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Abstract

In this thesis we discuss some aspects of Mirror Symmetry for Fano varieties and

toric singularities.

We formulate a conjecture that relates the quantum cohomology of orbifold del

Pezzo surfaces to a power series that comes from Fano polygons. We verify this

conjecture in some cases, in joint work with A. Oneto.

We generalise the Altmann–Mavlyutov construction of deformations of toric sin-

gularities: from Minkowski sums of polyhedra we construct deformations of affine

toric pairs. Moreover, we propose an approach to the study of deformations of

Gorenstein toric singularities of dimension 3 in the context of the Gross–Siebert

program.

We construct deformations of polarised projective toric varieties by deforming

their affine cones. This method is explicit in terms of Cox coordinates and it allows

us to give explicit equations for a construction, due to Ilten, which produces a

deformation between two toric Fano varieties when their corresponding polytopes

are mutation equivalent. We also provide examples of Gorenstein toric Fano 3-folds

which are locally smoothable, but not globally smoothable.
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Introduction

Fano varieties are the simplest kind of algebraic varieties and their classification is

known only in the smooth case if the dimension is not greater than 3. A program

proposed by Coates, Corti, Galkin, Golyshev, and Kasprzyk [CCG+14] aims to give

a classification of Fano varieties via Mirror Symmetry. On one side there are Fano

varieties, whereas on the other side there are combinatorial objects such as polytopes

and Laurent polynomials, considered up to an equivalence relation called mutation.

We refer the reader to Chapter 1 for details.

In joint work with M. Akhtar, T. Coates, A. Corti, L. Heuberger, A. Kasprzyk,

A. Oneto, T. Prince, and K. Tveiten [ACC+16], using the general approach of

[CCG+14], we were able to formulate two conjectures about Mirror Symmetry for

mildly singular del Pezzo surfaces. The first conjecture (Conjecture 1.19) establishes

a one-to-one correspondence between deformation families of del Pezzo surfaces and

mutation equivalence classes of Fano polygons. The second one (Conjecture 2.12)

relates the quantum period of a del Pezzo surface X to a certain power series that

comes from the Fano polygon which is associated to X.

In collaboration with A. Oneto we have verified this second conjecture in some

cases:

Theorem A (Theorem 2.13). Let P be a Fano polygon, let XP be the toric del

Pezzo surface associated to the spanning fan of P , let X be the generic Q-Gorenstein

deformation of XP , and let X be the well-formed orbifold with coarse moduli space

X.

Let H̃<2
CR(X ) be the subspace of the Chen–Ruan cohomology of X spanned by

cohomology classes of degree in ]0, 2[ and let ĜX : H̃<2
CR(X )→ Q[[t]] be the regularised

quantum period of X .

Let LT(P ) be the affine space of maximally mutable Laurent polynomials of P

with T-binomial coefficients and let π : LT(P )→ Q[[t]] be their classical period.

Suppose that X has only 1
3
(1, 1) singularities and suppose that either K2

X 6= 5
3

or

the number of singular points of X is different from 5.

13
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If natural generalisations of the Quantum Lefschetz theorem (Conjecture 2.18)

and of the Abelian/non-Abelian Correspondence (Conjecture 2.23) hold, then there

exist a non-empty affine subspace W ⊆ LT(P ) and an injective affine-linear map

Φ: W −→ H̃<2
CR(X ) such that ĜX ◦ Φ = π, i.e. the following diagram commutes.

W

π
!!

Φ // Φ(W )

ĜX{{
Q[[t]]

We refer the reader to §1.6, §2.1.3, and §2.2 for definitions.

Computing the quantum period of orbifolds is a hard problem in Gromov–Witten

theory, and our computations are at the limit of the currently available techniques.

Our calculations depend on — and provide strong evidence for — natural conjectural

generalisations of the Quantum Lefschetz theorem and the Abelian/non-Abelian

Correspondence to the orbifold setting.

In dimensions greater than 2 the situation is more complicated because there

are examples of singular toric Fano varieties that can be deformed to two smooth

Fano varieties which are not equivalent via smooth deformations. This motivates

the study of deformations of toric varieties in the second part of this thesis.

Altmann [Alt95] has noticed that Minkowski decompositions of a polytope con-

tained in a cone σ induce, under some hypotheses, flat deformations of the affine

toric variety TVC(σ) associated to the cone σ. Mavlyutov [Mav] has generalised

Altmann’s construction via Cox coordinates.

We generalise the Altmann–Mavlyutov construction: starting from Minkowski

decompositions of some polyhedra with some hypotheses we construct deformations

of affine toric pairs. In order to ease the exposition we state only a simpler version

of Theorem 3.10.

Theorem B. Let N be a lattice and let σ ⊆ NR be a strongly convex rational

polyhedral cone of dimension rankN . Consider the affine toric variety TVC(σ)

associated to σ, with its toric boundary ∂TVC(σ). Let w ∈ M := HomZ(N,Z) and

let Q,Q0, Q1, . . . , Qk be non-empty rational polyhedra in NR such that:

• Q0 ⊆ Hw,−1 := {n ∈ NR | 〈w, n〉 = −1};

• Qi ⊆ w⊥ = Hw,0 := {n ∈ NR | 〈w, n〉 = 0} and Qi is a lattice polyhedron, for

each i = 1, . . . , k;

• Q = Q0 +Q1 + · · ·+Qk ⊆ σ;
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• every vertex of the polyhedron σ ∩Hw,−1 belongs to Q.

Consider the lattice Ñ = N ⊕ Ze1 ⊕ · · · ⊕ Zek and the cone

σ̃ = cone 〈σ,Q0 − e1 − · · · − ek, Q1 + e1, . . . , Qk + ek〉 ⊆ ÑR.

Then:

• σ̃ is a strongly convex rational polyhedral cone in Ñ and the toric morphism

TVC(σ) → TVC(σ̃), induced by the inclusion (σ,N) ↪→ (σ̃, Ñ), is a closed

embedding and identifies TVC(σ) with the closed subscheme of TVC(σ̃) associ-

ated to the homogeneous ideal generated by the following binomials in the Cox

coordinates of TVC(σ̃): ∏
ξ∈σ̃(1) :
〈e∗i ,ξ〉>0

x
〈e∗i ,ξ〉
ξ −

∏
ξ∈σ̃(1) :
〈e∗i ,ξ〉<0

x
−〈e∗i ,ξ〉
ξ

for i = 1, . . . , k;

• consider the reduced effective divisor D in TVC(σ̃) defined by the homogeneous

ideal generated by the following monomial in the Cox coordinates of TVC(σ̃):∏
ξ∈σ̃(1) :

∀i∈{1,...,k},〈e∗i ,ξ〉≤0

xξ;

then the scheme-theoretic intersection TVC(σ) ∩ D coincides with the toric

boundary ∂TVC(σ) of TVC(σ);

• consider the closed subscheme X of TVC(σ̃) ×SpecC Ak
C = TVC[t1,...,tk](σ̃) de-

fined by the homogeneous ideal generated by the following trinomials in Cox

coordinates:∏
ξ∈σ̃(1) :
〈e∗i ,ξ〉>0

x
〈e∗i ,ξ〉
ξ −

∏
ξ∈σ̃(1) :
〈e∗i ,ξ〉<0

x
−〈e∗i ,ξ〉
ξ − ti

∏
ξ∈σ̃(1)

x
〈w,ξ〉
ξ

∏
ξ∈σ̃(1) :
〈e∗i ,ξ〉<0

x
−〈e∗i ,ξ〉
ξ

for i = 1, . . . , k. Then the morphisms X ∩ (D ×SpecC Ak
C) ↪→ X → Ak

C induce

a formal deformation of the toric pair (TVC(σ), ∂TVC(σ)) over C[[t1, . . . , tk]].

Although the miniversal deformation of a Gorenstein toric isolated singularity is

known [Alt97], very little is known if the toric singularity is not isolated. The prob-

lem becomes even more difficult if one is interested in deformations of a Gorenstein

toric affine pair (X, ∂X) of dimension greater than or equal to 3.
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In Chapter 5 we give a tentative approach to the study of deformations of Goren-

stein toric affine pairs of dimension 3 via the Gross–Siebert program. More specifi-

cally, we construct a polyhedral complex and an initial scattering diagram on it in

such a way that we expect that an appropriate generalisation of the Kontsevich–

Soibelman–Gross–Siebert algorithm [GS11a] will produce a deformation of the toric

pair.

If one is interested in complete toric varieties, there are some constructions of

deformations: Ilten–Vollmert [IV12] and Ilten [Ilt11] use the theory of T-varieties

[AH06, AHS08, AIP+12], Laface–Melo [LM] use Cox rings, and Mavlyutov [Mav]

uses Minkowski sums of polyhedral complexes. But, in general, it is very difficult to

give combinatorial input in order to give non locally trivial deformations of singular

projective toric varieties. Moreover, the tangent space to deformations of a complete

toric variety is not known.

Elaborating on [Ilt12], in §3.4 we show how to adapt Mavlyutov’s approach to

construct deformations of polarised projective varieties via deforming their affine

cones: this is the content of Theorem 3.12. This procedure allows us to give an

explicit description, in terms of Cox coordinates, and an alternative proof of a result

due to Ilten [Ilt12]: if two Fano polytopes P and P ′ are mutation equivalent then

the corresponding Fano toric varieties XP and XP ′ are deformation equivalent.

Theorem C (Theorem 3.18). Let P ⊆ NR be a Fano polytope and w ∈ M be a

primitive vector. Let F be a factor for P with respect to w and let P ′ = mutw(P, F )

be the mutated polytope. Let XP and XP ′ be the toric Fano varieties associated to

P and P ′ respectively. Set

vert(P )≥0 = vert(P ) ∩ {v ∈ N | 〈w, v〉 ≥ 0},

vert(P ′)<0 = vert(P ′) ∩ {v ∈ N | 〈w, v〉 < 0}.

Consider the lattice Ñ = N ⊕ Ze1 and the polyhedron Q̃ ⊆ M̃R defined by

Q̃ =

u+ ke∗1 ∈ M̃R

∣∣∣∣∣∣∣
∀p ∈ vert(P )≥0, 〈u, p〉+ 1 ≥ 0

∀p′ ∈ vert(P ′)<0, 〈u, p′〉+ 1 + k〈w, p′〉 ≥ 0

∀f ∈ vert(F ), 〈u, f〉+ k ≥ 0

 .

Then Q̃ is a full dimensional rational polytope and the rays of the normal fan Σ̃ of

Q̃ are

• p for p ∈ vert(P )≥0,
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• p′ + 〈w, p′〉e1 for p′ ∈ vert(P )<0,

• f + e1 for f ∈ vert(F ).

Moreover, if X̃ = TVC(Σ̃) is the toric variety associated to Σ̃, then by varying the

coefficients of the trinomial∏
p∈vert(P )≥0

x〈w,p〉p +
∏

p′∈vert(P ′)<0

x
−〈w,p′〉
p′ +

∏
f∈vert(F )

xf

we get a family of closed subschemes of X̃ over P2
C such that the fibre over [0 : 1 : −1]

is XP and the fibre over [1 : 0 : −1] is XP ′.

Another question that we study in this thesis (Chapter 4) is the smoothability of

toric varieties. In dimension 2, it is known that there are no local-to-global obstruc-

tions for Q-Gorenstein deformations of del Pezzo surfaces ([ACC+16, Lemma 6]).

This is not the case in dimension 3: indeed we provide examples of Gorenstein

Fano toric threefolds which are locally smoothable, but not globally smoothable

(Example 4.12). Moreover, we can prove that among the 4319 reflexive polytopes

of dimension 3 there are at least 273 polytopes which give a non-smoothable toric

Fano variety (Remark 4.15).

Finally, it is worth mentioning that we expect that our approach to deforma-

tions of Gorenstein toric singularities of dimension 3 via the Gross–Siebert program

(Chapter 5) can be “globalised” to a reflexive 3-tope in order to produce deforma-

tions of Gorenstein toric Fano 3-folds.

Notation and conventions

The sets of non-negative or positive integers are denoted by N := {0, 1, 2, 3, . . . } and

N+ := {1, 2, 3, . . . }, respectively. The symbol C denotes the field of complex num-

bers, but more generally often stands for an algebraically closed field of characteristic

zero.

A lattice is a finitely generated free abelian group. The letters N,N0, N1, Ñ

stand for lattices and M,M0,M1, M̃ for their duals, i.e. M = HomZ(N,Z). We

set NR := N ⊗Z R and MR := M ⊗Z R. The perfect pairing M × N → Z and its

extension to MR ×NR → R are denoted by the symbol 〈·, ·〉.
In a real vector space V of finite dimension, a cone is a non-empty subset which

is closed under sum and multiplication by non-negative real numbers. The conical

hull cone 〈S〉 of a subset S ⊆ V is the smallest cone containing S, i.e. the set
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made up of λ1s1 + · · · + λksk, as k ∈ N, λi ≥ 0, and si ∈ S. A subset of V is

called a polyhedral cone if it coincides with cone 〈S〉 for some finite subset S ⊆ V ,

or equivalently it is the intersection of a finite number of closed halfspaces passing

through the origin. The convex hull of a subset S ⊆ V is denoted by conv 〈S〉. A

polyhedron is the intersection of a finite number of closed halfspaces, so it is always

convex and closed. A compact polyhedron is called polytope. If Q is a polyhedron,

vert(Q) denotes the set of vertices of Q and rec(Q) is its recession cone, i.e. the cone

of the unbounded directions of Q. If Q1 and Q2 are polyhedra, then their Minkowski

sum is Q1 + Q2 := {q1 + q2 | q1 ∈ Q1, q2 ∈ Q2}. If Q is a polyhedron such that

rec(Q) is strongly convex, then Q = conv 〈vert(Q)〉 + rec(Q). We refer the reader

to the book [Zie95] for details.

We assume the standard terminology of commutative algebra and of algebraic

geometry. By a ring we always understand a commutative ring with unit.



1
Mirror Symmetry

for Fano varieties

1.1. Fano varieties

Definition 1.1. A Fano variety is a normal projective variety X over C such that

its anticanonical divisor −KX is Q-Cartier and ample. A Fano variety of dimension

2 is called a del Pezzo surface.

For a smooth projective variety X over C being Fano is the same as having

positive first Chern class: c1(TX) > 0. Informally speaking, we can say that Fano

varieties are ‘positively curved’. They are the simplest kind of varieties in higher

birational geometry, as they are the basic building blocks of algebraic varieties ac-

cording to the Mori program.

The projective line P1 is the unique Fano variety of dimension 1. In dimension

2 there are ten deformation families of smooth Fano varieties over C: P1 × P1 and

the blow-ups of the projective plane P2 in 0 ≤ m ≤ 8 general points (see [Kol96,

Exercise III.3.9] or [Man86, §24]). Iskovskikh [Isk77, Isk78] classified smooth Fano

3-folds with Picard rank 1 and Mori and Mukai [MM81, MM03] classified smooth

Fano 3-folds with Picard rank greater than 1: this brings about 105 deformation

families of smooth Fano 3-folds. Very little is known in higher dimension. In general,

Kollár–Miyaoka–Mori [KMM92] proved that for each n there are only finitely many

deformation families of smooth Fano n-folds. The following question arises naturally.

19



20 Chapter 1. Mirror Symmetry for Fano varieties

Question 1.2. If n ≥ 4, what is the number of deformation families of smooth Fano

varieties of dimension n?

Another question is to ask what happens if we allow singularities. Already in

dimension 2, there are infinitely many families of singular del Pezzo surfaces. There

has been a lot of recent work in birational algebraic geometry about the boundedness

of log Fano varieties [HMX14, Bir], but an explicit identification of the connected

components of the moduli spaces seems impossible at present.

The program laid out by Coates–Corti–Galkin–Golyshev–Kasprzyk [CCG+14]

aims for using Mirror Symmetry to give a classification of Fano varieties in terms of

combinatorial objects such as polytopes and Laurent polynomials (see §1.3).

1.2. Quantum periods of smooth Fano varieties

Let X be a smooth connected projective variety over C. For g, n ∈ N and d ∈
H2(X;Z), let Xg,n,d be the moduli stack of stable maps to X of genus g, with n

marked points and degree d [KM94, BM96], equipped with its virtual fundamental

class [Xg,n,d]
vir ∈ A(1−g)(dimX−3)−KX ·d+n(Xg,n,d) [BF97, Beh97] and evaluation maps

evi : Xg,n,d → X for i = 1, . . . , n. For any i, let ψi ∈ A1(Xg,n,d) be the first Chern

class of the ith universal cotangent line bundle over Xg,n,d, that is the line bundle

over Xg,n,d whose fibre over the stable map (f : C → X; p1, . . . , pn) is T∨C,pi . For

cohomology classes α1, . . . , αn ∈ A•(X) and k1, . . . , kn ∈ N, the following number is

called a Gromov–Witten invariant [Beh97]:

〈
α1ψ

k1 , . . . , αnψ
kn
〉
g,n,d

:=

∫
[Xg,n,d]vir

ev?1(α1) ∪ ψk1
1 ∪ · · · ∪ ev?n(αn) ∪ ψknn ∈ Q.

It is possible to use Betti cohomology and homology instead of Chow groups.

The quantum period of a smooth Fano variety X is a generating function for some

genus zero Gromov–Witten invariants of X. It is a specialization of a component of

Givental’s J-function [Giv96].

Definition 1.3 ([CCG+14, CCGK16]). Let X be a smooth Fano variety over C.

Let [pt] ∈ H2 dimX(X;Z) be the cohomology class of a point. The quantum period

of X is the power series

GX(t) = 1 +
∑

d∈H2(X;Z)

〈
[pt]ψ−KX ·d−2

〉
0,1,d

t−KX ·d ∈ Q[[t]].
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The regularised quantum period of X is the power series

ĜX(t) = 1 +
∑

d∈H2(X;Z)

(−KX · d)!
〈
[pt]ψ−KX ·d−2

〉
0,1,d

t−KX ·d ∈ Q[[t]].

Mori’s cone theorem [Mor82] implies that the sums above are finite in each

degree with respect to t. By [GGI16, Lemma 3.7.4] the quantum period and the

regularised quantum period are convergent power series in a neighbourhood of the

origin. The quantum periods of smooth Fano varieties of dimension not greater

than 3 are computed by Coates–Corti–Galkin–Kasprzyk [CCGK16], thanks to the

Givental’s toric mirror theorem [Giv98], the Quantum Lefschetz theorem [CG07],

and the Abelian/non-Abelian Correspondence [CFKS08].

We will extend the definition of quantum periods to the case of Fano orbifolds

in §2.1.3 and we will compute some restriction of the quantum periods of some del

Pezzo surfaces with 1
3
(1, 1) singularities (see §2.1.4).

1.3. Fano/Landau–Ginzburg correspondence

Mirror Symmetry [CCG+14] predicts that the mirror of a smooth Fano n-fold X is

an n-fold Y with a regular function W : Y → A1, which is called the superpotential.

The pair (Y,W ) is called a Landau–Ginzburg model. The Gromov–Witten theory of

X should be related to the Hodge theory of the fibration W : Y → A1, as follows:

the regularised quantum period ĜX of X coincides with the period πW which is

defined as

πW (t) =

∫
Γ

Ω

1− tW
(1.1)

where Ω is a holomorphic n-form on Y and Γ ∈ Hn(Y ;Z) is such that
∫

Γ
Ω = 1.

Under some circumstances (which conjecturally and experimentally should coin-

cide with when there is a toric degeneration of X) there is an open subset of Y that

is isomorphic to the torus (C×)n = SpecC[x±1 , . . . , x
±
n ]. In this case the restriction

of W to this open subset gives a Laurent polynomial f ∈ C[x±1 , . . . , x
±
n ]. In this

situation the period πW in (1.1), when Y = (C×)n, Γ = {|x1| = · · · = |xn| = 1} and

Ω = (2πi)−n(x1 · · ·xn)−1dx1 · · · dxn, gives rise to the following definition.

Definition 1.4 ([GU10, ACGK12]). The classical period of a Laurent polynomial
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f ∈ C[x±1 , . . . , x
±
n ] is the power series

πf (t) =

(
1

2πi

)n ∫
|x1|=···=|xn|=ε

1

1− tf(x1, . . . , xn)

dx1 ∧ · · · ∧ dxn
x1 · · ·xn

=
∞∑
k=0

coeff1(fk)tk

where coeff1(fk) ∈ C is the coefficient of the monomial 1 = x0
1 · · ·x0

n in the Laurent

polynomial fk.

The equality in the definition above comes from applying n times Cauchy’s in-

tegral formula. It is easy to show that πf is a convergent power series in a neigh-

bourhood of the origin.

A down-to-earth formulation of Mirror Symmetry between smooth Fano varieties

and Laurent polynomials is the following.

Definition 1.5 ([Prz07, CCG+14]). A Laurent polynomial f ∈ C[x±1 , . . . , x
±
n ] is

mirror to a smooth Fano variety X of dimension n if the classical period of the

former coincides with the regularised quantum period of the latter: πf = ĜX .

Remark 1.6. The equality πf = ĜX can be upgraded to an equality between

the Gauss–Manin connection on the middle cohomology of the fibres of f and the

Dubrovin connection of the quantum D-module of X. We refer the reader to [Gol07].

Example 1.7 (Pn). Thanks to Givental’s toric mirror theorem [Giv98] the quantum

period of Pn is

GPn =
∞∑
d=0

1

(d!)n+1
t(n+1)d.

Thus the regularised quantum period is

ĜPn =
∞∑
d=0

[(n+ 1)d]!

(d!)n+1
t(n+1)d.

On the other hand, let us consider the Laurent polynomial

f = x1 + · · ·+ xn +
1

x1 · · ·xn
.

It is not difficult to see that

coeff1(fk) =


0 if k /∈ N(n+ 1) k

d, . . . , d

 if k = d(n+ 1).
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This shows that ĜPn = πf . So f is mirror to Pn.

A smooth Fano variety may have many different Laurent polynomial mirrors,

which correspond to the many torus charts of its Landau–Ginzburg model. Therefore

the following question is natural.

Question 1.8. What are the Laurent polynomial mirrors to a smooth Fano variety?

In §1.4 we will define an equivalence relation, called mutation, among Laurent

polynomials that preserves the classical period.

1.4. Mutations of Laurent polynomials

Let N be a lattice and M = HomZ(N,Z) its dual. Let C(N) be the field of rational

functions on the torus TM = SpecC[N ], i.e. C(N) is the fraction field of C[N ]. Every

A ∈ GL(N,Z) induces an automorphism of the field C(N) defined by χu 7→ χAu for

all u ∈ N ; let us denote by A this field automorphism.

Definition 1.9 (Algebraic mutation, [GU10,ACGK12]). Let N be a lattice and let

M = HomZ(N,Z) be the dual lattice. If w ∈M and ϕ ∈ C[w⊥∩N ] ⊆ C[N ], ϕ 6= 0,

then mutw,ϕ is the C-automorphism of the field C(N) defined as

mutw,ϕ : χu 7→ ϕ〈w,u〉χu

for all u ∈ N .

An algebraic mutation is a C-automorphism of the field C(N) that can be written

as A ◦mutw,ϕ for some A ∈ GL(N,Z), w ∈M and ϕ ∈ C[w⊥].

Remark 1.10. On the torus TM = SpecC[N ] there are two natural torus invariant

top-dimensional holomorphic forms: namely Ω = ±(dχu1 ∧ · · · ∧ dχun)/χu1+···+un ,

whenever {u1, . . . , un} is a basis of N . An algebraic mutation induces a birational

map µ : TM 99K TM such that µ∗Ω = ±Ω.

Akhtar–Coates–Galkin–Kasprzyk [ACGK12, Lemma 1] show that, if f, g ∈ C[N ]

are Laurent polynomials and mut: C(N)→ C(N) is a mutation such that mut(f) =

g, then f and g have the same classical periods. This sometimes provides a way to

construct many Laurent polynomial mirrors to the same smooth Fano variety.

Example 1.11. If N = Z2, C[N ] = C[x±, y±], w = (−1, 2) and ϕ = 1 + x2y, then

mutw,ϕ : C(x, y)→ C(x, y) is defined by

x 7→ (1 + x2y)−1x

y 7→ (1 + x2y)2y.
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If f = x+ y + x−1y−1 then g = mutw,ϕ = x−1y−1 + (1 + x2y)2y. By Example 1.7 f

and g are both mirror to P2.

1.5. Mutations of polytopes

Let N be a lattice. The Newton polytope of a Laurent polynomial f =
∑

v∈N avχ
v ∈

C[N ] is the convex hull of the lattice points that correspond to the monomials

that appear in f , i.e. Newt f = conv 〈v ∈ N | av 6= 0〉 ⊆ NR. One can ask how the

Newton polytopes of two mutation equivalent Laurent polynomials are related. This

leads to the definition of combinatorial mutation (see Definition 1.15).

Definition 1.12. A subset P ⊆ NR is called a Fano polytope if it is a full dimensional

polytope such that the origin of N lies in the strict interior of P and the vertices of

P are primitive lattice points, i.e. for every vertex v of P one has that v ∈ N and

that there are no other lattice points on the line segment joining v and the origin.

Remark 1.13. Let Σ be a fan of strongly convex rational polyhedral cones in N

and let X be the corresponding toric variety. Then X is Fano if and only if Σ is the

spanning fan of a Fano polytope P , i.e. a cone is in Σ if and only if it is the cone

over a face of P . If this is the case the toric variety is usually denoted by XP .

If M = HomZ(N,Z) is the dual lattice, w ∈MRr{0} and h ∈ R, then we denote

by Hw,h the set of all points of NR lying at height h with respect to w, i.e. the affine

hyperplane Hw,h := {v ∈ NR | 〈w, v〉 = h}.

Definition 1.14. Let P ⊆ NR be a Fano polytope and let w ∈ M be a primitive

vector. Define1 hmin := minP 〈w, ·〉 and hmax := maxP 〈w, ·〉. A factor of P with

respect to w is a lattice polytope F ⊆ w⊥ ⊆ NR satisfying the following condition:

for every h ∈ Z such that hmin ≤ h < 0, there exists a (possibly empty) lattice

polytope Gh ⊆ NR such that

Hw,h ∩ vert(P ) ⊆ Gh + (−h)F ⊆ conv (Hw,h ∩ P ∩N) . (1.2)

Note that, for given Fano polytope P ⊆ NR and primitive vector w ∈M , a factor

F need not exist. When a factor does exist we make the following construction.

Definition 1.15 ([ACGK12, Definition 5]). Let P ⊆ NR be a Fano polytope and

w ∈M be a primitive vector. Let F be a factor for P with respect to w. Assume that

1Since P is a lattice polytope, both hmin and hmax are integers. Since the origin is in the strict
interior of P we have hmin < 0 < hmax.
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{Gh}hmin≤h<0 is a collection of lattice polytopes satisfying the condition in Definition

1.14. We define the corresponding mutation to be the lattice polytope

mutw,F (P ) := conv

(
−1⋃

h=hmin

Gh ∪
hmax⋃
h=0

((Hw,h ∩ P ∩N) + hF )

)
.

The polytope mutw,F (P ) does not depend on the choice of {Gh}hmin≤h<0. More-

over, mutw,F (P ) is a Fano polytope. See [ACGK12, §3] or [Akh15, §2.5] for the

proofs of these statements.

Roughly speaking, mutw,F (P ) is obtained from P by adding hF at height h for

h > 0 and by removing (−h)F at height h for h < 0. F is a factor precisely when

it is possible to remove multiples of F at negative heights.

If f ∈ C[N ], w ∈ M , ϕ ∈ C[w⊥ ∩ N ] and mutw,ϕ(f) ∈ C[N ], then there is the

following equality of Newton polytopes:

Newt mutw,ϕ(f) = mutw,Newtϕ(Newt f).

Remark 1.16. For every Fano polytope P in the lattice N , we can consider the

TN -toric variety XP associated to the spanning fan of P ; it is a Fano variety. When

f ∈ C[N ] is a mirror of a smooth Fano variety X such that Newt f = P we expect

that XP is a degeneration of X. So mutations of Fano polytopes are related to

different toric degenerations of the same smooth Fano variety. In this perspective

Ilten [Ilt12] has proved that if P and P ′ are two mutation equivalent Fano polytopes

then XP and XP ′ are two fibres in a flat projective family over P1. We will give an

alternate proof of this result in §3.5. Roughly speaking we could say that mutations

of Fano polytopes produce a one-dimensional skeleton in the moduli space of Fano

varieties.

Example 1.17. By Example 1.11 the Laurent polynomials f = x+ y+x−1y−1 and

g = x−1y−1 + (1 +x2y)2y are related via an algebraic mutation. Their Newton poly-

topes are P = conv 〈(1, 0), (0, 1), (−1,−1)〉 and P ′ = conv 〈(−1,−1), (0, 1), (4, 3)〉.

We see that XP = P2 and XP ′ = P(1, 1, 4). Consider

X = {([λ : µ], [x0 : x1 : x2 : y]) ∈ P1 × P(1, 1, 1, 2) | (λ+ µ)x0x1 − λx2
2 − µy = 0}
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with the projection X → P1. The fibre over [0 : 1] is XP and the fibre over [1 : 0] is

XP ′ .

1.6. Mirror Symmetry for orbifold del Pezzo sur-

faces I

In the preceding sections we have discussed the Fano/Landau–Ginzburg correspon-

dence and mutations of Laurent polynomials and of Fano polytopes. The discussion

has been a bit vague as we do not know what singularities we want Fano varieties to

acquire and we do not know what are the Laurent polynomials mirror to any Fano

variety. In the case of dimension 2 the description is clearer and leads us to two

conjectures which appear in our joint work with Akhtar, Coates, Corti, Heuberger,

Kasprzyk, Oneto, Prince, Tveiten [ACC+16]. The first conjecture establishes a one-

to-one correspondence between Fano polygons, up to mutation, and certain families

of del Pezzo surfaces (see Conjecture 1.19 below). This can be seen as a conjectural

classification of del Pezzo surfaces.

The del Pezzo surfaces we consider have only cyclic quotient singularities. This

means that every singular point has a neighbourhood that is a cyclic quotient singu-

larity. By a cyclic quotient singularity of dimension 2 we mean a scheme of finite type

over C which is étale-locally equivalent to a neighbourhood of the origin in the quo-

tient A2/µn = SpecC[x, y]µn , where the group µn acts linearly with weights (1, q),

for some q, n ∈ N such that 1 ≤ q < n and gcd(n, q) = 1. For brevity we denote

the quotient A2/µn, with respect to action above, by 1
n
(1, q). It is well known (e.g.

[Ful93, §2.2]) that 1
n
(1, q) is the affine toric surface associated to cone 〈(0, 1), (n,−q)〉

in the lattice Z2. When we write 1
n
(1, q) we will always assume that q, n ∈ N are

such that 1 ≤ q < n and gcd(n, q) = 1.

Now we want to specify what sort of families of del Pezzo surfaces with cyclic

quotient singularities we allow. Arbitrary flat deformations of normal surfaces can

be quite wild; for instance the self-intersection of the canonical divisor in a flat

family of normal projective surfaces can be non locally constant. We would like to

consider only flat families that behave well with respect to the canonical divisor:

this leads us to the notion of a Q-Gorenstein family. Roughly speaking, a flat

family of normal surfaces is called Q-Gorenstein if its relative canonical divisor is

a relative Q-Cartier divisor. Equivalently, Q-Gorenstein deformations of a normal

surface are the deformations induced by deformations of its Gorenstein cover stack.

This notion is due to Kollár–Shepherd-Barron [KSB88]. We refer the reader to

[Kol91,Hac04,AH11,AKb,LN] for precise definitions.



1.6. Mirror Symmetry for orbifold del Pezzo surfaces I 27

The notion of Q-Gorenstein family produces a milder deformation theory. For

instance, the base of the miniversal deformation of 1
n
(1, q) has many irreducible

components [Rie74,KSB88,BR95,Ste91,Chr91,Ste13] and their non-reduced struc-

ture is not understood yet. On the other hand, the base space of the miniversal

Q-Gorenstein deformation is smooth and reduced and can be described explicitly as

follows. Write w = gcd(n, q + 1), n = wr, q + 1 = wa; it is easy to see that r is the

Gorenstein index of 1
n
(1, q) and that the surface 1

n
(1, q) is the divisor

{xy + zw = 0} ⊆ 1

r
(1, wa− 1, a)x,y,z,

where we denote by 1
r
(1, wa − 1, a) the quotient A3/µr with respect to the linear

action of the cyclic group µr with weights (1, wa − 1, a). If r = 1 (i.e. q = n − 1

and 1
n
(1, n − 1) = An−1) then every infinitesimal deformation of 1

n
(1, n − 1) is Q-

Gorenstein and the miniversal deformation of 1
n
(1, n− 1) is

{
xy + zn + s1z

n−2 + · · ·+ sn−1 = 0
}
⊆ A3

x,y,z × An−1
s1,...,sn−1

over An−1. If r ≥ 2, then write w = mr + w0 with 0 ≤ w0 < r, and the miniversal

Q-Gorenstein deformation of 1
n
(1, q) is

{
xy +

(
zrm + s1z

r(m−1) + · · ·+ sm
)
zw0 = 0

}
⊆ 1

r
(1, w0a− 1, a)x,y,z × Am

s1,...,sm

over Am−1 and, if m ≥ 1, this is a component of the miniversal deformation of 1
n
(1, q);

the generic fibre of this deformation is smooth if w0 = 0, and has a singularity of

type 1
w0r

(1, w0a− 1) if w0 > 0.

The discussion above leads us to the following definition.

Definition 1.18 ([AKa]). Let n, q ∈ N be such that 1 ≤ q < n and gcd(n, q) = 1.

Set w = gcd(n, q + 1), n = wr, q + 1 = wa, w = mr + w0 with 0 ≤ w0 < r. The

residual singularity of 1
n
(1, q) is defined as

res

(
1

n
(1, q)

)
=

 1
w0r

(1, w0a− 1) if w0 > 0

∅ if w0 = 0.

The singularity 1
n
(1, q) is called Q-Gorenstein rigid if 0 < w < r.

In other words, the residual singularity of 1
n
(1, q) is the best singularity to

which 1
n
(1, q) can be Q-Gorenstein deformed. Moreover, the singularity 1

n
(1, q) is

Q-Gorenstein rigid if all infinitesimal Q-Gorenstein deformations are trivial.
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We say that two normal surfaces X and X ′ are Q-Gorenstein deformation equiv-

alent if there exist Q-Gorenstein families fi : Xi → Si over connected schemes Si of

finite type over C and closed points ti, si ∈ Si, 1 ≤ i ≤ n, such that X = f−1
1 (t1),

f−1
i (si) = f−1

i+1(ti+1) for 1 ≤ i < n, and f−1
n (sn) = X ′.

A Fano polygon is a Fano polytope of dimension 2. Two Fano polygons P and

P ′ are mutation equivalent if there is a sequence of combinatorial mutations that

starts with P and ends at P ′.

Conjecture 1.19 ([ACC+16, Conjecture A]). Let P be the set of mutation equiv-

alence classes of Fano polygons. Let F be the set of Q-Gorenstein deformation

equivalence classes of del Pezzo surfaces X with Q-Gorenstein rigid cyclic quotient

singularities and with a Q-Gorenstein degeneration to a toric del Pezzo surface.

Then the assignment, to a Fano polygon P , of a generic Q-Gorenstein deforma-

tion of the toric surface XP is a bijection from P to F.

This conjecture can be interpreted as a classification of the connected components

of the moduli stack of del Pezzo surfaces with Q-Gorenstein toric degeneration.

Theorem 1.20 ([ACC+16, Theorem 3]). The assignment in Conjecture 1.19 gives

a surjective map P→ F.

The proof of the theorem above is contained in [ACC+16] and runs as follows. If

P and P ′ are two mutation equivalent Fano polygons, then the corresponding toric

del Pezzo surfaces XP and XP ′ are Q-Gorenstein deformation equivalent, similarly as

in Remark 1.16. If P is a Fano polygon then the generic Q-Gorenstein deformation of

XP contains only Q-Gorenstein rigid cyclic quotient singularities, because there are

no local-to-global obstructions for Q-Gorenstein deformations of del Pezzo surfaces.

Kasprzyk–Nill–Prince [KNP] have proved that there are 10 mutation equivalence

classes of Fano polygons P such that XP has only Q-Gorenstein smoothable singu-

larities. These means that, according to Conjecture 1.19, they correspond to the 10

deformation families of smooth del Pezzo surfaces.

One can easily see that 1
3
(1, 1) is a Q-Gorenstein rigid singularity. Let us consider

Fano polygons P such that the residual singularities of the singularities of the toric

surface XP are empty or 1
3
(1, 1), and they are not all empty. Equivalently, we are

considering Fano polygons P such that the generic Q-Gorenstein deformation of XP

is singular and has only 1
3
(1, 1) as singularities. By [KNP], there are 26 mutation

classes of such polygons. These correspond to the 26 Q-Gorenstein families of del

Pezzo surfaces with a toric Q-Gorenstein degeneration and with 1
3
(1, 1) singularities,

which have been classified by Corti and Heuberger [CH17]. In addition, there are

3 Q-Gorenstein deformation equivalence classes of del Pezzo surfaces with 1
3
(1, 1)
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singularities without a Q-Gorenstein toric degeneration: we expect that there is no

torus chart on their Landau–Ginzburg models.

The discussion of Mirror Symmetry for orbifold del Pezzo surfaces will continue

in §2.2.





2
Quantum periods of del Pezzo

surfaces with 1
3(1, 1) singularities

In this chapter we recall the Gromov–Witten theory for orbifolds and we define

the quantum period for Fano orbifolds (§2.1). In §2.2 we continue our discussion

of Mirror Symmetry for orbifold del Pezzo surfaces. In §2.1.4 we summarise the

results of the computation, done in collaboration with Alessandro Oneto [OP], of

the quantum periods for del Pezzo surfaces with 1
3
(1, 1) singularities and we discuss

methods and examples in §2.3, §2.4, and §2.5.

Notation

In this chapter calligraphic letters, i.e. X and Y , denote separated Deligne–Mumford

stacks of finite type over C and roman letters, i.e. X and Y , denote their coarse

moduli spaces.

2.1. The quantum period

2.1.1. Gromov–Witten theory for smooth proper Deligne–

Mumford stacks

Gromov–Witten theory for smooth proper Deligne–Mumford stacks has been devel-

oped by Chen–Ruan [CR04] in the symplectic setting and by Abramovich–Graber–

31
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Vistoli [AGV02, AGV08] in the algebraic setting. Here we recall just the basic

definitions, following the concise expositions of [Iri11, §2.1] and [CCIT15].

Let X be a proper smooth Deligne–Mumford stack over C with projective coarse

moduli space X. Let

IX =
∐

b∈Box(X )

Xb

be the decomposition of the inertia stack of X into connected components. Let 0 ∈
Box(X ) be the index of the connected component of IX corresponding to the trivial

stabiliser. For every b ∈ Box(X ), let age(b) ∈ Q≥0 be the age of the component Xb
(see [CR04, §3.2], where it is called degree shifting number, or [AGV08, §7.1]). Let

H•CR(X ) be the even part of the Chen–Ruan orbifold cohomology group of X , i.e.

the Q-graded vector space over Q given by

Hp
CR(X ) :=

⊕
b∈Box(X ) s.t.
p−2age(b)∈2Z

Hp−2age(b)(Xb;Q)

for every p ∈ Q. Thus H•CR(X ) coincides, as a vector space, with the even degree

cohomology Heven(IX ;Q) of IX , but has a different grading. Let inv? : H•CR(X ) →
H•CR(X ) be the homomorphism induced by the involution inv : IX → IX given

by (x, g) 7→ (x, g−1). The orbifold Poincaré pairing (·, ·)CR is the symmetric non-

degenerate bilinear form on H•CR(X ) defined by

(α, β)CR :=

∫
IX
α ∪ inv?β.

For d ∈ H2(X;Z) and n ≥ 0, let X0,n,d be the moduli stack of stable maps1 to

X of genus 0, with n marked points and degree d. This is equipped with a virtual

fundamental class [X0,n,d]
vir ∈ H•(X0,n,d;Q) and evaluation maps evi : X0,n,d → IrigX

to the rigidified inertia stack IrigX (see [AGV08, §3.4]), for i = 1, . . . , n. Since

the stacks IrigX and IX have the same coarse moduli space, there are canonical

isomorphisms between their cohomology groups with rational coefficients. Thus, we

can think of elements of H•CR(X ) as cohomology classes on IrigX . For i = 1, . . . , n,

let ψi ∈ H2(X0,n,d;Q) be the first Chern class of the ith universal cotangent line

bundle Li ∈ Pic(X0,n,d). Gromov–Witten invariants of X are numbers

〈
α1ψ

k1 , . . . , αnψ
kn
〉

0,n,d
:=

∫
[X0,n,d]vir

n∏
i=1

(
ev?i (αi) ∪ ψ

ki
i

)
∈ Q,

1This is an open and closed substack of the stack of balanced twisted stable mapsKbal
0,n(X ,OX(1)·

d) in [AV02], where OX(1) is an ample line bundle on X.
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where α1, . . . , αn ∈ H•CR(X ) are cohomology classes and k1, . . . , kn are non-negative

integers.

2.1.2. Givental’s symplectic formalism

Let X be a proper smooth Deligne–Mumford stack over C with projective coarse

moduli space X. Let Eff(X ) ⊆ H2(X;Z) be the submonoid generated by the ho-

mology classes of images of representable maps from complete stacky curves to X .

If R is a commutative ring, then the Novikov ring Λ(R) on R is the completion of

the group R-algebra R[Eff(X )] with respect to an additive valuation defined by a

polarization on X which we choose once and for all (see [Tse10, Definition 2.5.4]). If

d ∈ Eff(X ) we denote by Qd the corresponding element in Λ(R). Following Givental

[Giv01] and Tseng [Tse10], we consider the C-vector space

HX := H•CR(X )⊗Q Λ
(
C((z−1))

)
, (2.1)

where z is a formal variable, equipped with the symplectic form Ω defined by

Ω(f, g) = −Resz=∞
(
f(−z), g(z)

)
CR

dz for f, g ∈ HX .

In the symplectic vector space (HX ,Ω) there is a Lagrangian submanifold LX , which

is a formal germ of a cone with vertex at the origin and which encodes all genus-zero

Gromov–Witten invariants of X . We will not give a precise definition of LX here,

referring the reader to [Tse10, §3.1], [CCIT09, Appendix B] and [CCIT15, §2]. LX
is called the Givental cone of X and determines and is determined by Givental’s

J-function:

JX (γ, z) = z + γ +
∑

d∈Eff(X )

∞∑
n=0

∞∑
k=0

N∑
ε=1

Qd

n!

〈
γ, . . . , γ, φεψk

〉
0,n+1,d

φεz
−k−1, (2.2)

where γ runs in H•CR(X ), and {φ1, . . . φN} and {φ1, . . . φN} are homogeneous bases

of the vector space H•CR(X ) which are dual with respect to (·, ·)CR. The cone LX
determines the J-function because JX (γ,−z) is the unique point on LX of the form

−z + γ + O(z−1), where O(z−1) denotes a power series in z−1. Conversely, the

J-function determines LX and all genus-zero Gromov–Witten invariants of X by

[GT13, Proposition 2.1] and topological recursion relations.
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2.1.3. The quantum period of a Fano orbifold

An orbifold is defined to be a separated smooth connected Deligne–Mumford stack X
of finite type over C such that the stabiliser of the generic point is trivial. Following

[IF00, Definition 5.11], we say that an orbifold X is well-formed2 if the natural

morphism X → X to the coarse moduli space is an isomorphism in codimension

1. In other words, an orbifold is well-formed if the stacky locus has codimension at

least 2.

If X is a well-formed orbifold and its coarse moduli space X is a scheme, then

X is a Cohen–Macaulay Q-factorial normal variety with quotient singularities such

that Pic(X ) ' Pic(Xsm) ' Cl(X), where Xsm is the smooth locus of X and Cl(X)

is the divisor class group of X. Conversely, a normal separated variety with quo-

tient singularities is the coarse moduli space of a unique well-formed orbifold, by

[Vis89, (2.8) and (2.9)] and [FMN10, §4.1]. In other words, there is a one-to-one

correspondence between well-formed orbifolds with schematic coarse moduli space

and normal separated varieties with quotient singularities.

When X is a normal separated variety with quotient singularities, we denote by

X the unique well-formed orbifold such that X is its coarse moduli space.

Definition 2.1. A well-formed orbifold X is called a Fano orbifold if its coarse

moduli space X is a projective variety such that its anticanonical class −KX is an

ample Q-Cartier divisor.

There is a one-to-one correspondence between Fano orbifolds and normal pro-

jective varieties with quotient singularities such that OX(−mKX) is a very ample

line bundle on X, for some m ≥ 1.

The quantum period of a Fano orbifold X is a generating function for certain

genus-zero Gromov–Witten invariants of X .

Definition 2.2 ([OP]). Let X be a Fano orbifold and let b1, . . . , br ∈ Box(X ) be the

indices of the connected components of the inertia stack IX such that 0 < age(bi) <

1. Let 1bi ∈ H0(Xbi ;Q) ⊆ H
2age(bi)
CR (X ) be the identity cohomology class of the

component Xbi . If d ∈ Eff(X ), n ∈ N and 1 ≤ i1, . . . , in ≤ r, then set

δd,i1,...,in := −KX · d+
n∑
j=1

(
1− age

(
bij
))
∈ Q.

2A well-formed orbifold is called a canonical smooth Deligne–Mumford stack by Fantechi–Mann–
Nironi [FMN10, Def. 4.4].
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The quantum period of X is:

GX (x1, . . . , xr; t) = 1 +

+
∑

d∈Eff(X )

∞∑
n=0

∑
1≤i1,...,in≤r

〈
1bi1 , . . . ,1bin ,

φvol

1− ψ

〉
0,n+1,d

xi1 · · ·xin
n!

tδd,i1,...,in ,

where φvol ∈ H2 dimX (X ;Q) is the cohomology class of a point, t, x1, . . . , xr are formal

variables and 1
1−ψ denotes the series

∑
k≥0 ψ

k.

If GX =
∑

δ∈N cδt
δ is the quantum period of X with cδ ∈ Q[[x1, . . . , xr]], then the

regularised quantum period of X is ĜX :=
∑

δ∈N δ!cδt
δ.

The quantum period comes from a specialisation of a component of the J-

function. Indeed, GX is obtained from the component of the J-function JX along

the unit class 10 ∈ H0(X;Q) ⊆ H0
CR(X ) by replacing the Novikov variable Qd by

t−KX ·d and setting z = 1 and γ = t1−age(b1)x11b1 + · · ·+ t1−age(br)xr1br .

Notation 2.3. If d ∈ Eff(X ), n ∈ N and 1 ≤ i1, . . . , in ≤ r, then set

GWd,i1,...,in :=
〈
1bi1 , . . . ,1bin , φvolψ

δd,i1,...,in−2
〉

0,n+1,d
∈ Q.

Proposition 2.4 ([OP]). If X is a Fano orbifold, then GX ∈ Q[x1, . . . , xr][[t]] and

the following formula holds:

GX (x1, . . . , xr; t) = 1 +
∑

d∈Eff(X ),
n∈N,

1≤i1,...,in≤r

GWd,i1,...,in

n!
xi1 · · ·xintδd,i1,...,in . (2.3)

Moreover:

(i) the coefficient of t in GX is zero;

(ii) if f is the Fano index of X, then in the specialisation GX (0, . . . , 0; t) only

powers of tf appear, i.e. GX (0, . . . , 0; t) ∈ Q[[tf ]].

Proof. Notice〈
1bi1 , . . . ,1bin ,

φvol

1− ψ

〉
0,n+1,d

=
∑
k∈N

〈
1bi1 , . . . ,1bin , φvolψ

k
〉

0,n+1,d
.

If
〈
1bi1 , . . . ,1bin , φvolψ

k
〉

0,n+1,d
is non-zero, then deg(φvolψ

k
n+1) = 2 dimX + 2k must

be equal to the real virtual dimension of the corresponding component of X0,n+1,d,
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which is

2 [−KX · d+ dimX − age(bi1)− · · · − age(bin) + (n+ 1)− 3] .

Thus k = −KX · d − age(bi1) − · · · − age(bin) + n − 2 = δd,i1,...,in − 2 is uniquely

determined by d, n and i1, . . . , in ∈ {1, . . . , r}. This shows that the formula (2.3)

holds.

We prove that δd,i1,...,in is an integer greater than 1 whenever d ∈ H2(X,Z),

n ∈ N, 1 ≤ i1, . . . in ≤ r are such that GWd,i1,...,in 6= 0. In these circumstances there

must exist a genus-zero (n+ 1)-pointed stable map

C ϕ //

��

X

��
C

ϕ // X

such that ϕ?[C] = d and the marking gerbes Σ1, . . . ,Σn,Σn+1 ⊆ C give geometric

points in the components bi1 , . . . , bin , 0 ∈ Box(X ) of IX , respectively. By orbifold

Riemann–Roch [AGV08, Theorem 7.2.1], we see that

δd,i1,...,in = degC ϕ
?TX − age(bi1)− · · · − age(bin) + n

= χ(C, ϕ?TX )− rk(ϕ?TX )χ(C,OC) + n

is an integer. Moreover, since Gromov-Witten invariants with negative gravitational

descendants are zero by definition, δd,i1,...,in ≥ 2. This proves (i).

Now we have to prove the finiteness of the sum (2.3). More specifically we have

to prove that, for every integer δ ≥ 2, the coefficient

∑
d∈Eff(X ),
n∈N,

1≤i1,...,in≤r,
s.t. δd,i1,...,in=δ

GWd,i1,...,in

n!
xi1 · · ·xin (2.4)

of tδ is a polynomial in the variables x1, . . . , xr. This is a dimensional argument, as

follows.

Let e be the least common multiple of the exponents of the automorphism

groups of all geometric points of X . By [AGV08, Lemma 2.1.2], the line bundle

(det(Ω1
X )∨)⊗e on X is the pull-back to X of a line bundle H on X. Since X is a

Fano orbifold, H is an ample line bundle on X. In the divisor class group of X

we have the equality H = −eKX . As in [AV02], for every h, n ∈ N let K0,n(X , h)

be the moduli stack of genus-zero n-marked stable maps ϕ : C → X such that
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degC ϕ
?H = h, where ϕ : C → X is the coarse map.

Fix an integer δ ≥ 2. Let a = max1≤i≤r age(bi). If d ∈ Eff(X ), n ∈ N and

i1, . . . , in ∈ {1, . . . , r} are such that δd,i1,...,in = δ, then δ ≥ n(1−a) and δ ≥ −KX ·d,

so n ≤ δ/(1 − a) and H · d ≤ eδ. Hence the coefficient (2.4) of tδ involves some

intersection products on some connected components of the proper stack∐
n≤δ/(1−a),

h≤eδ

K0,n(X , h).

This shows that the sum (2.4) is a polynomial in the variables x1, . . . , xr with rational

coefficients.

Now we prove (ii). Let L ∈ Pic(X ) be such that ω∨X = L⊗f . If the Gromov–

Witten invariant
〈
φvolψ

−KX ·d−2
〉

0,1,d
is non zero, then there exists a 1-pointed stable

curve ϕ : C → X such that ϕ?[C] = d and the marking gerbe Σ1 ⊆ C gives a

geometric point in the trivial component of IX . By orbifold Riemann–Roch for

−KX = ω∨X and L,

−KX · d = degC ϕ
?ω∨X = f · degC ϕ

?L = f · (χ(C, ϕ?L)− χ(C,OC))

is divisible by f . This concludes the proof of (ii).

Remark 2.5. Let X be a Fano orbifold, let 1b1 , . . . ,1br ∈ H•CR(X ) be the identity

cohomology classes of the components of IX with age between 0 and 1, let e be the

least common multiple of the exponents of the automorphism groups of all geometric

points of X , and let φvol be the cohomology class of a point. We have H̃<2
CR(X ) =

Q1b1 ⊕ · · · ⊕ Q1br , where H̃<2
CR(X ) denotes the subspace of H•CR(X ) generated by

classes of degree in ]0, 2[. For every n ∈ N and d ∈ Eff(X ), consider the Q[t1/e]-

valued multilinear symmetric n-form on H̃<2
CR(X ) defined, for any 1 ≤ i1, . . . , in ≤ r,

by

(1bi1 , . . . ,1bin ) 7→
〈

1bi1 , . . . ,1bin ,
φvol

1− ψ

〉
0,n+1,d

n∏
j=1

t1−age(bij );

this induces an element Ξd,n ∈ SymnH̃<2
CR(X )∨⊗QQ[t1/e]. The quantum period of X

can be written as

GX (t) = 1 +
∑

d∈Eff(X ),
n∈N

Ξd,n

n!
t−KX ·d.

Proposition 2.4 shows that GX ∈ (Sym•H̃<2
CR(X )∨)[[t]]. In this way, we can consider

the quantum period and the regularised quantum period as families of power series

H̃<2
CR(X )→ Q[[t]].
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Example 2.6. If X is a Fano orbifold such that its coarse moduli space X has

canonical singularities, then there are no connected components of IX with positive

age smaller than 1 by the Reid–Tai criterion [Kol13, Theorem 3.21]. Therefore, in

this case, H̃<2
CR(X ) = 0 and the quantum period of X is

GX (t) = 1 +
∑

d∈Eff(X )
s.t. −KX ·d≥2

〈
φvolψ

−KX ·d−2
〉

0,1,d
t−KX ·d.

In particular, if X is a smooth Fano variety then this formula agrees with Defini-

tion 1.3, [CCG+14, Definition 4.2], and [CCGK16, §B].

Example 2.7. The well-formed orbifold associated to the affine surface 1
n
(1, q) is the

quotient stack [A2/µn], where µn acts linearly with weights (1, q). The inertia stack

of this stack has n connected components which are indexed by j = 0, . . . , n−1; the

0th component is [A2/µn] itself and has age 0; the jth component (as 1 ≤ j < n) is

Bµn and has age
{
j
n

}
+
{
jq
n

}
.

Let X be a del Pezzo surface with r singular points which are cyclic quotient

singularities of type 1
ni

(1, qi) as i = 1, . . . , r, and let X be the Fano orbifold associated

to X. The inertia stack IX has 1 +
∑r

i=1(ni − 1) connected components. Then the

quantum period of X is a family of power series parametrised by

H̃<2
CR(X ) =

r⊕
i=1

⊕
1≤j<ni s.t.{
j
ni

}
+
{
jqi
ni

}
<1

Q1i,j.

Example 2.8. Let X be a del Pezzo surface with r singular points of type 1
3
(1, 1)

and let X be the Fano orbifold associated to X. Then, the inertia stack IX has

1 + 2r connected components: the trivial connected component of age 0 (which is

isomorphic to X ), r connected components of age 2/3 (which are isomorphic to Bµ3),

r connected components of age 4/3 (which are isomorphic to Bµ3). For i = 1, . . . , r,

let 1i be the identity cohomology class of the ith connected component of age 2/3.

Then the quantum period of X is:

GX (x1, . . . , xr; t) = 1+

+
∑

d∈Eff(X ),
n∈N,

1≤i1,...,in≤r

〈
1i1 , . . . ,1in , φvolψ

−KX ·d+n
3
−2
〉

0,n+1,d

xi1 · · ·xin
n!

t−KX ·d+n
3 .
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2.1.4. Quantum periods of del Pezzo surfaces with 1
3(1, 1) sin-

gularities

Corti and Heuberger [CH17] have proved that there are 29 Q-Gorenstein deforma-

tion families of del Pezzo surfaces with 1
3
(1, 1) singularities. In collaboration with

Alessandro Oneto [OP] we have computed some specializations of the quantum pe-

riod for 26 out of these 29 families.

More specifically, out of these 29 families, three have Fano index greater than

1: the weighted projective plane P(1, 1, 3) and two surfaces denoted by B1,16/3 and

B2,8/3; the remaining 26 families have Fano index equal to 1 and they are denoted

by Xk,d, where k is the number of singular points and d = K2
X is the degree. For

many of these surfaces, Corti and Heuberger [CH17] exhibit explicit models, which

are essential for our computations of the quantum periods. The methods of our

computations are the following.

• 6 surfaces are toric. Using the mirror theorem for toric stacks (see §2.3.2) we

compute the full quantum periods. An example is given in §2.3.3.

• 19 surfaces are complete intersections in toric orbifolds. Using a conjectural

generalisation of the Quantum Lefschetz theorem (see §2.4.1), we compute the

restriction of the quantum period to a non-empty affine subspace of H̃<2
CR(X ).

In §2.4.3 and §2.4.4 we give two examples of these computations.

• The surface X1,7/3 is described as a complete intersection inside a weighted

Grassmannian. In §2.5.2, combining conjectural generalisations of the Quan-

tum Lefschetz theorem (see §2.4.1) and the Abelian/non-Abelian Correspon-

dence (see §2.5.1), we compute a restriction of the quantum period to a non-

empty affine subspace of H̃<2
CR(X ).

• For the surfaces X5,2/3, X5,5/3, X6,1, since we do not know any useful model for

computations in Gromov–Witten theory, we have not been able to compute

any restriction of the quantum period.

Although our computations rest on conjectural generalisations of the Quantum Lef-

schetz theorem and of the Abelian/non-Abelian Correspondence, we are confident

that the results of our computations are correct because, even though partial, they

match perfectly with the framework of Mirror Symmetry for orbifold del Pezzo sur-

faces, as formulated in [ACC+16] and in §2.2 below.

Our complete results are reported in [OP] and will not appear here; as we said,

we only include four examples in §2.3.3, §2.4.3, §2.4.4, and §2.5.2. Our computa-
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tions rely on the use of the computer; indeed, we have implemented the machin-

ery described in §2.3.1, §2.3.2, §2.4.2 in the language of computer algebra software

MAGMA [BCP97].

2.2. Mirror Symmetry for orbifold del Pezzo sur-

faces II

Here we continue the general discussion of §1.6. The second conjecture of our joint

work with Akhtar, Coates, Corti, Heuberger, Kasprzyk, Oneto, Prince, Tveiten

[ACC+16] (see Conjecture 2.12 below) predicts that the regularised quantum period

of an orbifold del Pezzo surface X with Q-Gorenstein rigid cyclic singularities coin-

cides with the classical period of a certain family of ‘special’ Laurent polynomials

supported on the polygon corresponding to some toric Q-Gorenstein degeneration

of X.

These ‘special’ Laurent polynomials are called maximally mutable and are those

that can follow algebraically (see Definition 1.9) every combinatorial mutation (see

Definition 1.15) of their Newton polytope. In other words, maximally mutable

Laurent polynomials of a Fano polygon P are the Laurent polynomials f ∈ Q[N ]

such that the Newton polygon of f is P and they stay Laurent after every mutation

of P and the corresponding operation on f . This notion is due to Kasprzyk and

Tveiten [KT] and the precise definition is below.

Definition 2.9 ([ACC+16, KT]). Let P be a Fano polygon in a rank 2 lattice N .

A Laurent polynomial f ∈ Q[N ] is called a maximally mutable Laurent polynomial

of P if:

(i) the Newton polygon of f is P ;

(ii) the coefficient of the monomial 1 = χ0 is 0;

(iii) whenever

P = P0 → P1 → · · · → Pn

is a sequence of combinatorial mutations (see Definition 1.15) with respect

to vectors wi ∈ M and factors Fi = conv 〈0, ui〉 ⊆ NR, with ui ∈ N prim-

itive, as i = 1, . . . , n, we have that the rational function f1, . . . , fn ∈ C(N)

defined recursively via algebraic mutations (see Definition 1.9) as f0 := f ,

fi := mutwi,1+χui (fi−1) are all Laurent polynomials.

Let L(P ) be the Q-vector space of maximally mutable Laurent polynomials of P .
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There is also a restriction on the boundary coefficients we have to require.

Definition 2.10 ([ACC+16,KT]). Let P be a Fano polygon in a rank 2 lattice N .

Let f ∈ Q[N ] be a Laurent polynomial such that Newt f = P . We say that f has

T-binomial coefficients if the following condition is satisfied.

• Let E be an edge of P and let 1
n
(1, q) be the corresponding singularity3 of the

toric surface XP ; set w = gcd(n, q + 1), n = wr, q + 1 = wa, w = mr + w0

with 0 ≤ w0 < r. Then the successive coefficients of f along the edge E are

the successive coefficients of the powers of the variable x in(1 + x)mr if w0 = 0,

(1 + x)mr(1 + x)w0 if w0 6= 0.

We denote by LT(P ) the affine space of maximally mutable Laurent polynomials of

P with T-binomial coefficients.

Consider the following setup.

Setup 2.11. Let P be a Fano polygon inside a rank 2 lattice. Let XP is the toric

del Pezzo surface corresponding to the spanning fan of P . Let X be a generic Q-

Gorenstein deformation of XP , and X be the unique well-formed orbifold such that

its coarse moduli space is X.

In the setup above, one may consider the space of maximally mutable Laurent

polynomials of P with T-binomial coefficients and consider the corresponding family

of classical periods (see Definition 1.4): this is a family of power series parametrised

by LT(P ). On the other hand, we may consider the quantum period of the Fano

orbifold X (see Definition 2.2), which is a family of power series parametrised by

H̃<2
CR(X ). The second conjecture of [ACC+16] says that these two families of power

series are the same up to an affine transformation.

Conjecture 2.12 (Conjecture B in [ACC+16]). Let P,X,X be as in Setup 2.11.

Then there exists an affine-linear isomorphism Φ: LT(P ) −→ H̃<2
CR(X ) such that

∀f ∈ LT(P ), ĜX (Φ(f); t) = πf (t),

where ĜX is the regularised quantum period of X and πf is the classic period of f .

3Here we assume n, q ∈ N, 1 ≤ q ≤ n, and gcd(n, q) = 1. Thus, if n = 1 then this is a smooth
point of XP .
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The case in which X is a smooth del Pezzo surface (hence X = X), is proven in

[CCGK16]. An example is Example 1.7 with n = 2.

Corti and Heuberger [CH17] have proved that, out of the 29 del Pezzo surfaces

with 1
3
(1, 1) points, only 26 surfaces admit a Q-Gorenstein degeneration to a toric

surface. Indeed, the surfaces X4,1/3, X5,2/3 and X6,1 do not have any Q-Gorenstein

degeneration to a toric surface.

The Fano polygons P such that the corresponding surface X, according to

Setup 2.11, has only 1
3
(1, 1) points have been classified up to mutation by Kasprzyk,

Nill and Prince [KNP]. There are 26 mutation equivalence classes of such polygons

and they correspond to the del Pezzo surfaces mentioned above. The spaces LT(P ),

for such polygons P , have been computed by Kasprzyk and Tveiten [KT].

Combining these results with our calculations, in collaboration with Oneto [OP],

which are summarised in §2.1.4, yields the following.

Theorem 2.13 ([OP]). Let P , X and X be as in Setup 2.11. Suppose that X has

only 1
3
(1, 1) singularities and is not X5,5/3.

If natural generalisations of the Quantum Lefschetz theorem (Conjecture 2.18)

and of the Abelian/non-Abelian Correspondence (Conjecture 2.23) hold, then there

exist a non-empty affine subspace W ⊆ LT(P ) and an injective affine-linear map

Φ: W −→ H̃<2
CR(X ) such that

∀f ∈ W, ĜX (Φ(f); t) = πf (t).

2.3. Toric stacks

2.3.1. Stacky fans and extended stacky fans

Here we briefly recall the theory of toric stacks [BCS05,FMN10] and the combinato-

rial machinery developed in [CCIT15], which will allow us to produce a point of the

Givental cone for a toric stack. We will present the case of toric well-formed orb-

ifolds only. Let X be a simplicial toric variety which is proper over C: as in [Ful93]

X comes from a finitely generated free abelian group N and a complete simplicial

fan Σ in NR. Let ρ : Zn → N be the linear map which maps the ith standard basis

element of Zn to the primitive generator ρi of the ith ray of the fan Σ. So n is the

number of rays of Σ. Let L be the kernel of ρ. The exact sequence

0 −→ L −→ Zn ρ−→ N (2.5)
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is called the fan sequence. Set M := HomZ(N,Z). Since the coker ρ is finite, the dual

map ρ∗ : M → Z∗n, which is obtained from ρ by applying HomZ(−,Z), is injective.

The cokernel of ρ∗ is denoted by L∨ and is called the Gale dual of ρ. We get a short

exact sequence, which is called the divisor sequence:

0 −→M
ρ∗−→ Z∗n D−→ L∨ −→ 0. (2.6)

So L∨ is an extension of L∗ = HomZ(L,Z) by a finite group which is isomorphic

to coker ρ. In particular, if ρ is surjective, then L∨ = L∗. The group Z∗n in (2.6)

is identified with the group of torus-invariant Weil divisors of X and the group L∨

is canonically isomorphic to the divisor class group Cl(X): the image Di ∈ L∨

of the ith standard basis element of Z∗n is the class of the ith toric divisor of X.

The anticanonical class of X is given by −KX = D1 + · · · + Dn ∈ L∨. We have

N1(X) = L∨ ⊗Z R and the nef cone of X is

Nef(X) =
⋂
σ∈Σ

cone 〈Di | i /∈ σ〉 ⊆ L∨ ⊗Z R = N1(X). (2.7)

Moreover, A1(X)Q = N1(X)Q ' L ⊗Z Q. The bilinear form L∨ × L → Z, which

is induced by the duality pairing of Zn, induces the pairing N1(X) × N1(X) → R
between numerical classes of divisors and numerical classes of curve cycles. The

Mori cone NE(X) is the dual cone of Nef(X) in L⊗Z R.

Applying the functor HomZ(−,C×) to (2.6), we get a homomorphism of algebraic

groups from G := Hom(L∨,C×) to the torus (C×)n. Since (C×)n acts diagonally

on An
C, there is an induced linear action of G on An

C. Let x1, . . . , xn be the stan-

dard coordinates on An
C. Consider the ideal IrrΣ of C[x1, . . . , xn] generated by the

monomials
∏

i : ρi /∈σ xi as σ ∈ Σ and the quasi-affine variety UΣ = An
C r V(IrrΣ).

The quotient stack X := [UΣ/G] is called the toric stack associated to the triple

(N,Σ, ρ), which is called a stacky fan. By [BCS05, FMN10], X is a proper well-

formed orbifold and its coarse moduli space is X. By [BCS05, Proposition 4.7], the

connected components of the inertia stack IX are indexed by the finite set

Box(Σ) := N ∩
⋃
σ∈Σ

{ ∑
i : ρi∈σ

aiρi

∣∣∣∣∣ 0 ≤ ai < 1

}
.

The element b =
∑

ρi∈σ aiρi ∈ Box(Σ), for some σ ∈ Σ and 0 < ai < 1, corresponds

to the subvariety of X defined by the homogeneous equations xi = 0 for ρi ∈ σ. Its

age is
∑
ai.

Now, we describe the formalism of extended stacky fans according to [Jia08].
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We choose a (possibly empty) finite set S with a map S → N . We label the

set S by {1, . . . ,m} and write sj ∈ N for the image of the jth element of S.

Following [Jia08, Definition 2.1], we consider the S-extended stacky fan (N,Σ, ρS),

where ρS : Zn+m → N is defined by

ρS(ei) =

ρi i = 1, . . . , n

si−n i = n+ 1, . . . , n+m
(2.8)

and ei is the ith standard basis vector for Zn+m. This gives the extended fan sequence

0 −→ LS −→ Zn+m ρS−→ N (2.9)

and by Gale duality the extended divisor sequence

0 −→M −→ Zn+m DS−→ LS∨ −→ 0. (2.10)

The inclusion Zn → Zn+m of the first n factors induces an exact sequence

0 −→ L −→ LS −→ Zm,

which splits over Q via the map Qm → LS ⊗Z Q that sends the jth standard basis

vector to

ej+n −
∑

i:ρi∈σ(j)

sijei ∈ LS ⊗Z Q ⊆ Qn+m

where σ(j) ∈ Σ is the minimal cone containing sj and the positive numbers sij are

determined by
∑

i:ρi∈σ(j) s
i
jρi = sj. Thus we obtain an isomorphism:

LS ⊗Z Q ' (L⊗Z Q)⊕Qm. (2.11)

Therefore, an element λ ∈ LS ⊗Z Q ⊆ Qm+n correspond to the pair (d, k), where

d =
n∑
i=1

(
λi +

m∑
j=1

sijλn+j

)
ei ∈ L⊗Z Q ⊆ Qn

k =
m∑
j=1

λn+jej ∈ Qm.

The extended Mori cone is the subset of LS⊗ZR given by NES(X ) = NE(X )×(R≥0)m

via the isomorphism (2.11). The extended Mori cone can be thought of as the

cone spanned by the ‘extended degrees’ of certain stable maps f : C → X : see
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[CCIT15, §4] for details. The dual of NES(X ) in LS∨⊗ZR is called the extended nef

cone of X and is denoted by NefS(X ). There is an equality of cones in LS∨ ⊗Z R

NefS(X ) =
⋂
σ∈Σ

cone
〈
{DS

i | 1 ≤ i ≤ n, ρi /∈ σ} ∪ {DS
n+j | 1 ≤ j ≤ m}

〉
, (2.12)

where DS
i ∈ LS∨⊗Z R is the image of the ith element of the standard basis of Zn+m

via the map DS.

For a cone σ ∈ Σ, denote by ΛS
σ ⊆ LS ⊗Z Q the subset consisting of elements

λ =
n+m∑
i=1

λiei ∈ LS ⊗Z Q ⊆ Qn+m

such that λn+j ∈ Z, 1 ≤ j ≤ m, and λi ∈ Z whenever ρi /∈ σ and i ≤ n. Set

ΛS :=
⋃
σ∈Σ ΛS

σ and ΛES := ΛS ∩NES. The reduction function is vS : ΛS → Box(Σ)

defined by

vS(λ) =
n∑
i=1

dλieρi +
m∑
j=1

dλn+jesj =
n∑
i=1

〈−λi〉ρi.

If λ ∈ ΛS
σ , then vS(λ) ∈ Box(Σ) ∩ σ.

2.3.2. The mirror theorem for toric stacks

By using the combinatorial objects associated to extended stacky fans (as in §2.3.1),

we give the definition of I-function for a toric stack. Let X be a toric orbifold as above

and let (N,Σ, ρS) be an S-extended stacky fan defining X . Then the S-extended

I-function [CCIT15] of X is:

IS(τ, ξ, z) := ze
∑n
i=1 uiτi/z

∑
λ∈ΛES

Q̃λeλτ


n+m∏
i=1

∏
a≤0

〈a〉=〈λi〉

(ui + az)

∏
a≤λi
〈a〉=〈λi〉

(ui + az)

1vS(λ), (2.13)

where:

• τ = (τ1, . . . , τn) and ξ = (ξ1, . . . , ξm) are formal variables;

• for 1 ≤ i ≤ n, ui ∈ H2(X ;Q) is the first Chern class of the line bundle

corresponding to the ith toric divisor Di;

• for n+ 1 ≤ i ≤ n+m, ui is defined to be zero;
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• for λ ∈ ΛES, Q̃λ := Qdξk1
1 · · · ξkmm ∈ Λ[[ξ1, . . . , ξm]], where d ∈ L ⊗Z Q and

k ∈ Nm are such that λ corresponds to (d, k) via (2.11) and Qd denotes the

representative of d ∈ Eff(X ) in the Novikov ring Λ;

• for λ ∈ ΛES, eλτ :=
∏n

i=1 e(ui·d)τi ;

• for λ ∈ ΛES, 1vS(λ) ∈ H0(XvS(λ);Q) ⊆ H
2age(vS(λ))
CR (X ) is the identity class

supported on the component of inertia associated to vS(λ) ∈ Box(Σ).

The I-function IS(τ, ξ, z) is a formal power series in Q, ξ, τ with coefficients in

H•CR(X )⊗Q C((z−1)).

Theorem 2.14 (Mirror theorem for toric stacks [CCIT15]). Let X be a projective

simplicial toric variety, associated to the fan Σ in the lattice N , and let X be the

corresponding toric well-formed orbifold constructed above. Let S be a finite set

equipped with a map to N . Then the S-extended I-function IS(τ, ξ,−z) lies in the

Givental cone LX for all values of the parameters τ and ξ.

The mirror theorem relates the combinatorics of toric geometry (namely the I-

function) with Gromov–Witten theory (namely the Givental cone LX ). In §2.3.3

we will show an example in which the mirror theorem is applied to compute the

quantum period of a toric Fano orbifold.

Remark 2.15. The formula (2.13) for the extended I-function is given in [CCIT15].

In our calculations we will use a slightly different version, which provides the same

amount of information in Theorem 2.14. Let p1, . . . , p` be an integral basis of

H2(X ;Q). Then we use the formal variables τ = (τ1, . . . , τ`) and the exponentials

appearing in (2.13) are replaced by e
∑`
i=1 piτi/z and by eλτ :=

∏`
i=1 e(pi·d)τi .

2.3.3. A toric example: the blow-up of P(1, 1, 3) at one point.

Let P be the Fano polygon in N = Z2 whose vertices are the columns of the matrix

ρ =

(
1 0 −1 −2

−1 1 2 1

)
.
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Let Σ be the spanning fan of P . Let X be the toric variety associated to Σ and let

X be the corresponding toric orbifold.

The rays ρ1, ρ3 and ρ4 would define P(1, 1, 3) and the toric divisor corresponding

to ρ2 is obtained after blowing-up P(1, 1, 3) at one smooth torus-invariant point. So

X is the blow-up of P(1, 1, 3) at a smooth point. Its degree is 22/3 and it has a

singular point, so it is denoted by X1,22/3 in [CH17].

A basis of L = ker(ρ : Z4 → N) is given by the rows of the matrix

D =

(
3 0 1 1

−1 1 −1 0

)
.

We use this basis to identify L with Z2. The fan sequence (2.5) is

0 −→ L ' Z2
tD−→ Z4 ρ−→ N = Z2 −→ 0

and the divisor sequence (2.6) is

0 −→M = Z2
tρ−→ Z4 D−→ L∨ ' Z2 −→ 0,

where L∨ is identified with Z2 via the dual basis {p1, p2} of the chosen basis of

L. The anticanonical class of X is the sum of the divisor classes of the irreducible

torus-invariant divisors: −KX = 5p1 − p2 in Cl(X).

The irrelevant ideal is IrrΣ = (x3x4, x1x4, x1x2, x2x3). Set UΣ = A4
C r V(IrrΣ).

Consider the linear action of G2
m on A4

C induced by the group homomorphism G2
m →

G4
m defined dually by D. The toric variety X is the geometric quotient of UΣ with

respect to this action, i.e. X = UΣ/G2
m, and X is the quotient stack [UΣ/G2

m]. Using

(2.7) we get that the nef cone of X is Nef(X) = cone〈3p1 − p2, p1〉 ⊆ L∨ ⊗Z R.

Now we analyse the Chen–Ruan cohomology of X . The inertia stack IX has three

connected components: the component with age 0, which is isomorphic to X , and

two components isomorphic to Bµ3 corresponding to the non-trivial stabilizers of

the singular point, which have ages 2
3

and 4
3
. A basis of the rational cohomology of X

is given by {10, p1, p2, pt}. Therefore, if we denote by 12/3 and 14/3 the cohomology

classes of the non-trivial components of IX , we have that {10,12/3, p1, p2,14/3, pt}
is a basis of H•CR(X ). The set of the connected components of IX is in a canonical

one-to-one correspondence with Box(Σ) = {(0, 0), (−1, 1), (−2, 2)}; the zero vector

corresponds to the trivial component of IX , whereas the vectors (−1, 1) and (−2, 2)

correspond to the non-trivial components of IX with ages 2
3

and 4
3
, respectively.

Since we are interested in the part of H•CR(X ) of degree smaller than 2, we
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‘extend’ with the vector (−1, 1). In other words, we consider the map S = {1} → N

with s1 = (−1, 1) ∈ N and the corresponding extended stacky fan, which is the one

with extended ray map (2.8)

ρS =

(
1 0 −1 −2 −1

−1 1 2 1 1

)
.

A basis of LS = ker(ρS : Z5 → Z2 = N) is given by the rows of the matrix

DS =

 3 0 1 1 0

−1 1 −1 0 0

1 0 0 0 1

 .

We use this basis to identify LS with Z3 and we call l1, l2, k the coordinates with

respect to this basis. The extended fan sequence (2.9) is

0 −→ LS ' Z3 −→ Z5 ρS−→ N = Z2 −→ 0

and the extended divisor sequence (2.10) is

0 −→M = Z2 −→ Z5 DS−→ LS∨ ' Z3 −→ 0,

where the inclusion LS⊗ZR ↪→ R5 is given by (l1, l2, k) 7→ (3l1−l2+k, l2, l1−l2, l1, k).

By (2.12), the extended nef cone is

NefS(X ) = cone

〈 3

−1

1

 ,

3

0

1

 ,

0

0

1

〉 .
Therefore, the extended Mori cone NES ⊆ LS ⊗Z R is defined by the inequalities

3l1 − l2 + k ≥ 0, 3l1 + k ≥ 0, k ≥ 0.

We will not write down a description of ΛS
σ for every cone σ ∈ Σ. We just

mention, for example, that if σ is the cone spanned by ρ2 and ρ4 then ΛS
σ is defined

by the conditions 3l1− l2 + k ∈ Z, l1− l2 ∈ Z, k ∈ Z. After a few computations one

finds that

ΛES =

{
(3l1 − l2 + k, l2, l1 − l2, l1, k) ∈ R5

∣∣∣∣∣ 3l1 ∈ Z, l2 ∈ Z, k ∈ N,
3l1 − l2 + k ≥ 0, 3l1 + k ≥ 0

}
.
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The extended reduction function vS : ΛES → Box(Σ) is defined by

vS(l1, l2, k) = d3l1 − l2 + ke

(
1

−1

)
+ dl2e

(
0

1

)
+ dl1 − l2e

(
−1

2

)
+

+ dl1e

(
−2

1

)
+ dke

(
−1

1

)

= 3(dl1e − l1)

(
−1

1

)
.

Since s1 = 1
3
ρ3 + 1

3
ρ4, we have that the image of (l1, l2, k) ∈ LS ⊗Z Q in L⊗Z Q via

the splitting (2.11) is

d =


3l1 − l2 + k

l2

l1 − l2 + k
3

l1 + k
3

 =

(
l1 +

k

3

)
3

0

1

1

+ l2


−1

1

−1

0

 . (2.14)

Therefore, the S-extended Novikov variable corresponding to (l1, l2, k) ∈ NES(X )

is Q̃(l1,l2,k) = Qdξk, where d ∈ NE(X) is given by (2.14). To match notation with

(2.13), set 1(0,0) = 10, 1(−1,1) = 12/3, 1(−2,2) = 14/3. The Chern classes of the toric

divisors are u1 = 3p1 − p2, u2 = p2, u3 = p1 − p2, and u4 = p1. Following Remark

2.15, by (2.13) the S-extended I-function IS of X is

IS(τ1, τ2, ξ; z) = ze(τ1p1+τ2p2)/z
∑

(l1,l2,k)∈ΛES

Q̃(l1,l2,k)eτ1(l1+ k
3 )+τ2l2�(l1,l2,k)1vS(l1,l2,k),

where

�(l1,l2,k) =
1∏

0<a≤3l1−l2+k
〈a〉=〈3l1−l2+k〉

(3p1 − p2 + az)
×

×

∏
a≤0
〈a〉=〈l2〉

(p2 + az)

∏
a≤l2
〈a〉=〈l2〉

(p2 + az)

∏
a≤0

〈a〉=〈l1−l2〉

(p1 − p2 + az)

∏
a≤l1−l2
〈a〉=〈l1−l2〉

(p1 − p2 + az)

∏
a≤0
〈a〉=〈l1〉

(p1 + az)

∏
a≤l1
〈a〉=〈l1〉

(p1 + az)

1

k!zk

Now we want to study the asymptotic behaviour of IS with respect to the variable

z. Note that if (l1, l2, k) ∈ ΛES and degz �(l1,l2,k) ≥ −1 then either (l1, l2, k) =

(0, 0, 0) or (l1, l2, k) = (−1
3
, 0, 1). Since Q̃(− 1

3
,0,1) = ξ and vS(−1

3
, 0, 1) = (−1, 1), we
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obtain

IS(τ1, τ2, ξ; z) = ze(τ1p1+τ2p2)/z
(
10 + z−1ξ12/3 + O(z−2)

)
= z10 + τ1p1 + τ2p2 + ξ12/3 + O(z−1),

where O(z−1) denotes term of the form
∑∞

n=1 cnz
−n with cn independent of z.

Since the J-function is the only point of the Givental cone of X with the asymp-

totic expansion z10 +F (t)+O(z−1), by the mirror theorem (Theorem 2.14) we have

that J(τ1p1 + τ2p2 + ξ12/3; z) = IS(τ1, τ2, ξ; z) for every τ1, τ2, ξ. To obtain the quan-

tum period of X , we have to set z = 1, τ1 = τ2 = 0, ξ = t
1
3x, replace the Novikov

variable Qd with t−KX ·d, and take the component along 10 of the J-function; namely,

Q̃(l1,l2,k) = Q(l1+ k
3
,l2)ξk 7→ t5(l1+ k

3
)−l2

(
xt

1
3

)k
= xkt5l1−l2+2k.

Thus the quantum period of X is

GX (x; t) =
∑

l1,l2,k∈Z,
l1≥l2≥0, k≥0,

3l1+k≥l2

1

(3l1 − l2 + k)!l2!(l1 − l2)!l1!k!
xkt5l1−l2+2k.

The regularised quantum period of X is

ĜX (x; t) = 1 + 2xt2 + (12 + 6x2)t4 + 20t5 + (120x+ 20x3)t6 + . . . .

Kasprzyk and Tveiten [KT] have shown that the maximally mutable Laurent

polynomials with T-binomial coefficients on P are the 1-parameter family

fa(x, y) =
y2

x
+

y

x2
+
x

y
+ y + a

y

x

with parameter a. After identifying the parameter x in ĜX with the parameter a

we see that ĜX coincides with πfa .

2.4. Toric complete intersections

2.4.1. The quantum Lefschetz principle

The Gromov–Witten invariants of a complete intersection are governed by the so-

called ‘quantum Lefschetz principle’, which was formulated and proven by Coates

and Givental [CG07] in the case of smooth projective varieties (see also [Lee01] and
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[Kim99]). It has been shown that this principle fails for some positive line bundles

on some orbifolds [CGI+12], but there is evidence that it holds in cases which are

sufficient for us.

Firstly we have to define twisted Gromov–Witten invariants. Let Y be a proper

smooth Deligne–Mumford stack over C with projective coarse moduli space Y and

let E be a vector bundle on Y . For d ∈ Eff(Y), the universal genus zero n-pointed

stable map

C0,n,d
ev //

π

��

Y

Y0,n,d

induces an element E0,n,d := π!ev?E in the K-theory of Y0,n,d. Let the torus C× act

on E rotating the fibres and leaving the base Y invariant. This action induces an

action of C× on E0,n,d. Let e be the C×-equivariant Euler class, which is invertible

over the field of fractions Q(κ) of H•C×(pt;Q) = H•(BC×;Q) = Q[κ], where κ is

the equivariant parameter given by the first Chern class of the line bundle O(1) on

CP∞ = BC×. E-twisted Gromov–Witten invariants are defined by

〈
α1ψ

k1 , . . . , αnψ
kn
〉tw

0,n,d
:=

∫
[Y0,n,d]vir

e(E0,n,d) ∪
n∏
i=1

(
ev?i (αi) ∪ ψ

ki
i

)
∈ Q(κ),

for α1, . . . , αn ∈ H•CR(Y) and non-negative integers k1, . . . , kn. The inertia stack IE
of the total space of the vector bundle E → Y is a vector bundle over IY : the fibre

of IE over the point (y, g) is the g-fixed subspace of the fibre of E over y. One can

define the twisted Poincaré pairing

(α, β)tw
CR :=

∫
IX
α ∪ inv?β ∪ e(IE) ∈ Q[κ], α, β ∈ H•CR(Y)

and the twisted symplectic form Ωtw(f, g) := −Resz=∞
(
f(−z), g(z)

)tw

CR
dz on HY⊗C

C(κ), where HY is defined in (2.1). In the symplectic vector space (HY⊗CC(κ),Ωtw)

there is a Lagrangian submanifold, which is a formal germ of a cone with vertex at

the origin and which encodes all genus-zero Euler-twisted Gromov–Witten invariants

of Y : it is called the twisted Givental cone and is denoted by Ltw
Y . We will not give

a precise definition of Ltw
Y here, referring the reader to [Tse10], [CCIT09]. Ltw

Y

determines and is determined by Givental’s twisted J-function:

J tw
Y (γ, z) = z + γ +

∑
d∈Eff(X )

∞∑
n=0

∞∑
k=0

N∑
ε=1

Qd

n!

〈
γ, . . . , γ, φεeψ

k
〉tw

0,n+1,d
φεz
−k−1,
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where γ runs in the even part H•CR(Y) of the Chen-Ruan orbifold cohomology of Y
and {φ1, . . . φN} and {φ1

e, . . . φ
N
e } are homogeneous bases of the Q(κ)-vector space

H•CR(Y)⊗QQ(κ) which are dual with respect to the twisted Poincaré pairing (·, ·)tw
CR.

The cone Ltw
Y determines the twisted J-function because J tw

Y (γ,−z) is the unique

point on Ltw
Y of the form −z + γ + O(z−1). Actually Ltw

Y is a family of cones in

HY and J tw
Y is a family of elements in HY . Both families are parametrised by the

equivariant parameter κ in some open set of A1
C.

Now we are going to say what is the relationship between E-twisted Gromov–

Witten invariants of Y and the ordinary Gromov–Witten invariants of the zero locus

X of a generic global section of E . Before doing that, we introduce the class of convex

vector bundles.

The vector bundle E over Y is convex if H1(C, f ?E) = 0 for all genus-zero n-

pointed stable maps f : C → Y , for any n. If E is convex, then R1π?ev?E = 0 and

by cohomology and base change E0,n,d is the class of the vector bundle π?ev?E over

Y0,n,d, for all n ∈ N and d ∈ Eff(Y). Therefore, every E-twisted Gromov–Witten

invariant lies in Q[κ]. A line bundle on Y is convex if and only if it is the pull-back

of a nef line bundle from the coarse moduli space Y (see [CGI+12]).

Now we consider the following setup.

Setup 2.16. Y is a proper smooth Deligne–Mumford stack over C with projective

coarse moduli space; E is a vector bundle on Y and i : X ↪→ Y is the closed substack

defined by a regular section of E ; ι? : H•CR(Y) → H•CR(X ) is the pull-back defined

by the inclusion ι : IX ↪→ IY ; J tw
Y is the E-twisted J-function of Y and JX is the

non-twisted J-function of X ; Ltw
Y is the E-twisted Givental cone of Y and LX is the

non-twisted Givental cone of X .

Under the hypothesis that the vector bundle E is convex, the following theorem

relates the Gromov–Witten invariants of the complete intersection to the twisted

invariants of the ambient.

Theorem 2.17 ([Iri11,Coa]). Let Y , E ,X be as in Setup 2.16. If E is convex, then

the non-equivariant limit limκ→0 J
tw
Y is well-defined and satisfies:

ι?
(

lim
κ→0

J tw
Y (γ)

)
= JX (ι?γ)

for all γ ∈ H•CR(Y). Moreover, if Itw is a point of Ltw
Y , then the non-equivariant

limit IX ,Y := ι? (limκ→0 I
tw) is well-defined and lies in LX .

Without the convexity hypothesis, it is conjectured that there is some relation

between invariants of the complete intersection and twisted invariants of the ambi-

ent.
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Conjecture 2.18 (Coates–Corti–Iritani–Tseng [CCITa], cf. [CGI+12]). Let Y , E ,X
be as in Setup 2.16. Let Itw be a point of Ltw

Y such that the non-equivariant limit

IX ,Y := limκ→0 ι
?Itw is well-defined. Then IX ,Y lies in LX .

Remark 2.19. In Theorem 2.17 and Conjecture 2.18 we have applied the homo-

morphism Qδ 7→ Qi?δ to the Novikov ring of X .

2.4.2. Quantum Lefschetz for toric orbifolds

Here we discuss twisted Gromov–Witten invariants of toric orbifolds. We maintain

all the notations we used in §2.3.1. In particular, we assume that Y is a toric well-

formed orbifold coming from the stacky fan (N,Σ, ρ), where N is a finitely generated

free abelian group, Σ is a complete simplicial fan in NR and ρ is the ray map of Σ.

We denote by Y the toric variety that is the coarse moduli space of Y . We also use

the formalism of S-extended stacky fans introduced in §2.3.1, where S is a finite set

with a map S → N .

Let E1, . . . , Er be line bundles on Y . Consider the vector bundle E = E1⊕· · ·⊕Er
on Y and choose ε1, . . . , εr ∈ LS∨ such that their images E1, . . . , Er in L∨ are the

first Chern classes of E1, . . . , Er. The S-extended E-twisted I-function (see [CCITb])

of Y is:

ISE (τ, ξ; z) := ze
∑n
i=1 uiτi/z× (2.15)

×
∑
λ∈ΛES

Q̃λeλτ


n+m∏
i=1

∏
a≤0

〈a〉=〈λi〉

(ui + az)

∏
a≤λi
〈a〉=〈λi〉

(ui + az)




r∏
j=1

∏
a≤εj ·λ
〈a〉=〈εj ·λ〉

(κ+ Ej + az)

∏
a≤0

〈a〉=〈εj ·λ〉

(κ+ Ej + az)

1vS(λ)

where:

• κ is the equivariant parameter;

• τ = (τ1, . . . , τn) and ξ = (ξ1, . . . , ξm) are formal variables;

• for 1 ≤ i ≤ n, ui ∈ H2(Y ;Q) is the first Chern class of the the line bundle

corresponding to the ith toric divisor Di;

• for n+ 1 ≤ i ≤ n+m, ui is defined to be zero;

• for λ ∈ ΛES, Q̃λ := Qdξk1
1 · · · ξkmm ∈ Λ[[ξ1, . . . , ξm]], where d ∈ L ⊗Z Q and

k ∈ Nm are such that λ corresponds to (d, k) via (2.11) and Qd denotes the

representative of d ∈ Eff(Y) in the Novikov ring Λ;
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• for λ ∈ ΛES, eλτ :=
∏n

i=1 e(pi·d)τi ;

• for λ ∈ ΛES, 1vS(λ) ∈ H0(YvS(λ);Q) ⊆ H
2age(vS(λ))
CR (Y) is the identity class

supported on the component of inertia associated to vS(λ) ∈ Box(Σ).

Note that ISE depends on the choice of the liftings εj of Ej = c1(Ej) ∈ L∨ to LS∨.

Remark 2.20. For the twisted I-function (2.15) we use the same substitutions as

in Remark 2.15.

Theorem 2.21 (Twisted mirror theorem for toric stacks [CCITb]). Let Y be a

projective simplicial toric variety, associated to the fan Σ in the lattice N , and let Y
be the corresponding toric well-formed orbifold. Let S be a finite set equipped with a

map to N . Let E1, . . . , Er ∈ Pic(Y) be line bundles and let E = E1 ⊕ · · · ⊕ Er.
For any choice of the liftings of Ej = c1(Ej) ∈ L∨ to L∨S, the S-extended E-

twisted I-function ISE (τ, ξ,−z) lies in the E-twisted Givental cone Ltw
Y for all values

of the parameters τ and ξ.

Remark 2.22. The theorem above is useful when computing Gromov–Witten in-

variants of complete intersections in toric orbifolds. Assume we are in the situation

of Theorem 2.21. Let i : X ↪→ Y be the zero locus of a regular section of E and

ι? : H•CR(Y)→ H•CR(X ) be the pull-back given by the inclusion ι : IX ↪→ IY .

(i) Suppose that ISE (τ, ξ, z) = z10+F (τ, ξ)+O(z−1) and the line bundles E1, . . . , Er
are convex. Then ISE determines the E-twisted J-function of Y . We may apply

Theorem 2.17 to obtain the J-function of X .

(ii) Assume that the non-equivariant limit IX ,Y := limκ→0 ι
?ISE is well-defined. If

Conjecture 2.18 holds and IX ,Y = z10 +F (τ, ξ)+O(z−1), then IX ,Y determines

the J-function of X .

In §2.4.3 and §2.4.4 we give two examples of this.

2.4.3. Example of a toric complete intersection: X2,8/3

In the lattice N = Z3 consider the polytope such that its vertices are the columns

of the matrix

ρ =

1 0 0 −1 3

0 1 0 −1 3

0 0 1 −1 2


and consider its spanning fan Σ. It contains six 3-dimensional cones: σ235, σ234,

σ135, σ134, σ125, σ124, where σijk is the cone spanned by the the ith, the jth and the
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kth columns of ρ. Let Y be the toric orbifold associated to the stacky fan (N,Σ, ρ).

The rows of the matrix

D =

(
1 1 1 1 0

0 0 1 3 1

)
.

constitute a basis of L = ker ρ. Therefore, the fan sequence (2.5) is

0 −→ L ' Z2
tD−→ Z5 ρ−→ N = Z3 −→ 0

and the divisor sequence (2.6) is

0 −→M = Z3
tρ−→ Z5 D−→ L∨ ' Z2 −→ 0.

Let {p1, p2} be the basis of L∨ coming from the isomorphism L ' Z2 chosen above.

The nef cone of Y is Nef(Y ) = cone〈p1 + p2, p1 + 3p2〉. We see that Y is a Fano

3-fold. If we use x0, x1, y, z, t as coordinates on A5, the irrelevant ideal is IrrΣ =

(x0, x1, y) · (z, t). Considering the open set UΣ = A5
CrV(IrrΣ), the toric variety Y is

given by the quotient UΣ/G2
m, under the action of G2

m on A5 induced by the matrix

D, and the toric orbifold Y is the stack-theoretic quotient [UΣ/G2
m].

The singular locus of Y has two components: a rational curve C, corresponding

to the cone σ35 and made up of the points [x0 : x1 : 0 : 1 : 0], and the point

P = [0 : 0 : 1 : 1 : 0], corresponding to the cone σ125. A neighbourhood of every

point of C in Y is isomorphic to 1
3
(1, 1)×A1. One can see that a neighbourhood of

P in Y is isomorphic to 1
2
(1, 1, 1). The connected components of the inertia stack

IY are indexed by Box(Σ) = {(0, 0, 0), (1, 1, 1), (2, 2, 2), (2, 2, 1)}, with ages 0, 2
3
, 4

3
, 3

2

respectively.

Let X ↪→ Y be the hypersurface defined by a generic section of the line bundle

E on Y with c1(E) = 3p1 + 3p2. Such a generic section is of the form

f(x0, x1, y, z, t) = f3(x0, x1)t3 + f2(x0, x1)(ayt2 + bz) + f1(x0, x1)y2t+ cy3,

where a, b, c ∈ C and fi(x0, x1) denotes a homogeneous polynomial of degree i in the

variables x0, x1. Since f(0, 0, 1, 1, 0) = c, we see that a generic choice for f implies

P /∈ X. Moreover, since f(x0, x1, 0, 1, 0) = f2(x0, x1)b, we see that the surface

X intersects the curve C in two points. For each of these two points there is a

neighbourhood in X that is analytically isomorphic to 1
3
(1, 1).

By adjunction −KX = (−KY −E)|X = (4p1 + 5p2− 3p1− 3p2)|X = (p1 + 2p2)|X ,

which is ample. Therefore X is a del Pezzo surface with two singular points of type
1
3
(1, 1). Using the relations (p1 + 3p2)p2 = 0, p2

1(p1 + p2) = 0 and p2
1p2 = 1

2
that hold
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in H•(Y,Q), one can show that the degree of X is K2
X = (p1 + 2p2)2(3p1 + 3p2) = 8

3
.

Hence X = X2,8/3.

Now we ‘extend’ with the vector (1, 1, 1). In other words, we consider the map

S = {1} → N with s1 = (1, 1, 1) ∈ N and the corresponding stacky fan. The

extended fan sequence (2.9) and the extended divisor sequence (2.10) are given by

the matrices

ρS =

1 0 0 −1 3 1

0 1 0 −1 3 1

0 0 1 −1 2 1

 and DS =

1 1 1 1 0 0

0 0 1 3 1 0

0 0 0 1 0 1

 .

We identify LS with Z3 by choosing the basis given by the rows of DS. We call

l1, l2, k the coordinates with respect to this basis; thus, the inclusion LS ⊗Z R ↪→ R6

is given by (l1, l2, k) 7→ (l1, l1, l1 + l2, l1 + 3l2 + k, l2, k). One can check that

NefS(Y) = cone

〈1

3

1

 ,

3

3

1

 ,

0

0

1

〉

and

ΛES =





l1

l1

l1 + l2

l1 + 3l2 + k

l2

k


∈ Q6

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

l1 + 3l2 + k ≥ 0

3l1 + 3l2 + k ≥ 0

k ∈ N
(l1 ∈ Z, 3l2 ∈ Z) or (l1 + l2 ∈ Z, 2l2 ∈ Z)


.

The extended reduction function vS : ΛES → Box(Σ) is given by

vS(l1, l2, k) = dl1e

1

0

0

+ dl1e

0

1

0

+ dl1 + l2e

0

0

1

+

+ dl1 + 3l2 + ke

−1

−1

−1

+ dl2e

3

3

2

+ dke

1

1

1



=

 dl1e − dl1 + 3l2e+ 3dl2e
dl1e − dl1 + 3l2e+ 3dl2e
dl1 + l2e − dl1 + 3l2e+ 2dl2e

 .
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We get: vS(l1, l2, k) = (0, 0, 0) if l1, l2 ∈ Z; vS(l1, l2, k) = (2, 2, 2) if l1 ∈ Z, l2 ∈ 1
3

+Z;

vS(l1, l2, k) = (1, 1, 1) if l1 ∈ Z, l2 ∈ 2
3

+ Z; vS(l1, l2, k) = (2, 2, 1) if l1, l2 ∈ 1
2

+ Z.

Since s1 = 1
3
ρ3 + 1

3
ρ5, the image of (l1, l2, k) ∈ LS ⊗Z Q in L⊗Z Q via the splitting

(2.11) is

d =


l1

l1

l1 + l2 + k
3

l1 + 3l2 + k

l2 + k
3

 = l1


1

1

1

1

0

+

(
l2 +

k

3

)


0

0

1

3

1

 .

Therefore for λ = (l1, l2, k) ∈ ΛES we have Q̃λ = Q(l1,l2+ k
3

)ξk.

We take ε = (3, 3, 1) as a lifting of the line bundle E = 3p1 + 3p2 ∈ L∨ to LS∨.
If we denote by κ the equivariant parameter, the S-extended E-twisted I-function

(2.15) is

ISE (τ1, τ2, ξ; z) = ze(τ1p1+τ2p2)/z
∑

(l1,l2,k)∈ΛES

Q̃(l1,l2,k)eτ1l1+τ2(l2+ k
3 )×

×


∏
a≤0
〈a〉=〈l1〉

(p1 + az)

∏
a≤l1
〈a〉=〈l1〉

(p1 + az)


2 ∏

a≤0
〈a〉=〈l1+l2〉

(p1 + p2 + az)

∏
a≤l1+l2
〈a〉=〈l1+l2〉

(p1 + p2 + az)
×

×

∏
a≤0

〈a〉=〈l1+3l2+k〉

(p1 + 3p2 + az)

∏
a≤l1+3l2+k
〈a〉=〈l1+3l2+k〉

(p1 + 3p2 + az)

∏
a≤0
〈a〉=〈l2〉

(p2 + az)

∏
a≤l2
〈a〉=〈l2〉

(p2 + az)
×

× 1

k!zk

∏
0≤a≤3l1+3l2+k
〈a〉=〈3l1+3l2+k〉

(3p1 + 3p2 + κ+ az)1vS(l1,l2,k).

The degree of the summand corresponding to λ ∈ ΛES with respect to z is not

smaller than −1 if and only if λ ∈
{

(0, 0, 0), (1, 0, 0), (0, 0, 1), (0,−1
3
, 1), (1,−1

3
, 0)
}

.

Therefore

ISE (τ1, τ2, ξ; z) = z10 + τ1p1 + τ2p2 +
(

6Q(1,0)eτ1 +Q(0, 1
3

)ξe
τ2
3

)
10+

+
(
ξ + 3Q(1,− 1

3
)eτ1−

τ2
3

)
1(1,1,1) + O(z−1).

By the mirror theorem, the E-twisted J-function of Y is such that

J tw
Y

((
ξ + 3Q(1,− 1

3
)
)

1(1,1,1), z
)

= exp
(
−z−1

(
6Q(1,0) +Q(0, 1

3
)ξ
))
· ISE (0, 0, ξ; z).
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By Conjecture 2.18,

IX ,Y

((
ξ + 3Q(1,− 1

3
)
)
ι?1(1,1,1), z

)
:= lim

κ→0
ι?J tw
Y

((
ξ + 3Q(1,− 1

3
)
)

1(1,1,1), z
)

lies on the Givental cone of X . Therefore

IX ,Y
(
ηι?1(1,1,1), z

)
= exp

(
−z−1

(
3Q(1,0) +Q(0, 1

3
)η
))

lim
κ→0

ISE

(
0, 0, η − 3Q(1,− 1

3
); z
)
.

Let 11, 12 denote the two identity classes of the components of IX with age equal

to 2/3. Now we compute a specialisation of the quantum period GX (x1, x2; t) ∈
Q[x1, x2][[t]] of X . Since ι?1(1,1,1) = 11 + 12, setting z = 1 and η = xt

1
3 , replacing

Q(α1,α2) 7→ tα1+2α2 (and consequently Q̃(l1,l2,k) 7→ tl1+2l2+k(x− 3)k), and considering

the component along 10 only, we get

GX (x, x; t) = e−xt−3t
∑

l1,l2,k∈N

(3l1 + 3l2 + k)!

(l1!)2l2!(l1 + l2)!(l1 + 3l2 + k)!k!
(x− 3)ktl1+2l2+k.

Since the two singular points of X lie in the same component of the singular locus

of Y , we are able to compute GX (x1, x2; t) only for x1 = x2. It is possible that, if

we had used another model of X as a complete intersection in a toric orbifold, we

could have been able to compute the whole quantum period of X . A specialization

of the regularised quantum period is

ĜX (x, x; t) = 1 + (12x+ 20)t2 + (6x2 + 108x+ 168)t3

+ (396x2 + 1800x+ 2220)t4

+ (360x3 + 7980x2 + 26640x+ 27600)t5 + · · · .

On the other hand, we consider the Fano polygon P whose vertices are the

columns of (
1 −1 −1 2

1 2 −1 −1

)
.

One can check that the generic Q-Gorenstein deformation of XP is X2,8/3. Kasprzyk
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and Tveiten [KT] have shown that the affine space LT(P ) is the 2-parameter family

fa,b(x, y) = xy + by +
y2

x
+ 3

y

x
+

3

x
+

1

xy
+

3

y
+ 3

x

y
+
x2

y
+ ax

as a, b ∈ Q. We can check that the classical period of fa,a coincides with ĜX (a, a; t).

2.4.4. Another example of a toric complete intersection: B1,16/3

Let X be a general quartic in Y = P(1, 1, 1, 3). In this example we apply the

Quantum Lefschetz technique, as in the §2.4.3, to compute the quantum period of

X . Nevertheless, here it is crucial to use Conjecture 2.18 by applying ι? firstly and

then considering the limit for κ→ 0.

The reason is that, since the toric ambient Y is ‘extended weak Fano’, it is

impossible to choose a lifting of E = OY(4) to the extended Picard group in such a

way that the extended twisted I-function ISE has both a good asymptotic behaviour

with respect to z and a well-defined non-equivariant limit for κ → 0. So we will

choose a lifting of E such that ISE has a good asymptotic behaviour, but limκ→0 I
S
E

does not exist. Fortunately, even though ISE does not have a well-defined limit as

κ → 0, ι?ISE does: ι?ISE → IX ,Y as κ → 0. Having a good asymptotic behaviour,

IX ,Y gives information about JX .

It is easy to see that [0 : 0 : 0 : 1] is the unique singular point of Y and

is of type 1
3
(1, 1, 1). The inertia stack IY has three connected components: one

isomorphic to Y and two non-trivial components which are both isomorphic to Bµ3.

Since −KX = OX(2), X is a del Pezzo surface with Fano index 2 and degree

K2
X = 2 · 2 · 4 · 1

3
= 16

3
. Moreover [0 : 0 : 0 : 1] is the unique singular point of X and

is of type 1
3
(1, 1). Therefore X has been called B1,16/3 in [CH17].

The fan sequence (2.5) of Y is

0 −→ L ' Z −→ Z4 ρ−→ Z3 = N −→ 0

where

ρ =

−1 1 0 0

−1 0 1 0

−3 0 0 1

 .

The divisor matrix is

D =
(

1 1 1 3
)
.
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We use the transpose of D as a basis of L. One can check that

Box(Y) = {(0, 0, 0), (0, 0,−1), (0, 0,−2)} ,

with ages 0, 1, 2 respectively.

Now we extend with (0, 0,−1). The extended fan sequence (2.9) is

0 −→ LS ' Z2
tDS−→ Z5 ρS−→ Z3 = N −→ 0,

where

ρS =

−1 1 0 0 0

−1 0 1 0 0

−3 0 0 1 −1

 and DS =

(
1 1 1 3 0

0 0 0 1 1

)
.

The extended nef cone is

NefS(Y) = cone

〈(
3

1

)
,

(
0

1

)〉
.

Let us use coordinates (l, k) on LS given by the basis made up of the rows of DS.

One can check that

ΛES =

{
(l, l, l, 3l + k, k) ∈ Q5

∣∣∣∣∣ l ∈ 1
3
Z, k ∈ Z,

3l + k ≥ 0, k ≥ 0

}
.

The reduction function vS : ΛES → Box(Y) is given by vS(l, k) = 3〈−l〉(0, 0,−1).

Since s1 = 1
3
(ρ1 + ρ2 + ρ3), the projection in L ⊗Z Q of (l, k) ∈ LS ⊗Z Q via the

splitting (2.11) is d = l + k
3
.

Let p be the first Chern class of OY(1). In order to write down a twisted S-

extended I-function, we have to choose a lifting (4, α) of 4p ∈ L∨ to LS∨. One can

check that ISE has a good asymptotic behaviour if and only if (2, 2− α) ∈ NefS(Y),

i.e. α ≤ 1. On the other hand, limκ→0 I
S
E exists if and only if (4, α) ∈ NefS(Y),

i.e. α ≥ 2. Therefore, it is impossible to find an α ∈ Z such that ISE has a

good asymptotic behaviour and that the non-equivariant limit of ISE exists. This is

related to the fact that the extended anticanonical class (6, 2) is not in the interior

of NefS(Y), i.e. Y is not ‘extended Fano’, but only ‘extended weak Fano’.
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Now we fix α = 1. Consider the summand

�l,k =


∏
a≤0
〈a〉=〈l〉

(p+ az)

∏
a≤l
〈a〉=〈l〉

(p+ az)


3

1∏
0<a≤3l+k
〈a〉=〈3l+k〉

(3p+ az)

1

k!zk

∏
a≤4l+k
〈a〉=〈4l+k〉

(4p+ κ+ az)

∏
a≤0

〈a〉=〈4l+k〉

(4p+ κ+ az)

of ISE corresponding to (l, k) ∈ ΛES. We see that the degree of �l,k with respect to

z is the following:

deg�l,k = −3 ·

dle+ 1 if l ∈ Z, l < 0

dle if l /∈ Z or l ≥ 0
− d3l + ke − k+

+

d4l + ke+ 1 if 4l + k ∈ Z, 4l + k < 0

d4l + ke if 4l + k /∈ Z or 4l + k ≥ 0

=


−2dle − k if l /∈ Z or l ≥ 0;

−2l − k − 3 if l ∈ Z,−k
4
≤ l < 0;

−2l − k − 2 if l ∈ Z, l < −k
4
.

It is easy to show that (−1
3
, 1) is the only (l, k) ∈ ΛES such that deg�l,k ≥ −1. So

the twisted I-function of Y has the following asymptotic behaviour:

ISE (τ, ξ, z) = z10 + τp+ Q̃(0,1)10 + ξ1(0,0,−1) + O(z−1).

The lifting we have chosen is not in NefS, hence the non-equivariant limit of ISE does

not exist.

However, we can study the pull-back ι?(ISE ) more carefully. The terms �l,k
that are divisible by κ−1, namely the ones that prevents the existence of the limit,

correspond to (l, k) such that 4l + k ∈ Z<0; in these cases we have that �l,k is

divisible by p3 and then, since X is a surface, ι?(�l,k) = 0. Therefore the limit

IX ,Y := lim
κ→0

ι?ISE

exists and, according to Conjecture 2.18, lies in LX . Thus, the J-function of X is

such that

JX (τp+ ξ11/3; z) = exp

(
−Q̃

(0,1)10

z

)
IX ,Y .
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After applying the change of variables Q̃(l,k) 7→ xkt2l+k, we get

GX (x; t) = exp(−xt)
∑
l,k∈N

(4l + k)!

l!3(3l + k)!k!
xkt2l+k.

The regularised quantum period is

ĜX (x; t) = 1 + 8t2 + 6xt3 + 168t4 + 240xt5 + (4440 + 90x)t6 + 9240xt7 + · · · .

On the other hand, we consider the Fano polygon P whose vertices are the

columns of (
1 −1 −1

1 2 −2

)
.

One can check that the generic Q-Gorenstein deformation of XP is B1,16/3. Kasprzyk

and Tveiten [KT] have shown that the affine space LT(P ) is the 1-parameter family

fa(x, y) =
(1 + y)4

xy2
+ yx+ ay

as a ∈ Q. We can check that the classical period of fa coincides with ĜX (a; t).

2.5. The Abelian/non-Abelian Correspondence

2.5.1. Theoretical background

Let G be a reductive group over C acting on a smooth affine variety A. Let T

be a maximal torus in G. We consider the stack-theoretic GIT quotients [A//G]

and [A//T ]. Let E be a representation of G and let EG and ET be the induced

vector bundles on [A//G] and [A//T ], respectively. We assume that [A//G] and

[A//T ] are proper Deligne–Mumford stacks with projective coarse moduli spaces.

Moreover, we assume that there are no strictly semi-stable points and the unstable



2.5. The Abelian/non-Abelian Correspondence 63

locus has codimension at least 2, for both the actions of G and T . The Abelian/non-

Abelian Correspondence of Bertram, Ciocan-Fontanine, Kim and Sabbah [BCFK08,

CFKS08] relates4 genus-zero Gromov–Witten invariants of [A//G], twisted by EG,

to the Gromov–Witten invariants of [A//T ], twisted by ET . We will be more precise

below.

Let W = N(T )/T be the Weyl group and Φ = Φ+ ∪ Φ− be the root system

with decomposition into positive and negative roots. The adjoint T -representation

g splits as g = t⊕
⊕

α∈Φ gα. For every α ∈ Φ, the one-dimensional T -representation

gα induces a line bundle Lα on [A//T ]. Let pα = c1(Lα) and consider

ω :=
∏
α∈Φ+

pα.

It is the fundamental W -anti-invariant class in the cohomology of [A//T ]. We recall

that the W -invariant part of the cohomology of [A//T ] may be identified with the

cohomology of [A//G].

There are homomorphisms Pic([A//G]) ↪→ Pic([A//T ]) and ρ : Eff([A//T ]) �

Eff([A//G]). The homomorphism ε : Eff([A//G]) → Q sends a curve class β into∑
α∈Φ+

Lα · β̃, where β̃ ∈ Eff([A//T ]) is a preimage of β. We consider the homomor-

phism on the Novikov rings p : Λ[A//T ] → Λ[A//G] defined by p(Qd) = (−1)ε(ρ(d))Qρ(d),

for every d ∈ Eff([A//T ]).5

Conjecture 2.23 (Abelian/non-Abelian Correspondence). Let JEG and JET be the

J-functions for the corresponding twisted Gromov–Witten theories of [A//G] and

[A//T ] (as in §2.4.1), respectively. Consider the differential operator D = z∂ω. Let

J̃ be the W -invariant function such that DJET = ω ∪ J̃ .

Then J̃ coincides with JEG, after:

• identifying the W -invariant part of the cohomology of [A//T ] with the coho-

mology of [A//G];

• applying the homomorphism p on the Novikov ring of [A//T ];

• applying a suitable mirror map φ on the parameters:

DJET (γ; z)
∣∣
Qd 7→p(Qd)

= ω ∪ J̃(φ(γ); z).

4The results of [CFKS08] have a projective hypothesis on A, but their arguments apply verbatim
to the case where A is affine, as here.

5This actually depends on the choice of an mth root of −1, where m is the least common
multiple of the exponents of the automorphism group of geometric points of [A//G].
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In [CFKS08, Theorem 6.1.2] Ciocan-Fontanine, Kim and Sabbah state Con-

jecture 2.23 under the additional assumption that [A//T ] and [A//G] are smooth

varieties and show that it is a consequence of a conjecture about Frobenius struc-

tures. Moreover, in [CFKS08, Theorem 4.1.1] they show that Conjecture 2.23 holds

when [A//G] is a flag manifold. In §2.5.2 we show how to use Conjecture 2.23 for

our computations.

2.5.2. Example of Abelian/non-Abelian correspondence: X1,7/3

Let A be the space of 2× 5 matrices, which are denoted by(
a1 a2 a3 a4 a5

b1 b2 b3 b4 b5

)
.

The group SL2 acts on A via left multiplication and the group Gm acts on A via

µ ·

(
a1 a2 a3 a4 a5

b1 b2 b3 b4 b5

)
=

(
µa1 µa2 µa3 µ3a4 µ3a5

µb1 µb2 µb3 µ3b4 µ3b5

)
.

We get an action of SL2 × Gm on A, which induces a faithful action of the affine

reductive group

G := (SL2 ×Gm)

/{((
λ 0

0 λ

)
, λ

)∣∣∣∣∣λ ∈ µ2

}

on A. Following [CR02, Example 2.6], the stack-theoretic GIT quotient F := [A//G]

is the weighted Grassmannian wGr(2, 5) with weights 1
2
, 1

2
, 1

2
, 3

2
, 3

2
. By using

cij = det

(
ai aj

bi bj

)
, 1 ≤ i < j ≤ 5

as coordinates, we get a closed embedding of F into the weighted projective space

P = P(13, 26, 3). The pulling-back homomorphism Z ' Pic(P) → Pic(F) maps

OP(1) into the line bundle OF(1) on F associated to the character of G induced by

the composite

SL2 ×Gm
pr2−→ Gm

(·)2

−→ Gm.

Let X ↪→ F be the zero locus of a generic section of EG = OF(2)⊕4. The coarse

moduli space X of X is a del Pezzo surface with one 1
3
(1, 1) and degree K2

X = 7
3

(see

[CH17]). To compute the Gromov–Witten invariants of X we need to compute the

EG-twisted Gromov–Witten invariants of F . This can be done by using Conjecture
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2.23.

We consider the maximal subtorus of G

T :=

{((
λ 0

0 λ−1

)
, µ

)∣∣∣∣∣λ, µ ∈ Gm

}/{((
λ 0

0 λ

)
, λ

)∣∣∣∣∣λ ∈ µ2

}
,

which is isomorphic to G2
m via((

λ 0

0 λ−1

)
, µ

)
7→ (λµ, λ−1µ).

Therefore the toric Fano orbifold Y := [A//T ] is the stack-theoretic GIT quotient of

A ' A10 with respect to the action of G2
m given by the following matrix.

a1 a2 a3 a4 a5 b1 b2 b3 b4 b5

1 1 1 2 2 0 0 0 1 1

0 0 0 1 1 1 1 1 2 2

Let Y be the coarse moduli space of Y . We denote by p1, p2 ∈ H2(Y ;Q) the first

Chern classes of the line bundles on Y induced by the characters of T given by((
λ 0

0 λ−1

)
, µ

)
7→ λµ and

((
λ 0

0 λ−1

)
, µ

)
7→ λ−1µ.

The nef cone of Y is Nef(Y ) = cone 〈2p1 + p2, p1 + 2p2〉. Let OY(1) be the line

bundle on Y such that its restriction to [As(G)/T ] is the pull-back of OF(1) from

F = [As(G)/G]; it corresponds to the character of T defined by((
λ 0

0 λ−1

)
, µ

)
7→ µ2.

Therefore c1(OY(1)) = p1 + p2, which is ample. Consider the vector bundle ET =

OY(2)⊕4.

Since Y is a toric orbifold, we may construct its ET -twisted I-function:

IET (τ1, τ2; z) = ze(τ1p1+τ2p2)/z
∑

(l1,l2)∈ΛE

Q(l1,l2)eτ1l1+τ2l2�l1,l21v(l1,l2)

=
∑

(l1,l2)∈ΛE

zQ(l1,l2)exp
((
l1 +

p1

z

)
τ1 +

(
l2 +

p2

z

)
τ2

)
�l1,l21v(l1,l2).
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where

�l1,l2 =


∏
a≤0
〈a〉=〈l1〉

(p1 + az)

∏
a≤l1
〈a〉=〈l1〉

(p1 + az)


3

∏
a≤0

〈a〉=〈2l1+l2〉

(2p1 + p2 + az)

∏
a≤2l1+l2
〈a〉=〈2l1+l2〉

(2p1 + p2 + az)


2

∏
a≤0
〈a〉=〈l2〉

(p2 + az)

∏
a≤l2
〈a〉=〈l2〉

(p2 + az)


3

×

×


∏
a≤0

〈a〉=〈l1+2l2〉

(p1 + 2p2 + az)

∏
a≤l1+2l2
〈a〉=〈l1+2l2〉

(p1 + 2p2 + az)


2 ∏

0<a≤2l1+2l2
〈a〉=〈2l1+2l2〉

(2p1 + 2p2 + az)


4

One may prove that

IET = z10 + 4
(
Q(1,0)eτ1 +Q(0,1)eτ2

)
10 + τ1p1 + τ2p2 + ϕ(τ1, τ2)1b + O(z−1),

where

ϕ(τ1, τ2) =
2

3

(
Q(− 1

3
, 2
3

)e
−τ1+2τ2

3 +Q( 2
3
,− 1

3
)e

2τ1−τ2
3

)
and b ∈ Box(Y) is a component with age(b) = 2. Therefore, the ET -twisted J-

function of Y is such that

JET (τ1p1 + τ2p2 + ϕ(τ1, τ2)1b; z) = exp

(
−4

Q(1,0)eτ1 +Q(0,1)eτ2

z

)
· IET . (2.16)

The Weyl group W = N(T )/T of G is cyclic of order 2 and is generated by the

class of ((
0 1

−1 0

)
, 1

)
.

The positive root α corresponds to the character of T defined by((
λ 0

0 λ−1

)
, µ

)
7→ λ2.

This character of T induces the line bundle Lα on Y . Let ω = c1(Lα) = p1 − p2.

Consider the differential operator D = z∂p1−p2 . Since JET is W -invariant, DJET is

W -anti-invariant and must be divisible by ω = p1 − p2:

DJET = (p1 − p2) ∪ J̃ .

The Abelian/non-Abelian Correspondence (Conjecture 2.23) relates J̃ with a lifting

of the EG-twisted J-function of F , up to the ring homomorphism on the Novikov
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rings Q(l1,l2) 7→ (−q)l1+l2 .

Unfortunately we do not know JET , but by (2.16) we only know JET ◦ ϑ, where

ϑ : (τ1, τ2) 7→ τ1p1 + τ2p2 + ϕ(τ1, τ2)1b. Now consider the differential operator D =

z(∂τ1 − ∂τ2). By the chain rule, we get

(DJET )(ϑ(τ1, τ2)) = D(JET ◦ ϑ)− z∂1bJET (ϑ(τ1, τ2)) · (∂τ1ϕ− ∂τ2ϕ),

where

∂τ1ϕ− ∂τ2ϕ =
2

3

(
−Q(− 1

3
, 2
3

)e
−τ1+2τ2

3 +Q( 2
3
,− 1

3
)e

2τ1−τ2
3

)
From (2.16), we get

D(JET ◦ ϑ) = exp

(
−4

Q(1,0)eτ1 +Q(0,1)eτ2

z

)[
−4(Q(1,0)eτ1 −Q(0,1)eτ2)IET +DIET

]
,

where

DIET =
∑

(l1,l2)∈ΛE

zQ(l1,l2)exp
((
l1 +

p1

z

)
τ1 +

(
l2 +

p2

z

)
τ2

)
×

× (zl1 + p1 − zl2 − p2)�l1,l21v(l1,l2).

If we set Q(l1,l2) = (−q)l1+l2 , we get

DJET (ϑ(0, 0)) = D(JET ◦ ϑ)|τ1=τ2=0

= e8qz−1
∑

(l1,l2)∈ΛE

z(−q)l1+l2(zl1 + p1 − zl2 − p2)�l1,l21v(l1,l2),

whose asymptotic behaviour is

DJET (ϑ(0, 0)) = (p1 − p2)

(
z + 16q10 +

25

9
(−q)

1
3 1b + O(z−1)

)
.

Hence, Conjecture 2.23 implies that a specialisation of JEG coincides with e−16qz−1
J̃ ,

via the string equation. Its component along the identity class 10 is

e−8qz−1
∑
l1,l2∈N

Al1,l2(q, z)

(
1 +

l1 − l2
2

(−3Hl1 + 3Hl2 − 2H2l1+l2 + 2H2l2+l1)

)
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where Hl :=
∑l

i=1
1
i

is the lth harmonic number (H0 := 0) and

Al1,l2(q, z) := (−q)l1+l2
(2l1 + 2l2)!4

l1!3l2!3(2l1 + l2)!2(l1 + 2l2)!2zl1+l2−1
.

Therefore a specialisation of the quantum period of X is

G(t) = exp(−8t)∑
l1,l2∈N

Al1,l2(t, 1)

(
1 +

l1 − l2
2

(−3Hl1 + 3Hl2 − 2H2l1+l2 + 2H2l2+l1)

)
,

whose regularization is

Ĝ(t) = 1 + 112t2 + 1650t3 + 48048t4 + · · · .

On the other hand, let P be the Fano polygon whose vertices are the columns

of the matrix (
1 −1 −1 1

1 2 −2 −2

)
.

One can show that the generic Q-Gorenstein deformation of XP is X1,7/3. Kasprzyk

and Tveiten [KT] have proven that LT(P ) is the 1-parameter family

fa(x, y) = ay +
x

y2
(1 + y)3 +

1

xy2
(1 + y)4 +

7

y
+

2

y2
.

One can check that the classical period of f3 is Ĝ(t).



3
Homogeneous deformations

of toric varieties

In this chapter, after recalling some facts in toric geometry (§3.1), we explain Mav-

lyutov’s construction of deformations of affine toric varieties in §3.2. In §3.3 we give

a generalisation to affine toric pairs. In §3.4 we consider deformations of polarised

projective toric varieties. Finally, in §3.5 we give an explicit formulation of the

fact, due to Ilten, that two mutation equivalent Fano polytopes give deformation

equivalent toric Fano varieties.

3.1. Preliminaries on toric geometry

For generalities about toric varieties we refer the reader to [Ful93] and [CLS11]. We

firstly treat toric schemes, with split tori, which are defined over arbitrary rings and

consider their total coordinate rings.

Remark 3.1 (Toric schemes over arbitrary rings). Let A be a ring, let N be a

lattice, and let Σ be a fan of strongly convex rational polyhedral cones in NR. For

every cone σ ∈ Σ, we consider its dual σ∨ ⊆ MR, the semigroup σ∨ ∩ M , and

the semigroup A-algebra A[σ∨ ∩M ]. We denote by TVA(Σ) the scheme obtained

by gluing the affine schemes TVA(σ) = SpecA[σ∨ ∩M ] thanks to the structure of

the fan Σ, as it is customary in toric geometry. One may prove that TVA(Σ) is a

separated flat scheme of finite presentation over A with relative dimension rankN

69
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and geometrically integral fibres. When A = C, TVA(Σ) = TVC(Σ) is exactly the

toric variety over C associated to the fan Σ considered in [Ful93,CLS11].

Now suppose that NR is generated as an R-vector space by the support |Σ| of Σ.

In other words we assume that TVC(Σ) has no torus factors. Let Σ(1) be the set of

rays of Σ. We do not distinguish a ray of Σ, which is actually a 1-dimensional cone of

Σ, from its primitive generator, which is actually the lattice point on the ray that is

the closest one to the origin. Generalising the definition of Cox coordinates on toric

varieties (see [Cox95], [CLS11, §5.2] or [MS05, §10]), we say that the polynomial

ring S = A[xρ | ρ ∈ Σ(1)] is the total coordinate ring of TVA(Σ). The variables

xρ are called Cox coordinates or homogeneous coordinates. The A-algebra S has

a grading with respect to the divisor class group GΣ = Cl(TVC(Σ)) of the variety

TVC(Σ), which is a quotient of the free abelian group ZΣ(1) according to the divisor

sequence of Σ (see [CLS11, (5.1.1)]):

0 −→M −→ ZΣ(1) −→ GΣ = Cl(TVC(Σ)) −→ 0.

For every cone σ ∈ Σ, setting xσ̂ =
∏

ρ/∈σ(1) xρ ∈ S, the map defined by

Cox: χu 7→ xu =
∏

ρ∈Σ(1)

x〈u,ρ〉ρ ,

where u ∈ σ∨∩M and χu is the corresponding element in A[σ∨∩M ], induces a ring

isomorphism

A[σ∨ ∩M ] ' S(xσ̂) ⊆ Sxσ̂ ,

where Sxσ̂ is the localization of S obtained by inverting the element xσ̂ and S(xσ̂)

is the subring of the Sxσ̂ consisting of elements of degree 0 with respect to the

GΣ-grading.

Imitating [CLS11, §5.3], from a GΣ-graded S-module E one may construct a

quasi-coherent sheaf Ẽ on TVA(Σ) such that, for every cone σ ∈ Σ, the sections

of Ẽ over TVA(σ) are the elements of E(xσ̂), i.e. the elements of degree 0 in the

localization Exσ̂ . The assignment E 7→ Ẽ is sometimes called sheafification and is

an exact functor from the category of GΣ-graded S-modules to the category of quasi-

coherent sheaves on TVA(Σ). In particular, the sheafification of a GΣ-homogeneous

ideal J of S induces a closed subscheme of TVA(Σ), whose structure sheaf is the

sheafification of S/J . Moreover, if A is noetherian and E is finitely generated graded

S-module, then Ẽ is coherent on TVA(Σ).

The following lemma gives a sufficient criterion to ensure the flatness of the

sheafification of a graded module on a toric scheme.
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Lemma 3.2. Let N be a lattice and let Σ be a fan of strongly convex rational

polyhedral cones in NR such that NR is generated by |Σ| as R-vector space. Let A

be a ring and let TVA(Σ) be the A-scheme constructed in Remark 3.1. Let S be the

total coordinate ring of TVA(Σ) and let E be a graded S-module. If E is flat as an

A-module, then Ẽ ∈ QCoh(TVA(Σ)) is flat over SpecA.

Proof. It is enough to show that E(xσ̂) is flat over A, for every cone σ ∈ Σ. The

localisation Exσ̂ is a GΣ-graded flat A-module and the homogeneous localisation

E(xσ̂) is its degree zero part. Therefore, E(xσ̂) is a direct summand of Exσ̂ as A-

modules and is flat over A.

Proposition 3.3. Let X be a toric variety over C with no torus factors. Let f be

a non-zero polynomial in the Cox coordinates of X with r + 1 terms, such that it

is homogeneous with respect to the Cl(X)-grading. Consider the family, over PrC,

of closed subschemes of X defined by the zero loci of the homogeneous polynomials

obtained by scaling the coefficients of f . Then this family is flat over PrC.

Proof. Let Σ be the fan defining X. We have f = b0x
a0 + b1x

a1 + · · · + brx
ar for

b0, b1, . . . , br ∈ C× and a0, . . . , ar ∈ NΣ(1) such that deg(a0) = · · · = deg(ar) ∈ Cl(X).

The family we are interested in is the closed subscheme Y of X ×SpecC PrC defined

by the bihomogeneous equation

b0y0x
a0 + b1y1x

a1 + · · ·+ bryrx
ar = 0

where y0, y1, . . . , yr are the homogeneous coordinates of PrC.

Since flatness is a local property, it is enough to restrict the family to the standard

affine charts of PrC. For simplicity we consider U = {y0 6= 0} ' Ar
C only. Consider

the polynomial C-algebra A = C[t1, . . . , tr] and the total coordinate ring S = A[xρ |
ρ ∈ Σ(1)] of TVA(Σ) = X ×SpecC Ar

C. The restriction of Y to U is the closed

subscheme of TVA(Σ) defined by the homogeneous ideal generated by

b0x
a0 + b1t1x

a1 + · · ·+ brtrx
ar = 0.

In other words, the structure sheaf OY|U of Y|U is the sheaf Ẽ on TVA(Σ) induced

by the graded S-module

E = S/(b0x
a0 + b1t1x

a1 + · · ·+ brtrx
ar)S.

By [Mat89, Corollary of Theorem 22.6], E is flat over A. By Lemma 3.2 Ẽ is flat

over SpecA = Ar
C. Therefore Y|U is flat over U .
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3.2. Deformations of affine toric varieties after A.

Mavlyutov

In this section we recall the work [Mav] by Anvar R. Mavlyutov on the deforma-

tions of affine toric varieties and we claim no originality here. Although Mavlyutov

uses Cox coordinates to generalise Altmann’s construction [Alt95], his construction

has the same strategy as Altmann’s: starting from a Minkowski decomposition of

some polyhedron (with some assumptions) one embeds the considered affine toric

variety into a larger affine toric variety (Theorem 3.4(A)) and then deforms the

equations of this closed embedding (Theorem 3.4(B)). More specifically, starting

from a Minkowski decomposition of a polyhedron Q inside a cone σ one can con-

struct a bigger cone σ̃ and embed the toric variety associated to σ inside the toric

variety associated to σ̃ via binomial equations in the Cox coordinates of TVC(σ̃); by

deforming these equations with extra monomials one may produce a deformation of

TVC(σ). The precise statement is the following theorem of Mavlyutov. We give a

detailed proof as it will be useful for our generalisation in §3.3.

Theorem 3.4 ([Mav]). Let N be a lattice and let σ ⊆ NR be a strongly convex

rational polyhedral cone such that dimσ = rankN . Let Q, Q0, Q1, . . . , Qk be

non-empty rational polyhedra in NR such that:

(i) Q ⊆ σ;

(ii) 0 /∈ Q;

(iii) Q = Q0 +Q1 + · · ·+Qk;

(iv) for every vertex v ∈ vert(Q), there exist vertices v0 ∈ vert(Q0), v1 ∈ vert(Q1),

. . . , vk ∈ vert(Qk) such that v = v0 + v1 + · · ·+ vk and

# {i ∈ {0, 1, . . . , k} | vi /∈ N} ≤ 1.

Consider the lattice Ñ = N ⊕ Ze1 ⊕ · · · ⊕ Zek and the cone

σ̃ = cone 〈σ,Q0 − e1 − · · · − ek, Q1 + e1, . . . , Qk + ek〉 ⊆ ÑR.

(A) Then σ̃ is a strongly convex rational polyhedral cone in Ñ and the toric mor-

phism TVC(σ)→ TVC(σ̃), induced by the inclusion N ↪→ Ñ , is a closed embedding.

Moreover, TVC(σ) is the closed subscheme of TVC(σ̃) associated to the homogeneous
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ideal generated by the following binomials in the Cox coordinates of TVC(σ̃):∏
ξ∈σ̃(1) :
〈e∗i ,ξ〉>0

x
〈e∗i ,ξ〉
ξ −

∏
ξ∈σ̃(1) :
〈e∗i ,ξ〉<0

x
−〈e∗i ,ξ〉
ξ

for i = 1, . . . , k. Moreover, these binomials form a regular sequence of length k.

(B) In addition, assume that w ∈ M is such that the following two conditions

hold:

(v) the minimum of w on Q exists and is not smaller than −1;

(vi) every vertex of the polyhedron σ∩{n ∈ NR|〈w, n〉 = −1} is contained in R+ ·Q.

Consider

w̃ = w −
k∑
i=1

⌊
min
Qi

w

⌋
e∗i ∈ M̃.

Let t1, . . . , tk be the standard coordinates on Ak
C. Consider the closed subscheme of

TVC(σ̃) ×SpecC Ak
C = TVC[t1,...,tk](σ̃) defined by the homogeneous ideal generated by

the following trinomials in Cox coordinates:∏
ξ∈σ̃(1) :
〈e∗i ,ξ〉>0

x
〈e∗i ,ξ〉
ξ −

∏
ξ∈σ̃(1) :
〈e∗i ,ξ〉<0

x
−〈e∗i ,ξ〉
ξ − ti

∏
ξ∈σ̃(1)

x
〈w̃,ξ〉
ξ

∏
ξ∈σ̃(1) :
〈e∗i ,ξ〉<0

x
−〈e∗i ,ξ〉
ξ (3.1)

for i = 1, . . . , k. This closed subscheme induces a formal deformation of TVC(σ)

over C[[t1, . . . , tk]].

Remark 3.5. We will clarify what we mean when we say that the aforementioned

closed subscheme induces a formal deformation of TVC(σ) over C[[t1, . . . , tk]]. Let X
be this closed subscheme, i.e. the closed subscheme of TVC(σ̃)×SpecCAk

C defined by

the trinomials (3.1). By composing this closed immersion with the projection onto

Ak
C, we get a scheme morphism X → Ak

C such that the fibre over the origin is TVC(σ)

by (A). We do not know if X → Ak
C is a flat morphism, but it is “formally flat” over

the origin in the following sense: for every (t1, . . . , tk)-primary ideal q of C[t1, . . . , tk],

the fibre product X ×AkC
SpecC[t1, . . . , tk]/q is flat over SpecC[t1, . . . , tk]/q. Since

the inverse limit of these C[t1, . . . , tk]/q is C[[t1, . . . , tk]], we say that we have a formal

deformation over C[[t1, . . . , tk]] by using à la Schlessinger terminology.

As we will see in §3.4, if we had been dealing with deformations of complete

varieties there would have been no need to specify the adverb “formally” thanks to

Lemma 3.16
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Remark 3.6. The hypotheses of Theorem 3.4 hold in the following particular case:

w ∈ M and Q = σ ∩ {v ∈ NR|〈w, v〉 = −1} = Q0 + Q1 + · · · + Qk, where Q0 is a

rational polyhedron and Q1, . . . , Qk are lattice polyhedra. Moreover, if in addition

Qi ⊆ {v ∈ NR|〈w, v〉 = 0} =: w⊥ for i = 1, . . . , k, then w̃ = w.

The rest of this section is devoted to the proof of Theorem 3.4 and relies entirely

on [Mav].

The following lemma is a very particular case of a result by K. G. Fischer and

J. Shapiro [FS96] that gives a necessary and sufficient criterion for a sequence of

binomials to be a regular sequence. For every a ∈ Z, define a+ := max{a, 0} and

a− := max{−a, 0}.

Lemma 3.7. Let M = (aij)1≤i≤k,1≤j≤n be a k × n matrix with entries in Z. For

every i = 1, . . . , k, consider the binomial

fi =
n∏
j=1

x
a+
ij

j −
n∏
j=1

x
a−ij
j ∈ C[x1, . . . , xn].

If the rank of M is k and every column of M has at most one positive entry, then

f1, . . . , fk is a regular sequence in C[x1, . . . , xn].

Proof. From the assumption on the rank of M we deduce k ≤ n. Let H be the

derived submatrix of M. It is a k × n′ submatrix of M, for some k ≤ n′ ≤ n, such

that every row of H either is zero or has both a positive and negative entry and H
is maximal with respect to this property. We refer the reader to [FS96, p. 42] for

the precise definition of the derived submatrix of M. Since H is obtained from M
by deleting some columns, also H has the property that every column of H has at

most one positive entry.

In order to conclude that f1, . . . , fk is a regular sequence, we want to use [FS96,

Corollary 2.4]. Therefore we need to show that s ≤ t whenever there exists an s× t
submatrix of H such that every row has both a positive and negative entry. This is

true because of the property of H above.

When we have a cone in a lattice Ñ , it is possible to intersect it with a saturated

sublattice N of Ñ and get a toric morphism. The following lemma describes the

scheme-theoretic image of this toric morphism under some hypotheses. This will be

useful in the proof of Theorem 3.4(A).

Lemma 3.8. Let N be a lattice and let Ñ = N ⊕ Zk. Denote by e1, . . . , ek the

standard basis of Zk. Let σ̃ ⊆ ÑR be a (rank Ñ)-dimensional strongly convex rational
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polyhedral cone that satisfies the following condition: the Zk-component of every ray

of σ̃ has at most one positive entry, i.e.

σ̃(1) ⊆ N ×
(
(−N)k ∪ N+e1 ∪ · · · ∪ N+ek

)
(3.2)

If σ is the cone σ̃ ∩NR inside NR, then the scheme-theoretic image of the toric

morphism TVC(σ) → TVC(σ̃) is the closed subscheme of TVC(σ̃) defined by the

homogeneous ideal generated by the following binomials in the Cox coordinates of

TVC(σ̃): ∏
ξ∈σ̃(1) :
〈e∗i ,ξ〉>0

x
〈e∗i ,ξ〉
ξ −

∏
ξ∈σ̃(1) :
〈e∗i ,ξ〉<0

x
−〈e∗i ,ξ〉
ξ

for i = 1, . . . , k. Moreover, these binomials form a regular sequence.

Proof. The toric morphism TVC(σ) → TVC(σ̃) is associated to the ring homomor-

phism

C[σ̃∨ ∩ M̃ ]→ C[σ∨ ∩M ] (3.3)

that maps χũ to χφ(ũ), where φ : σ̃∨∩M̃ → σ∨∩M is the semigroup homomorphism

given by u+ a1e
∗
1 + · · ·+ ake

∗
k 7→ u. Let I ⊆ C[σ̃∨ ∩ M̃ ] be the kernel of (3.3). The

scheme-theoretic image of TVC(σ) → TVC(σ̃) is the closed subscheme of TVC(σ̃)

defined by the ideal I.

We consider the Cox ring of TVC(σ̃): S = C[xξ | ξ ∈ σ̃(1)], with its Gσ̃-grading.

Consider the following monomials in Cox coordinates:

yi =
∏

ξ∈σ̃(1) :
〈e∗i ,ξ〉>0

x
〈e∗i ,ξ〉
ξ ,

zi =
∏

ξ∈σ̃(1) :
〈e∗i ,ξ〉<0

x
−〈e∗i ,ξ〉
ξ ,

for i = 1, . . . , k. Let J ⊆ S be the ideal generated by y1 − z1, . . . , yk − zk. It is

obviously homogeneous. In order to prove the thesis, we need to show that, under

the Cox isomorphism between C[σ̃∨ ∩M ] and S0, the ideal I equals the degree zero

part of the ideal J , i.e.

Cox(I) = J ∩ S0. (3.4)

We now prove the containment ⊆ in (3.4). Since I is the kernel of (3.3), it is not

difficult to show that I is generated by the elements χr−χs whenever r, s ∈ σ̃∨∩ M̃
are such that φ(r) = φ(s). So r − s =

∑k
i=1 aie

∗
i , for some ai ∈ Z. Now, for each

i = 1, . . . , k, consider a+
i ∈ N and a−i ∈ N: we have a+

i a
−
i = 0 and ai = a+

i − a−i .
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Consider the element

q = r −
k∑
i=1

a+
i e
∗
i = s−

k∑
i=1

a−i e
∗
i ∈ M̃.

Let us show that q ∈ σ̃∨. We need to show that q is non-negative on the rays of σ̃.

By (3.2), we distinguish two cases:

• v = n − b1e1 − · · · − bkek ∈ σ̃(1), for some n ∈ N and bi ∈ N; then 〈q, v〉 =

〈r, v〉+
∑k

i=1 a
+
i bi ≥ 〈r, v〉 ≥ 0.

• v = n + bei ∈ σ̃(1), for some n ∈ N , 1 ≤ i ≤ k and b ∈ N+; then 〈q, v〉 =

〈r, v〉 − a+
i b = 〈s, v〉 − a−i b. Since either a+

i = 0 or a−i = 0, we have either

〈q, v〉 = 〈r, v〉 ≥ 0 or 〈q, v〉 = 〈s, v〉 ≥ 0.

Therefore χq ∈ C[σ̃∨ ∩ M̃ ].

In the ring S we have the equality

Cox(χr) ·
k∏
i=1

z
a+
i
i = Cox(χq) ·

k∏
i=1

y
a+
i
i . (3.5)

By (3.2) every Cox variable appearing in y1 · · · yk does not appear in z1 · · · zk. From

(3.5) we obtain that
∏k

i=1 y
a+
i
i divides Cox(χr). Therefore there exists a monomial

p ∈ S such that

Cox(χr) = p ·
k∏
i=1

y
a+
i
i ,

Cox(χq) = p ·
k∏
i=1

z
a+
i
i ;

thus the binomial

Cox(χr − χq) = p ·

(
k∏
i=1

y
a+
i
i −

k∏
i=1

z
a+
i
i

)

is clearly in the ideal J . In a completely analogous way we prove that Cox(χs−χq)
is in J . Therefore, by taking the difference, we have that Cox(χr − χs) is in J .

We now prove the containment ⊇ in (3.4). Let f ∈ J ∩ S0. We may write

f =
k∑
i=1

fi(yi − zi)
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for some fi ∈ S. Let βi ∈ Gσ̃ be the degree of yi − zi. By taking the homogeneous

components with respect to the Gσ̃-grading, we may assume that fi is homogeneous

of degree −βi. By decomposing fi into the sum of its monomials, in order to show

the containment ⊇ in (3.4), it is enough to show that p(yi− zi) ∈ Cox(I), whenever

i ∈ {1, . . . , k} and p ∈ S is a monomial of degree −βi.
Since pyi and pzi are monomials of degree 0 in S, there exist r, s ∈ σ̃∨ ∩ M̃ such

that pyi = Cox(χr) and pzi = Cox(χs). Since p(yi − zi) = Cox(χr − χs), we must

show that φ(r) = φ(s). It is not difficult to show that 〈r − s, ξ〉 = 〈e∗i , ξ〉 for every

ξ ∈ σ̃(1). Since σ̃ is full dimensional, we have r−s = e∗i ; this proves that φ(r) = φ(s)

and χr − χs ∈ I.

Now we prove that y1 − z1, . . . , yk − zk is a regular sequence. By Lemma 3.7 it

is enough to show that the matrix M = (〈e∗i , ξ〉)1≤i≤k, ξ∈σ̃(1) has rank k and every

column of M has at most one positive entry. The latter condition is satisfied by

(3.2).

The linear map associated to the matrix M is the composite of the ray map

ρ : Z|σ̃(1)| → Ñ = N ⊕ Zk of TVC(σ̃) and the projection π : Ñ = N ⊕ Zk → Zk.
Since σ̃ is full-dimensional, ρ⊗Z idR is surjective. This implies that (π ◦ ρ)⊗Z idR is

surjective and that M has rank k.

Proof of Theorem 3.4(A). By (iii) and (i) we see that rec(Qi) ⊆ rec(Q) ⊆ σ for every

i = 0, 1, . . . , k. In particular, rec(Qi) is strongly convex; so, by [CLS11, Proposition

7.1.1.b], Qi = conv 〈vert(Qi)〉+ rec(Qi). We have that

σ̃ = cone 〈σ, vert(Q0)− e1 − · · · − ek, vert(Q1) + e1, . . . , vert(Qk) + ek〉 .

This implies that the cone σ̃ is a rational convex polyhedral cone in Ñ . Moreover,

the rays of σ̃ are among the following rays:

• rays passing through the vertices of Q0 − e1 − · · · − ek;

• rays passing through the vertices of Qi + ei, as i = 1, . . . , k;

• rays of σ that are not in the cone generated by the previous rays.

Now we prove that σ = σ̃ ∩ NR. The containment ⊆ is obvious. We need to

show the containment ⊇. Let ṽ ∈ σ̃∩NR. By the convexity of Q0, Q1, . . . , Qk, which

implies that cone 〈Qi + ei〉 = R≥0(Qi + ei) and an analogous statement for Q0, we
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may assume that

ṽ = v + λ0(q0 − e1 − · · · − ek) + λ1(q1 + e1) + · · ·+ λk(qk + ek)

= v + λ0q0 + λ1q1 + · · ·+ λkqk + (λ1 − λ0)e1 + · · ·+ (λk − λ0)ek

for some v ∈ σ, qi ∈ Qi and λi ≥ 0. Since ṽ ∈ N , λ0 = λi for every i. Therefore

ṽ = v + λ0(q0 + q1 + · · · + qk). By (iii) and (i), q0 + q1 + · · · + qk ∈ Q ⊆ σ and we

conclude that ṽ ∈ σ.

Now we show that σ̃ is strongly convex. Since σ is strongly convex and 0 /∈
Q, we may find u ∈ int(σ∨) such that minQ u > 0. Since the recession cones of

Q0, Q1, . . . , Qk are contained in σ, the minimum of u on each of these polyhedra

exists. Consider

ũ = u−
k∑
i=1

min
Qi

u e∗i +
1

k + 1
min
Q
u

k∑
i=1

e∗i ∈ M̃R

In order to show that σ̃ is strictly convex, we prove that ũ is positive on the rays of

σ̃. We may distinguish three cases as follows:

• the ray passes through v − e1 − · · · − ek, for some v ∈ vert(Q0); then

〈ũ, v − e1 − · · · − ek〉 = 〈u, v〉+
k∑
i=1

min
Qi

u− k

k + 1
min
Q
u

≥ min
Q0

u+ min
Q1+···+Qk

u− k

k + 1
min
Q
u

= min
Q
u− k

k + 1
min
Q
u

=
1

k + 1
min
Q
u > 0;

• the ray passes through v + ei, for some v ∈ vert(Qi) and 1 ≤ i ≤ k; then

〈ũ, v + ei〉 = 〈u, v〉 −min
Qi

u+
1

k + 1
min
Q
u ≥ 1

k + 1
min
Q
u > 0.

• the ray is a ray of σ through v ∈ N r {0}; then 〈ũ, v〉 = 〈u, v〉 > 0, because

u ∈ int(σ∨);

This concludes the proof of the strong convexity of σ̃.

We now show that σ̃ has dimension rank Ñ . Equivalently we see that zero is the

unique linear functional on Ñ that vanishes over σ̃. Let ũ = u+
∑k

i=1 aie
∗
i ∈ M̃ be

such that it vanishes over σ̃. In particular it vanishes over σ, hence u = 0 because
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σ is full-dimensional. By evaluating ũ on Qi + ei we see that ai must be zero. This

implies that ũ = 0.

By Lemma 3.8 it is enough to show that the toric morphism TVC(σ)→ TVC(σ̃)

is a closed embedding.

Before proving this we shall prove the following claim:

∀u ∈ σ∨ ∩M,
k∑
i=0

⌊
min
Qi

u

⌋
=

⌊
min
Q
u

⌋
. (3.6)

Firstly we show that the minimum of u on Q is attained on a vertex of Q; this comes

from the strong convexity of σ as follows. By (i) rec(Q) is contained in σ and so is

a strongly convex cone. By [CLS11, 7.1.1b] we have

Q = conv 〈vert(Q)〉+ rec(Q). (3.7)

Since u ∈ σ∨, u is non-negative on rec(Q). Therefore there exists a vertex v of Q

such that minQ u = 〈u, v〉. Now we prove the claim (3.6). By (iv) we may find

vertices vi ∈ vert(Qi), i = 0, 1, . . . , k, such that v = v0 + v1 + · · · + vk and they

are all integral with at most one exception. This implies that the numbers 〈u, v0〉,
〈u, v1〉, . . . , 〈u, vk〉 are all integral with at most one exception. Therefore

k∑
i=0

b〈u, vi〉c = b〈u, v〉c .

But minQ u = 〈u, v〉 and it is clear that minQi u = 〈u, vi〉 for i = 0, 1, . . . , k. There-

fore we have proved (3.6).

Now we prove that the toric morphism TVC(σ)→ TVC(σ̃) is a closed embedding.

Equivalently, we have to show that the semigroup homomorphism φ : σ̃∨ ∩ M̃ →
σ∨ ∩M is surjective. Let u ∈ σ∨ ∩M and consider

ũ = u−
k∑
i=1

⌊
min
Qi

u

⌋
e∗i ∈ M̃ ;

if we prove that ũ ∈ σ̃∨ we have finished because the equality φ(ũ) = u obviously

holds true. It is clear that ũ is non-negative on σ and it is very easy to show that

ũ is non-negative on Qi + ei, for each i = 1, . . . , k. So it remains to show that ũ is
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non-negative on Q0 − e1 − · · · − ek. If q ∈ Q0, then

〈ũ, q − e1 − · · · − ek〉 = 〈u, q〉+
k∑
i=1

⌊
min
Qi

u

⌋

≥
⌊

min
Q0

u

⌋
+

k∑
i=1

⌊
min
Qi

u

⌋
=

⌊
min
Q
u

⌋
≥ 0,

where the last equality is (3.6) and the last inequality holds because of (i).

This concludes the proof of Theorem 3.4(A).

Lemma 3.9. Let (A,m, κ) be an artinian local ring and B be a flat A-algebra of

finite type. Let b1, . . . , bk ∈ B generate the ideal J of B. If b1, . . . , bk is a (B ⊗A κ)-

regular sequence, then B/J is flat over A.

Proof. Let P be a prime ideal of B. Since m is the unique prime ideal of A, we

have m = P ∩ A and A → BP is a local homomorphism. We need to show that

(B/J)P = BP/JBP is flat over A. If J * P , then (B/J)P = 0 and we are done. If

J ⊆ P , then we conclude by [Mat89, Corollary to Theorem 22.5].

Proof of Theorem 3.4(B). From (3.7) and the existence of the minimum of w on

Q, we have that w is non-negative on rec(Q) and minQw = 〈w, v〉 for some vertex

v of Q. By (iv) we may find vertices vi ∈ vert(Qi), i = 0, 1, . . . , k, such that

v = v0 + v1 + · · · + vk and they are all integral with at most one exception. This

implies that the numbers 〈w, v0〉, 〈w, v1〉, . . . , 〈w, vk〉 are all integral with at most

one exception. Therefore
k∑
i=0

b〈w, vi〉c = b〈w, v〉c .

But minQw = 〈w, v〉 and it is clear that minQi w = 〈w, vi〉 for i = 0, 1, . . . , k.

Therefore we have proved the equality

k∑
i=0

⌊
min
Qi

w

⌋
=

⌊
min
Q
w

⌋
. (3.8)

Now we show that the trinomials (3.1) are elements of

C[t1, . . . , tk][xξ | ξ ∈ σ̃(1)],

which is the homogeneous coordinate ring of TVC[t1,...,tk](σ̃). It is enough to show that
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every Cox coordinate appearing in the third monomial in (3.1) has a non-negative

exponent. Fix a ray ξ of σ̃. We may distinguish three cases as follows.

• ξ passes through a vertex of Q0− e1−· · ·− ek. Then ξ = λ(v0− e1−· · ·− ek),
for some λ ∈ N+ and v0 ∈ vert(Q0). Then

〈w̃, ξ〉 = λ〈w, v0〉+ λ

k∑
i=1

⌊
min
Qi

w

⌋

≥ λ
k∑
i=0

⌊
min
Qi

w

⌋
= λ

⌊
min
Q
w

⌋
≥ −λ,

where the last equality holds by (3.8) and the last inequality holds by (v).

Therefore the exponent of xξ in the third trinomial in (3.1), which is 〈w̃, ξ〉+λ,

is non-negative.

• ξ passes through a vertex of Qi + ei, for some 1 ≤ i ≤ k. Then ξ = λ(v + ei),

for some λ ∈ N+ and v ∈ vert(Qi). Then 〈w̃, ξ〉 = λ〈w, v〉 − λ bminQi wc ≥ 0.

• ξ is a ray of σ too. We need to show that 〈w̃, ξ〉 = 〈w, ξ〉 is non-negative.

For a contradiction assume that 〈w, ξ〉 < 0. Therefore a positive multiple of

ξ lies in the polyhedron P := σ ∩ {n ∈ NR | 〈w, n〉 = −1}. Since rec(P ) is

strongly convex, P = conv 〈vert(P )〉+ rec(P ) by [CLS11, Proposition 7.1.1.b].

By (vi) we obtain that ξ = λq + r, for some λ > 0, q ∈ Q, r ∈ rec(P ). Since

λq and r are both in σ and ξ is a ray of σ, we have that either λq = 0 or

r = 0. By (ii) we have r = 0, so ξ = λq. From (iii) we have that ξ is in

cone 〈Q0 − e1 − · · · − ek, Q1 + e1, . . . , Qk + ek〉. This contradicts the fact that

ξ is a ray of both σ and σ̃.

Let X be the closed subscheme of TVC(σ̃)×SpecCAk
C = TVC[t1,...,tk](σ̃) defined by

the homogeneous ideal generated by the trinomials in (3.1), which we have proved

to be well defined. The composite X ↪→ TVC(σ̃) ×SpecC Ak
C → Ak

C is a scheme

morphism whose fibre over O ∈ Ak
C is TVC(σ). We need to show that its restriction

to any infinitesimal neighbourhood of O ∈ Ak
C is flat.

Fix a (t1, . . . , tk)-primary ideal q. Consider the local artinian C-algebra A =

C[t1, . . . , tk]/q. We need to show that X ×AkC
SpecA→ SpecA is flat. The homoge-

neous coordinate ring of TVA(σ̃) is the polynomial A-algebra B = A[xξ | ξ ∈ σ̃(1)].

By (A) the trinomials (3.1) form a (B ⊗A C)-regular sequence. By Lemma 3.9 the
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homogeneous ideal J ⊆ B generated by the trinomials (3.1) is such that B/J is

flat over A. By Lemma 3.2 the sheafification of the Gσ̃-graded B-module B/J is

a coherent sheaf on TVA(σ̃) which is flat over SpecA. This sheaf is the structure

sheaf of the closed subscheme X ×AkC
SpecA of TVA(σ̃). Therefore we have proved

that X ×AkC
SpecA is flat over SpecA.

This concludes the proof of Theorem 3.4(B).

3.3. Deformations of toric affine pairs

Under additional hypotheses with respect to Theorem 3.4, Mavlyutov’s construction

of deformations of toric affine varieties, which appears in [Mav] and is rewritten in

§3.2, actually gives deformations of their toric boundary too. Therefore, roughly

speaking, Minkowski decompositions give deformations of the pair (X, ∂X), where

X is an affine toric variety and ∂X is its toric boundary.

In the setting of Theorem 3.4 the additional hypothesis is that the polyhedra

Q1, . . . , Qk must have lattice vertices (see (iv’) in Theorem 3.10). If this is the case,

from a Minkowski decomposition Q0 +Q1 + · · ·+Qk of a polyhedron Q in a cone σ,

we construct a bigger cone σ̃ and a reduced divisor D in the toric variety TVC(σ̃)

such that TVC(σ) is a closed subscheme of TVC(σ̃) defined by binomial equations

and D∩TVC(σ) is the toric boundary ∂TVC(σ) of TVC(σ). Theorem 3.4 constructs

a formal deformation X → Ak
C of TVC(σ) as a closed subscheme in the trivial

family TVC(σ̃)×C Ak
C; then one can see that the subscheme X ∩ (D ×C Ak

C) gives a

deformation of the toric boundary ∂TVC(σ). In other words, (X ,X ∩ (D×CAk
C))→

Ak
C induces a formal deformation of the toric pair (TVC(σ), ∂TVC(σ)). The precise

statement is the following.

Theorem 3.10. Let N be a lattice and let σ ⊆ NR be a strongly convex rational

polyhedral cone of dimension rankN . Consider the affine toric variety TVC(σ) with

its toric boundary ∂TVC(σ). Let Q,Q0, Q1, . . . , Qk be non-empty rational polyhedra

in NR such that:

(i) Q ⊆ σ;

(ii) 0 /∈ Q;

(iii) Q = Q0 +Q1 + · · ·+Qk;

(iv’) Q1, . . . , Qk are lattice polyhedra.
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Consider the lattice Ñ = N ⊕ Ze1 ⊕ · · · ⊕ Zek and the cone

σ̃ = cone 〈σ,Q0 − e1 − · · · − ek, Q1 + e1, . . . , Qk + ek〉 ⊆ ÑR.

(A) Then σ̃ is a strongly convex rational polyhedral cone in Ñ and the toric

morphism TVC(σ) → TVC(σ̃), induced by the inclusion N ↪→ Ñ , is a closed em-

bedding and identifies TVC(σ) with the closed subscheme of TVC(σ̃) associated to

the homogeneous ideal generated by the following binomials in the Cox coordinates

of TVC(σ̃): ∏
ξ∈σ̃(1) :
〈e∗i ,ξ〉>0

x
〈e∗i ,ξ〉
ξ −

∏
ξ∈σ̃(1) :
〈e∗i ,ξ〉<0

x
−〈e∗i ,ξ〉
ξ (3.9)

for i = 1, . . . , k. Now consider the reduced effective divisor D on TVC(σ̃) defined by

the homogeneous ideal generated by the following monomial in the Cox coordinates

of TVC(σ̃): ∏
ξ∈σ̃(1) :

∀i∈{1,...,k},〈e∗i ,ξ〉≤0

xξ. (3.10)

Then the scheme-theoretic intersection TVC(σ)∩D coincides with the toric boundary

∂TVC(σ) of TVC(σ). Moreover the k binomials in (3.9) and the monomial in (3.10)

form a regular sequence of length k + 1.

(B) In addition, assume that w ∈ M is such that the following two conditions

hold:

(v) the minimum of w on Q exists and is not smaller than −1;

(vi) every vertex of the polyhedron σ∩{n ∈ NR|〈w, n〉 = −1} is contained in R+ ·Q.

Consider

w̃ = w −
k∑
i=1

(
min
Qi

w

)
e∗i ∈ M̃.

Let t1, . . . , tk be the standard coordinates on Ak
C. Consider the closed subscheme X

of TVC(σ̃) ×SpecC Ak
C = TVC[t1,...,tk](σ̃) defined by the homogeneous ideal generated

by the following trinomials in Cox coordinates:∏
ξ∈σ̃(1) :
〈e∗i ,ξ〉>0

x
〈e∗i ,ξ〉
ξ −

∏
ξ∈σ̃(1) :
〈e∗i ,ξ〉<0

x
−〈e∗i ,ξ〉
ξ − ti

∏
ξ∈σ̃(1)

x
〈w̃,ξ〉
ξ

∏
ξ∈σ̃(1) :
〈e∗i ,ξ〉<0

x
−〈e∗i ,ξ〉
ξ (3.11)

for i = 1, . . . , k. Then the closed embedding X ∩ (D ×SpecC Ak
C) ↪→ X induces a

formal deformation of the toric pair (TVC(σ), ∂TVC(σ)) over C[[t1, . . . , tk]].
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The meaning of “formal deformation” is explained in Remark 3.5.

Proof of Theorem 3.10. Since almost everything has been proved in the work of

Mavlyutov [Mav] (see Theorem 3.4), it is enough to deal with the toric boundary.

Here we adopt some notations used in the proof of Lemma 3.8. Let I be the kernel

of the surjective ring homomorphism ψ : C[σ̃∨ ∩ M̃ ]→ C[σ∨ ∩M ] that is associated

to the surjective semigroup homomorphism φ : σ̃∨∩M̃ → σ∨∩M given by u+a1e
∗
1 +

· · ·+ ake
∗
k 7→ u. The ideal of the toric boundary ∂TVC(σ) in TVC(σ) is⊕

u∈int(σ∨)∩M

Cχu.

Therefore the ideal of ∂TVC(σ) in TVC(σ̃) is

I := ψ−1

 ⊕
u∈int(σ∨)∩M

Cχu


= I +
∑

u+a1e∗1+···+ake∗k∈((int(σ∨)∩M)×Zk)∩σ̃∨
Cχu+a1e∗1+···+ake∗k .

Now we consider the Cox ring of TVC(σ̃): S = C[xξ | ξ ∈ σ̃(1)] with its Gσ̃-

grading. In the proof of Theorem 3.4(A) we had the following description of the

rays of σ̃.

• Rays passing through the vertices of Q0 − e1 − · · · − ek. We denote by

z0,1, . . . , z0,s0 the corresponding Cox coordinates.

• Rays passing through the vertices of Qi + ei, as i = 1, . . . , k. We denote by

yi,1, . . . , yi,si the corresponding Cox coordinates.

• Rays of σ that are not in the cone generated by the previous rays. We denote

by zσ,1, . . . , zσ,sσ the corresponding Cox coordinates.

Consider the following monomials in Cox coordinates:

yi =
∏

ξ∈σ̃(1) :
〈e∗i ,ξ〉>0

x
〈e∗i ,ξ〉
ξ = yi,1 · · · yi,si for each i ∈ {1, . . . , k},

z0 =
∏

ξ∈σ̃(1) :
〈e∗i ,ξ〉<0

x
−〈e∗i ,ξ〉
ξ = za0

0,1 · · · z
as0
0,s0

for any i ∈ {1, . . . , k},

zred
0 =

∏
ξ∈σ̃(1) :
〈e∗i ,ξ〉<0

xξ = z0,1 · · · z0,s0 for any i ∈ {1, . . . , k},
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zσ =
∏

ξ∈σ̃(1) :
〈e∗i ,ξ〉=0

xξ = zσ,1 · · · zσ,sσ for any i ∈ {1, . . . , k},

z =
∏

ξ∈σ̃(1) :
〈e∗i ,ξ〉≤0

xξ = zred
0 zσ for any i ∈ {1, . . . , k}.

Here we have used (iv’) to deduce that yi are reduced monomials. The exponents

a0, . . . , as0 are the minimal positive integers by which we have to multiply the vertices

of Q0 to get lattice points. We see that yi are exactly the ones used in the proof of

Lemma 3.8, whereas the monomials z1, . . . , zk there coincides with z0 in our case.

We see that yi − z0 is the binomial in (3.9) and z is the monomial in (3.10). Let

J ⊆ S be the ideal generated by y1 − z0, . . . , yk − z0 and let J = J + Sz. We

already know, from Lemma 3.8 or Theorem 3.4, that the Cox isomorphism between

C[σ̃∨ ∩M ] and S0 ⊆ S maps the ideal I onto the degree zero part of the ideal J ,

i.e. Cox(I) = J ∩ S0. We have to prove that

Cox(I) = J ∩ S0. (3.12)

This equality will imply that the scheme-theoretic intersection TVC(σ)∩D coincides

with ∂TVC(σ).

We now prove the containment ⊆ in (3.12). Since Cox(I) ⊆ J ⊆ J , it is enough

to show that Cox(χũ) = xũ ∈ J whenever ũ = u + a1e
∗
1 + · · · + ake

∗
k ∈ σ̃∨ ∩ M̃

is such that u ∈ int(σ∨). We have that zσ divides xũ because u is in the strict

interior of σ∨. Since ũ ∈ σ̃∨, ũ cannot take negative values on Q0 − e1 − · · · − ek,
Q1 + e1, . . . , Qk + ek. If ũ is strictly positive on Q0 − e1 − · · · − ek, then zred

0 divides

xũ, and hence z = zred
0 zσ divides xũ, which implies that xũ lies in J and we are done.

So we may assume that 0 = minQ0−e1−···−ek ũ = minQ0 u− a1 − · · · − ak. Therefore,

since u ∈ int(σ∨) and 0 /∈ Q, we have

0 < min
Q
u

= min
Q0

u+ min
Q1

u+ · · ·+ min
Qk

u

=
k∑
i=1

(
ai + min

Qi
u

)

=
k∑
i=1

min
Qi+ei

ũ.

So, there exists i ∈ {1, . . . , k} such that minQi+ei ũ > 0. This implies that yi divides
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xũ, i.e. there exists a monomial p such that xũ = pyi. Since zσ|xũ, we know that

zσ|p. By writing xũ = p(yi− z0) + pz0 and by noting that z divides pz0, we conclude

that xũ lies in J .

We now prove the containment ⊇ in (3.12). By using the same argument as in the

second part of the proof of Lemma 3.8, it is enough to show that if ũ = u+a1e
∗
1+· · ·+

ake
∗
k ∈ σ̃∨∩M̃ is such that xũ = pz for some monomial p ∈ S then u ∈ int(σ∨). Since

z divides xũ, we see that ũ is strictly positive on Q0−e1−· · ·−ek and on the rays of σ

that are not in the cone generated by Q0−e1−· · ·−ek, Q1 +e1, . . . , Qk+ek. Now we

want to prove that u is strictly positive on the non-zero elements of σ; if v ∈ σ we can

write v = λ(q0−e1−· · ·−ek)+λ(q1+e1)+· · ·+λ(qk+ek)+vσ = λ(q0+q1+· · ·+qk)+vσ,

for some λ ≥ 0, qi ∈ Qi, and vσ in the cone generated by the rays of σ that are not

in the cone generated by Q0 − e1 − · · · − ek, Q1 + e1, . . . , Qk + ek. We have

〈u, v〉 = λ [〈ũ, q0 − e1 − · · · − ek〉+ 〈ũ, q1 + e1〉+ · · ·+ 〈ũ, qk + ek〉] + 〈ũ, vσ〉.

Since v 6= 0, we that either λ > 0 or vσ 6= 0; this implies 〈u, v〉 > 0.

Now we prove that y1 − z0, . . . , yk − z0, z is a regular sequence. From Theo-

rem 3.4(A) we know that the first k elements form a regular sequence. In order

to show that all the k + 1 elements form a regular sequence we have to show the

equality (J : z) = J , where J is the ideal generated by y1 − z0, . . . , yk − z0.

It is clear that y1, . . . , yk, z
red
0 is a regular sequence in S. Therefore the ideal

(y1, . . . , yk, z
red
0 ) = (y1 − z0, . . . , yk − z0, z

red
0 ) has height k+ 1. Since the polynomial

ring S is Cohen–Macaulay we have that y1−z0, . . . , yk−z0, z
red
0 is a regular sequence.

In particular (J : zred
0 ) = J . From the fact that zσ does not involve any variable that

appears in the generators of J we have (J : zσ) = J . We conclude with the following

chain of equalities: (J : z) =
(
(J : zred

0 ) : zσ
)

= (J : zσ) = J .

This concludes the proof of part (A) of Theorem 3.10. For part (B) we may

adapt the same proof of Theorem 3.4.

3.4. Deformations of projective toric varieties

In this section we study deformations of polarised projective toric varieties. Our

strategy is to deform the corresponding affine cones thanks to Mavlyutov’s theorem

(Theorem 3.4) and then apply the Proj functor.

We begin with a well known characterisation of polarised projective toric vari-

eties.
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Lemma 3.11 (Polarised projective toric varieties). If N is a lattice of rank n, then

the following data are naturally equivalent:

1. a pair (X,D), where X is a projective normal toric variety over C with respect

to the torus TN = SpecC[M ] and D is an ample torus-invariant Q-Cartier Q-

divisor on X;

2. a pair (Σ, ϕ), where Σ is a complete fan in N and ϕ is a strictly convex

rational support function on Σ, i.e. ϕ : NR → R is a continuous function such

that

• for every σ ∈ Σ(n), there exists uσ ∈MQ such that ϕ(v) = 〈uσ, v〉 for all

v ∈ σ;

• for every σ ∈ Σ(n), ϕ(v) < 〈uσ, v〉 for all v ∈ NR r σ;

3. a rational polytope P ⊆MR of dimension n.

4. a strictly convex rational polyhedral cone τ in the lattice N0 = N ⊕ Ze0 such

that the dimension of τ is n+ 1 and e0 is in the interior of τ ;

In the setting above there are natural bijective correspondences if in addition we

require the following further conditions too:

1. D is a Cartier divisor on X;

2. ϕ is a strictly convex integral support function on Σ, i.e. we also require that

uσ ∈M for every σ ∈ Σ(n);

3. P is a lattice polytope;

4. every facet of τ is contained in a hyperplane of the form (u + e0)⊥ for some

u ∈M .

Sketch of proof of Lemma 3.11. The equivalence among (1), (2), and (3) is well

known (at least under the additional conditions) and associates the pair (Σ, ϕ) to

the pair (TVC(Σ), D), where D = −
∑

ρ∈Σ(1) ϕ(ρ)Dρ, and to the polytope

P =
⋂

ρ∈Σ(1)

{u ∈MR |〈u, ρ〉 ≥ ϕ(ρ)} .

Conversely, Σ is the normal fan of P and ϕ = minu∈P 〈u, ·〉. We refer the reader to

[CLS11, §6] for more details.

The equivalence with (4) is as follows: τ is the convex hull of the graph of the

function −ϕ, i.e. τ = {v + ke0 ∈ NR ⊕ Re0 | ϕ(v) + k ≥ 0}, or equivalently the
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cone with rays ρ− ϕ(ρ)e0 as ρ ∈ Σ(1). Conversely, the cones of Σ are precisely the

images of the faces of τ along the projection N⊕Ze0 � N and P = τ∨∩e−1
0 (1).

Theorem 3.12. Let N be a lattice of rank n and let τ be a (n + 1)-dimensional

strongly convex rational polyhedral cone in the lattice N0 = N ⊕ Ze0 such that

e0 ∈ int(τ). Let Q, Q0, Q1, . . . , Qk be non-empty rational polyhedra in (N0)R such

that:

(i) Q ⊆ τ ;

(ii) 0 /∈ Q;

(iii) Q = Q0 +Q1 + · · ·+Qk;

(iv) for every vertex v ∈ vert(Q), there exist vertices v0 ∈ vert(Q0), v1 ∈ vert(Q1),

. . . , vk ∈ vert(Qk) such that v = v0 + v1 + · · ·+ vk and

# {i ∈ {0, 1, . . . , k} | vi /∈ N} ≤ 1.

Consider the lattice Ñ0 = N ⊕ Ze0 ⊕ Ze1 ⊕ · · · ⊕ Zek and the cone

τ̃ = cone 〈τ,Q0 − e1 − · · · − ek, Q1 + e1, . . . , Qk + ek〉 ⊆ (Ñ0)R.

(A) Then τ̃ is a (n+ 1 + k)-dimensional strongly convex rational polyhedral cone

in Ñ0 such that e0 ∈ int(τ̃). If (X,D) and (X̃, D̃) are the pairs associated to τ

and τ̃ via Lemma 3.11, then the inclusion τ ↪→ τ̃ induces a toric closed embedding

ι : X ↪→ X̃ which identifies X with the closed subscheme of X̃ associated to the

homogeneous ideal generated by the following binomials in the Cox coordinates of

X̃: ∏
ρ∈Σ̃(1) :
〈e∗i ,ρ〉>0

x
〈e∗i ,ρ〉
ρ −

∏
ρ∈Σ̃(1) :
〈e∗i ,ρ〉<0

x
−〈e∗i ,ρ〉
ρ (3.13)

for i = 1, . . . , k, where Σ̃ is the fan in Ñ = N ⊕ Ze1 ⊕ · · · ⊕ Zek of X̃. Moreover,

these binomials form a regular sequence of length k.

(B) In addition, assume that w ∈ M is such that the following two conditions

hold:

(v) the minimum of w on Q exists and is not smaller than −1;

(vi) every vertex of the polyhedron τ ∩ {v + ke0 ∈ (N0)R|k ∈ R, 〈w, v〉 = −1} is

contained in R+ ·Q.
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Consider

w̃ = w −
k∑
i=1

⌊
min
Qi

w

⌋
e∗i ∈ M̃ ⊆ M̃0.

Let t1, . . . , tk be the standard coordinates on Ak
C. Consider the closed subscheme of

X̃ ×SpecC Ak
C = TVC[t1,...,tk](Σ̃) defined by the homogeneous ideal generated by the

following trinomials in Cox coordinates:∏
ρ∈Σ̃(1) :
〈e∗i ,ρ〉>0

x
〈e∗i ,ρ〉
ρ −

∏
ρ∈Σ̃(1) :
〈e∗i ,ρ〉<0

x
−〈e∗i ,ρ〉
ρ − ti

∏
ρ∈Σ̃(1)

x〈w̃,ρ〉ρ

∏
ρ∈Σ̃(1) :
〈e∗i ,ρ〉<0

x
−〈e∗i ,ρ〉
ρ (3.14)

for i = 1, . . . , k. This closed subscheme induces a deformation of X over C[[t1, . . . , tk]]

and over an open neighbourhood of the origin in Ak
C.

In the following remark we spell out a very simple situation where we may apply

Theorem 3.12. This will be useful in the case of mutations of Fano polytopes.

Remark 3.13 (The case of two Minkowski summands). Let N be a lattice of rank

n and let τ be a (n + 1)-dimensional strongly convex rational polyhedral cone in

the lattice N0 = N ⊕ Ze0 such that e0 ∈ int(τ). Let w ∈ M and let G and F be

non-empty rational polyhedra in (N0)R that satisfy the following conditions:

(i) G+ F ⊆ τ ;

(ii) G ⊆ {v + ke0 ∈ (N0)R | k ∈ R, 〈w, v〉 = −1};

(iii) F ⊆ w⊥;

(iv) F is a lattice polyhedron;

(v) every vertex of the polyhedron τ ∩ {v + ke0 ∈ (N0)R | k ∈ R, 〈w, v〉 = −1} is

contained in G+ F .

Consider the lattice Ñ0 = N⊕Ze0⊕Ze1 and the cone τ̃ = cone 〈τ,G− e1, F + e1〉 ⊆
(Ñ0)R.

Then τ̃ is a (n+ 2)-dimensional strongly convex rational polyhedral cone in Ñ0

such that e0 ∈ int(τ̃). If (X,D) and (X̃, D̃) are the pairs associated to τ and τ̃ via

Lemma 3.11, then the inclusion τ ↪→ τ̃ induces a toric closed embedding ι : X ↪→ X̃

which identifies X with the closed subscheme of X̃ associated to the homogeneous

ideal generated by the following binomial in the Cox coordinates of X̃:∏
ρ∈Σ̃(1) :
〈e∗1,ρ〉>0

x〈e
∗
1,ρ〉

ρ −
∏

ρ∈Σ̃(1) :
〈e∗1,ρ〉<0

x−〈e
∗
1,ρ〉

ρ ,
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where Σ̃ is the fan in Ñ = N ⊕ Ze1 of X̃.

Moreover, if we vary the coefficients of the trinomial∏
ρ∈Σ̃(1) :
〈e∗1,ρ〉>0

x〈e
∗
1,ρ〉

ρ +
∏

ρ∈Σ̃(1) :
〈e∗1,ρ〉<0

x−〈e
∗
1,ρ〉

ρ +
∏

ρ∈Σ̃(1)

x〈w,ρ〉ρ

∏
ρ∈Σ̃(1) :
〈e∗1,ρ〉<0

x−〈e
∗
1,ρ〉

ρ

we get a flat family of closed subschemes of X̃ over P2
C, thanks to Proposition 3.3,

such that the fibre over [1 : −1 : 0] is X.

The rest of this section is devoted to the proof of Theorem 3.12. We begin with

a description of a polarised toric variety as the Proj of an N-graded ring constructed

from the cone τ as in Lemma 3.11.

Remark 3.14. Let N be a lattice of rank n, let τ be a (n+ 1)-dimensional strongly

convex rational polyhedral cone in the lattice N0 = N ⊕ Ze0 such that e0 ∈ int(τ),

and let (X,D) and (Σ, ϕ) be the pairs associated to τ via Lemma 3.11. Then

X = ProjC[τ∨ ∩M0] where the ring C[τ∨ ∩M0] has the N-grading given by e0, i.e.

the degree of χu+he∗0 is h for every u ∈M such that u+ he∗0 ∈ τ∨ ∩M0.

This can be proved similarly to [CLS11, Theorem 7.1.13]. Every n-dimensional

cone σ ∈ Σ(n) corresponds to an n-dimensional face Fσ of τ , which is contained in a

hyperplane (uσ +hσe
∗
0)⊥ for some uσ ∈M and hσ ∈ N+. The affine open subscheme

TVC(σ) of the toric variety X = TVC(Σ) is isomorphic to the affine open subscheme

of ProjC[τ∨ ∩M0] defined by the homogeneous element χuσ+hσe∗0 because there is a

ring isomorphism

C[τ∨ ∩M0]
(χuσ+hσe

∗
0 )

∼−→ C[σ∨ ∩M ] (3.15)

which is defined by
χu+hσke∗0

(χuσ+hσe∗0)k
7→ χu−kuσ

for u ∈M , k ∈ N such that u+ hσke
∗
0 ∈ τ∨ ∩M0.

In the following lemma we compare the homogeneous coordinate rings of a po-

larised toric variety and of its affine cone. We deduce an alternate description of

closed subschemes of a polarised toric variety.

Lemma 3.15. Let N be a lattice of rank n, let τ be a (n+ 1)-dimensional strongly

convex rational polyhedral cone in the lattice N0 = N ⊕ Ze0 such that e0 ∈ int(τ),

and let (X,D) and (Σ, ϕ) be the pairs associated to τ via Lemma 3.11. Consider the

the affine toric variety C = SpecC[τ∨ ∩M0]. Let SX and SC be the homogeneous

coordinate rings of X and C, respectively.



3.4. Deformations of projective toric varieties 91

For every ray ρ ∈ Σ(1), let ξρ = bρρ− aρe0 ∈ τ(1) be the corresponding ray of τ ,

where ϕ(ρ) = aρ/bρ for aρ ∈ Z and bρ ∈ N+ such that gcd(aρ, bρ) = 1. Consider the

ring homomorphism SX → SC given by xρ 7→ (xξρ)
bρ.

Let JX be a GΣ-homogeneous ideal in SX and let H ⊆ C[τ∨ ∩M0] ' (SC)0 be

the degree zero part of the ideal JXSC ⊆ SC. If H is homogeneous with respect to

the N-grading of C[τ∨∩M0], then the closed subscheme of X defined by the ideal JX

coincides with ProjC[τ∨ ∩M0]/H.

Proof. Fix a full dimensional cone σ ∈ Σ(n) and let uσ ∈ M and hσ ∈ N+ be such

that the hyperplane (uσ + hσe
∗
0)⊥ contains the corresponding face Fσ of τ , as in

Remark 3.14. We set ūσ = uσ + hσe
∗
0 ∈ M0 for brevity. We have to show that the

ideal (JX)(xσ̂) ⊆ (SX)(xσ̂) ' C[σ∨ ∩M ] is mapped to H(χūσ ) via the isomorphism

(3.15).

Since ūσ is zero on the face Fσ and strictly positive on τ rFσ, a Cox coordinate

xξ of C appear in the monomial xūσ ∈ SC if and only if ξ /∈ Fσ. This implies that

there is a ring homomorphism

(SX)xσ̂ −→ (SC)xūσ (3.16)

that is the localisation of SX → SC defined above. At this point it is not difficult

to show that there is a commutative diagram of rings

C[τ∨ ∩M0]
Coxτ

��

(SC)0

��

� � // SC

��
C[τ∨ ∩M0](χūσ )

(3.15)

� � // C[τ∨ ∩M0]χūσ (SC)(xūσ )
� � // (SC)xūσ

C[σ∨ ∩M ]
Coxσ (SX)(xσ̂)

� � // (SX)xσ̂

(3.16)

OO

SXoo

^^

where the equality symbols stand for isomorphisms. Now consider the ideal K =

JX(SC)xūσ ⊆ (SC)xūσ .

Since SC is a finite free SX-module, SC is faithfully flat over SX . Therefore, also

the localised homomorphism (3.16) is faithfully flat. By [Mat89, Theorem 7.5(ii)]

the contraction of K to (SX)xσ̂ is the extension of JX . This implies that (JX)(xσ̂) is

the contraction of K to (SX)(xσ̂) along the homomorphisms in the diagram above.

On the other hand, it is clear that K is the extension of JXSC to (SC)xūσ .

Since xūσ has degree zero with respect to the Gτ -grading of SC , it is not difficult

to check that the extension of H = (JXSC) ∩ (SC)0 to (SC)(xūσ ) ' C[τ∨ ∩M0]χūσ

is the contraction of K. It follows that the ideal H(χūσ ) is the contraction of K to
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C[τ∨ ∩M0](χūσ ).

Since the two ideals that must be checked to coincide are both contractions of

the same ideal K, we are done.

Proof of Theorem 3.12(A). By Theorem 3.4 τ̃ is a (n+ 1 + k)-dimensional strongly

convex rational polyhedral cone in Ñ0. It is clear that e0 ∈ τ̃ . Now we show that

e0 is in the interior of τ̃ : it is enough to show that, if ũ = u+
∑k

i=0 hie
∗
i ∈ τ̃∨ ∩ M̃0

and h0 = 0, then ũ = 0. Since τ ⊆ τ̃ , we have that u is non-negative on τ ; but e0 is

in the interior of τ , so u = 0. By evaluating ũ =
∑k

i=1 hie
∗
i on Q0 − e1 − · · · − ek,

Q1 + e1, . . . , Qk + ek, we see h1 = · · · = hk = 0. This proves that e0 lies in the

interior of τ̃ .

Thanks to Remark 3.14 X = ProjC[τ∨ ∩M0] and X̃ = ProjC[τ̃∨ ∩ M̃0], where

C[τ∨ ∩M0] and C[τ̃∨ ∩ M̃0] are N-graded via e0. The ring homomorphism

C[τ̃∨ ∩ M̃0] −→ C[τ∨ ∩M0], (3.17)

which is induced by the inclusion τ ↪→ τ̃ and is surjective by the proof of Theo-

rem 3.4, is clearly graded and induces a closed embedding ι : X ↪→ X̃. Using the

isomorphism (3.15) it is not difficult to write down the formulae for the actions

of the tori TN and TÑ on the affine charts of X and X̃, respectively. From these

formulae it is possible to see that ι is a toric morphism.

We have to prove that X coincides with the closed subscheme of X̃ defined by the

binomials (3.13). Let JX̃ be the GΣ̃-homogeneous ideal generated by these binomials

in the homogeneous coordinate ring SX̃ of X̃. Let JC̃ = JX̃SC̃ be the extension of

JX̃ to the total coordinate ring SC̃ of the affine cone C̃ = SpecC[τ∨ ∩ M̃0] via the

ring homomorphism SX̃ → SC̃ defined in Lemma 3.15. The ideal JC̃ is generated

generated by the binomials∏
ξ∈τ̃(1) :
〈e∗i ,ξ〉>0

x
〈e∗i ,ξ〉
ξ −

∏
ξ∈τ̃(1) :
〈e∗i ,ξ〉<0

x
−〈e∗i ,ξ〉
ξ for i = 1, . . . , k

in the Cox coordinates of C̃. By Theorem 3.4 the part of degree zero of JC̃ in the

ring (SC̃)0 ' C[τ̃∨ ∩ M̃0] coincides with the kernel H of the ring surjection (3.17).

By Lemma 3.15 X = ProjC[τ̃∨ ∩ M̃0]/H coincides with the closed subscheme of X̃

defined by the ideal JX̃ .

The matricesMΣ̃ = (〈e∗i , ρ〉)1≤i≤k,ρ∈Σ̃(1) andMτ̃ = (〈e∗i , ξ〉)1≤i≤k,ξ∈τ̃(1) differ just

by multiplication by a positive integer on each column, namely the numbers bρ

defined in Lemma 3.15. From the proof of Lemma 3.8 we see that Mτ̃ has rank k
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and each of its columns has at most one positive entry. Therefore also the matrix

MΣ̃ has these two properties. By Lemma 3.7 the binomials (3.13) form a regular

sequence.

The following two lemmata should be well known, but we have not been able to

find an adequate reference for them.

Lemma 3.16. Let (A,m) be a noetherian local ring and let Y → SpecA be a proper

morphism of schemes such that Y ×SpecA SpecA/mn → SpecA/mn is flat for every

n ∈ N. Then Y → SpecA is flat.

Proof. This proof relies on an argument that appears in [TV13, Proof of Proposition

6.51]. Let π denote the morphism Y → SpecA. We want to show that the set

Z = {y ∈ Y | OY,y is not flat over A} is empty. By covering Y with open affine

subschemes and by using [Mat89, Theorem 24.3], one can see that Z is closed in Y .

Assume by contradiction that Z is non-empty. Since π is closed, the set π(Z) is a

closed non-empty subset of SpecA. Therefore m ∈ π(Z). Hence there exists y0 ∈ Z
such that π(y0) = m. Let SpecR be an affine open neighbourhood of y0 in Y and

let B = OY,y0 be the local ring of Y at y0. We know that A/mn → R/mnR is flat

for every n ∈ N. Therefore the local homomorphism A → B is such that A/mn →
B/mnB is flat for every n ∈ N. By the local flatness criterion ([Mat89, Theorem

22.3]) A→ B is flat. But this is absurd because y0 ∈ Z.

Lemma 3.17. Let S be a noetherian scheme and let Y → S be a scheme morphism

of finite type such that Y ×S SpecOS,s → SpecOS,s is flat for some point s ∈ S.

Then there exists an open neighbourhood U of s in S such that Y ×S U → U is flat.

Proof. Since the problem is local and Y → S is quasi-compact, we may assume

S = SpecA, Y = SpecB and s = m for some noetherian ring A, some finitely

generated A-algebra B and some prime ideal m of A. We know that B⊗AAm is flat

over Am. Let us consider the set

V = {P ∈ SpecB | BP is flat over AP∩A} = {P ∈ SpecB | BP is flat over A},

which is open in SpecB by [Mat89, Theorem 24.3]. The equality above holds by

transitivity of flatness and [Mat89, Theorem 7.1].

We identify Spec(B⊗AAm) with the set of primes P ∈ SpecB such that P ∩A ⊆
m. If P ∈ SpecB is such that P ∩ A ⊆ m, then by [Mat89, Theorem 7.1] from the

flatness of B ⊗A Am over Am we deduce that BP is flat over (Am)(P∩A)Am = AP∩A.

This shows that Spec(B ⊗A Am) is contained in V .
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Consider the set A r m endowed with the order relation ≤ such that f ≤ g if

and only if g ∈
√
Af . If f ≤ g, there is the localisation map Af → Ag, given by the

restriction of the structure sheaf of SpecA from the principal open subset defined

by f to the principal open subset defined by g. The rings Af as f runs in A r m

form a direct system and the local ring Am is the direct limit of this system. Since

tensor products and direct limits commute, B⊗AAm is the limit of Bf as f ∈ Arm.

We are in the situation of inverse limits of affine schemes studied in [Gro66, §8], i.e.

Spec(B ⊗A Am) is the projective limit of the affine schemes SpecBf as f runs in

Arm.

For every f ∈ A r m, consider the set Ef = V ∩ SpecBf , which is open in

SpecBf because V is open in SpecB. Since Spec(B ⊗A Am) is contained in V , the

set E = V ∩ Spec(B ⊗A Am) coincides with Spec(B ⊗A Am). Since E is the limit

of the Ef ’s, by [Gro66, Corollaire 8.3.5] we have that there exists f0 ∈ Ar m such

that Ef0 = SpecBf0 . This implies that Bf0 is flat over Af0 . Therefore we may take

U = SpecAf0 .

Proof of Theorem 3.12(B). The proof of the fact that the trinomials (3.14) are ele-

ments of C[t1, . . . , tk][xρ | ρ ∈ Σ̃(1)] is completely analogous to what is done in the

proof of Theorem 3.4(B) and will be omitted.

Let X be the closed subscheme of X̃×SpecCAk
C defined by the homogeneous ideal

generated by the trinomials (3.14). The composition X ↪→ X̃ ×SpecC Ak
C → Ak

C is

a scheme morphism such that its fibre over O ∈ Ak
C is X and the fibred product

X ×AkC
SpecC[t1, . . . , tk]/q is flat over C[t1, . . . , tk]/q for every (t1, . . . , tk)-primary

ideal q of C[t1, . . . , tk]. If A = C[t1, . . . , tk](t1,...,tk) is the local ring of Ak
C at the origin

O, by Lemma 3.16 the morphism X ×AkC
SpecA→ SpecA is flat, and consequently

it induces a deformation of X over Â = C[[t1, . . . , tk]]. By Lemma 3.17 we may find

an open neighbourhood U ⊆ Ak
C of O such that X ×AkC

U is flat over U .

3.5. Mutations induce deformations

It was observed by Ilten [Ilt12] that if two Fano polytopes P and P ′ in NR are

related by a combinatorial mutation (see Definition 1.15) then the corresponding

toric Fano varieties XP and XP ′ are two closed fibres of a flat family over P1. Ilten’s

construction relies on the deformations of T-varieties, which are a generalised notion

of toric varieties (see [AH06,AHS08,AIP+12, IV12]).

In what follows we will be more explicit than Ilten, by using Cox coordinates

and giving explicit equations. In the following theorem we will show that XP and

XP ′ are two fibres of the flat family of divisors defined by a trinomial in the Cox
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coordinates of a projective toric variety of dimension dimXP + 1. When XP is a

toric del Pezzo surface, a slight variation of this construction was pursued by Corti

in [ACC+16, Lemma 7]. The rays of the fan of X̃ have been suggested to us by

Thomas Prince. Our proof relies on Theorem 3.12 and Remark 3.13.

Theorem 3.18. Let P ⊆ NR be a Fano polytope and w ∈ M be a primitive vec-

tor. Let F be a factor for P with respect to w and let P ′ = mutw(P, F ) be the

mutated polytope. Let XP and XP ′ be the toric Fano varieties associated to P and

P ′ respectively. Set

vert(P )≥0 = vert(P ) ∩ {v ∈ N | 〈w, v〉 ≥ 0},

vert(P ′)<0 = vert(P ′) ∩ {v ∈ N | 〈w, v〉 < 0}.

Consider the lattice Ñ = N ⊕ Ze1 and the polyhedron Q̃ ⊆ M̃R defined by

Q̃ =

u+ ke∗1 ∈ M̃R

∣∣∣∣∣∣∣
∀p ∈ vert(P )≥0, 〈u, p〉+ 1 ≥ 0

∀p′ ∈ vert(P ′)<0, 〈u, p′〉+ 1 + k〈w, p′〉 ≥ 0

∀f ∈ vert(F ), 〈u, f〉+ k ≥ 0

 .

Then Q̃ is a full dimensional rational polytope and the rays of the normal fan Σ̃ of

Q̃ are

• p for p ∈ vert(P )≥0,

• p′ + 〈w, p′〉e1 for p′ ∈ vert(P )<0,

• f + e1 for f ∈ vert(F ).

Moreover, if X̃ = TVC(Σ̃) is the toric variety associated to Σ̃, then by varying the

coefficients of the trinomial∏
p∈vert(P )≥0

x〈w,p〉p +
∏

p′∈vert(P ′)<0

x
−〈w,p′〉
p′ +

∏
f∈vert(F )

xf

we get a family of closed subschemes of X̃ over P2
C such that the fibre over [0 : 1 : −1]

is XP and the fibre over [1 : 0 : −1] is XP ′.

Proof. Consider the cone τ = cone 〈P + e0〉 ⊆ (N0)R and the polytope

G = conv

〈 ⋃
hmin≤h<0

Gh + e0

−h

〉
.
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It is obvious to see that the conditions (i)-(iv) in Remark 3.13 are satisfied. Let us

prove (v). Each vertex of the polyhedron τ ∩ {v + ke0 ∈ (N0)R | 〈w, v〉 = −1} is of

the form −〈w, p〉−1(p + e0) for some p ∈ vert(P )<0. By (1.2) there exist g ∈ G〈w,p〉
and f ∈ F such that p = g − 〈w, p〉f . This implies that

−p+ e0

〈w, p〉
=

g + e0

−〈w, p〉
+ f ∈ G+ F.

Now we can follow the procedure of Remark 3.13. We consider the cone τ̃ =

cone 〈τ,G− e1, F + e1〉 in the lattice Ñ0 = N ⊕ Ze0 ⊕ Ze1. By using (1.2) it is not

difficult to show that τ̃ is generated by p + e0 for p ∈ vert(P )≥0, p′ + e0 + 〈w, p′〉e1

for p′ ∈ vert(P )<0, and f + e1 for f ∈ vert(F ). It is tedious but not difficult to show

that these are the rays of τ̃ . This implies that Q̃ = τ̃∨ ∩ e−1
0 (1) and that the rays of

Σ̃ are the ones written down in the statement of the theorem.

The trinomial above is exactly the trinomial in Remark 3.13. Therefore we know

that the fibre over [0 : 1 : −1] is XP .

It remains to show that XP ′ is the fibre over [1 : 0 : −1]. But this can be seen

by using the inverse mutation from P ′ to P and by applying the automorphism of

N ⊕ Ze1 given by v + ke1 7→ v + (k + 〈w, v〉)e1.



4
Non-smoothability

for some toric threefolds

In this chapter we define An-bundles (Definition 4.1) and we give a cohomological ob-

struction for their smoothability (Corollary 4.6). We apply this criterion to a certain

class of Gorenstein toric threefolds and we give an equivalent geometric condition

on the fan (Proposition 4.9). Finally we show two Gorenstein toric Fano threefolds

that are locally isomorphic, but one is smoothable and one is not (Examples 4.13

and 4.12).

4.1. Deformations of An-bundles

We work over C, but everything will hold over a field of characteristic zero or over

a perfect field of large characteristic.

For any n ∈ N+, let An denote the toric surface singularity associated to the

cone cone 〈(0, 1), (n+ 1, 1)〉 inside the lattice Z2, i.e. the affine hypersurface

An = SpecC[x, y, z]/(xy − zn+1).

There is an obvious embedding An ↪→ A3, whose associated conormal sequence

97
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produces a free resolution of Ω1
An

:

0 −→ IAn/A3/I2
An/A3 = OAn


y

x

−(n+ 1)zn


−−−−−−−−−−→ Ω1

A3

∣∣
An

= O⊕3
An
−→ Ω1

An −→ 0 (4.1)

where IAn/A3 is the ideal of An in A3. This allows us to compute

Ext1
OAn (Ω1

An ,OAn) = coker

(
O⊕3
An

(y,x,−(n+1)zn)

−−−−−−−−−−→ OAn
)

= OAn/(y, x, zn)

= ODn

where Dn ' SpecC[z]/(zn) is the closed subscheme of An defined by the ideal

generated by y, x and zn. Notice that Dn is the singular locus of An equipped with

the schematic structure given by the second Fitting ideal of Ω1
An

.

We want to define the notion of an An-bundle and globalise this computation

of the Ext group. Informally, an An-bundle is a morphism Y → S which, Zariski-

locally, is the projection An × S → S. More precisely we have to insist that an

An-bundle is a closed subscheme in a split vector bundle over S of rank 3.

Definition 4.1. AnAn-bundle over a C-scheme S is a morphism of schemes πY : Y →
S such that there exist three line bundles Lx,Ly,Lz ∈ Pic(S), a closed embedding

of S-schemes

ι : Y ↪→ E = SpecS Sym•OS(Lx ⊕ Ly ⊕ Lz)∨

of Y into the total space of Lx ⊕ Ly ⊕ Lz, and an affine open cover {Si}i of S

satisfying the following condition: for each i, there are trivializations Lx|Si ' OSi ,
Ly|Si ' OSi , Lz|Si ' OSi and a commutative diagram of Si-schemes

π−1
Y (Si) SpecOSi(Si)[xi, yi, zi]/(xiyi − zn+1

i )

π−1
E (Si) SpecOSi(Si)[xi, yi, zi] = A3

Si

'

ιSi

'

where πE denotes the projection E → S, the coordinates xi ∈ Γ(Si,L∨x ), yi ∈
Γ(Si,L∨y ) and zi ∈ Γ(Si,L∨z ) are the local sections corresponding to the trivializa-

tions above, the horizontal arrows are isomorphisms, the left vertical arrow is the

restriction of the closed embedding ι : Y ↪→ E, and the right vertical arrow is the
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base change of the standard embedding An ↪→ A3 to Si.

Remark 4.2. A posteriori one can see that Lx ⊗ Ly ' L⊗(n+1)
z . This follows from

the following easy fact in commutative algebra: let A be a ring and f ∈ A be an

invertible element; if the ideal of A[x, y, z] generated by xy − zn+1 coincides with

the ideal generated by xy − fzn+1, then f = 1.

Lemma 4.3. Let S be a scheme with a line bundle L ∈ Pic(S). Let D be the kth

order thickening of the zero section of the total space of L, i.e. the closed subscheme

of SpecS Sym•OSL
∨ locally defined by the equation xk+1 = 0 where x is a nowhere

vanishing local section of L∨. Let π : D → S be the projection. Then

π∗OD =
k⊕
i=0

(L∨)⊗i.

Proof. Let {Si}i be an affine open cover of S which trivializes L. Let xi ∈ Γ(Si,L∨)
be a local coordinate. Then we have the isomorphism of Si-schemes

π−1(Si) ' SpecOS(Si)[xi]/(x
k+1
i ).

Therefore π∗OD|Si is the free OSi-module with basis {1, xi, . . . , xki }, which is a local

frame of OS ⊕ L∨ ⊕ · · · ⊕ (L∨)⊗k.
Another way to see this is to notice that D = SpecS(Sym•OSL

∨)/I, and con-

sequently π∗OD = (Sym•OSL
∨)/I, where I ⊆ Sym•OSL

∨ is the ideal made up of

elements of degree greater than k.

Proposition 4.4. Let S be a C-scheme and πY : Y → S be an An-bundle, with

Lx,Ly,Lz ∈ Pic(S) as in Definition 4.1. Then there is an isomorphism of OS-

modules

(πY )∗
(
Ext1OY (Ω1

Y/S,OY )
)
'

⊕
2≤j≤n+1

L⊗jz .

Proof. Assume we are in the setting of Definition 4.1, with projections πY : Y → S

and πE : E → S, closed embedding ι : Y ↪→ E, and a trivialising affine open cover

{Si}i of S with local sections xi, yi, zi.

We consider the conormal sequence of Y
ι
↪→ E

πE→ S:

IY/E/I2
Y/E −→ Ω1

E/S|Y −→ Ω1
Y/S −→ 0, (4.2)

where IY/E is the ideal sheaf of the closed embedding ι : Y ↪→ E. We restrict this

sequence to Si and we get the conormal sequence of Yi = π−1
Y (Si)

ιSi
↪→ Ei = π−1

E (Si)→
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Si:

IYi/Ei/I2
Yi/Ei

−→ Ω1
Ei/Si
|Yi −→ Ω1

Yi/Si
−→ 0; (4.3)

this is the base change to Si of (4.1), the conormal sequence of An ↪→ A3 → SpecC.

As Si → SpecC is flat, we have that (4.3) is left exact for all i. As {Si}i is an open

cover of S, we have that also (4.2) is left exact.

Since πE : E → S is the vector bundle whose sheaf of sections is Lx ⊕ Ly ⊕ Lz,
we have that Ω1

E/S = π∗E(Lx ⊕ Ly ⊕ Lz)∨. Therefore Ω1
E/S|Y = π∗Y (Lx ⊕ Ly ⊕ Lz)∨.

One can check that IY/E/I2
Y/E ' π∗Y (Lx⊗Ly)∨. On the intersection Sij = Si∩Sj

we have the equalities xi = gxijxj, yi = gyijyj, and zi = gzijzj, where gxij, g
y
ij, g

z
ij ∈

Γ(Sij,O∗S) are invertible functions such that gxijg
y
ij = (gzij)

n+1 (by Remark 4.2). Then

the restriction of the map

π∗Y (Lx ⊗ Ly)∨ = IY/E/I2
Y/E −→ Ω1

E/S|Y = π∗Y (Lx ⊕ Ly ⊕ Lz)∨

in (4.2) to Yij = π−1
Y (Sij) produces the following commutative diagram.

OYij O⊕3
Yij

OYij O⊕3
Yij

gxijg
y
ij


yi

xi

−(n+1)zni



diag(gxij ,g
y
ij ,g

z
ij)


yj

xj

−(n+1)znj



Therefore the sequence (4.2) becomes

0 −→ π∗Y (Lx ⊗ Ly)∨ −→ π∗Y (Lx ⊕ Ly ⊕ Lz)∨ −→ Ω1
Y/S −→ 0,

which gives a locally free resolution of Ω1
Y/S. Hence

Ext1OY (Ω1
Y/S,OY ) = coker (π∗Y (Lx ⊕ Ly ⊕ Lz) −→ π∗Y (Lx ⊗ Ly))

= π∗Y (Lx ⊗ Ly)⊗OY OD
= π∗Y (Lz)⊗(n+1) ⊗OY OD

where D ↪→ Y is the closed subscheme locally defined by xi = yi = zni = 0. Denote

with πD : D → S the projection. It is clear that D is the (n− 1)th order thickening
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of the zero section in the total space Lz over S. By Lemma 4.3 we have

(πD)∗OD =
n−1⊕
i=0

(L∨z )⊗i.

Thus

(πY )∗Ext1OY (Ω1
Y/S,OY ) = (πY )∗(π

∗
YL⊗(n+1)

z ⊗OY OD)

= (πD)∗(π
∗
DL⊗(n+1)

z )

= (πD)∗OD ⊗OS L⊗(n+1)
z

=
n−1⊕
i=0

(L∨z )⊗i ⊗OS L⊗(n+1)
z

=
⊕

2≤j≤n+1

L⊗jz .

This concludes the proof of Proposition 4.4.

The following lemma should be well known in deformation theory.

Lemma 4.5. Let Y be a reduced C-scheme. Assume that Y → SpecC is a local

complete intersection morphism and that H0(Y, Ext1OY (Ω1
Y ,OY )) = 0.

Then all infinitesimal deformations of Y are locally trivial. In particular, if Y

is not smooth, then Y is not smoothable1.

Proof. Let DefY be the functor of infinitesimal deformations of Y , i.e. the covariant

functor from the category of local finite C-algebras to the category of sets which maps

A to the set of isomorphism classes of deformations of Y over SpecA and acts on

arrows by base change. Consider the subfunctor Def ′Y ↪→ DefY given by the locally

trivial deformations. We refer the reader to [Ser06, §2.4] for details. We want to

show that Def ′Y ↪→ DefY is surjective; it is enough to show that it is smooth; hence

it suffices to prove that it induces a surjection on tangent spaces and an injection on

obstruction spaces (for example see [FM98, Lemma 6.1] or [Man09, Theorem 4.11]).

By [Ser06, Theorem 2.4.1(ii)] the tangent space of Def ′Y is H1(Y, TY ), where

TY = HomOY (Ω1
Y ,OY ) is the sheaf of derivations on Y . Since Y is reduced and

generically smooth over C, by [TV13, Theorem 3.2.3] the tangent space of DefY
is Ext1

OY (Ω1
Y ,OY ). By [Ser06, Proposition 2.4.6] an obstruction space for Def ′Y is

H2(Y, TY ). By [Ill71, Chapitre III, Théorème 2.1.7] an obstruction space for DefY
1A scheme X of finite type over C is called smoothable if there exists a scheme S of finite type

over C with a closed point 0 ∈ S and a flat morphism X → S of finite type such that the fibre
over 0 is isomorphic to X and every other fibre is smooth. The scheme S can be required to be a
smooth affine curve over C. See [Har10, §29] for details.
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is Ext2
OY (LY ,OY ), where LY is the cotangent complex of Y → SpecC; since Y is a

local complete intersection, by [Ill71, Chapitre III, §3.2], this last Ext group is the

same as Ext2
OY (Ω1

Y ,OY ). Independently one can deduce this result without using

the cotangent complex thanks to [Vis, Theorem 4.4].

The local-to-global spectral sequence for Ext gives the following five term exact

sequence

0→ H1(TY )→ Ext1(ΩY ,OY )→ H0(Ext1(ΩY ,OY ))→ H2(TY )→ Ext2(ΩY ,OY ).

(See also [Har10, Exercise 5.7].) With the identifications above, the vanishing of

H0(Ext1(ΩY ,OY )) implies that Def ′Y → DefY induces an isomorphism on tangent

spaces and an injection on obstruction spaces.

Corollary 4.6. Let S be a smooth C-scheme and πY : Y → S be an An-bundle, with

Lx,Ly,Lz ∈ Pic(S) as in Definition 4.1. Assume H0(S,L⊗jz ) = 0 for all 2 ≤ j ≤
n+ 1.

Then all infinitesimal deformations of Y are locally trivial. In particular, Y is

not smoothable.

Proof. As Y → S is a Zariski-locally trivial fibration, the sequence of Kähler differ-

entials of Y → S → SpecC is left exact and locally split:

0 −→ π∗Y Ω1
S −→ Ω1

Y −→ Ω1
Y/S −→ 0.

This implies that the dual sequence, i.e. the one obtained by applyingHomOY (·,OY ),

is exact. Therefore we have an exact sequence of OY -modules

0 −→ Ext1OY (Ω1
Y/S,OY ) −→ Ext1OY (Ω1

Y ,OY ) −→ Ext1OY (π∗Y Ω1
S,OY ).

But the last sheaf is zero because S is smooth over C. Therefore we have an isomor-

phism of OY -modules between Ext1OY (Ω1
Y/S,OY ) and Ext1OY (Ω1

Y ,OY ). By Proposi-

tion 4.4 we deduce that

H0(Y, Ext1OY (Ω1
Y ,OY )) =

⊕
2≤j≤n+1

H0(S,L⊗jz ) = 0.

Conclude with Lemma 4.5.
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4.2. Toric An-bundles over P1

In this section we consider toric An-bundles over P1. They are normal Gorenstein

toric threefolds whose associated fan Σ in the lattice N = Z3 can be described as

follows.

Setup 4.7. Fix n ∈ N+. Let ρx0 , ρx1 , ρu and ρv be primitive vectors in a rank 3

lattice N such that:

1. the segment conv 〈ρu, ρv〉 contains precisely n+ 2 lattice points,

2. the triangle conv 〈ρx0 , ρu, ρv〉 is an An-triangle at height 1,2

3. the triangle conv 〈ρx1 , ρu, ρv〉 is an An-triangle at height 1,

4. the vectors ρx0 and ρx1 are in the two different half-spaces defined by the

hyperplane span 〈ρu, ρv〉.3

Let Σ be the fan in N = Z3 given by the faces of the two 3-dimensional cones

cone 〈ρx0 , ρu, ρv〉, cone 〈ρx1 , ρu, ρv〉. Let Y be the toric threefold associated to the

fan Σ.

Lemma 4.8. After a GL3(Z)-transformation, we may assume that

ρx0 = (a, b,−1)

ρx1 = (0, 0, 1)

ρu = (1, 0, 0)

ρv = (−n, n+ 1, 0)

for some a, b ∈ Z.

Proof. Let ρ̂ ∈ N be the lattice point on the segment between ρu and ρv which is

the closest one to ρu. The triangle with vertices ρu, ρx1 , ρ̂ is an empty triangle at

height 1, so {ρu, ρx1 , ρ̂} is a basis of N . Without loss of generality we may assume

that ρu = (1, 0, 0), ρ̂ = (0, 1, 0) and ρx1 = (0, 0, 1). Since on the edge between ρu and

ρv there are n+ 2 lattice points, we have ρv = ρu + (n+ 1)(ρ̂− ρu) = (−n, n+ 1, 0).

2Here we mean that there exists an element w ∈M = HomZ(N,Z) such that conv 〈ρx0
, ρu, ρv〉 is

contained in the hyperplane Hw,1 = {n ∈ NR | 〈w, n〉 = 1} and in the affine lattice Hw,1 ∩N ' Z2

is an An-triangle, i.e. Aff(Z2)-equivalent to conv 〈(0, 0), (0, 1), (n+ 1, 1)〉. See also Definition 5.4.
3Here we mean that there exists w ∈ M = HomZ(N,Z) such that 〈w, ρu〉 = 〈w, ρv〉 = 0 and

〈w, ρx0〉 · 〈w, ρx1〉 < 0.
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Assume ρx0 = (a, b, c) for some a, b, c ∈ Z. Since ρu, ρ̂, ρx0 are the vertices

of an empty triangle at height 1, they constitute a basis of N . Therefore c =

det(ρu|ρ̂|ρx0) = ±1.

Since ρx0 and ρx1 have to be in the two different half-spaces in which the hyper-

plane span 〈ρu, ρv〉 = (0, 0, 1)⊥ divides NR, we have c < 0, so c = −1.

Thanks to the lemma above, the ray map Z4 → N = Z3 of Y is given by the

matrix  a 0 1 −n
b 0 0 n+ 1

−1 1 0 0

 .

One can see that the ideal of Z generated by the 2 × 2 minors is Z itself and the

ideal generated by the 3× 3 minors is rZ, where r = gcd(n+ 1, b) > 0. Let p, q ∈ Z
be such that b = rp and n+ 1 = rq. The kernel of the ray map is generated by the

primitive vector (q, q,−np−aq,−p). By Bézout let s, t ∈ Z be such that sp+tq = 1.

The cokernel of the transpose of the ray map is the homomorphism Z4 � Z⊕Z/rZ
given by the matrix (

q q −qa− pn −p
s̄ s̄ −s̄ā+ t̄n̄ t̄

)
,

where ·̄ denotes the reduction modulo r.

Via the divisor sequence (see (2.6)) one can see that the divisor class group of

Y is isomorphic to Z⊕ Z/rZ. Let the group

G =
{(
λqεs, λqεs, λ−qa−pnε−sa+tn, λ−pεt

)
∈ G4

m

∣∣λ ∈ Gm, ε ∈ µr

}
act linearly on A4; then Y is the quotient of A4rV(x0, x1) with respect to this action.

Let x0, x1, u, v be the Cox coordinates of Y associated to the rays ρx0 , ρx1 , ρu, ρv,

respectively. Consider the morphism πY : Y → P1 defined by [x0 : x1 : u : v] 7→ [x0 :

x1].

We consider the following integers

dx = b− (n+ 1)(a+ b)

dy = −b

dz = −a− b

and we consider the line bundles Lx = OP1(dx), Ly = OP1(dy), Lz = OP1(dz) and

the sheaf E = OP1(dy) ⊕ OP1(dz) ⊕ OP1(dt) on P1. Let πE : E → P1 be the total

space of E over P1. E is the quotient A5rV(x0, x1) with respect to the action of Gm
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with weights (1, 1, dy, dz, dt). It is easy to check that the map ι : Y → E given by

[x0 : x1 : u : v] 7→ [x0 : x1 : un+1 : vn+1 : uv] is a closed embedding, locally defined

by xy − zn+1 = 0. So πY : Y → P1 is an An-bundle and we are in the situation of

Definition 4.1.

If dz < 0 then Lz is a negative line bundle over P1 and consequently, by Corol-

lary 4.6, every infinitesimal deformation of Y is locally trivial and Y is not smooth-

able. The condition −(a + b) = dz < 0 is a geometric condition on the vectors ρx0 ,

ρx1 , ρu, ρv, as follows. If we assume the equalities of Lemma 4.8 we see that the

triangle conv 〈ρx1 , ρu, ρv〉 is contained in the hyperplane H(1,1,1),1 and that a+ b > 0

is equivalent to 〈(1, 1, 1), ρx0〉 ≥ 0. Notice that this condition is symmetric between

ρx0 and ρx1 . Thus we have proved the following proposition.

Proposition 4.9. Let n ∈ N+, ρx0 , ρx1 , ρu, ρv ∈ N and Y be as in Setup 4.7. Let

w ∈ M = HomZ(N,Z) be such that 〈w, ρx1〉 = 〈w, ρu〉 = 〈w, ρv〉 = 1. Assume that

〈w, ρx0〉 ≥ 0.

Then H0(Y, Ext1OY (Ω1
Y ,OY ) = 0, every infinitesimal deformation of Y is locally

trivial, and Y is not smoothable.

4.3. Deformations of some toric threefolds

Now we want to apply the results of §4.2 to some more complicated toric threefolds,

namely to the toric threefolds such that the singular locus has an open neighbour-

hood isomorphic to a toric An-bundle over P1.

Let X be a toric Q-factorial threefold such that the singular locus of X, equipped

with its reduced structure, is isomorphic to P1. This means that all cones of the fan of

X are smooth with the exceptions of three cones: a 2-dimensional cone cone 〈ρu, ρv〉
and two 3-dimensional cones cone 〈ρx0 , ρu, ρv〉, cone 〈ρx1 , ρu, ρv〉, where ρu, ρv, ρx0 ,

ρx1 are the primitive generators of some rays of the fan of X.

If we assume that X is Gorenstein and that the triangles conv 〈ρx0 , ρu, ρv〉 and

conv 〈ρx1 , ρu, ρv〉 do not contain any interior point, then ρx0 , ρx1 , ρu, ρv satisfy the

conditions 1–4 of Setup 4.7 for a unique n ≥ 1. This implies that there exists a toric

open embedding Y ↪→ X such that Y is a toric An-bundle over P1 and Y contains

the singular locus of X. Since the sheaf Ext1OX (Ω1
X ,OX) is supported on the singular

locus of X, its global sections coincide with the global sections of Ext1OY (Ω1
Y ,OY ).

Therefore, thanks to Proposition 4.9 and to Lemma 4.5, we have a sufficient criterion,

in terms of the geometry of vectors ρx0 , ρx1 , ρu, ρv, for X having only locally trivial

infinitesimal deformations, and consequently for the non-smoothability of X.
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Remark 4.10. If X is Fano, i.e. the fan of X is complete and the primitive gen-

erators of the rays of the fan are the vertices of a polytope, and w ∈ M is as in

Proposition 4.9, then 〈w, ρx0〉 ≤ 0.

Remark 4.11. Out of the 4319 reflexive Fano polytopes of dimension 3, there are

27 polytopes P such that the toric variety XP associated to the spanning fan of P

has a singular locus isomorphic to P1 and there is an open neighbourhood of the

singular locus that is an An-bundle over P1, for some n ≥ 1. Using the criterion

above we can deduce that 10 out of these 27 toric varieties have only locally trivial

deformations.

Example 4.12. In the lattice N = Z3 we consider the reflexive polytope P that is

the convex hull of the columns of the matrix1 0 −2 0 0

0 1 −1 0 1

0 0 0 1 −1

 .
Let X be the toric Fano threefold associated to the spanning fan of P . We have

that X is a Gorenstein Q-factorial variety, the singular locus C = Sing(X) is a

curve isomorphic to P1, and there exists an open neighbourhood Y of C in X which

is an A1-bundle. Using the techniques of §4.2 we can see that Ext1OX (Ω1
X ,OX) '

OC(−2). This implies that H0(X, Ext1OX (Ω1
X ,OX)) = 0 and, by Lemma 4.5, that

every infinitesimal deformation of X is locally trivial and that X is not smoothable.

Example 4.13. Let P be the convex hull of the columns of the matrix0 1 0 −1 −1

0 0 1 −1 −1

1 0 0 −1 1


Let X be the toric Fano threefold associated to the spanning fan of P . We have

that X is a Gorenstein Q-factorial variety, the singular locus C = Sing(X) is a curve

isomorphic to P1, and there exists an open neighbourhood Y of C in X which is an

A1-bundle. Using the techniques of §4.2 we can see that Ext1OX (Ω1
X ,OX) ' OC(2).

This implies that h0(X, Ext1OX (Ω1
X ,OX)) = 3.

Using the techniques of §3.5, one can embed X into a Gorenstein Fano fourfold

as a Cartier divisor and then smooth X in its linear system.

Remark 4.14. The two Fano toric varieties appearing in Examples 4.12 and 4.13

are locally isomorphic; but, as proved above, one is not smoothable and the other is.
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This discrepancy is reflected at the level of maximally mutable Laurent polynomials

(cf. [KT]). In fact, on the first polytope there is a positive dimensional family of

maximally mutable Laurent polynomials, whereas on the second one there is only

one.

Remark 4.15. More generally, one can consider the toric Gorenstein Fano three-

folds X such that there exists a toric open immersion Y ↪→ X where Y is a toric

An-bundle over P1. If the condition of Proposition 4.9 is satisfied, then Y has only

locally trivial deformations and consequently X is not smoothable.

In this way we can prove that the following4 273 toric Gorenstein Fano threefolds

are not smoothable: 15, 16, 36, 41, 45, 53, 58, 59, 61, 65, 66, 102, 105, 110, 111,

112, 113, 116, 117, 124, 125, 128, 135, 141, 142, 144, 146, 147, 148, 149, 152, 162,

172, 179, 183, 189, 192, 193, 197, 230, 236, 244, 248, 261, 268, 271, 272, 277, 278,

279, 280, 281, 282, 286, 288, 290, 292, 302, 310, 324, 325, 327, 331, 332, 333, 334,

335, 337, 340, 343, 347, 349, 351, 355, 356, 358, 361, 362, 386, 399, 400, 407, 443,

445, 448, 452, 453, 456, 457, 463, 467, 487, 490, 496, 497, 499, 501, 502, 505, 507,

508, 509, 511, 512, 516, 523, 540, 545, 550, 563, 569, 577, 579, 581, 582, 583, 594,

599, 600, 601, 605, 606, 617, 629, 633, 658, 670, 671, 672, 674, 679, 682, 687, 705,

760, 764, 770, 771, 780, 781, 786, 787, 792, 797, 799, 809, 811, 812, 815, 816, 824,

859, 865, 868, 873, 875, 878, 883, 884, 889, 891, 892, 893, 894, 895, 902, 905, 929,

956, 960, 965, 987, 1003, 1004, 1006, 1011, 1021, 1038, 1045, 1051, 1156, 1160, 1168,

1175, 1177, 1199, 1203, 1209, 1216, 1217, 1225, 1232, 1234, 1251, 1252, 1253, 1255,

1256, 1260, 1262, 1265, 1275, 1286, 1287, 1293, 1300, 1305, 1308, 1324, 1327, 1351,

1371, 1383, 1398, 1533, 1545, 1550, 1551, 1554, 1561, 1579, 1589, 1613, 1614, 1615,

1620, 1637, 1638, 1656, 1665, 1666, 1671, 1686, 1690, 1693, 1697, 1711, 1747, 1748,

1760, 1763, 1989, 2000, 2001, 2027, 2045, 2051, 2052, 2068, 2071, 2072, 2076, 2084,

2096, 2098, 2102, 2379, 2380, 2385, 2403, 2405, 2423, 2424, 2425, 2427, 2738, 2777,

2778, 2792, 3047, 3057, 3063, 3064.

4We use the classification of reflexive 3-dimensional polytopes by Kreuzer and Skarke [KS98],
but we use the IDs that appear in http://www.grdb.co.uk.

http://www.grdb.co.uk




5
Deformations of affine toric

varieties à la Gross–Siebert

In this chapter we discuss an approach, inspired by the Gross–Siebert program, to

study deformations of affine Gorenstein toric pairs of dimension 3. We recall the

definition of Gorenstein toric singularities in §5.1. We treat the easier case of surfaces

in §5.2. In §5.3, we give a construction of an initial scattering diagram, which is the

starting point of the Kontsevich–Soibelman–Gross–Siebert algorithm, in the case

of 3-folds and we formulate a conjecture that relates Minkowski decompositions to

deformations. In §5.4 we give two examples.

5.1. Gorenstein toric singularities

We start by recalling what a Gorenstein cone is.

Definition 5.1. Let N be a lattice and M = HomZ(N,Z) be its dual. A Gorenstein

cone inside N is a full dimensional strongly convex rational polyhedral cone σ inside

N such that there exists v0 ∈ M such that for every ρ primitive generator of a ray

of σ we have 〈v0, ρ〉 = −1.

If σ is a Gorenstein cone, we have that

X = TVC(σ) = SpecC[σ∨ ∩M ]

109
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is a Gorenstein affine toric variety with no torus factors. We say that X is a Goren-

stein toric singularity. The toric boundary of X is denoted by ∂X and is an effective

reduced Cartier divisor, namely

∂X = SpecC[σ∨ ∩M ]/(χ−v0).

The usual definition of Gorenstein cone does not require that σ is full dimen-

sional, but here we do insist that σ is full dimensional as we are not interested in

torus factors.

If σ is a Gorenstein cone of dimension n, then the primitive generators of the rays

of σ lie on the hyperplane Hv0,−1 and they are the vertices of an (n−1)-dimensional

lattice polytope Q. By using the fact that the short exact sequence

0 −→ v⊥0 −→ N
−v0−→ Z −→ 0

splits we have that under the isomorphism N ' v⊥0 ⊕Z the cone σ is cone 〈Q× {1}〉,
where Q is the (n− 1)-dimensional lattice polytope above. The polytope Q is well-

defined only up to translation, because of the choice of the splitting of the short

exact sequence above, or equivalently the choice of an element of Hv0,−1 ∩ N . We

say that σ is the cone over the polytope Q put at height 1.

We are interested in the deformations of the pair (X, ∂X).

Remark 5.2 (Tangent space to deformations of X). Let σ be a Gorenstein cone

of dimension n and let X be the corresponding Gorenstein toric singularity. Let

v0 ∈ M be as in Definition 5.1. Altmann [Alt94] has computed the tangent space

to the deformation functor of X: T1
X = Ext1

OX (ΩX ,OX). Notice that this C-vector

space is M -graded. We denote by T1
X(v) the graded piece of T1

X with degree v ∈M .

We give the formulae for dimension 2 and 3 only.

If n = 2, then X is a Du Val singularity of type Am−1, for some m ∈ N+, and

T1
X(v) =

C if v = lv0 for 2 ≤ l ≤ m,

0 otherwise.

If n = 3, then σ is the cone over a lattice polygon Q put at height 1. Let

E1, . . . , Ek be the edges of Q and let `1, . . . , `k ∈ N+ be their lattice lengths. For

each i = 1, . . . , k, let zi ∈ σ∨ ∩M be the primitive generator of the ray of σ∨ which

is dual to the edge Ei. Notice that X has an isolated singularity if and only if

`1 = · · · = `k = 1. Altmann [Alt00, Theorem 4.4] proves the following: T1
X(v) is

non-zero only in the following cases
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(i) v = v0 with dimC T1
X(v) = k − 3;

(ii) v = qv0, for q ≥ 2, with dimC T1
X(v) = max {0,#{i | q ≤ `i} − 2};

(iii) v = qv0 + pzi /∈ −int(σ∨), 2 ≤ q ≤ `i, p ∈ Z, with dimC T1
X(v) = 1;

additional degrees exist only in the following two (overlapping) exceptional cases:

(iv) Q contains a pair of parallel edges Ei1 , Ei2 , both longer than every other edge,

then dimC T1
X(qv0) = 1 if max {`i | i 6= i1, i2} < q ≤ min{`i1 , `i2};

(v) Q contains a pair of parallel edges Ei1 , Ei2 with distance δ = 〈zi1 , Ei2〉 =

〈zi2 , Ei1〉, then dimC T1
X(qv0 − pzi1) = 1 if `i2 > δ ≥ max{`i | i 6= i1, i2},

1 ≤ q ≤ `j and 1 ≤ p ≤ (`k − q)/δ.

The cases (i), (ii), (iv), and (v) yield at most finitely many degrees in T1
X . Type

(iii) consists of `i − 1 infinite series for any i = 1, . . . , k. Therefore T1
X has finite

dimension (and consequently the miniversal deformation of X exists) if and only if

X has an isolated singularity.

Remark 5.3. If σ is a Gorenstein cone and X = TVC(σ) is an isolated singu-

larity, then Altmann [Alt97] has given an explicit construction for the miniversal

deformation of X.

We know very little about deformations of the toric Gorenstein affine pair (X, ∂X)

if the dimension is greater than 2. Even if X is smooth, the tangent space is not

finite-dimensional: for instance one can consider deformations of (A3, {xyz = 0})
with an arbitrarily large number of parameters, e.g. (A3, {xyz = f(z)}) where f(z)

is an arbitrary polynomial in z. Moreover, at present, a combinatorial description

of the tangent space of Def(X,∂X) is not known.

In dimension 3, using Theorem 3.10, we have found extra degrees for deforma-

tions of the pair (X, ∂X) that do not appear in T1
X , i.e. degrees that deform the

pair but keep X fixed. Examples of these degrees are very similar to type (iii) in

Remark 5.2: v = v0 + pzi /∈ −int(σ∨), p ∈ N+. We will use these degrees, together

with those in Remark 5.2 to populate the slabs of the polyhedral decomposition we

are going to construct below.

5.2. The surface case

In this section we construct the initial setup of the Gross–Siebert program in the

case of a Gorenstein toric singularity of dimension 2. This section is heavily inspired

by [GHK, §6] and [Pri].
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5.2.1. Equations and deformations

If σ is a Gorenstein cone of dimension 2, then it is the cone over a segment of length

m, for some m ∈ N+. Up to change of lattice basis, we can assume N = Z2 and

σ = cone

〈(
0

1

)
,

(
m

1

)〉
⊆ NR.

σ

The dual cone is σ∨ = cone 〈(1, 0), (−1,m)〉 ⊆MR. The element v0 ∈M defined

in Definition 5.1 is v0 = (0,−1). Call x = (1, 0), y = (−1,m), z = (0, 1).

y

z

σ∨

x

We see that {x, y, z} is a set of generators of the monoid σ∨ ∩M . We obtain that

X = TVC(σ) = SpecC[σ∨∩M ] is the Am−1-singularity, i.e. the quotient 1
m

(1,m−1)

or equivalently

X = SpecC[x, y, z]/(xy − zm).

The toric boundary is

∂X = SpecC[x, y, z]/(xy, z).

As in §4.1 or Remark 5.2, the tangent space of the deformation functor of X has

dimension m− 1. One can show that the miniversal deformation of X is

Spf C[x, y, z][[s0, . . . , sm−2]]/(xy − (zm + sm−2z
m−2 + · · ·+ s0))

over C[[s0, . . . , sm−2]]. By [GHK, §6.4], the miniversal deformation of the pair (X, ∂X)
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is B ↪→ X→ Spf C[[s0, . . . , sm−1]], where

X = Spf C[x, y, z][[s0, . . . , sm−1]]/(xy − (zm + sm−1z
m−1 + · · ·+ s0)),

B = Spf C[x, y, z][[s0, . . . , sm−1]]/(xy − (zm + sm−1z
m−1 + · · ·+ s0), z).

5.2.2. The polyhedral subdivision of v0 + σ∨

Let σ ⊆ NR, σ∨ ⊆ MR and v0 ∈ M be as in §5.2.1. For brevity we set v := v0.

We call u the origin of M . We consider the polyhedral decomposition P of the 2-

dimensional polyhedron v+σ∨ given by the following three 2-dimensional polyhedra:

• σ∨ = cone 〈x, y〉,

• conv 〈u, v〉+ cone 〈x〉,

• conv 〈u, v〉+ cone 〈y〉.

P

u

v

The Mumford degeneration (cf. [Gro11, §6.2.1]) of X associated to the polyhe-

dral complex P is

ProjC[t, x, y, z, u, v]/(xy − zm, zv − tu) −→ SpecC[t] = A1,

where deg t = deg x = deg y = deg z = 0 and deg u = deg v = 1. Equivalently, we

consider the closed subscheme of P1
[u:v] × A3

x,y,z × A1
t defined by the equationsxy = zm

zv = tu
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The central fibre of this family is given by the equations xy = zm and zv = 0. So

it is the union of 3 irreducible components which are isomorphic to Am−1, A1 × P1

and A1 × P1. These components can be seen from the polyhedral complex P: the

maximal polyhedral cells of P are the moment polyhedra of these 3 components.

Every fibre over t 6= 0 is isomorphic to X.

The boundary divisor is given by adding the extra equation u = 0.

5.2.3. The initial scattering diagram

Over the polyhedral complex P we introduce some singularities specifying a struc-

ture of affine manifold with singularities on v + σ∨. Specifically, we put m focus-

focus singularities on the segment conv 〈u, v〉 in order that the boundary becomes

flat. This is a standard procedure in the Gross–Siebert program and we refer the

reader to [GS11b], [Gro11], and [Pri].

After specifying a structure of affine manifold with singularities on P we need

to put slab functions. By definition, a slab is an interior cell of P of codimension

1. A slab s corresponds to a codimension 1 stratum Xs of the central fibre X0 of

the Mumford degeneration corresponding to the polyhedral complex P. A slab

function on the slab s is then a section of a line bundle over Xs which is specified by

the affine manifold structure. The datum of a polyhedral complex P together with

a structure of affine manifold with singularities and with slab functions is called an

initial scattering diagram.

In our case, there is only one compact slab: namely conv 〈u, v〉. It corresponds

to the toric stratum P1 = ProjC[u, v] of X0 = ProjC[x, y, z, u, v]/(xy − zm, zv).

The line bundle in this case is OP1(m) as there are m focus-focus singularities on

conv 〈u, v〉. The slab function we consider is

um + sm−1u
m−1v + · · ·+ s0v

m ∈ H0(P1
[u:v],OP1(m)),

where s0, . . . , sm−1 are parameters. On the other two slabs, namely u+conv 〈x〉 and

u+ conv 〈y〉, we put the slab function 1.

Morally, the slab functions specify the direction in which one deforms the central

fibre X0 and can be interpreted as a logarithmic structure on X0 (see [GS06,GS10]).

What has been described so far is the starting point of the Kontsevich–Soibelman–

Gross–Siebert reconstruction algorithm [GS11a]: from a initial scattering diagram,

under some assumptions, one produces a formal flat deformation of X0 in such a

way the slab functions constitute the first approximation for gluing the various torus

charts of the fibres of this family (see [GS11a,Pri]).
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The Kontsevich–Soibelman–Gross–Siebert algorithm applied to our initial scat-

tering diagram produces the formal family X → Spf C[s0, . . . , sm−1][[t]] which is de-

fined by the equationsxy = zm + tsm−1z
m−1 + · · ·+ tms0

zv = tu

inside P1
[u:v] × A3

x,y,z. The boundary is given by B = X ∩ {u = 0}.
This family is algebraizable with respect to t. By setting t = 1, we get the

miniversal deformation of the pair (X, ∂X) described in §5.2.1.

5.3. The three-dimensional case

In this section we fix a Gorenstein cone σ in a lattice N of rank 3. So σ is the cone

over a lattice polygon Q put at height 1, as in §5.1. Let v0 ∈ M be the element

defined in Definition 5.1.

In §5.3.1 we construct a polyhedral subdivision of v0+σ∨, depending on the choice

of numbers a1, . . . , ak ∈ N. In §5.3.2, starting from an admissible decomposition of Q

(see Definition 5.5), we will describe a collection of slab functions on the polyhedral

subdivision of §5.3.1: this is an initial scattering diagram. We expect that there is a

more general version of the Kontsevich–Soibelman–Gross–Siebert algorithm for our

initial scattering diagram: this should lead to a conjecture discussed in §5.3.3.

5.3.1. The polyhedral subdivision of v0 + σ∨

Let N be a lattice of rank 3, let σ be Gorenstein cone inside N , and let σ∨ ⊆ MR

be its dual. Let Q be the corresponding lattice polygon. Let v0 ∈ M be as in

Definition 5.1. We denote by u the origin on M .

Let E1, . . . , Ek be the edges of Q, cyclically ordered. For each i = 1, . . . , k, let

zi ∈ σ∨ ∩M be the primitive generator of the ray of σ∨ which is dual to the edge

Ei. We consider the indices i modulo k, i.e. zk+1 = z1.

Choose a = (a1, . . . , ak) ∈ Nk. Depending on this choice, we define a polyhedral

subdivision of v0 + σ∨. For brevity we define vi := v0 + aizi ∈M for each i.

Firstly we treat the case when a = 0 is the zero vector. Then P0 is the polyhe-

dral complex with support v0 + σ∨ and with k + 1 cells of dimension 3:

• σ∨ = {u}+ cone 〈z1, . . . , zk〉,

• conv 〈u, v0〉+ cone 〈zi, zi+1〉, as i = 1, . . . , k.
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For a general a ∈ Nk, the polyhedral complex Pa is finer than P0 and its

3-dimensional cells are as follows:

• σ∨ = {u}+ cone 〈z1, . . . , zk〉;

• for each i = 1, . . . , k, we have to decide how to subdivide the cell conv 〈u, v0〉+
cone 〈zi, zi+1〉; we have the following four cases (these are also shown in Fig-

ure 5.1):

(i) if ai = ai+1 = 0, then we take the whole cell conv 〈u, v0〉+ cone 〈zi, zi+1〉,

(ii) if ai = 0 and ai+1 > 0, then we take conv 〈u, v0, vi+1〉 + cone 〈zi〉 and

conv 〈u, vi+1〉+ cone 〈zi, zi+1〉,

(iii) if ai > 0 and ai+1 = 0, then we take conv 〈u, v0, vi〉 + cone 〈zi+1〉 and

conv 〈u, vi〉+ cone 〈zi, zi+1〉,

(iv) if ai > 0 and ai+1 > 0, then we take conv 〈u, vi, vi+1〉+ cone 〈zi, zi+1〉 and

conv 〈u, v0, vi, vi+1〉.

In the terminology of the Gross–Siebert program [GS11a], a slab is an interior

codimension 1 polyhedral cell. We only consider the ones which are bounded: these

are conv 〈u, v0, vi〉, for any i such that ai > 0. This triangle is an Aai−1-triangle (see

Definition 5.4): it is the moment polytope of (P(1, 1, ai),O(ai)), i.e. the convex hull

of the monomial basis of H0(P(1, 1, ai),O(ai)).

In §5.3.2, on these slabs we will put some slab functions, i.e. some sections of

certain line bundles over P(1, 1, ai).

5.3.2. The initial scattering diagram

Before describing the slab functions of our initial scattering diagram on Pa, we need

a couple of definitions.

Definition 5.4. If m ∈ N, an Am-triangle is any lattice polygon which is equivalent,

up to affine transformations, to the triangle conv 〈(0, 0), (0, 1), (m+ 1, 1)〉 inside Z2.

An A−1-triangle is a lattice segment of lattice length 1.

For m ∈ N, a triangle in a lattice of rank 2 is an Am-triangle if and only if it

does not contain any interior point and the lattice lengths of its edges are 1, 1, and

m+ 1. An Am-triangle is the moment polytope of (P(1, 1,m+ 1),O(m+ 1)).



5.3. The three-dimensional case 117

u

v0

zi

zi+1

(i) ai = ai+1 = 0

vi+1

u

zi

zi+1

v0

(a) (ii) ai = 0 and ai+1 > 0

zi

zi+1

v0

vi
u

(iii) ai > 0 and ai+1 = 0

vi+1

u

zi

zi+1

v0

vi

(iv) ai > 0 and ai+1 > 0

Figure 5.1: the four possible polyhedral subdivisions of conv 〈u, v0〉+ cone 〈zi, zi+1〉
discussed in §5.3.1
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Definition 5.5. Let Q be a lattice polygon. A Minkowski decomposition Q =

Q1 + · · · + Qr is called admissible if each Qj is an Amj -triangle for some mj ∈ Z,

mj ≥ −1.

Remark 5.6. A polygon need not have any admissible decomposition: e.g. the

triangle conv 〈(−1,−1), (2,−1), (−1, 1)〉 in Z2.

We are now ready to describe the initial scattering diagram. Let σ ⊆ NR,

σ∨ ⊆MR, and v0 ∈M be as above. Fix a ∈ Nk and consider the polyhedral complex

Pa, with support v0 + σ∨, described in §5.3.1. The initial scattering diagram, i.e.

the collection of slab functions, depends on the choice an admissible decomposition

of Q, which we now fix Q = Q1 + · · ·+Qr.

Let E1, . . . , Ek be the edges of Q, cyclically ordered, and let `1, . . . , `k ∈ N+

be their lattice lengths. For any i = 1, . . . , k and j = 1, . . . , r, let `ij ∈ N be the

number of times with which the primitive generator of the edge Ei (which points

toward Ei+1) appears as an edge of Qj. In other words, `ij is the lattice length of

the edge (if it exists) of Qj which is parallel (and with the same orientation) of Ei.

It is clear that
∑r

j=1 `ij = `i for all i. Here we are implicitly assuming that the

A−1-triangle, i.e. the unitary segment, has two opposite edges of length 1.

We choose parameters s1, . . . , sr. We now describe the slab functions. Fix 1 ≤
i ≤ k.

If ai = 0, then the slab function on conv 〈u, v0〉+ cone 〈zi〉 is

r∏
j=1

(u+ sjv0)`ij ∈ H0(P1
[u:v0] × A1

zi
,O(`i))

If ai > 0, then the slab function on the slab conv 〈u, v0, vi〉 is a section fi ∈
H0(P(1, 1, ai),O(`iai)) satisfying the following divisibility conditions. Let x0, xi, u be

the Cox coordinates on P(1, 1, ai) with weights 1, 1, ai, respectively. So the integral

points of conv 〈u, v0, vi〉 are the monomial basis {u, v0 = xai0 , x
ai−1
0 xi, . . . , vi = xaii }

of H0(P(1, 1, ai),O(ai)).
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v0 vi

u

We require that the restriction of fi to the curve {xi = 0} ' P(1, ai)x0,u is

gi,0 :=
r∏
j=1

(u+ sjx
ai
0 )`ij .

This specifies the intersection multiplicities between the curve {fi = 0} and the

curve {xi = 0}: there is an intersection point of multiplicity `ij, for any j = 1, . . . , r.

Informally speaking, we also require that every such point is a point with multiplicity

`ij for the curve {fi = 0}. This imposes some condition on other coefficients of fi

as follows. The monomial basis of H0(P(1, 1, ai),O(`iai)) is associated to the lattice

points of the `ith dilation of an Aai−1-triangle: up to an affine transformation, we

can be assume that it is the triangle

T = conv
〈
x`iai0 = v`i0 = (0, 0), u`i = (0, `i), x

`iai
i = v`ii = (`iai, 0)

〉
⊆ R2.

u`i

xai`i0 xai`ii

The coefficients of fi live over the lattice points of the triangle T . So far we have

specified the coefficients on the leftmost vertical segment conv 〈(0, 0), (0, `i)〉 ⊆ T ,

i.e. the coefficients of the monomials x`iai0 = v`i0 ,x`iai−ai0 u, . . . , u`i . For any 1 ≤ h < `i

we require some conditions on the coefficients on the vertical segment ({h}×R)∩T
by insisting that the polynomial supported on this vertical segment is divisible by

gi,h :=
r∏
j=1

(u+ sjx
ai
0 )(`ij−h)+

.

Here, for a number a ∈ Z, we use the notation a+ := max{0, a}.



120 Chapter 5. Deformations of affine toric varieties à la Gross–Siebert

equal to gi,0

divisible by gi,1

divisible by gi,2

To sum up, we consider the parameters s1, . . . , sr, one for each Minkowski sum-

mand of Q in the fixed admissible decomposition, and then we take the most general

possible slab functions, provided that we respect the divisibility conditions described

above. This means that we introduce extra parameters which appear as some coef-

ficients of slab functions, whereas some coefficients close to the segment conv 〈u, v0〉
are determined by these new parameters and the parameters s1, . . . , sr.

The collection of these slab functions is our initial scattering diagram Din on the

polyhedral complex Pa. We give some examples in §5.4.

5.3.3. A conjecture

Starting from a scattering diagram Din satisfying some hypothesis, the Kontsevich–

Soibelman–Gross–Siebert algorithm [GS11a] produces a consistent scattering dia-

gram Scatter(Din) and consequently an order by order deformation of the central

fibre, which is the union of toric varieties associated to the chosen polyhedral com-

plex.

Unfortunately our polyhedral complex (§5.3.1) and slab functions (§5.3.2) do

not satisfy the restrictive conditions of [GS11a]. Paul Hacking has taken the slab

functions we define in §5.3.2 and verified that an appropriate generalisation of the

Kontsevich–Soibelman–Gross–Siebert algorithm exists in some cases. Then we ex-

pect that, starting from the choice of an admissible decomposition Q = Q1 + · · ·+Qr

and the choice of a ∈ Nk, it is possible to construct a formal deformation of the

degenerate toric variety associated to the polyhedral complex Pa; possibly this de-

formation is algebraizable and it is possible to set all degeneration parameters equal

to 1, in order to construct a deformation of the pair (X, ∂X). For a1, . . . , ak → ∞
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we should get a formal deformation of (X, ∂X) over an ind-scheme. This should be

an irreducible component of Def(X,∂X).

We conjecture the following:

Conjecture 5.7. The procedure described above gives an injection from the set of

admissible decompositions of Q to the set of irreducible components of Def(X,∂X).

Remark 5.8. According to the general philosophy of Intrinsic Mirror Symmetry

[GS], it should be possible to recover this deformation/degeneration family of X

from some curve count on the mirror variety. More specifically, we expect that there

should be a TM -toric1 variety Y a of dimension 3 and a non-toric blow-up Ya → Y a

such that the coordinate ring of the deformation/degeneration family of X is the

ring of theta functions (see [GHK15,GHKS]) of Y a.

5.4. Two examples

In this section we give two examples of the constructions described in §5.3.1 and

§5.3.2.

5.4.1. The affine space of dimension 3

Let us consider the affine 3-dimensional space X = SpecC[x, y, z] = A3 and its toric

boundary ∂X = SpecC[x, y, z]/(xyz). The deformations of X are clearly trivial,

but the deformations of the pair (X, ∂X) are not. The miniversal deformation of

(X, ∂X) is given by

(
A3, {xyz + s+ xα(x) + yβ(y) + zγ(z) = 0}

)
,

where α, β and γ are polynomials in one variable and s is a constant. The parameter

space of this deformation is an infinite-dimensional ind-scheme. Following [Ran89,

CFGK17b,CFGK17a], the tangent space to the deformations of the pair (X, ∂X) is

T(X,∂X)Def = Ext1
O∂X (Ω1

∂X ,O∂X) = H0(OSing(∂X)) =
C[x, y, z]

(xy, xz, yz)
.

Another way to prove this is to notice that, since X has only trivial deformations,

T(X,∂X)Def is the tangent space of the Hilbert functor of ∂X ↪→ X modulo the

1The toric variety X contains the torus TN = SpecC[M ], whereas the variety Y a contains the
dual torus TM = SpecC[N ].
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action of the infinitesimal automorphisms of X; in other words

T(X,∂X)Def = coker
(
H0(TX)→ H0(N∂X/X)

)
= coker

(
H0(TX |∂X)→ H0(N∂X/X)

)
= coker

(
O⊕3
∂X

(yz,xz,xy)

−−−−−−−→ O∂X
)
.

The variety X is associated to the standard octant σ in N = Z3. In this case the

polygon Q is an A0-triangle and we consider its unique admissible decomposition.

The dual cone σ∨ ⊆ MR is the standard octant generated by x = (1, 0, 0), y =

(0, 1, 0) and z = (0, 0, 1). We have u = (0, 0, 0) and v0 = (−1,−1,−1). We discuss

some cases for a ∈ N3 below.

The case a = 0

The polyhedral complex P0 is depicted in Figure 5.2. We have also inserted the

x

y

z

u

v0

Figure 5.2: the polyhedral complex P0 for A3.
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singular set of an affine manifold structure on P0, drawn in red. This affine manifold

structure makes the boundary flat. There are the four 3-dimensional polyhedra:

σ = u+cone 〈x, y, z〉, conv 〈v0, u〉+cone 〈x, y〉, conv 〈v0, u〉+cone 〈x, z〉, conv 〈v0, u〉+
cone 〈y, z〉.

The central fibre of the Mumford degeneration has four irreducible components

and is described by the equation v0xyz = 0 inside P1
u,v0
× A3

x,y,z. The Mumford

degeneration is given by the equation v0xyz = tu, where t is the degeneration

parameter.

There are six slabs. On each of these we consider the slab function as follows:

• u+ cone 〈x, y〉: the slab function is 1,

• u+ cone 〈x, y〉: the slab function is 1,

• u+ cone 〈x, y〉: the slab function is 1,

• conv 〈v0, u〉+ cone 〈x〉: the slab function is u+ sv0,

• conv 〈v0, u〉+ cone 〈y〉: the slab function is u+ sv0,

• conv 〈v0, u〉+ cone 〈z〉: the slab function is u+ sv0.

In this case we are in the hypotheses of [GS11a]. The induced deformation is

X = {v0xyz = t(u+ sv0)} ⊆ P1
u,v0
× A3

x,y,z × A2
t,s

B = X ∩ {u = 0}.

By setting t = 1 we get the deformation (A3, {xyz = s}) over A1
s.

The case a = (0, 0, 1)

For a = (0, 0, 1) we consider v3 = v0 + z = (−1,−1, 0). The polyhedral decom-

position Pa of the polyhedron v0 + σ∨ is given by the following six 3-dimensional

polyhedra: σ∨ = u+cone 〈x, y, z〉, conv 〈v0, u〉+cone 〈x, y〉, conv 〈u, v0, v3〉+cone 〈x〉,
conv 〈u, v0, v3〉 + cone 〈y〉, conv 〈v3, u〉 + cone 〈x, z〉, conv 〈v3, u〉 + cone 〈y, z〉. It is

depicted in Figure 5.3. The central fibre of the Mumford degeneration has six ir-

reducible components and is described by the equations v0z = v3xy = 0 inside

P2
u,v0,v3

× A3
x,y,z. The Mumford degeneration is given by the equations v0z − t1v3 =

v3xy − t2u = 0, where t1, t2 are degeneration parameters.

We consider another parameter σ1. There are six slabs. The relevant slab func-

tion are as follows:
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v0

u

x

y

z

v3

Figure 5.3: the polyhedral complex P(0,0,1) for A3.
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• conv 〈v0, u〉+ cone 〈x〉: the slab function is u+ sv0,

• conv 〈v0, u〉+ cone 〈y〉: the slab function is u+ sv0,

• conv 〈v0, v3, u〉: the slab function is u+ sv0 + σ1v3,

• conv 〈v3, u〉+ cone 〈z〉: the slab function is u+ σ1v3.

The induced family is

X =

{
v0z = t1v3

v3xy = t2(u+ sv0 + σ1v3)

}
⊆ P2

u,v0,v3
× A3

x,y,z × A4
t1,t2,s,σ1

,

B = X ∩ {u = 0}.

By setting t1 = t2 = 1 we get the deformation (A3, {xyz = s+ σ1z}) over A2
s,σ1

.

The case a = (0, 0, a)

Consider a ∈ N+ and a = (0, 0, a). In this case we consider the point v3 = v0 +az =

(−1,−1, a− 1). In Figure 5.4 there is a picture with a = 2.

The unique compact slab is conv 〈u, v0, v3〉, which is an Aa−1-triangle, i.e. the

moment polytope of (P(1, 1, a),O(a)). Let x0, x3, u be the Cox coordinates on

P(1, 1, a) with weights 1, 1, a, respectively. Then v0 and v3 are identified with

xa0 and xa3, respectively. We consider new parameters σ1, . . . , σa. The slab function

on conv 〈u, v0, v3〉 is the following section of O(a) over P(1, 1, a):

u+ sxa0 + σ1x
a−1
0 x3 + · · ·+ σax

a
3.

The deformation we get should be

(
A3, {xyz = s+ σ1z + · · ·+ σaz

a}
)

over Aa+1
s,σ1,...,σa

.

5.4.2. The singularity cA1

We consider the toric variety X = SpecC[x, y, z, w]/(xy−w2) which is associated to

the cone σ ⊆ NR = R3 whose rays are (1, 1, 0), (−1, 1, 0) and (0, 0, 1). The Hilbert

basis of the dual cone σ∨ ⊆MR is made up of the following four vectors: x = (1, 1, 0),

y = (−1, 1, 0), w = (0, 1, 0) and z = (0, 0, 1). We have v0 = (0,−1,−1). The toric

boundary of X is ∂X = X ∩ {zw = 0} = SpecC[x, y, z, w]/(xy − w2, zw).
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u

v0

v3

x

y

z

Figure 5.4: the polyhedral complex P(0,0,2) for A3.
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The polygon Q is an A1-triangle and we consider its unique admissible decom-

position. Below we consider two cases for a ∈ N3.

The case a = 0

For a = 0 we get the polyhedral decomposition P0 with four 3-dimensional cells,

depicted in Figure 5.5. The singular set of the affine manifold structure on v0 + σ∨

is drawn in red. On the slab conv 〈u, v0〉 + cone 〈z〉 the monodromy is double, in

order to make the boundary flat: this is shown bold in the picture below. Notice

that the edge of Q which is dual to z has lattice length 2.

v0

u

x

y

z

Figure 5.5: the polyhedral complex P0 for cA1.

The slab functions on conv 〈u, v0〉 + cone 〈x〉 and on conv 〈u, v0〉 + cone 〈y〉 are

both u+ sv0. The slab function on conv 〈u, v0〉+ cone 〈z〉 is (u+ sv0)2.

We expect that the family is given by the equations

X =
{
zwv0 = t(u+ sv0), xy = w2

}
B = X ∩ {u = 0}

inside P1
u,v0
× A4

w,x,y,z × A2
t,s1

.



128 Chapter 5. Deformations of affine toric varieties à la Gross–Siebert

By setting t = 1, this produces the deformation

(
{xy = w2}, {xy = w2, zw = s}

)
over A1

s.

The case a = (0, 0, 1)

For a = (0, 0, 1) we consider v3 = v0 + z = (0,−1, 0). The polyhedral complex

Pa is depicted in Figure 5.6, together with the singular set of the affine manifold

structure.

v0

v3

u

x

y

z

Figure 5.6: the polyhedral complex P(0,0,1) for cA1.

The unique compact slab is conv 〈u, v0, v3〉: it is the moment polytope of (P2,O(1)).

Since the edge of Q dual to z has length 2, the slab function on conv 〈u, v0, v3〉 is

a section of OP2(2). If we follow the divisibility conditions described in §5.3.2, we

introduce new parameters σ1 and σ2 and we consider the slab function

(u+ sv0)2 + σ1v3(u+ sv0) + σ2v
2
3,

whose coefficients are depicted below.
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1

2s

s2

sσ1

σ1σ2

The family X should be given by the equations

xy = w2 + tσ1w + t2σ2

zv0 = tv3

wv3 = t(u+ sv0)

inside P2
u,v0,v3

× A4
x,y,z,w × A4

t,s,σ1,σ2
, and the boundary B is obtained by imposing

u = 0.

By setting t = 1 we get the deformation

(
{xy = w2 + σ1w + σ2}, {xy = w2 + σ1w + σ2, wz = s}

)
inside A4

x,y,z,w over A3
s,σ1,σ2

.
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