to the anharmonic potential is taken into account in accordance

with similar standard procedures in classical mechanics [135,136], we get at the first order in γ

b(t) ' be−iωt +
γ

4

[(
e−iωt − e+3iωt

) b†3
4

+
(
e−3iωt − e−iωt

) b3

2
+
(
e−iωt − eiωt

) 3

2
b†
(
1 + b†b

)]
,

(3.3)

where the operators without an explicit time-dependence must be considered at t = 0, and

ω = ω0 +
3

8
γω0 (2 + |A|2), (3.4)

is the new frequency of the anharmonic oscillator, with |A| the initial amplitude of the unper-

turbed harmonic oscillator. It is worth mentioning that to be consistent with our perturbation

approach, the condition γ|A|2 � 1 must be satisfied. Now, from Eq. (3.3) it is easy to calculate
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the quadrature operators at times the t = 0, τ/4, τ/2, 3τ/4, τ :

X(0) = X,

X
(τ

4

)
' P + i

γ

4
√

2
(b3 − b†3 − 3b† + 3b− 3b†2b+ 3b†b2),

X
(τ

2

)
' −X,

X

(
3τ

4

)
' −P − i γ

4
√

2
(b3 − b†3 − 3b† + 3b− 3b†2b+ 3b†b2),

X (τ) ' X.

(3.5)

As can been noted from Eq. (3.5), after a period the oscillator is again at its initial position

at the first order in γ. This will be a crucial point in our scheme since only at this time (or

integer multiples) field and mirror become disentangled. We can also note that to close the loop,

we should know the mechanical frequency and, therefore, the anharmonic constant, which is

actually the parameter that we would like to estimate with our protocol. However, this fact does

not represent an important issue, besides a very common situation in estimation theory easily

bypassed by using subsequent adaptive measurements [137–139]. Nevertheless, our final goal is

to find the anharmonic constant by measuring the phase of the field after multiple light-mirror

interactions in an interferometric scheme (via homodyne or heterodyne detection), and one can

thus verify the closure of the path by checking the revival of the visibility dynamics explored

in the previous Chapter. We already anticipate that, in the case of a cubic anharmonicity, the

mechanical frequency is not modified, and we do not need to require subsequent measurements.

This fact might be also used to distinguish the two different anharmonicities.

By tracing over the mechanical degrees of freedom, we would like to compute the dynamics

of the cavity field given by the completely-positive map

E(%f) = Trm[Uanh%f ⊗ ς U †anh], (3.6)

where %f (ς) is the initial density matrix of the field (oscillator). We consider the case in which

the state of the mechanics is diagonal in the Fock basis: ς =
∑

n ςn|n〉〈n|, this includes thermal

states. By substituting the quadratures operators in Eq. (3.5) into the operator in Eq. (3.2),

after lengthy algebra, we have

Uanh ' e
iλn(−P−i γ

4
√

2
∆)
e−iλnXe

iλn(P+i γ

4
√

2
∆)
eiλnX , (3.7)

where for convenience we have defined

∆ = b3 − b†3 − 3b† + 3b− 3b†2b+ 3b†b2 (3.8)
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the correction induced by the anharmonic dynamics. As a starting point, the operator in

Eq. (3.7) can be analytically computed by using Zassenhaus formula § on the first and third

exponential. More specifically, at the first order in γ, we get

e
iλn(−P−i γ

4
√

2
∆)

= e−iλnP e
1

4
√

2
λn∆

e−
3
8
γλ2n2(b†2−b2)ei

γ
4
λ3n3P

' e−iλnP e
γ

4
√

2
f1(b,b†)

,

e
iλn(P+i γ

4
√

2
∆)

= eiλnP e
− 1

4
√

2
λn∆

e−
3
8
γλ2n2(b†2−b2)e−i

γ
4
λ3n3P

' eiλnP e
γ

4
√

2
f2(b,b†)

,

(3.9)

where we have defined

f1(b, b†) = λn∆− 3√
2
λ2n2(b†2 − b2) +

√
2iλ3n3P,

f2(b, b†) = −λn∆− 3√
2
λ2n2(b†2 − b2)−

√
2iλ3n3P.

(3.10)

Then we can switch the last factors in Eq. (3.9) respectively to the left and right by using

again the Zassenhaus expansion obtaining

Uanh '
(

1 +
γ

4
√

2
F1(b, b†)

)
eiλ

2n2

(
1 +

γ

4
√

2
F2(b, b†)

)
, (3.11)

where

F1(b, b†) = −2
√

2iλ4n4 +
√

2iλ3n3(3X − 4P ) + 3
√

2λ2n2

[
b2 − b†2

2
− i(1− 2b†b)

]
+ λn[b†3 − b3 + 3(b†2b− b†b2)− 3

√
2iP ],

F2(b, b†) = −4
√

2iλ3n3P +
3
√

2

2
λ2n2

(
b†2 − b2

)
+ λn[b3 − b†3 − 3(b†2b− b†b2) + 3

√
2iP ]

(3.12)

are the two resulting functions which correspond to f1(2) after having performed the above

operation. Since we are interested in a correction at the first order in γ, the two functions F1

and F2 can be summed up so that

Uanh ' ξh

[
1 +

γ

4
√

2

(
F1(b, b†) + F2(b, b†)

)]
= ξh

[
1 +

γ

4

(
−2iλ4n4 + 3iλ3n3X − 3iλ2n2(1− 2b†b)

)]
,

(3.13)

where ξh = eiλ
2n2

is the unitary operator which can be found from (3.2) in the case of a har-

monic dynamics, and that indeed we have already obtained in the previous Chapter (Eqs.(2.5)

§Zassenhaus formula: ex̂+ŷ = ex̂eŷ
∏∞
i=1 e

ẑi , with ẑ1 = − 1
2 [x̂, ŷ], ẑ2 = 1

6 [x̂, [x̂, ŷ]] + 1
3 [ŷ, [x̂, ŷ]], ẑ3 =

− 1
8 ([ŷ, [x̂, [x̂, ŷ]]] + [ŷ, [ŷ, [x̂, ŷ]]])− 1

24 [x̂, [x̂, [x̂, ŷ]]], . . . [140].
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and (2.6)) for the same four-pulse scheme. Now, we can perform the partial trace over the

mechanical degrees of freedom with the oscillator initially prepared in a thermal state. We find

the effective unitary operator

ξeff ' exp
{
i(λ2n2 − γ

2
(λ4n4 + 3λ2n2n̄)

}
, (3.14)

where n̄ represents the initial population of the mechanical state. As a result, at the first order

in γ, and in the limit λ2〈n〉2 � n̄, the evolution of the field, after enclosing a closed loop in the

oscillator phase space, reads like

E(%f) ' ξeff%fξ
†
eff . (3.15)

This represents an effective unitary operator which only acts on the field and depends on

the anharmonic parameter we aim to estimate. Equation (3.15) also tells us that the field

experiences a Kerr nonlinearity when entering into the cavity due to the particular interaction

Hamiltonian [35]. Very importantly, the estimation of γ does not require a demanding cooling

of the mechanical motion, since the condition λ2〈n〉2 � n̄, which allows us to have field and

mirror uncorrelated at a mechanical period, can be easily satisfied in todays experiments [2].

Given the result for the effective map, we are now ready to evaluate the mean value of the

optical field after the four pulsed interactions. Considering a field initially in a coherent state

%f = |α〉f 〈α|, we have

〈a〉 = f〈α|ξ†effaξeff |α〉f

= αe−(|α|2−iλ2)

∞∑
n=0

|α|2n

n!
e2iλ2ne−i

γ
2
λ4(4n3+6n2+4n+1)

' αe−(|α|2−iλ2)

∞∑
n=0

|α|2n

n!
e2iλ2n

[
1− iγ

2
λ4(4n3 + 6n2 + 4n+ 1)

]
= αe−(|α|2−iλ2)

[
eNpe

2iλ2

− iγ
2
λ4(4N3

p + 18N2
p + 14Np + 1)eNpe

−2iλ2
]

= α〈a〉he−i
γ
2
λ4(4N3

p+18N2
p+14Np+1),

(3.16)

where 〈a〉h = 〈α|ξ†haξh|α〉 = eiλ
2−Np(1−ei2λ2

) is the mean value of the optical field in the case

of a harmonic evolution of the mechanical oscillator as already found in Eq. (2.7). Note that

we have assumed λ2N2
p � n̄ to safely consider the effective map ξeff and γλ4N3

p � 1 in the

third line. Also, we remind that Np = 〈n〉 = |α|2. Additionally, we must satisfy the condition

after Eq. (3.4), which, given the choice of the initial optical state, reads γ|A|2 = γ(λNp)
2 � 1.
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By looking at Eq. (3.16) we see that the phase acquired by the field after the interaction

with the oscillator does not depend on the mechanical initial conditions, but it provides all the

information on the interaction.

As already mentioned in the previous Chapter, in the case of a harmonic oscillator, the same

four-pulse scheme has been suggested to probe possible modifications (due to gravity) to the

standard commutation rule between X and P . The protocol relies on the fact that the operation

in Eq. (2.5) can be reduced to an effective operator, which acts only on the field and encodes

information on the mechanical commutator. Equation (2.6) illustrates this result within the

framework of standard quantum mechanics. Interestingly, our anharmonic optical phase shift

in Eq. (3.16) (derived for a quartic anharmonicity) has the same form (same dependence from

the optomechanical parameters) of the one obtained in Ref. [6] for a particular deformation of

the commutator between X and P . This tells us that, in a possible experimental realization of

the protocol in Ref. [6], one should be able to rely on the assumption of a harmonic mechanical

motion, otherwise it might be difficult to understand the origin of an additional phase shift.

3.4 Estimation properties of the anharmonic parameter

Here we are going to make use of the quantum estimation techniques presented in the first

Chapter of this thesis (see paragraph 1.2.6 for more details) to find out how precisely we can

estimate the anharmonic parameter γ. In particular, we are going to calculate the ultimate

quantum bounds on the estimation precision of γ, and to compare them with the ones that can

be achieved in feasible measurement schemes such us homodyne and heterodyne detection [40]

(see paragraph 1.2.5 for more details).

The first quantity we want to calculate is the QFI with respect to the parameter γ for a

specific output state given by the map in Eq. (3.15). Since the effective dynamics described

by the operator ξeff is unitary, if we consider an input pure state for the field, the output state

will still be pure, and we can use the expression of the QFI for pure states in Eq. (1.28).

Specifically, taking the field initially in the coherent state |α〉f , the final (pure) state will be

|ψγ〉 = ξeff |α〉f , and the QFI results

Qγ = 4
(
〈∂γψγ|∂γψγ〉 − |〈∂γψγ|ψγ〉|2

)
= λ8

(
〈ψγ|n8|ψγ〉 − 〈ψγ|n4|ψγ〉2

)
= 16λ8N7

p +O(N6
p ),

(3.17)
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where |∂γψγ〉 indicates the derivative of the state with respect to γ. As we know, the QFI

provides the lower bound on the estimation precision for the variance of parameter we are

interested in, as stated in the quantum Cramér-Rao theorem (Eq. (1.27)). In our specific case,

we have

Var(γ) ≥ 1

MQγ

&
1

16Mλ8N7
p

, (3.18)

where we remind thatM is the number of measurements. A careful reading of Eq. (3.18) tells

us that our estimation of the parameter is well-enhanced by the self optical Kerr nonlinearity

(∝ n4) induced by the interaction Hamiltonian and encoded in the displacement operator given

in Eq. (3.14). From a theoretical point of view the ultimate bound given by Eq. (3.18) is

always achievable in the framework of single-parameter estimation [40]. This means that, in

principle, there should be a POVM whose classical FI reaches the value of the QFI. Therefore,

it becomes important to explore which kind of feasible measurements have a FI close to the

QFI. The FI is given by Eq. (1.24), which now is written as

Fγ =

∫
d • (∂γp(•|γ))2

p(•|γ)
, (3.19)

with p(•|γ) a generic conditional probability of obtaining the outcome • assuming to know

the value of the parameter γ. Among all the possible measurement schemes we restrict our

attention on homodyne and heterodyne detection discussed in paragraph 1.2.5. Defined the

quadrature operator of the field Xφ
f as in Eq. (1.19) homodyne detection corresponds to a

projection on the quadrature eigenstates defined by Xφ
f |Xf〉φ = Xf |Xf〉φ. In the Fock basis,

these are given by [141]

|Xf〉φ = e−X
2
f /2

(
1

π

)1/4 ∞∑
m=0

Hm(Xf)

2m/2
√
m!
e−imφ|m〉, (3.20)

where Hm(x) are the Hermite polynomials. Given the value of γ, the conditional probability

results equal to the following series

p(Xf |γ) = |φ〈Xf |ψγ〉|2

=
e−(|α|2+Xf)

√
π

∣∣∣∣∣
∞∑
m=0

αmHm(Xf)

2
m
2 m!

eim[φ−λ2m(1+ γ
2
λ2m2)]

∣∣∣∣∣
2

,
(3.21)

which cannot be calculated analytically. However, by fixing the parameters {α, φ, λ, γ}, Eq.

(3.21) can be numerically evaluated as a function of the measurement outcome Xf . We can
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Figure 3.2: Plot of F hom
γ /Qγ for the cubic (red triangles) and the quartic (blue dots) an-

harmonicities by varying the number of photons inside the cavity. The parameters are:

λ ∼ 1.5× 10−5, γ = 10−25 and φ = π/2.

then calculate the FI in Eq. (3.19). Figure 3.2 shows the ratio between the FI and QFI in

the case of the homodyne measurement, where the phase φ has been optimised to π/2. We

can immediately see that by increasing the number of photons, the ratio between FI and QFI

progressively grows, reaching already a high value (F hom
γ /Qγ ∼ 0.9) when Np ∼ 30. Given

that for such a weak photon source we already achieve a good agreement, we can infer that if

we could further increase the number of photons, this ratio would become optimal, eventually

approaching one. And, this is actually the case in todays experiments, where optical laser

sources usually used are quite strong to enhance the optomechanical coupling strength. We

then conclude that homodyne detection results an optimal scheme in a feasible experimental

condition.

Now we can study another feasible measurement scheme: heterodyne detection. It results

in a projection on a coherent state |z〉 that, as we have seen, can be easily realized via a double

homodyne (paragraph 1.2.5) [39]. In this case, the conditional probability is

p(η|γ) = |〈z|ψγ〉|2

= e−(|α|2+|z|2)

∣∣∣∣∣
∞∑
m=0

αmz∗m

m!2
e−iλ

2m2(1+ γ
2
λ2m2)

∣∣∣∣∣
2

,
(3.22)

while the FI is obtained integrating Eq. (3.22) as

F het
γ =

1

π

∫
d2z

(∂γp(z|γ))2

p(z|γ)
, (3.23)
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where we do not have a dependence on the phase parameter. Following the same procedure

as before, the FI can be now numerically evaluated. For numerical reasons we select a field

initially prepared in a coherent state with a maximum value of photons of about 35. We

find that the ratio between FI and QFI results F het
γ /Qγ = 0.5, which is not affected by any

parameter, including the number of photons. It is therefore possible to conclude that homodyne

measurement is experimentally more efficient to probe the anharmonicity of the mechanical

oscillator. Indeed, by using homodyne detection, we can perform an optimal estimate of the

parameter we are interested in, and, eventually, achieve the limit given by quantum mechanics.

Another important figure of merit of any estimation protocol aiming to measure small

parameters is the signal-to-noise ratio. As already discussed in paragraph 1.2.6, this quantity

compares the level of a desired signal to the level of background noise, being defined as the ratio

between the signal and the noise power. By using the upper bound for the signal-to-noise ratio

in Eq. (1.30) and the expression for the QFI obtained in (3.17), in the limit of large number of

photons, we find that

Rγ ≤ γ2MQγ = 16γ2λ8N7
pM. (3.24)

To have an efficient protocol it is required a significant value of the signal-to-noise ratio after a

feasible number of measurements M, i.e. Rγ > 1. By using realistic experimental parameters

such as Np ∼ 109, λ ∼ 10−4, and fixing the number of measurements M ∼ 104, our analysis

shows that we can aim to probe quartic anharmonicities of about γ ∼ 10−20. We remark

that the selected number of experimental runs allows us to still adopt optimal asymptotic

estimators like the Bayesian or the MaxLik. Also, for an initial temperature of a few degrees

Kelvin, which is experimentally achieved using dilution refrigeration [2], all the values used for

the parameters satisfy the assumptions that we have made to derive our results (γλ4N3
p � 1,

λ2N2
p � n̄, εn̄� Np).

3.5 Cubic anharmonicity

Here, we briefly reproduce all the previous results for the case of a cubic mechanical anhar-

monicity. Specifically, we consider the following Hamiltonian for the mechanical mirror

H0 =
1

2
~ω0

(
X2 + P 2

)
+
δ

3
~ω0X

3, (3.25)

with δ the cubic anharmonic parameter. By following the procedures in Ref. [135, 136], at the

first order in δ and for an initial displacement satisfying δλNp � 1, the annihilation operator
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at time t is

b(t) ' be−iωt +
δ

23/2

[ (
e−iωt − 1

) (
2b†b+ 1

)
+
(
e−2iωt − e−iωt

)
b2 + (e−iωt − e2iωt)

b†2

3

]
, (3.26)

where again the operators without an explicit time-dependence must be considered at t = 0 and,

importantly, now the frequency of the anharmonic oscillator coincides with the bare mechanical

frequency ω0. We highlight that this discrepancy between the two kinds of anharmonicity might

be used to distinguish them, for example by looking at the first revival of the visibility pattern

in the interferometric scheme analysed in the previous Chapter. By using Eq. (3.26) the

mechanical position operators at the times t = 0, τ/4, τ/2, 3τ/4, τ result

X(0) = X,

X
(τ

4

)
' P + δ(∆ + b†2ν + b2ν∗),

X
(τ

2

)
' −X + δ(2∆ +

1

3
(b†2 + b2)),

X

(
3τ

4

)
' −P + δ(∆ + b†2ν∗ + b2ν),

(3.27)

with ∆ = −(b†0b0 +1/2) and ν = −(1/6)(2i+1). By substituting Eq. (3.27) into the overall evo-

lution operator in Eq. (3.2), and following the same procedure as for the quartic anharmonicity,

we find the final effective evolution operator only describing the evolution of the cavity field in

the limit λ2N2
p � n̄:

ξeff ' exp{i(λ2n2 − 2δ

9
λ3n3)}, (3.28)

which gives the following mean value for the optical field (in the limit δλ3N2
p � 1)

〈a〉 ' α〈a〉he−i
2
9
δλ3(3N2

p+3Np+1). (3.29)

Equation (3.28) shows again that the optical field experiences a Kerr nonlinearity (∝ n3) when

it enters into the cavity in (3.29). This results in an additional optical phase proportional to

the number of photons. In turn, by using the effective operator ξeff and taking the field in the

initial coherent state |α〉f , we can calculate the QFI for the cubic anharmonicity, which reads

Qδ '
16

81
λ6(9N5

p + 54N4
p + 84N3

p + 30N2
p +Np). (3.30)

This brings us to the following results for the Cramér-Rao bound and the signal-to-noise ratio

Var(δ) ≥ 1

MQδ

&
9

16Mλ6N5
p

,

Rδ .
16

9
δ2λ6N5

pM.

(3.31)
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By using the parameter values of the previous paragraph, and always requiring an initial me-

chanical temperature of a few degrees Kelvin, we find that we can in principle probe cubic

anharmonicities as low as δ ∼ 10−15.

3.6 Effect of losses

We now would like to investigate how possible losses in the optical fiber when the light is out

of the cavity can affect our previous results (see Fig. 3.1). A measure of the loss between

two consecutive light pulses is provided by the ratio of the two rescaled coupling constants

λi+1/λi = 1 − ε with i = 1, ..., 4 the number of consecutive light-mirror interactions. This

means that for every pulse the optomechanical interaction is weaker, and, in turn, we expect

the overall full operation (3.2) and the effective operator acting on the field (3.14) to be affected.

We can also predict that field and mirror will result correlated even after a mechanical period,

when the oscillator encloses a loop in its phase space.

More specifically, the evolution operator is now

Ũanh ' e−iλ4nP e
γ
4
f1(b,b†)eiλ3nXe−iλ2nP e

γ
4
f2(b,b†)eiλ1nX

= e−iλ4nP e
γ
4
f1(b,b†)eiλ4nP ξ̃he

−iλ1nXe
γ
4
f2(b,b†)eiλ1nX ,

(3.32)

where

ξ̃h = D(nµ)ein
2[λ3λ2+ 1

2
(λ2−λ4)(λ1−λ3)], (3.33)

with D(nµ) = en(µb†−µ∗b) and µ = (1/
√

2)[(λ4 − λ2) + i(λ1 − λ3)]. We can note that the

displacement operator D(nµ) in Eq. (3.33) entangles light and mirror even in the case of closed

loops, as expected. To calculate Eq. (3.32) we follow the same procedure as before. We firstly

note that the two functions f1(b, b†) and f2(b, b†) have the same formal definition given in Eq.

(3.10) with λ → λ4 and λ → λ1, respectively. We then switch the exponential depending on

the functions f1,2 on the left and on the right. At the first order in γ the operator in Eq. (3.32)

can thus be written as

Ũanh ' ξh +
γ

4
[F1(b, b†)ξ̃h + ξ̃hF2(b, b†)], (3.34)

where F1,2 follow the same convention as f1,2. At this point, to quantify the impact of losses

on the effective map, we trace over the degrees of freedom of the mirror, obtaining

ξ̃eff ' exp

{
−|µ|

2

2
n2(1 + 2n̄)

}
× exp

{
i

[
n2

(
λ3λ2 +

1

2
(λ2 − λ4)(λ1 − λ3)

)
− γ

2

(
λ4n4 +O(ελ4n3n̄)

)]}
,

(3.35)
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By looking at Eq. (3.35) we see that in the limit εn̄ � Np losses in the fibers can be safely

neglected. We can further say that losses also affect the amplitude of the harmonic operator.

This is usually translated in a lowering of the visibility in the interferometric scheme built as

in Fig. 2.3. However, this deleterious outcome can be easily evaluated before running the

experiment.

3.7 Conclusions

In this Chapter, we have studied a protocol able to estimate the anharmonic constant of a

mechanical oscillator in an optomechanical cavity. To achieve this goal we have used four

pulsed interactions between field and mechanical oscillator. Demanding a reasonable initial

mechanical cooling, we have found that mechanical oscillator and field are disentangled at

specific times, which coincide with multiples of the period of the oscillator. Between these

specific times the field undergoes an effective unitary operation, which encodes the relevant

information about the dynamics and, more specifically, on the anharmonicity. We have also

seen that we can in principle distinguish between different kinds of anharmonicity, since the

mechanical frequency is modified only in the case of a quartic anharmonicity. The efficiency

of our protocol has been tested by using the tools of quantum estimation theory: we have

calculated the ultimate bounds on the estimation precision and found how we can achieve such

limits via feasible measurements, i.e. homodyne and heterodyne detections. Comparing these

two possible ways of measuring the optical phase, we have proved that homodyne detection is

more convenient, providing an optimal result when we approach the large photon number limit

in the cavity. Finally, by studying the signal-to-noise-ratio, we have verified the performance

of our protocol with respect to the background noise.

Our protocol shows a general procedure which might be used to probe other kinds of non-

linearities, for example, the ones arising from an optomechanical interaction behind the linear

approximation. Furthermore, it might be employed for similar problems in other platforms

with similar Hamiltonians.
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Chapter 4

Dynamical dressing process in Casimir

scenarios

4.1 Introduction

As we have seen in Sec. 1.3, Casimir and Casimir-Polder forces are originated whenever the

vacuum fluctuations of the electromagnetic field are disturbed by the presence of boundaries

given for example by neutral macroscopic bodies and/or atoms [8].

New interesting effects arise when boundary conditions on a field are set in motion with a

nonuniform acceleration, or a relevant parameter of the system changes non-adiabatically in

time. In this case, quantum mechanics predicts an emission of photon pairs from the vacuum

[3, 142]. This effect is known as dynamical Casimir effect (DCE) and has been observed in

superconducting circuits [12] and Bose-Einstein condensates [143]. However, the observation

of the DCE originated by the non-adiabatic motion of an oscillating macroscopic boundary

is still an experimental challenge, since to detect a measurable number of photon pairs high

mechanical oscillation frequencies are required. To overcome such difficulties, the control of the

optical properties of the mechanical boundary seems to be essential [144].

A very related physical situation is when the mechanical degrees of freedom of the bound-

aries, which are allowed to move, are treated quantum-mechanically. In the context of an

optomechanical cavity, as discussed in paragraph 1.2.2, an effective interaction between the

field and the mechanical degrees of the wall (phonons), and between field modes mediated by

the movable wall, is generated [4]. It has been proven that such new interactions influence

the vacuum energy density of the electromagnetic field inside the cavity [34, 145–148]. More
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specifically in Refs. [34, 145] it has been discovered an effect very similar to the DCE, though

different in nature.These works can also be of broader interest if one thinks of the exciting recent

developments of the growing field of cavity optomechanics. Nowadays, building optomechanical

cavities with movable mirror of masses of the order of 10−11Kg or even less [2] and reaching

temperatures of the order of a few millidegrees Kelvin [149] is within current technology. The

exploration of vacuum effects arising from a quantum description of the boundaries acting on

fields seems now to be experimentally accessible.

It is now well-recognised in QED that having a dynamical (time-dependent) component in

the system opens the door to new physical effects, which, not directly involving the creation

of real photons from the vacuum, can actually be very different with respect the DCE. In

the context of Casimir-Polder forces, a dynamical component of the force may appear as a

consequence of a population-induced dynamics related to atomic spontaneous decay, the motion

of atoms or macroscopic bodies, a time-dependent change of the matter-radiation coupling,

or even self-dressing processes of the system. In the latter case, the system undergoes an

evolution from an initial non-equilibrium quantum state such us a bare or partially dressed

state and the Casimir-Polder force has a temporal evolution with new peculiarities with respect

to the static case, such as temporal oscillations, including the possibility of transient repulsive

forces [63]. This scenario also occurs when some physical parameters of the Hamiltonian change

instantaneously, for example the atomic transition frequency induced by Stark shift through an

external electric field suddenly switched on or off. Again, the state of the system is no longer an

eigenstate of the new Hamiltonian and a time-dependent Casimir-Polder force appears [150].

This kind of studies have also been extended to more complex configurations where, for example,

real surfaces [151], dielectric media [152] or chiral molecules [153] are considered. In all these

investigations two main features have been highlighted: the Casimir-Polder force can be much

stronger with respect to the stationary case at the round trip time, which coincides with the

time spent by the radiation emitted by the atom to go back to the atom after a reflection on the

plate; and, the dynamical force can display a new transient repulsive character, contrarily to

static electric atom-surface Casimir-Polder forces which are always attractive. In a nutshell, all

these studies, which have considered atoms or molecules in their bare or partially dressed ground

states, have clearly demonstrated that time-dependent aspects allow for the observation of new

features in Casimir-Polder interactions. In parallel, conceptually related problems have been

recently addressed in various physical systems and have enlarged the interest in investigating
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the time-dependent dressing. For example, we recall the experimental and theoretical study

of the response of a quasi-particle to a fast external force [154, 155], the observation of the

time-dependent dressing of a quasiparticle in condensed matter physics [156], and the study of

the onset of an effective mass in Bose-Einstein condensates [157].

In this Chapter, we study the non-equilibrium dynamical (time-dependent) dressing process

for the interaction between a one-dimensional scalar (or electromagnetic) field with a quantum

mechanical boundary and for the Casimir-Polder force between an atom and perfectly conduct-

ing wall. In Sec. 4.2 we provide a general framework to describe the non-equilibrium dressing

process in a general physical system, which has been previously used for the interaction between

atoms [158] or between an atom and a conducting mirror [63, 150]. In Sec. 4.3 we start our

investigation in a multimode optomechanical scenario. By using the multimode Hamiltonian

described in paragraph 1.2.2 of Chapter 1, we consider the mechanical degrees of freedom of

the moving boundary in the system dynamics. In the equilibrium configuration, due to the

quantum description of the field-mirror interaction, both field and mirror contain virtual exci-

tations, i.e. the ground state of the system becomes dressed. This situation has been recently

studied in [145] for a one-dimensional massless scalar field, and successively extended to a one-

dimensional electromagnetic field and a three-dimensional massless scalar field in [34]. By using

the framework developed in Sec. 4.2, we investigate the dynamical dressing process bringing the

field-mirror system, initially out of equilibrium, to a dressed configuration. By calculating the

local dynamical energy shift of the system, we explore the transient dynamical dressing process

of the wall and the features emerging when approaching the equilibrium configuration of the

coupled system. We also extend our conclusions to the case of a single wall interacting with

two different cavity fields through a generalization of our effective Hamiltonian, which allows

to include the effect of vacuum radiation pressure on both sides of the movable wall. In Sec.

4.4 we instead study the non-equilibrium dressing process for the dynamical Casimir-Polder

force between an initially excited atom and a perfectly conducting plate (a typical cavity QED

scenario). The choice of the initial non-equilibrium atomic configuration shows new relevant

peculiarities compared to the case of a ground-state atom, due to the presence of an atom-field

resonance. The time-dependent Casimir-Polder force exhibits oscillations in time changing from

attractive to repulsive depending on the atom-wall distance. Our results for the atomic excited

state provide a much more convenient way to detect the dynamical Casimir-Polder effect. In

fact, contrarily to the ground-state case, the static atom-wall Casimir-Polder force on an ex-
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cited atom oscillates in space, vanishing at well defined atom-wall distances whose position is

related to the atomic transition wavelength. This means that we can single-out more efficiently

the dynamical contribution to the force, by choosing specific atom-wall distances where the

static force is zero. Also, we find the dynamical force for the excited atom much stronger (some

orders of magnitude) than the dynamical force for a ground-state atom. Finally, Sec. 4.5 is

devoted to our conclusive remarks.

4.2 Non-equilibrium dressing

Let us consider a system of two interacting objects described by the HamiltonianH = H0+Hint,

where H0 is the bare Hamiltonian and Hint the interaction.

In the context of Casimir physics, one is usually interested in the equilibrium ground state

of the overall interacting system |ΨD〉, which is then used to calculate the Casimir or Casimir-

Polder potential (force) between the two objects (as we have seen in paragraph 1.3.4). |ΨD〉

is often referred to as the dressed vacuum state of the overall system, since both objects, due

to their mutual interaction, continuously exchange particles and result covered of excitations.

Since we are in the overall ground state, such excitations cannot be probed and are usually

called virtual. To calculate the dressed state of the system one can rely on non-perturbative

or perturbative methods. However, given that commonly Hint is quite complex and that the

coupling constant between the two objects is much smaller than the bare frequencies, the dressed

state is usually computed by using stationary perturbation theory at the lowest significant order

in the coupling constant on the initial state bare ground state |ΨB〉, where both subsystems are

in their ground states. Supposing that the second order is the lowest significant, it is possible

to show that the stationary second-order energy shift of the overall system can be obtained as

E (2)
stat = 〈ΨD|H |ΨD〉 =

1

2
〈ΨD|Hint |ΨD〉 , (4.1)

where |ΨD〉 is the dressed (i.e. perturbed) state of the system obtained by second-order per-

turbation theory. In the context of Casimir-like configurations, where, for example, we have

a scalar or electromagnetic field inside a cavity with one wall free to move within a potential,

Eq. (4.1) provides a change of the Casimir energy of the system with respect to the configura-

tion in which the boundaries are fixed. Whereas, in the context of Casimir-Polder interactions

between an atom and a wall mediated by an electromagnetic field, Eq. (4.1) relates the energy

shift to the local electromagnetic field felt by the atom at its position. In all the cases, Eq.
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(4.1) connects the second order energy shift of the overall system to the local interaction be-

tween the two objects. We remind that Eq. (4.1) has already been used to calculate the static

Casimir-Polder force between an atom and a wall in paragraph 1.3.4, where we have also seen

that, in the quasi-static approach, the static Casimir-Polder force can be obtained by taking

the derivative of the stationary interaction energy (4.1) with respect to the atom-wall distance

d and changing its sign.

The results in Eq. (4.1) is valid when the system described by the Hamiltonian H is at

equilibrium in the state |ΨD〉. The initial state |ΨB〉 is just the initial point around which we

perform the perturbation theory. This means that the interaction is always on, and we directly

calculate the relevant quantities at the equilibrium configuration. However, we can suppose

that the system is initially (at t = 0) prepared in a state |ΨB〉 which is not an eigenstate of

H. Then, for t > 0, we turn on the the interaction Hamiltonian and let the system evolve

freely. Once the interaction is on, the interacting objects start to exchange virtual particles.

This process, eventually bringing the system to an equilibrium configuration, is the dynamical

dressing process we wish to investigate in this Chapter. The final configuration will be a

dressed state, which will not necessarily coincide with the dressed state |ΨD〉 that one can find

by performing the stationary perturbation theory on |ΨB〉. Note that the above discussion can

be generalized to any non-equilibrium initial state for the total system.

To investigate the dynamical dressing process one needs to find a quantity which takes

into account the local dynamical interaction of the two objects. The most natural way is to

generalize Eq. (4.1) as

E (2)
loc,dyn(t) =

〈ΨB|H(2)
int(t) |ΨB〉
2

, (4.2)

where H(2)
int(t) is the interaction Hamiltonian in the Heisenberg representation at the second

order in the coupling constant. The procedure in Eq. (4.2) is analogous to the one used

in [63, 150] for the atom-plate Casimir-Polder force. Contrarily to the stationary case, the

energy shift in Eq. (4.2) is the local interaction energy between the two objects, and in general

does not coincide (in particular at very large times) to the overall energy shift of the system

in Eq. (4.1) (we will clarify this subtle point in the following part of the Chapter), which, on

the other hand, is time-independent due to the unitary time evolution. Nevertheless, as we

will discuss, in the limit of large times Eq. (4.2) provides the correct expression for the static

Casimir or Casimir-Polder energy, since

lim
t→∞
E (2)

loc,dyn(t) = E (2)
stat. (4.3)
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However, we will see that a similar relation does not hold for all the relevant physical quantities.

In a quasi-static approach, the dynamical Casimir-Polder force can be thus obtained by taking

the derivative of the dynamical local interaction energy (4.3) as

F (d, t) = − ∂

∂d
E (2)

loc,dyn(d, t). (4.4)

Also for this case, we will see that, in the limit of large times, Eq. (4.4) returns the correct

expression for the static Casimir-Polder energy in Eq. (1.57).

4.3 Dynamical dressing in multi-mode optomechanics

4.3.1 The model

Let us consider a massless scalar field inside the one-dimensional cavity with a mobile wall, as

described in paragraph 1.2.2. The system is sketched in Fig. 4.1, where for the moment we do

not consider the fixed wall on the right side. By including the mechanical degrees of freedom of

the moving mirror in the overall system dynamics, and treating them quantum-mechanically,

the effective non-relativistic Hamiltonian describing our one-dimensional coupled mirror-field

system is given by Eq. (1.8). It can be rewritten as H = H0 +Hint, where

H0 = Hf +Hm

= ~
∑
k

ωka
†
kak + ~ω0b

†b
(4.5)

is the unperturbed Hamiltonian with Hf and Hm field and mirror Hamiltonians. We remember

that we have imposed Dirichlet boundary conditions on the field operator at the positions of

the walls: the field modes are then referred to the equilibrium position L of the moving mirror,

and, as a result, the possible wave-numbers are kj = jπ/L, with j an integer number. While,

the effective interaction between mirror and field and between different field modes (due to the

motion of the wall), is rewritten as [4]

Hint = −
∑
kj

Ckj(b+ b†)
[
akaj + a†jak + a†kaj + a†ka

†
j

]
, (4.6)

where we have defined the coupling constant

Ckj = (−1)k+j

(
~
2

) 3
2 1

L
√
M

√
ωkωj
ω0

, (4.7)
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Figure 4.1: Pictorial description of the system. A movable wall, described quantum-

mechanically, is bounded by a harmonic potential of frequency ω0 (represented by the red

well) around its equilibrium position L. The wall can interact with two different set of cavity

modes, at its left and right sides. In the first part of this work we only consider the coupling

with one cavity field. Due to the interaction with the field vacuum fluctuations, the state of

the wall starts its time-dependent self-dressing process: the two objects interchange virtual

particles (black-dotted arrows). This process ends when the dressed equilibrium configura-

tion is reached. As a result, the mirror results covered by a cloud of virtual quanta, mainly

concentrated at the proximity of its equilibrium position.

with k and j integer numbers specifying the field modes relative to the equilibrium position

L of the wall. We remark that in our Hamiltonian H we have taken the zero of the energy

such that it includes the static Casimir energy between the two walls ECas, and that all energy

corrections we are going to discuss are meant as corrections to this value of the energy.

4.3.2 Stationary configuration: dressed state

We now want to consider the ground state of our system. The unperturbed ground state is

the bare state |ΨB〉 = |{0p}, 0〉, where both field and mirror are in their ground state with

|{0p}〉 the vacuum state for all cavity modes and |0〉 the vacuum state of the mirror. This

state is not an eigenstate of the total Hamiltonian due to the mirror-field interaction. By using

stationary perturbation theory on Hint, we can find the true ground state of the system, which

corresponds to the equilibrium configuration of the system where both field and mirror contain

virtual excitations. At the lowest significant order in the coupling constant, it reads [145]

|ΨD〉 = |ΨB〉+
∑
jk

Djk|{1j, 1k}, 1〉, (4.8)
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where

Djk = (−1)j+k
1

L

√
~ωjωk
8Mω0

1

(ω0 + ωk + ωj)
(4.9)

quantifies the correction which is given by a pair of virtual excitations of the field (indicated

inside the curly brackets) and one excitation (phonon) of the wall. The dressing effect is thus

more relevant for low mechanical masses and/or low binding frequencies. The fact that the

dressed state is covered with pairs of field particles is very similar to what happens in the DCE,

where indeed photons are produced in pairs from the vacuum [3,142]. However, in the DCE the

emitted photons are actually real particles which are produced in an energy-conserving process

after a non-adiabatic change of the mirror position. Their frequency is indeed related to specific

resonance conditions with the mechanical frequency.

From the dressed state, the second-order energy shift of the system due to the interaction

can be calculated by using Eq. (4.1) as [145]

E (2)
stat =

1

2
〈ΨD|Hint |ΨD〉

= −
∑
kj

~2

4L2M

ωkωj
ω0

1

(ω0 + ωk + ωj)
,

(4.10)

which gives a change of the Casimir energy ECas of the system with respect to the configuration

where the walls are fixed. Due to the sum over all the field modes, Eq. (4.10) diverges. This

is a typical ultraviolet divergence due to high-frequency modes. To regularize this singular

behavior, we use an upper cutoff frequency in the sum over the field modes. On the other

hand, the introduction of an upper cutoff is physically motivated by the fact that a real mirror

becomes transparent at frequencies larger than its plasma frequency, and thus its interaction

with the field is strongly suppressed above such frequency.

The analogous Casimir force for fixed mirrors is of the order of 10−15N for L = 1µm, and

numerical evaluation of Eq. (4.10) gives a correction to the force, which scales as M−1, of

around a few percent of this value for M = 10−21Kg, ω0 = 105s−1 and a cutoff frequency ωcut =

1016s−1. Considering the actual precision of Casimir force measurements of around a few percent

[159,160], and the strong achievements towards the miniaturization of mechanical oscillators in

optomechanics [2], the possibility to detect the tiny effect due to the wall’s quantum movement

(position fluctuations) will be within the range of future technology.

As already discussed in Ref. [145], the second order energy shift in (4.10) can be elegantly

connected to the oscillation energy of the mirror, the emitted photons and the interaction
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energy. In fact, given the stationary energy shifts for each term of the Hamiltonian

E (2)
f,stat = 〈ΨD|Hf |ΨD〉

=
∑
kj

~2

2L2M

ω2
kωj

ω0(ω0 + ωk + ωj)2
,

E (2)
m,stat = 〈ΨD|Hm |ΨD〉

=
∑
j

~2

2L2M

ωkωj
(ω0 + ωk + ωj)2

,

E (2)
int,stat = 〈ΨD|Hint |ΨD〉 = 2E (2)

stat,

(4.11)

and keeping in mind that the total energy shift is E (2)
stat = E (2)

f,stat + E (2)
m,stat + E (2)

int,stat, the following

equation holds

E (2)
f,stat + E (2)

m,stat = −1

2
E (2)

int,stat = −E (2)
stat. (4.12)

Namely, the sum of the field and mirror energy shifts is actually related to the interaction energy

shift, which, in turn, as already seen in Eq. (4.10) is linked to the total stationary energy shift of

the system. This means that the total energy shift is coming from a positive energy contribution

stored in both field and mirror, and a negative one originated by the mirror-field interaction,

which is twice the stationary energy shift of the system. For the dynamical situation we are

going to study, these considerations will be very important. We are indeed going to generalize

the relation between the energy shift and the average value of the interaction Hamiltonian on

the dressed ground state in Eqs. (4.10) and (4.12) to the time-dependent case.

4.3.3 Dynamical dressing of the movable mirror: bare initial state

We now want to investigate the time-dependent dressing process of our system as described

in paragraph 4.2, starting from a non-equilibrium configuration. Let us suppose to prepare at

t = 0 the system in the bare state |ΨB〉, and that the interaction Hamiltonian is “switched on”

at this time. For subsequent times, the bare state |ΨB〉 is not an overall eigenstate anymore,

and the system evolves to find a new equilibrium configuration: field and mirror immediately

start interchanging virtual excitations and the dynamical dressing process begins. The expected

final configuration for the system will be a dressed state, which, however, does not necessarily

coincide with the state |ΨD〉 previously found.

In order to describe this situation, we want to evaluate the local time-dependent interaction

energy by using Eq. (4.2). To this scope, we firstly solve the Heisenberg equations for field
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and mirror operators by using a perturbative approach at the lowest significant order, where

the time-dependent field and mirror annihilation and creation operators are obtained as a

series expansion in the coupling constant, i.e. ak(t) = a
(0)
k (t) + a

(1)
k (t) + ... + a

(i)
k (t) and b(t) =

b(0)(t)+b(1)(t)+...+b(i)(t), with a
(i)
k (t) and b(i)(t) proportional to the i-th power of Ckj. Trivially,

the zero orders are

b(0)(t) = be−iω0t, a
(0)
k (t) = ake

−iωkt, (4.13)

while, the first order corrections result

b(1)(t) =
i

~
∑
kj

Ckje−iω0t[akaj f(ω0 − ωk − ωj) + a†jak f(ω0 − ωk + ωj)

+ a†kaj f(ω0 + ωk − ωj) + a†ka
†
j f(ωk + ωj + ω0)],

a
(1)
k (t) =

2i

~
∑
j

Ckje−iωkt[ajb; f(ωk − ωj − ω0) + ajb
† f(ωk − ωj + ω0)

+ a†jb f(ωk + ωj − ω0) + a†jb
† f(ωk + ωj + ω0)],

(4.14)

where we have defined

f(ω, t) =

∫ t

0

eiωτdτ =
eiωt − 1

iω
, (4.15)

and all operators without an explicit time dependence are considered at time t = 0. By using

the series expansion of the annihilation and creation operators and considering only terms up

to the second order in the coupling constant, the time-dependent interaction energy can be

written as a sum of two different contributions, H(2)
int(t) = H(2)

int,a(t) +H(2)
int,b(t), where

H(2)
int,a(t) = −

∑
kj

Ckj
[
b(0)(t) + b†

(0)

(t)
] [
a

(1)
k (t)a

(0)
j (t) + a†

(1)

k (t)a†
(0)

j (t) + a†
(1)

k (t)a
(0)
j (t)

+a†
(1)

j (t)a
(0)
k (t) + {(1)↔ (0)}

]
,

(4.16)

is obtained by substituting the zero-th order mirror operator b(0)(t) and the first-order field

operator a
(1)
k (t), while

H(2)
int,b(t) = −

∑
kj

Ckj
[
b(1)(t) + b†

(1)

(t)
] [
a

(0)
k (t)a

(0)
j (t) + a†

(0)

k (t)a†
(0)

j (t)

+a†
(0)

k (t)a
(0)
j (t) + a†

(0)

j (t)a
(0)
k (t)

]
,

(4.17)

the first-order correction b(1)(t) for the mirror operator and the zero-th order a
(0)
k (t) for the

field operator. We remark that in the the last term of (4.16) the two indices (0) and (1) within
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curly brackets have been swapped. Now, by inserting Eqs. (4.13) and (4.14) into (4.16) and

(4.17), we obtain

H(2)
int,a(t) = −2i

~
Ckj
(
be−iω0t + b†eiω0t

)
×
{
e−i(ωj+ωk)t

[∑
j′

Cjj′ak
[
aj′b f(ωj − ωj′ − ω0) + aj′b

† f(ωj − ωj′ + ω0)

+ a†j′b f(ωj + ωj′ − ω0) + a†j′b
† f(ωj + ωj′ + ω0)

]

+ Ckj′
[
aj′b f(ωk − ωj′ − ω0) + aj′b

† f(ωk − ωj′ + ω0)

+ a†j′b f(ωk + ωj′ − ω0) + a†j′b
† f(ωk + ωj′ + ω0)

]
aj

]

+ ei(ωk−ωj)t
[∑

j′

Cjj′a†k
[
aj′b f(ωj − ωj′ − ω0) + aj′b

† f(ωj − ωj′ + ω0)

+ a†j′b f(ωj + ωj′ − ω0) + a†j′b
† f(ωj + ωj′ + ω0)

]

+ Ckj′
[
a†j′b

† f ∗(ωk − ωj′ − ω0) + a†j′b
† f ∗(ωk − ωj′ + ω0)

+ aj′b
† f ∗(ωk + ωj′ − ω0) + aj′b f

∗(ωk + ωj′ + ω0)
]
aj

]
+H.c.

}
,

(4.18)

H(2)
int,b(t) = − i

~
∑
kj

∑
k′j′

CkjCk′j′

×
{
ak′aj′

[
e−iω0t f(ω0 − ωk′ − ωj′)− eiω0t f ∗(ω0 + ωk′ + ωj′)

]
+ a†k′aj′

[
e−iω0t f(ω0 + ωk′ − ωj′)− eiω0t f ∗(ω0 − ωk′ + ωj′)

]
−H.c.

}
×
[
akaje

−i(ωk+ωj)t + a†ka
†
je
i(ωk+ωj)t + a†kaje

i(ωk−ωj)t + a†jake
i(ωk−ωk)t

]
,

(4.19)

which averaged over the the initial bare state |ΨB〉 yield

〈ΨB|H(2)
int,a(t) |ΨB〉 = −2i

~
∑
kj

C2
kje
−iω0t[ei(ωk+ωj)t f ∗(ωk + ωj − ω0)

− e−i(ωj+ωk) f(ωj + ωk + ω0)],

〈ΨB|H(2)
int,b(t) |ΨB〉 = −2i

~
∑
kj

C2
kje

i(ωk+ωj)t
[
e−iω0t f(ω0 − ωj − ωk)

−eiω0t f ∗(ωj + ωk + ω0)
]
.

(4.20)
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Summing up the results in (4.20), and using the expression (4.7), we can finally obtain the

second-order local dynamical energy shift

E (2)
loc,dyn(t) = − ~2

4L2
0M

∑
kj

ωkωj
ω0

1

ω0 + ωk + ωj
{1− cos [(ω0 + ωk + ωj) t]} , (4.21)

which, describes the local interaction between field and mobile wall. Some comments on Eq.

(4.21) are now in order. As we can immediately see at t = 0 it vanishes, since at this time the

interaction has not taken place yet. On the other hand, we want to know what happens in the

opposite situation, that is when we consider large times. This scenario should correspond to

the stationary regime for the system. Firstly, let us then discuss such interesting limit in the

case where we have a continuous of modes in the cavity, which means to bring the cavity length

to infinity (L → ∞). We then substitute the sum over the two indices i, j with two integrals

over the frequencies:
∑

kj → L2/(2π)2
∫∞

0

∫∞
0
dkdk′. Equation (4.21) can be rewritten as

E (2)
loc,dyn(t) = − ~2ω2

0

16π2Mc2

∫ ∞
0

dx

∫ ∞
0

dx′
xx′

1 + x+ x′
{1− cos [a (1 + x+ x′) t]} , (4.22)

where a = ω0t and x = ck/ω0. In the limit t→∞ the cosine function appearing in Eq. (4.22)

rapidly oscillates and eventually vanishes, giving the following limit for the energy shift:

E (2)
loc,dyn(t) −→ E (2)

stat. (4.23)

The local dynamical energy shift coincides with the static result for the overall energy shift of

the system in Eq. (4.10), where the state of the system is in the fully dressed configuration. This

confirms that the generalization of the static second-order energy shift to the dynamical case

in Eq. (4.2) is physically sound. The same procedure has also provided consistent results for

the dynamical Casimir-Polder interaction energy between an initially bare or partially dressed

atom and a perfectly conducting wall [63,150,161].

As can be clearly seen from Eq. (4.22) to calculate the dynamical energy shift (as in the case

of the static one), we need to introduce an ultraviolet cutoff frequency. We again emphasize

that this is not just a pure mathematical regularization for allowing a finite result. Indeed, the

introduction of a cutoff is well-motivated from a physical point of view, since a real conducting

wall is always characterized by a plasma frequency, and cavity modes with frequencies higher

than the plasma frequency do not see the boundary, thus not contributing to the effective

wall-field interaction. Therefore, by using a sharp cutoff frequency, the integrals appearing in

Eq. (4.22) can be numerically evaluated: the result is plotted in Fig. 4.2. This shows that
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Figure 4.2: The plot (green continuous line) shows the time evolution of the local dynamical

interaction energy shift of the system in the continuous limit (Eq.(4.22)), i.e. when the length of

the cavity goes to infinity. It shows oscillations around its stationary value (t→∞) represented

by the black dot-dashed line, which coincides with the overall energy shift in the fully dressed

configuration (Eq. (4.10)). There are time intervals where the dynamical interaction energy is

larger than its stationary value. The numerical values used for the mass and frequency of the

movable mirror are respectively ω0 = 104s−1 and M = 10−14Kg, while the cutoff frequency has

been set to ωcut = 1016s−1.

the interaction energy vanishes at t = 0 and, at successive times, shows oscillations around its

stationary limit E (2)
stat. Moreover, at specific time intervals, the absolute value of the dynamical

interaction energy can be larger than in the static case, thus leading to an increase of the Casimir

energy of the system. This could be a relevant feature to use for observing the dynamical effect.

To deeply understand the dynamical dressing process it is necessary to compare the local

dynamical energy shift in Eq. (4.21) with the dynamical shifts related to the unperturbed

Hamiltonians of field and mirror, thus separating the single contributions from the overall

energy shift. We follow the same procedure substituting the perturbative solutions (4.14) for

mirror and field operators into the expressions of field and mirror Hamiltonians. After the

average over the the initial bare state of the system |ΨB〉, we get

E (2)
f,dyn(t) = 〈ΨB|H(2)

f (t) |ΨB〉

=
~2

L2
0M

∑
kj

ω2
kωj
ω0

1

(ω0 + ωk + ωj)2
{1− cos[(ω0 + ωk + ωj)t]} ,

(4.24)
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(a)

(b)

Figure 4.3: Time evolution of dynamical energy shifts in the continuous limit L → ∞ (Eq.

(4.27)): (a) field energy (red continuous line); (b) mirror energy (blue continuous line). Their

dynamics shows oscillations which tend to twice the corresponding stationary value, represented

by the black dot-dashed line. The numerical values of the parameters are the same as in the

plot in Fig. 4.2.

E (2)
m,dyn(t) = 〈ΨB|H(2)

m (t) |ΨB〉

=
~2

2L2
0M

∑
kj

ωkωj
(ω0 + ωk + ωj)2

{1− cos[(ω0 + ωk + ωj)t]} .
(4.25)

This immediately tells us that overall dynamical energy shift is zero

〈ΨB|H(2)(t) |ΨB〉 = 0, (4.26)

as expected given that the system undergoes a unitary evolution from the non-equilibrium

initial state |ΨB〉, i.e. the total energy of the system is conserved. In the continuous limit for
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the cavity modes Eqs. (4.24) and (4.25) become

E (2)
f,dyn(t) =

~2ω2
0

4π2Mc2

∫ ∞
0

dx

∫ ∞
0

dx′
x2x′

(1 + x+ x′)2
{1− cos [a (1 + x+ x′) t]}

E (2)
m,dyn(t) =

~2ω2
0

8π2Mc2

∫ ∞
0

dx

∫ ∞
0

dx′
xx′

(1 + x+ x′)2
{1− cos [a (1 + x+ x′) t]} ,

(4.27)

which provide the following limits for large times (t→∞):

E (2)
f,dyn(t) −→ 2E (2)

f,stat,

E (2)
m,dyn(t) −→ 2E (2)

m,stat.
(4.28)

Both the dynamical energies stored in the field and in the mirror tend to twice their stationary

values, as shown in Fig. 4.3. On the contrary, using Eqs. (4.2) and (4.22), we find that at

large times the energy stored in the interaction Hamiltonian approaches its stationary value,

which is equal to twice the total energy shift of the system in the equilibrium (fully dressed)

configuration:

E (2)
int,dyn −→ E

(2)
int,stat = 2E (2)

stat. (4.29)

Therefore, during the dressing process, since the energy stored in the interaction will approach

its stationary value, field and mirror have to raise their energy to preserve the energy conser-

vation. Furthermore, the additional energy stored in field and oscillator takes into account the

energy difference between the two initial configurations for the stationary and the dynamical

regimes (dressed and bare, respectively). A subtle and very general aspect of the approach to

equilibrium of our system is then revealed: a local quantity such as the mirror-field interaction

energy (localized at the mirror’s position) approaches its stationary value, contrarily to global

quantities such as the field energy, which include contributions from the field emitted during

the self-dressing [162, 163] and propagating at very large distances. Indeed, the same happens

for the dynamical dressing and related Casimir-Polder energies of an atom close to a conducting

wall, which will be investigated in the next Section.

So far the large time limit has been discussed in the case of L→∞, that is for the dynamical

dressing of a single wall interacting with the field vacuum fluctuations. We now want to address

such limit for Eqs. (4.21), (4.24), (4.25), thus considering a discrete number of cavity modes

(a finite distance between the walls). Actually, the result of the limits in (4.23), (4.28), and

(4.29) can be extended to the case of a finite cavity length as long as we consider times shorter

than the round trip time of a photon inside the cavity t̄ = 2L/c. Whereas, for t = nt̄ (with

117



Figure 4.4: The plot (green continuous line) shows the time evolution of the dynamical inter-

action energy shift of the system in the case of a finite value for the distance between the walls.

After the oscillations around its stationary value (represented by the black dot-dashed line)

the energy shift approaches its stationary value to then reappear again. The revivals occur for

integer multiples of the round trip time t̄ = 2L/c. We have used L = 10−5, the other numerical

values are as in Fig. 4.2.

n a non-negative integer) Eq. (4.21) shows a revival, as Fig. 4.4 shows (of course, the same

happens for (4.24) and (4.25)). This feature is a distinctive trait of our system, which does

not find a correspondence in the study of the dynamical Casimir-Polder force between atom

and wall that we will face in the next section. In fact, we will see that in this latter case the

radiation emitted by the atom, which is in part reflected by the wall, propagates to infinity, no

longer participating to the dynamical dressing of the wall. On the other hand, in the present

case, the radiation emitted at the proximity of the movable wall propagates along the cavity

and then is reflected by the fixed mirror, thus revealing these revivals. However, when we take

the continuous limit (L → ∞), we let this energy propagate to infinity, thereby ensuring that

it does not contribute to the dressing process.

4.3.4 Two cavities scenario

The Hamiltonian in Eq. (4.6) neglects the effect of the electromagnetic field in the regions

external to the plates. This is usually a good approximation in quantum optics, for example,

where strong single or multimode fields are coupled to the mobile mirror [2,4]. However, when

studying effects arising from the presence of vacuum fluctuations the inclusion of the external
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field to the cavity might become relevant. We then want to generalize our model to include the

effect of the vacuum field fluctuations on the right side of the movable mirror on the dynamical

dressing process of the system. In other words, we consider two distinct cavities sharing the

same movable mirror (see Fig. 4.1). Since we assume to have a perfectly reflective movable

mirror for both cavities, the effective Hamiltonian (4.6) can be easily generalized to this new

case. The unperturbed and interaction Hamiltonians can be rewritten as

H̃0 = ~ω0b
†b+ ~

∑
k

2∑
l=1

[ωk,la
†
k,lak,l],

H̃int = −(b+ b†)
∑
kj

2∑
l=1

Clkj[ak,laj,l + a†j,lak + a†k,laj,l + a†k,la
†
j,l],

(4.30)

where ak,1 (ak,2) are the field operators for the two cavities, while Li and ωk,i = ckπ/Li with

i = 1, 2 the generic equilibrium frequencies and lengths of the two cavities. The new coupling

constants C1
kj and C2

kj are accordingly modified, though preserving the same form as in Eq.

(4.7). We however highlight that if we take the value of C1
kj as that given by (4.7), the value of

C2
kj must be taken with the opposite sign. In fact, in the expansion in the mirror’s displacement

around its equilibrium position performed in paragraph 1.2.2, the linear term has a different

sign depending on the direction of the wall’s displacement [4]. We also want to stress that the

generalization in Eq. (4.30) is possible since (4.6) is an effective Hamiltonian, which means

that the interaction between cavity modes and mechanical degrees of freedom is encoded in

its operational form and not in the physical parameters such as the cavity length or frequency

(indeed related to the equilibrium position of the moving wall).

Similarly to the single-cavity case, the equations of motion for mirror and field operators at

the zeroth and first order in the coupling constant result

b(0)(t) = be−iω0t, a
(0)
k,l (t) = ak,le

−iωk,lt, (4.31)

b(1)(t) =
i

~
e−iω0t

∑
kj

2∑
l=1

Clkj
[
ak,laj,l f(ω0 − ωk,l − ωj,l) + a†j,lak,l f(ω0 − ωk,l + ωj,l)

+ a†k,laj,l f(ω0 + ωk,l − ωj,l) + a†k,la
†
j,l f(ωk,l + ωj,l + ω0)

]
,

a
(1)
k,l (t) =

2i

~
∑
j

Cljke−iωk,lt
[
aj,lb f(ωk,l − ωj,l − ω0) + aj,lb

† f(ωk,l − ωj,l + ω0)

+ a†j,lb f(ωk,l + ωj,l − ω0) + a†j,lb
† f(ωk,l + ωj,l + ω0)

]
,

(4.32)

where again the operators without an explicit time-dependence must be considered at t = 0.

These equations show that, at the second order in the coupling constants, fields operators are
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independent, contrarily to the mirror operator which instead depends on both field operators.

The fields inside the two cavities can then interact one with the other only through the mirror

displacement operator.

Let us now study how the mirror’s dressing process is modified by the interaction with the

two different cavity fields. We again take as initial state (t = 0) a bare state where both mirror

and cavity fields are in the vacuum state, and insert Eqs. (4.31) and (4.32) into the interaction

Hamiltonian (4.30) and then in (4.2). After calculating the expectation value on the initial

bare state, we find the local dynamical energy shift of the system

Ẽ (2)
loc,dyn(t) =

〈ΨB| H̃(2)
int(t) |ΨB〉
2

= − ~2

4M

∑
kj

2∑
l=1

1

(Ll)2

ωk,lωj,l
ω0

1

ω0 + ωk,l + ωj,l
{1− cos [(ω0 + ωk,l + ωj,l)t]}

(4.33)

In the particular case of two cavities with the same equilibrium length L, we get

Ẽ (2)
loc,dyn(t) = 2E (2)

loc,dyn(t), (4.34)

which says that the local energy shift is twice the local energy shift obtained in the case of a

movable mirror interacting with a single cavity field. This result completes our study of the

dressing process of a single wall in the presence of the electromagnetic vacuum, since one can

easily consider the limit L → ∞ for both cavities. In addition, Eq. (4.34) shows that the

dressing process of the wall with the two semi-spaces occurs independently, although the two

semi-spaces can interact one with the other through the mirror operators. However, we expect

that this behavior holds up to the second order in the coupling constant. At the fourth order,

which is the next not-vanishing, the independence of tho cavity fields should be lost, and, as a

consequence, the dressing process of the wall with the two semi-spaces should result correlated,

possibly revealing new interesting modifications of the Casimir force between two (fixed) walls

when a perfectly conducting mobile wall is inserted between them.
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4.4 Dynamical Casimir-Polder force between an excited

atom and a conducting wall

4.4.1 Dynamical energy shift

We now consider a two-level atom placed near a perfectly conducting wall at z = 0 in the

presence of a quantum electromagnetic field in its vacuum state, as described in paragraph

1.3.4. In the multipolar coupling scheme and within the dipole approximation, the atom-field

interaction Hint is given by Eq. (1.53), while the bare Hamiltonian of atom and field are given

by the first two lines of Eq. (1.43), respectively. To obtain the time-dependent atom-plate

Casimir-Polder force, we again follow the procedure outlined in Eqs. (4.2) and (4.4), which

follow the one used in [63, 150]. Firstly, we solve iteratively the Heisenberg equations for the

field and atomic operators at the lowest significant order [164], obtaining

akj(t) = e−iωktakj(0) + e−iωkt
√

2πωk
~V

[µ · fkj(r)]

× [S+(0) f(ωa + ωk, t) + S−(0) f(ωk − ωa, t)],

S±(t) = e±iωatS±(0)∓ 2Sz(0)e±iωat
∑
kj

√
2πωk
~V

[µ · fkj(r)]

× [akj(0) f ∗(ωk ± ωa, t)− a†kj(0) f(ωk ∓ ωa, t)],

(4.35)

where the function f(ω, t) is defined as in Eq. (4.15). Secondly, we need to calculate the

dynamical atom-plate Casimir-Polder interaction during the dynamical self-dressing process

of the excited atom. By using stationary second-order perturbation theory, we have already

shown in Eq. (4.1) that the second-order energy shift of the overall system can be obtained by

averaging the time-independent interaction Hamiltonian Hint over the dressed (i.e. perturbed)

state of the system |ΨD〉 obtained by second-order perturbation theory. In this context, Eq.

(4.1) establishes an important connection between the overall energy shift of the system and

the local electromagnetic field felt by the atom at its position. The time-dependent Casimir-

Polder energy shift can be then calculated by using the appropriate generalization of Eq. (4.1)

given in (4.2), which has been already used in Refs. [63,150]. We thus proceed calculating the

interaction Hamiltonian in the Heisenberg representation at the second-order in the coupling

H(2)
int(t) by substituting Eqs. (4.35) into the interaction energy (1.53). After some algebra, we
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obtain

H(2)
int(t) = −2πic

V

∑
kj

k[µ · fkj(r)]2[S+(0)eiωat + h.c]

×
{
S+(0)

[
e−iωkt f(ωa + ωk, t)− eiωkt f ∗(ωk − ωa, t)

]
−H.c

}
+

4πic

V
Sz(0)

∑
kk’jj′

√
kk′[µ · fkj(r)][µ · fk’j′(r)]

×
{
ak’j′(0)[eiωat f ∗(ωa + ωk′ , t)− e−iωat f ∗(ωk′ − ωa, t)] +H.c

}
[akj(0)e−iωkt −H.c]

(4.36)

Taking the atom in its excited state and the field in the vacuum state as initial configuration at

t = 0, the dynamical energy shift can be thus evaluated by averaging Eq. (4.36) on the initial

bare state of the system |ΨB〉 = |{0kj}, ↑〉 as

E↑(2)
loc,dyn(t) =

〈{0kj}, ↑|Hint(t) |{0kj}, ↑〉
2

= −iπc
V

∑
kj

k[µ · fkj(r)]2[e−i(ωk−ωa)t f(ωk − ωa, t)− ei(ωk−ωa)t f ∗(ωk − ωa, t)].
(4.37)

We remark that (4.37) assumes that the time-dependent interaction energy, in analogy to the

static case, can be obtained by the local interaction energy between atom and field at the

specific atomic position. We however note that the overall energy shift of the system is time-

independent due to the unitary time evolution. Nevertheless, as we shall discuss below in more

detail, in the limit of large times (4.37) will give back the correct expression of the static atom-

plate Casimir-Polder force.

In the continuum limit, after a sum over polarizations and angular integrations, we finally get

E↑(2)
loc,dyn(d, t) = − µ2

4πd3

∫ ∞
0

−2x cos[x] + (2− x2) sin[x]

x− x0

{1− cos[a(x− x0)]} dx

= − µ2

4πd3
lim
m→1

[
Dm

(∫ ∞
0

sin(mx)

x− x0

dx−
∫ ∞

0

sin(mx)

x− x0

cos[a(x− x0)] dx

)]
,

where Dm = 2− 2
∂

∂m
+

∂2

∂m2

(4.38)

is a differential operator, z = d is the atom-wall distance, x = 2kd, x0 = 2kad, and a = ct/2d.

For the sake of simplicity, we have assumed an isotropic atom, i.e µ2
x = µ2

y = µ2
z = µ2/3. From

the second line of Eq. (4.38) we can see that two terms (integrals) contribute to the dynamical

energy shift. The first is time-independent and gives the Casimir-Polder energy shift for an

excited atom as obtained with a time-independent approach in Eq. (1.56). The second term is
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time-dependent and it is related to the dynamical dressing of the excited atom. The presence

of a pole for k = ka in the static part takes into account the possibility of emission of a real

photon by the excited atom, and it is responsible of the well-known oscillatory behavior of the

static atom-wall Casimir-Polder force [60, 62]. However, our overall dynamical result does not

display poles in the integration over the field frequency, as the first line of (4.38) clearly shows.

By explicitly calculating the time-dependent term in (4.38) one can verify that, after a transient

time yielding a time-dependent Casimir-Polder interaction, it vanishes asymptotically in time

bringing the interaction energy to its stationary value. The stationary result found in Eq.

(1.56) is thus correctly recovered for t→∞.

We also find that at the round-trip time, that is when a = 2d/ct = 1, the energy shift diverges

similarly to what happens for a system initially in the ground state [63]. Such behavior is a

manifestation of well-known divergences of the radiation reaction and source fields on the light

cone in case of point-like sources [165]. Their complete removal is still an open problem in

QED [8,166]. Similar singularities are also found for the field energy densities near a reflecting

surface [167–169]. This is the reason why, in the subsequent calculation of the dynamical atom-

wall Casimir-Polder force, we are going to consider two separate temporal regions: before and

after the back-reaction (or round-trip) time, i.e. t < 2d/c and t > 2d/c.

We now want to discuss a conceptually subtle issue about the asymptotic limit t→∞ (or

large-time limit), which, on the other hand, can only consider times shorter than the decay

time of the excited state because of our perturbative approach. Our result in (4.38) shows that

lim
t→∞
E↑(2)

loc,dyn(d, t) = E↑(2)
stat(d), (4.39)

where E↑(2)
stat(d) is the correspondent stationary value as obtained by the usual time-independent

approach. However, a similar relation does not hold for all physical quantities: the asymptotic

approach to the corresponding stationary values for the expectation values of quantities only

related to the field or the atom should not be taken for granted. In fact, if we calculate

the time-dependent expectation values of the atomic, field, and interaction energy (〈H(2)
a (t)〉,

〈H(2)
f (t)〉 and 〈H(2)

int(t)〉), we can verify that their sum is constant because the total energy

is conserved, and differ from the static one (bare and dressed excited states have a different

energy). Therefore, the average total energy of the interacting system does not settle to its

static value for large times. As a result, this must also happen for the atomic and field energies.

However, these results do not question the capability of the system to find some local equilibrium

configuration, as Eq. (4.39) shows. Indeed, during the self-dressing process, the atom emits

123



some radiation [170] that for t→∞ moves to very large distances. While this amount of energy

does not affect the interaction energy with the atom, it still contributes to the total field energy.

Ultimately, global quantities such as the total field energy do not approach their stationary

values, while local field quantities such us the interaction energy reach their stationary values

at any finite distance. In our specific case, this happens because the total field energy takes

also into account the field energy density at a very large distance. This interplay between

these physical quantities has also been suggested for the dynamical Casimir-Polder interaction

between two atoms [171]. Consequently, we expect that quantities related to the local field

energy-density distribution as the atom-field interaction, tend to their relative stationary value

for t→∞, as proved by our result (4.39).

4.4.2 Dynamical Casimir-Polder force

As shown in Eq. (4.4), within the quasi-static approach, the dynamical Casimir-Polder force

can be found by taking the derivative of the interaction energy (4.38) with respect to the

atom-wall distance d:

F↑(d, t) = − ∂

∂d
E↑(2)

loc,dyn(d, t). (4.40)

After tedious algebraic manipulations, the expression of the force can be written as

F↑(d, t) = Fstat(d) + Fdyn(d, t). (4.41)

Fstat(d) is a time-independent term which corresponds to the limit t → ∞ of the force. It

actually coincides with the static force between an excited atom and a conducting wall that we

obtained within a time-independent approach in Eq. (1.58) (second line). The time-dependent

part of the force is instead given by

Fdyn(d, t) = µ2
{ 1

3πd3

ct (16d4(9− 2d2k2
a) + 16c2t2d2(−2 + d2k2

a) + c4t4(3− 2d2k2
a)) sin(ckat)

(4d2 + c2t2)3

+
4

3πd

ka(−8d2 + c2t2) cos(ckat)

(4d2 − c2t2)2

+
1

12πd4
[(Ci(2dka − ckat) + Ci(2dka + ckat))

×
(
2dka(3− 2d2k2

a) cos(2dka) + 3(−1 + 2d2k2
a) sin(2dka)

)
+ (π + Si(ckat+ 2dka) + Si(2dka − ckat))

×
(
3(1− 2d2k2

a) cos(2dka) + 2dka(3− 2d2k2
a) sin(2dka)

)] }
,

(4.42)
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before the round-trip time (t < 2d/c), and by

Fdyn(d, t) = µ2
{−4kad

2 cos(ckat) + ct(1− 2d2k2
a) sin(ck0t)

3πd3(4d2 − c2t2)
− 16dka cos(ckat)

3π(4d2 − c2t2)2

+
ct(64d4 − 12c2d2t2 + c4t4) sin(ckat)

3πd3(4d2 − c2t2)3

+
1

2πd4
[(Ci(ckat+ 2dka) + Ci(ckat− 2dka))

×
(
2dka(3− 2d2k2

a) cos(2dka) + 3(−1 + 2d2k2
a) sin(2dka)

)
+ (Si(ckat+ 2dka)− Si(ckat− 2dka))

×
(
3(1− 2d2k2

a) cos(2dka) + 2dka(3− d2k2
a) sin(2dka)

)] }
,

(4.43)

after the round-trip time (t > 2d/c), where Si(x) and Ci(x) are the sine and cosine integral

functions, respectively [64].

As expected from our previous discussion on the dynamical energy shift, the dynamical

Casimir-Polder force in Eq. (4.41) has a singularity on the light-cone t = 2d/c. This might be

reduced or smeared out by relaxing the assumptions of a point-like atom (dipole approximation)

and of a perfectly reflecting mirror, which, on the other hand, fail at frequencies larger than

c/a0, with a0 the Bohr’s radius, and the mirror’s plasma frequency ωP , respectively. Since such

high-frequency photons largely contribute around the round-trip time t = 2d/c, we expect our

results not to be reliable within a time interval around the round-trip time of the order of the

largest of a0/c or ω−1
P (to satisfy both assumptions). For example, using the numerical value

of the plasma frequency of gold ωP ' 1.4 × 1016 s−1 and considering a hydrogen atom, times

closer than about 7× 10−17 s to the singularity at t = 2d/c are outside our treatment.

The singular behavior of the force around the round-trip time can be seen in Figs. 4.5 (for

t < 2d/c) and 4.6 (for t > 2d/c). From these plots we immediately notice that the dynamical

force oscillates continuously switching sign from positive (repulsive) to negative (attractive)

and viceversa. This also happens in the case of an atom initially prepared in a bare or partially

dressed ground state near a perfectly conducting wall [63,150] or a real surface [151], and for a

chiral molecule [153]. Figure 4.5 also shows that the force vanishes at t = 0. This is because, in

the case of a system initially prepared in the bare state, the atom-field interaction is suddenly

“switched-on” at t = 0, which is also the time when the atomic dynamical dressing starts to

take place. If we considered an initial partially dressed state, the force at t = 0 would not be

zero, as discussed in [150]. Whereas, the non-vanishing value of the force before the round-trip
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Figure 4.5: Time evolution of the dynamical Casimir-Polder force on the atom for times smaller

than the round-trip time, that is for t < 2d/c (force and time are both in arbitrary units). The

atom-wall distance is d = 20, c = 1, so that the round-trip time is t = 40. The dashed (blue)

and continuous (red) lines represent the force for ka = 1 and ka = 2, respectively. The plot

shows time oscillations of the force and a strong increase of the force around the round-trip

time (where it diverges).

Figure 4.6: Time evolution of the dynamical force for time t > 2d/c, that is after the round-trip

time (force and time are both in arbitrary units). The atom-wall distance is d = 20 and c = 1,

as in Fig. 4.5, and ka = 1. The time-dependent force shows oscillations around the stationary

value represented by the (black) dot-dashed lines. The absolute value of the force strongly

increases in the proximity of the round-trip time t = 40.

time (see Fig. 4.5) is fully consistent with relativistic causality, since the atom interacts with

the vacuum field fluctuations modified by the presence of the reflecting wall from the outset.

Figure 4.6 also shows that in the limit t→∞ (large times), we recover the known static value
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Figure 4.7: Comparison of the dynamical Casimir-Polder force between an initially excited

atom (green dotted line) and an ground-state atom (blue dashed line) before the round-trip

time (t < 2d/c). The following typical numerical values for atomic parameters and atom-wall

distance have been used: µ = 6.31× 10−30Cm, λ = 2π/ka = 1.215× 10−7m, d = 7.03× 10−8m.

The atom-wall distance has been chosen at a value where the (spatially oscillating) static force

for the excited atom reaches its first maximum. The round-trip time is 4.69× 10−16s.

of the force for the excited atom as found within a time-independent approach in Eq. (1.58)

(second line) [60, 62]. This confirms that the dynamical Casimir-Polder force and the related

local field quantities at a finite distance between atom and wall, asymptotically (in time) reach

the equilibrium configuration. However, we should keep in mind that when we refer to the large

time limit, we are always considering times shorter than the decay time of the excited state,

which is typically of the order of 10−8s. On the other hand, the main effects of the dynamical

dressing process discussed here, i.e. the strong increase of the force around the round-trip time

and the space-time oscillations, involve much shorter times, normally of the order of 10−16s and

10−15s, respectively. Thus, the results are fully compatible with our approximations.

We now want to compare our results to the ones found in [63, 172] where the atom is

initially prepared in a bare ground-state. Figures 4.7 and 4.8 provide such comparison for the

time evolution of the force before and after the round-trip time, in the case of a hydrogen atom,

and for an atom-wall distance d ' 7×10−8m, that is when the excited-atom static force has its

first maximum. For t < 2d/c, that is before the round-trip time (Fig. 4.7), the force changes

from attractive to repulsive, with oscillation-amplitudes comparable in size for the two cases.

While, for t > 2d/c, i.e. after the round-trip time (Fig. 4.8), the intensity of the dynamical
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(a)

(b)

Figure 4.8: Comparison of the dynamical Casimir-Polder force between an initially excited atom

(b) and a ground-state atom (a) after the round-trip time (t > 2d/c). In both cases the force

approaches a (non-vanishing) stationary values for t→∞. The dynamical force for an excited

atom can be much stronger (three orders of magnitude) than that the one for a ground-state

atom. The following typical numerical values for atomic parameters and atom-wall distance

have been used: µ = 6.31 × 10−30Cm, λ = 2π/ka = 1.215 × 10−7m, d = 7.03 × 10−8m. The

atom-wall distance has been chosen at a value where the (spatially oscillating) static force for

the excited atom reaches its first maximum. The round-trip time is 2d/c = 4.69× 10−16s.

force (Fig. 4.8(b)) for the excited atom exceeds that for the initially bare ground state (Fig.

4.8(a)) by about three orders of magnitude. This is because in the case of an excited atom, a

much stronger contribution comes from field modes near resonance with the atomic transition

frequency.

Another important aspect is that, the static force for the excited atom is vanishing at specific

128



atom-wall distances, thus the dynamical term gives the main contribution to the overall atom-

wall force around such distances. We remark that this does not occur in the case of a ground

state atom, where, in fact, the static force is attractive at all distances (see first line of Eq.

(1.58)). The case of an excited atom considered here thus results more suitable to single out and

then experimentally detect the time-dependent dynamical Casimir-Polder effect arising from

a non-equilibrium initial state. On the other hand, the static Casimir-Polder force between a

mirror and an excited barium ion has already been observed, and its oscillating behavior has

been confirmed [68,70].

Experimental considerations

Suitable experimental schemes for the observation of the dynamical component of the force

could then be similar to those already used to probe static vacuum (van der Waals and Casimir-

Polder) level shifts, or changes of the spontaneous decay, for a single trapped atom or ion placed

near a metallic or dielectric wall [68,70,173,174]. The trapped atom, for instance an alkali atom

such as Cs or Rb, is initially laser-excited using an optical dipole transition, for example the

D2 line of Rubidium 87, 52D1/2 → 52P1/2 at 780 nm [174]: the subsequent dynamical Casimir-

Polder interaction of the atom with the plate perturbs the harmonic trapping potential, thus

modifying the motion of the atom in the trap. As a result, a modification of the atomic

oscillation frequency in the trap is a signature of atom-wall interaction. A very similar setup

has also been used to test the dependence of the static Casimir-Polder potential from the

temperature [72]. Furthermore, by using Rydberg atoms the intensity of the dynamical Casimir-

Polder force could be increased even by several orders of magnitude, since this kind of atoms

displays high dipole moments scaling as n2 with n the principal quantum number [175]. Lastly,

given that the time scale of the space and time oscillations of the dynamical force is regulated

by ka, Rydberg atoms could also help to slow down the dynamical dressing process because of

their lower transition frequency, thus allowing for an easier detection of the transient (repulsive)

force.

4.5 Conclusions

In this Chapter we have studied the dynamical dressing process for the Casimir energy in a

cavity with a mobile boundary treated quantum-mechanically and for the Casimir-Polder force
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between an excited atom and a classical perfectly conducting wall. In both cases, we have

explored the time-dependent process which progressively leads the system to its equilibrium

dressed configuration, finding that local quantities such as field-mirror or atom-wall interaction

energies converge to their stationary value, while global quantities such as the field energy do

not. This process involves a timescale given by the particular round-trip time of the system.

We have seen how the evolution of the dynamical dressing essentially depends on the boundary

conditions of the system. In particular, contrarily to the atom-wall system, where the radiation

emitted by the atom propagates to infinity (no longer participating to the dynamical dressing of

the wall), for the the field-mirror system the radiation emitted during the dynamical dressing is

reflected by the fixed mirror, thus yielding peculiar revivals of the interaction energy. However,

in both scenarios, we have shown how the time-dependent interaction oscillates with time,

and that, at specific time intervals, it is larger than the corresponding stationary case. This

should be relevant for the detection of the Casimir corrections due to the quantum nature of

the boundary in the optomechanical cavity, or of the dynamical Casimir-Polder forces. On the

other hand, for the atom-wall system, we have also verified that having considered an initial

excited atom represents a much more suitable choice for detecting the dynamical Casimir-Polder

effect. Firstly, the static Casimir-Polder force for excited atoms vanishes for specific atom-wall

distances, where the force changes its character from attractive to repulsive and viceversa,

therefore our dynamical contribution is essentially the main one around such points (this does

not occur for a ground-state atom, where the force is attractive at any distance). Secondly,

around and after the round-trip time, the dynamical contribution to the Casimir-Polder force

is much greater for the excited atom compared with the known case of a ground-state atom.
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Chapter 5

Harvesting entanglement from

ultrastrong interactions in circuit QED

5.1 Introduction

Strictly speaking, cavity QED concerns the study of quantum light-matter interactions between

real atoms and single (or multi-) mode radiation fields confined within a specific geometry. In

this scenario, one is usually interested in exploring the regime where the interaction strengths

between such objects are so strong to become comparable or larger than appreciable fractions

of the bare photon energy of the system. This regime, which has been explored for many years

theoretically, has recently been accessed by a few experiments in cavity QED systems [176–180].

On the other hand, ultrastrong coupling (USC) regimes, where the coupling strength be-

comes comparable or even larger than the bare photonic frequencies [181,182], are experimen-

tally hard to achieve §. Instead, in the field of circuit QED, single artificial atoms (charge

or flux qubits) have already been coupled ultra-strongly to microwave fields (LC-resonators)

[80–82, 183–186]. In this novel regime our common understanding of the physics behind light-

matter interactions is drastically challenged. In fact, even in the ground state, non-trivial

effects such as spontaneous vacuum polarization [187–189], light-matter decoupling [190, 191]

and different degrees of entanglement [191–194] can in principle appear.

However, compared to the vast literature on cavity QED systems in the weak coupling

§Note that here we do not distinguish between USC [181], usually referred to situations where the coupling

strength is comparable or larger than appreciable fractions of the mode frequency, and the deep strong coupling

(DSC) regime, where the coupling strength is comparable or even larger than the bare photonic frequencies [182]
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regime, the limit of extremely strong interactions in QED is to a large extent still unknown

both theoretically and experimentally. Even though we are at an early stage, one interesting

question concerns the possibility of using the USC effect for practical applications. In QED

USC interactions have been proposed to realize high-fidelity quantum operations [195], ultrafast

quantum gates [196], quantum memory devices [197,198] and quantum computation [199,200].

But, ideas on how USC effects can be controlled, manipulated and exploited for practical

applications and new technologies remain still very restricted.

In this Chapter we consider a circuit QED system where multiple flux qubits (artificial

atoms) are coupled to a single LC-resonator (a microwave field). This system has recently

been investigated in the USC regime [191]. In particular, it has been found that the full

Hamiltonian of the system is formed by a Dicke-like term plus direct qubit-qubit interactions. In

the limit where the coupling between resonator and qubits is small compared to the fundamental

frequencies, the system dynamics can be well-described by the Dicke Hamiltonian. Whereas, in

the USC, such additional qubit-qubit interactions cannot be ignored and the circuit exhibits a

manifold of non-superradiant ground- and low-energy states with a high degree of multi-qubit

entanglement. However, since any attempt to locally manipulate or measure the individual

qubits would necessarily introduce a severe perturbation to the strongly-coupled system, such

entanglement cannot be accessed and used for further applications.

Our goal is then to find a simple entanglement-harvesting protocol [201–206] which is able

to access the USC correlations between light and matter, extract such quantum correlations

and convert them into equivalent multi-partite entangled states of qubits completely decou-

pled from the resonator. To achieve such goal, we design a scheme that combines adiabatic

and non-adiabatic parameter variations and exploit the counter-intuitive decoupling of qubits

and photons for ultrastrong interactions [191]. The entanglement extraction reveals to be

intrinsically robust and, remarkably, fully consistent with the available experimental tuning

capabilities in circuit QED. We can in principle extract symmetric and anti-symmetric Dicke

states belonging to a vast family of robust multi-partite entangled states [207,208], which have

been demonstrated a resource for Heisenberg-limited metrology applications [209]. Last but

not least, our study generally demonstrates that the USC regime can actually be exploited to

realize non-trivial tasks which could have a high technological potential.
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5.2 The model

In Chapter 1 we have studied the basic circuits which model an artificial atom (flux or charge

circuit) and a microwave field (LC-resonator). Now, we consider a more complicated circuit

where we couple these basic elements to actually build up a light-matter interaction in a circuit

scenario. We consider the circuit QED system in Fig. 5.1(a), where a single LC-resonator with

inductance L and capacitance C is collectively coupled to a an even number N of flux qubits.

Following the quantization procedure discussed in paragraphs 1.4.2 and 1.4.3, the Lagrangian

of the circuit results [210]

L =
CΦ̇2

r

2
− (Φr − ΦN)2

2L
+

N∑
i=1

L(i)
q , (5.1)

where Φr is the node flux corresponding to the resonator, ΦN =
∑N

i=1 ∆Φi =
∑N

i=1 Φi − Φi−1

is the flux difference between the active node N and the ground expressed in terms of the flux

differences ∆Φi = Φi − Φi−1 across each qubit (note that here for i = 0 Φ0 ≡ ΦG is the value

of the flux for the ground of the circuit); and, L(i)
q is the free Lagrangian for each flux qubit as

in Eq. (1.86). By using Eq. (1.64) and (1.65), the node flux ΦN can be written as

ΦN = Φ0

N∑
i=1

ϕi, (5.2)

where ϕi is the difference of the superconducting phase across the i-th qubit’s subcircuit. Since

no capacitive coupling between resonator and qubits is present, the Hamiltonian of the circuit

can be easily found. We obtain

H =
Q2
r

2C
+

(Φr − Φ0

∑N
i=1 ϕi)

2

2L
+

N∑
i=1

H(i)
q , (5.3)

where Qr is the charge operator for the resonator such that [Φr, Qr] = i~ and H(i)
q denotes the

free Hamiltonian for each qubit. As discussed in paragraph in 1.4.7, the dynamics of the flux

circuit can be restricted to the lowest states |↓〉 and |↑〉 of a symmetric double-well potential

as depicted in Fig. 1.7(c). Under this assumption we can write ∆Φi = Φ0 〈↓i|ϕi |↑i〉σix. Also,

expressing the resonator flux and charge in terms of annihilation and creation operators a and

a† as in Eq. (1.74), we find [191]

H =~ωra†a+ ~
N∑
i=1

gi
2

(a† + a)σix + ~
N∑
i=1

ωiq
2
σiz + ~

N∑
i,j=1

gigj
4ωr

σixσ
j
x, (5.4)
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flux qubit

Figure 5.1: (a) Sketch of the multi-qubit circuit QED setup considered. Each flux qubit is

represented by the two lowest states |↓〉 and |↑〉 of an effective double-well potential for the

phase variable (see Fig. 1.7(c)).

where σik are the Pauli operators, ωiq the qubit level splittings, while gi = Φ0

√
|ϕi0|2ωr/(2~L)

with ϕi0 = 2 〈↓i|ϕi |↑i〉 is the coupling of the i-th qubit with the resonator. The three terms

of Eq. (5.4) give a Dicke-like Hamiltonian, where the second term accounts for the collective

interaction between qubits and resonator. In fact, without the last term, the Hamiltonian

coincides with the one describing the interaction between a single-mode electromagnetic field

and one or more atoms, as found in Eq. (1.44). However, in the context of circuit QED, we

highlight that not only the condition gi > ωr, ω
i
q can be reached with a suitable flux-qubit

design [81, 82, 187, 196, 211, 212], but also that gi(t) and ωiq(t) can be individually tuned by

manipulating, for example, the matrix element ϕi0 and the height of the tunnel barrier through

local magnetic fluxes [196, 204]. In paragraph 5.7 we will propose a specific flux-qubit design,

which combines strong interactions with a high degree of tunability and that reveals to be

optimal for our goals. Last but not least, the term proportional to σixσ
j
x in Eq. (5.4) describes

an additional qubit-qubit interaction between qubits. This term recalls the usual magnetic

dipole-dipole interactions between atoms in cavity QED [213]. This is usually neglected in

cavity or circuit QED problems in the weak or moderately strong coupling regime. However,

in the USC regime such interaction rules the dynamics and it is responsible for the generation

of non-trivial ground-state correlations which are at the focus of the Chapter.

Finally, we want to mention that Hamiltonian (5.4) can also be realized with N charge

qubits coupled via a capacitance to the resonator. In this case, the coupling constant would

then depend on all the capacitances involved and on both resonator and qubit charges [191].
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Figure 5.2: a) Energy spectrum (with respect to the ground state energy E0) of the extended

Dicke model (5.5) as a function of the coupling strength g for N = 4 and ωq = ωr. b) Ordering

of the lowest energy states in the USC regime as determined by Eq. (5.9) for the case N = 4.

The multiple lines indicate the two- and three-fold degeneracy of states with total angular

momentum s = 0 and s = 1, respectively.

5.3 USC spectrum and eigenstates

Let us start considering a complete symmetric configuration where gi = g and ωiq = ωq. In this

scenario one can introduce collective spin operators Sk =
∑

i σ
i
k/2 such that Eq. (5.4) becomes

the extended Dicke-like Hamiltonian [191]

H = ~ωra†a+ ~g(a† + a)Sx + ~ωqSz + ~
g2

ωr
S2
x. (5.5)

When the coupling constant is much smaller than the bare frequencies, that is g � ωr, ωq, the

rotating wave approximation can be performed and, Hamiltonian (5.5) reduces to the common

Tavis-Cummings model of cavity QED [37] with the trivial ground state |G〉 = |n = 0〉⊗|↓〉⊗N .

Adding the condition |ωq − ωr| � g, we can also consider all the excited states practically

decoupled and, by using additional control fields, the qubit subsystem can appropriately be

prepared, controlled, manipulated and measured. On the other hand, when g � ωr, ωq, both

the coupling terms proportional to Sx and S2
x dominate the dynamics and, as described in Fig.

5.2(a), the structure of the eigenvalues is drastically modified. For g/ωr & 3 the spectrum is

formed by manifolds of 2N nearly-degenerate eigenstates. In this regime, the full Hamiltonian

can be conveniently written as H = H0 +H1. H1 = ~ωqSz is treated as a perturbation, while

H0 = ~ωra†a + ~g(a† + a)Sx + ~ g
2

ωr
S2
x commutes with Sx and can be diagonalized exactly by
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the transformation H′0 = U †H0U , with U = e−
g
ωr

(a†−a)Sx . By using

U †~g(a† − a)SxU = ~g(a† + a)Sx − 2~
g2

ωr
S2
x

U †~ωra†aU = ~ωra†a− ~g(a† + a)Sx + ~
g2

ωr
S2
x,

(5.6)

we obtain

H′0 = ~ωra†a+ ~
(
D − g2

ωr

)
S2
x = ~ωra†a, (5.7)

whose eigenstates and energies are |n〉 ⊗ |s,mx〉 and En = ~ωrn, with |n〉 the number state

of the resonator mode and s and mx the total spin and the spin projection quantum number,

respectively. Going back to the original frame and performing perturbation theory on H1, we

find that the eigenstates ofH can be approximated by the displaced photon number states [191]:

|Ψs,mx,n〉 ' e−
g
ωr

(a†−a)Sx|n〉 ⊗ |s,mx〉, (5.8)

with corresponding energies Es,mx,n ' ~ωrn + δE
(n)
s,mx . In the lowest manifold, the remaining

level splittings are given by

δE(0)
s,mx = ~∆

[
m2
x − s(s+ 1)

]
, ∆ =

ω2
qωr

2g2
, (5.9)

and the resulting ordering of the states is shown in Fig. 5.2(b) for N = 4 qubits. Very remark-

ably, when the circuit is formed by an even number of qubits N , Eqs. (5.8) and (5.9) say that

in the USC regime light and matter decouples. In fact, in this case, the true ground state of the

circuit QED system results |G̃〉 ' |n = 0〉 ⊗ |S0〉, where |S0〉 = |s = N/2,mx = 0〉 is the fully

symmetric Dicke state with vanishing projection along x. This USC state, where resonator

and qubits are almost completely decoupled, shows a high degree of qubit-qubit entanglement

[191]. In the subsequent paragraphs our goal will consist in identifying a convenient and ex-

perimentally feasible protocol to realize such state and convert it into an equivalent decoupled

state for the overall system, which can then be used as an entanglement resource.

Before going to the description of the protocol to achieve this non-trivial task, we provide

more details about the USC eigenstates of the Dicke Hamiltonian in Eq. (5.5) for N = 2

and N = 4. For an even number of qubits, these states are labelled by s = 0, 1, . . . , N/2

and mx = −s, . . . , s, such that ~S2|s,mx〉 = s(s + 1)|s,mx〉 and Sx|s,mx〉 = mx|s,mx〉, with

~S2 the total angular momentum. In addition, because of the permutation symmetry of the

Hamiltonian, for N > 2 the states |s 6= N/2,mx 6= ±N/2〉 appear as multiplets [214]. By using

the rotated basis

|↓〉x =
1√
2

(|↓〉 − |↑〉) , |↑〉x =
1√
2

(|↓〉+ |↑〉) , (5.10)
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for two qubits we have the states of the triplet

|s = 1,mx = 1〉 = |↑↑〉x ,

|s = 1,mx = 0〉 =
1√
2

(|↑↓〉x + |↓↑〉x),

|s = 1,mx = −1〉 = |↓↓〉x ,

(5.11)

and the (completely antisymmetric) singlet state

|s = 0,mx = 0〉 =
1√
2

(|↑↓〉x − |↓↑〉x). (5.12)

For our purposes, we will be interested in the two states with mx = 0, which, in terms of the

original qubit basis, read

|s = 1,mx = 0〉 =
1√
2

(|↓↓〉 − |↑↑〉), |s = 0,mx = 0〉 =
1√
2

(|↑↓〉 − |↓↑〉). (5.13)

On the other hand, for N = 4 qubits, the structure of the levels is already more complex. We

have a quintuplet of states corresponding to s = 2, three triplets for s = 1 and a doublet (two

singlets states) for s = 0. The maximally symmetric states with s = 2 are:

|s = 2,mx = 2〉 = |↑↑↑↑〉x ,

|s = 2,mx = 1〉 =
1

2
(|↓↑↑↑〉x + |↑↓↑↑〉x + |↑↑↓↑〉x + |↑↑↑↓〉x),

|s = 2,mx = 0〉 =
1√
6

(|↓↓↑↑〉x + |↑↑↓↓〉x + |↓↑↑↓〉x + |↑↓↓↑〉x + |↓↑↓↑〉x + |↑↓↑↓〉x),

|s = 2,mx = −1〉 =
1

2
(|↓↑↓↓〉x + |↓↓↓↑〉x + |↓↓↑↓〉x + |↑↓↓↓〉x),

|s = 2,mx = −2〉 = |↓↓↓↓〉x ,

(5.14)

which coincide with the usual Dicke states in the x-basis. While, the corresponding 3-fold
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degenerate states for each value of s = 1 are

|s = 1,mx = 1〉 =


1
2
(|↑↑↑↓〉x + |↑↑↓↑〉x − |↑↓↑↑〉x − |↓↑↑↑〉x),

1
2
(|↑↑↑↓〉x − |↑↑↓↑〉x + |↑↓↑↑〉x − |↓↑↑↑〉x),

1
2
(|↑↑↑↓〉x − |↑↑↓↑〉x − |↑↓↑↑〉x + |↓↑↑↑〉x),

|s = 1,mx = 0〉 =


1√
2
(|↑↑↓↓〉x − |↓↓↑↑〉x),

1√
2
(|↑↓↑↓〉x − |↓↑↓↑〉x),

1√
2
(|↑↓↓↑〉x − |↓↑↑↓〉x),

|s = 1,mx = −1〉 =


1
2
(|↑↓↓↓〉x + |↓↑↓↓〉x − |↓↓↑↓〉x − |↓↓↓↑〉x),

1
2
(|↑↓↓↓〉x − |↓↑↓↓〉x + |↓↓↑↓〉x − |↓↓↓↑〉x),

1
2
(|↑↓↓↓〉x − |↓↑↓↓〉x − |↓↓↑↓〉x + |↓↓↓↑〉x).

(5.15)

Finally, for N = 4 and within the antisymmetric subspace for s = 0, we get a doublet of states

given by

|s = 0,mx = 0〉 =


1
2
(|↑↓↑↓〉x − |↑↓↓↑〉x − |↓↑↑↓〉x + |↓↑↓↑〉x),

1√
3
(|↑↑↓↓〉x + |↓↓↑↑〉x)−

1√
12

(|↑↓↑↓〉x + |↑↓↓↑〉x + |↓↑↑↓〉+ |↓↑↓↑〉x).

(5.16)

For the subsequent entanglement harvesting protocol, we will be interested in the state |s =

2,mx = 0〉, which in the original qubit basis is written as

|s = 2,mx = 0〉 =
3√
24

(|↑↑↑↑〉+|↓↓↓↓〉)− 1√
24

(|↑↑↓↓〉+|↑↓↑↓〉+|↑↓↓↑〉+|↓↑↑↓〉+|↓↑↓↑〉+|↓↓↑↑〉),

(5.17)

and in the states of the doublet s = 0, which are invariant under rotations, and have the same

form in the original qubit basis:

|s = 0,mx = 0〉 =


1
2
(|↑↓↑↓〉 − |↑↓↓↑〉 − |↓↑↑↓〉+ |↓↑↓↑〉),

1√
3
(|↑↑↓↓〉+ |↓↓↑↑〉)− 1√

12
(|↑↓↑↓〉+ |↑↓↓↑〉+ |↓↑↑↓〉+ |↓↑↓↑〉).

(5.18)

We highlight that to obtain the states above, the 4-spins have been coupled in a particular

pairwise way (which will be connected to a forthcoming protocol). In particular, we have firstly

combined the states of the first spin (qubit) with the second, and the states of the third spin

with the fourth, and finally combined these resulting states. While the completely symmetric
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states for s = 2 are not affected by this particular way of breaking the total symmetry, the

states for s = 1, 0 (N = 4) are instead dependent on this choice, which, in fact, singles out a

particular basis within the subspace (s, mx) of interest. However, combining the states of such

basis, one can then find all the other states of the subspace, which, in principle, might have

different symmetry properties under exchange of a particular pair of spins.

5.4 Entanglement harvesting

5.4.1 From the ground state

We are now ready to describe our entanglement-harvesting protocol. The basic idea is showed

in Fig. 5.3(a) together with the general pulse sequence achieved by using a time-dependent

variation of the parameters ωq(t) and g(t). We start with the system initially prepared in the

ground state |G〉 of the weakly-coupled system, where the qubit subsystem is far-detuned from

the resonator, that is ωq = ωmax � ωr, and the coupling is at a minimal value g = gmin < ωr.

During the first two steps, which last T1 and T2 respectively, we adiabatically tune the system

into the USC regime by firstly increasing the coupling strength up to gmax > ωr and, secondly,

decreasing the qubit frequency to the low value ωmin . ωr. As a result, the system is prepared

in the USC ground state |G̃〉. For the subsequent time steps, lasting T3 and T4 respectively, we

separate again qubits and resonator by performing a non-adiabatic parameter variation in the

reverse order: we tune the coupling and then the qubit frequency to their initial values gmin

and ωmax. In the ideal case, during this last part of the protocol, the system remains in the

state |G̃〉, which at the end of the protocol at Tf =
∑4

n=1 Tn becomes the desired excited state

for the system in the weak coupling regime.

A few remarks are in order. Firstly, we highlight that the adiabatic state-preparation can

be performed very fast. This is because we only need to demand the overall time T1 +T2 slower

than the fast timescales given by ω−1
max and g−1

max. Secondly, the overall time T3 + T4 of the non-

adiabatic decoupling process must only be fast compared to the slow timescales set by ω−1
r , ω−1

min

and g−1
min. As we will see in the next paragraph, this means that the switching times achieve two

main goals: they avoid unwanted excitations out of the two-level qubit subspace and make our

scheme completely compatible with the experimental capability for a time-dependent control

of USC systems.
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Figure 5.3: (a) General pulse sequence for the qubit parameters ωq(t) and g(t) considered for the

implementation of the entanglement harvesting protocol. (b) The fidelity F(t) is plotted as a

function of time and for different qubit numbers. The dashed line indicates the quantity 1−P(t)

for the case N = 4. For all values of N the same parameters ωmax/ωr = 20, ωmin/ωr = 0.5,

gmax/ωr = 4.5, gmin/ωr = 0.1 and times intervals T1 = T2 = 6.5ω−1
r and T3 = T4 = 0.5ω−1

r have

been assumed.

For a specific set of pulse parameters, Fig. 5.3(b) shows the fidelity

F(t) = Tr{ρ(t)|S0〉〈S0|}, (5.19)

with ρ(t) the density operator of the overall system. Loosely speaking, this physical quantity

compute the overlap between the two “states” ρ(t) and |S0〉 〈S0|, giving a measure of the

“closeness” between them ‡. We can then see that the value of the relevant entanglement

extraction fidelity (EEF) FE = max{F(t)|t ≥ Tf}, that is the maximal fidelity after the final

decoupling step of the protocol, achieves an optimal value of FE ' 0.95 − 0.99, depending on

the (even) number of qubits considered in the circuit. Remarkably, after the final time Tf we

do not need to require any additional fine-tuning over the control pulses. We also note that

the fidelity shows some oscillations after the final time Tf . However, such oscillations are trivial

since they occur only because our target state (in this case |S0〉) is not an eigenstate of the bare

‡More rigorously, given two quantum states described by the density matrices ρ and σ, if σ is pure, i.e.

σ = |ψ〉 〈ψ|, the Fidelity is defined as F(ρ, σ) = 〈ψ| ρ |ψ〉 = Tr{ρ σ}. When also ρ is pure, that is ρ = |ϕ〉 〈ϕ|,

the Fidelity reduces to the standard probability: F(ρ, σ) = |〈ψ|ϕ〉|2 [215].
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qubit Hamiltonian Hq = ωqSz anymore (it was an eigenstate for the qubit subsystem in the

USC regime as we have seen). Furthermore, the triviality of these oscillations can be verified

by calculating the purity P(t) = Tr{ρ2
q(t)} (or equivalently 1 − P), where ρq(t) = Trr{ρ(t)}

is the reduced qubit state †. When P = 1 (or 1 − P(t) = 0) the state of the qubits is pure,

therefore completely decoupled from the resonator; otherwise, the state is mixed, thus revealing

that qubits and resonator are entangled. As we can see from Fig. 5.3(b) the purity is initially

one (qubits and resonator are initially decoupled), then increases and when we approach the

USC settles to one, thus saying that we have achieved a completely decoupling of light and

matter. The oscillations are then trivial since they do not affect the purity or the degree of

entanglement of the final qubit state and can be undone by local qubit rotations.

Experimental considerations

Although operating in the USC regime, the protocol is fully compatible with the typical values in

circuit QED experiments. Indeed, for an experimental realization, we consider a characteristic

qubit frequency of ωmax/(2π) ≈ 10 GHz and a resonator of frequency ωr/(2π) = 500 MHz. As

a result, for the maximum value of the coupling strength we get gmax ' 4.5ωr ≈ 2π× 2.25GHz:

perfectly consistent with the achieved values [81, 82]. Given this choice of parameters, the

times for the non-adiabatic switching result T3,4 ' 0.16 ns, which are within the range of the

experimentally achievable tuning capabilities for flux qubits [12]. Moreover, the overall time to

complete the protocol Tf = 15/ωr ≈ 5 ns is much faster than usual coherence times (1-100 µs)

for a flux qubit [216], or the lifetime of a photon Tph = Q/ωr in a microwave resonator of quality

factor Q = 104− 106. In a nutshell, while several experimental techniques for the manipulation

of a circuit QED in the USC need to be developed, these estimates show the feasibility of

the protocol to realize a high-fidelity control operation with the current technology, and, more

generally, the great potential of such devices to undertake very non-trivial tasks.

On the other hand, deleterious effects for the protocol might come from the lack of complete

tunability for g(t) or ωq(t). In Fig. 5.4(a) we plot the evolution of the lowest eigenvalues of the

system during the whole protocol for the specific case of N = 2 and a finite value of gmin. During

the final ramp-up step of the scheme, several avoided crossing might in principle prevent the

†Note that the quantity 1− P is also called linear entropy or impurity, and actually coincides with a lower

approximation of the (quantum) von Neumann entropy defined in Eq. (5.20), obtained expanding the logarithm

as log2 = log2(1− (1− ρ)) around a pure state ρ2 = ρ [37, 215].
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Figure 5.4: (a) Evolution of the lowest eigenvalues during different stages of the protocol for

the case N = 2. Here gmin/ωr = 0.2, ωmin/ωr = 0.4, and in the final step of the protocol

ωmax/ωr = 5. For clarity only the s = 1 states are shown. For different initial photon number

states |n〉, the colored segments and arrows indicate the ideal evolution of the systems, which

maximizes the probability to end up in the qubit state |S0〉 = (|↑↑〉 − |↓↓〉)/
√

2. (b) Plot of

the EEF for varying T4(= T3) and gmin and for the case N = 4. (c) EEF (solid line) for a

resonator mode, which is initially in a thermal state at temperature T , for N = 4. The dashed

line indicates the corresponding population of the ground state manifold. All the other pulse

parameters in (a), (b) and (c) are the same as in Fig. 5.3(b).

fully non-adiabatic decoupling, which is a fundamental ingredient in our proposal. To address

this specific problem, Fig. 5.4(b) displays the EEF as a function of gmin and T4. This plot not

only shows the expected trade-off between the residual coupling and the minimal switching

time, but, notably, quantifies the robustness of the protocol. Extraction fidelities quite above

FE > 0.9 are achieved for couplings of a few hundred MHz or switching times approaching

∼ 1ns. Quite similar conclusions will be found in the case of couplings or qubit frequencies

affected by fabrication uncertainties. We will address this more specific issue in paragraph 5.6.
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5.4.2 From a thermal state

So far we have considered a quite low frequency for the resonator, which has been essential

to increase the ratio g/ωr and the switching times in the non-adiabatic final steps. However,

this means that, even considering a very low equilibrium temperature of T = 20 mK, the

populations in higher resonator states with n ≥ 1 participate to the dynamics and, in turn,

must be taken into account. To understand the impact of such states, we consider a resonator

initially prepared in a thermal state ρth =
∑

n n̄
n/(1 + n̄)n+1 |n〉 〈n| with n̄ = 1/(e~ωr/kBT − 1)

the Bose-Einstein distribution for the mean photon number. In Fig. 5.4(c) we plot the EEF

against initial equilibrium temperature T . As we can see, fidelities FE > 0.8 can be reached

until a thermal occupation of n̄ ∼ 1.55 (for kBT/~ωr = 2), which, for characteristic resonator

frequencies within the interval ωr ∼ [1, 2π] × 500 MHz, corresponds to typical circuit QED

temperatures T ∼ [8, 50] mK [82]. Surprisingly, this happens even though the remaining

population in the ground state |G〉 drastically decreases as we increase the temperature to

such value. The physical reason behind this behavior can be explained with the help of the

eigenvalue plot in Fig. 5.4(a). If for example we start the protocol with the initial decoupled

eigenstate |n = 1〉 ⊗ |↓〉⊗N in the weak coupling regime, the protocol maps such state into

the corresponding USC eigenstate |n = 1〉 ⊗ |s = N/2,mx = 0〉, even though during the

dynamics higher-order avoided crossing are present. As a result, the intermediate achieved

state as well as the final (target) state conserve the photonic excitation |1〉. Noticeably, this

is also true for initial states with higher photonic excitations, although they pass through

even more relevant avoided crossings. The protocol approximately implements the mapping

|n〉 ⊗ |↓〉⊗N → |n〉 ⊗ |s = N/2,mx = 0〉, almost independently from the resonator state |n〉.

And, this is the physical reason why it is so insensitive to the initial thermal occupation of the

resonator. We thus do not need to require additional unfeasible active cooling techniques to

consider the system prepared in the ground state |G〉.

5.5 Entanglement protection

The maximally symmetric state |G̃〉 is not the only one of interest. Many other entangled states

are generated in the lowest manifold of the USC regime, as shown in Fig. 5.2(d). Among them,

there are the energetically highest states |Ẽ〉 = |n = 0〉 ⊗ |A〉, where |A〉 is one of the qubit

entangled states within the antisymmetric subspace with total spin number s = 0, such that
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Sz|A〉 = Sx|A〉 = 0∗.

However, to address a generic qubit state |A〉 we need to break the symmetry of the system,

so that we can allow for a transfer between two states with different total angular momenta.

In Fig. 5.5(a) we show the optimal protocol for the case of N = 4 qubits. We start with the

system initialized in the excited state |Ψ0〉 = |0〉⊗|↑↑↓↓〉 (with total spin s = 2), where the first

two qubits have the same frequency ω1,2
q , and the others ω3,4

q . While adiabatically increasing the

coupling strength during the whole scheme, at the first stage (lasting T1) both the frequencies

(ω1,2
q and ω3,4

q ) are lowered below the resonator frequency, such that level crossings with higher

photon number states can be avoided. At the second stage (lasting T2), we then bring the

qubits at the same frequencies and, without demanding a very strong coupling, at g/ωr ≈ 1.8

we already achieve the antisymmetric manifold with total angular momentum s = 0. At

the final step (lasting T3) we simply bring again qubits and resonator far-detuned to allow

for an easier manipulation of the qubit state. It is important to realize that, the selection

of a particular state within the spin subspace s = 0 both depends on the way we break the

symmetry at the beginning of the protocol and on the particular choice of the pulse. For N = 4,

the protocol can then generate both the two states of the doublet in Eq. 5.18, which indeed are

the states of four particles (with spin 1/2) where the spins are pairwise indistinguishable (in

particular the first and the second, and the third and the fourth). In particular, one of them

is the maximal antisymmetric qubit state (see Eqs. 5.12 and 5.18). More generally, for N ≥ 4

there are actually multiple degenerate USC states with s = 0 [214,217] (see Fig. 5.2(d)) out of

which the protocol selects a specific superposition.

Although the harvesting protocol for the states within the antisymmetric spin manifold

can generally appear less robust than the one discussed for the ground state |G̃〉, it shows a

new interesting effect. Specifically, the extracted state |A〉, which is energetically separated

by all the other states with s 6= 0, can be protected against small frequency fluctuations by

keeping a finite coupling gf = g(t = Tf) ∼ ωr at the end of the protocol. This is illustrated in

Fig. 5.5(c), where, in the presence of small random shifts of the individual qubit frequencies,

we plot the evolution of the total spin number of the extracted state against different values

of the final coupling strength. In particular, by retaining the coupling to a finite value we can

substantially suppress the dephasing of the qubits and the rapid transition out of the s = 0

∗Note that the states within the subspace s = 0 (given in Eqs. 5.12 and 5.18, for N = 2, 4) are exact dark

states of the Hamiltonian in (5.5), and therefore, once prepared they remain completely decoupled from the

resonator for all the coupling regimes.
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Figure 5.5: (a) Pulse sequence for harvesting the 4-qubit entangled state |A〉 in Eq. (5.18)

(second line) with total angular momentum s = 0. As shown in the inset, during the first part

of the protocol a finite difference between the qubit frequencies ω1,2
q and ω3,4

q is used to break

the symmetry and couple different angular momentum states. (b) The expectation value of the

total spin, 〈~S2(t)〉, (solid line) and the purity of the reduced qubit state, P(t), (dashed line)

are plotted for the pulse sequence shown in (a) and for an initial state |Ψ0〉 = |0〉 ⊗ |↑↑↓↓〉. (c)

Evolution of the extracted state |0〉 ⊗ |A〉 (characterized by the expectation value of the total

spin) after the protocol for different final values of the couplings gf . For this plot an average

over random distributions of the qubit frequencies, ωiq = ωq(1 + εi), has been assumed, where

ωq/ωr = 10 and the εi are chosen randomly from the interval [−0.05, 0.05].

subspace obtained for gf = 0. The USC regime can thus be used not only to generate complex

multi-qubit entangled states, but also to protect them from unwanted experimental fluctuations.

5.6 Disorder

Until now we have assumed that our qubits are perfectly identical: all with the same frequency

and all coupled to the resonator via the same coupling constant. However, as we have already

anticipated, another experimental limitation for our protocol might be represented by non-

uniform couplings gi(t) and/or qubit frequencies ωiq(t) due to fabrication uncertainties. This is
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especially true for experiments involving many qubits.

We start considering frequency disorder. Specifically, we suppose that the qubit frequencies

evolve as ωiq(t) = ωq(t)(1 + εi), where ωq(t) is the noiseless evolution considered in Fig. 5.3,

while εi is a random fluctuation uniformly distributed within the interval [−0.1, 0.1]. In Fig.

5.6(a) we thus plot the average fidelity assuming that for each run of the protocol the individual

qubit frequencies follow ωiq(t). Essentially, because in the USC regime the system dynamics is

dominated by the interaction terms, frequency disorder does not affect the realization of the

desired state. It only becomes more relevant at the final stage of the protocol, where it dephases

the symmetric state |S0〉. However, such dephasing can be undone, since it does not degrade

the purity or the degree of entanglement of the quit state. To verify this point we calculate the

von Neumann entropy [37]

SE(t) = −Tr{ρ(t) log2(ρ(t))} (5.20)

for the qubit state ρq(t) and the single qubit state ρ1(t) = TrN−1{ρq(t)}. As we know from

standard quantum mechanics, this quantity can certify if the qubit subsystem is decoupled

from the resonator and also if the qubit state is a maximally entangled state (for a specific

bipartition) ¶. Fig. 5.6(b), thus shows that having introduced frequency noise leads to almost

no degradation of the purity or the degree of entanglement of the qubit state. At the final step

of the protocol the qubit subsystem is still completely decoupled from the resonator and the

qubit state is found in a maximally entangled state (where a single bipartition is given by two

qubits).

In Fig. 5.6 (c) and (d) we instead provide the same results for the case of coupling disorder

gi(t) = g(t)(1 + εi). As we can see, while this new kind of noise does not affect in any sense the

trend of the time-dependent fidelity, it affects the entanglement entropy of the qubit subsystem,

which does not approach the value of zero, thus showing that qubits and resonator are not

perfectly decoupled at the end of the protocol. However, this measure of entanglement is very

sensitive in our case, since the qubit state that we realize at the end of the protocol coincides

¶The Von Neumann entropy is defined as in Eq. (5.20). For a bipartite system C = A ⊗ B, described by

the density matrix ρC , the Von Neumann entropy of a bipartition is S = SA = SB = −Tr{ρA log2(ρA)} =

−Tr{ρB log2(ρB)}, where ρA = TrB{ρC} and ρB = TrA{ρC}. If the system C is separable then the entropy of

a bipartition assumes its lowest value S = 0, which means that we have maximum information on the states

of both parts, i.e A and B are in pure states. On the other hand, if the entropy of a bipartition reaches the

highest value S = 1, we lose all the information of the state of both parts, i.e A and B are described by mixed

states. In turn, this means that the system C is in a maximally entangled state [37].
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Figure 5.6: (a)-(d) Fidelities and time-dependent entanglement entropies as function of time

in the presence of disorder obtained averaging over 10 simulation runs for N = 4. In particular

we show the entanglement entropy SE(t) for the reduced density matrix of the qubit subsystem

(ρq(t)) (blue line) and of a single qubit (ρ1(t)) (red line). In (a)-(b) the qubit frequency disorder

is ωiq(t) = ωq(t)(1 + εi), while in (c)-(d) we have considered the coupling strength disorder

gi(t) = g(t)(1 + εi), where εi are chosen randomly from a uniform distribution [−0.1, 0.1]. All

the other parameters for the protocol are as in Fig. 5.3(b).

with our target state with EEF FE & 0.9, which, on the other hand, does not display any loss

of the qubit-qubit entanglement.

In conclusion, these numerical simulations under such realistic experimental conditions,

demonstrate that our protocol can easily tolerate 10% of fabrication uncertainties, and this

proves once again that no precise fine-tuning of the system parameters is required.

5.7 Implementation of the protocol

In this final Section we describe an example of a specific circuit QED system which is suitable

to implement our protocol. In fact, it can operate in the USC regime and allows for a high

tunability of the parameters of interest. The circuit is depicted in Fig. 5.7: fours flux qubits

are coupled together, and two of them (indicated with 2 and 4) have junctions with a flux-

tunable Josephson energy (commonly called SQUID-loops [210]). The two tunable junctions

have Josephson energies αEJ and βEJ , respectively, where EJ is the Josephson energy of
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Figure 5.7: Flux-qubit circuits considered for the implementation of tunable qubit frequencies

and qubit-resonator couplings. The SQUID-loops behave as an effective junction with a flux-

tunable Josephson energy.

junctions 1 and 3. Following the quantization procedure discussed in paragraphs 1.4.2 and

1.4.3, we indicate with ϕi = Φi/Φ0 the jump of the superconducting phase across the junction i

with Φi the jump of the node flux, and with ni the conjugate charge to ϕi. As we have already

seen for the basic flux qubit in paragraph 1.4.7 (Eq. (1.85)), the phases ϕi are not independent.

For the three loops, which are the big one and the two SQUID-loops characterized by α and β,

we have

∑
i∈{1,2,3,4}

ϕi + fε = 0,

∑
i∈{2,6}

ϕi + fα = 0, (5.21)

∑
i∈{4,5}

ϕi + fβ = 0,

where fη = Φη/Φ0 with Φη the external magnetic fluxes through the loop η = α, β, ε. We can

the get rid of phase jumps ϕ2, ϕ5 and ϕ6 to obtain the following Hamiltonian

Hq =
4EC

α + β + 2αβ

[
(α + β + αβ)(n2

1 + n2
3) + (1 + 2α)n2

4 − 2αβn1n3 − 2α(n1 + n3)n4

]
(5.22)

− EJ
[
cos(ϕ1) + α cos

(
fα
2

)
cos(ϕ1 + ϕ3 + ϕ̃4 + f̃ε) + cos(ϕ3) + β cos

(
fβ
2

)
cos(ϕ̃4)

]
,

where we have: ϕ̃4 = ϕ4 − fβ/2 and f̃ε = fε + (fβ − fα)/2. We can observe that, by changing

the parameters fα, fβ and fε such that fε = (2π + fα − fβ)/2 is verified, the Hamiltonian does
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Figure 5.8: Tunability of the qubit. a) Transition frequency of the qubit, ωq, as a function

of the external fluxes in the SQUID-loops in units of the resonator frequency. b) Normalized

coupling constant g/ωr of the qubit to the LC-resonator. Parameters used to produce this plot

are given in the text.

not change its form. This means that we can then fix f̃ε = π and, at the same time, change

the potential shape.

As we have seen in Eq. (5.4), the qubits are coupled to the resonator via the phase jump over

the entire qubit sub-circuit. For this implementation, such phase jump is given by ∆ϕ = ϕ̃4.

The coupling strength g is then related to the matrix element of ∆ϕ between the first two

lowest qubit states, that is ∆ϕeg = 〈e|∆ϕ|g〉. It is worthwhile to mention that, because of the

coupling between resonator and qubits, the qubit Hamiltonian is renormalized by the additional

term EL∆ϕ2/2, with EL = Φ2
0/L the inductive energy related to the resonator inductance L.

We can now show that this Hamiltonian (5.4) allows for the tunability of the qubit frequency

and qubit-resonator coupling as we described in paragraph 5.4. Firstly, we numerically diag-

onalize Hq, including the additional term from the coupling and find the lowest eigenvalues.

Secondly, we evaluate the transition matrix element ∆ϕeg. For such simulation the follow-

ing parameters are selected: α = 0.6, β = 6, EL/h = 2.57 GHz (which gives L = 63.7 nH),

EC/h = 4.99 GHz and EJ/h = 99.7 GHz. Additionally, we take C = 1.59 pF, which, in

turn, fixes the resonator frequency and impedance to ωr = (LC)−1/2 = 2π × 500 MHz and

Zr =
√
L/C = 200 Ω, respectively. Lastly, we change fα in the interval from 0 to 0.70π and fβ

from 0 to 0.96π (fε changes accordingly to keep the qubit at f̃ε = π). Figures 5.8(a)-(b) show

the transition frequency of the qubit ωq/ωr and the the coupling constant g/ωr versus the exter-

nal fluxes in the two SQUID-loops. Remarkably, both of them result highly tunable spanning
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Figure 5.9: a) Pulse shapes for the parameters g and ωq obtained from following the path

outlined in Fig. 5.8 (red lines) for the external control parameters. b) Fidelity of the protocol

for N = 4.

from ∼ 50ωr all the way to ∼ 0.5ωr and from ∼ 0.17ωr up to ∼ 4.5ωr, respectively. The only

real limitation might arise because qubit transition frequency and coupling strength cannot

be tuned entirely separately. We find that an optimal path in the parameter space (fα, fβ) is

described by the red curves in the plots of Fig. 5.8. From the starting point (0, 0) we follow

a clockwise loop. This determines the two time-dependent pulses g(t) and ωq(t) given in Fig.

5.9(a). Given the dependence of the two pulses, we have initially determined the shape for the

g-pulse, and then from this, the resulting one for ωq. Similarly to the pulse described in the

ideal case, we firstly increase g/ωr from 0.25 to 4.5 adiabatically, and then, non-adiabatically,

we decrease it to its initial value. In the opposite way, the qubit frequency is decreased from

22.8ωr to 0.7ωr, and then increased to its initial value as well. For this pulse, in Fig. 5.9(b) we

plot the result for the time-dependent fidelity in the case of N = 4 qubits coupled collectively

to the same resonator mode. Although we have exploited a limited tunability for both coupling

and qubit frequency, we are able to achieve EEFs of FE > 0.9. In particular, using the same

pulse for N = 2, we instead obtain FE ≈ 0.96.

5.8 Conclusions

In summary, in this Chapter we have analyzed a multi-qubit circuit QED system in the extreme

regime where the interaction between light and matter dominates over the system’s bare energy

scales. In such a regime the system shows new phenomena such as the light matter decoupling
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and the generation of a manifold of low-energy states with a high degree of entanglement. Our

main goal has been to design a protocol able to extract such correlations, which otherwise would

be hidden in the ground state of the system, and to convert them into well-defined multi-partite

entangled states of non-interacting qubits. These states could be then manipulated and used

for any quantum information task. More specifically, to achieve such goal, we have used a

time-dependent protocol based on a variation of the system parameters: the coupling strength

and the qubit frequency. We have showed that the scheme works in a fast and robust manner,

and it is also fully compatible with experimental constraints on switching times and typical

energy scales encountered in circuit QED systems. On this regard, we have actually prosed a

particular circuital design for a possible experimental realization. The detailed analysis of this

protocol has illustrated how various and so far unexplored USC effects can contribute not only

to the generation of complex multi-qubit states, but also to the protection of them. Of course,

these principles, which are behind the study of the light-matter interaction in the USC regime,

can be also explored in different platforms. Moreover, our results represent a starting point for

all the future investigations aiming to realize more complex operations (of preparation, storage

and control) in circuit QED experiments operating in the USC and involving more than two

artificial atoms.
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Conclusions

Central to all the investigations of this thesis has been the study of the light-matter interaction

in mesoscopic systems, where single- or multi-mode electromagnetic fields can interact with

objects whose dimensions range in the micro-nano scale domain. In particular, among the

platforms which offer the possibility to investigate such scenario, we have considered: optome-

chanics, cavity QED and circuit QED, which, on the other hand, have been very successful

both from a theoretical and an experimental point of view.

In the context of the optomechanical cavity we have studied the interaction of both a single-

and multi-mode field with a moving mirror. For a single mode field inside the cavity (typical

scenario in quantum optics), our efforts have been focused on two main research lines: the

individuation of clear signatures of the quantum interaction between the optical field and the

mechanical oscillator and the exploration of possible deviations in the mechanical dynamics.

Along the first line, we have studied the quantum-classical comparison of the phases acquired

by the radiation field after its pulsed or continuous interaction with the mechanical mirror. Our

approach to tackle such comparison has revealed that many of the features, which in literature

have been considered of quantum origin, can be actually explained by classical means. In

particular, we have demonstrated that the interferometric visibility cannot be completely used

as a witness of the quantum interaction between light and oscillator. In addition, we have been

able to identify new peculiarities that might prove the quantum behaviour of a mesoscopic

object such us the movable mirror in future optomechanical experiments.

On the other hand, following the second line of research, we have proposed a protocol to probe

possible anharmonicities of the mechanical mirror in the optomechanical pulsed regime. This

investigation has been motivated by the recent attention gained by optomechanical cavities for

the exploration of possible deviations of quantum mechanics (induced by gravity). In fact, such

deviations might be translated in mechanical anharmonicities. Therefore, designing a feasible

scheme, which can be able to probe nonlinearities of the mechanical motion, becomes essential.
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Our proposal can be a starting point for further implementations in systems displaying similar

Hamiltonians and can be easily generalized to probe different kinds of anharmonicities.

In the multimode scenario, an optomechanical cavity can be easily connected to the field

of Casimir physics. In fact, Casimir and Casimir-Polder forces are zero-temperature electro-

magnetic forces of purely quantum origin, which appear every time a quantum multimode field

is confined within a specific geometric configuration (in this specific case a cavity), and be-

come prominent at the micro-nano scale. Today Casimir forces have intensively been studied

in micro-nano mechanical devices to prevent friction and design contact-less surfaces. In this

scenario, starting from a non-equilibrium configuration of the optomechanical system, we have

investigated possible dynamical modifications to the static Casimir force between the two walls

of the optomechanical cavity, induced by a quantum description of the mechanical mirror. The

procedure behind this study has revealed to be very general. We have thus applied it to also

explore non-equilibrium dynamical corrections of the Casimir-Polder force between an excited

atom and a wall, mediated by the electromagnetic field inside a cavity. This, on the other hand,

represents the typical and most fundamental system in cavity QED. In both cases, we have

analyzed the time-dependent process which leads the overall system to its equilibrium configu-

ration, where local quantities such as field-mirror or atom-wall interaction energies converge to

their stationary value, contrarily to global quantities such as the field energy. Furthermore, we

have seen how a dynamical component can increase the absolute value of Casimir or Casimir-

Polder forces. This should be relevant for the detection of the Casimir corrections due to the

quantum nature of the boundary in an optomechanical cavity, or of the dynamical Casimir-

Polder forces. Also, for the dynamical Casimir-Polder force, we have found that using an atom

initially in its excited state is very convenient to single out the elusive dynamical Casimir-Polder

effect.

Novel phenomena appear when the coupling between light and matter is pushed to the

regime where it overcomes the bare energies of the system. However, both in optomechanics

and cavity QED it is experimentally quite hard to enter into this regime. One usually deals

with systems in the weakly-coupled regime, and the opposite limit of strong or extremely strong

interactions is to a very large extent still unexplored. On the other hand, in the arising field

of circuit QED, where artificial atoms (charge or flux qubits) are coupled to microwave fields

(resonators), single superconducting two-level systems have been already coupled ultrastrongly

to resonator modes. For this reason, we have then moved our attention from cavity QED to
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circuit QED. In this context, we have analyzed a circuit where several qubits are coupled to

a single resonator in the USC regime. Very counter-intuitively, in the extreme domain of very

USC interactions, light and matter completely decoupled and the system displays a high degree

of entanglement. We have then described a time-dependent protocol to extract and convert

such correlations into defined multi-partite entangled states of non-interacting qubits. We have

also seen that the USC regime can be exploited to protect such correlations once extracted.

We have finally discussed in detail the feasibility of our scheme, which has illustrated how we

can actually use the USC regime of circuit QED to complete very non-trivial operations.

Our results clearly show that studying the interaction between light and matter in meso-

scopic systems (in the micro- or nano-scale) allows to address problems very different in nature

and that, historically, belong to different fields of Physics. They also demonstrate how such

devices represent a very promising platform to probe and test fundamental aspects of quan-

tum mechanics, as well as to perform control operations, which might have potential for the

development of practical applications.
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