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Abstract—Pseudointensity vectors (PIVs) provide a means of
Direction of Arrival (DOA) estimation for Spherical Microphone
Arrays (SMAs) using only the zeroth and the first-order spherical
harmonics. An Augmented Intensity Vector (AIV) is proposed
which improves the accuracy of PIVs by exploiting higher order
spherical harmonics. We compared DOA estimation using our
proposed AIVs against PIVs, Steered Response Power (SRP) and
subspace methods where the number of sources, their angular
separation, the reverberation time of the room and the sensor
noise level are varied. The results show that the proposed
approach outperforms the baseline methods and performs at
least as accurately as the state-of-the-art method with strong
robustness to reverberation, sensor noise and number of sources.
In the single and multiple source scenarios tested, which include
realistic levels of reverberation and noise, the proposed method
had average error of 1.5°and 2°, respectively.

Index Terms—spherical microphone arrays, localization, direc-
tion of arrival estimation, spherical harmonic, intensity vector.

I. INTRODUCTION

D IRECTION of Arrival (DOA) estimation is an important
acoustic signal processing task and has been used in

areas including spatial filtering, source separation, source
tracking, environment mapping, dereverberation and speech
enhancement. As such it can be useful in applications such
as teleconferencing, meeting diarization, robot audition and
hearing aids. In a real-world scenario, various factors such as
coherent reflections, sensor noise and the presence of multiple
simultaneously active sources degrade the performance of
DOA estimation.

In this work we focus on Spherical Microphone Arrays
(SMAs) which have become popular [1]-[17] in contexts
where their ability to analyse a sound field with equal res-
olution in all directions is important. By representing the
sound field as a Spherical Harmonic (SH) expansion, the
problem formulation can be made independent of the specific
geometry of the SMA making the methods described here
widely applicable. The first works on DOA estimation using
SMA can be found in [18] and the first works on signal
processing for SMAs are presented in [19], [2], [20].
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DOA estimation methods are generally categorised into four
main groups. (1) Steered Response Power (SRP) methods
[21] in which a beamformer such as Plane-Wave Decom-
position (PWD) [22], [14], [11] is used to steer a beam
into multiple directions and the source direction is found as
the direction with the highest power. Due to limitations on
spatial resolution, SRP methods can fail to localize closely
spaced sources [23]; (2) Sub-space methods [24], [25] such
as MUSIC (MUltiple SIgnal Classification) [6], [26] employ
the eigenvalue decomposition to decompose the noisy signals
spatial covariance matrix into the signal and noise subspaces,
which then are used to estimate the DOAs. Although they are
somewhat robust to noise and reverberation, their performance
normally depends on a user-defined threshold. (3) Maximum
Likelihood (ML) methods [27], [28] employ optimization to
minimize a defined cost function [29], [30]. They mainly
require accurate statistical models (e.g. for noise) and can be
computationally expensive. Statistical DOA estimation meth-
ods using directional sparsity of sound sources have also
been proposed in [31], [32]. (4) Intensity-based methods [33]
determine the direction and the magnitude of the flow of
sound energy within a narrow frequency band [17], [34], [35],
[16], [36], [37]. Pseudointensity vector (PIV) [17] methods use
sound field information with low spatial resolution. PIVs are
computationally efficient and have been shown in [17] to offer
good localization accuracy for a single source in the absence
of strong reflections. In common with most localization algo-
rithms however, localization accuracy is reduced as the level
of reverberation, the sensor noise or the number of sources
increase [16], [38], [37]. An extension of PIV is Subspace PIV
(SSPIV) [37] where the low order (≤ 1) spatial information of
signal subspace is used to enhance the accuracy of PIV DOA
estimates.

In [38], [23] we proposed Augmented Intensity Vectors
(AIVs) which exploits eigenbeams of order ≥ 2 to form vec-
tors with improved DOA accuracy compared to PIVs. These
vectors are obtained using spatially constrained grid search to
minimize a cost function with initialisation derived from PIVs.
By including higher order information in the DOA estimation,
the method is more accurate and robust to reverberation, noise
and multiple speakers. However AIVs suffer from spatial
limitation due to limited search window size. On the other
hand, full grid search causes high computational cost. In this
paper, we propose an alternative solution for AIV in which
the gradient descent approach is used in order to overcome

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TASLP.2017.2736067

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING 2

the problem of spatial limitation of grid search approach while
keeping the computational cost low. A theoretical analysis of
the optimized DOA error as a function of noise and harmonic
order is also presented.

This paper is structured as follows. Section II briefly
reviews the background theory of spherical harmonics, the
baseline methods, PIV, SSPIV and SRP, and the state-of-the-
art, MUSIC with Direct Path Dominance (DPD) test. Section
III presents our proposed method, a theoretical error analysis
and two variations of solution to the problem based on grid
search and gradient descent optimization. Section IV evaluates
the accuracy and robustness of our method compared with
the baseline and the state-of-the-art methods for single and
multiple source scenarios. We also evaluate the effect of
the maximum spherical harmonic order on the accuracy of
localization. Section V presents the visual performance and
accuracy of methods using real recording signals in a real
room. Finally section VI provides a rough analysis of the
computational complexity of each method.

II. TECHNICAL BACKGROUND

In this section, we review the Spherical Harmonic Domain
(SHD), Spherical Harmonic Transform (SHT), its discrete
approximation as applied to SMAs, and briefly introduce the
methods used in our comparative evaluation.

A. Spherical Harmonic Domain

Consider the sound pressure field p(τ, k, r,Ω) which is
a function of wavenumber k, time frame τ and the point
location (r,Ω) = (r, θ, ϕ) in spherical coordinates with range
r, inclination θ, and azimuth ϕ. The SHT of this field is given
by [39]

plm(τ, k, r) =

ˆ
Ω∈S2

p(τ, k, r,Ω)Y ∗lm (Ω) dΩ, (1)

where
´

Ω∈S2 dΩ =
´ 2π

0

´ π
0

sin (θ) dθdϕ, and (.)
∗ denotes the

complex conjugate.
The spherical harmonic basis functions Ylm (Ω) of order l

and degree m (satisfying |m| ≤ l) are given by [39]

Ylm (Ω) =

√
(2l + 1)

4π

(l −m)!

(l +m)!
Plm (cos (θ)) eimϕ, (2)

where Plm is the associated Legendre function and i2 = −1.
Using the inverse SHT, the sound pressure field can be

reconstructed as [12]

p(τ, k, r,Ω) =
∞∑
l=0

l∑
m=−l

plm(τ, k, r)Ylm(Ω), (3)

where the coefficients plm are spherical harmonic coefficients.
Considering a SMA with radius ra and Q microphones,

each with angle Ωq , the integral in (1) is approximated as

plm(τ, k, ra) ≈
Q∑
q=1

wq,lmp(τ, k, ra,Ωq), (4)

where the weights wq,lm are chosen to ensure that (4) is an
accurate approximation of (1), which in the case of a uniform

sensor distribution are simply wq,lm = 4π
Q Y

∗
lm(Ωq). To avoid

spatial aliasing due to discrete sampling of the sound field the
lower bound on Q is [7]

Q ≥ (L+ 1)2, (5)

where L is the maximum SH order considered. Further in-
formation regarding the analysis of spatial aliasing errors and
the selection of an appropriate spatial sampling scheme can
be found in [40].

The range dependence of the SH coefficients is a function
of wavenumber and array configuration, for example, open or
rigid baffle. This dependence is captured by the mode strength,
which for microphones mounted on a rigid sphere of radius
r = ra, as used in our study, is [39]

bl(kra) = 4πil

[
jl(kra)− j

′

l (kra)

h
(2)′

l (kra)
h

(2)
l (kra)

]
, (6)

where jl is the spherical Bessel function of order l, h(2)
l is the

spherical Hankel function of the second kind and of order l,
and (.)

′
denotes the first derivative.

Eigenbeams with mode strength compensation are obtained
as

alm(τ, k) =
plm(τ, k, ra)

bl(kra)
. (7)

In the case of a single plane wave S with DOA Ωu =
(θu, ϕu), the compensated eigenbeams are simply [40], [12]

alm(τ, k) = S(τ, k)Y ∗lm(Ωu). (8)

B. PWD-SRP in SHD

The baseline DOA estimator used for comparison is the
SRP approach [21] implemented in the SHD using a PWD
beamformer [22]. The output of the beamformer steered to
look direction Ω is given as [11]

y(τ, k,Ω) =

L∑
l=0

l∑
m=−l

alm(τ, k)Ylm(Ω). (9)

The narrow-band power response of SRP at bin (τ, k) is

PSRP (τ, k,Ω) =| y(τ, k,Ω) |2 . (10)

In the conventional wideband SRP, the spatial spectrum is
obtained as

∑
τ,k PSRP (τ, k,Ω) in which the position of the

peaks represent the estimated DOAs. In [38] and [23], we
have shown that the conventional wideband PWD-SRP fails in
localization of multiple sources especially for adjacent sources
as the summation of power spectra can result in merging of
adjacent peaks associated to different sources resulting in an
erroneous estimated DOA between the sources as seen in Fig.
1. In order to preserve the DOA information at each TF bin
and obtain a DOA per TF bin, we use the narrow-band PWD-
SRP [41] in which the global peak represents the estimated
narrow-band DOA

ΩSRP (τ, k) = arg max
Ω

PSRP (τ, k,Ω). (11)
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C. PIVs

Sound intensity is a measure of the flow of sound energy
through a surface per unit area, in a direction perpendicular to
this surface. The intensity vector I, which defines the magni-
tude and the direction of the energy flow can be determined
by calculating the flow of sound energy through the three unit
surfaces perpendicular to the Cartesian axes as [42]

I =
1

2
<{q∗v} , (12)

where q is the sound pressure, v = [vx, vy, vz]
T is the particle

velocity vector in Cartesian coordinates, and <{.} denotes the
real part of a complex number.

Due to the difficulty of measuring the particle velocity at the
sensors, PIV approximates the intensity vector using low-order
(l ≤ 1) eigenbeams. PIV at time frame τ and wavenumber k
is calculated as [17]

Ipiv(τ, k) =
1

2
<

a00(τ, k)∗

 D−x(τ, k,alm)
D−y(τ, k,alm)
D−z(τ, k,alm)

 , (13)

where

Dν(τ, k,alm) =
1∑

m=−1

Y1m(φν)a1m(τ, k), ν ∈ {−x,−y,−z}

(14)
are dipoles steered in the negative direction of Cartesian axes,
given by φ−x = (π/2, π), φ−y = (π/2,−π/2) and φ−z =

(π, 0) and alm =
[
a00, a1(−1), a1(0), a1(1), . . . , aLL

]T
de-

notes the set of eigenbeams with maximum SH order L.
The estimated DOA unit vector u(τ, k) pointing towards

the source is given by

u(τ, k) = − Ipiv(τ, k)

‖Ipiv(τ, k)‖
, (15)

where ‖.‖ indicates `2-norm.

D. SSPIVs

The PIVs use low order SHs (l ≤ 1) and only work well in
single source scenarios. In [37] authors extend the concept of
PIVs by taking advantage of higher order SHs and frequency
smoothing to enhance the accuracy of DOAs.

Fig. 1. Normalized spatial spectrum of conventional wideband PWD-SRP.

In the TF domain, the covariance matrix of the observed
eigenbeams is given as

R(τ, k) = E
[
alm(τ, k)alm

H(τ, k)
]
, (16)

where E [.] denotes the expectation and (.)H indicates Hermi-
tian transpose. In single source scenario using Singular Value
Decomposition (SVD), the covariance matrix of the observed
noisy eigenbeams is decomposed as

R(τ, k) = UsΣsUs
H + UvΣvUv

H , (17)

where Us =
[
â00, â1(−1), â1(0), â1(1), . . . , âLL

]T
is the one-

dimensional signal subspace matrix, Uv is the noise subspace
with (L+1)2−1 dimensions and Σ is the rectangular diagonal
singular value matrix. Note that (τ, k) are omitted here for
notational simplicity.

Using the estimated de-noised low order eigenbeams with
PIV formulation, the SSPIV is given by [37]

Isspiv(τ, k) =
4π
√

4π

3
<

â00(τ, k)∗

 D−x(τ, k,Us)
D−y(τ, k,Us)
D−z(τ, k,Us)

 .

(18)
Although only low order SHs (l ≤ 1) components of Us are

used in (18), their value depends on high order eigenbeams in
(16) and (17).

E. DPD-MUSIC in SHD

A state-of-the-art DOA estimator used for comparison is
DPD-MUSIC algorithm, also implemented in the SHD [6].
DPD-MUSIC consists of two stages of DPD test and MUSIC.

DPD test [6] is proposed to identify the Time Frequency
(TF) regions where the direct path of a single source is
estimated to be significantly dominant and the significance of
dominance is defined by a user-defined threshold.

The selected set of TF bins in DPD test is given as

ΥDPD = {(τ, k) : erank (R(τ, k)) = 1} , (19)

where
erank (R(τ, k)) = 1 if ηDPD(τ, k) > ε (20)

is the effective rank, the Singular Value Ratio (SVR) ηDPD is
the ratio of the largest and the second largest singular values
of R in (17) and ε is a threshold.

Only in the TF bins passed by the DPD test, the well-known
MUSIC method estimates a DOA using the noise subspace
of the spatial covariance matrix. Using the estimated noise
subspace in (17), the narrow-band MUSIC spectrum for a
single source is given as [24]

PMUSIC(τ, k,Ω) =
1

‖Uv
H(τ, k)Ylm

∗(Ω)‖2
, (21)

where Ylm =
[
Y00, Y1(−1), Y1(0), Y1(1), . . . , YLL

]T
are the

column vector of SH basis functions given in (2). Note that
(Ω) are omitted for notational simplicity.

The two alternative approaches [6] to obtain DOAs in DPD-
MUSIC are discussed next.
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1) Incoherent DPD-MUSIC: In the first approach the MU-
SIC spectra in (21) are simply summed over the selected TF
bins (τ, k) ∈ ΥDPDtest so that

Pincoh−MUSIC(Ω) =
∑

(τ,k)∈ΥDPDtest

PMUSIC(τ, k,Ω), (22)

where the set of N highest peaks in the final spectrum
indicates the overall estimated DOAs.

2) Coherent DPD-MUSIC: The second approach performs
coherent fusion of the directional information from the se-
lected TF bins. The set of one dimensional signal spaces
from the selected TF bins, {Us (τ, k)}(τ,k)∈ΥDPD

, are clustered
using one-run K-means clustering with random initialization
into N clusters with centroids {Us

n}Nn=1 where each centroid
signal space is associated with one speaker. The DOA of each
individual speaker is selected as the global peak in the coherent
MUSIC spectrum of the speaker n which is given as

Pncoh−MUSIC(Ω) =
1

‖ (Uv
n)
H

Ylm
∗(Ω)‖2

(23)

=
1

Ylm
T (Ω)(I −Us

n (Us
n)
H

)Ylm
∗(Ω)

.

III. AUGMENTED INTENSITY VECTOR METHOD

The PIVs only use zeroth- and first-order SHs ignoring the
higher order SHs. Since the spatial frequency of Ylm increases
with the SH order, employing higher order information in-
creases the spatial resolution. Therefore in this section we
propose to estimate a vector for each TF bin which uses
information from higher order (l > 1) spherical harmonics
to augment the PIV.

A. Signal Model

Consider a plane wave S(τ, k) with DOA Ωu = (θu, ϕu)
arriving from a single source in the far-field in an anechoic
environment. From (8) the eigenbeams of the sound field are

alm(τ, k) = S(τ, k)Y ∗lm(Ωu) + nlm(τ, k), (24)

where nlm(τ, k) represents the noise.
In case of a noise-free scenario, nlm = 0, considering (24)

for l ∈ [0, L] and −l ≤ m ≤ l, we would have (L + 1)2

complex equations with two unknowns S and Ωu. In this case
even for L = 1 we would have an overdetermined system of
equations in which the solution can be accurately obtained.
By increasing L we still achieve the same solution that is the
accurate true DOA.

Considering the noisy case with non-zero and unknown nlm,
we have an underdetermined system of equations. In such
scenario, we aim to find the Ω which best satisfies all the
(L+ 1)2 equations of (24) for up to SH order L.

B. Cost function

The zeroth SH order has the noise-reducing characteristic
since the noise signals at the individual sensors are averaged
and reduced as in (4). For spatially-white noise this reduction
is approximately 10 dB. Using this noise-reducing property of

l = 0, we assume n00(τ, k) = 0 (no noise or reverberation
only at l = 0), which for moderate sensor noise level is a
suitable approximation, to approximate S(τ, k) by substituting
(2) into (24) for l = 0 and m = 0

S(τ, k) =
√

4πa00(τ, k). (25)

Substituting (25) into rearranged (24), for an arbitrary
look direction Ω, we define a direction-dependant error
Elm(τ, k,Ω)

Elm(τ, k,Ω) = alm(τ, k)−
√

4πa00(τ, k)Y ∗lm(Ω), (26)

which leads to our proposed cost function

Ψ(τ, k,Ω) =
L∑
l=0

l∑
m=−l

| Elm(τ, k,Ω) |2 . (27)

The optimized DOA Ωaiv(τ, k) is

Ωaiv(τ, k) = arg min
Ω

Ψ(τ, k,Ω). (28)

To form the Augmented Intensity Vector (AIV) we combine
the optimized direction Ωaiv(τ, k) with the norm of the
original PIV in (13)

Iaiv(τ, k) = −uaiv(τ, k)‖Ipiv(τ, k)‖, (29)

where uaiv(τ, k) is the Cartesian unit vector of Ωaiv(τ, k).
Figure 4 shows an example which demonstrates that

Ψ(τ, k,Ω) is non-convex. However, calculation of (27) over
all possible directions at each TF bin is computationally
expensive. We first provide a theoretical error analysis in
the presence of noise, then present our previously published
grid search approach and finally propose our gradient descent
approach, both of which use the PIV solution to form an initial
estimate for optimization.

C. DOA Error Analysis
In this section we present a theoretical DOA error analysis

for the noise-free and noisy scenarios. For the formulation in
this section, (τ, k) are omitted for notational simplicity.

In a noise-free scenario as in (8), consider ãlm = SY ∗lm(Ωu)
as the clean eigenbeams of the direct path. For an arbitrary
look direction Ω, we have the clean eigenbeam error function

Ẽlm (Ω) = ãlm − SY ∗lm(Ω)

= SY ∗lm(Ωu)− SY ∗lm(Ωu)g∗lm (Ωu,4Ω)

= SY ∗lm(Ωu) (1− g∗lm (Ωu,4Ω)) , (30)

where by using (2) we have

glm (Ωu,4Ω) =
Plm (cos (θu +4θ))

Plm (cos (θu))
eim4ϕ, (31)

where ∆Ω = Ω− Ωu.
Now assume the noisy scenario where the noisy cost func-

tion in (27) is decomposed into clean Ẽlm and the noise
eigenbeam nlm resulting in

Ψ (Ω) =
∑
lm

| Ẽlm (Ω)− nlm |2= Ψ̃ (Ω) + Cn

+ 2
∑
lm

| Ẽlm (Ω) || nlm | cos (Γlm (Ω)) , (32)
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where Ψ̃ (Ω) =
∑
lm

| Ẽlm (Ω) |2 is the noise-free cost function,

Cn =
∑
lm

| nlm |2 is a noise-based constant,
∑
lm

=
∑
l

∑l
m=−l

and

Γlm (Ω) = 6 Ẽlm (Ω)− 6 nlm
= 6 S + 6 Y ∗lm(Ωu) + 6 (1− g∗lm (Ωu,4Ω))− 6 nlm, (33)

where 6 (.) denotes the phase of complex number.
The derivative of the noisy cost function in (32) is

Ψ
′
(Ω) = Ψ̃

′
(Ω) + 2

∑
lm

| nlm | (| Ẽlm (Ω) | cos (Γlm (Ω)))
′
,

(34)
where (.)

′
= d

dΩ (.) is the derivative operator.
For 4θ ≈ 0 in (31) we have g∗lm (Ωu,4Ω) = e−im4ϕ,

which results in

(1− g∗lm (Ωu,4Ω)) = 2 sin

(
m4ϕ

2

)
ei(

π
2−

m4ϕ
2 ). (35)

Substituting (35) into (30) we have

Ψ̃
′
(Ω) =

∑
lm

2m | SY ∗lm(Ω) |2 sin (m4ϕ) , (36)

and

(| Ẽlm (Ω) | cos (Γlm (Ω)))
′

=

m | SY ∗lm(Ω) | cos

(
Γlm (Ω)− m4ϕ

2

)
. (37)

At the optimized look direction Ωs, we have Ψ
′
(Ωs) = 0,

which by substituting (36) and (37) into (34) gives∑
lm

| SY ∗lm(Ωu) |2 m sin (m4ϕs) =∑
lm

| nlm || SY ∗lm(Ωu) | m sin (Λlm(S,Ωu, nlm)−m4ϕs) ,

(38)

where Λlm(S,Ωu, nlm) = 6 S+ 6 Y ∗lm(Ωu)− 6 nlm is the com-
bined phase from the direct path and the noise eigenbeams.

Simplifying (38) gives
L∑
j=0

√
A2
j +B2

j sin

(
j4ϕs − arctan

(
Bj
Aj

))
= 0, (39)

where

Aj =
1

µ

L∑
l=0

∑
|m|=j

| m || ãlm |2 (µ+ cos (Λlm)) , (40)
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Fig. 2. Azimuth error for all possible combinations of Λlm for L = 1. The
title contains the SNR={0, 10, 20} dB and the worst error.
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Fig. 3. Median error among all possible combinations of combined phases
for varying SNR and maximum SH order L.

and

Bj =
1

µ

L∑
l=0

∑
|m|=j

m | ãlm |2 sin (Λlm) , (41)

where µ2 =
|SY ∗lm(Ωu)|2
|nlm|2 = |ãlm|2

|nlm|2 is the SNR for spatially
white noise (equal noise level across all microphones) and is
fixed for all (l,m). Note that (S,Ωu, nlm) are omitted from
Λlm for notational simplicity.

For up to the first SH order (L = 1), the azimuth error is

4ϕs = arctan(
B1

A1
). (42)

Figure 2 presents the azimuth error 4ϕs in degrees for all
possible combinations of Λlm for L = 1 with angle resolution
of π/100 for varying SNR with a random true DOA Ωu =
(φu, θu) = (20, 45)° and | S |= 1. We can clearly see the
decrease in maximum error as the SNR increases.

For up to the second order (L = 2), (39) can
be simplified into a quartic equation with one variable
sin (4ϕs − arctan (B1/A1)) and parameters as a function of
Aj and Bj . Among the real roots of the quartic equation,
we consider the one which results into the minimum 4ϕs.
Figure 3 presents the median of azimuth errors4ϕs in degrees
across all possible combinations of Λlm with angle resolution
of 2π/10 for varying SNR and L = {1, 2} with the same true
DOA as in Fig. 2. It can be clearly seen that the increase in
the maximum SH order of AIV cost function at least doubles
the expected accuracy.

D. Grid search optimization

On the discrete spatial domain sampled with 1 degree reso-
lution across azimuth and inclination, we define our search
domain as set of look directions {ΩM} covered within a
spherical cap with a chosen radius centred at the initial DOA
estimated by PIV. Note that larger search window size and
higher grid resolution both increase the accuracy of estimation
as well as the computational cost. The optimized DOA Ωs(k)
is obtained using (28) for Ω ∈ {ΩM}.

E. Gradient descent optimization

Grid search solution suffers from spatial limitation or com-
putational cost for small or large window size respectively.
Gradient descent approach can be used to overcome the
problem of spatial limitation with low computational cost.
Starting from the initial angle Ω0, using the objective cost
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function in (27) we can formulate an iterative gradient descent
as

Ωn+1(k) = Ωn(k)− γn(k)∇Ψ(k,Ωn), n ≥ 0 (43)

where γn is the step at the nth iteration and ∇(.) = ∂
∂θ (.)θ̂+

∂
∂ϕ (.)ϕ̂ denotes the gradient operator.

For a convex cost function, convergence to a global min-
imum can be guaranteed. However when there are multiple
active talkers or an active direct path plus one or more
active reflection at the same TF bin, Ψ(k,Ω) is nonconvex
as illustrated in Fig. 4. In this case, convergence to a global
minimum is only achieved if the initial point is close enough
to the global minimum.

The gradient at angle Ω = (θ, ϕ) can be found by substi-
tuting (26) into (27) giving

∇Ψ(k,Ω) = ∇{
L∑
lm

|Elm(k,Ω)|2}

=
L∑
lm

∇{|alm(k)−
√

4πa00(k)Y ∗lm(Ω)|2}

=
L∑
lm

∇{|alm(k)|2 + |
√

4πa00(k)|2|Y ∗lm(Ω)|2

− 2|alm(k)||
√

4πa00(k)||Y ∗lm(Ω)| cos (λlm(k)− 6 Y ∗lm(Ω))}

= 4π|a00(k)|2
L∑
lm

{
∇{|Y ∗lm(Ω)|2}

}
− 2
√

4π|a00(k)|

×
L∑
lm

{|alm(k)|∇{|Y ∗lm(Ω)| cos (λlm(k)− 6 Y ∗lm(Ω))}},

(44)

where
∑L
lm =

∑L
l=0

∑l
m=−l is the summation over all the

harmonic orders and degrees up to the maximum order L,
λlm = 6 alm − 6 a00.

The gradient of the components in the final expression in
(44) can be calculated individually for each harmonic order
and degree using (2) as shown in Table I.

Fig. 4. Normalized second-order cost function for the entire space at a
particular TF-bin for a single source with true DOA marked by a red cross,
T60 = 0.5 s and sensor noise level with SNR=20 dB.

F. DOA extraction from Intensity Vectors

Considering either PIVs or AIVs, the intensity vectors are
calculated for all TF bins. A 2D histogram (inclination vs
azimuth) using the quantized directions of all intensity vectors
is formed. Note that only the directions of the intensity vectors
are used and not their vector length. As shown in [37] in case
of multiple arriving plane-waves in a TF bin, it is possible
to have an erroneous resulting intensity vector with direction
in between of or away from the sources and a norm higher
than the intensity vector norm in the presence of a single
source depending on the relative amplitude and phase of the
impinging plane waves. In order to avoid the accuracy-loss
effect of the erroneous intensity vector with high norm, the
norms are ignored and only the cardinality of the quantized
directions are considered in the histogram. An advantage
of histogram is to eliminate the weakening impact of the
erroneous directions with low cardinality on the position of
the peaks in the histogram although they are present unlike the
averaging technique in [17] in which all intensity vectors are
summed to estimate the final DOA where erroneous directions
reduce the accuracy if they are not spatially diffused.

Due to noisy observations and the presence of multiple
irregular peaks, we employ smoothing on the constructed
DOA histogram using a Gaussian kernel. The Gaussian kernel,
centred on the look direction Ω, for an angle Ωθi,ϕi with
inclination θi and azimuth ϕi is expressed as

K(Ω,Ωθi,ϕi) =
1

σ
√

2π
exp

(
−
6 (Ω,Ωθi,ϕi)

2

2σ2

)
, (45)

where σ denotes the standard deviation, which is chosen
empirically as described in section IV. The kernel is truncated
by removing the entries with K < 0.001. For Ns sources, the
positions of the largest Ns peaks in the smoothed histogram
are taken as the estimated DOAs. Figure 5 shows an example
of unsmoothed (raw) and smoothed histograms for two sources
with 45° separation with simulation configuration as in section
IV-B2. The choice for the σ, which represents the smoothness
of the histogram, is studied in our previous paper [43], which
concludes that a suitable σ requires the knowledge of the

Fig. 5. An example side view of the raw and the smoothed 2D histograms
of the estimated narrow-band DOAs with σ = 4°.
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l(m) Y ∗lm(θ, ϕ) ∇{| Y ∗lm(Ω) |2} ∇
{
| Y ∗lm(Ω) | cos

(
λlm − 6 Y ∗lm(Ω)

)}
0(0)

√
1
4π

0 0
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sin(θ)eiϕ ( 3
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)
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TABLE I
GRADIENT OF THE COST FUNCTION FOR THE HARMONIC ORDERS AND DEGREES UP TO THE THIRD ORDER

minimum angular separation of the sources and the choice
of 3 ≤ σ ≤ 6 provides robust and well distinguished peaks
for ≥ 30° separation.

IV. EVALUATION

The proposed DOA estimation algorithms are evaluated
in terms of their accuracy and robustness to Reverberation
Time (RT) [44], sensor noise level, number of sources, and
angular separation of sources using simulated data for one
talker and for multiple simultaneous talkers. The Acoustic
Impulse Responses (AIRs) of a 32-element rigid SMA with
radius of 4.2 cm (corresponding to the em32 Eigenmike®) in
a 5 × 6 × 4 m shoebox room were simulated using Spherical
Microphone arrays Impulse Response Generator (SMIRgen)
[45] based on Allen & Berkley’s image method [46]. For
all methods, a sampling frequency of 8 kHz was used with
a Short-Time Fourier Transform (STFT) window size of 8 ms
and 50% overlap of time frame. The processing band was set
to 500 Hz to 3850 Hz to avoid spatial aliasing and ensuring
kr < L for L = 3 as in [47], [6] and to avoid excessive noise

amplification due to mode strength compensation at lower
frequencies.

The proposed methods, denoted AIV Grid Search (AIV-GS)
and AIV Gradient Descent (AIV-GD), are compared to the
previously presented PIV, SSPIV, PWD-SRP as the baseline
methods and both variations of DPD-MUSIC as the state-
of-the-art. For AIVs we evaluate the effect of the choice of
maximum SH order L = 2, 3. Accordingly, the evaluated
algorithms are denoted AIV-GS2, AIV-GS3, AIV-GD2 and
AIV-GD3. For the rest of the evaluation L = 3 is considered
for the methods using high order SHs.

In order to compare the narrow-band PWD-SRP with our
AIV-GS under same spatial limitation, we employ Spatially
Constrained (SC)-SRP which uses the same search window as
AIV-GS and PIV as its centre of window. The employed SC-
SRP is the generalized variation of the proposed method in
[48] in which SC-SRP is applied only on the TF bins with an
active single source unlike our SC-SRP which is applied on all
TF bins. The radius of spherical cap search window in AIV-GS
and SC-SRP was set to 10° as, in our experiments, more than
95% of PIVs were within 10° of the true DOA. For AIV-GD,
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the optimization function ‘fminunc’ based on ‘trust-region’
algorithm from MATLAB Optimization Toolbox™ was used
and was set to be terminated if the new angle is less than 0.5°
away from the current angle or if the number of calls to the
cost function exceeds 100. These termination conditions were
determined empirically. The covariance matrix R in (16) used
by SSPIV and DPD-MUSIC is approximated as the average
covariance matrix over a local TF neighbourhood [6], [37]

R(τ, k) =
1

JτJk

Jτ−1∑
jτ=0

Jk−1∑
jk=0

alm(τ + jτ , k + jk)

× alm
H(τ + jτ , k + jk), (46)

where Jτ = 6 and Jk = 4 are the width (number of bins)
of averaging window over time and frequency respectively
giving 500Hz and 32ms of window size in the TF domain
based on our frequency and time resolution. The threshold ε
in (20) for DPD-MUSIC was empirically set to 6, which is also
the choice in its original paper [6]. The DOA histogram and
MUSIC spectrum were constructed with 1 degree resolution
along inclination and azimuth (181×360 points respectively).
In DOA histogram smoothing, the kernel had the standard
deviation of σ = 4° which was chosen empirically from a
range of 2° to 6°.

A. Single Source
The array is placed at (2.52, 3.11, 1.97) m and the source

signal consists of an anechoic speech signal, using the same
utterance for all trials [49] with duration 5 s, convolved with
the simulated AIRs to each microphone and white Gaussian
sensor noise added. We consider 40 different source positions
at the distance of 1 m from the centre of array with a DOA
randomly selected from a uniform distribution around the
sphere. For each source position, the test was repeated over a
range of RT, T60 = {0.2, 0.3, 0.4, 0.5, 0.6} s, and signal-to-
noise ratio, SNR={10, 20, 30} dB.

For each method, the DOA estimation error ε between the
true DOA unit vector uo and the estimated DOA unit vector
ue was computed in degrees as

ε = cos−1
(
uTo ue

)
. (47)

Fig. 6. Effect of T60 and SNR on mean DOA estimation error for PIV and
AIV methods in the single source scenario.

Results are presented in two parts. In the first we compare
the second- and third-order of two variations of our methods,
grid search and gradient descent AIVs with PIV method. In
the second, we compare the most accurate AIV approach with
the baseline and the state-of-the-art methods.

1) Quantification of the improvements due to higher order
spherical harmonics: Figure 6 shows the mean DOA estima-
tion error for each method as a function of T60 for all SNRs.
As expected due to utilisation of higher spatial resolution from
higher SHs, the AIV approaches significantly outperform PIV
for all T60 and SNRs. AIV approaches also show noticeably
more robustness to reverberation and noise. Comparing AIV-
GS and AIV-GD, advantage of gradient descent becomes
noticeable as the noise increases. This is due to spatial freedom
of search for gradient descent since the AIV-GS’s search
window centred on PIVs, which are prone to noise, are more
likely to not include the global minimum of cost function.
Moreover, the results demonstrate that the increase in SH order
(2 vs 3) has a larger impact on improvement of accuracy and
robustness than the change in optimization method (GS vs
GD) highlighting the higher importance of the cost function
quality over the optimization method used for it.

2) Comparison with baselines and state-of-the-art: In this
section our AIV-GD and AIV-GS are compared with SSPIV,
SC-SRP and incoherent DPD-MUSIC.

In terms of accuracy, AIV-GD shows the second best accu-
racy of ≤ 2° after DPD-MUSIC. The worst performance is by
PIV as it only uses the low order eigenbeams. Although SSPIV
uses the same formulation as PIV, it performs significantly
better than PIV as it employs high order SH in SVD to
estimate de-noised low order eigenbeams. SC-SRP and AIV-
GS outperform the previous two methods due to utilisation
of high order eigenbeams but perform very similar to each
other as they use the same eigenbeams, search window and TF
bins although their formulations differ. AIV-GD outperforms
all previously stated methods due to high order eigenbeams,
compared to PIV and SSPIV, and lack of spatial limitation
compared to SC-SRP and AIV-GS. DPD-MUSIC leads in the
performance wih 0.5° accuracy due to utilisation of denoised
high order eigenbeams using SVD, spatial freedom due to full

Fig. 7. Effect of T60 and SNR on mean DOA estimation error for the
proposed, baseline and state-of-the-art methods in the single source scenario.
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Fig. 8. Distribution of DOA estimation errors for two sources 45° apart with
varying T60.

grid search and DPD test which estimates reliable TF bins in
which accuracy of DOA estimation would be high.

In terms of robustness to noise and reverberation, subspace
techniques such as SSPIV and DPD-MUSIC lead as they take
advantage of decomposition of noisy eigenbeams into signal
and noise subspaces. Although AIV-GD uses noisy eigen-
beams, it shows almost as strong robustness as subspace tech-
niques due to its spatially-unconstrained optimization which
minimizes the effect of noise on the optimized DOA estimate.

B. Multiple Sources

In this section we evaluate the effect of reverberation,
number of sources and angular separation of the sources in
the multiple source scenario.

In order to systematically evaluate the effect of source sep-
aration with varying number of sources we used multi-source
distribution with similar angular separation between them. We
chose the distribution of the sources on the same horizontal
plane as the microphone array for simplicity of understanding
of the result and maximizing the clarity of systematic eval-
uation of the effect of source separation. The experiments
in section IV-A and V demonstrate the effectiveness of the
method in varying azimuth-inclination condition. In total, 100
trials were used where in each trial the azimuth of the first
source is chosen randomly from a uniform distribution around
the circle and the subsequent sources are placed at regularly
spaced azimuth intervals ∆φs. The number of sources Ns
and the angular separation ∆φs vary in each experiment, as
described below.

The constraint of fixed inclination reduces the range of
variations in distance-to-the-closest-wall and so the strongest
reflection in compare to the single source scenario in which
both the azimuth and inclination vary per trial. In order to
compensate the reduction in range of variation of the strongest
reflection, we displaced the microphone array slightly away
from the centre of the room at (2.52, 4.48, 1.45) m in multi-
source scenario while the distance of the sources to the centre
of SMA stays 1 m.

The source signals consist of different anechoic speech
signals randomly selected for each trial from the APLAWD
database [50]. The active level of each speech source according

to ITU-T P.56 [51], as measured at p00, is set to be equal across
all trials. Spatio-temporally white Gaussian noise is added to
the microphone signals to produce a signal to incoherent noise
ratio (SNR) of 25 dB at p00 for each source. In order to analyse
the effect of reverberation, number of sources and the angular
separation of the sources on multiple source localization, the
evaluation includes two experiments to investigate: 1) the
effect of T60 and 2) the effect of Ns and ∆φs.

For multiple sources and an equal number of estimated
DOAs, the average DOA estimation error depends on how
we associate the true DOAs and the estimated DOAs in
(47). In order to avoid any ambiguity due to data association
uncertainty in our results, best case data association was used
to obtain the mean estimation error using (47).

1) Experiment 1: The effect of T60 is evaluated here for the
illustrative case with Ns = 2 and ∆φs = 45°. Figure 8 shows
the distribution of DOA estimation errors of all methods for
T60 = {0.2, 0.4 , 0.6} s. The black dot in each box shows the
median while the boxes show the upper and lower quartiles,
and the whiskers which is extend to 1.5 times the interquartile
range.

As studied in [37], the accuracy of PIV is severely degraded
in strong reverberation when multiple sources are simulta-
neously active. This can be seen in Figure 8 where PIV
median error increases from 2.2° to up to 8.7° (out of Y -
axis limit) as T60 increases. AIV-GD, after incoherent DPD-
MUSIC, shows the second best accuracy with median errors of
{0.5, 0.9, 1.4} ° and robustness to reverberation of 1° similar
to coherent DPD-MUSIC for all T60s. Although incoherent
DPD-MUSIC leads in accuracy it shows the same robustness
to reverberation as others as its median error varies for around
1° from lowest to highest T60. The coherent DPD-MUSIC
provides less accuracy than incoherent DPD-MUSIC since

Separation (deg)
30 45 90

M
e
a
n
 E

rr
o
r 

(d
e
g
)

0

1

2

3

4

5

6

N = 2

Separation (deg)
30 45 90

M
e
a
n
 N

u
m

 o
f 
S

o
u
rc

e
s

1

1.2

1.4

1.6

1.8

2

PIV SC-SRP SSPIV AIV-GS AIV-GD DPDi-MUSIC DPDc-MUSIC

Separation (deg)
30 45 90

0

1

2

3

4

5

6

N = 3

Separation (deg)
30 45 90

1

1.5

2

2.5

3

Separation (deg)
30 45 90

0

1

2

3

4

5

6

N = 4

Separation (deg)
30 45 90

2

2.5

3

3.5

4

Separation (deg)
30 45

0

1

2

3

4

5

6

N = 5

Separation (deg)
30 45

2

2.5

3

3.5

4

4.5

5

Fig. 9. Mean error and Mean NoDS for incremental Ns and varying ∆φs
with T60 = 0.4 s.
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DPDc-MUSIC is more prone to TF bins with erogenous signal
space due to high sensitivity of clustering to outliers.

2) Experiment 2: The effect of the number of sources
and the angular separation of the sources is evaluated for
incremental Ns from 2 to 5 sources with ∆φs = {30, 45 , 90}°
for up to 4 sources and ∆φs = {30, 45}° for 5 sources with
T60 = 0.4 s. The performance of each method is evaluated
using two metrics: Mean Number of Detected Sources (NoDS)
and Mean error respectively representing the robustness and
accuracy of DOA estimators.
Mean NoDS: Having obtained N DOA estimates (N ≤ Ns),
we use best case data association to find the best assignment
of N estimated DOAs and Ns true DOAs. In the best case
assignment, the error between each pair of estimated and true
DOAs are calculated using (47). The number of pairs with
error ≤ 15° is considered as the number of detected sources.
The mean number of detected sources is the average number
of detected sources across all trials.
Mean error: The mean error is simply the average estimation
error among the trials with successful localization where the
number of detected sources is equal to the number of true
sources. Figure 9 shows the mean errors and mean NoDS for
all methods with incremental Ns and varying ∆φs. In terms
of accuracy, AIV-GD shows the second best performance
with the worst mean error of 1.8° after DPDi-MUSIC with
the worst mean error of 1°. AIV-GS performs as accurate
as SC-SRP with the worst mean error of 2.1° as they both
utilise the same eigenbeams, initial DOA estimates and search
window although differ in cost function. DPDc-MUSIC shows
noticeable accuracy loss of 2° for adjacent sources with
∆φs = 30° for all the values of Ns. In contrast to the results
in the original work on DPD-MUSIC by Nadiri and Rafaely
where the sources are widely separated by 60° and 70°, in
scenarios with lower separation, as in our evaluation, DPDc-
MUSIC, compared to DPDi-MUSIC, does not show a better
accuracy. This is caused as the clustering in DPDc-MUSIC
becomes highly prone to adjacent sources and results in the
merge of two adjacent clusters of signal subspaces giving
erroneous centroid signal subspace especially in the presence
of outliers signal subspaces. In terms of mean NoDS, AIV-GD
has the highest robustness to angular separation and number
of sources. Apart from PIV, which generally performs poorly
in multi-source scenario in all cases, SSPIV, SC-SRP, AIV-
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Fig. 10. Percentage of the bins passed in DPD test for varying Ns and ∆φs.

GS and AIV-GD show more robustness to number of sources
than DPD-based methods. Both DPD-MUSIC variations sig-
nificantly lose mean NoDS as the number of sources increases
due to static threshold for SVR in DPD test which causes
the reduction of number of TF bins that passed the test with
the increase of number of sources. Figure 10 presents the
percentage of the passed TF bins in DPD test for incremental
number of sources. As expected the percentage reduces with
the increase of Ns as the likelihood of dominant single source
in a bin drops. It can also be observed that the percentage
increases as the angular separation of the sources decreases
since the likelihood of strong unity rank in (20) increases
as the two adjacent sources may be considered as a single
erroneous intermediate dominant source. Although increase in
source separation decreases the percentage of the passed bins,
the accuracy and robustness increase as shown in Fig. 9 due
to having less erroneous passed TF bins.

V. EXPERIMENTAL VERIFICATION

To demonstrate the performance of each method, real
recording of 4 s speech in a real room with approximate
dimensions of 10 × 9 × 2.5 m and reverberation time of
0.4 s was used using an Eigenmike 32-channel rigid spherical
microphone array with radius of 4.2 cm placed close to the
centre of the room. Four talkers were simultaneously active
and were located 1.5 m away from the centre of the array at
approximately 60° intervals while their inclinations alternated
to be above or below the horizontal plane of the array. Figure
11 shows the normalized smoothed histogram for PIV, SSPIV,
SC-SRP, AIV-GS and AIV-GD as well as normalized MUSIC
spectrum for incoherent DPD-MUSIC. Due to approximate
knowledge of the position of sources and array, we cannot
obtain accurate numerical estimation error. The approximate
mean estimation error for all methods is 3° except PIV which
is 4.5°. Although all methods successfully estimate peaks
corresponding to all four sources due to well separation, the
distinctness, the sharpness and the height of the peaks clearly
present the relative performance of the methods. In order to
provide a numerical evaluation, for each peak, a measure of
‘peak strength’ is proposed which is the ratio of the peak
height over the peak smoothness where the peak smoothness
is defined as the average height in the normalized peak
distribution within its range of rp = 25° neighbourhood. Table
II presents the peak strength of each peak for all methods.

AIV-GD and SSPIV lead as they both estimate the most
prominent peaks. AIG-GS and SC-SRP performs similarly as
explained in previous sections. SSPIV, due to noise suppres-
sion in eigenbeams by sub-space decomposition, manages to

Peak PIV SC-SRP DPD-M SSPIV AIV-GS AIV-GD
1 2.08 5.66 3.31 6.23 5.24 6.88
2 1.96 4.45 3.04 6.12 4.18 5.37
3 1.82 3.54 2.39 5.32 3.50 3.35
4 0.99 1.50 0.49 2.31 1.46 1.17

Mean 1.71 3.79 2.31 5.00 3.59 4.19

TABLE II
PEAK STRENGTH OF EACH PEAK FOR ALL METHODS
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Fig. 11. Normalized smoothed histogram of PIV, SSPIV, SC-SRP, AIV-GS, AIV-GD and normalized incoherent DPD-MUISC spectrum using real recording.
The black dot represents the approximate true DOA.

successfully estimate accurate DOAs in the majority of TF bins
where PIV estimates an erroneous DOA. The performance im-
provement of AIV-GD compared to AIV-GS, due to utilisation
of spatially unconstrained optimization, is clearly observable
in Fig. 11 and in Table II as erroneous DOAs in AIV-GS,
which are mainly distributed between and around the peaks,
are more concentrated around the peaks in AIV-GD resulting
into sharper peaks. Note that the number of DOA estimates
in all methods except DPD-MUSIC are equal. Comparing the
sharpness and the sparsity of the histograms of PIV and AIV-
GD, we can also see the significant accuracy improvement
for AIV-GD since majority of the erroneous DOAs in PIV
histogram have had their accuracy improved in AIV-GD due
to employment of high order eigenbeams. DPD-MUSIC shows
a poor peak strength in Table II due to having a very low-
height, although sharp, peak (peak 4) as seen in Fig. 11. This
is caused since an increase in the number of sources results
in reduction of the number of passed bins in DPD test, as
previously shown in Fig. 10, which can result in having low-
height peaks in the MUSIC spectrum and therefore potentially
missing a source.

VI. COMPUTATIONAL COMPLEXITY

In this section we discuss the number of computations
required in each method for a single TF bin in terms of the
number of real multiplications. Note that the multiplication of
two complex numbers is counted as four real multiplication
while | . |2 is counted as two real multiplications. We do
not include the number of multiplications in (2) as we pre-
calculate and store all the required Ylm (Ω).

For subspace methods, we have 4(L+ 1)4JτJk multiplica-
tions for covariance matrix in (46) as well as 3(L + 1)6 for
SVD in (17).

For PIV, we have 48 (3× 3× 4 + 3× 4) operations where
the numbers in parentheses respectively represent the number
of axes, harmonic modes and the real multiplications in (14)
and the number of axes and the real multiplications in (13).

For AIV and SRP cost functions using (27) and (10), we
have 48 + (L+ 1)2 × (2 + 4 + 2) operations for a single look
direction where the numbers respectively correspond to the

PIV, number of eigenbeams up to the order L, a real-complex
followed by a complex-complex multiplications, and squared
magnitude.

For DPD-MUSIC, as well as subspace computation we have
4((L+ 1)2− 1)(L+ 1)2 multiplications for MUSIC spectrum
in (21) for a single look direction. Coherent DPD-MUSIC is
excluded from our consideration due to unknown and highly
dependant complexity in clustering.

We empirically achieved an average of 5 iterations for
gradient descent in AIV-GD. Considering numerical gradient
using the four neighbouring look directions, we call AIV cost
function 5 times per iteration which results in average of 25
look directions for AIV-GD. With spherical cap window of
radius 10° for AIV-GS and SC-SRP, we have an average of 100
look directions. MUSIC uses a full grid search of 181× 360
look directions.

Using the setting in this paper, the overall approximate
number of real multiplications of each method per TF bin is
as follow: 48 for PIV, 37 thousands for SSPIV, 13 thousands
for SC-SRP and AIV-GS, 3 thousands for AIV-GD, and 250
millions for DPD-MUSIC assuming an average of 10% of
the bins pass the DPD test. Our proposed AIV-GD leads in
computation after PIV while the state-of-the-art DPD-MUSIC
shows an expensive computational cost due to covariance
matrix calculation, SVD and full grid search although it is
performed on few percent of the total TF bins.

VII. CONCLUSIONS

In this paper we proposed a novel DOA estimation method
for spherical microphone arrays. This method exploits a new
measure denoted the augmented intensity vectors. It uses
high order spherical harmonics to enhances the accuracy
and robustness of DOA estimates in PIV. Two alternative
implementations of our method were evaluated, one based on
grid search and the other on gradient descent optimization. It
is shown that the gradient descent approach shows a better
performance in accuracy and robustness compared to spatially
limited grid search approach. Simulation and real recording
results have been presented for single and multiple sources
with different sensor noise levels, reverberation times, number
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of sources, and angular separation of sources. The results also
show that using up to the third order spherical harmonics
has significant advantages over second order harmonics for
AIV and the increase of order has more impact on accuracy
than the choice of optimization technique. For the third-order
gradient descent AIV in the presence of realistic reverberation
and sensor noise level, we found the worst average error of
1.5° for single source and 2° for up to 5 sources with down to
30° angular separation. It also outperforms the baseline PIV,
SSPIV and SC-SRP and is at least as accurate as the state-of-
the-art method DPD-MUSIC. It is shown that AIV-GD leads
in terms of robustness to number of sources and separation.
In addition, a rough analysis of computational complexity
indicates that our proposed AIV-GD technique outperforms the
state-of-the-art method in terms of computational complexity
with a few thousands real multiplications per bin.
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