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Abstract

In this thesis we investigate clustering and classification techniques applied

to time series data from multivariate stochastic processes. In particular we

focus on extracting features in the form of graphical models of conditional

dependence between the process components. The motivation is to use the

techniques on brain EEG data measured from multiple patients and investi-

gate whether it can be used in areas such as medical diagnosis. We look at

both the case where the graphical model is estimated based on time series

recorded on the scalp and also where the graphical model is estimated based

on source signals within the brain. In the first case we use a multiple hypoth-

esis testing approach to build the graphical models and a learning algorithm

based on random forests to find patterns within multiple graphical models.

In the second case we use independent component analysis (ICA) to extract

the source time series and estimate the conditional dependence graphs using

partial mutual information. It is of particular note that in this case due to

the indeterminacy issues associated with ICA we only know the conditional

dependence graphs up to some unknown permutation of the nodes. To solve

this issue we use novel methods based on an extension of graph matching to

multiple inputs in order to develop a new clustering algorithm. Finally, we

show how this algorithm can be combined with further information obtained

during the ICA phase contained in columns of the unmixing matrix, to create

a more powerful method.
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0
Introduction

The main contributions of this thesis are a novel conditional dependence

graph extraction method for time series based on multiple hypothesis testing,

a projection strategy to be used to improve current inexact graph matching

techniques, a novel multiple graph matching framework that generalises the

idea of inexact graph matching to more than two graphs and an algorithm to

be used to cluster time series of EEG data obtained from human brains with

a particular focus on projecting the observed data back to sources within the

brain.

The brain is the centre of the human nervous system and the most complex

organ in the human body. Understanding how it works is a key area in Bi-

ological and Medical Science as this provides us with an important insight

into the causes of human behaviour and this can be used in the diagnosis

and treatment of psychological disorders. A human brain can be though of

as a complex network made up of a vast number of neurons. The connec-

tions between these neurons form anatomical circuits shaping the basis of all

neural computations. To fundamentally understand the brain, it is neces-

sary to focus our attention to identifying them. Due to the complex nature

of the brain, trying to map it on a neuron by neuron basis is impractical.
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We instead concentrate on studying regions (collections of neurons) in the

brain. Through EEG and fMRI scans, we can measure electrical activity in

different regions of the brains. When the activity is sampled at regular time

intervals, we can apply a variety of time series analysis techniques to extract

information from it.

This thesis is concerned with ways in which to cluster and classify multivari-

ate time series and focuses particularly on methods based on the underlying

conditional independence graphical models. Some of the key problems to

overcome are efficiently estimating these models from time series data, mod-

ifying these techniques for when the observed time series are a mixture of

latent signals, clustering based on graphical models (particularly with un-

known node positions) and extending all techniques to be computationally

feasible for high dimensional time series.

The motivation behind the techniques is to aid with diagnosis of neurolog-

ical disorders in the brain. Through EEG scans we can measure electrical

activity at the scalp emitted from different sources within the brain. The

measurements form a time series and it is these time series that we use as

our data. We have both labelled and unlabelled data. In the case of the

labelled data (type I and II schizophrenia), we aim to train a classifier that

given unseen data would be able to ’diagnose’ it. In the case of the unlabelled

data we aim to find clusters of patients with similar neurological activity.

The structure of the thesis is as follows, chapter 1 covers the main preliminary

results necessary for the project.

Chapter 2 contains the new multiple hypothesis testing framework approach

from [85] for estimating graphical models of time series connectivity measured

on the scalp. While it closely follows the original paper, there are also new

remarks on how the framework can be extended in future.

Chapter 3 introduces the idea of inexact graph matching and covers standard

as well as state of the art algorithms such as FAQ [88] for solving it. The

second half of the chapter closely follows [86] in which a projection scheme

was developed to send solutions of relaxed versions of the inexact graph

matching problem back to permutation matrices.

2



Chapter 4 once again looks at extracting graphical models from time series

but in this case it is concerned with the case where the observed time series

is a linear mixing of some latent source time series. The method used to

model the process is similar to [33] which uses the idea of ICA applied to the

residuals of a vector autoregressive process fit to the observed time series.

We use however the partial mutual information rate (PMIR) to extract the

conditional dependence graphs. We note that due to inherent properties of

the ICA we can only extract source time series up to some unknown scaling

and permutation. The unknown scaling issue is dealt with in the chapter by

using the PMIR.

Chapter 5 investigates various algorithms that can be used to cluster and

classify graphical models with known node position i.e. we could not use it

for the ICA extracted graphical models. The chapter is not the focus of the

research but an algorithm based on a modified version of random forests [10]

was shown to have promising performance on simulated data.

Chapter 6 contains the novel techniques based on extending the idea of graph

matching to multiple graphs. Most of the chapter is dedicated to the theory

required to generalise the graph matching methods. At the end a clustering

algorithm is presented that can for instance be used with our ICA extracted

graphical models.

The final chapter 7 shows how we can combine multiple graph matching

with information contained in the unmixing matrix after application of ICA

to obtain more powerful clustering algorithms. The idea is essentially to

perform multiple graph matching with labelled graphs, where the labels come

from the columns of the unmixing matrix.
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1
Preliminaries

Basics

We begin with some basic definitions for real valued random variables. We

assume random variables are real valued with absolutely continuous distribu-

tions and that multivariate random variables are p-dimensional unless stated

otherwise. We differentiate between univariate and multivariate random vari-

ables using bold type i.e. X ∈ R and X ∈ Rp.

Definition 1. The cumulative probability distribution function (cdf) of a

univariate random variable X is defined as

FX(x) = Pr(X ≤ x).

Definition 2. The joint cumulative probability distribution function (cdf) of

univariate random variables X, Y is defined as

FX,Y (x, y) = Pr(X ≤ x ∩ Y ≤ y).

Definition 3. The probability density function (pdf) of univariate random

4



variable X with absolutely continuous distribution is defined

fX(x0) =
∂

∂x
FX(x)|x=x0 .

Definition 4. The joint probability density function (pdf) of univariate ran-

dom variables X, Y with absolutely continuous distributions is defined

fX,Y (x0, y0) =
∂2

∂x∂y
FX,Y (x, y)|(x,y)=(x0,y0).

Definition 5. The expectation (first central moment) of a univariate random

variable X is

E(X) =

∫ ∞
−∞

xdFX(x),

where FX is the cdf of X.

Remark 1. For a p-valued random variable X, we define µ = [µ1, . . . , µp]
T

as

µi = E(Xi)

for i = 1 . . . p.

Definition 6. The variance (second central moment) of a univariate random

variable X is

var(X) =

∫ ∞
−∞

(x− µ)2dFX(x),

where FX is the cdf of X and µ = E(X).

Definition 7. Assuming the joint pdf exists, the covariance of univariate

random variables X and Y is

cov(X, Y ) =

∫ ∞
−∞

∫ ∞
−∞

(x− µX)(y − µY )fX,Y (x, y)dxdy,

where fX,Y is the joint pdf of X and Y , µX = E(X) and µY = E(Y ).

Remark 2. 1. For a random variable X, cov(X,X) = var(X).
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2. For a p-valued random variable X, we define matrix Σ as

Σij = cov(Xi, Xj)

for i, j = 1 . . . p.

Remark 3. The integrals used in definitions 5 and 6 are Riemann-Stieltjes

integrals. A stochastic version of the integral will be used later when consid-

ering the spectral representation theorem.

Stochastic Processes

Stochastic processes are collections of random variables. We provide some

basic definitions and results necessary for the research in this thesis. The

material in this section closely follows [64].

Definition 8. A stochastic process {X(t)|t ∈ T} is a collection of p-valued

random variables, indexed by t belonging to an index set T , where X t =

[X1,t, . . . , Xp,t].

Remark 4. 1. In definition 8, t commonly represents time.

2. If t is a discrete parameter, we write {X t|t ∈ T} as the stochastic

process such that X t is the tth component.

3. If T is not explicitly stated when discussing a discrete parameter stochas-

tic process, we assume it is the set of all integers and we write this

{X t}.

Definition 9. We call a sequence of realisations from a stochastic process a

time series.

Definition 10. The cumulative probability distribution function (cdf) of ran-

dom variable X t ∈ Rp is written as

Ft(a0) = Pr(

p⋂
i=1

{Xi,t ≤ ai,0}),
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where Xi,t represents the ith component of X t and ai,0 represents the ith

component of a0.

Definition 11. The joint cumulative probability distribution function of ran-

dom variables X t1 , . . . ,X tn ∈ Rp is written as

Ft1,...,tn(a1, . . . ,an) = Pr(

p⋂
i=1

{Xi,t1 ≤ ai,1}, . . . ,
p⋂
i=1

{Xi,tn ≤ ai,n}).

Definition 12. The process {X t |t ∈ T} is complete (strongly) stationary if

for any {t1, . . . , tn} ⊂ T and τ such that {t1 + τ, . . . , tn + τ} ⊂ T , then

Ft1,...,tn(a1, . . . ,an) = Ft1+τ,...,tn+τ (a1, . . . ,an).

Strong stationarity can be too strict an assumption for stochastic processes

in many real world applications. Second-order stationarity, a weaker form,

is often used in practice. We give the definition as in [64, p. 36].

Definition 13. The process {X t |t ∈ T} is second-order (weakly) stationary

if for any {t1, . . . , tn} ⊂ T and τ such that {t1 + τ, . . . , tn + τ} ⊂ T , then

all joint moments of orders 1 and 2 from X t1 , . . . ,X tn, exist, are finite and

equal to the corresponding moments from X t1+τ , . . . ,X tn+τ .

Definition 14. The process {X t |t ∈ T} is Gaussian if for any {t1, . . . , tn} ⊂
T , the variable (XT

t1
, . . . ,XT

tn) follows a multivariate Gaussian distribution.

Definition 15. The process {X t |t ∈ T} is Gaussian stationary if it is a

Gaussian process and second-order stationary.

Remark 5. Gaussian stationary processes are completely defined by their

second order statistics and are therefore completely stationary.

Definition 16. The cross-covariance sequence (ccvs) of stochastic process

{X t} is given by

Cij(s, t) = cov(Xi,s, Xj,t)

where we write Xi,s = (Xs)i and Xj,t = (X t)j.
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Remark 6. 1. If {Xt} is second order stationary we can write the ccvs

simply in terms of time lag τ i.e. we can define matrix sτ such that

sij,τ = Cij(t, t+ τ) = cov(Xi,t, Xj,t+τ ) = cov(Xi,0, Xj,τ )

where we write (sτ )ij = sij,τ .

2. The value sii,τ is referred to as the autocovariance sequence (acvs) of

stochastic process {Xi,t}.

Spectral Density Function and Cross-Spectra

We introduce the idea of the spectral density function for stochastic processes.

Again this section closely follows [64].

Definition 17. A stochastic process {Z(f)}, not necessarily real valued, is

called an orthogonal process and said to have orthogonal increments if the

increments are uncorrelated over disjoint intervals i.e.

cov(Z(f4)− Z(f3), Z(f2)− Z(f1)) =

E[(Z(f4)− Z(f3))∗(Z(f2)− Z(f1))] = 0

for f1 < f2 < f3 < f4.

The spectral representation theorem for discrete parameters as stated in [64,

p. 36] is as follows

Theorem 1. Let {Xt} be a univariate real-valued discrete parameter station-

ary process such that E(Xt) = 0. Then, there exists an orthogonal process

{Z(f)} on [−1/2, 1/2] such that

Xt =

∫ 1/2

−1/2

ei2πftdZ(f),

where the equality is in the mean square sense.

Proof. See [65] p. 251.
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Remark 7. 1. We say that two random variables X,Y are equal in the

mean square sense if and only if

E
[
|X − Y |2

]
= 0.

2. If E[|dZ(f)|2] is differentiable everywhere, we can write it as

E[|dZ(f)|2] = S(f)df

and we call S(f) the spectral density function.

3. By using the spectral representation of Xt and Xt+τ , we can write the

acvs as

sτ = E(XtXt+τ ) =

∫ 1/2

−1/2

S(f)ei2πfτdf.

4. As sτ is deterministic, the above equation indicates it is the inverse

Fourier transform of S. Under the assumption that S is square inte-

grable (implying sτ is square summable by Parseval’s theorem) then S

is the Fourier transform of sτ i.e.

S(f) =
∞∑

τ=−∞

sτe
−i2πfτ .

The transformation into the frequency domain can be extended to multivari-

ate processes using cross-spectra.

Definition 18. Given p-valued stationary multivariate process {X(t)}, the

cross-spectra between {Xj,t} and {Xk,t} are defined as

Sjk(f) =
∞∑

τ=−∞

sjk,τe
−i2πfτ

and

Skj(f) =
∞∑

τ=−∞

skj,τe
−i2πfτ ,

where sjk,τ and skj,τ are square summable cross-covariance sequences.
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Definition 19. The spectral density matrix (spectral matrix) of {X t} is

defined as

S(f) =


S11(f) S12(f) . . . S1p(f)

S21(f) S22(f) . . . S2p(f)
...

...
. . .

...

Sp1(f) Sp2(f) . . . Spp(f)

 .

The matrix S(f) holds many important properties about the process {X t}
and we will make extensive use of it. One such property from [22] links the

spectral matrix to the partial correlation of the univariate processes. This is

given below.

Proposition 1. Given p-valued stochastic process {X t}, two univariate pro-

cesses {Xj,t} and {Xk,t} from {X t} are partially uncorrelated given all other

processes if

Sjk(f) = 0 (−1/2 ≤ f < 1/2).

Proof. See [22].

The Periodogram

Given some observations of a stochastic process, we investigate the peri-

odogram, an estimator for the spectral matrix defined in definition 19. Once

again this section closely follows [64]. We assume our stochastic process is

indexed by time and the difference between successive observations is ∆t = 1.

Definition 20. For p-valued vector random variables X1, . . . ,XN , the pe-

riodogram is defined as

Ŝ
(p)

(f) =
1

N

∣∣∣∣∣
N∑
t=1

X te
−i2πft

∣∣∣∣∣
2

.

Remark 8. 1. The periodogram as an estimator in its own right has

many undesirable properties, in particular the estimates can have very
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high variance. Instead it can be used as a basis for building better

estimators e.g. by smoothing or tapering.

2. We can write the discrete Fourier transform of our data as

W (f) =
1

N1/2

N∑
t=1

X te
i2πft.

The periodogram is then

Ŝ
(p)

(f) = W (f)W ∗(f).

This means we can use fast computational techniques used for calcu-

lating Fourier transforms, to calculate Ŝ
(p)

(f).

Definition 21. Let fj = j/n, the jth Fourier frequency and given a weight

sequence wk for k = −M . . .M where M is a parameter to be specified, then

the weighted (frequency smoothed) periodogram is defined as

Ŝ(fj) =

(
M∑

k=−M

wk

)−1 M∑
k=−M

wkŜ
(p)

(fj+k). (1.1)

If we also require
∑M

k=−M wk = 1, we can write the weighted periodogram

more concisely as

Ŝ(fj) =
M∑

k=−M

wkŜ
(p)

(fj+k).

Proposition 2. The weighted periodogram, is non-singular if and only if

2M + 1 ≥ p.

Proof. See [26] p. 3007.

Remark 9. 1. An example weight sequence and one that we use later is

wk = cos(πk/m).

2. The weighted periodogram is a consistent estimator of the spectral

matrix if M,N →∞ and M/N → 0 [59].
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3. For the samples we consider, we expect to have M >> p and certainly

2M + 1 ≥ p. Hence by proposition 2 we will have a non-singular

weighted periodogram that can be inverted.

4. The bandwidth 2M is an important parameter to specify as it controls

the level of smoothing. A larger M implies more smoothing, less vari-

ance but more bias towards the overall mean. The parameter can be

chosen visually by simply observing plots of the estimator for different

M . However for an automatic way, we recommend using methods such

as SURE [51] or PURE [52].

Vector Autoregressive Processes

A commonly studied class of stochastic processes are vector autoregressive

(VAR) processes. Below we define VAR processes and some useful conditional

independence results when using them. The section closely follows [85].

Definition 22. A p-valued stochastic process {εt} is called a white noise

process if

1. E[εi,t] = 0 for all i = 1, . . . , p and t ∈ T .

2. |cov(εi,t, εj,t)| <∞ for all i, j = 1, . . . , p and t ∈ T .

3. cov(εi,t, εj,s) = 0 for all i, j = 1, . . . , p and s, t ∈ T such that s 6= t.

Definition 23. A p-valued vector autoregressive process {X t} of order l

(V ARp(l)) satisfies the relationship

X t =
l∑

u=1

ΦuX t−u + εt

where the Φu ∈ Rp×p are coefficient matrices and εt ∈ Rp is a zero mean

white noise process with covariance matrix Σε ∈ Rp×p.
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Proposition 3. Let {X t} follow a V ARp(l) model and satisfy

det[Ip −
l∑

u=1

Φuz
u] 6= 0

for all z ∈ C such that |z| ≤ 1. Then {X t} is a second-order stationary

process.

Proof. See [57] p. 25.

Remark 10. For notational ease we write Φ0 = Ip.

The following proposition can be extracted from [85] to help us see which

constituent univariate stochastic processes (channels) of a VAR process are

partially uncorrelated. Two univariate stochastic processes from a multivari-

ate stochastic process are partially uncorrelated if they are uncorrelated when

the effect from all other processes in the multivariate process is removed.

Proposition 4. Let {X t} be a stationary stochastic process following a

V ARp(l) model such that Σε is a diagonal matrix. Then {Xj,t} and {Xk,t}
are partially uncorrelated if and only if

Φi(f)HΦj(f) = 0

for all values −1/2 ≤ f < 1/2, where

Φ(f) = −
l∑

u=0

Φue
−i2πfu

and we write

Φ(f) = [Φ1(f), . . . ,Φp(f)].

Proof. For a VAR process, it is a common result that the spectral matrix

can be written

S(f) = Φ−1(f)Σε[Φ
−1(f)]H
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for −1/2 ≤ f < 1/2. Hence

S−1(f) = ΦH(f)Σε
−1Φ(f).

As Σε is diagonal, it follows that Sij(f) = 0 if and only if

Φi(f)HΦj(f) = 0.

Hence the result follows from proposition 1.

Remark 11. For l = 1, proposition 4 is satisfied for {Xj,t} and {Xk,t} if all

the following hold

1. Ajk = 0

2. Akj = 0

3. For m = 1, . . . , p, Amj = 0 or Amk = 0

VAR Models

We use the following VAR5(1) models in this section for future testing as in

[85].

The VAR5(1) model with residuals distributed to a multivariate normal dis-

tribution is written

X t = Φ1X t−1 + εt (1.2)

where εt ∼ N (0,Σε). Hence a model is specified by Φ1 and Σε.

Model A:

1. Σε = I5
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2.

Φ1 =


0.2 0 −0.1 0 −0.5

0.4 −0.2 0 0.2 0

−0.2 0 0.3 0 0.1

0.3 0.1 0 0.3 0

0 0 0 0.5 0.2

 . (1.3)

3. By inspection of Φ1 and use of proposition 4, we see that the set

of missing edges is {(2, 3), (2, 5), (3, 4)}.

Model B (Matsuda [59]):

1. Σε = I5

2.

Φ1 =


0.2 0 0.3 0 0.3

0.3 −0.2 x 0 0

0.2 x 0.3 0 0

0.2 0.3 0 0.3 0

0.2 0 0.2 0.2 0.2

 , (1.4)

3. Again using proposition 4, we see that for x = 0, the set of missing

edges is {(2, 3), (2, 5)} and for x = 0.1 the set of missing edges is

{(2, 5)}.

Model C:

1. Σ−1
ε = I5 except for entries (1, 2) and (2, 1) which are equal to

0.5.

2. Φ1 of the same as (1.4) with x = 0

3. By considering in proposition 4 the form of the spectral matrix

S−1(f) = ΦH(f)Σε
−1Φ(f)

we see only edge (2, 3) is missing as opposed to {(2, 3), (2, 5)} when

Σε was diagonal.
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Random VAR Model Construction

We also make use of the random VARp(1) model construction specified in

the appendix of [85].

For a given p value a p × p matrix Φ1 was constructed with

null entries. All diagonal elements and non-diagonal elements in

position (i, j) for which (i+j) mod k = 1 were populated by random

values sampled from the N (0, 1) distribution. The matrix was

then subject to spectral decomposition and any eigenvalues with

modulus greater than unity were replaced by their reciprocals and

Φ1 reconstructed using the modified eigenvalues. For such a Φ1

we know det{Ip − Φ1z} 6= 0 for all |z| ≤ 1, [57, pp. 15 & 653]

and so a stationary process results. The choice of k controls the

sparsity; our default choice k = 5 makes approximately 64% of

the Φ1 matrix entries zero for p = 10 : 50.

Graphical Models

In this section we include some basic definitions for graphical models.

Definition 24. A graph G = (V,E) is an ordered pair where V is a set of

vertices/nodes and E is a multiset (allows multiple instances of a set element)

of edges. An edge is an ordered pair of elements from V .

Remark 12. We can think of an edge (v1, v2) ∈ E as representing some

directed relationship between vertices v1 and v2.

Definition 25. For graphical models G = (V,E) and G
′

= (V,E
′
), we say

G
′

is a subgraph of G if E
′ ⊂ E and we write this as G

′ ⊂ G.

Definition 26. A graph is simple and undirected if it contains no multiple

edges, loops and all edges are undirected i.e

1. E is a set
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2. @v ∈ V such that (v, v) ∈ E

3. (v1, v2) ∈ E ⇔ (v2, v1) ∈ E.

Remark 13. When working with undirected graphs, we can treat edges as

undirected pairs of vertices i.e. instead of writing (v1, v2) ∈ E and (v2, v1) ∈
E, we can write {v1, v2} ∈ E.

Definition 27. A graph is called a weighted graph if it has a weight/number

assigned to each edge.

Definition 28. For graph G = (V,E) ∈ G, the associated adjacency matrix

A ∈ [0, 1]p×p satisfies

Aij = 0⇔ (i, j) /∈ E

and

Aij = 1⇔ (i, j) ∈ E.

Remark 14. 1. We write the space of all simple directed graphs with p

vertices as Gp.

2. We write the adjacency matrix of G ∈ Gp as A(G) ∈ Rp×p.

3. If P ∈ P is a permutation matrix, we write P TGP as the graph with

adjacency matrix P TA(G)P .

Definition 29. We define the set of edges containing all information about

a simple undirected graph in Gp as

ES(p) = {{i, j}|1 ≤ i, j ≤ p and i < j}

Random Bernoulli Graphs

Definition 30. Let p ∈ Z+ and Q ∈ Rp×p such that 0 ≤ Qij ≤ 1 for

1 ≤ i, j ≤ p. Define the random Bernoulli graph GRBG(Q) to be a probability

distribution over Gp such that for G = GRBG(Q),

Pr[(i, j) ∈ E(G)] = Qij
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for all edges (i, j) ∈ {(i, j)|1 ≤ i, j ≤ p} and the events (edges existing) are

mutually independent.

Remark 15. Given a graph G0 ∈ Gp, then for G = GRBG(Q),

Pr(G = G0) =
∏

1≤i,j≤p

Q
I[(i,j)∈E(G0)]
ij · (1−Qij)

I[(i,j)/∈E(G0)].

Graphical Models for Stochastic Processes

In this section we define what it means for a stochastic process to have an

associated graphical model.

Definition 31. Given p-valued stochastic process {X t}, we say two uni-

variate processes {Xj,t} and {Xk,t} from {X t} are conditionally independent

given all other processes, if Xj,s and Xk,t are independent for all s, t ∈ Z,

given the random variables in stochastic process {X\jk,t}. We write this as

{Xj,t} ⊥ {Xk,t}|{X\jk,t}. (1.5)

We now define a graphical model for a multivariate stochastic process as in

[22].

Definition 32. Given a p-valued multivariate stochastic process {X t}, let

V = {1 . . . p} be a set of vertices and E ⊂ V ×V a set of edges between these

vertices. Then, if for j 6= k

(j, k) /∈ E ⇔ {Xj,t} ⊥ {Xk,t}|X\jk,t

and for j = k

(j, k) /∈ E,

we say (V,E) is a graphical model for {X t}.

Remark 16. Using definition 32, the graphical model of {X t} is a simple

undirected graph.
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The spectral matrix of a stationary Gaussian process is related to its graphical

model by the following result in [22].

Proposition 5. For a multivariate Gaussian stationary process {X t}, the

following are equivalent

{Xj,t} ⊥ {Xk,t}|{X\jk,t}

and

Sjk(f) = 0 (−1/2 ≤ f < 1/2).

Proof. Follows from proposition 1 and the fact that partial correlation for

Gaussian stationary processes is equivalent to conditional independence.

Definition 33. Consider a p-dimensional graph G = (V,E) such that each

vertex represents a set of random variables. Let Zi represent the set of ran-

dom variables for node i. Also, let N(i) represent the set of nodes that node i

shares an edge with. This then forms a Markov random field if the following

is satisfied,

Zi ⊥ Zj|ZN(i)

for all i ∈ V and j ∈ {k|k ∈ V and k /∈ N(i) and k 6= i}.

Remark 17. Definition 32 doesn’t use any notion of direction or causality

and defines an undirected graphical model. In this case, the graph and

univariate stochastic processes form a Markov random field [47].

Example 1. Consider the VAR4(1) model

X t = AX t−1 + εt (1.6)

where X t = (X1,t . . . X4,t)
T , εt ∼ N(0, I4) and

A =


0.3 0 0.1 0.2

0.4 −0.2 0 0.2

0 0 0.1 0

0.1 0.2 0 −0.3

 .
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By inspection of matrix A and the placement of the zeros, we can see using

proposition 4, that the conditionally independent processes are {X2,t} and

{X3,t}, as they don’t have any influence on each other except through other

variables. The graphical model of {X t} is represented by the graph below.

X1,t X2,t

X3,t X4,t

Figure 1.1: Graphical Model For (1.6)

Matrix Norms

Definition 34. The Frobenius norm between A,B ∈ Rp×p is defined as

||A−B||F =

√√√√ p∑
i=1

p∑
j=1

(Aij −Bij)2.

Multiple Hypothesis Tests

When a number of hypotheses are being tested simultaneously, we refer to

this as a multiple hypothesis test. With an individual test, we look to control

the level at which we incorrectly reject a null hypothesis e.g. only 5 % of the

time. This can be generalised when working with multiple hypothesis tests.

We will look at two measures of control, the familywise error rate (FWER)

and the false discovery rate (FDR).

Definition 35. If Y is the number of true null hypotheses that are falsely

rejected, then the FWER is defined as

FWER = P (Y ≥ 1).
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Remark 18. 1. The FWER is essentially the probability of making at

least one incorrect rejection.

2. If we were to individually test n independent hypotheses at a signifi-

cance level α, then we would have

FWER = 1− (1− α)n.

For a large n this value can be very high for standard choices of α (e.g.

5 %). If we are looking to control using FWER, this is may not be

what we want.

Definition 36. If Y is the number of true null hypotheses that are falsely

rejected and R is the total number of hypotheses rejected, then the FDR is

defined as

E
(
Y

R

)
.

Remark 19. When we have a large number of hypotheses, controlling the

FWER at the 5 % level say, it can result in a very unpowerful test. This is

because controlling the probability of making at least one incorrect rejection

must be very conservative causing many tests to be incorrectly accepted

(of course this depends on the difference in distribution between the null

and alternative and the proportion of true to false null hypotheses but the

argument is made qualitatively). In this case it can make more sense to use

the FDR as the controlling procedure.

Maximin Stepdown Procedure

Whether controlling using the FDR or the FWER, the maximin stepdown

procedure [53, Sec. 9.2] can be used to perform multiple hypothesis testing.

The algorithm is as follows
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Algorithm 1 Maximin Stepdown Procedure

Require: Ordered test statistics Z1 ≤ Z2 ≤ · · · ≤ ZL and monotonic critical
levels C1, . . . , CL

1: accept index ← 0
2: for i = L : 1 do
3: if Zi < Ci then
4: accept index ← i
5: break
6: end if
7: end for
8: accept set ← {j|1 ≤ j ≤ accept index}
9: return accept set

Remark 20. 1. If H1, . . . , HL are the corresponding hypotheses to statis-

tics Z1, . . . , ZL in algorithm 1, then we accept allHi where i ∈ accept set

and reject the rest.

2. In order to modify the procedure for different control procedures (FWER

or FDR), we change the values of the critical levels that we input.

3. The way we have given algorithm 1 is in terms of test statistics. That is

because later we use it for performing multiple hypothesis tests where

the individual tests are one-sided. For a more general approach, the

algorithm only requires a small modification so that instead of taking

test statistics it takes corresponding p-values.

FWER

Proposition 6. If we choose the Cl in algorithm 1 such that

Pr(Z l < Cl|H1, . . . , Hl) = 1− α (1.7)

then FWER ≤ α.

Proof. See [53] theorem 9.1.3.
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Remark 21. Hence to control the FWER we need to solve equations (1.7)

for Cl. Different methods are needed for when the statistics are dependent

and independent.

Proposition 7. To control the FWER with independent identically dis-

tributed statistics, use critical levels that solve

Pr(Z∗ < Cl) = (1− α)
1
l ,

where Z∗ is the distribution of the statistics under the null hypothesis.

Proof. Using first the ordered nature of the statistics and secondly the iden-

tical independent distribution of the statistics, we can write (1.7) as

Pr(Z l < Cl|H1, . . . , Hl)

=
l∏

i=1

Pr(Zi < Cl|H1, . . . , Hl)

= Pr(Z∗ < Cl)
l.

Using the ordering Z1 ≤ Z2 ≤ · · · ≤ ZL. Hence,

Pr(Z∗ < Cl) = (1− α)
1
l .

Remark 22. For Z∗ a standard normal distribution, we have

Cl = Φ−1((1− α)
1
l ).

In this case we would be performing a one-sided test, only rejecting values if

they are too large (not too small).

When the statistics are dependent, we can use the Holm approach [53, p. 363]

to choose the critical levels. This comes from the following proposition.
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Proposition 8. To control the FWER for dependent test statistics, use crit-

ical levels that solve

Pr(Z∗ < Cl) = 1− α

l
.

Proof. See [53] p. 363.

Remark 23. If Z∗ is standard normal distributed, we have

Cl = Φ−1
(

1− α

l

)
.

FDR

Once again, we can use different approaches for controlling the FDR when

the statistics are independent and dependent. The first is from [7].

Proposition 9. To control the FDR with independent identically distributed

statistics, use critical levels that solve

Pr(Z∗ < Cl) = 1− αl

L
.

Proof. See [7].

The paper [8] showed how to control the FDR for dependent statistics.

Proposition 10. To control the FDR for positive dependent test statistics

(i.e. Pr(X ∩ Y ) > Pr(X) Pr(Y )), use critical levels that solve

Pr(Z∗ < Cl) = 1− αl

L
∑L

i=1 1/i
.

Proof. See [8].

Remark 24. The
∑L

i=1
1
i

term in proposition 10 can cause the test to be

very conservative. Finding alternative critical values for more powerful tests

is a current area of active research.
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Independent Component Analysis

Independent component analysis (ICA) is a form of blind source separation

(BSS). Consider some stochastic process {X t ∈ Rp̃} and some unobserved

source stochastic process {St ∈ Rp} such that

X t = f({St}), (1.8)

where f is some transformation of the source process. Blind source separation

is concerned with retrieving the source process {St} from the observation

process {X t} [19, Ch. 1.2].

Depending on the form of transformation f , we can get different mixing

models e.g.

1. Instantaneous: f is an instantaneous linear transformation, represented

by a matrix A i.e. X t = ASt.

2. Convolutive: f is a finite impulse response filter represented by co-

efficient matrices A0, . . . , Al i.e. X t =
∑l

i=0 AiSt−i.

If we are to determine f , we need some assumptions to overcome the clear

unidentifiability inherent to (1.8). These generally fall under the umbrella

of assuming diversity between the sources which gets reduced when they are

mixed together. Hence we aim to choose an unmixing transformation that

maximises this diversity between the recovered sources. Note also that it is

only possible to recover the sources from the observations if the transforma-

tion f is invertible.

Some common types of diversity are:

1. Independent sources with non-Gaussian distributions (classical Inde-

pendent Component Analysis).

2. Sources with different temporal dependency structures.

3. Non-circularity where the sources are complex valued [30].

25



We now look at some common ICA methods.

Classical ICA

The classical approach to ICA considers observations as an instantaneous

linear mixing of sources [18] i.e.

X t = ASt (1.9)

for A ∈ Rp̃×p.

The sources are assumed spatially independent, with non-Gaussian distri-

butions (except at most one) and p̃ = p. In this case the BSS model in

(1.9) is identifiable. Note we do not use any temporal properties of the data

and the time indexing is essentially unimportant i.e. we could re-order the

observations in any way we wanted and it would not affect the model.

A popular measure of dependence between sources is mutual information

and it is common to separate the sources in (1.9) by minimising the mutual

information of the recovered signals [41]. We write the mutual information

for process {St} as

I({St}) =

p∑
i=1

H({Si,t})−H({St}), (1.10)

where H({Si,t}) is the entropy of process {Si,t)} and H({St} is the joint

entropy of the multivariate process {St}. Note this is not the entropy rate

and does not take into account temporal dependency.

For example the deterministic process at = 1− at−1 where a−1 = 0 has zero

entropy rate as it is simply a sequence of alternate 0 and 1. The entropy

of the sequence however is log(2) because while the entropy rate doesn’t

consider there to be any randomness in the sequence, the entropy doesn’t

take the temporal information into account and simply views a value from

the sequence as being 0 with probability 1/2 and 1 with probability 1/2.
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We also have the relation [19, Lemma 2.1], if g is an invertible linear trans-

formation such that St = g(X t) and g′ is its Jacobian, then

H({St}) = H({X t}) + E(log | det g′(X t)|). (1.11)

Note for all linear transformations satisfying g(x) = Bx, g′(x) = B and from

(1.10) and (1.11) this leads to the following contrast function that we aim to

minimise

C(B) =

p∑
i=1

H({Si,t})− log | detB|, (1.12)

where St = BX t and B ∈ Rp×p. This measures how independent the recov-

ered sources are when B is used as the unmixing matrix.

Note for a finite number of observations, the entropies H({Si,t}) must be

replaced by an estimator. A common method is to estimate the distribution

of a component using a kernel estimate [5] from which H({Si,t}) can be cal-

culated. Some popular algorithms for performing classical ICA are FastICA

[40], JADE [16] and Infomax [6].

Remark 25. When performing ICA, we want the recovered unmixing matrix

estimate B̂ from minimising (1.12) to be close to A−1 from (1.9). Note

however the columns of A and the source components can be permuted, or the

former multiplied by a constant and the latter by the inverse of the constant

and (1.9) is still satisfied. Hence there is an inherent indeterminability for

ICA of an unknown scaling and permutation.

ICA with Temporal Dependence

A further measure of diversity we can use is that of temporal dependence be-

tween the sources. A nice consequence of this is that we can separate sources

with Gaussian distributions if they have different second order temporal de-

pendence structures [81].

The separation can be seen as a consequence of minimising the mutual in-

formation rate [19, Ch. 2.3],
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Ir({St}) =

p∑
i=1

Hr({Si,t})−Hr({St}),

where

Hr({St}) = lim
T→∞

H(S1, . . . ,ST )/T

is the entropy rate. This leads to a contrast function analogous to before

C(B) =

p∑
i=1

Hr({Si,t})− log | detB|. (1.13)

As mentioned in [1], minimisation of entropy rate works in two ways. Firstly

it minimises entropy which can be thought of as minimising redundant in-

formation but it also promotes temporal dependence as this means new ob-

servations are easier to predict given past observations, therefore reducing

entropy rate.

Minimising (1.13) means that now (1.9) is separable if no two sources are both

Gaussian distributed and have proportional autocovariance matrices [1]. Al-

ternatively, what this is saying is that it is only inseparable if we have two

Gaussian source components {Si,t} and {Sj,t} that have proportional auto-

covariance matrices i.e. Ri 6= cRj for some c ∈ R where Rk
t1t2

= E[Skt1Skt2 ],

the autocovariance matrix of {Sk,t}.

Innovation Process ICA

Another possibility to take into account temporal information is to assume a

model as in [39] where we define the innovation process S̃t as the difference

between St and the best prediction of it from past data

S̃t = St − E(St|t,St−1, . . .S1). (1.14)

Determining E(St|t,St−1, . . .S1) is a regression problem which can be solved

using anything from a VAR model to a neural network, depending on the
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underlying structure of the stochastic process {St}.

Multiplying both sides of (1.14) by A and combining with (1.9) gives

AS̃t = X t − E(X t|t,St−1, . . .S1)

and as A is invertible, the information contained inX t−1, . . .X1 is equivalent

to that in St−1, . . .S1. So,

AS̃t = X t − E(X t|t,X t−1, . . .X1) = X̃ t.

Therefore, if we work with the assumption the S̃t are mutually independent

and non-Gaussian, we can recover the mixing matrix A by applying the

classical ICA techniques to X̃ t, recovered by fitting a regression model to

X. This is the approach we adopt in later chapters.
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2
Building Graphical Models

from Time Series at the Scalp

Level Using a Multiple

Hypothesis Test

Introduction

In this chapter, we look at a method for estimating the graphical model of

a p-valued stochastic process {X t} given some observed time series from

the process. In particular, we concentrate on Gaussian stationary processes.

The graph has p vertices and therefore p(p−1)/2 potential undirected edges.

This means there are 2p(p−1)/2 possible graphical models to choose from. We

look to develop a non-parametric technique that works for large dimensional

values p, without having to assume sparsity of the edges in the graphical

model. A prominent issue we then have to overcome is that of being able

to build a computationally tractable algorithm. We aim to solve this by

designing an efficient and readily parallelisable algorithm that can easily
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scale with advance in high performance computation hardware. The work in

this chapter closely follows that of [85].

Early work on extracting graphical models from time series was carried out

by Brillinger [12]. Dalhaus [22] proposed a non-parametric testing approach

which the techniques in this chapter are closely related to. Unfortunately

his initial approach required a test that the partial coherence between two

process components is zero at every computed frequency. This has many

complications, so an alternative test based on the maximum partial coherence

across all frequencies was proposed. However the asymptotic null distribution

is not known and must be approximated.

In [59], Matsuda used a non-parametric approach based on the Kullback-

Leibler (KL) divergence between estimated spectral matrices for an observed

time series, obeying certain constraints. The approach tests, based on a

statistic derived from the KL divergence, whether a spectral matrix con-

strained to a certain graphical model is significantly different from the spec-

tral matrix constrained to an alternative graphical model where it is assumed

the alternative graphical model is a correct graph (defined in section 2.1.1).

The asymptotic null distribution of the statistic is normal and fairly easy to

calculate.

Matsuda used the test in an iterative procedure by starting with a fully

connected graphical model (which is guaranteed to be correct) and testing

whether alternative subgraphs with one edge removed do not have a signifi-

cantly different constrained spectral matrix. Intuitively, if this is the case for

a subgraph, the constraint imposed on our spectral matrix by the graphical

model with an edge removed had little effect, implying the graphical model is

also correct. Matsuda then repeats this procedure but now testing using the

newly found correct graphical model in place of the fully connected graphical

model. Iterating in this way, once we reach a point where no more edges can

be removed without resulting in a likely incorrect graphical model, it means

we are left with a good estimate for the true graphical model.

Unfortunately the approach is computationally intractable even for time se-

ries with only moderately sized p (i.e. p = 10) and it doesn’t have a global
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type I error rate control, instead only using a control at each step of the itera-

tion. The relationship between this and the global rate is unclear. Moreover,

the calculation of the test statistic past the first iteration requires the itera-

tive procedure of section 2.1.2 as the exact formulation cannot be used which

further increases the computational burden.

Wolstenholme and Walden [85] proposed a highly parallel framework based

on multiple hypothesis testing (MHT) that solves many of the issues with

Matsuda’s approach. In particular, presenting an algorithm that is compu-

tationally tractable for far larger dimensional time series. The main points

as presented in the paper are

1. The tests are only performed between the fully connected graph and

graphs with one edge missing. This means that the test statistics can be

calculated using the exact approach in section 2.1.2 and do not require

iteration.

2. The MHT framework allows control of the FWER, a global measure

of the type I error rate. While not mentioned in the paper, only a

small modification to the critical levels used, allows the algorithm to

be adjusted to control the FDR, another global type I error measure.

This may be more appropriate in many practical applications.

3. The MHT method does not require the iterative testing that Matsuda

uses. This significantly reduces the computational burden of the algo-

rithm, resulting in a complexity of O(p4) in comparison to O(p6).

4. Simulations in [85] showed that for similar type I error rates, the MHT

algorithm achieved a power ‘at least as good’ as Matsuda’s algorithm.

These results are included at the end of this chapter.

5. As their is no iterative test procedure, there is also no dependency

between the outcome of individual tests. This allows the algorithm to

be almost perfectly parallelisable. Once again this was demonstrated

empirically and the results are included at the end of this chapter.
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The structure of this chapter is similar to [85] and is as follows, section 2.1

contains some necessary preliminary results. In section 2.2 we introduce the

test statistic used by Matsuda and the iterative procedure he used for select-

ing a graphical model. Section 2.3 is concerned with the multiple hypothesis

testing approach of Wolstenholme and Walden. The complexity of the al-

gorithm is formally investigated in section 2.4. The speed and accuracy of

both algorithms is compared empirically in section 2.5. A demonstration of

the parallelisability of the MHT approach along with some tests on larger

dimension models is included in section 2.6. Finally, section 2.7 contains the

results of the MHT algorithm on real EEG data, as used in [85] and the

chapter is ended with some concluding remarks and ideas for future work in

section 2.8.

Remark 26. 1. One can argue that the iterative approach of Matsuda

may lead to a more parsimonious model being fitted at each step, re-

sulting in a more accurate final graphical model than the MHT. [85]

show this does not appear to be the case for the small dimension models

it was computationally feasible to run a comparison for.

2. Another issue, not investigated in much detail, with the Matsuda it-

erative approach is that if a mistake is made i.e. an edge is removed

that shouldn’t be, we are no longer testing against a correct model on

the next iteration. This is a vital assumption for the test to have any

meaning.

3. The MHT framework can be used with other statistics that measure

whether an edge should be included in a graphical model, and alterna-

tive error measures. Only the Matsuda test statistic and FWER were

considered by [85].
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Preliminaries

Correct Graphs

The concept of correct graphs was introduced in [59] and also used in [85],

in order to test whether the true graphical model for Gaussian stationary

stochastic process {X t} given by definition 32, is a subgraph of a proposed

graphical model.

Definition 37. A graph G
′

= (V,E
′
) is correct for Gaussian stationary

stochastic process {X t} with true graphical model G = (V,E), if ∀(j, k) /∈ E ′

Sjk(f) = 0 (−1/2 ≤ f < 1/2) (2.1)

where S is the spectral matrix for {X t}.

Remark 27. By proposition 5, we see that (2.1) is equivalent to saying

G ⊂ G
′
. Clearly then the graphical model with no edges missing, G∗ is correct

for any {X t}. We later use the idea of missing edges imposing constraints on

the original time series conditional independence structure. When thinking

in this way, G∗ imposes no constraints, so is always correct.

Example 2. We illustrate the idea of correct graphs with an example from

[85].

In figure 2.1, G is the true graphical model. The graphs G0 and G1 are

correct as G ⊂ G0 and G ⊂ G1. However G 6⊂ G2 as the edge {2, 4} is

present in G but not in G2.

Fitting a Matrix Subject to Modelling Constraints in its In-

verse

We make use of the following technique employed in [59]. We first define the

problem to be solved and then give an algorithm for it.

Definition 38. Consider a matrix X ∈ Rp×p and a set F ⊂ {(i, j)|i =

1 . . . p, j = 1 . . . p} such that
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1 2 1 2

3 4 3 4

G1 G2

1 2 1 2

3 4 3 4

G G0

Figure 2.1: G0 and G1 are correct for G, but G2 is not correct for G

1. If (i, j) ∈ F , then (j, i) ∈ F .

2. (i, i) /∈ F for all i.

The fitting a matrix subject to modelling constraints in its inverse problem

(FMMCIP) is concerned with finding Y ∈ Rp×p satisfying

Yjk = Xjk (j, k) ∈ F,
Y jk = 0 (j, k) /∈ F.

(2.2)

Proposition 11. If |F | = 2, then the FMMCIP is solved by

Yjk = Xjk (j, k) ∈ F,
Yjk = Xjk + Xjk

XjjXkk−XjkXkj (j, k) /∈ F.

Proof. See [84].
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For any sized set F , the following algorithm from [84] can be used to solve

the FMMCIP.

Algorithm 2 Fitting a Matrix Subject to Modelling Constraints in its In-
verse

Require: X, F , convergence condition

1: Split F into m mutually exclusive sets Fi such that ∪Fi = F , |Fi| = 2
and (i, j) ∈ Fi ⇔ (j, i) ∈ Fi

2: Y0 ← X
3: n ← 0
4: while convergence not true do
5: n ← n+ 1
6: n

′ ← n mod m+ 1
7: for j = 1 : p do
8: for k = 1 : p do
9: if (j, k) ∈ Fn′ then

10: (Yn)jk ← (Yn−1)jk +
Y jkn−1

Y jjn−1Y
kk
n−1−Y

jk
n−1Y

kj
n−1

11: else
12: (Yn)jk ← (Yn−1)jk
13: end if
14: end for
15: end for
16: end while
17: return Y n

Proposition 12. In algorithm 2, the sequence of values Y n pointwise con-

verges to the solution of the FMMCIP i.e.

lim
n→∞

Y n = Y

where Y solves the FMMCIP.

Proof. See [78] proposition 3.

Remark 28. 1. Given an edge set of an undirected graph E, we can write

F = {(i, j)|{i, j} ∈ E, i > j} ∪ {(i, j)|{i, j} ∈ E, i < j}. Then, solving

the FMMCIP for F and the spectral matrix of a stochastic process
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{X t} can be thought of as creating a new spectral estimator ‘close’

to the old one but whose associated graphical model has zero edges

at least for all edges not in E (using proposition 5). Hence the graph

associated with the edge set E can be thought of as a constraint and

the new spectral estimator is a constrained version of the old.

2. If in the above we think of F as a set of directed edges, the statement

|F | = 2 in proposition 11 in is equivalent to saying E contains one

undirected edge.

Matsuda’s Work

In this section we give an overview of the work from [59]. We describe how the

test statistic was constructed and the iterative algorithm used for estimating

the graphical model of a Gaussian stationary stochastic process given some

observed time series.

Graphical Constraints

The following result from [60] is important when it comes to calculating

constrained estimated spectral matrices.

Proposition 13. Given graph (V,E) and (estimated) spectral matrix Ŝ(f) ∈
Rp×p. Then given another graph (V,E

′
), there exists T̂ (f) ∈ Rp×p such that

T̂jk(f) = Ŝjk(f) (j, k) ∈ E ′ ,
T̂ jk(f) = 0 (j, k) /∈ E ′ .

(2.3)

Proof. See [60] lemma 7.

Remark 29. As mentioned in [85], proposition 13 suggests a method for

determining whether a graph G2 = (V,E2) is correct given we know graph

G1 = (V,E1) is correct and G2 ⊂ G1. Writing T 1(f) as the unique matrix

solving (2.3) for true spectral matrix S(f) and graphical model G1, then

clearly by proposition 5, T 1(f) = S(f) as G1 is correct. Hence we can
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calculate estimate of true spectral matrix Ŝ(f) and find T̂ 1(f) and T̂ 2(f)

using (2.3) with Ŝ(f) and graphs G1 and G2 respectively. Intuitively, if we

find frequency values such that there is a big difference between T̂ 2(f) and

T̂ 1(f) ≈ S(f), then it suggests G2 is not correct.

Testing Problem

Using the ideas in the above remark, we want to be able to perform the

following test (using the same notation as [85]),

H0 : (V,E2) correct vs HA : (V,E2) incorrect

To perform this test we want to use some comparison between T̂ 1(f), the

estimated spectral matrix constrained by (V,E1) and T̂ 2(f), the estimated

spectral matrix constrained by (V,E2), where (V,E1) is known to be cor-

rect. A large difference provides more evidence in favour of the alternative

hypothesis HA.

Example 3. The 2D example from [85] helps illustrate this idea. Let Ŝ(f)

be the estimated spectral matrix for some observed time series. Let (V,E1)

be the fully connected graphical model (certainly correct) and (V,E2) be the

graphical model with both vertices unconnected. Then by (2.3),

T̂ 1(f) =

(
Ŝ11(f) Ŝ12(f)

Ŝ21(f) Ŝ22(f)

)

and

T̂ 2(f) =

(
Ŝ11(f) 0

0 Ŝ22(f)

)
.

Hence in this case, if Ŝ12(f) and Ŝ21(f) = Ŝ12(f)∗ are far from zero for

some frequency f , this provides evidence that (V,E2) is incorrect and the

vertices are connected. This also makes intuitive sense in the 2D case where

conditional independence (and partial uncorrelation) are equivalent to inde-

pendence (and uncorrelation).
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Test Statistic

Matsuda used the estimated KL divergence to create his test statistic. This

is defined as follows

Definition 39. The estimated KL divergence between estimated spectral ma-

trices T̂ 1(·) and T̂ 2(·) defined at the Fourier frequencies fj = j/N for j =

1 . . . N/2 is written

eKL(T̂ 1, T̂ 2) =
1

N

N/2∑
j=1

[
tr(T̂ 1(fj)T̂

−1

2 (fj))− log det(T̂ 1(fj)T̂
−1

2 (fj))− p
]

where N is assumed even.

The test statistic is then defined as follows.

Definition 40. Given observed time series x1, . . . ,xN , let Ŝ be the weighted

periodogram, calculated with weight sequence {wk} such that wk = u
(
k

2M

)
for

k = −M . . .M and u(·) an even function continuous on [−1/2, 1/2]. Also,

let T̂ 1(f) and T̂ 2(f) be the solutions of (2.3) where Ŝ(f) is the estimated

spectral matrix and (V,E1) and (V,E2) are the respective graphical models,

with (V,E1) assumed correct.

Then the Matsuda test statistic is written

ZN(T̂ 1, T̂ 2) =

[
2MN

Du(m2 −m1)

]1/2 [
eKL(T̂ 1, T̂ 2)− Cu(m2 −m1)

2M

]
(2.4)

where mi = #{{j, k}|{j, k} /∈ Ei} (total missing edges in (V,Ei)) and Cu, Du

are constants determined by u(·) whose exact formulation can be found in

[59].

The following result from [59] shows the asymptotic distribution of the above

statistic under certain conditions.

Proposition 14. Given the following assumptions,

1. The underlying stochastic process {X t} is Gaussian stationary.
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2. The true spectral matrix S(f) is positive definite for |f | ≤ 1/2.

3. Sjk(f) is twice differentiable for j, k = 1, . . . , p and −1/2 ≤ f < 1/2.

4. M = O(Nβ) for −1/2 < β < 3/4.

Then the following holds:

1. Under H0:

ZN(T̂ 1, T̂ 2)→ N (0, 1) as N →∞ .

2. Under HA:

ZN(T̂ 1, T̂ 2) =

[
2MN

Du(m2 −m1)

]1/2

KL(S,T 2) + op([MN ]1/2),

where S represents the true spectral matrix and KL(·, ·) is the true KL di-

vergence.

Proof. See [59].

Remark 30. As noted in [59], the dominant term under HA is positive,

resulting in a one-sided critical region.

Algorithm

We now provide the algorithm from [59], making use of the test statistic

defined in definition 40.
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Algorithm 3 Matsuda’s algorithm for estimating the graphical model of a
stochastic process

Require: Significance level α, observed time series x1, . . . ,xN ∈ Rp from
process, bandwidth parameter M , even continuous function u(·) on
[−1/2, 1/2]

Ensure: p ≤ 2M + 1

1: Calculate weight sequence wk = u
(
k

2M

)
for −M, . . . ,M

2: Calculate constants Cu, Du using weight function u and formulation in
[59]

3: Calculate Ŝ(f) the weighted periodogram for observations x1, . . . ,xN
with bandwidth M and weight sequence {wk}

4: Set (V,E0) as the p vertex graph with no missing edges
5: k ← 0
6: T̂ 0 ← Ŝ
7: while True do
8: Let (V,E1

k+1), . . . , (V,ELk
k+1) be the distinct subgraphs of (V,Ek) with

exactly one more edge missing
9: for i = 1 : Lk do

10: T̂
i

k+1 ← solution of (2.3) for graph (V,Ei
k+1) using algorithm 2

11: Zi
N ← ZN(T̂ k, T̂

i

k+1)
12: end for
13: Ck(α) ← Φ−1((1− α)1/Lk)
14: accept set ← {i|Zi

N ≤ Ck(α)}
15: if accept set = ∅ then
16: break
17: else
18: j ← index of min({Zi

N |i ∈ accept set})
19: (V,Ek+1) ← (V,Ej

k+1)

20: T̂ k+1 ← T̂
j

k+1

21: k ← k + 1
22: end if
23: end while
24: Return (V,Ek)

Remark 31. 1. The algorithm ends at step k when all the test statistics

are below Ck(α).

2. The probability all statistics are below the critical level, assuming all

41



statistics are Gaussian is

Pr

(
Lk⋂
i=1

(Zi
N ≤ Ck(α))

)
≥

Lk∏
i=1

Pr
(
Zi
N ≤ Ck(α)

)
= 1− α.

Hence if we specify a test at step k being the hypothesis all (V,Ei
k+1)

are correct, we should only make an error if we find a test statistic

greater than Ck(α), which from above occurs with probability ≤ α.

3. Note that the test in the point above that is performed at each iteration

of the algorithm is rather strange, as certainly if all (V,Ei
k+1) are cor-

rect, then the true graphical model should be the one with no edges.

As this is rarely the case, the error measure does not seem entirely

relevant. We instead see a more intuitive measure of the error being

controlled in the next section.

Worked Example

We now provide a worked example for algorithm 3, that was first shown in

[85]. The inputs are as follows,

1. α = 0.5

2. x1, . . . ,x1024 simulated time series from model A of section 1.5.1

3. M = 64

4. u(x) = cos(πx)

The true graph for the model used has missing edges {{2, 3}, {2, 5}, {3, 4}}.
The constant values are evaluated as Cu = 0.617 and Du = 0.446. The

weight sequence is easily calculated as wk = u(k/2M) for k = −M, . . . ,M .

Setting (V,E0) as the fully connected graphical model and looking at the

main loop in algorithm 3, we observe the following, where values of test

statistics and critical levels are given in table 2.1,
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Edge k = 0 k = 1 k = 2 k = 3

(1,2) 53.71 54.03 57.02 67.63
(1,3) 12.72 14.62 17.55 17.54
(1,4) 22.25 24.14 24.14 23.71
(1,5) 67.92 68.96 70.12 79.62
(2,3) 0.54 0.20 — —
(2,4) 18.16 17.82 17.82 22.41
(2,5) 1.89 1.90 1.94 —
(3,4) 0.21 — — —
(3,5) 5.86 5.29 5.50 5.49
(4,5) 73.17 72.60 72.60 77.23

Ck(0.05) 2.53 2.49 2.44 2.39

Table 2.1: Test statistics ZN (Tk, T
i
k+1) and critical levels Ck(0.05) for Matsuda’s algorithm

k = 0 : Edge {3, 4} corresponds to the lowest test statistic and it is below

the critical level, so set (V,E1) to the graph with it missing.

k = 1 : As above, although this time for edge {2, 3}. Set (V,E2) to the

graph with edges {{3, 4}, {2, 3}} missing.

k = 2 : As above, this time for edge {2, 5}. Set (V,E3) to the graph with

edges {{3, 4}, {2, 3}, {2, 5}} missing.

k = 3 : All test statistics are above the critical level. Break the loop and

return (V,E3).

Note that (V,E3) is in fact the true graphical model for the process defined

in model A and the algorithm has been successful.

An Efficient Testing Framework

In this section we look at the efficient testing framework used in [85] along

with Matsuda’s test statistic. The idea is based on multiple hypothesis test-

ing where the critical levels are chosen in order to control the FWER.

43



Multiple Hypothesis Testing

The multiple hypothesis testing approach in [85] is very similar to the k = 0

step of algorithm 3. The comparison against critical values is however slightly

different. The reason why only the k = 0 step is required is explained in their

proposition 15.

Proposition 15. Let f : {1, . . . , p(p − 1)/2} → E0 be a bijective mapping

from the integers to a fully saturated edge set E0. Let Ei
1 = E0 − f(i), the

edge set containing all possible edges except for f(i). If the graph (V,Ei
1) is

correct (with respect to some stochastic process {X t})for i = i1, . . . , is and

incorrect for all others, then the graphical model (V,E) for {X t} is the graph

with only edges {f(i1), . . . , f(is)} missing.

Proof. If graph (V,Ei
1) is correct and i corresponds to the edge {j, k}, then

by definition Sjk(f) = Skj(f) = 0 for −1/2 ≤ f < 1/2 where S(f) is the

spectral matrix of the true graphical model. This means that edge {j, k}
must also be missing in (V,E) and this is the case for all i = i1, . . . , is.

Conversely, if (V,Ei
1) is incorrect, Sjk(f) 6= 0 and {j, k} must necessarily be

in (V,E), hence the result.

Remark 32. Proposition 15 means that in fact knowing whether every

(V,Ei
1) is correct or incorrect is enough information to infer the true graphical

model. Hence we can restrict ourselves to just performing these tests.

Algorithm

We can now give the general algorithm for performing the multiple hypothesis

testing, where we leave the critical levels to be specified. First list the L =

p(p− 1)/2 hypotheses as in [85] to make notation easier,
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H1 : (V,E1
1) is correct; (1, 2) 6∈ E
...

Hp−1 : (V,Ep−1
1 ) is correct; (1, p) 6∈ E

Hp : (V,Ep
1) is correct; (2, 3) 6∈ E
...

HL : (V,EL
1 ) is correct; (p− 1, p) 6∈ E.

The algorithm is then given in algorithm 4.

Algorithm 4 MHT algorithm for estimating the graphical model of a
stochastic process

Require: Significance level α, observed time series x1, . . . ,xN ∈ Rp from
process, bandwidth parameter M , even continuous function u(·) on
[−1/2, 1/2], critical level function Ci(·) : [0, 1]→ R

Ensure: p ≤ 2M + 1

1: Calculate weight sequence wk = u
(
k

2M

)
for −M, . . . ,M

2: Calculate constants Cu, Du using weight function u and formulation in
[59]

3: Calculate Ŝ(f) the weighted periodogram for observations x1, . . . ,xN
with bandwidth parameter M and weight sequence {wk}

4: Calculate T̂
i

1 from T̂ 0 = Ŝ for all (V,Ei
1) using the exact formulation in

proposition 11 as there is only one missing edge

5: Calculate test statistics Zi
N = ZN(T̂ 0, T̂

i

1) for all (V,Ei
1)

6: Order test statistics by permutation σ i.e. Z
σ(1)
N ≤ · · · ≤ Z

σ(L)
N

7: Calculate critical levels Ci = Ci(α) for i = 1 . . . L
8: sorted accept set ← output of maximin stepdown procedure (algo-

rithm 1) with the ordered statistics and calculated critical levels
9: accept set ← {σ(i)|i ∈ sorted accept set}

10: (V,E)←Graph missing only edges corresponding to hypothesis Hi where
i ∈ accept set

11: Return (V,E)

Remark 33. 1. In [85], critical levels were chosen using the Holm ap-
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i Missing Edge Z
(i)
N Ci(0.05)

10 (4,5) 73.17 2.58
9 (1,5) 67.92 2.54
8 (1,2) 53.71 2.50
7 (1,4) 22.25 2.45
6 (2,4) 18.16 2.39
5 (1,3) 12.72 2.33
4 (3,5) 5.86 2.24
3 (2,5) 1.89 2.13
2 (2,3) 0.54 1.96
1 (3,4) 0.21 1.64

Table 2.2: Ordered statistics Z
(i)
N and critical levels Ci(0.05) for MHT

proach to control the FWER at level α i.e.

Ci(α) = Φ−1(1− α

i
).

2. We note that choosing critical levels according to other methods can

control different error measures e.g. using the FDR.

Worked Example

Once again, we use an example from [85] to demonstrate algorithm 4. Cal-

culating the test statistics and critical levels for each edge leads to the values

in table 2.2, ordered by test statistic column, where we use the same inputs

as in the previous worked example (i.e. observations based on VAR model

A) and critical levels defined by the Holm approach above.

Note that as Z
(i)
N ≥ Ci(α) for i = 10, . . . , 4 and ZN(3) < C3(α), we ac-

cept hypotheses corresponding to Z
(3)
N , Z

(2)
N and Z

(1)
N and reject the rest.

This is equivalent to returning an estimated graphical model with edges

{{2, 3}, {2, 5}, {3, 4}} missing, which is in fact the true graphical model for

model A.
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Theoretical Complexity

The theoretical complexity of both algorithms is given in the following propo-

sitions from [85].

Proposition 16. The number of test statistics calculated in the Matsuda

algorithm is O(p4) and in the MHT is O(p2).

Proof. For Matsuda’s algorithm, assuming the final output is the true graph-

ical model with k missing edges,

p(p− 1)

2
+

[
p(p− 1)

2
− 1

]
+ · · ·+

[
p(p− 1)

2
− k
]

= (k + 1)
p(p− 1)

2
− k(k − 1)

2
(2.5)

test statistics are calculated, where k ∈ {0, . . . , p(p − 1)/2}. Setting the

ratio of non-edges to total possible edges to a, we can write k = ap(p−1)
2

for

0 ≤ a ≤ 1. Then substituting into (2.5), the total number of test statistics

needing to be calculated, satisfies

p4

[
a

4
− a2

8

]
+ o(p4),

where o(p4) denotes terms of smaller order than p4.

For the MHT, regardless of the number of missing edges in the model, we

always calculate p(p− 1)/2 statistics, which is O(p2).

Remark 34. The value a
4
− a2

8
is increasing for a ∈ [0, 1]. Hence the sparser

the graph, the larger the value of a and the more test statistics need to be

calculated in the Matsuda algorithm (as it takes more iterations to remove

the necessary edges).

We now consider the complexity of actually computing the test statistics.

Given we have already computed the estimated weighted periodogram, a

necessary preprocessing step in both algorithms, we have the following result.
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Proposition 17. Given estimated weighted periodogram Ŝ(f) ∈ Rp×p at

the Fourier frequencies, constrained estimated weighted periodogram T̂ 1(f),

constants Cu, Du and total iterations lk in calculating (2.3), then given T̂1(f)

and T̂2(f), we can calculate the eKL summand

tr(T̂1(f)T̂−1
2 (f))− log det(T̂1(f)T̂−1

2 (f))

in time complexity O(1).

Furthermore, the complexity of calculating a test statistic ZN(T̂ 1, T̂ 2) where

T̂ 2 is a constrained weighted estimated periodogram to be calculated given

some constraining graphical model (V,Ek), is O(Np2).

Proof. By considering algorithm 2 with lk iterations, we see that calculation

of T̂ 2 for all Fourier frequencies is O(Np2lk). We also see the calculation of

the eKL under our assumption is O(N). Hence, treating lk as constant at

each step, calculation of the test statistics is O(Np2).

Remark 35. 1. In reality, the calculation of the eKL summand is O(p3)

with the determinant being the dominant function in terms of complex-

ity (calculated using LU decomposition). However, the p3 term has a

very small constant relative to the Np2 term and the time taken only

starts to behave like p3 for very large values of p.

2. Combining propositions 16 and 17, implies the main loop of both algo-

rithms for fixed N and under the eKL O(1) assumption, has complexity

T =

O(p6) for Matsuda’s algorithm;

O(p4) for the MHT.
(2.6)

3. The overheads for calculating the initial weighted periodogram and

performing the multiple hypothesis tests are o(p4), so do not factor

into either of the big O complexities above.

4. We denoted the total iterations by lk to signify the fact that in Mat-

suda’s algorithm, more iterations are needed as k increases in order to
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get a good estimate from algorithm 2. In the MHT case we treat k = 0

and here l0 = 1 as there is an exact solution in this case.

Small Dimension Comparisons

For small values of p in which it was possible to run Matsuda’s algorithm in a

reasonable time, [85] provided a comparison of the timings and the accuracy

of the Matsuda and MHT algorithm. We look at these comparisons in this

section.

Timing

Figure 2.2 from [85] illustrates the comparison between the time taken to run

each algorithm. The details are as follows, where T1 represents the time taken

for the Matsuda algorithm and T2 the time taken for the MHT algorithm

(a) A plot of T
1/6
1 vs p for Matsuda’s algorithm with N = 1024, M = 32.

T
1/6
1 is close to linear with respect to p.

(b) A plot of T
1/4
2 vs p for the MHT algorithm with N = 1024, M = 32.

T
1/4
2 is close to linear with respect to p.

(c) The ratio T1/T2 vs p (where T1 and T2 are from the above figures) show-

ing the increase in computation time for Matsuda’s algorithm compared

to the MHT, with respect to p.

(d) A plot of T2 vs MN for the MHT algorithm, where p = 5, M = N/32

andN is increased from 200 to 9000. The plot shows that as n increases,

the plot looks fairly linear.

In all the above, when specified with p and N , observations were simulated

from a VARp(1) model created according to the scheme in section 1.5.2 and

the time to compute each algorithm was recorded using α = 0.05, the M

provided, wk = cos
(
πk
2M

)
and Holm critical levels for the MHT algorithm.
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Figure 2.2: Calculation timings in seconds: (a) T1 for Matsuda’s algorithm, to the one-
sixth power, versus p, (b) T2 for the MHT, to the one-quarter power, versus p, (c) the
ratio of computation times T1/T2 versus p, and (d) T2 for the MHT versus MN. Here
N = 1024,M = 32.

Power

We now look at the comparison between the power of both algorithms as

reported in [85]. They empirically show that the stepwise procedure in [59]

does not improve the power of the testing procedure over the single step

multiple hypothesis test.

Model 1

The first model considered is the VAR process specified in model B. The

following combinations of (N,M) were used (512, 16), (1024, 32), (2048, 64)

for both cases x = 0 and x = 0.1. All the results were based on 600 separate
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Edge Average Standard Error

(1,2) 26.93 4.57
(1,3) 37.94 5.25
(1,4) 12.55 3.10
(1,5) 41.39 5.63
(2,3) 0.25 1.08
(2,4) 33.21 5.03
(2,5) 0.34 1.05
(3,4) 1.00 1.21
(3,5) 13.40 3.39
(4,5) 15.39 3.68

Table 2.3: Average and standard error of values of the Model B (x = 0) test statistic Zi
N

for each edge test with N = 2048,M = 64.

time series generated according to model B. The only edges considered were

{2, 3}, {2, 5} and {3, 4} as other edges being rejected occurred so infrequently

it wasn’t worth considering them (illustrated in table 2.3). As noted by the

authors, test statistics from the other edges are essentially treated as infinite.

Figure 2.3 from [85] shows the comparison between both algorithms. To get

the results for the MHT, the α value was varied between 0 and 0.5 in steps

of 0.00125. To get the results for Matsuda’s algorithm, a parameter β as

varied between 0 and 0.5 in steps of 0.00125.The transformation α = β5 was

then used as this allowed more values to be concentrated around zero which

gave a better grid for the empirical FWER. The FWER and effective power

in figure 2.3 were calculated as follows

1. FWER is the proportion of replications in which a true null hypothesis

was rejected i.e. an edge was included that shouldn’t have been.

2. Effective power was the proportion of replications in which the hy-

pothesis edge {3, 4} should not be included in the model, was correctly

rejected in the x = 0 case. In the x = 0.1 case it was the proportion of

replications in which hypotheses edge {2, 3} and {3, 4} not being edges

were both correctly rejected.
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Figure 2.3: FWER versus effective power for the MHT (solid lines) and Matsuda’s algo-
rithm (dashed line) for Model B, (1.4), with (a) N = 512,M = 16, x = 0 (b) N =
512,M = 16, x = 0.1, (c) N = 1024,M = 32, x = 0 and (d) N = 1024,M = 32, x = 0.1,
(e) N = 2048,M = 64, x = 0 and (f) N = 2048,M = 64, x = 0.1.

The results for x = 0 are in figure 2.3 (a), (c) and (e), while the results for

x = 0.1 are in figure 2.3 (b), (d) and (f). The MHT is represented by a solid

line and Matsuda’s algorithm by a dashed line. We can see in all cases the

effective power is very similar and that the MHT performs at least as well as

Matsuda’s algorithm.

Model 2

The second empirical test in [85] was based on model A. The missing edges

are {{2, 3}, {2, 5}, {3, 4}} and {3, 5} is a borderline edge as demonstrated

in table 2.4. Using the previous method for generating empirical FWER

and effective power values, where this time the effective power was the pro-

portion of 600 replications where the hypothesis {3, 5} is not an edge in

the model was correctly rejected. Simulations were run for (N,M) pairs

(512, 16), (1024, 32), (2048, 64) and once again we see in figure 2.4 that the

effective power is very similar.
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Edge Average Standard Error

(1,2) 50.00 5.93
(1,3) 15.74 3.52
(1,4) 22.02 4.34
(1,5) 64.12 6.79
(2,3) 0.29 1.06
(2,4) 15.66 3.38
(2,5) 0.27 1.06
(3,4) 0.32 1.05
(3,5) 3.86 1.95
(4,5) 66.09 6.61

Table 2.4: Average and standard error of values of the model 2 test statistic Zi
N for each

edge test with N = 2048 and M = 64.
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Figure 2.4: FWER versus effective power for the MHT (solid lines) and Matsuda’s algo-
rithm (dashed line) for Model A, (1.3), and (a) N = 512,M = 16 (b) N = 1024,M = 32
and (c) N = 2048,M = 64.

MHT Algorithm for Larger Dimensions

One of the key benefits of the MHT approach is its ability to run in a rea-

sonable time for larger values of p. While it is no longer possible to compare

with Matsuda’s algorithm for the larger dimensions, we can instead report

timings and the type I and II errors for individual tests. It is also possible
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Figure 2.5: Calculation timings in seconds for the MHT algorithm as p varies from 10 to
50. Here N = 2048 and M = 128.

to demonstrate that the MHT algorithm can be parallelised for even better

computational efficiency. All results were based on a VARp(1) model gen-

erated according to the scheme in 1.5.2, resulting in true graphical models

with around 36% of potential edges being present.

Timings

Figure 2.5 from [85] shows the timings for the MHT algorithm ranging from

p = 10 : 50. In all cases, parameter values of N = 2048 and M = 128 were

used. As noted by the authors, a crude scaling up of the p = 50 timing of

220s for the MHT by multiplying by p2, gives an estimated time of over 6

days for Matsuda’s algorithm.

Accuracy

In the higher dimension case we investigate the accuracy of the MHT algo-

rithm by considering type I and type II errors when estimating a graphical

model. A type I error is produced when an edge is included that shouldn’t

be and a type II error is an edge not included that should be. The type

I percentage error is then (number of true missing edges estimated as not

missing)/(number of true missing edges) and the type II percentage error is

(number of true non-missing edges estimated as missing)/(number of true

non-missing edges).
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p = 10 : 29 p = 30 p = 30 : 50

Type I 2.2 3.0 4.1
Type II 1.3 2.4 2.9

Table 2.5: Average type I and II percentage errors
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Figure 2.6: Type I and II percentage errors for p = 150 as α is varied. Here N =
2048,M = 512.

Table 2.5 from [85] shows the average type I and II percentage errors using

α = 0.05 where the average was taken over

1. Each model for p = 10 : 29.

2. 100 repeats for p = 30.

3. Each model for p = 30 : 50.

Remark 36. The increasing type I and II errors with respect to increasing p

is likely due to the relatively worse weighted periodogram estimate for fixed

N,M values.

Figure 2.6 from [85] shows the relationship between type I and II errors as α

is varies for p = 150, N = 2048 and M = 128.

Parallelisability

As noted in [85], the MHT algorithm can be split into 3 steps

55



1. Computing the weighted periodogram and its inverse

2. Calculating the p(p− 1)/2 test statistics

3. Performing the multiple hypothesis test

Step 3 is negligible in terms of time taken. Step 1 can be calculated fairly

efficiently as it consists of a fast Fourier transform (FFT) and a subsequent

filtering with a weight sequence. The time taken does however depend on

p,N and M . It can be parallelised in the sense that the above common

functions have been implemented (by others) to take advantage of GPUs

and multicore CPUs.

Step 2 however, the most compute intensive step, can be almost perfectly

parallelised as there is no dependency between test statistic calculation. Fig-

ure 2.7 from [85] illustrates this by assigning the calculation of each test

statistic to a different core of a multicore CPU. The result is an almost linear

relationship between time and 1/(number of cores). This indicates that be-

sides some constant overheads, the algorithm as expected is almost perfectly

parallelisable and can be easily scaled in terms of efficiency with advances in

parallel computing hardware.
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Figure 2.7: Calculation timings in seconds for the MHT algorithm for p = 60, N =
2048,M = 512 against the reciprocal number of cores, as the number of cores varies from 1
(right of plot) to 8 (left).
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Figure 2.8: Ten channel EEG time series for one of the negative-syndrome patients.

Application to EEG Data

We now look at the results from [85] when applying the MHT algorithm to

real EEG data. The dataset is explained in [61]. Essentially there are 33 male

patients, 19 of which are diagnosed with negative syndrome schizophrenia

and 24 are used as controls. The EEG data is collected when the subjects

are resting with eyes closed. The dimension of the time series of EEG data

for each patient is 10. Figure 2.8 from [85] shows an example time series for

a patient.

Figure 2.9 from [85] shows the percentage of negative syndrome schizophrenia

patients (heavy line) and controls (thin line) who were found to have an edge

existing in their graphical model, where the edge is indexed by the same

connection index as [61]. It is noted that 3/4 of the connections appear with

lower percentage for the controls, a result consistent with [61].

Conclusion and Future Work

Matsuda introduced a stepwise algorithm for estimating the graphical model

of a stochastic process given an observed time series from the process. The

approach however is very computationally expensive and only practical for

small dimensional time series.
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Figure 2.9: Percentage of negative-syndrome patients (heavy line) and controls (thin line)
exhibiting a specified connection. (N = 1024,M = 20, α = 0.01).

The approach in [85] was based on a multiple hypothesis testing procedure

using Matsuda’s statistic. The computational complexity of the MHT al-

gorithm was O(p4) as opposed to O(p6) for Matsuda’s. The algorithm was

shown to lend itself very well to parallel computing. Also, as it is based on

multiple hypothesis testing, the measure of error rate being controlled by the

algorithm is arguably more relevant.

Mentioned in [85] is the fact that it may be more intuitive for the type I

error to be deleting an edge that should be in the true graphical model. This

makes sense if we treat lack of edges as constraints, so the null hypothesis

would normally be that no constraint exists and we need to see evidence to

overturn this. However this would require the distribution of Matsuda’s test

statistic being accurately known under the alternate hypothesis which is not

the case.

Also noted in [85] is that the Holm approach used to select critical levels in

the multiple hypothesis test can be improved using an adaptive approach as

in [34] to be more powerful. However when implemented, the authors found

only small difference but commented it is worth further investigation.

We note that while Wolstenholme and Walden only focused on controlling the

FWER using Matsuda’s statistic, the multiple hypothesis testing framework

can be easily modified to control other error rate measures such as the FDR

and to use other, potentially better statistics.

Finally the parallelisation results only came from parallelising on multicore
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CPUs. Much larger speedups may be possible if specific high performance

computing hardware such as GPUs or FPGAs were used.
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3
Graph Matching

Introduction

We see in chapter 4 how to convert time series into undirected graphs with

labelled nodes up to some unknown permutation of the nodes. Given two of

these graphs, an interesting question is, fixing the first graph, what permu-

tation of the second graph makes it as similar as possible to the first. This

of course depends on how you measure similarity.

An intuitive method of measuring this similarity is to use the Frobenius norm

between adjacency matrices. Minimising this value over all possible permu-

tations of the nodes of the second graph is known as the graph matching

problem (GMP) [55]. This problem is very well studied in the literature over

many different fields. It is particularly well studied in the field of computer

vision but has many other applications, ranging from circuit design to social

network analysis. The problem itself can be split into exact graph matching,

where one tries to find an exact isomorphism from one graph to another and

inexact graph matching, where one aims to find how ‘similar’ two graphs are

to one another.

For graphs with the same number of nodes, finding the eigenvalues of the
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adjacency matrices is proven to be the optimal way to solve the exact graph

matching problem [82]. However, exact graph matching is not of much use for

noisy real world problems. In this chapter we concentrate solely on inexact

graph matching and refer to it simply as graph matching from now on.

A paramount issue with graph matching is the fact the number of fixed

node arrangements for a graph G = (V,E) is |V !|. Therefore computation

time for most optimal accuracy algorithms (that require the analysis of all

possible permutations) is exponential in the number of nodes. These become

infeasible as dimension increases and instead most methods are developed to

find a balance between speed and accuracy.

In fact, it is not hard to show that solving the GMP is equivalent to solving

a quadratic assignment problem (QAP) which is known to be NP-hard in

the general case. Hence exact solutions to the GMP can be computationally

intractable even when dealing with graphs with moderately sized dimensions.

Note also that the GMP in its basic sense does not take the node labels into

account. It is however alluded to in [90] and we show how it can be done in

chapter 7.

Spectral methods based on the graphs’ adjacency or Laplacian matrix are

very popular when aiming to find a good solution to the GMP. Xu and

King [89] presented a PCA approach as an approximation to the minimum

Frobenius norm over all vertex permutations, between two graphs adjacency

matrices. Knussow et al [48] used a method based on a projection onto

suitably selected eigenvectors of the graph Laplacian. Both [90] and [88]

solve relaxed versions of the GMP and then look to project the approximate

solution back onto the space of permutation matrices. This chapter covers the

main ideas behind these approaches and presents a graph matching algorithm

based on [86].

The layout of the chapter is as follows, section 3.1 contains some preliminary

results. Section 3.2 covers the basics of graph matching and section 3.3

presents an initial relaxation approach one can use. Section 3.4 gives an

overview of the method used in [88]. We first look at a simple method greedy

optimisation for improving the relaxed GMP solution in section 3.5 and a
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more advance technique in 3.6 which uses the ideas from [86]. We finish with

section 3.7 which contains results from [86] comparing against the method

in [90] and end with concluding remarks and ideas for further work.

Preliminaries

Frank-Wolf Algorithm

The Frank-Wolfe algorithm [28] is used for finding global minima of convex

quadratic functions with linear constraints on the variables. Note it can be

used on non-convex functions but the minimum it converges to cannot be

guaranteed to be a global minimum. We present the algorithm where the

linear constraints are that our matrix solution must be a doubly stochastic

matrix.

Algorithm 5 Frank-Wolfe algorithm for doubly stochastic solutions

Require: Objective function f : Rn×n → R, a stopping criterion and initial-
isation method

Ensure: Q̂ is a doubly stochastic matrix

1: Initialise Q(0) according to the initialisation method
2: i ← 0
3: while Stopping criteria not met do
4: Compute gradient ∇f(Qi)
5: Compute search direction W (i) = arg minQ∈D tr(∇f(Qi)Q) by the

Hungarian algorithm
6: Compute the step size α(i) = arg minα∈[0,1] f(Q(i) + αW (i)) (exactly

solvable as the objective is a quadratic function of α
7: Q(i+1) ← Q(i) + α(i)W (i)

8: i ← i+ 1
9: end while

10: Q̂ ← Q(i)

11: return Q̂
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Variance Adaption

This is a variance adaption scheme for sampling points in Rp as given in

[86]. Given xt ∈ Rp, consider sampling xt+1 from N(xt, σtIp) where we have

control over the σ2
t value. After sampling xt+1, project back onto the unit

hypersphere i.e. xt+1 ← xt+1

||xt+1|| . Now consider permutation matrices P (xt)

and P (xt+1) that are some functions of xt and xt+1. Define the distance

between them as

∆t = ||P (xt)− P (xt+1)||2F . (3.1)

Our goal is to choose σ2
t such that ∆t follows some given target function.

Mathematically we write this as follows. Assume

∆t = ∆̄t(σ
2
t ) + εt, (3.2)

where {εt} is some zero mean noise process and ∆̄(σ2
t ) is a deterministic

function i.e. E(∆t) = ∆̄(σ2
t ). Now let ft be the indexed values of the target

function we want ∆t to follow. Given we know ∆̄(·), we choose our σ2
t at

time t by solving

σ2
t = arg min

σ̃2
t>0
|ft − ∆̄(σ̃2

t )|. (3.3)

Fitting ∆̄

Given some previous observations of ∆t and σ2
t , we must learn an appropriate

function to approximate ∆̄. Firstly write yt = log(σ2
t ), as σ2

t > 0. Instead

of learning an estimate of ∆̄ directly, we aim to learn ∆̃(yt), an estimator of

∆̄(exp(yt))/∆̄max, where ∆̄max is the maximum value of ∆̄(·). To do this, we

learn ∆̃(yt) via logistic regression using previous values of ∆t/∆̄max and yt.

To approximate ∆̄max, we sample uniformly on the unit hypersphere z1, . . . zM

and set

63



∆max =
1

M

M∑
i=1

||P (x0)− P (zi)||2F , (3.4)

where x0 is some initial point in the variance adaption method. Then we use

∆max as an estimate for ∆̄max. Note that this works well if points far away

in Rp result in permutation matrices P (·) that also have a large distance

between them. This holds true in our main application, although if it didn’t

we would suggest finding a different way to estimate ∆̄max.

Pre-Samples

When we first begin, we have no observations to use to learn ∆̃. Therefore

we generate an initial set of pre-samples y−L, . . . , y−1. To generate these pre-

samples we use the following idea. Choose some small ε > 0 and sample yi

such that ∆i/∆max ∈ [ε, 1− ε]. The reason behind this is to avoid having all

samples falling within [0, ε] or [1− ε, 1] which would be inadequate for fitting

a logistic regression model. We use algorithm 6 to generate the pre-samples.
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Algorithm 6 Generate pre-samples for variance adaption algorithm

Require: ∆max, initial point x0, ε > 0 and δ > 1

1: s ← 1
2: # Get first bound ya
3: while True do
4: Sample ya from N(0, s)
5: Sample x from N(x0,

√
exp(ya)I))

6: x ← x/||x||
7: ∆a ← ||P (x0)− P (x)||2F
8: if ∆a/∆max /∈ [ε, 1− ε] then
9: break

10: else
11: s ← δs
12: end if
13: end while
14: # Get second bound yb
15: while True do
16: Sample yb from N(0, s)
17: Sample x from N(x0,

√
exp(yb)I))

18: x ← x/||x||
19: ∆b ← ||P (x0)− P (x)||2F
20: if [min(∆a,∆b)/∆max,max(∆a,∆b)/∆max] ⊃ [ε, 1− ε] then
21: break
22: else
23: s ← δs
24: end if
25: end while
26: # Order bounds
27: temp ← {ya, yb}
28: ya ← min(temp)
29: yb ← max(temp)
30: # Sample pre-samples
31: for i = 1 : L do
32: Sample y−i from U [ya, yb]
33: Sample x from N(x0,

√
exp(y−i)I)

34: ∆i ← ||P (x0)− P (x)||2F
35: if ∆i/∆max < ε then
36: ya ← y−i
37: end if
38: if ∆i/∆max > 1− ε then
39: yb ← y−i
40: end if
41: end for
42: Return y−1, . . . , y−L
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Learning ∆̃

Given initial pre-samples y−1, . . . , y−L we sample x−i fromN(x0,
√

exp(y−i)I)

and calculate

∆−i = ||P (x0)− P (x−i)||2F .

This gives independent variables

y−1, . . . , y−L

and dependent variables

∆−1, . . . ,∆−L

which we use to find ∆̃ using a logistic regression. Note that as we con-

tinue to run our algorithm we receive more information from σt and ∆t.

To continue to make use of this, we have a parameter T such that when

t mod T = 0, we re-learn ∆̃ but now using y−L, . . . , y−1, y0, . . . , yt and

∆−L, . . . ,∆−1,∆0, . . . ,∆t.

Figures 3.1 and 3.2 from [86] show an example of our variance adaption

logistic regression learning of ∆̃ (which we can see is a reasonably good

fit) and the tracking of the target function. The target function used was

ft = ∆max[1− (t/1000)0.6] with re-learning parameter T = 100. We point out

the importance of the incremental updating using T as in this case, initially

∆t moves away from ft but is quickly corrected when new samples are added

to the regression. In this case we used a function for the permutation matrices

that we will see later, for Q ∈ Rp×p,

P (x) = arg min
P∈P
||Qx− Px||2F .

Graph Matching

Given graphs GA, GB ∈ Gp with matrices A,B ∈ Rp×p such that A = A(GA)

andB = A(GB), then the aim of graph matching based on adjacency matrices
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Figure 3.1: Illustration of learning ∆̃(yt). The circles show ∆t/∆max (vertical) against yt
(horizontal). The crosses give the fitted logistic curve for ∆̃(yt).
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Figure 3.2: ∆t (hashed line) versus ft (thick curve), against t.

in a general form is to find

P ∗ = arg min
P∈P
||A,P TBP ||, (3.5)

where P is the set of p×p permutation matrices and ||·, ·|| is a matrix distance

measure. The distance is often chosen to be the Frobenius norm of the

difference of the two adjacency matrices, giving the equation

P ∗ = arg min
P∈P
||A− P TBP ||2F . (3.6)
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Relaxation

Solving (3.6) is usually a very computationally expensive operation and the

time taking becomes prohibitive even for moderately sized p. Current meth-

ods such as [90] and [88], solve a relaxed version of (3.6) by optimising over

a superset of the permutation matrices X ⊃ P and solve

Q∗ = arg min
Q∈X

fA,B(Q) (3.7)

such that

arg min
Q∈P
||A−QTBQ||2F = arg min

Q∈P
fA,B(Q),

Remark 37. Some common choices of fA,B are

1. The standard GMP formulation

fA,B(Q) = ||A−QTBQ||2F ,

2. The formulation used in [90]

fA,B(Q) = ||QA−BQ||2F ,

3. The formulation used in [88]

fA,B(Q) = − tr(AQBTQT ).

Another interesting choice that we haven’t yet seen studied would be to

extend the matrices to non-linear transformations using,

fA,B(Q) = ||B −Q{Q{AT}T}||2F ,

for some general transformation

Q : Rp → Rp
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whose extension to

Q : Rp×p → Rp×p

is defined as

Q{X} = [Q{X1}, Q{X2}, . . . , Q{Xp}],

where Xi is the ith column of X. Clearly taking Q as a matrix turns this

into standard matrix multiplication and means that our condition

arg min
Q∈P
||A−QTBQ||2F = arg min

Q∈P
fA,B(Q)

is satisfied.

The most common choice of X, the set to relax over, is the set of doubly

stochastic matrices D = {Q ∈ Rp×p : Q1 = QT1 = 1 and Q � 0}. For

fA,B(Q) = ||A − QTBQ||2F this results in (3.7) being a convex optimisation

and can be efficiently solved by the Frank-Wolfe algorithm. Note that if

fA,B(Q) = − tr(AQBTQT ), the optimisation is no longer convex but Frank-

Wolfe can still be used to find a local optima. This will be discussed in more

detail later.

We could also try relaxing over the orthogonal matrices Q = {Q ∈ Rn×n :

QQT = I}. Once again (3.7) can be efficiently solved, this time using the

singular value decomposition. However as mentioned in [86] this does not

have a unique solution and in fact has at least 2p solutions. If the eigenvalues

of either A or B are not distinct, it has over 2p solutions.

Projection

The intuition behind the relaxation is that because X ⊃ P, a permutation

that is close to the solution Q∗ of (3.7), should be a good candidate as an

approximate solution to the GMP.

A commonly used projection (i.e. in [88]) is

P ∗ = arg min
P∈P
||Q∗ − P ||F = arg max

P∈P
tr(QTP ) (3.8)
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the closest permutation matrix to Q∗ with respect to Frobenius norm. This

can be efficiently solved by the Hungarian algorithm in O(p3) as

max
P∈P

tr(QTP )

is a linear assignment problem [15].

Another method of projecting back to the permutation matrices, used by

Wolstenholme and Walden [86], is to use the following projection

P ∗ = arg min
P∈P
||Q∗x− Px||F (3.9)

for some x ∈ Rp. By sampling the x from a suitably chosen probability distri-

bution and applying (3.9) to each, you obtain an empirical distribution over

the permutation matrices. This can then be explored to find potential solu-

tions of (3.6) using an optimisation technique such as simulated annealing.

We look at this approach in more detail later.

Convex Relaxation

An initial idea to solve a relaxed form of the GMP was QCV [68], a convex

relaxation. This is defined by setting

fA,B(Q) = ||QA−BQ||2F (3.10)

and relaxing over the set of double stochastic matrices D. For a given A,B ∈
Rp×p, we can solve

arg min
Q∈D

fA,B(Q) (3.11)

using the Frank-Wolfe algorithm. Note that (3.10) is a convex relaxation so

has a unique global minimum. However it is not guaranteed that project-

ing this minimum back onto the set of permutation matrices will lead to a
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solution close to the actual minimum of the non-relaxed GMP. In fact as

commented on in [90] and [88], the method often performs rather poorly.

Algorithm

The algorithm including both the Frank-Wolfe optimisation and projection

step is as follows, writing fA,B as f for convenience, is given in algorithm 7.

Algorithm 7 QCV for finding an approximate solution to the GMP

Require: Adjacency matrices A,B, a stopping criterion and an initialisation
method (see below)

Ensure: P̂ is a permutation matrix

1: Initialise Q(0) according to the initialisation method
2: i ← 0
3: while Stopping criteria not met do
4: Compute gradient ∇f(Qi) = −2BQ(i)AT − 2BTQ(i)A +

2BTQ(i)(Q(i))TBQ(i) + 2BQ(i)(Q(i))TBTQ(i)

5: Compute search direction W (i) = arg minQ∈D tr(∇f(Qi)Q) by the
Hungarian algorithm

6: Compute the step size α(i) = arg minα∈[0,1] f(Q(i) + αW (i)) (exactly
solvable as the objective is a quadratic function of α)

7: Q(i+1) ← Q(i) + α(i)W (i)

8: i ← i+ 1
9: end while

10: Compute P̂ = arg minP∈P− tr(Q(i)P T ) by the Hungarian algorithm
11: return P̂

Fast Approximate Quadratic Programming for Graph Matching

In [88] they cast the graph matching problem as a quadratic assignment prob-

lem. They then solved a relaxed version of the QAP to get an approximate

solution to the GMP and named the algorithm fast approximate quadratic

programming for graph matching (FAQ). In particular they use

fA,B(Q) = − tr(AQBTQT ) (3.12)
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relaxed over the set doubly stochastic matrices.

The below proposition shows the relationship between the GMP and the

QAP.

Proposition 18. The solution to the graph matching problem with adjacency

matrices A,B ∈ Rn is equivalent to the solution of the quadratic assignment

problem with matrices −A and B.

Proof. This results from expanding the GMP equation as follows

arg min
P∈P
||A− P TBP ||F = arg min

P∈P
tr[(A− P TBP )T (A− P TBP )]

= arg min
P∈P

tr(ATA)− 2 tr(AP TBTP ) + tr(P TBTPP TBP )

= arg min
P∈P
− tr(AP TBTP )

We note that tr(P TBTPP TBP ) = tr(P TBTBP ) = tr(BTB) as firstly per-

mutation matrices are orthogonal and secondly the affect of the transforma-

tion P TXP for X ∈ Rn on the leading diagonal is simply to swap the values,

hence leaving the trace unaffected.

Local Minima

We can write the problem when relaxed over the set of doubly stochastic

matrices as

arg min
Q∈D
− tr(AQBTQT ). (3.13)

Unlike QCV, this is not longer necessarily a convex optimisation. While it is

still then NP-hard to find a global optimum, the relaxation allows the use of

continuous optimisation to find a local optima which can then be projected

onto P, giving an approximate solution to the GMP. Multiple initial points

can be used when solving (3.13) to help to alleviate this issue. Note that

despite the non-unique solutions, FAQ tends to outperform QCV in almost

all difficult problems in QAPLIB [14], a widely used benchmark for QAP

solvers.
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Initial Points

As mentioned previously, the algorithm output is sensitive to the choice of

initial point. A number of different methods can be used:

1. An intuitive point to use if we are only going to use a single run of the

algorithm would be

J = 11T/p

the completely flat non-informative doubly stochastic matrix.

2. If we are going to use multiple starts, it is necessary to add some

randomness to the choice of the initial point. In this case [88] suggest

using Sinkhorn balancing [74] to sample a random double stochastic

matrix K and use as initial point

(J +K)/2.

3. A final option if we are just using a single start is to use the doubly

stochastic matrix that is the pre-projected solution of QCV.

Algorithm

We can now present the full FAQ algorithm for finding an approximate so-

lution to the GMP, writing fA,B as f for convenience, in algorithm 8.
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Algorithm 8 FAQ for finding an approximate solution to the GMP

Require: Adjacency matrices A,B, a stopping criterion and an initialisation
method (see below)

Ensure: P̂ is a permutation matrix

1: Initialise Q(0) according to the initialisation method
2: i ← 0
3: while Stopping criteria not met do
4: Compute gradient ∇f(Qi) = −AQ(i)BT − ATQ(i)B
5: Compute search direction W (i) = arg minQ∈D tr(∇f(Qi)Q) by the

Hungarian algorithm
6: Compute the step size α(i) = arg minα∈[0,1] f(Q(i) + αW (i)) (exactly

solvable as the objective is a quadratic function of α)
7: Q(i+1) ← Q(i) + α(i)W (i)

8: i ← i+ 1
9: end while

10: Compute P̂ = arg minP∈P− tr(Q(i)P T ) by the Hungarian algorithm
11: return P̂

Remark 38. It may be possible in certain cases to modify the projection

step when performing relaxed graph matching to improve upon the output

permutation matrix when simply using a direct projection (3.8). We investi-

gate two methods, a 2-opt strategy applied to the permutation matrix after

projection and a simulated annealing approach as a substitute for the direct

projection step. Both bear some similarities, the former being a search di-

rectly in the permutation space and the latter being a transformation of the

search into Euclidean space Rp.

2-opt

The 2-opt strategy is a greedy method for improving an output permutation

matrix with respect to some objective function by considering all possible

swaps of pairs of its rows and updating it to the permutation matrix with

the minimum objective value over the swaps. The algorithm is alluded to in

[44] which was referenced by [69] as the source of the 2-opt algorithm. The

actual algorithm is not explicitly included in [44], so we provide it here in
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algorithm 9.

Algorithm 9 2-opt strategy for greedy optimisation

Require: Permutation matrix P0 ∈ Rp×p, objective function f : P→ R

1: while True do
2: for i = 1 : p− 1 do
3: for j = i+ 1 : p do
4: P (i, j) ← Permutation matrix swapping rows i and j
5: Cij ← f(PijP0)
6: end for
7: end for
8: ī, j̄ ← arg mini,j Cij
9: if Cīj̄ < f(P0) then

10: P0 ← Pīj̄P0

11: else
12: break
13: end if
14: end while
15: return P0

Dynamic Calculation

In the graph matching case, we do not have to re-calculate f(PijP0) from

scratch for each i and j value. Let P0 ∈ P be the output from a relaxed graph

matching approach e.g. QCV. The objective function we know is written

f(P ) = ||A− P TBP ||2F .

Given f(P0), we want to find the most efficient way of calculating f(PijP0).

Well,

f(P0) =

p∑
r=1

p∑
s=1

(Ars − (P TBP )rs)
2.

This can be written as
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f(P0) =

p∑
r=1

p∑
s=1

(Ars − (P T
0 BP0)rs)

2I(r /∈ {i, j}, s /∈ {i, j})

+
∑
r∈{i,j}

p∑
s=1

(Ars − (P T
0 BP0)rs)

2 +
∑
s∈{i,j}

p∑
r=1

(Ars − (P T
0 BP0)rs)

2

−
∑
r∈{i,j}

∑
s∈{i,j}

(Ars − (P T
0 BP0)rs)

2.

Therefore

f(P0)− f(PijP0) =∑
r∈{i,j}

p∑
s=1

(Ars − (P T
0 BP0)rs)

2 − (Ars − (P T
0 P

T
ijBPijP0)rs)

2

+
∑
s∈{i,j}

p∑
r=1

(Ars − (P T
0 BP0)rs)

2 − (Ars − (P T
0 P

T
ijBPijP0)rs)

2

+
∑
r∈{i,j}

∑
s∈{i,j}

(Ars − (P T
0 P

T
ijBPijP0)rs)

2 − (Ars − (P T
0 BP0)rs)

2. (3.14)

Hence, we can efficiently evaluate f(PijP0) using f(P0) and summing 4p+ 4

terms in (3.14)as opposed to p2 terms if calculating the value from scratch.

A Sampling Strategy for Projecting to Permutation Matrices

Similarly to the 2-opt strategy, in this section we wish to improve our out-

put relaxed graph matching permutation matrix. However in this case our

improvement is a substitute for the direct projection step of graph matching

as opposed to working with the permutation matrix after direct projection

as the 2-opt strategy does. The rest of this section closely follows the work

in [86].
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Matrix Rounding

Given a matrix Q ∈ X ⊃ P we look to round/project it to some close P ∈ P.

As we saw previously this is normally done using the direct projection step

solving the linear assignment problem

arg max
P∈P

tr(QTP )

using the Hungarian algorithm in O(p3) time.

We instead consider an alternative rounding. For a given x ∈ Rp, solve

arg min
P∈P
||Qx− Px||2F . (3.15)

It is shown in theorem 2 this is a sorting problem it can be solved in O(p log p)

time. Clearly (3.15) provides a different solution for different values of x and

the method is based on exactly which x to choose to try to get a good solution

to the GMP i.e. a solution close to the optimal solution.

Barvinok’s Method

Barvinok showed in [4] a method for rounding an orthogonal Q to a permu-

tation matrix by considering the action of Q on a vector x ∈ Rp sampled

from a Gaussian distribution.

Definition 41. Let r(x) ∈ Zp+ represent the ordering of vector x such that

r(x)i = j where xj is the jth smallest value of x.

Example 4. If we let x = [3.1, 7.3, 2.4, 8.7]T then we have r(x) = [2, 3, 1, 4]T .

Representing Barvinok’s idea using this notation, Q rounds to P ∈ P (given

x) if they both transform x so the sorting is in the same order i.e.

Pr(x) = r(Qx). (3.16)
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We also note that permutation matrices always round to themselves as

Pr(x) = r(Px). (3.17)

If we consider the fact as Barvinok did, that the x ∈ Rp are from a Gaussian

distribution, then the above provides a way of projecting Q to a distribution

of permutation matrices. Clearly the distribution can be sampled from by

first sampling x and then solving (3.16).

Remark 39. 1. Nothing in the process requires Q to be orthogonal and it

can be used for other classes of matrices, in particular doubly stochastic

matrices.

2. The distribution that the vector x is sampled from does not have to be

Gaussian. Of course the distribution chosen for x directly effects the

implied distribution over the permutation matrices.

We now show as in [86], that this method from Barvinok is equivalent to the

alternative rounding method (3.15).

Theorem 2. Given x ∈ Rp and Q ∈ Rp×p, any permutation matrix P solving

(3.16) is also a solution to (3.15).

Proof. We first show that

F (P )
def
= ||a− Pb||2F

is minimised when permutation matrix P sorts the vector b such that ai ≤
aj ⇒ (Pb)i ≤ (Pb)j i.e., r(a) = r(Pb).

The contribution to F at indices i and j is

(ai − ci)2 + (aj − cj)2,

where c
def
= Pb. Now,

(ai − ci)2 = (ai − cj + cj − ci)2

= (ai − cj)2 + (cj − ci)(2ai − cj − ci).
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Similarly,

(aj − cj)2 = (aj − ci)2 + (ci − cj)(2aj − cj − ci).

Therefore,

(ai − ci)2 + (aj − cj)2 = (ai − cj)2 + (aj − ci)2

+ (cj − ci)(2ai − 2aj). (3.18)

We also know that if P is to be an optimal transformation, we must have

(ai − ci)2 + (aj − cj)2 ≤ (ai − cj)2 + (aj − ci)2, (3.19)

otherwise we can define P
′
such that (P

′
b)k = (Pb)k for k 6= i, j but (P

′
b)i =

(Pb)j and (P
′
b)j = (Pb)i. Clearly if (3.19) did not hold, F (P

′
) < F (P ),

contradictory to P being optimal.

Combining (3.18) and (3.19) gives (cj−ci)(ai−aj) ≤ 0. Hence if ai ≤ aj then

we must have ci ≤ cj. Thus F (P ) is minimised when P sorts b to the same

ordering as a. Letting a = Qx and b = x in theorem 2 gives the result.

We also have the following proposition that allows us for any distribution

of x in Rp, to convert this to a distribution on the unit hypersphere. This

is useful in that it makes sampling x easier and it provides more geometric

insight into exactly what is happening in our process.

Proposition 19. The solution of (3.15) is invariant to the norm of x, i.e.,

if P (Q,x) is the solution and we write x = (r,θ) in polar coordinates then

we can equally write P (Q,θ) as the solution.

Proof. Consider x1,x2 ∈ Rp such that x1 = (r1,θ) and x2 = (r2,θ). Then

as both the sorting of a vector x ∈ Rn is unchanged by multiplication by

some constant k > 0 and also Q(kx) = kQx is also unchanged with respect to

sorting, if P solves (3.15) for a given Q and x1, it also solves it for (r2/r1)x1 =

x2, a rescaled version of x1.
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Permutation Distribution

We can now formally define the permutation distribution elicit by Q ∈ Rp×p

and cumulative distribution function µ for random variable X that our x

are drawn from.

Definition 42. We define the set of points in Rp that round Q to P ∗ ∈ P as

SQ(P ∗) = {x0 ∈ Rp|P ∗ = arg min
P∈P
||Qx0 − Px0||2F}.

Definition 43. The random variable representing the distribution over the

permutation matrices elicit by Q and µ is written PQ,µ and satisfies

Pr(PQ,µ = P )
def
= Pr(x ∈ SQ(P )).

Remark 40. 1. For different permutation matrices P1 and P2, the inter-

section SQ(P1) ∩ SQ(P2) is a set of measure zero. We prove this later.

2. Unless it is unclear the Q matrix being referred to, we drop the Q

subscript from the notation SQ(·) in future.

Link to Direct Rounding

Interestingly, for appropriately chosen values fo the distribution µ, we can

show that minimising the expected Frobenius norm EX [||QX − PX||2F ] is

equivalent to projecting Q directly onto P using (3.8) as shown in [86].

Proposition 20. For X uniformly distributed on the unit hypersphere

Sp−1 def
= {x ∈ Rp : ||x|| = 1},

we have that

arg min
P∈P
||Q− P ||2F = arg min

P∈P
E(||QX − PX||2F). (3.20)

Proof. We show this in 3 steps:
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1. Firstly,

min
P∈P

E(||QX − PX||2F) = max
P∈P

∫
Sp−1

xTQTPx dx.

2. Considering the quantity
∫
Sp−1 x

TAx dx for some A ∈ Rp×p,

(a) all off-diagonal terms, i.e., those of the form Aijxixj for i 6= j,

integrate to 0,

(b) all diagonal elements Aiix
2
i integrate to Aiiβ for some constant β.

3. Hence maxP∈P
∫
Sp−1 x

TQTPx dx is equivalent to maximising tr(QTP )

which is equivalent to minP∈P ||Q−P ||F, so the result in (3.20) follows.

Step 1

||Qx− Px||2F = tr{(Qx− Px)T (Qx− Px)}
= tr{(Qx)T (Qx)}+ tr{(Px)T (Px)}
− 2xTQTPx

= tr{(Qx)T (Qx)}+ xTx− 2xTQTPx,

using the fact that P is an orthogonal matrix.

Therefore,

min
P∈P

E(||QX − PX||2F) = max
P∈P

∫
Sp−1

xTQTPx dµ

= max
P∈P

∫
Sp−1

xTQTPx dx,

where the final equality is a result of µ being a uniform distribution.

Step 2 Now consider I
def
=
∫
Sp−1 x

TAxdx. Writing x in terms of hyperspher-

ical coordinates, we have on the unit hypersphere that the volume element

is

sinp−2(θ1) sinp−3(θ2) . . . sin(θp−2)dθ1 . . . dθp−1,
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and

x1 = cos(θ1)

x2 = sin(θ1) cos(θ2)
...

xp−1 = sin(θ1) . . . sin(θp−2) cos(θp−1)

xp = sin(θ1) . . . sin(θp−2) sin(θp−1).

Consider off-diagonal elements of I of the form Aijxixj. For i 6= j, we see

that xixj contains at least one term of the form sinL(θk) cos(θk) for L ≥ 0,

i.e., when k = i or k = j as we cannot have both i = p and j = p as they

cannot be equal. Hence∫
X
xixj dx = 2

∫
I

∫ π

0

sinL(θk) cos(θk)dθkf(θ/k)dθ/k,

where f is some function, θ/k is a vector of all θl without θk and I is the

region over which we are integrating θ/k. But,∫ π

0

sinL(θk) cos(θk)dθk =

[
sinL+1(θk)

L+ 1

]π
0

= 0,

so all off-diagonal elements of I integrate to 0.

Now consider diagonal elements of I, of the form Aiix
2
i . We now require two

identities. Firstly, ∫ π

0

sinp(θ) cos2(θ)dθ =

∫ π

0

sinp+2(θ)

p+ 1
dθ, (3.21)

found from integrating by parts with dv = sinp(θ) cos(θ) and u = cos(θ).

Secondly, ∫ π

0

sinp(θ)dθ =
p− 1

p

∫ π

0

sinp−2(θ)dθ (3.22)

integrating by parts with dv = sin(θ) and u = sinp−1(θ).
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For i 6= p, we see that
∫
Sp−1 x

2
idx can be written∫

Sp−1

x2
idx=2

∫ π

0

[sin2(θ1) . . . sin2(θi−1) cos2(θi)]

× sinp−2(θ1) sinp−3(θ2) . . . sin(θp−2)dθ, (3.23)

where
∫ π

0
represents the fact all θl are to be integrated between these bounds.

Now consider θ-index j and define
∫ π

0
sink(θ)dθ

def
= Ik.

Case 1: j < i The relevant integral in (3.23) is∫ π

0

sinp−j−1(θj) sin2(θj) dθj = Ip−j+1 =
p− j

p− j + 1
Ip−j−1,

using (3.22).

Case 2: j > i The relevant integral in (3.23) is∫ π

0

sinp−j−1(θj)dθj = Ip−j−1.

Case 3: j = i

The relevant integral in (3.23) is∫ π

0

cos2(θj) sinp−j−1(θj) dθj =
1

p− j
Ip−j+1

=
1

p− j + 1
Ip−j−1.

using both (3.21) and (3.22).
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Putting together all these cases we see that

∫
Sp−1

x2
i dx= 2

(
i−1∏
j=1

p− j
p− j + 1

Ip−j−1

)(
p−1∏
j=i+1

Ip−j−1

)

×
(

1

p− i+ 1
Ip−i−1

)
= 2

(
p− 1

p

p− 2

p− 1
· · · p− i+ 1

p− i+ 2

1

p− i+ 1

)
×

p−1∏
j=1

Ip−j−1

=
2

p
α,

where α =
∏p−1

j=1 Ip−j−1 =
∏p−2

j=0 Ij.

Finally we look at i = p, for which
∫
Sp−1 x

2
p dx is

2

∫ π

0

sinp(θ1) sinp−1(θ2) . . . sin3(θp−2) sin2(θp−1) dθ

=2

p∏
j=2

Ij = 2

p∏
j=2

j − 1

j
Ij−2 =

2

p

p−2∏
j=0

Ij =
2

p
α.

Hence, ∫
Sp−1

xTAx dx =

∫
Sp−1

p∑
i=1

Aiix
2
i dx =

2

p
α tr{A}.

Step 3 Now we see that,

arg min
P∈P

E(||QX − PX||2F)=arg max
P∈P

∫
X
xTQTPx dx

=arg max
P∈P

tr{QTP}

=arg min
P∈P
||Q− P ||2F,

when X is uniformly distributed on the unit hypersphere.

Proposition 21. For x ∈ Rp with X uniformly distributed in the unit hy-
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percube H = [0, 1]p for which 0 ≤ xi ≤ 1,

arg min
P∈P
||Q− P ||2F = arg min

P∈P
E(||QX − PX||2F). (3.24)

Proof. In this case we have for A = QTP ,

∫
H

xTAx dx =

∫
H

(
p∑
i=1

Aiix
2
i +

∑
i 6=j

Aijxixj

)
dx

=

[
1

3

p∑
i=1

Aiix
3
i

V

xi
+

1

4

∑
i 6=j

Aijx
2
ix

2
j

V

xixj

]
H

where V =
∏p

i=1 xi. Plugging in the limits for H the integral is

1

3
tr{A}+

1

4
1TA1− 1

4
tr{A} =

1

12
tr{A}+

1

4
1TA1.

Noting that 1TQTP1 = 1TQT1 is invariant for all permutation matrices as

they simply permute the columns of QT , we see that

arg min
P∈P

E(||QX − PX||2F) = arg max
P∈P

tr{QTP}

and the result follows.

Partitioning of Rp

We can now delve deeper into exactly what the equation (3.15) does by

considering the transformation into Rp. We investigate the S(P ) and what

it means if two sets S(P1) and S(P2) are close to one another in Pp. Looking

at the 3D case, we can represent our rounding sets as partitions of a unit

sphere and look at a way to convert back from a permutation matrix to a

point in Rp. Finally we see this does not work for certain classes of matrices,

doubly stochastic being one of them and introduce an adjustment to fix this

issue.
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Continuity

We first show as in [86], that for any point in S(P ) not on its boundary, we

can find other points close to it that are also in S(P ).

Proposition 22. For x ∈ S(P ) such that xi 6= xj and (Qx)i 6= (Qx)j for

i 6= j, we can find ε > 0 such that Bε(x) ⊂ S(P ), whenever Bε(x) = {y ∈
Rn : ||y − x||2F < ε}.

Proof. Using theorem 2, we know that for the permutation to be the same

for x and y it is sufficient, (from (3.15)), that

r(x) = r(y) and r(Qx) = r(Qy).

We have y ∈ Bε(x) such that by definition ||y−x||2F < ε. Also, ||Q(y−x)||2F <
δε, where δ = max{|λ| : λ is an eigenvalue of QTQ}, [36, p. 296].

By definition no (Qx)i = (Qx)j, so for the sorting order to remain the same

for Qy and Qx we require that, if (Qx)i < (Qx)j, then (Qy)i < (Qy)j.

Also note that if, xi < xj then for the sorting to remain the same, we require

yi < yj.

Now, |yi − xi| < ε1/2 so yi ∈ (xi − ε1/2, xi + ε1/2), so

yi < xi + ε1/2

and similarly,

yj > xj − ε1/2.

Then taking for example

ε1/2 = ε1 <
1

2
min
u,v
|xu − xv|

ensures that

yi < xi + ε1 < xj − ε1 < yj.

Similarly

(Qy)i < (Qx)i + (δε)1/2
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and

(Qy)j > (Qx)j − (δε)1/2.

Then taking

ε2 = ε1/2 <
1

2δ1/2
min
u,v
|(Qx)u − (Qx)v|

ensures that

(Qy)i < (Qx)i + δ1/2ε2 < (Qx)j − δ1/2ε2

< (Qy)j.

Hence we can choose ε = min(ε21, ε
2
2), completing the proof.

Remark 41. Points x ∈ Rp are on the boundary of S(P ) if firstly it is in

S(P ) and xi = xj or (Qx)i = (Qx)j for some i 6= j. In this case there are

multiple solutions to (3.15) so x belongs to multiple rounding sets. In the

case x = 0, x ∈ S(P ) for all permutation matrices P . Of course we normally

only consider x on the unit hypersphere.

It is now possible to show as mentioned before that when sampling points

on the unit hypersphere based on a Gaussian distribution, we select a point

on the boundary of two rounding sets with probability 0 if Q is a doubly

stochastic or orthogonal matrix. The result comes from [86].

Proposition 23. If we are sampling from a purely continuous distribution

with x ∈ Rp defined by random variable X, then Pr((X = x) ∩ (xi = xj :

i 6= j)) = 0 and Pr((X = x) ∩ ((Qx)i = (Qx)j : i 6= j,Q ∈ D ∪Q)) = 0.

Proof. In both cases the sets are of measure zero in Rp and hence correspond

to zero probability.

Distance in Rp vs P

When moving small distances in Rp i.e. between x0 and x1 such that x0 ∈
S(P0) and x1 ∈ S(P1) then normally the Frobenius norm between P0 and P1

is small (although this is not always the case). In the most common scenario
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there exist some i and j such that x0
i < x0

j but x1
i < x1

j with no other entries

flipping. This causes a similar flipping in the entries of P0 and P1.

Using the example in [86], if P0 sends in particular 1 → 2 and 3 → 4, P1

may now send 1→ 4 and 3→ 2 while agreeing with P0 on all other element

permutations. This leads to ||P0 − P1||2F = 4 which is the minimum possible

squared Frobenius norm between two different permutation matrices. Note

however, the distance between x0 and x1 can be small with more indices

being switched than simply i and j, resulting in a larger difference between

P0 and P1.

Put another way, there may exist P0 and P1 such that the boundary between

them corresponds to some hyperplane xi1 = xi2 = · · · = xik for some large

integer k. The distance between two points in Rp either side of this hyper-

plane may be small, however P0 and P1 would have a large difference with

respect to Frobenius norm.

Remark 42. In the above arguments we just concentrated on flips occurring

due to crossing hyperplanes of the form xi1 = xi2 = · · · = xik . Note that

the same arguments can be applied when crossing hyperplanes (Qx)i1 =

(Qx)i2 = · · · = (Qx)ik .

This shows there is a degree of continuity between points in Rp and the

permutation matrices they map to given some Q ∈ Rp×p. We look to leverage

this fact in the next section by using an algorithm that searches in Rp as

opposed to P (like the 2-opt strategy).

3D Visualisation

As we mentioned previously, the boundaries between rounding sets are hyper-

planes such that xi = xj or (Qx)i = (Qx)j. In the 3D case we can visualise

the partitioning of the unit sphere into these rounding sets. The top image of

figure 3.3 from [86] shows for random symmetric matrices A,B ∈ R3×3, the

partitions of the unit sphere induced by doubly stochastic matrix Q ∈ R3×3

solving (3.11). The bottom image shows the partitioning induced by a ran-

dom orthogonal matrix Q with an eigenvector of 1. In both cases, the thin
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Figure 3.3: 3D sphere showing the partition boundaries for a doubly stochastic matrix Q
(top figure), and for an orthogonal matrix (bottom figure). Here x = x1, y = x2, z = x3. See
text for further details.

lines correspond to the boundaries caused by (Qx)i = (Qx)j and the thick

lines by xi = xj. The dotted line represents x1 = x2 and is used simply to

aid in orientation.

Remark 43. 1. In both figures, the point x1 = x2 = x3 is in the same

position as (Qx)1 = (Qx)2 = (Qx)3 and can be represented by a =

3−1/21. This reason this is, is because both in the doubly stochastic
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and orthogonal case, Q has an eigenvector 1 (this is a property of all

doubly stochastic matrices and we specified it in the orthogonal case).

Hence in both cases Q1 = c1 for some c ∈ R and as a is on the unit

sphere, the boundaries of all permutation sets intersect at it. In effect,

it is a significant point of discontinuity as we spoke about previously.

We will see how this causes some issues when using doubly stochastic

matrices in future.

2. We can calculate the distribution induced by Q over the permutation

matrices by calculating the angles between each plane (Qx)i = (Qx)j

and xi = xj at the point a. Given a boundary angle θ for a rounding

set, the probability of sampling a point in it is θ
2π

. Doing this for

all rounding sets (and calculating the permutation the set rounds to)

gives us our distribution over P induced by Q where µ is uniform on

the unit sphere. Note this only works in the case Q1 = c1, otherwise

the boundary of all rounding sets does not meet at a single point a.

Note that we can find θ by considering normal vectors to the planes

(Qx)i = (Qx)j and xi = xj in R3.

3. In the orthogonal case, the thin lines have a constant angle between

them and orthogonal matrix Q can be thought of as rotating the thick

lines to the thin lines abut the line
−→
1 . In the doubly stochastic case

however the thin lines don’t have a constant able between them and it

highlights the fact doubly stochastic matrices can induce more ‘varied’

permutation distributions than orthogonal matrices.

Mapping Permutations to Points

Given a matrix Q ∈ Rp×p, then for any point x ∈ Rp we can map it to a

permutation matrix P using (3.15). It is now interesting and of use to see if

given a permutation matrix, can we find a point in Rp that maps to it i.e. a

point in one of the rounding sets of P . This is in fact possible given certain

properties of Q and is described in the following theorem and remarks from

[86].
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Theorem 3. Consider Q ∈ Rp×p and let a = p−1/21. If b = Q−1a is such

that bi = bj ⇒ i = j, then for any P ∗ ∈ P, we can find x ∈ Rp such that

P ∗ = arg min
P∈P
||Qx− Px||2F

and it is given by x = b+Q−1P ∗P T
b ε, where Pb orders b in ascending order

(i.e. r((Pbb))i = i) and ε = δ[1, 2, . . . , p]T for some δ > 0.

Proof. Let x = b+Aε for some A ∈ Rp×p. Now, Qx = Q(b+Aε) = a+QAε.

Step 1. What is r(x)? Since bi = bj ⇒ i = j, we can choose δ > 0 sufficiently

small such that

r(x) = r(b), (3.25)

i.e., the ordering of x is the same as b. Note that r(ε) = r(Pbb) as both are

in ascending order.

Step 2. What is r(Qx)? Now r(Qx) = r(a + QAε) = r(QAε) as a is a

constant vector. We can therefore choose A = Q−1P ∗P T
b to get

r(Qx) = r(P ∗P T
b ε) = r(P ∗b).

Then we use (3.17) which says that r(P ∗b) = P ∗r(b). So

r(Qx) = P ∗r(b) = P ∗r(x),

where the last step uses (3.25).

Step 3. Therefore by theorem 2, for x = b+Q−1P ∗P T
b ε, P

∗ = arg minP∈P ||Qx−
Px||2F , and the proof is complete.

Remark 44. 1. As the above theorem is constructive, we can use it later

in our algorithm. In particular, it can be used for finding initial points

i.e. if P0 is the direct projection of Q onto P, we can use theorem 3 to

find x in the rounding set of P0 and use this value as a starting point

for the search algorithm.

2. The value δ > 0 in practice, is up to us to choose. We generally want

to choose the largest value possible such that the result of the theorem
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still holds, when finding starting points. This is to move x as far from

b as possible, which is a significant point of discontinuity. Being close

to it neutralises the benefits of a well chosen starting point.

3. The theorem does not hold for a doubly stochastic matrix Q, as

Qa = a⇒ a = b.

Therefore

bi = bj 6⇒ i = j

as all elements of a and hence b are equal.

4. If r(b) has no distinct ordering i.e. there exists i 6= j such that bi = bj,

then at least two permutations sort b in the same way. Hence b is on

the boundary between permutation sets.

Doubly Stochastic Matrices

If Q is doubly stochastic than as seen above, we cannot apply theorem 3 to

get a starting point for our algorithm. What we can instead do is slightly

perturb Q to Q
′

i.e.

Q
′
= Q+ λU,

where λ ∈ R is some small constant and U ∈ Rp×p is a uniform random matrix

i.e. all entries satisfy Uij ∼ Unif [0, 1]. With probability 1, Q
′

satisfies the

conditions in theorem 3 and hence for any permutation we can find a point

mapping to it when using Q
′

as the partitioning matrix.

Figure 3.4 from [86] shows an example partitioning in 3D when using Q
′

as opposed to Q. We see the boundaries of all permutation sets no longer

intersect at a.

Sampling Strategy with Variance Adaption

We now propose an algorithm for rounding a solution to the relaxed graph

matching problem to a permutation matrix as presented in [86]. It bears
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Figure 3.4: 3D sphere showing the partition boundaries for a perturbed doubly stochastic
matrix (λ = 0.05).

many similarities to simulated annealing where broadly, we update our cur-

rent optimal point if a proposal point results in a better objective function

value and as we progress our proposal points are chosen closer and closer to

the current optimal point. As with simulated annealing, we can also ran-

domly accept worse proposal points to aid in exploration of the algorithm.
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Algorithm 10 Sampling strategy to round a matrix to a permutation matrix
given an objective function to minimise

Require: total iterations, Λmax estimating samples M , pre-samples L,
variance update T , target function ft, acceptance probability function
A(E,E∗, t), matrix to round to permutations Q ∈ Rp×p, objective func-
tion to minimise g(·), initial point x0 ∈ Rp

1: P0 ← arg minP∈P ||Qx0 − Px0||2F
2: E0 ← g(P0)
3: Sample z1, . . . ,zM on the unit hypersphere and calculate ∆max using

(3.4).
4: Learn ∆̃(σ2) and hence an estimate for ∆̄(σ2)/∆max by generating pre-

samples y−L, . . . , y−1 and corresponding ∆−L, . . . ,∆−1 as in algorithm
6.

5: t ← 0
6: while t < total iterations do
7: if t mod T = 0 then
8: Re-learn ∆̃(σ2) using y−L, . . . , yt−1 and ∆−L, . . . ,∆t−1.
9: end if

10: σ2
t ← arg minσ̃2 |∆̃(σ̃2)∆max − ft|

11: Sample proposal x∗ from N(xt−1, σ
2
t

12: x∗ ← x∗/||x∗||
13: P∗ ← arg minP∈P ||Qx− Px0||2F
14: E∗ ← g(P∗)
15: Sample u from Unif [0, 1]
16: if u ≤ A(Et−1, E∗, t) then
17: (xt, Pt, Et) ← (x∗, P∗, E∗)
18: else
19: (xt, Pt, Et) ← (xt−1, Pt−1, Et−1)
20: end if
21: t ← t+ 1
22: end while
23: Return (xt, Pt, Et)

Remark 45. 1. In the graph matching case, we want to input into the

algorithm Q ∈ Rp×p solving some relaxed version of the GMP e.g. the

result of QCV or FAQ before projection.
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2. Once again, in the graph matching case we use the objective function

g(P ) = ||A− P TBP ||2F

for some matrices A,B ∈ Rp×p.

3. The initial point x0 can be randomly chosen on the unit hypersphere. A

better method however is to find P0 = arg minP∈P ||Q− P ||2F using the

Hungarian algorithm. We can then reverse this to an initial point x0

using theorem 3 and perturbing the matrix Q if necessary (as discussed

above for doubly stochastic matrices).

4. A common choice of A is the indicator function (i.e. no randomness)

such that

A(E,E∗, t) = I(E∗ ≤ E).

Notice we use a ≤ sign to allow our algorithm to move around within

permutation sets and not get stuck in the middle of a large one.

5. The choice of ft is important to the algorithm. Of course it must decay

towards 0, but too sharply and we don’t explore the permutation sets

well enough, too slowly and we don’t spend enough time ‘fine tuning’

to improve the permutation estimate.

6. Due to the algorithm similarity with simulated annealing, we can par-

allelise using similar techniques. Work in [63] investigates a number of

approaches covering both asynchronous approaches where no informa-

tion is shared between threads and synchronous approaches, where the

threads share information at given iterations to help each other out.

An obvious extension to our algorithm would be to incorporate one of

these techniques.

Results

We now include the results from [86] when testing the sampling strategy on

the QAPLIB benchmarks. They use the QCV method to obtain a doubly
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stochastic relaxed solution to the graph matching problem and project this

onto the permutation matrices using the sampling strategy. They refer to

this method as SSQCV. The parameters used were as follows

In the results which follow we use λ to perturb Q such that

Q← Q+λU where U is a matrix of uniform random numbers be-

tween [0, 1]. We take totalIterations = 100000;M = 100, L =

1000, λ = 0.1, T = totalIterations/10. We use the pure strat-

egy choice of A and set ft = ∆max[1− (t/totalIterations)0.6].

The table of results is given in 3.1 where

1. QAP: The name of the benchmark in QAPLIB.

2. Min: The true minimum trace value of the benchmark.

3. PATH: The minimum trace value found by the PATH algorithm.

4. SSQCV Mean: Over 20 runs of the algorithm, the mean minimum trace

value found.

5. SSQCV Best: Over 20 runs of the algorithm, the best minimum trace

value found.

6. SSQCV Time: Over 20 runs of the algorithm, the mean execution time

taken.

While the sampling strategy algorithm was able to outperform the PATH

algorithm on many of the QAPLIB problems as seen in table 3.1, when we

tested the FAQ algorithm on QABLIB, it outperformed the SSQCV on most

benchmarks.

Remark 46. When using our projection step (instead of the common pro-

jection (3.8)) with the FAQ algorithm, we were not able to achieve any

improvement on the high dimension QAPLIB problems. It suggests that the

FAQ solution is a local minimum with respect to our transformed Euclidean

space in these cases. We note however that in [58], for correlated Bernoulli
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QAP Min PATH SSQCV Mean SSQCV Best SSQCV Time (s)

chr12c 11156 18048 13088 11414 15.98
chr15a 9896 19086 14247 11168 20.07
chr15c 9504 16206 15199 11200 19.07
chr20b 2298 5560 3960 3054 16.73
chr22b 6194 8500 7574 7196 17.50
exc16b 292 300 292 292 16.54
rou12 235528 256320 246063 240598 16.31
rou15 354210 391270 380746 365264 16.49
rou20 725522 778284 778709 760874 16.99
tai15a 388214 419224 409769 395714 16.94
tai17a 491812 530978 525815 514496 16.76
tai20a 703482 753712 766274 751414 17.03
tai30a 1818146 1903872 1979579 1946888 18.37
tai35a 2422002 2555110 2659594 2613758 22.40
tai40a 3139370 3281830 3459139 3407476 24.16

Table 3.1: Experimental results for QAPLIB benchmark data sets

random graphs with ρ < 0.75, the FAQ solution is empirically found to far

from the anticipated global minimum of the GMP and it would make sense

doing more comprehensive tests on whether our modified projection could

outperform the standard projection for varying correlation and dimension.

Conclusion and Future Work

Graph matching is useful in our brain diagnosis application as it allows us

to define some distance between two graphs extracted from the patients’

observed time series. This can then be used as part of a larger clustering

algorithm to aid in diagnosis of mental disease. As the GMP can be compu-

tationally intractable to find an exact solution in many real life applications

a typical approach is to solve a relaxed form of the GMP to obtain an ap-

proximate solution. This gives a computation time versus accuracy trade off.

In this chapter we present current methods used for finding approximate so-

lutions to the GMP and we present our own projection method that projects
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matrices solving relaxed versions of the GMP to permutation matrices.

While initial tests of the method were promising, they were unable to beat

the FAQ algorithm on the QAPLIB benchmark. It was shown in [58] that for

a specific class of problem, the non-convex relaxation is provably better than

the convex relaxation. They also showed this held empirically for problems

outside this specific class and hypothesised that the theoretical result would

extend to a much broader class of problem. We tend to agree and as such

use the FAQ algorithm in our multiple graph matching framework to be

introduced in chapter 6.

There may however be cases as mentioned in [58], where the optimisation

fails to find a good estimate and fine-tuning either the convex or non-convex

optimum may provide better results.
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4
Building Graphical Models

From Time Series at the

Source Level

Introduction

In chapter 2 we showed given a time series recorded on the scalp, how to

extract a conditional dependence graph from it. In this chapter we make

the assumption that the recordings on the scalp are actually a linear mixing

of signals being emitted from sources within the brain. We aim to build

conditional dependence graphs based on these source signals.

The idea of working with source signals is not new. In fact our methodology

of extracting the sources closely follows [33]. They assume the sources follow

a VAR process and unmix them by estimating this process and applying ICA

to the residuals. It is then possible to build a conditional dependence graph

with the extracted source VAR process. We note that ICA leaves us with

sources only up to some unknown scaling and permutation. Thus we choose

to build our graphs using PMIR which is unaffected by the unknown scaling
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(the unknown permutation we deal with in later chapters).

The outline of the chapter is as follows, section 4.1 contains some preliminary

results. Section 4.2 defines the model we assume for our data and section

4.3 shows how we can estimate the model from time series observations. In

section 4.4 we look at how to build conditional independence graphs from

the estimated model and give the algorithm. Section 4.5 shows some initial

experiments using the model on simulated data. We end the chapter with

some concluding remarks and ideas for future work.

Preliminaries

Principal Component Analysis

Uncorrelated Components

Let X̃ ∈ Rp×n, then principal component analysis (PCA) is concerned with

finding matrix C ∈ Rp×p such that for

X = CX̃

then

cov(X)ij = 0 (4.1)

for all i 6= j.

From the basic rules of covariances,

cov(CX̃) = Ccov(X̃)C−1.

Hence we can find a C such that (4.1) is satisfied by solving the eigende-

composition for cov(X̃). In this case C will be the matrix of eigenvectors of

cov(X̃) and cov(CX̃) will be the diagonal matrix of eigenvalues.

Remark 47.

As cov(X̃) is a symmetric matrix, it is certainly diagonalisable and in this
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case C will be an orthogonal matrix.

For high dimensional p, calculating the covariance directly can be costly.

Instead the eigenvectors of the covariance can be found more efficiently by

calculating the singular value decomposition of X̃.

Dimensionality Reduction

We can also use PCA for dimensionality reduction. Each row of X (a princi-

pal component) is uncorrelated and explains a certain amount of the variance

associated with X̃. If a principal component explains very little of the overall

variance, it may be worth reducing the dimension of the data by removing

that row where the idea is that most of the signal in the data will be captured

by the principal components explaining the most variance.

If we know a priori how many rows we want matrix X to have i.e. L, then

we simply keep the L rows with the largest variance. Often this is not the

case and we may instead keep as many rows as necessary, starting with the

ones corresponding to the largest variance, to explain some ratio γ of the

total variance.

VAR Model Fitting

Given some observations x1, . . .xn ∈ Rp from a VAR process, we show how

we can estimate the parameter matrix of the VAR process by minimising the

least squares error.

Consider the VARp(L) model

X t =
L∑
τ=1

AτX t−τ + εt

for some spatially independent, zero mean, white noise process {εt}. We now

aim to estimate the parameters by solving
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arg min
A1,...,AL

n∑
τ=L+1

||xt −
L∑
τ=1

Aτxt−τ ||2

i.e. minimising the sum of all the squared estimated residuals (least squares).

Note we only have enough observations to calculate the estimated residuals

for t = L+ 1, . . . , n.

This essentially gives the multivariate regression

Y = BZ + U,

where

Y = [xL+1, . . . ,xn]

=

 (xL+1)1 (xL+2)1 . . . (xn)1

...
...

...

(xL+1)p (xL+2)p . . . (xn)p

 ,

B = [A1, . . . , AL]

=

 (A1)11 . . . (A1)1p (A2)11 . . . (AL)11 . . . (AL)1p

...
...

...
...

...

(A1)p1 . . . (A1)pp (A2)p1 . . . (AL)p1 . . . (AL)pp

 ,
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Z =


xL xL+1 . . . xn−1

xL−1 xL . . . xn−2

...
...

...

x1 x2 . . . xn−1−p

 =



(xL)1 (xL+1)1 . . . (xn−1)1

...
...

...

(xL)p (xL+1)p . . . (xn−1)p

(xL−1)1 (xL)1 . . . (xn−2)1

...
...

...

(x1)1 (x2)1 . . . (xn−1−p)1

...
...

...

(x1)p (x2)p . . . (xn−1−p)p


,

U = [εL+1, . . . , εn]

=

 (εL+1)1 (εL+2)1 . . . (εn)1

...
...

...

(εL+1)p (εL+2)p . . . (εn)p

 .
The least squares estimate of this regression model is given by

B̂ = Y ZT (ZZT )−1,

and extracting the parameter matrices from B̂ gives the estimates Â1, . . . , ÂL.

Remark 48. Some other techniques to estimate the parameters of a VAR

process include ridge regression (often provides a better bias vs variance

tradeoff) or LASSO (when searching for sparse solutions) and these may be

necessary to look into when running the graph extraction on real data.

Swartz’s Bayesian Criterion

In the VAR model fitting, we had to pre-specify the order of the process L.

If this is unknown, we can use Swartz’s Bayesian criterion, a model selection
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method. This essentially says to choose a model such that the value

SBC = −2logL+M log(n)

is minimised, where M is the number of free parameters in the model to be

estimated, n is the number of observations and logL is the log likelihood of

the model.

In the case of the multivariate linear regression Y = BZ + U elicit when

fitting a VAR process using least squares, if we assume Gaussian residuals

with unknown variance σ2 to be estimated, then

logL =
−n
2

(log(2π) + log(σ2))− 1

2σ2
||Y −BZ||2F ,

where the number of estimated parameters is p2L + 1, as we estimate p2L

parameters in B̂ = Y ZT (ZZT )−1 and one parameter in σ̂2 = 1
n
||Y −BZ||2F .

Using the fact that the residuals are Gaussian makes the SBC easy to cal-

culate as the log likelihood function is known. Therefore even when this is

not the case, it can still be a useful approximation.

Entropy Rate

To analyse information when dealing with time series, we use the notion of

entropy rate [21] previously encountered in section 1.11.2.

If {St} is a Gaussian stationary process i.e. a VAR model with Gaussian

innovations, the entropy rate is equivalent to

Hr({St}) =
1

4π

∫ π

−π
log det(2πeSS(f))df, (4.2)

where SS(f) is the spectral matrix of {St}.
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Partial Mutual Information Rate

The conditional information rate of arbitrary random processes {X t}, {Y t}
given {Zt} is defined in terms of entropy rates as

Ir({X t}, {Y t}|{Zt}) = Hr({X t}, {Zt}) +Hr({Y t}, {Zt})
−Hr({Zt})−Hr({X t}, {Y t}, {Zt}).

The partial mutual information rate (PMIR) between components i and j of

a multivariate stochastic process {St}, is then given as

PMIRij = Ir({Si,t}, {Sj,t}|{S/ij,t}) =

H({S/i,t}) +H({S/j,t})−H({S/ij,t})−H({St}),

where {S/i,t} represents the process {St} with the series {Si,t} removed. Note

that PMIRij = 0 implies components i and j are conditionally independent.

From (4.2), we see the entropy rate for Gaussian processes only depends on

the spectral matrix of the arguments.

Invariance of Partial Mutual Information Rate

We show the PMIR for components of p-valued Gaussian stationary VAR

process {St} and p-valued stationary process {S̄t} is invariant up to some

unknown permutation where

S̄t = Q−1St

and

Q = PD,

where P ∈ P and D is a diagonal matrix.

We first show that {S̄t} is also a VAR process.
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Lemma 1. If process {St} is a VAR process satisfying

St =
l∑

τ=1

AτSt−τ + εt

and {S̄t} satisfies

S̄t = Q−1St,

then {S̄t} is a VAR process satisfying

S̄t =
l∑

τ=1

Āτ S̄t−τ + ε̄t,

where Āτ = Q−1AτQ and ε̄ = Q−1ε.

Proof. We have

Q−1St =
l∑

τ=1

Q−1AτSt−τ +Q−1εt

and therefore using S̄t = Q−1St,

S̄t =
l∑

τ=1

Q−1AτQS̄t−τ +Q−1εt

Next we show the relationship between the spectral matrices of {St} and

{S̄t}.

Lemma 2. Let {St} and {S̄t} be p-valued VAR processes satisfying

St =
l∑

τ=1

AτSt−τ + εt

and

S̄t =
l∑

τ=1

Āτ S̄t−τ + ε̄t,
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where Āτ = Q−1AτQ and ε̄ = Q−1ε, then we have

SS̄(f) = Q−1SS(f)(Q−1)H ,

where SS̄(f) is the spectral matrix of {S̄t} and SS(f) is the spectral matrix

of {St}.

Proof. It is a well known that the spectral matrix of VAR processes in the

form of {St} can be written

SS(f) = Γ−1
S (f)Σε(Γ

−1
S (f))H ,

where

ΓS(f) = I −
L∑
τ=1

Aτe
−i2πfτ

and Σε is the covariance matrix of εt.

Now, applying similar reasoning to the VAR process {S̄t} we see that

ΓS̄(f) = I −
L∑
τ=1

Āτe
−i2πfτ

= Q−1(I −
L∑
τ=1

Aτe
−i2πfτ )Q

= Q−1ΓS(f)Q,

where we used the fact Āτ = Q−1AτQ.

We can write the covariance matrix of ε̄t = Q−1εt as

Σε̄ = Q−1Σε(Q
−1)H .
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Hence the spectral matrix of {S̄t} can be written

SS̄(f) = Γ−1
S̄

(f)Σε̄(Γ
−1
S̄

(f))H

= (Q−1ΓS(f)Q)−1Q−1Σε(Q
−1)H((Q−1ΓS(f)Q)−1)H

= Q−1Γ−1
S (f)QQ−1Σε(Q

−1)HQH(Γ−1
S (f))H(Q−1)H

= Q−1Γ−1
S (f)Σε(Γ

−1
S (f))H(Q−1)H

= Q−1SS(f)(Q−1)H .

We now show the relationship between the entropy rates of {St} and {S̄t}.

Lemma 3. For Gaussian stationary processes {St} and {S̄t}, with the fol-

lowing relationship between the spectral matrices

SS̄(f) = Q−1SS(f)(Q−1)H ,

where

Q = PD

for some P ∈ P and D a diagonal matrix, then the entropy rates satisfy

(i)

Hr({St}) = Hr({S̄t}) + log detD,

(ii)

Hr({S/i,t}) = Hr({S̄/σ(i),t}) + log detD/σ(i),

where σ : {1, . . . , p} → {1, . . . , p} satisfies

σ(i) =

P
 1

...

p



i

.

{S/i,t} represents the multivariate process {St} with component i re-

moved and D/i represents the matrix D with row i and column i miss-

ing.
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Proof. Case (i)

For a Gaussian stationary process, we have

Hr({St}) =
1

4π

∫ π

−π
log det(2πeSS(f))df

=
1

4π

∫ π

−π
log det(2πe)df +

1

4π

∫ π

−π
log det(SS(f))df.

Now,

1

4π

∫ π

−π
log det(SS(f))df =

1

4π

∫ π

−π
log det(PDSS̄(f)DP−1)df

=
1

4π

∫ π

−π
[log det(SS̄(f)) + 2 log det(D)]df

=
1

4π

∫ π

−π
log det(SS̄(f))df + log det(D),

where we used the fact that the permutation matrix P satisfies

det(P ) = det(P−1) = 1.

Putting this back into the entropy rate equation gives

Hr({St}) =
1

4π

∫ π

−π
log det(2πeSS̄(f))df + log det(D)

= Hr({S̄t}) + log det(D).

Case (ii)

We need two results on matrices with rows and columns removed for a general

matrix X ∈ Rp×p.

(a)

(DXD)/i = D/iX/iD/i

where D ∈ Rp×p is a diagonal matrix.
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(b)

(PXP−1)/i = P/(i,σ(i))X/σ(i)P
−1
/(σ(i),i)

where P ∈ P,

σ(i) =

P
 1

...

p



i

and we use the following notation

(1) Y/(i,j) represents matrix Y with ith row and jth column removed

(2) Y/i represents matrix Y with ith row and ith column removed

(3) Y/ij represents matrix Y with ith and jth rows and columns re-

moved removed

The first result (a) is obvious. The second result (b) follows from the fact the

redundant rows and columns in X when calculating (PXP−1)/i are the ones

that get sent to i, i.e. the σ(i)th row and column, so the relevant matrix is

X/σ(i). The redundant row and column in the row permutation matrix P is

the one that sends row σ(i) to i i.e. the relevant matrix is P/(i,σ(i)). Finally,

the redundant row and column in the column permutation matrix P−1 is the

one that sends column σ(i) to i i.e. the relevant matrix is P−1
/(σ(i),i).

Now,

Hr({S/i,t}) =
1

4π

∫ π

−π
log det(2πe)df +

1

4π

∫ π

−π
log det(SS/i(f))df,

where SS/i(f) is spectral matrix of {St} with ith row and column removed.

We also have

SS(f) = QSS̄(f)QH

= (PD)SS̄(f)(PD)H

= PDSS̄(f)DP−1.
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Using our above results we have

SS/i(f) = P/(i,σ(i))D/σ(i)SS̄/σ(i)(f)D/σ(i)P
−1
/(σ(i),i).

Now,

1

4π

∫ π

−π
log det(SS/i(f))df =

1

4π

∫ π

−π
log det(P/(i,σ(i))D/σ(i)SS̄/σ(i)(f)D/σ(i)P

−1
/(σ(i),i))df

=
1

4π

∫ π

−π
[log det(SS̄/σ(i)(f)) + 2 log det(D/σ(i))]df

=
1

4π

∫ π

−π
log det(SS̄/σ(i)(f))df + log det(D/σ(i))

using the fact that by definition of σ, Piσ(i) = P−1
σ(i)i = 1. Therefore the

matrices P/(i,σ(i)) and P−1
/(σ(i),i) are still valid permutation matrices and have

determinant equal to 1.

Hence, putting this back into the entropy rate for Gaussian processes equa-

tion,

Hr({S/i,t}) = Hr({S̄/σ(i),t}) + log detD/σ(i).

We are now in a position to prove the invariance of the partial mutual infor-

mation rate up to an unknown permutation.

Proposition 24. Let {St} be a Gaussian stationary VAR process satisfying

St =
l∑

τ=1

AτSt−τ + εt

and {S̄t} be a stochastic process satisfying

S̄t = Q−1St,
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where

Q = PD

for some P ∈ P and D a diagonal matrix. Let the PMIR between components

i and j of {St} be written PMIrij and the PMIR between components i and

j of {S̄t} be written ¯PMIrij. Then,

PMIrij = ¯PMIrσ(i)σ(j)

where σ : {1, . . . , p} → {1, . . . , p} satisfies

σ(i) =

P
 1

...

p



i

.

Proof. By lemma 1, {St} and {S̄t} are both Gaussian stationary VAR pro-

cesses satisfying

St =
l∑

τ=1

AτSt−τ + εt

and

S̄t =
l∑

τ=1

Āτ S̄t−τ + ε̄t,

where Āτ = Q−1AτQ and ε̄ = Q−1ε.

Hence by lemma 2, we can write the spectral matrices of the processes as

SS̄(f) = Q−1SS(f)(Q−1)H ,

where SS̄(f) is the spectral matrix of {S̄t} and SS(f) is the spectral matrix

of {St}.

By lemma 3 the entropy rate of both processes satisfies

Hr({S/i,t}) = Hr({S̄/σ(i),t}) + log detD/σ(i).

All that’s left is to show the equivalence of the PMIR up to an unknown
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permutation. By definition of PMIR,

PMIrij = Hr({S/i,t}) +Hr({S/j,t})−Hr({S/ij,t})−Hr({St})
= ¯PMIrσ(i)σ(j) + log det(D/σ(i)) + log det(D/σ(j))

− log det(D/σ(i)σ(j))− log det(D)

= ¯PMIrσ(i)σ(j) +

p∑
k=1,k 6=σ(i)

log(Dkk) +

p∑
k=1,k 6=σ(j)

log(Dkk)

−
p∑

k=1,k 6=σ(i),k 6=σ(j)

log(Dkk)−
p∑

k=1

log(Dkk)

= ¯PMIrσ(i)σ(j).

Model

We adopt the model as mentioned in [39] and [33], that the source signals are

governed by a VAR process with non-Gaussian spatially independent resid-

uals as they are separated in space and come from resting patients (spatially

independent residuals as separated in space and assumed no underlying driv-

ing process e.g. finger tapping). We observe signals on the scalp that are

assumed to be an instantaneous mixing of the source signals. This mixing

is caused by volume conduction and the instantaneous assumption from the

fact the electromagnetic signal travels from the source to the scalp at the

speed of light. We also make the assumption that the number of sources is

equal to the number of significant factors after applying PCA to the scalp

signals.

Remark 49. 1. If the number of source signals is greater than the num-

ber of scalp signals, the problem is underdetermined and additional

assumptions would be necessary to recover a model. For statistical

analysis when using EEG data, it is a common assumption to make

that we have more signals than relevant sources [33].

2. In practice, the brain is a very complex object and it is far from obvious
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to know a priori the number of sources it contains that are significant

to our application. Instead, we proceed as in [33] where we estimate

the number of sources by applying PCA to the observed scalp signals

and reducing the dimension so that the transformed series adequately

explains a certain proportion of the variance in the data.

Model Equations

Mathematically, we can write our model using the following equations

X t = CX̃ t, (4.3)

X̃ t = WSt, (4.4)

St =
L∑
τ=1

AτSt−τ + εt, (4.5)

where

1. {X̃ t} is a p̃ dimensional stochastic process corresponding to signals

observed on the scalp (potentially processed to remove any unwanted

artefacts).

2. C ∈ Rp×p̃ is a PCA transformation matrix.

3. {X t} is a p dimensional stochastic process corresponding to factors that

when linearly transformed explain a certain percentage of the variance

in our scalp observations.

4. {St} is a p dimensional stochastic process corresponding to source sig-

nals.

5. W ∈ Rp̃×p is a mixing matrix (determined by physical volume conduc-

tion effects).
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6. {Aτ ∈ Rp×p|τ = 1 . . . L} is a set of VAR co-efficients.

7. {εt} is a spatially and temporally independent innovation process with

a non-Gaussian distribution.

Remark 50. The above model contains all information about the relation-

ships between sources in the VAR co-efficients.

Combining equations (4.3), (4.4) and (4.5) we obtain

X t =
L∑
τ=1

CWAτ (CW )−1Xt−τ + (CW )εt. (4.6)

Letting Fτ = CWAτ (CW )−1 and νt = CWεt, we have

νt = X t −
L∑
τ=1

FτXt−τ . (4.7)

We can therefore estimate the mixing matrix W (up to scale and permutation

reference or preliminaries for BSS) by applying PCA to calculate X t from

X̃ t, fitting a VAR process to X t and then applying ICA to the residuals

νt = CWεt.

Remark 51. This is not the only source separation method for time series

data. We chose the model due to its speed, simplicity and proven performance

[33]. It also makes intuitive sense in our application for the brain, where the

sources are physically separated in space (spatial independence) but interact

by passing signals to one another (temporal dependence). Note however that

if we fail to include a source that temporally drives two or more other sources

at a certain time lag, the driven sources will appear to be spatially dependent.
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Model Parameter Estimation

Pre Processing

The pre-processing of the raw observed data to obtain the scalp signals X̃ t

is very application dependent. Raw time series data often contains artefacts

that must be removed before many methods of analysis can be applied and

there are different methods to achieve this. As this is not the focus of the

research, we do not go into detail on this topic.

PCA

Our first step in the algorithm as in [33] is to apply PCA to processed EEG

data, X̃ t to recover our factored scalp signal time series X t. This is done

by only including as many principal components as necessary to account for

a certain fraction of the variance in the observed signal X̃ t. This fraction is

a parameter in the model and we denote it γ (a common value chosen for it

may be γ = 0.99).

Application of PCA allows a more robust VAR parameter estimation as it

avoids a badly conditioned covariance matrix. It also has the added benefit

that the VAR estimation is faster due to the dimension being reduced.

PCA is therefore used to estimate C and X t in equation (4.3).

VAR Fitting

Fitting a VAR model to (4.7) can be done efficiently using L2 regression.

This provides a consistent estimator of the VAR coefficient matrices even if

the innovations νt are not spatially uncorrelated [43].

Remark 52. In [33] they used the algorithm ARfit [70] to fit the VAR

coefficient matrices which is claimed to be more efficient than L2 regression

for large dimensions. We found a standard least square L2 regression to be

sufficient as the bottleneck for larger dimensions occurred further along in

our algorithm.
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Order Selection

Order selection of VAR processes is a complex field in its own right. We note

that [33] select the order l of their VAR process choosing the minimum l ∈ L
that achieves 90% of the reduction of SBC(lmin) to SBC(lmax) (this is the

maximum reduction over L of the SBC, where L is some set of integers to

search over and SBC(l) represents the SBC of the model with order l. The

reasoning behind this is that the SBC was usually monotonic decreasing on

L for EEG data i.e. there was no obvious minimum not at a boundary point.

We did not find this was the case when working with simulated data (as

expected) so were always able to find a clear minimum for the SBC. If we

apply the method to EEG data however we may have to undertake this step

as above.

Note that in [33] they do not state how they obtained the log likelihood

which is necessary to calculate the SBC. The innovations are assumed non-

Gaussian but the exact distribution is unspecified. For our purpose we use

an approximation to the true log likelihood, the log likelihood given the

innovations are Gaussian but note there may be a more accurate way to do

this.

Combining both the order selection step and the VAR fitting step allows us

to estimate the order of the VAR process l and thus νt and the matrices Fτ

in equation (4.7).

Remark 53. This selection procedure could certainly be improved upon by

other methods but this is outside the scope of the focus of this research.

ICA

Once the innovation process νt = CWεt has been recovered, we can ap-

ply ICA to recover CW up to an unknown scaling and permutation of the

columns. This is because the εt are assumed independent, non-Gaussian and

CW ∈ Rp×p is square and non-singular. In order to perform this, we use the

FastICA algorithm [40].
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We can now recover an estimate of the sources

S̄t = ( ¯CW )−1X t

where ¯CW = CWQ such that Q = PD for some P ∈ P and D a diagonal

matrix. Hence,

S̄t = Q−1(CW )−1X t = Q−1St

and the recovered source VAR coefficients are

Aτ = ¯CWFτ ( ¯CW )−1.

Remark 54. Our true sources and recovered sources satisfy the relationship

in proposition 24.

Building Conditional Independence Graphs

We now look to build graphical models from our estimated parameters as a

concise representation of the connectivity between sources. The idea is that

we can then make inference based on these graphical models more efficiently

than using the whole time series. It is also commonly assumed that brain

function is a product of the connectivity between sources but not the ac-

tual time series themselves. For example someone with schizophrenia may

have two sources within their brain that do not communicate whereas these

sources communicate for a non-schizophrenia patient. However the actual

communication between these areas may be vastly different for alternative

non-schizophrenia patients. This implies that classification and clustering

(for diagnosing mental disorders) should be carried out on graphical models

of connectivity as opposed to the time series themselves. We therefore think

of the graphical models as an efficient dimension reduction of the original

time series, capturing the relevant information.

We show how we can extract labelled graphical models from the estimated

source process. The nodes represent a channel of our source process. The

node labels are based on the columns of the mixing matrix (which can be
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used to get a rough estimate of the location of the sources within a patients

brain) and the connections between nodes come from the estimated source

VAR coefficients. Combining both of these noisy estimates we aim to achieve

a more powerful statistical diagnosis tool than using either one on its own.

We shall see this later in chapter 7.

We base our conditional independence graphs on the partial mutual infor-

mation rate (PMIR) between components of our extracted source series. Es-

timating the PMIR for non-Gaussian stationary VAR processes is relatively

difficult and requires estimating the distribution of the residuals. Instead we

approximate it by using the PMIR given the sources are Gaussian (which is

clearly not the case as we assumed they are non-Gaussian for the ICA step).

We justify the approximation as it preserves the conditional independence

structure between the process components as seen in proposition 25. It is

also justified empirically in the results section.

Proposition 25. If X t =
∑L

τ=1AτX t−τ + εt and Y t =
∑L

τ=1AτY t−τ + ηt
where εt is Gaussian white noise and ηt is non-Gaussian independent white

noise, then series {Xi,t} and {Xj,t} conditionally independent ⇐⇒ {Yi,t}
and {Yj,t} conditionally independent.

Proof. For independent residuals (whether Gaussian or not), all dependency

information between components is contained in the parameters of the VAR

process.

Remark 55. After BSS we can only recover our unmixing matrix up to some

unknown scaling and permutation of the columns. Proposition 24 says that

when using the partial mutual information rate, the corresponding graph

based on the recovered unmixing matrix is equivalent to the graph based

on the true unmixing matrix up to some permutation of the nodes i.e. the

unknown scaling is now irrelevant. This can be used because as we showed

earlier,

S̄t = Q−1(CW )−1X t = Q−1St,

where Q = PD for some P ∈ P and D a diagonal matrix.
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Edge Values

We now look at how to infer if there is an edge between two nodes in our

graph i.e. if two of our sources are conditionally dependent. We use a simple

thresholding method to determine whether to include an edge in our graph

based on the PMIR. Ideally the approach would be extended to a multi-

ple hypothesis test as in the prior chapter alleviating the need to specify a

thresholding parameter.

Algorithm 11 Thresholding algorithm for determining edges in conditional
independence graph

Require: Recovered VAR coefficient matrices Āτ , recovered innovations ε̄t,
threshold δ > 0

1: Calculate diagonal Σε̄ such that Σε̄,ii is the sample variance of ε̄i,t
2: Calculate Γ̄(f) = I −

∑L
τ=1 Āτe

−i2πfτ

3: Calculate S̄(f) = Γ̄−1(f)Σε̄(Γ̄
−1(f))H

4: Initialise graph G = (V,E) such that V = {1, . . . , p} and E = ∅
5: for i = 1 : p− 1 do
6: for j = i+ 1 : p do
7: Calculate x = ¯PMIrij using S̄(f)
8: if x > δ then
9: E ← E ∪ {{i, j}}

10: end if
11: end for
12: end for
13: return G

Remark 56. Ideally we can choose the threshold value a priori by con-

sidering statistical properties of the PMIR. Alternatively, it may be chosen

retroactively as part of a scheme to maximise inter-cluster and minimise

intra-cluster entropy, if we are extracting many graphs from different pa-

tients.
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Node Labels

In [33], the mixing matrix W is used to produce an intra-cranial localisation

of each source using the swLoretta algorithm [75] i.e. a 3D point in space.

Intuitively in our application, the position of sources would make a natural

label for the nodes in our graph. When comparing graphs from different

patients we can then use both the dependence structure represented by the

edges and the model labels.

In order to determine the labels, we recall

X̃ t = WSt.

This is exactly the form of the source and signal relationship for swLoretta

where the mixing matrix W is referred to as the leadfield matrix and there

is a further noise process added to the transformed sources. Hence we could

use this method as in [33] to get an estimated 3D localisation for our sources

within the brain.

We note however that the information necessary for transforming a source

into 3D space is contained in the columns of W . We assume the recovered

source channels have unit variance (to allow for a more determinable model),

if one patient has recovered mixing matrix column i equal to u and another

has recovered mixing matrix column j equal to v, then an intuitive measure

of distance between the localisation of the first patient’s source i and the

second’s source j is then the Euclidean distance

||u− v||2.

We therefore choose to use the mixing matrix columns as labels for our graph

nodes as opposed to the transformed 3D point in space.

Remark 57. An obvious extension would be to apply swLoretta and use the

3D points as the node labels. However as mentioned previously, the necessary

information is contained in the mixing matrix columns so we chose the above

approach due to restriction on both processing and research time. Whether

121



using 3D locations as the labels for nodes works better is a topic for further

study.

Algorithm

Given an observed time series from the scalp of a patient we now present

an algorithm for converting this to a labelled graphical model up to some

unknown permutation of the nodes.

Algorithm 12 Labelled graph extraction from time series data

Require: X̃ ∈ Rp̃×N time series data, γ PCA variance ratio, lmin, lmax

bounds on the VAR process order and lstep the size of the steps be-
tween candidate orders

1: Apply PCA with variance ratio γ to X̃ to get C ∈ Rp×p̃ and X = CX̃
2: Choose order l that attains the minimum BIC value over lmin : lstep :
lmax

3: Fit VAR process of order l to X and obtain residuals νt and coefficient
matrices Fτ

4: Apply FastICA to νt to recover CW̄
5: Calculate S̄t = (CW̄ )−1X t

6: Calculate Āτ = (CW̄ )−1Fτ (CW̄ )
7: Calculate ε̄t = (CW̄ )−1νt
8: Calculate graph G using the thresholding algorithm 11 with Āτ and ε̄t

(the conditional independence graph for St up to some unknown permu-
tation)

9: Calculate W̄ = C+(CW̄ )

10: Label the vertices in G using vector L ∈ R
p(p−1)

2
×p̃ (a vector of row vec-

tors) by setting Li = W̄i

11: return (G,L)

Remark 58. Note that in general it is not possible to find the solution to

W̄ = C−1(CW̄ ) as C is not necessarily a square matrix. We therefore use

the Moore-Penrose pseudoinverse C+ and calculate W̄ = C+(CW̄ ) instead.
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Entry PMIR

(1,1) 1.2944
(1,2) 0.0661
(1,3) 0.0208
(1,4) 0.0280
(1,5) 0.0833
(2,2) 1.4064
(2,3) 0.0000
(2,4) 0.0209
(2,5) 0.0000
(3,3) 1.4263
(3,4) 0.0000
(3,5) 0.0045
(4,4) 1.2931
(4,5) 0.0868
(5,5) 1.3066

Table 4.1: True approximate PMIR values based on model A VAR parameter matrix with
Gaussian innovations

Results

The main result we wish to empirically justify is that the estimated approx-

imate PMIR of our extracted source process is close to a permutation of the

approximate PMIR of the true source process. To do this, we use the VAR

model A, which has approximate PMIR under independent Gaussian inno-

vations for each series component given in table 4.1 (note as the PMIR is

symmetrical we only report the upper triangular entries).

Note that entries corresponding to series (2, 3), (2, 5) and (3, 4) are zero as

expected, as these are the conditionally independent series in the model for

independent innovations. We now generate 100 length 1024 time series us-

ing model A but with independent generalised Gaussian (i.e. non-Gaussian)

innovations with pdf

f(x) =
β1/2

2Γ(1 + 1/ρ)
exp(−βρ/2|x− µ|ρ),
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Entry Mean SD

(1,1) 1.2935 0.0190
(1,2) 0.0655 0.0180
(1,3) 0.0222 0.0119
(1,4) 0.0310 0.0093
(1,5) 0.0796 0.0110
(2,2) 1.3971 0.0117
(2,3) 0.0047 0.0055
(2,4) 0.0235 0.0158
(2,5) 0.0055 0.0059
(3,3) 1.4188 0.0079
(3,4) 0.0038 0.0052
(3,5) 0.0078 0.0062
(4,4) 1.2938 0.0179
(4,5) 0.0851 0.0138
(5,5) 1.3091 0.0181

Table 4.2: Estimated approximate PMIR values based on model A VAR parameter matrix
with Gaussian innovations

where we choose µ = 0, β = 1 and ρ = 3.

For each of the generated time series (from a non-Gaussian stationary stochas-

tic process), we extract the estimated VAR parameter matrices using the

method in this chapter. We then calculate the approximate PMIR given the

estimated VAR parameter matrices and assuming Gaussian innovations. Fi-

nally we use graph matching to align the estimated approximate PMIR with

the true approximate PMIR. Table 4.2 is the mean estimated approximate

PMIR matrix and standard deviation over the 100 iterations.

As we can see, the distribution of the estimated approximate PMIR is very

close to the true approximate PMIR, indicating the method works and can

be used to extract graphical models of source signals from mixed signals

recorded on the scalp. Also note that encouragingly, the only entries that

contain 0 within 1 standard deviation are in fact the missing edges in the

model. The (3, 5) entry however is not missing but is also very close to 0.

This means it would require a fairly accurately picked threshold in order to
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extract (a graph isomorphic to) the true graphical model using our method.

Conclusion and Future Work

In this chapter we developed a graph extraction algorithm that allows us

to build graphical models based on source signals when we only observed

a linear mixing of these signals. The algorithm closely follows the work in

[33] to extract the source signals. It uses a different measure of conditional

dependence, namely the partial mutual information rate.

It was shown that an approximation to the true PMIR, the PMIR using

extracted VAR parameter matrix and assumed Gaussian innovations, con-

tained the necessary information to create a conditional independence graph

for the source signals. This was also justified empirically. The graph how-

ever is only known up to some permutation of the nodes and further analysis

must be done to use it in a clustering algorithm by taking into consideration

multiple patients. In [33] they looked to find the position of the nodes by

analysing the unmixing matrix obtained through ICA. We however believe

that by also taking into consideration the structure of the extracted graphs,

a more powerful algorithm can be developed. This is investigated further in

later chapters.

The main area of future work is in developing an automated threshold. Cur-

rently it must be explicitly specified. Ideally we could have a multiple hy-

pothesis test as in the earlier chapter where all that needs to be specified is

an error rate control parameter and the threshold would be automatically

calculated from this. Currently it is hard to link the threshold to anything

tangible.

Furthermore, we would like to more extensively test the graph extraction

algorithm for larger dimensional models and also on real EEG data.
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5
Clustering and Classification

with Known Node Position

For completeness we include a chapter on clustering and classification of

scalp signal graphs. In the previous chapter we saw how to reduce a very

high dimensional time series object to a graphical model. This is far more

tangible to apply classification and clustering techniques to. Of course this is

based on the assumption the graph captures enough of the key discriminatory

information from the time series. In this chapter we look at how to apply

these techniques to a number of observed graphs with known node position

e.g. vertex 2 of graph 1 matches with vertex 2 of graph 2. If the node position

were not known, it is unknown which vertex of graph 2 the vertex 2 of graph

1 matches with. We will look at this second case in later chapters.

Introduction

We initially look at some common classification and clustering techniques

when applied to features extracted from our graphical models. In particu-

lar, we consider logistic regression and k-means. Both are widely used and
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provide a benchmark for testing more advanced techniques. Their effective-

ness as with all learning algorithms, is highly dependent on the features we

extract from our graphs that act as inputs. A naive extraction would be to

use each potential edge in a graph as a variable. We can then create a vector

containing a one in entry i if the corresponding edge indexed by i exists in the

graph and a zero otherwise. This however can lead to a very large number

of (low entropy) variables. A better method would be to reduce these down

to a smaller number of more informative variables. This method also doesn’t

take into account dependency between edges.

An initial idea to improve our graph feature extraction is to use graph cen-

trality [9] to encapsulate the edge information in the nodes. Essentially,

if a node is connected to other important nodes, it itself has high impor-

tance. This leads to a balancing equation that can be solved by singular

value decomposition (SVD). This technique reduces the feature dimension

from p(p− 1)/2 to p and to a degree takes into account dependency between

edges. The vector of centralities can then be used in a learning algorithm as

opposed to the vector of edges. Once again however, the number of features

p may still be very high for large graphs with a low number of dimensions

which can lead to issues such as overfitting.

A further idea is that the important features are actually contained in sub-

graphs of the original graphs. This not only reduces dimension by considering

smaller subgraphs, but the exact dependency information of the edges within

the subgraph can be taken into account. We do this by modifying the random

forest [10] algorithm such that at each split we choose a random subset of

vertices (as opposed to a random subset of edges which we treat as features).

The split is then based on the edge structure of this subgraph. To extend

this to clustering, we can use the work from [73] that extended the random

forest algorithm to clustering.

The chapter is set out as follows, section 5.1 contains preliminary results.

Section 5.2 and 5.3 contains classification and clustering overviews respec-

tively, along with descriptions of logistic regression and k-means. Section 5.4

then looks at how to extract features from graphical models to be used in

learning algorithms. In particular we look at the naive approach of using a

127



vector indicating whether edges exist and the idea of graph centrality. The

idea of using random forests is then discussed in section 5.5 where we in-

troduce modified algorithms based on them for classification and clustering.

Finally we compare the above methods in a small dimension and large dimen-

sion study in section 5.6. While we do not include tests on real data, we bear

in mind when discussing the algorithms the application to graphical models

based on EEG data from a set of patients labelled with negative syndrome

schizophrenia and controls. The chapter is ended with some concluding re-

marks and ideas for further work.

Remark 59. The modified random forest algorithm is heavily dependent on

the choice of the ‘randomness’ when creating the subgraphs. For example we

select subgraphs by choosing nodes uniformly at random. However it may

make sense that if we already have a certain number of nodes then we should

add other nodes to the subgraphs that many of the nodes are connected to,

with higher probability than a node none are connected to. The size can also

be fixed beforehand or in a similar vein to above we may have an ‘algorithm’

that searches for random subgraphs at each step based on some measure

of how useful (discriminatory) they may be. The size could therefore vary

between splits.

Preliminaries

Multidimensional Scaling

Multidimensional scaling provides a way of transforming points into some

best fitting Euclidean space where we are provided only with a dissimilarity

matrix representing the distances between the points. There are many dif-

ferent versions but in this chapter we use classical multidimensional scaling

(CMDS) [71].
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Classification

Overview

A version of the classification problem we consider is, given some labelled

observations from C classes

y1, . . . , yn ∈ {1, . . . , C}

and some associated features for each observation

x1, . . . ,xn ∈ Rm,

then we want to find for some class of functions sending the features to a

probability vector over the classes

fθ : Rm → [0, 1]C

optimal parameters θ solving

arg min
θ
d({fθ(xi)yi |i = 1, . . . , n})

where d is some aggregated measure of distance. A commonly used distance

is the likelihood of the observations

d({fθ(xi)yi |i = 1, . . . , n}) =
n∏
i=1

fθ(xi)yi .

Remark 60. In our case, the observed features must come from graphs.

We investigate how to process these into a vector of real numbers in a later

section.

Logistic Regression

We briefly discuss one of the most common classification techniques, logistic

regression. Note we only look at binary observation classes (as in traditional
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logistic regression) as this is what relates to our application of negative syn-

drome schizophrenia and controls.

Method

Let Y ∈ {1, 2} be a random variable representing our observation labels such

that given some observed features x ∈ Rm and parameter vector β, it is

conditionally Bernoulli distributed such that

Pr(Y = 1|x,β) =
eβ·x

1 + eβ·x

and of course

Pr(Y = 2|x,β) = 1− Pr(Y = 1|x,β).

Note that in this case we have classification function

fθ(x) =

[
Pr(Y = 1|x,θ)

Pr(Y = 2|x,θ)

]
.

Estimation

Given observation labels y1, . . . , yn and features x1, . . . ,xn, the above model

gives the likelihood function for β

L(β|y1, . . . , yn,x1, . . . ,xn) =

n∏
i=1

(
eβ·x

1 + eβ·x

)I(yi=1)(
1

1 + eβ·x

)I(yi=2)

. (5.1)

Maximising the log transform of (5.1) can be readily solved computation-

ally to find a maximum likelihood value for β, β̂. This gives our optimal

classification function f β̂.

Remark 61. For an in depth review of logistic regression see [37].
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Clustering

Overview

A version of the clustering problem we consider is, given some observed real

features

x1, . . . , xn ∈ Rm

finding k partitions of the observations maximising intra-cluster similarity.

For example if we consider the case m = 1 and our intra-cluster similarity

measure as Euclidean distance between a point and the mean of the cluster,

we may write the clustering problem as

arg min
I1,...,Ik

k∑
i=1

∑
j∈Ii

|xj − µi|,

where I1, . . . , Ik form a partition of {1, . . . , n} and µi is the mean of the

points in cluster i represented by partition Ii.

Remark 62. Once again in our application, the observed features must

come from graphs and we investigate how to process them into vectors of

real numbers later.

k-means

One of the most common clustering techniques is k-means and can form the

basis for more complex clustering techniques.

Model

Let x1, . . . ,xn ∈ Rm be some observed features. Then given total clusters k,

we want to find partition I1, . . . , Ik of {1, . . . , n} satisfying
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arg min
I1,...,Ik

k∑
i=1

∑
j∈Ii

||xj − µi||2, (5.2)

where µi = 1
|Ii|
∑

j∈Ii xj and || · || is Euclidean distance.

Estimation

Finding the solution to (5.2) is in general NP-hard. The most common algo-

rithm used that is guaranteed to find a local minimum is Lloyd’s algorithm

given in algorithm 13.

Algorithm 13 k-means clustering

Require: Observations x1, . . . ,xn ∈ Rm, total clusters k, initialisation
method

Ensure: p ≤ 2M + 1

1: µ1, . . . ,µk ← initialise cluster means according to initialisation method
2: while convergence criteria not met do
3: K1, . . . ,Kk ← set centroid sets to ∅
4: for i = 1 : n do
5: ki ← arg minj∈{1,...,k} ||xi − µj||2
6: Add xi to Kki

7: end for
8: Recalculate µj = 1

|kj |
∑

i∈Kj xi
9: end while

10: Return K1, . . . ,Kk

Remark 63. 1. As k-means is guaranteed to converge to a local mini-

mum, our convergence criteria is simply when the objective function

(5.2) no longer improves between while iterations.

2. There are many different initialisation methods possible. For example

the Forgy method chooses k observations at random from x1, . . . ,xn

and uses these as the initial means. Another, the Random Partition

method gives each observation an initial cluster uniformly randomly

132



chosen from {1, . . . , k}. The means are then initialised as the means of

these assigned clusters.

3. For a detailed overview of k-means see [87].

Graph Feature Extraction

In this section we look at how we can extract features from graphical models

to use in classification and clustering algorithms.

Edges

The most basic feature extraction is to simply vectorise an indicator of

whether the edges in the graph exist i.e. if we have a graph G ∈ Gp, transform

this to a feature vector x ∈ {0, 1}p(p−1)/2 such that

x =

1 if edge indexed by i exists in G

0 o/w
.

Certainly then in this case x ∈ Rp(p−1)/2 and it can be used in both a logistic

regression classification and a k-means clustering.

Remark 64. This method has a number of issues as mentioned in the in-

troduction. In particular, the number of features can become very large for

high dimensional graphs, something that may cause classification algorithms

to overfit. Secondly, treating the edges as independent features doesn’t take

into account dependency/interaction between them which may be important.

Centrality

A way to overcome some of the issues in the previous approach is to use

values assigned to the nodes of the graph based on their adjoining edges.

This reduces the dimension to p features (one for each node) and also takes

into account some degree of dependency between the edges. To accomplish
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this we use the idea of graph centrality and in particular eigenvector centrality

[9].

We assign a centrality ck to node k to represent its importance within the

network. The centralities satisfy

ck =
1

α

∑
q∈Nk

cq,

where Nk is the set of adjacent nodes to k and α is a constant. The interpre-

tation of this formula is that the centrality/importance of a node in a graph

is a linear sum of the importance of all the nodes it is directly connected to.

This can be reformulated as

αc = Ac,

where A ∈ Rp×p is the adjacency matrix of the graph and c the p dimensional

vector of centralities. Thus c satisfies our conditions if it is an eigenvector of

A and we choose it to be the principal eigenvector so that it has non-negative

entries.

Remark 65. 1. As we are dealing with undirected graphs, our adjacency

matrices are symmetric and hence can be decomposed into A = QDQT

where Q is an orthogonal matrix of eigenvectors and D is a diagonal

matrix of eigenvalues.

2. If we use a weighting on our edges, we can define centrality as

ck =
1

α

p∑
q=1

Wqkcq,

where Wqk is the weight assigned to edge {q, k}. This gives the resulting

expression

αc = Wc

where W ∈ Rp×p is the weighted adjacency matrix.

3. The vector of centralities c ∈ Rp can be used as features in our clas-

sification and clustering algorithms. We note that for large p, further

dimension reduction may be necessary to achieve good results.
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4. Interestingly, if we were to only know the position of the nodes of

each graph up to some permutation, the centrality values would simply

be reordered. Hence if this were the case it may be possible to use

some ordered graph centrality values to discriminate between graphs

with unknown permutations. We explore these ideas in depth in later

chapters.

Random Forests

We investigate both clustering and classification algorithms based on random

forests [10]. This is a supervised learning method that generates an ensemble

of decision trees built from the dataset, that then vote on the class an input

should belong to. Clearly without any inherent changes in the generation

of the trees from our dataset, they will all be the same which is of no use

when using them in an ensemble. Instead, to reduce correlation between the

individual trees the first step to building one is to bootstrap the training

data by sampling with replacement a new dataset. The tree is then built

using this bootstrapped dataset. Note that this technique of bootstrapping

many new datasets and aggregating an ensemble of learners built from the

individual sets is known as bagging [11].

The next concept in random forests that reduces the correlation between

individual trees is that at each possible split of a tree, we use a random

subset of the overall features available. This is known as a random subspace

method or attribute bagging [35]. A typical subspace size of
√
L where L is

the total number of features is most often used. Note that due to the very

large number of edges (which we will use as features) for high dimensional

graphs, using all of them at each split in a decision tree leads to overfitting,

a problem that is mitigated by using random forests.

Classification

We demonstrate how the ideas used in the original random forest algorithm

can be extended for classification of graphs (where the existence of edges are
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used as features). The key difference from the original algorithm is that our

random subspace method does not consist of a uniform sampling from the

set of potential edges but instead sampling uniformly L vertices and using

the L(L − 1)/2 edges from this subgraph as the features. This method is

given in algorithm 14.

Algorithm 14 Random forest for graph classification

Require: Observation labels y1, . . . , yn and graphs G1, . . . , Gn ∈ Gp, boot-
strap size B, minimum leaf size lmin, total trees T , subgraph dimension
L, split rule

1: for i = 1 : T do
2: Z ← draw bootstrap sample from (G1, y1), . . . , (Gn, yn) by sampling
B times with replacement

3: ti ← learn decision tree from sample Z where at each leaf, if total
members > lmin, sample L vertices without replacement and split ac-
cording to split rule using edges of the dimension L induced subgraphs
as features

4: end for
5: Return t1, . . . , tT

Remark 66. A common split rule for classification trees is the normalised

information gain [66]).

For an unseen graph G ∈ Gp we can output the probability it is in a certain

class y using the output decision trees as

1

T

T∑
i=1

I[ti(G) = y]

i.e. the proportion of decision trees that classify G into class y.

Clustering

This idea can be extended to clustering graphs so we can analyse data without

any doctor’s diagnosis, or if we are not confident the diagnosis is correct. Shi
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and Horvath [73] proposed a way to do this using random forests. The idea

is to create synthetic data based on the original observed data. In our case,

as we have a sample of graphs, we estimate the MLE binomial probability for

each edge that would have produced the observed graphs and then simulate

from this estimated distribution.

The original data is then labelled as one class and the synthetic data as

another. After training a random forest on this aggregated data, we measure

how close graphs in the original data were, based on the number of trees

in which they were both classified into the same leaf node. This gives rise

to a similarity matrix which can be transformed into a dissimilarity matrix

representing the distance between graphs.

By using multidimensional scaling, the dissimilarity matrix can be trans-

formed into a lower dimensional Euclidean space. Finally, we can use a point

clustering technique such as k-means in order to extract our clusters from

the original data set.

The modified version of the Shi and Horvath algorithm for graphical models

is given in algorithm 15.

Algorithm 15 Random forest for graph clustering

Require: Observed graphs G1, . . . , Gn ∈ Gp, bootstrap size B, minimum
leaf size lmin, total trees T , subgraph dimension L, split rule, method for
generating synthetic data, total clusters k

1: Create n synthetic observations similar to G1, . . . , Gn using synthetic
data generation method

2: Train a random forest for graph classification using algorithm 14 on the
synthetic data with labels 1, the observed data with labels 2 and param-
eters B, lmin, T , L and split rule

3: S ← proximity matrix such that Sij is the proportion of decision trees
that Gi and Gj ended in the same leaf node

4: D ← dissimilarity matrix such that Dij =
√

1− Sij
5: Use classical multidimensional scaling to convert graphs represented by
D into points in Euclidean space

6: Run k-means to assign the points to k clusters
7: Return output clusters for graphs G1, . . . , Gn
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Algorithm class 1 correct (%) class 2 correct (%)

(i) 92.5 92.5
(ii) 97.5 75
(iii) 100 92.5

Table 5.1: Results of the classification on p = 5

Remark 67. One way to generate synthetic data is to estimate the maximum

likelihood random Bernoulli graph for the observations G1, . . . , Gn. Synthetic

data can then be sampled from this distribution.

Results

Classification

In the following tests, we compare the classification algorithms of

i Logistic regression using edges as features

ii Logistic regression using centrality as features

iii Modified random forest

Given a dimension value p, we generate two matrices A1 and A2 according

to the method in section 1.5.2. We then use these as the parameter matrices

of a VARp(1) process.

Next, we generate 50 length 512 time series from each VAR process to be

used as training data and 40 length 512 time series to be used as testing

data. The graphical model for each time series is extracted using the MHT

technique in algorithm 4 with α = 0.05 and M = 32.

Finally, we train the three classification models on the training data and

report the performance of each on the test data. The results for p = 5 are

given in table 5.1 and p = 20 in table 5.2. In the case of the modified random

forest algorithm, we train 500 trees.

138



Algorithm class 1 correct (%) class 2 correct (%)

(i) 87.5 57.5
(ii) 57.5 60
(iii) 100 80

Table 5.2: Results of the classification on p = 20

We see that the modified random forest performs well on the models for

both dimensions however both the logistic regression on edges and logistic

regression on centrality do not perform well for p = 20.

Conclusion and Future Work

This chapter briefly covered classification and clustering of graphs with known

node position. We introduced a modification to the well known random for-

est algorithm which outperformed classical logistic regression over a variety

of classification experiments. It was also shown how the algorithm can be

adapted for clustering but this requires further tests. We note that this is

not the main focus of the thesis and the techniques used could be vastly

improved.

For future consideration, we note the similarity between edge features and

pixels of black and white image data (a large number of binary features).

Variants of neural networks have proved very successful when working with

the latter data e.g. on the MNIST dataset of handwriting. As such they may

be another approach to look into if we have enough data to adequately train

them.
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6
Multiple Graph Matching and

Graph Clustering

Introduction

In chapter 3 we looked at how to align two graphs over one another to make

them as similar as possible. In this chapter we look at a related but less

studied problem, that of finding the best way to align multiple graphs over

one another so they are all as similar as possible. We call this multiple graph

matching.

Multiple graph matching can be further extended into a clustering method

where we look to split n graphs into k clusters such that within each cluster

all the graphs align well over one another. It turns out that we can use

pairwise graph matching between individual graphs and some aggregated

object of the graphs within a cluster in a k-means type algorithm to perform

this clustering.

This clustering approach then allows us in our brain diagnosis application, to

potentially find common connectivity patterns within the brain which may
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describe for example, certain terms of schizophrenia.

The chapter is organised as follows, section 6.1 contains some necessary pre-

liminary results. Section 6.2 provides a general way for measuring how well

multiple graphs fit over one another. This is then used in section 6.3 where

we define the multiple graph matching problem. Section 6.4 investigates cer-

tain types of fit evaluation functions that arise from heuristic measures of

graph similarity and section 6.5 looks at ways of normalising these functions

to work in a clustering algorithm. We then present the clustering algorithm

in section 6.6. We end the chapter with some concluding remarks and ideas

for future work.

Preliminaries

Frobenius Norm Extension

We extend the definition of the Frobenius norm to a set of graphs.

Definition 44. Given a set of graphs G = {G1, . . . , Gm}, then we extend the

Frobenius norm to be the average pairwise Frobenius norm of the individual

adjacency matrices,

|| · ||F : Gm
n → R

as

||G||F =

√√√√ m∑
i=1

m∑
j=1

||A(Gi)− A(Gj)||2F .

Sampling from Correlated Bernoulli Distributions

Some of our tests require us to be able to sample Y1, . . . , Yk ∈ {0, 1} such

that for some θ ∈ [0, 1] and ρ ∈ [0, 1],

Yi ∼ Bernoulli(θ)
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and

corr(Yi, Yj) = ρ

for i 6= j.

In order to do this we can use the technique in [25] which involves first

sampling correlated multivariate Gaussians and then transforming these to

Bernoullis.

Remark 68. 1. In the general case, the Yi can have unique Bernoulli pa-

rameter and pairwise correlations i.e. Yi ∼ Bernoulli(θi) and corr(Yi, Yj) =

ρij.

2. In [25] the following bounds must be satisfied

max(−(
θjθk

(1− θj)(1− θk)
)1/2,−(

(1− θj)(1− θk)
θjθk

)1/2) ≤ ρij

and

min(−(
θj(1− θk)
(1− θj)θk

)1/2,−(
(1− θj)θk
θj(1− θk)

)1/2) ≥ ρij.

In our case we have θj = θk so the bounds reduce to

0 ≤ ρ ≤ 1

and as we only consider non-negative correlations, these bounds are

then irrelevant.

The algorithm can be written as in algorithm 16.
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Algorithm 16 Sample correlated Bernoulli variables

Require: Bernoulli parameter θ ∈ [0, 1], correlation ρ ∈ [0, 1], total number
of samples n

1: Solve Φ(z(θ), z(θ), δ) = ρθ2 + θ2 for δ
2: Sample an n-dimensional normal random variable x ∼MVN(0, δI)
3: for i = 1 : n do
4: if xi < z(θ) then
5: Yi ← 0
6: else
7: Yi ← 1
8: end if
9: end for

10: return Y1, . . . , Yn

where Φ(a, b, δ) is a standard bivariate normal cdf with correlation coefficient

δ i.e. MVN(0,

(
1 δ

δ 1

)
and z(a) is the ath quantile of a standard normal

distribution.

Remark 69. Solving Φ(z(θ), z(θ), δ) = ρθ2 +θ2 can be done using numerical

techniques and only has to be done once in the algorithm. They suggest in

[25] a simple bisection method.

Correlated Random Bernoulli Graphs

Correlated random Bernoulli graphs are a generalisation of random Bernoulli

graphs we define them as in [58].

Definition 45. Consider symmetric parameter matrix Q ∈ [0, 1]p×p with

p ∈ Z. Then for some correlation coefficient ρ ∈ [0, 1], the simple undirected

graphs G1, . . . , Gn are ρ correlated random Bernoulli graphs with parameter

matrix Q if

1. A(Gk)ij = A(Gk)ji ∼ Bernoulli(Qij) for 1 ≤ i < j ≤ p and 1 ≤ k ≤ n.

2. corr(A(Gk)ij, A(Gl)ij) = ρ for i 6= j and k 6= l.
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3. A(Gk)ij and A(Gl)ij are independent at all higher order moments for

k 6= l.

Remark 70. If ρ is 1, all realisations from a ρ correlated random Bernoulli

graph are isomorphic to one another. If ρ is 0, the distribution is simply a

random Bernoulli graph.

In [58] they used correlated random Bernoulli graphs to obtain their theoret-

ical results for the FAQ graph matching algorithm. They found empirically

that for ρ < 0.6 they were almost never successful at finding the optimal

matching between two realisations from a ρ correlated random Bernoulli

graph of dimension 150 with one of the realisations transformed by some

permutation matrix. For ρ > 0.75 they were however almost always suc-

cessful at recovering the permutation matrix, which is very likely to be the

optimal matching. This is an interesting point that we will see is later rele-

vant to our graph clustering algorithm.

In order to generate a pair of realisations from a ρ correlated random Bernoulli

graph with parameter matrix Q by sampling the two adjacency matrices

A ∈ Rp×p and B ∈ Rp×p as follows. For i ≤ 1 < j ≤ p sample Bij ∼
Bernoulli(Qij) and then Aij ∼ Bernoulli((1 − ρ)Qij + ρBij). Finally set

Bji = Bij and Aji = Aij.

As we have to sample an arbitrary number of graphs, this formula based on

the conditional distributions becomes increasingly complex. Instead we make

use of the method from algorithm 16. The sampling of random Bernoulli

graphs is then given in algorithm 17.
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Algorithm 17 Sample simple undirected graphs with a ρ correlated random
Bernoulli graph and return their adjacency matrices

Require: Parameter matrix Q ∈ Rp×p, correlation ρ ∈ [0, 1], total number
of samples n

1: Initialise adjacency matrices A1, . . . , An = 0 ∈ Rp×p

2: for i = 1 : p− 1 do
3: for j = i+ 1 : p do
4: Sample x ∈ Rn from a ρ correlated Bernoulli distribution with

parameter Qij using algorithm 16
5: k ← 1
6: for k = 1 : n do
7: (Ak)ij ← xk
8: (Ak)ji ← xk
9: end for

10: end for
11: end for
12: return A1, . . . , An

Clustering Evaluation

The main objective measure we use to analyse the performance of our clus-

tering algorithm is the adjusted Rand index). We define the adjusted Rand

index as in [67].

Consider a set of n objects S = {s1, . . . , sn} and two clusterings represented

by the sets of sets of elements of S, U = {u1, . . . , ur} and V = {v1, . . . , vq}
such that

∪ri=1ui = ∪qi=1vi = S

and

ui ∩ uj = vi ∩ vj = ∅

for i 6= j.
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For each pair of elements in S, (si, sj) where i 6= j, let

fU((si, sj)) =

1 if (si, sj)are in the same cluster in U

0 otherwise
,

fV ((si, sj)) =

1 if (si, sj)are in the same cluster in V

0 otherwise
.

Now define

a =
∑
i 6=j

fU((si, sj))fV ((si, sj))

total pairs of elements in the same cluster in U and the same cluster in V .

b =
∑
i 6=j

fU((si, sj))(1− fV ((si, sj)))

total pairs of elements in the same cluster in U and different cluster in V .

c =
∑
i 6=j

(1− fU((si, sj)))fV ((si, sj))

total pairs of elements in different cluster in U and the same cluster in V .

d =
∑
i 6=j

(1− fU((si, sj)))(1− fV ((si, sj)))

total pairs of elements in different cluster in U and different cluster in V .

Then from [38] we have the following definition.

Definition 46. The adjusted Rand index is defined as

ARI =

(
n
2

)
(a+ d)− [(a+ b)(a+ c) + (c+ d)(b+ d)](
n
2

)2 − [(a+ b)(a+ c) + (c+ d)(b+ d)]
.

We can measure how well our clustering performs if we know the true clus-

tering labels for each element by assigning U as our calculated clustering and
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V as the true clustering and calculating the adjusted Rand index.

Generating Random Bernoulli Parameter Matrices

In order to generate parameter matrices for random Bernoulli graphs, we

would like to be able to control the expected number of edges a realisation

from the distribution has and the entropy of the distribution. Note that in

layman’s terms, for two random Bernoulli graphs with the same number of

expected edges, the one with the lower entropy will have more values in the

parameter matrix closer to 0 and 1 whereas the higher entropy distribution

will have more values closer to 0.5. In order to generate these distributions

for a given number of expected edges TEE and some value relating to the

distribution entropy EC, we use the following heuristic method given in

algorithm 18.

Algorithm 18 Generate a random Bernoulli graph parameter matrix

Require: Total expected edges TEE, entropy adjustment EC, dimension p

1: Initialise U = 0 ∈ Rp×p

2: while
∑

ij Uij < 2TEE do
3: Sample continuous uniform random variable x from U [0, 1]
4: Sample discrete uniform random variable y1 on the set {1, p− 1}
5: Sample discrete uniform random variable y2 on the set {y1 + 1, p}
6: Uy1y2 ← x
7: Uy2y1 ← x
8: end while
9: for i = 1 : p do

10: for j = 1 : p do
11: if Uij ≤ 0.5 then
12: Uij ← 2EC−1UEC

ij

13: else
14: Uij ← (1− 2EC−1)(1− UEC

ij )
15: end if
16: end for
17: end for
18: return U
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Note that the first step of the algorithm repeatedly adds uniform random

variables to random entries in U until we are past the TEE limit. Then we

push the values in U towards (away from) 0 and 1 when EC > 1 (EC < 1)

by using an update based on the functions

f(x) =
(2x)n

2

for x ≤ 0.5 and

g(x) = 1− (2(1− x))n

2

for x > 0.5.

Remark 71. 1. This algorithm is heuristic and doesn’t ensure that the

total expected edges of a realisation from our random Bernoulli graph

is in fact equal to TEE but only that it is relatively close.

2. The first step of the algorithm is very inefficient if TEE is close to

p(p− 1)/2 so we should only use relatively small values for TEE.

Fit Evaluations

We look to extend the previous graph matching ideas to work with multiple

graphs and refer to this as multiple graph matching. Given a set of graphs,

we want to find some permutations applied to each graph so that they ‘fit’

together well. We begin by defining how well a set of unpermuted graphs fit

together.

Let G = {G1, ..., Gm} be a set of simple undirected graphs.

Definition 47. For an edge e, define the edge count as

me(1) =
m∑
i=1

I[e ∈ E(Gi)],

where I[·] is the indicator function and E(Gi) is the set of edges for graph

Gi.
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We denote the number of non-edges as

me(0) =
m∑
i=1

I[e /∈ E(Gi)] = m−me(1).

Definition 48. The edge count function

eC : Gm
p → [0,m]p(p−1)/2

is defined as

eC(G) =

 me1(1)
...

mep(p−1)/2
(1)

 ,

where the ej are the distinct edges from the set ES(n). Note that as our

graphs are simple and undirected, the edges in ES are all we need to capture

all information from them.

Remark 72. The edge count function counts the number of graphs in G

that contain a specific edge, for all edges.

Definition 49. A fit evaluation function

Hlm : Gm
p → R

is defined as

Hl = Lm ◦ eC,

where eC is the edge count function and

Lm : [0,m]n(n−1)/2 → R

is defined as

Lm(x) =

p(p−1)/2∑
i=1

lm(xi),

where lm : [0,m]→ R is a symmetric convex function.

Remark 73. 1. A set of graphs with a high fit evaluation intuitively can
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be placed on top of one another and have a similar edge structure.

2. As lm is symmetric, having a lot of edges fit over one another is equally

beneficial to having a lot of non-edges fit over one another.

3. As lm is convex, it means if we have the option to permute one of the

graphs in our set, then a permutation that causes its edges (and non-

edges) to fall where most other graphs have edges (and non-edges) is

preferred to a permutation causing its edges (and non-edges) to fall

where just over half of the other graphs have edges (and non-edges).

4. As lm is symmetric and convex on [0,m], it has a minimum at m/2.

Therefore edges that half the graphs contain and half don’t is the worst

possible contribution of that edge to the fit evaluation function. As the

fit evaluation function is a sum over all edges, it may still be maximised

with respect to some permutation of the graphs when some edges have

very low contribution to it, implying this is outweighed by the contri-

bution of other better fitting edges.

Definition 50. We can naturally extend the concept of the edge count func-

tion and fit evaluation functions to act on the adjacency matrices of graphs

(as opposed to the graphs themselves) and so also write the extension of eC

and Hl as

eC : (Rp×p)m → [0,m]p(p−1)/2

and

Hl : (Rp×p)m → R.

Multiple Graph Matching Problem

We previously considered solving the graph matching problem (GMP). We

define the multiple graph matching problem (MGMP) for a given fit evalua-

tion function Hlm and graphs G1, . . . , Gm as

arg max
P1,...,Pm∈P

Hlm({P T
1 A(G1)P1, . . . , P

T
mA(Gm)Pm}). (6.1)
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Proposition 26. The MGMP is equivalent to the GMP when we only have

2 simple undirected non-weighted graphs G1 and G2, for ANY fit evaluation

function.

Proof. If we only consider two graphs G1 and G2, we can write the MGMP

as

arg max
P1,P2∈P

Hl2({P T
1 A(G1)P1, P

T
2 A(G2)P2})

= arg max
P1,P2∈P

Hl2({A(G1), P1P
T
2 A(G2)P2P

T
1 })

= arg max
P∈P

Hl2({A(G1), P TA(G2)P}).

Note also that for only two graphs, our fit evaluation function must be

l2(x) =

a if x = 0, 2

b if x = 1
(6.2)

where a, b ∈ R and a > b by symmetry and convexity of the l function.

Therefore

arg max
P∈P

Hl2({A(G1), P TA(G2)P})

= arg max
P∈P

p−1∑
i=1

p∑
j=i+1

l2(A(G1)ij + (P TA(G2)P )ij). (6.3)

Note also

l2(y + z) =

a if y = z

b if y 6= z
(6.4)

where y, z ∈ {0, 1}.

Also, as our graphs are simple and undirected, the adjacency matrices have

zero entries on the diagonal and are symmetric. Hence we can write (6.3) as

arg max
P∈P

p∑
i=1

p∑
j=1

(a− b)((A(G1)ij − (P TA(G2)P )ij)
2 + b
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= arg max
P∈P

p∑
i=1

p∑
j=1

((A(G1)ij − (P TA(G2)P )ij)
2

= arg max
P∈P
||A(G1)− P TA(G2)P ||2F .

Note the max didn’t change to a min as we previously assumed a > b. There-

fore for any fit evaluation function, under the assumptions in the proposition,

the MGMP is equivalent to the GMP.

Types of Fit Evaluation Functions

While we have discussed fit evaluation functions and the properties they must

satisfy, we can now show how they arise when applying heuristic methods to

fit multiple graphs together.

Frobenius Norm

An intuitive method for measuring how well a set of graphs fit together is

to calculate the pairwise Frobenius norm between all the graphs’ adjacency

matrices. Maximising this with respect to some chosen permutations can be

shown to lead to an optimisation in the form of a MGMP.

Proposition 27. Minimising the Frobenius norm of a set of graphs G =

{G1, . . . , Gm} (as defined in (44)) is equivalent to maximising a fit evaluation

function

Proof. From our definition,

||G||F =

√√√√ m∑
i=1

m∑
j=1

||A(Gi)− A(Gj)||2F (?)

=

√√√√ m∑
i=1

m∑
j=1

2

p(p−1)/2∑
r=1

(I[er ∈ E(Gi)]− I[er ∈ E(Gj)])2.
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where er are the distinct edges from ES(p). We used the fact our graphs

are undirected and simple, so are symmetric and have zeros on the leading

diagonal.

By considering the values the inner term can take, (?) can be written as√√√√ m∑
i=1

m∑
j=1

2

p(p−1)/2∑
r=1

(I[er ∈ E(Gi)] · I[er /∈ E(Gj)] + I[er /∈ E(Gi)] · I[er ∈ E(Gj)])

=

√√√√ m∑
i=1

m∑
j=1

4

p(p−1)/2∑
r=1

I[er ∈ E(Gi)] · I[er /∈ E(Gj)]

=

√√√√4

p(p−1)/2∑
r=1

(
m∑
i=1

I[er ∈ E(Gi)])(
m∑
j=1

I[er /∈ E(Gj)]).

Recalling the edge countmer(1) =
∑m

i=1 I[er ∈ E(Gi)] andmer(0) =
∑m

i=1 I[er /∈
E(Gi)] = m−mer(1).

Then we can re-write (?) as√√√√4

p(p−1)/2∑
r=1

mer(1)mer(0)

=

√√√√4m2

p(p−1)/2∑
r=1

mer(1)

m

mer(0)

m
.

Now let lm(x) = −4x(m− x) and Lm(x) =
∑n(n−1)/2

i=1 lm(xi), then

Hlm = Lm ◦ eC(G) =

p(p−1)/2∑
r=1

−4mer(1)mer(0)

= −4m2

p(p−1)/2∑
r=1

mer(1)

m

mer(0)

m

= −||G||2F .
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We also see that Hl is a fit evaluation function by (49) as l is symmetric and

convex on [0,m].

Finally, as ||G||F > 0, if we introduce optimising over permutation matrices

we conclude

arg max
P1,...,Pm∈Pset

Hlm({P T
1 G1P1, . . . , P

T
mGmPm})

= arg max
P1,...,Pm∈Pset

||{P T
1 G1P1, . . . , P

T
mGmPm}||2F .

Entropy

We now investigate an entropy based method for performing the clustering.

The idea behind this is that if we assume our observations come from an

unknown distribution in a certain general class of distributions, then permu-

tations of the observations that imply the distribution they came from has

low entropy will then tend to make the transformed observations less random

and in some sense ‘fit’ together better.

Proposition 28. For a random Bernoulli graph G = GRBG(Q) the entropy

of G satisfies

exp[−H(G)] =
∏

1≤i,j≤p

Q
Qij
ij · (1−Qij)

(1−Qij).

Proof. As the probability of edges occurring in realisations from G are inde-

pendent, we can write the entropy as

H(G) = E[− log(f(G))] =
∑

1≤i,j≤p

E[− log(fij(G))],

where f(G) is the probability mass function for G and fij(G) is the proba-

bility mass function for edge (i, j) of G.
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Now the fij are independent Bernoulli trials, so we have

E[− log(fij(G))] = −Qij log(Qij)− (1−Qij) log(1−Qij)

and thus combining with the above equation

exp[−H(G)] =
∏

1≤i,j≤p

Q
Qij
ij · (1−Qij)

(1−Qij).

Definition 51. Given observations P1G1P
T
1 , . . . , PmGmP

T
m ∈ Gn such that

the Gi are realisations from GDEP (n,Q) and the Pi are realisations from a

uniform distribution over P, we define the combined likelihood of the obser-

vations as

f(G1, . . . , Gm|Q,P1, . . . , Pm).

Proposition 29. Consider observations PiGiP
T
i as in definition (51). Then

estimating P1, . . . , Pm by minimising the entropy of the maximum likelihood

estimate of Q where the assumed distribution is GRBG(Q), is equivalent to

maximising the combined likelihood.

Proof. Consider permutation matrix estimates P̂1, . . . , P̂m, then as each edge

from a GRBG(Q) distribution corresponds to a Bernoulli trial with probability

Qij, the maximum likelihood estimate of Q can be written as

Q̂ij = m(i,j)(1)/m

where

m(i,j)(1) =
m∑
r=1

I[(i, j) ∈ E(P̂ T
r PrGrP

T
r P̂r)]

is the number of transformed observations that contain edge (i, j).

Hence the entropy of the GRBG(Q̂) distribution with the maximum likelihood

estimate of Q, can be written by proposition 28 as

exp[−Ĥ(G)] =
∏

1≤i,j≤p

Q̂
Q̂ij
ij · (1− Q̂ij)

(1−Q̂ij). (?)
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Now consider the combined likelihood

f(G1, . . . , Gm|Q̂, P̂1, . . . , P̂m)

=
m∏
r=1

f(Gr|Q̂, P̂1, . . . , P̂m).

Now,

f(Gr|Q̂, P̂1, . . . , P̂m) =
∏

1≤i,j≤p

Q̂
I[(i,j)∈E(P̂Tr PrGrP

T
r P̂r)]

ij ·(1−Q̂ij)
I[(i,j)/∈E(P̂Tr PrGrP

T
r P̂r)].

Therefore, by combining the above equations

f(G1, . . . , Gm|Q̂, P̂1, . . . , P̂m) =
∏

1≤i,j≤p

Q̂
m(i,j)(1)

ij · (1− Q̂ij)
m(i,j)(0).

Note now that for f(x) = xa · (1− x)m−a, for arbitrary 0 ≤ a ≤ m,

∂ log f

∂x
=
a

x
− m− a

1− x
.

Finding the value of x that maximises f can be obtained by setting the above

to 0. This gives

a(1− x) = x(m− a)

⇒ x =
a

m
.

Therefore f(G1, . . . , Gm|Q̂, P̂1, . . . , P̂m) is maximised when Q̂ij =
m(i,j)(1)

m
.

Thus as the m(i,j)(1) are simply functions of our observations and estimated

permutations, we do not have to consider the Q̂ values when maximising the

combined likelihood.

So,

f(G1, . . . , Gm|Q̂, P̂1, . . . , P̂m) =
∏

1≤i,j≤p

(
m(i,j)(1)

m

)m(i,j)(1)(m(i,j)(0)

m

)m(i,j)(0)
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and therefore from (?),

f(G1, . . . , Gm|Q̂, P̂1, . . . , P̂m)
1
m = exp[−Ĥ(G)]

as
m(i,j)(1)

m
= Q̂ij.

Hence as (·)1/mand exp are increasing functions, minimising the estimated

entropy is equivalent to maximising the combined likelihood.

Remark 74.

The maximum likelihood graph obtained by maximising the fit evaluation

function is not equivalent to the maximum likelihood graph obtained by

maximising the likelihood based on just the observations themselves

f(G1, . . . , Gm|Q) ∝
∑

P̂1,...,P̂m∈P

f(G1, . . . , Gm|Q, P̂1, . . . , P̂m), (6.5)

where the permutations are assumed uniformly distributed on P. See [54] for

an efficient way to solve this.

Further, the multiple graph matching does not intend to find a good/consistent

solution of Q which is obtained when maximising (6.5). It is simply a way to

connect the entropy of a Bernoulli random graph to fit evaluation functions.

Proposition 30. Maximising the combined likelihood is equivalent to max-

imising a fit evaluation function.

Proof. Consider the function

lm(x) = x log x/m+ (1− x) log[(m− x)/m]

and

Lm(x) =

p(p−1)/2∑
r=1

lm(xi).

Then Hl = Lm ◦ eC is a fit evaluation function as l is symmetric and convex
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on [0,m]. Note also that

Hl({P̂ T
1 P1G1P

T
1 P̂1, . . . , P̂

T
mPmGmP

T
mP̂m}) =∑

er∈ES(p)

mer(1) log
mer(1)

m
+mer(0) log

mer(0)

m

= m
∑

er∈ES(p)

mer(1)

m
log

mer(1)

m
+
mer(0)

m
log

mer(0)

m

= m
∑

er∈ES(p)

Q̂er log Q̂er + (1− Q̂er) log[1− Q̂er ]

= −mĤ(G),

where G = GRBG(Q̂) and

Q̂ij = m(i,j)(1)/m.

Now, minimising the estimated entropy ⇔ maximising the combined likeli-

hood ⇔ maximising a fit evaluation function.

Fit Evaluation Norms

When we look to extend our multiple graph matching to clustering, we need

the idea of fit evaluation norms. This is to ensure fit evaluation functions

behave appropriately on different sized sets.

Definition 52. We define the norm of l-function lm as

||lm|| =
lm(x)

l1(x/m)
.

Note that for any fit evaluation function used for clustering, we need lm(x)/l1(x/m)

to be independent of x. This will be shown to be true for both the fit evalu-

ation functions derived from the Frobenius norm and entropy.

Proposition 31. Given two sets of graphs G1,G2 such that
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eC(G1)

|G1|
=
eC(G2)

|G2|
i.e. the ‘proportion’ of each edge is equivalent. Then,

Hlm1
(G1)

||lm1||
=
Hlm2

(G2)

||lm2 ||

where m1 = |G1| and m2 = |G2|.

Proof. Let m1 = m and m2 = km for some constant k. Now,

Hlm(G1) = Lm(eC(G1)) = Lm(mv)

where

v =
eC(G1)

|G1|
.

Therefore the ith entry of the above value is as follows

lm(mvi) = ||lm|| · l1(vi)

from definition 52.

We also have

lkm(kmvi) = ||lkm|| · l1(vi)

from the same definition. Therefore

lm(mvi)

||lm||
=
lkm(kmvi)

||lkm||

⇒ Lm(mv)

||lm||
=
Lkm(kmv)

||lkm||

⇒ Lm(eC(G1))

||lm||
=
Lkm(eC(G2))

||lkm||

⇒
Hlm1

(G1)

||lm1 ||
=
Hlm2

(G2)

||lm2||
.
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Example 5. Consider the fit evaluation function

lm(x) = |m
2
− x|n

for n > 1. This is symmetric about m/2 and convex so is a valid fit evaluation

function. Now,

||lm|| =
|m/2− x|n

|1/2− x/m|n
= mn.

Hence for 2 sets of graphs G1 and G2 satisfying the properties in proposition

31,

Hlm1
(G1)

||lm1 ||
=
Hlm2

(G2)

||lm2||
.

Therefore

Hlm(G1) =
mn

(km)n
Hlkm(G2)

= k−nHlkm(G2),

again letting m1 = m and m2 = km.

We can now see why we must use norms when clustering. The clustering

algorithm would be affected by the choice of n and the cluster size if we

weren’t to normalise. This can be seen be considering k > 1, then for large

n, Hlm(G1) would be negligible compared to Hlm(G2). Instead we simply

wanted to use n to control the shape of our fit evaluation l function but keep

the cluster size influence on our clustering constant as seen in (6.6).

Current Norms

We showed 2 fit evaluation functions we could use, motivated by intuitive

measures of how well a set of graphs fit together. These can be defined by

their l function as,
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1. Frobenius norm:

lm(x) = −x(m− x)

(dropping multiplicative constant)

We can calculate the norm of this l-function using definition (52) to

get

||lm|| =
−x(m− x)

−x/m(1− x/m)
= m2.

2. Entropy :

lm(x) = x log
x

m
+ (m− x) log

[
m− x
m

]
.

We can calculate the norm of this l-function to get

||lm|| =
x log x

m
+ (m− x) log

[
m−x
m

]
x
m

log x
m

+ (1− x
m

) log
[
1− x

m

] = m.

Clustering Algorithm

We showed in the previous section how to build objective functions for eval-

uating how well a set of graphs fit together. This is now extended to measure

how well clusters of graphs fit together. Maximising the objective function

over permutations and clusters then gives us our multiple graph clustering

algorithm.

For observations G1, . . . , Gm ∈ Gp, a fit evaluation function Hl, k clusters

and index sets I1, . . . , Ik that form a partition of {1, . . . ,m} we can write our

objective to maximise as

arg max
P1,...,Pm,I1,...,Ik

k∑
i=1

|Ii|
Hl({P T

j GjPj|j ∈ Ii})
||l|Ii|||

. (6.6)

Remark 75.

The size of each cluster is accounted for only in the |Ii| term, as the fit

evaluation function is normalised. This allows us to intuitively think of the
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normalised fit evaluation function as the average contribution (to the objec-

tive function) of each graph in a specific cluster. Multiplying by the total

graphs in the cluster gives the total contribution of that cluster.

If we choose total clusters k = 1, we are simply left with a multiple graph

matching optimisation.

We now show that for the Frobenius norm and entropy fit evaluation func-

tions, (6.6) can be written in the form of a k-means objective function and

can be solved using similar techniques. However we do not show this for

general fit evaluation functions.

Frobenius Norm

Proposition 32. Let lm(x) = −4x(m − x), the l-function derived from the

pairwise Frobenius norm. Then for the associated fit evaluation function Hl,

solving (6.6) is equivalent to solving

arg min
P1,...,Pm,I1,...,Ik

k∑
i=1

∑
j∈Ii

||P T
j A(Gj)Pj − µi||2F ,

where µi = 1
|Ii|
∑

j∈Ii P
T
j A(Gj)Pj.

Proof. In the proof of proposition 27 we saw that Hl(G) = −||G||2F for

the given l-function and some G ∈ Gm
n . We also know that ||lm|| = m2.

Therefore, we can write (6.6) as

arg min
P1,...,Pm,I1,...,Ik

k∑
i=1

1

|Ii|
∑
j1∈Ii

∑
j2∈Ii

||P T
j1
A(Gj1)Pj1 − P T

j2
A(Gj2)Pj2||2F

= arg min
P1,...,Pm,I1,...,Ik

k∑
i=1

1

|Ii|
∑
j1∈Ii

∑
j2∈Ii

tr(A(Gj1))
2+tr(A(Gj2))

2−2 tr[P T
j1
A(Gj1)Pj1P

T
j2
A(Gj2)Pj2 ]

= arg min
P1,...,Pm,I1,...,Ik

[
2

m∑
i=1

tr(A(Gi))
2

]
−2

k∑
i=1

1

|Ii|
∑
j1∈Ii

∑
j2∈Ii

tr[P T
j1
A(Gj1)Pj1P

T
j2
A(Gj2)Pj2 ]
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= arg max
P1,...,Pm,I1,...,Ik

k∑
i=1

∑
j1∈Ii

tr[P T
j1
A(Gj1)Pj1

1

|Ii|
∑
j2∈Ii

P T
j2
A(Gj2)Pj2 ]

= arg max
P1,...,Pm,I1,...,Ik

k∑
i=1

∑
j∈Ii

tr[P T
j A(Gj)Pjµi]. (?)

Now consider

arg min
P1,...,Pm,I1,...,Ik

k∑
i=1

∑
j∈Ii

||P T
j A(Gj)Pj − µi||2F

= arg min
P1,...,Pm,I1,...,Ik

k∑
i=1

∑
j∈Ii

tr[(P T
j A(Gj)Pj − µi)T (P T

j A(Gj)Pj − µi)]

= arg min
P1,...,Pm,I1,...,Ik

k∑
i=1

∑
j∈Ii

tr[P T
j A(Gj)

TA(Gj)Pj]−2 tr[P T
j A(Gj)Pjµi]+tr[µTi µi]

= arg min
P1,...,Pm,I1,...,Ik

k∑
i=1

∑
j∈Ii

−2 tr[P T
j A(Gj)Pjµi] + tr[µTi µi] (? ?)

as the first term of the sum does not depend on Pj. Now,

tr[µTi µi] =
1

|Ii|
tr[
∑
r∈Ii

P T
r A(Gr)

TPrµi]

=
1

|Ii|
tr[
∑
r∈Ii

P T
r A(Gr)Prµi] (? ? ?)

as A(Gr) is symmetric.

Combining (??) and (? ? ?) gives

arg min
P1,...,Pm,I1,...,Ik

k∑
i=1

∑
j∈Ii

||P T
j A(Gj)Pj − µi||2F

= arg min
P1,...,Pm,I1,...,Ik

k∑
i=1

∑
j∈Ii

(−2 tr[P T
j A(Gj)Pjµi] +

1

|Ii|
tr[
∑
r∈Ii

P T
r A(Gr)Prµi])
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= arg min
P1,...,Pm,I1,...,Ik

k∑
i=1

∑
j∈Ii

− tr[P T
j A(Gj)Pjµi]

= arg max
P1,...,Pm,I1,...,Ik

k∑
i=1

∑
j∈Ii

tr[P T
j A(Gj)Pjµi]

which is equivalent to (?).

Hence, for a Frobenius norm fit evaluation function, the optimisation can be

written

arg min
I1,...,Ik

k∑
i=1

∑
j∈Ii

min
Pj
||P T

j A(Gj)Pj − µi||2F . (6.7)

This is in the form of a k-means optimisation with the distance between a

graph and a centroid being

arg min
P
||P TA(Gj)P − µi||2F .

This distance is simply a graph matching problem and we can use techniques

from chapter 3 to solve it.

Entropy

Proposition 33. Let lm(x) = x log x
m

+(m−x) log m−x
m

, the l-function derived

from minimising the estimated entropy of a GRBG distribution. Then for the

associated fit evaluation function Hlm, solving (6.6) is equivalent to solving

min
P1,...,Pm,I1,...,Ik

k∑
i=1

∑
j∈Ii

−S(Pj, Gj, µi), (6.8)

where

µi =
1

|Ii|
∑
j∈Ii

P T
j A(Gj)Pj
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and

S(P,G, µ) =

p∑
r=1

p∑
s=1

[
(P TA(G)P )rs log(µ)rs + (1− (P TA(G)P )rs) log(1− (µ)rs)

]
.

Proof. In the proof of proposition 30, we saw that

Hl({P T
j GjPj|j ∈ Ii})

= |Ii|
∑

1≤r<s≤p

(µi)rs log(µi)rs + (1− (µi)rs) log(1− (µi)rs)

= |Ii|
∑

1≤r<s≤p

1

|Ii|
∑
j∈Ii

(P T
j A(Gj)Pj)rs log(µi)rs+

1

|Ii|
∑
j∈Ii

(1−(P T
j A(Gj)Pj)rs) log(1−(µi)rs)

=
∑

1≤r<s≤p

∑
j∈Ii

(P T
j A(Gj)Pj)rs log(µi)rs+

∑
j∈Ii

(1−(P T
j A(Gj)Pj)rs) log(1−(µi)rs)

= L1 − L2,

where

L1 =

p∑
r=1

p∑
s=1

[
1

2

∑
j∈Ii

(P T
j A(Gj)Pj)rs log(µi)rs+(1−(P T

j A(Gj)Pj)rs) log(1−(µi)rs)]

=
1

2

∑
j∈Ii

S(Pj, Gj, µi)

and

L2 =

p∑
r=1

[
1

2

∑
j∈Ii

(P T
j A(Gj)Pj)rr log(µi)rr+(1−(P T

j A(Gj)Pj)rr) log(1−(µi)rr].

As we are working with simple graphs (no nodes connected to themselves),

L2 in the above equation is 0. We also saw from before the norm

||l|Ii||| = |Ii|.
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Hence

arg max
P1,...,Pm,I1,...,Ik

k∑
i=1

|Ii|
Hl({P T

j GjPj|j ∈ Ii})
||l|Ii|||

= arg min
P1,...,Pm,I1,...,Ik

k∑
i=1

∑
j∈Ii

−S(Pj, Gj, µi).

As before, we can write the fit evaluation optimisation using the entropy fit

evaluation functions as

arg min
I1,...,Ik

k∑
i=1

∑
j∈Ii

min
Pj
−S(Pj, Gj, µi) (6.9)

which is once again a k-means optimisation with the distance between graphs

and centroids

min
P∈P
−S(P,Gj, µi).

Proposition 34. We can write minP∈P−S(P,Gj, µi) in the form of a GMP

min
P∈P
−S(P,Gj, µi) = min

P∈P
||logit(µi)− P TA(Gj)P ||2F .

Proof. We can see that

min
P∈P
−S(P,Gj, µi)

= min
P∈P
−

p∑
r=1

p∑
s=1

(P TA(Gj)P )rs log(µi)rs + (1− (P TA(Gj)P )rs) log(1− (µi)rs)

= min
P∈P
−

p∑
r=1

p∑
s=1

(P TA(Gj)P )rs(log(µi)rs − log(1− (µi)rs))

= min
P∈P
− tr(logit(µi)PA(Gj)

TP T )

where logit : Rp×p → Rp×p such that if

logit(µi) = Z
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then

Zrs = log

(
(µi)rs

1− (µi)rs

)
.

Note the equivalence of the GMP and the QAP, hence

min
P∈P
−S(P,Gj, µi)

= min
P∈P
− tr(logit(µi)PA(Gj)

TP T )

= min
P∈P
||logit(µi)− P TA(Gj)P ||2F . (6.10)

Algorithm

Solving (6.9) is tricky because of the graph matching formulation in (6.10). In

particular the k-means intermediate centroids will often contain 0 or 1 values,

in which case the logit transforms are −∞ and ∞. This however means we

can never assign a graph with an edge where the centroid has a 0 or a non-

edge where the centroid has a 1 without the objective function ‘blowing up’.

Thus these intermediate 0 or 1 centroid values can never change. As k-means

requires calculating non-optimal intermediate centroids, this property may

be an issue. Hence we only use the Frobenius norm fit evaluation function

in our clustering algorithm.

Remark 76.

Using a different clustering technique to k-means, without the non-optimal

intermediate centroids, may allow us to use the entropy fit evaluation func-

tions.

In standard graph matching between 2 graphs, it may be interesting to see

how the entropy based distance compares to the commonly used Frobenius

norm.

Definition 53. Given a set of graphs G = {G1, . . . , Gm} ∈ Gm
p , we define
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the centroid of G as

µ : Gm
p → Rp×p

such that

µ(G) =
1

m

m∑
i=1

A(Gi).

Algorithm 19 Multiple graph clustering

Require: Observed graphs G = {G1, . . . , Gm} ∈ Gm
p and total clusters k

1: Sample k graphs uniformly from G such that none are isomorphic
2: Initialise centroids C1, . . . , Ck as the adjacency matrices of the sampled

graphs
3: while True do
4: Set centroid sets K1, . . .Kk = ∅
5: i ← 1
6: while i ≤ m do
7: Pi, ki ← arg minP∈P,j∈1,...,k ||Cj − P TA(Gi)P ||2F
8: Add P T

i GiPi to Kki

9: i ← i+ 1
10: end while
11: Recalculate centroids Cj = µ(Kj) for j = 1, . . . , k
12: if Convergence criteria met then
13: break
14: end if
15: end while
16: Return permutation matrices P1, . . . , Pm and clusters of graphs

K1, . . . ,Kk

Remark 77. In Euclidean space, k-means is guaranteed to find a local op-

tima. This result requires extending to our problem as the unknown permu-

tations introduce a new degree of complexity. If it holds (which is suggested

by empirical results), then when we use an exhaustive approach to solve the

GMP in algorithm 19, we simply converge when the objective function no

longer improves between epochs. However if we are only using an approx-

imate graph matching solver (e.g. FAQ), this is not necessarily the case.

Here we recommend using a n-epoch non-improvement policy. This essen-

tially means that if after n-epochs our current best objective function has not
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improved, we break the loop and return the partitions and clusters associated

with that best objective function.

Conclusion and Future Work

In this chapter we generalised graph matching to include more than two

graphs. It was then shown how intuitive heuristic measures of graph similar-

ity fall under the umbrella of our multiple graph matching framework. The

framework was then extended to a clustering algorithm.

The work in this chapter is to the best of our knowledge novel. In future we

would like to test the results on simulated data to both verify them and test

the performance of the clustering algorithm.
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7
Application to Neuroscience

Introduction

In this chapter we look to bring together the ideas from extracting source

graphs and multiple graph matching to develop a clustering algorithm for

time series data. It is not quite as simple as combining both approaches as

we note the multiple graph matching doesn’t use the information contained

in the unmixing matrix that we use to label the nodes of our graphs

We show however that a small modification can take this into account in

the FAQ graph matching which then naturally fits into the multiple graph

matching framework. This creates an algorithm that takes into account both

the structural information contained in the input conditional dependence

graphs and the labelling of the nodes to create a more powerful clustering

algorithm.

In section 7.1 we show how we modify the FAQ algorithm to work with

labelled graphs and finish the chapter with some concluding remarks and

ideas for future work.
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Labelled Vertices

When performing ICA, it can be possible to use reverse methods to get a

rough location of the source signals in the brain [33]. This can provide us

with a priori information for a graph matching scheme. For example if the

estimated location of two nodes for separate people are close together, we

would like to increase the weight that our graph matching gives to map-

ping these nodes onto one another and vice versa. This can be achieved

using labelled graph matching alluded to in [90]. Mathematically, our graph

matching optimisation now has an additional term

min
P∈P

(1− α)||A− P TBP ||F + α tr(CTP ) (7.1)

where A,B ∈ Rp×p are adjacency matrices, α ∈ [0, 1] is a constant controlling

the weight we give to the structural Frobenius norm term and the labelling

term and C ∈ Rp×p is a labelling distance such that

Cij = d(GA(i), GB(j))

the distance based mapping node i of graph GA to node j of graph GB. In the

ICA case, this distance could be for example the Euclidean distance between

estimated source locations [33] or alternatively it could be calculated directly

from the column of the unmixing matrix associated with a given node.

The labelling term in (7.1) is simply a linear term, so the FAQ approach of

relaxing and using the Frank-Wolfe algorithm only needs a slight modifica-

tion. Writing (7.1) in a quadratic programming form relaxed over the doubly

stochastic matrices, we get the optimisation

min
Q∈D
−2(1− α) tr(AQBTQT ) + α tr(CTQ). (7.2)
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Algorithm 20 lFAQ for finding an approximate solution to the labelled
GMP

Require: Adjacency matrices A,B, a labelling distance matrix C, a weight-
ing constant α, a stopping criterion and an initialisation method (see
below)

Ensure: P̂ is a permutation matrix

1: Initialise Q(0) according to the initialisation method
2: i ← 0
3: while Stopping criteria not met do
4: Compute gradient ∇f(Qi) = −2(1− α)(AQ(i)BT − ATQ(i)B) + αC
5: Compute search direction W (i) = arg minQ∈D tr(∇f(Qi)Q) by the

Hungarian algorithm
6: Compute the step size α(i) = arg minα∈[0,1] f(Q(i) + αW (i)) (exactly

solvable as the objective is a quadratic function of α)
7: Q(i+1) ← Q(i) + α(i)W (i)

8: i ← i+ 1
9: end while

10: Compute P̂ = arg minP∈P− tr(Q(i)P T ) by the Hungarian algorithm
11: return P̂

This labelled graph matching algorithm naturally fits into the multiple graph

matching framework in place of the original FAQ algorithm. This allows us

to cluster on both graph structure and graph labels.

Remark 78. Note that as we are considering multiple different people with

different shaped heads and brains just using the labels is not enough to

perform our clustering. Similarly just using the graph dependency structure

with no labels results in a huge number of possibilities to consider. However

combining both can result in a powerful technique for clustering patients.

Future Work

In this chapter we showed how we could join the methods of [33] who simply

used locations based on their unmixing matrices to align multiple graphs

and the multiple graph matching framework which only used the conditional

dependence structure. This allows us to develop a more powerful clustering
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algorithm that does not waste information.

The next step would be to test the algorithm on real EEG data measured from

multiple patients’ brain scans and investigate the affect of the parameter α

on the performance of the algorithm using computer tests with varying levels

of added noise. Finally it would be interesting to see a comparison of the

algorithm versus simply using the [33] and a comparison against simply using

multiple graph matching to see how much added value there is in combining

the approaches. Note that setting α = 0 results in the algorithm being pure

multiple graph matching and α = 1 results in it just using labels as in [33].
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8
Conclusion

Presented in this thesis were multiple frameworks for finding patterns within

time series. In particular, we have two focuses. Firstly on observations

that are not assumed a linear mixing of some latent time series. In this

case we presented a novel graph extraction framework based on multiple

hypothesis testing and analysed how common classification and clustering

methods performed as well as a new method based on a modified random

forest algorithm.

We also looked at the case where the observations were assumed to be a

linear mixture of latent time series. It was shown how we could extract

graphical models in this case and how we could cluster based on graphs with

an unknown permutation of their nodes, using a novel multiple graph match-

ing framework. Finally it was shown how this could be further extended by

including meta information about nodes in a graph i.e. position.

The motivation behind the thesis was to develop techniques that would work

with EEG recorded from human brains such that we could cluster groups of

patients. The hope is that this can aid in the diagnosis of mental illness. We

note however that the methods provided in almost every chapter are general

to either time series or graphical models and so will hopefully have a wide
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variety of other applications. The only chapter specific to the application

was the final one.

There are many areas for future work. The multiple hypothesis testing frame-

work was only considered using Matsuda’s test statistic and the FWER error

rate measure. It is definitely worth investigating alternate statistics and other

potentially more appropriate error measures such as the FDR. The graph

matching projection proved to be very promising, outperforming many ex-

isting algorithms on the QAPLIB benchmarks. It wasn’t however able to

outperform the FAQ algorithm. It was noted in [58] that the FAQ algorithm

does not achieve optimal performance on certain graph matching problems

concerning correlated Bernoulli graphs. We would like to investigate if in

this case the projection is able to improve the FAQ.

The building graphs from source signals chapter requires a thresholding pa-

rameter to be specified. It would be much better if as in the multiple hy-

pothesis testing chapter we were able to perform a test as to the existence of

an edge in the recovered graphical model where the control was something

more tangible such as the FDR. This requires a test statistic to be created

based on the PMIR.

While much of the theory has been done for multiple graph matching, it

requires more extensive testing of the key results and its clustering perfor-

mance. Finally, the algorithm combining the source graph extraction, mul-

tiple graph matching and labelled graph matching needs to be tested on real

EEG data.

Many of the algorithms presented require a large amount of computation. For

time series with obvious differences in the conditional dependence structure

(that aren’t significantly deformed due to linear mixing of the sources), simple

time series based clustering at the signal level would be far more efficient.

Similarly the same could be said for graphs with clear differences in structure

e.g. if separate clusters contained graphs with significantly different number

of edges.

Another point to note is that while we explored graph matching in a suitable

way for our application, for many other applications there may be a more
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suitable distance metric between graphs other than the Frobenius norm be-

tween the adjacency matrices. One such distance metric that is commonly

used is the graph edit distance.

A final point is that we stick to a very general domain for our inputs. Vast

improvements in computation time can be achieved if we know our data is

in a specific form. For example we may be able to assume there is a sparse

conditional dependence structure for our time series a Kronecker representa-

tion for our graphical models. In order to make any sort of inference on very

large dimensional models, often these further assumptions are needed.
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mization techniques for the weighted graph-matching problem in com-

puter vision,” In Pattern Recognition: 23rd DAGM Symposium Proceed-

ings, B. Radig and S. Florczyk (Eds.). Volume 2191 of the series Lecture

Notes in Computer Science, pp. 361–368, Springer, 2001.

[69] C. Schellewald, S. Roth and C. Schnörr, “Evaluation of a convex relax-
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