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Abstract

In this thesis, we present a new transform approach for solving biharmonic boundary value

problems in two-dimensional polygonal and circular domains. Our approach provides a

unified general approach to finding quasi-analytical solutions to a wide range of problems

in Stokes flows and plane elasticity.

We have chosen to analyze various Stokes flow problems in different geometries which

have been solved using other techniques and present our transform approach to solve them.

Our approach adapts mathematical ideas underlying the Unified transform method, also

known as the Fokas method, due to Fokas and collaborators in recent years.

We first consider Stokes flow problems in polygonal domains whose boundaries consist of

straight line edges. We show how to solve problems in the half-plane subject to different

boundary conditions along the real axis and we are able to retrieve analytical results found

using other techniques. Next, we present our transform approach to solve for a flow past

a periodic array of semi-infinite plates and for a periodic array of point singularities in a

channel, followed by a brief discussion on how to systematically solve problems in more

complex channel geometries.

Next, we show how to solve problems in circular domains whose boundaries consist of a

combination of straight line and circular edges. We analyze the problems of a flow past a

semicircular ridge in the half-plane, a translating and rotating cylinder above a wall and a

translating and rotating cylinder in a channel.
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Chapter 1

Introduction

In this thesis we shall be considering a variety of biharmonic boundary value problems in

circular domains. The biharmonic equation in two dimensions is given by

∇4ψ(x, y) = 0. (1.1)

It arises in Stokes flow problems in which case ψ(x, y) is the associated streamfunction

(Langlois [69]), as well as in plane elasticity where ψ(x, y) is the associated Airy stress

function (Muskhelishvili [86]). The term ‘circular domain’ refers to a bounded or un-

bounded, simply- or multiply- connected domain, whose boundary consists of straight or

circular edges or a combination of the two. This term is associated to refer to such domains,

even if the boundary consists of straight line edges only (e.g. a rectangle), since straight

edges can be thought as circular boundaries of zero curvature.

Our focus in this thesis is to present a systematic approach based on the Unified trans-

form method (Fokas [38, 39], Deconinck, Trogdon & Vasan [32]), also known as the Fokas

method, for solving Stokes flow problems in polygonal and circular domains. We shall

be using the term ‘polygonal’ to refer to domains whose boundary consists of straight

line edges only and the more general term ‘circular’ to refer to domains whose boundary

consists of a combination of straight and circular edges. All Stokes flow problems to be

considered in this thesis have been solved using other techniques. It is therefore instructive,
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before presenting our transform approach, to give an overview of the main analytical meth-

ods and techniques in the literature which have been used to solve Stokes flow problems.

1.1 Methods and techniques

In this section, we present an overview of the main analytical methods for solving bihar-

monic boundary value problems with main focus on Stokes flow problems, including all

techniques which were used to solve the problems to be presented in this thesis.

1.1.1 The Fourier transform

The general approach for solving a partial differential equation, and particularly the bihar-

monic equation, using this method, is to use the Fourier transform to obtain an ordinary

differential equation and then to use the inverse Fourier transform to obtain a representa-

tion of the solution. The Fourier transform of an integrable function f(x) defined on R is

given by

f̂(ξ) =

∫ ∞

−∞
f(x)eiξxdx. (1.2)

The transform of f can be recovered from the inverse Fourier transform, via the inversion

formula

f(x) =
1

2π

∫ ∞

−∞
f̂(ξ)e−iξxdξ. (1.3)

Stokes flow problems in the half-plane and in strip/channel geometries, where transform

with respect to one variable is required, can be solved using Fourier tranform techniques.

Related to the problems to be presented in this thesis, we mention the work by Davis

[25] who solved various problems involving distributions of point singularities in a two-

dimensional channel using Fourier transforms with respect to the variable along the channel

length. Pozrikidis [89], in his monograph, presented a standard Fourier transform analysis

of a two-dimensional point singularity in a channel. Crowdy & Davis [20] solved, among

others, for point singularities in a channel using standard Fourier transform techniques.
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1.1.2 The Mellin transform

The Mellin transform of a function f(x) (Ablowitz & Fokas [1]) is given by

φ(s) =

∫ ∞

0

xs−1f(x)dx (1.4)

and the inverse Mellin transform is

f(x) =
1

2πi

∫ c+i∞

c−i∞
x−sφ(s)ds. (1.5)

The Mellin transform method can be used to solve problems in wedge geometries. We

mention the work by Davis & Crowdy [27] used Mellin transform techniques and obtained

analytical results for the dynamics of a circular microswimmer in Stokes flows near an

angle of π/2, as well as in other fractional angles.

1.1.3 The Wiener-Hopf method

The Wiener-Hopf technique is a method first put forward [115] for the solution f(x) of the

integral equation on the half-plane

∫ ∞

0

k(x− y)f(y)dy = g(x), 0 < x <∞, (1.6)

where k(x − y) is a given difference kernel and g(x) a specified function for the positive

real axis x > 0; the essence of the method is to extend the given equation into the negative

axis x < 0 to a similar one for which the “forcing” on the right side for x < 0 is unknown.

Therefore, ∫ ∞

0

k(x− y)f(y)dy =

{
g(x), 0 < x <∞,

h(x), −∞ < x < 0,
(1.7)

where h(x) is unknown. Once the equation is defined over the whole real axis, it is natural

to take a Fourier transform with respect to x, with α as the spectral variable. This will then

result to a typical Wiener-Hopf functional equation of the form

G+(α) +H−(α) = F+(α)K(α), (1.8)
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where

H−(α) =
∫ 0

−∞
h(x)eiaxdx, F+(α) =

∫ ∞

0

f(x)eiaxdx (1.9)

and

G+(α) =

∫ ∞

0

g(x)eiaxdx, K(α) =

∫ ∞

−∞
k(x)eiaxdx. (1.10)

The quantities H−(α) and F+(α) are half-range Fourier transforms of the unknown func-

tions h(x) (along the negative real axis) and f(x) (along the positive real axis) respectively,

while G+(α) and K(α) are transforms of known functions. The Wiener-Hopf method re-

lies on being able to factorize K(α) into a product of upper and lower analytic functions in

the spectral plane.

The Wiener-Hopf technique, in both scalar and matrix (Noble [87]), has proven very useful

when solving mixed boundary value problems for Stokes flows. Richardson [92] consid-

ered a two-dimensional pressure-driven fluid flow confined between two parallel stick-slip

boundaries which transforms to a uniform flow downstream in response to no-stress bound-

ary conditions and obtained analytical solutions using the Wiener-Hopf method. Luchini

[78] used Wiener-Hopf techniques to solve for a shear flow past a periodic array of semi-

infinite flat plates. Jeong [54] solved the same boundary value problem with different tech-

nical details. Other studies where the Wiener-Hopf method has been employed concern

problems in channel dividers: Buchwald & Doran [10] solved the problem of a symmetric

channel divider and found the solution of the flow considered using scalar Wiener-Hopf

techniques. Abrahams, Davis & Llewellyn-Smith [4] solved for an asymmetric channel

divider and obtained a numerical solution using Padé approximant techniques for a matrix

Wiener-Hopf system. Other Stokes flow problems which were solved using Wiener-Hopf

techniques include the studies by Jeong [55, 56, 57], Jeong & Kim [59, 60, 61], Jeong &

Park [62], Kim & Chung [67]. Some of these problems will presented in Chapters 5 and 7.

1.1.4 The method of images

The method of images is a mathematical technique used to solve boundary value problems

in certain domains by adding ‘images’ in the symmetrically extended domain. Therefore,
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in certain problems, the addition of these images enforces the required boundary conditions

to be satisfied. Blake [8] presented the solution for a point force near a wall using Fourier

transforms and obtained the image system required to satisfy the boundary condition along

the boundary. More recently, Crowdy & Or [23] present a method of images approach for

various point singularities above a wall using complex variable techniques.

1.1.5 Bipolar coordinates

Bipolar coordinates (η, ξ) are a two-dimensional orthogonal coordinate system, such that

curves of constant ξ and η are circles that intersect at angles π/2 (Abramowitz & Stegun

[5]). They are defined by

x =
c sinh ξ

(cosh ξ − cos η)
, y =

c sin η

(cosh ξ − cos η)
, (1.11)

where c is such that the two foci are located at (−c, 0) and (c, 0). These coordinates can be

used to solve problems in various geometries, such as

• the exterior of two discs,

• the eccentric annulus,

• a disc and a half-plane,

• half-plane with a semicircular ridge/trough,

as well as other domains which can be mapped to these domains.

There have been many studies in Stokes flow problems, where the bipolar coordinates have

been employed. We mention a number of these studies: Dorrepaal & O’Neill [34] solved

for a flow past two cylinders which were in contact or not, when the flow direction was

perpendicular to the line connecting the centres of the cylinders. Davis & O’Neill [30]

considered a stagnation point flow past a ridge or trough with the aim of understanding the

separation of the flow near the point of intersection and employed bipolar coordinates to

map the fluid domain to a channel geometry and then used Fourier transform techniques.
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In another study, Davis & O’Neill [29] solved the problem of a shear flow past a cylinder

above a wall using again bipolar coordinates to map the fluid region to a channel geometry

and then employ Fourier transform techniques. Jeffrey & Onishi [53] analyzed the problem

of a translating and rotating cylinder near a wall and computed forces and torque acting on

the cylinder in terms of linear and angular velocities.

1.1.6 Conformal mapping

Conformal mapping (Ablowitz & Fokas [1]) is a useful method in complex variables and

analytic functions. For example, if we were to solve Laplace’s equation in a given do-

main in the plane, knowing that the real and imaginary parts of an analytic (complex-

differentiable) function satisfy Laplace’s equation, it is natural to associate an analytic

funtion. Since Laplace’s equation is conformally invariant (Ablowitz & Fokas [1]), this

implies that to find an expression for the solution in a complicated geometry, it is sufficient

to find a conformal mapping from a simpler domain in which the solution can be found.

Although this technique is widely used in potential flow theory, it is not very well used in

the literature of Stokes flows problems (in contrast to plane elasticity problems), since the

biharmonic equation is not conformally invariant. However, analytical progress can still

be made in various geometries. We mention the studies by Crowdy & Samson [24] who

presented the solution for flows past a wall with one or two gaps. Philip [88] presented

a number of mixed boundary value problems in various geometries. Crowdy [13, 16, 17]

presented the solution to Stokes flow problems subject to mixed boundary conditions.

1.1.7 Streamfunction and Papkovich-Fadle eigenfunctions

Streamfunction and Papkovich-Fadle eigenfunctions have extensively been used in the liter-

ature for solving Stokes flow problems and they are based on writing series representations

for the unknown streamfunction in various geometries and then finding the unknown coef-

ficients using the associated boundary conditions. The Papkovich-Fadle eigenfunctions are

eigenfunctions for the biharmonic operator; for special forms of the boundary conditions

(those corresponding to so called canonical problems), it is possible to determine the com-
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plex expansion coefficients analytically using the biorthogonality conditions among these

eigenfunctions (Joseph [64, 65]). Related to the problems to be presented in this thesis, we

mention the work by Setchi et al. [97] who obtained an analytical solution for Stokes flows

through a shunt by matching expansions of Papkovich-Fadle eigenfunctions in rectangular

subregions.

1.1.8 Boundary integral method

Although the boundary integral method is a numerical method for solving Stokes flow prob-

lems, we have included it in this section, since it is widely used in the literature (Pozrikidis

[89]). It is based on use of Green’s theorem to obtain an integral equation for the unknown

boundary data. Taking the limit as we approach the boundary of the domain, we obtain a

linear integral equation for the unknown boundary data whose solution gives the unknown

boundary data.

1.2 The Unified transform method

The Unified transform method, known as the Fokas method [38, 39], is a transform method

for solving linear and nonlinear integrable partial differential equations introduced by Fokas

[39] and developed by Fokas and collaborators during the last twenty years. The Fokas

method can be thought as a generalized Fourier transform, since it involves a simultaneous

spectral analysis in both x and y variables in contrast to traditional Fourier transform ap-

proaches which employ a spectral parameter associated only with the x-variable. A review

of the Unified transform method for Laplace’s equation in polygonal and circular domains

will be given in the next Chapter.

There exists only few studies for biharmonic boundary value problems using the Unified

transform method. Crowdy & Fokas [21] have considered biharmonic boundary value

problems in a semi-strip geometry arising in elastostatics. More recently, Crowdy & Davis

[20] have presented the solution to Stokes flow problems in a channel geometry with appli-

cations to microswimming. Dimakos & Fokas [33] have presented a novel integral repre-



1.3 Structure of the thesis 22

sentation of the solution of the biharmonic equation in the interior of a convex polygon.

1.3 Structure of the thesis

This thesis is structured as follows: In Chapter 2, we present an overview of the Unified

transform method for polygonal and circular domains. In Chapter 3, we present a complex

variable of Stokes flows. In Chapters 4-7, we consider Stokes flow problems in polygonal

domains. Specifically, in Chapter 4, we consider two problems in the half-plane: a point

singularity above a no-slip wall and a above a boundary with mixed boundary conditions.

Next, in Chapter 5, we solve the problem of a shear flow (in both longitudinal and transverse

directions) past a periodic array of semi-infinite plates; the material of this chapter forms

the content of the paper by Crowdy & Luca [22]. In Chapter 6, we consider a periodic

array of point singularities in a channel. We then briefly discuss how to solve Stokes flow

problems in more complex channel geometries (Chapter 7). In Chapters 8-10, we solve

problems in circular domains: Particularly, we consider the problems of a stagnation point

flow past a semicircular ridge (Chapter 8), a translating and rotating cylinder near a wall

(Chapter 9) and a translating and rotating cylinder in a channel (Chapter 10).
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Chapter 2

The Unified transform method

In this Chapter, we present a review of the Unified transform method, also known as the

Fokas method (Fokas [39, 38]) for Laplace’s equation in polygonal and circular domains

(Fokas & Kapaev [42, 43]). Following recent work by Crowdy [18, 19], we present an

alternative derivation of the associated transform pairs, followed by his recent extension of

the transform method to simply- and multiply- connected circular domains.

2.1 The transform method for polygonal domains

We begin this section by giving some basic definitions (Ablowitz & Fokas [1]) which we

shall refer to from now on. Laplace’s equation is given by

∇2w(x, y) ≡ ∂2w

∂x2
+
∂2w

∂y2
= 0, (2.1)

where function w(x, y) satisfying Laplace’s equation is called a harmonic function. A

function f(z) is analytic at a point z0 if f(z) is differentiable in a neighborhood of z0 and it

is analytic in a domain if it is analytic at every point in the domain. The real and imaginary

parts of an analytic function f(z) are harmonic functions. The Cauchy integral formula is

given by

f(z) =
1

2πi

∮
∂D

f(z′)
z′ − z

dz′, (2.2)
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z

z′

Figure 2.1: A point z′ on a slit of finite length on the real axis and point z in the upper

half-plane.

which states that the values of an analytic function f(z) on the boundary of a domain D,

∂D, determine the values of f(z) in D.

When solving Laplace’s equation ∇2w(x, y) = 0 in a given domain, it is natural to asso-

ciate an analytic function whose real or imaginary part is the unknown function w(x, y).

Therefore, finding the associated analytic function is sufficient to give the solution to the

harmonic problem considered. Fokas & Kapaev [42, 43] presented a novel method for

solving Laplace’s equation in polygonal domains. In this section, following Crowdy [18],

we present a new and elementary derivation of the transform method for convex polygonal

domains first introduced by Fokas & Kapaev [42, 43].

We start with the following geometrical observation. If a point z′ lies on some slit of finite

length on the real axis and another point z is in the upper half-plane (Figure 2.1), then,

clearly,

0 < arg[z − z′] < π, (2.3)

from which follows that

∫ ∞

0

eik(z−z′)dk =

[
eik(z−z′)

i(z′ − z)

]∞
0

=
1

i(z′ − z)
. (2.4)
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χ

α

z

z′

Figure 2.2: A point z′ on a slit of finite length on the ‘rotated’ with angle χ real axis and

point z in the half-plane to the left of the slit.

This can equivalently be written as:

1

z′ − z
= i

∫ ∞

0

eik(z−z′)dk, 0 < arg[z − z′] < π. (2.5)

It is straightforward to verify that the upper limit of integration does not have any contribu-

tion for the particular choices of z′ and z considered above.

Next, we assume that point z′ lies again on some other slit of finite length but now rotated

with an angle χ with respect to the positive real axis. A point z is now in the half-plane to

the left of the slit as one follows its tangent with uniform inclination angle χ, as illustrated

in Figure 2.2. The affine transformation given by

z′ 	→ e−iχ(z′ − α), z 	→ e−iχ(z − α), (2.6)

where the additive constant α is shown in Figure 2.2, rotates the slit to be on the real axis,

and point z to be in the upper half-plane, such that

0 < arg[e−iχ(z − α)− e−iχ(z′ − α)] < π. (2.7)
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S1

P

Figure 2.3: A convex polygon P formed from the intersection of N = 3 half-planes with

angles χ1, χ2, χ3 respectively.

Using (2.5) with (2.6), we can write

1

e−iχ(z′ − α)− e−iχ(z − α)
= i

∫ ∞

0

eik(e
−iχ(z−α)−e−iχ(z′−α))dk, (2.8)

or, if we cancel constant α and rearrange,

1

z′ − z
= i

∫ ∞

0

eie
−iχk(z−z′)e−iχdk. (2.9)

It should be noted that this integral expression is valid uniformly for all points z and z′

positioning as depicted in Figure 2.2.

The next step is to consider a bounded convex polygon P with N sides {Sj|j = 1, ..., N}
as shown in Figure 2.3 (for N = 3). The bounded convex polygon P can be thought as the

intersection of N = 3 half-plane regions of the form considered above. We know that for a

function f(z) analytic in P , Cauchy’s integral formula provides that for z ∈ P ,

f(z) =
1

2πi

∮
∂P

f(z′)dz′

z′ − z
. (2.10)
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If this boundary integral is splitted into a sum over the N sides, then we can write:

f(z) =
1

2πi

N∑
j=1

∫
Sj

f(z′)
[

1

z′ − z

]
dz′. (2.11)

But if side Sj has inclination angle χj , we can use (2.9) with χ 	→ χj , to re-express the

Cauchy kernel uniformly for all points z in P and for z′ positioned on the respective sides:

f(z) =
1

2πi

N∑
j=1

∫
Sj

f(z′)
[
i

∫ ∞

0

eie
−iχj k(z−z′)e−iχjdk

]
dz′. (2.12)

Changing the order of integration, this can be written as

f(z) =
1

2π

N∑
j=1

∫
L
ρjj(k)e

−iχjeie
−iχj kzdk, (2.13)

where, for integers m, n between 1 and N , the spectral matrix is defined to be given by

ρmn(k) ≡
∫
Sn

f(z′)e−ie−iχmkz′dz′, (2.14)

and with L = [0,∞) defined to be the fundamental contour for straight line edges. In

summary, the transform pair for polygonal domains can be stated as

⎧⎨
⎩ f(z) = 1

2π

∑N
j=1

∫
L ρjj(k)e

−iχjeie
−iχj kzdk,

ρjj(k) =
∫
Sj
f(z′)e−ie−iχj kz′dz′,

(2.15)

2.1.1 The global relations

The elements of the spectral matrix, also known as spectral functions, have important fea-

tures. We observe that,

N∑
n=1

ρmn(k) =
N∑

n=1

∫
Sn

f(z′)e−ie−iχmkz′dz′ =
∫
∂P

f(z′)e−ie−iχmkz′dz′ = 0, (2.16)
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for any point k ∈ C, and for any m = 1, ..., N and where we have used both the fact that

f(z′)e−ie−iχmkz′ (for m = 1, ..., N ) is analytic inside P , and Cauchy’s theorem. It should

be noted that there exist N such global relations providing a relation between different

elements of the spectral matrix. However, each of these global relations, is an equivalent

statement of the analyticity of function f(z) in the polygon P . We also note that for this

class of domains (polygonal domains) only the diagonal elements of the spectral matrix

appear in the integral representation (2.13).

In a similar manner, we can write transform pairs for unbounded polygonal domains, such

as semi-strip, quarter-plane, with the difference that the global relations will be valid in

restricted sectors of the k-plane, such that the spectral functions remain well-defined (Fokas

& Kapaev [43]). For completeness, we refer to Crowdy [18] for the connection of the above

results to those obtained by Fokas & Kapaev [43].

2.1.2 Unbounded polygonal regions

For unbounded domains exterior to some bounded polygons, we observe that it is geomet-

rically impossible to form the entire region from a finite intersection of half-planes. There-

fore, we can subdivide the domain into a collection of polygonal subdomains that are the

intersection of half-planes and for which we can write an integral representation as shown

above. We mention the work by Charalambopoulos, Dassios & Fokas [12] who solved

Laplace’s equation in the exterior of an equilateral triangle by subdividing the domain to

six convex subdomains.

2.2 The transform method for circular domains

To find generalized transform schemes for circular domains (whose boundaries consist of

a combination of straight line and circular edges), we first consider D to be the unit disc. It

should be clear that, to extend our transform approach to D, we must identify the particular

spectral representation of the Cauchy kernel that is uniformly valid for z′ on the domain

boundary ∂D and for z inside D.
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Figure 2.4: The fundamental contour for circular arc edges with 0 < r < 1.

0 1

z

z′

Figure 2.5: A point z′ on boundary of the disc and point z in its interior.

For values |z| < 1 in D, we consider the integral

I ≡
∫
L1

1

1− e2πik
zkdk +

∫
L2

zkdk +

∫
L3

e2πik

1− e2πik
zkdk. (2.17)

where it is integrated on the so called fundamental contour for circular arc edges, shown

in Figure 2.4 which is the generalization of the fundamental contour L for straight line

edges. We choose 0 < r < 1. The contour L1 is the union of the negative imaginary axis

(−i∞,−ir] and the arc of the quarter circle |k| = r in the third quadrant traversed in a

clockwise sense; the contour L2 is the real interval [−r,∞); the contour L3 is the arc of the
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quarter circle |k| = r in the second quadrant traversed in a clockwise sense together with

the portion of the positive imaginary axis [ir, i∞). All integrals in (2.17) are non-singular

and all integrands are exponentially decaying as |k| → ∞ uniformly for all |z| < 1. It can

be shown that (Crowdy [18]), for |z| < 1,

I =

∫
L1

1

1− e2πik
zkdk +

∫
L2

zkdk +

∫
L3

e2πik

1− e2πik
zkdk =

1

1− z
. (2.18)

To show that (2.18) holds, we observe that (Crowdy [18])

∫
L2

zkdk = P
∫
L2

[
1− e2πik

1− e2πik

]
zkdk

= P
∫
L2

[
1

1− e2πik

]
zkdk − P

∫
L2

[
e2πik

1− e2πik

]
zkdk

(2.19)

where P is the principal value integral. For the contours L− and L+ illustrated in Figure

2.6, for some 0 < ε < r,

∫
L−

[
zk

1− e2πik

]
dk = +P

∫
L2

[
zk

1− e2πik

]
dk +

∞∑
n=0

lim
ε→0

∫
C−

nε

[
zk

1− e2πik

]
dk,

∫
L+

[
e2πikzk

1− e2πik

]
dk = −P

∫
L2

[
e2πikzk

1− e2πik

]
dk +

∞∑
n=0

lim
ε→0

∫
C+

nε

[
e2πikzk

1− e2πik

]
dk.

(2.20)

The contours L− and L+ consist of the union of the radius-ε semi-circles {C±
nε|n ≥ 0}

centred at k = n (for n ≥ 0) traversed anti-clockwise together with the portions of the real

k-axis between them. Computation of the integrals around {C±
nε|n ≥ 0} and substitution

for the principal value integrals in (2.19) using (2.20) gives

I =

∫
L−

[
1

1− e2πik

]
zkdk +

∞∑
n=0

zn +

∫
L+

[
e2πik

1− e2πik

]
dk, (2.21)

where L− ≡ L1 ∪ L− and L+ ≡ L+ ∪ L3 are shown in Figure 2.7. Note that the integral

around L− vanishes because of the analyticity of the integrand in the fourth quadrant;

similarly, the integral around L+ vanishes because of analyticity of the integrand in the
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Figure 2.6: Contours L− and L+ in the spectral k-plane used to establish (2.18)
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L1

Figure 2.7: The contours L+ and L−

first quadrant. Hence, for |z| < 1, we have

I =
∞∑
n=0

zn =
1

1− z
, (2.22)

which proves our result.

2.2.1 Transform pair for interior of unit disc

Let z′ be a point on the unit circle and let |z| < 1 be a point in the interiot of the unit disc

as illustrated in Figure 2.5. Then |z/z′| < 1 uniformly and it follows on letting z 	→ z/z′
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in (2.18) that

z′

z′ − z
=

∫
L1

1

1− e2πik
zk

z′k
dk +

∫
L2

zk

z′k
dk +

∫
L3

e2πik

1− e2πik
zk

z′k
dk. (2.23)

The Cauchy kernel has therefore therefore the following spectral representation:

1

z′ − z
=

∫
L1

1

1− e2πik
zk

z′k+1
dk +

∫
L2

zk

z′k+1
dk +

∫
L3

e2πik

1− e2πik
zk

z′k+1
dk. (2.24)

On substitution of (the uniformly valid) representation (2.24) in the Cauchy integral for-

mula (2.2), we find that

f(z) =
1

2πi

∮
|z′|=1

f(z′)
[∫

L1

1

1− e2πik
zk

z′k+1
dk +

∫
L2

zk

z′k+1
dk +

∫
L3

e2πik

1− e2πik
zk

z′k+1
dk

]
dz′.

(2.25)

Changing the order of integration, we find the following transform pair:

⎧⎨
⎩ f(z) =

1

2πi

[∫
L1

ρ(k)
1−e2πik z

kdk +
∫
L2
ρ(k)zkdk +

∫
L3

ρ(k)e2πik

1−e2πik z
kdk

]
,

ρ(k) =
∮
|z′|=1

f(z′)
z′k+1dz

′,
(2.26)

The global relation is

ρ(k) = 0, k ∈ −N (2.27)

since, for this discrete set of k-values, the integrand of the integral defining ρ(k) is analytic

in the unit disc.

2.2.2 Transform pair for exterior of unit disc

The transform pair for the exterior of the unit disc can be found similarly. For z′ on the unit

circle with |z| > 1 then |z′/z| < 1 uniformly and setting z 	→ z′/z in (2.18) gives

z

z − z′
=

∫
L1

1

1− e2πik
z′k

zk
dk +

∫
L2

z′k

zk
dk +

∫
L3

e2πik

1− e2πik
z′k

zk
dk. (2.28)
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We therefore have the following spectral representation for the Cauchy kernel:

1

z − z′
=

∫
L1

1

1− e2πik
z′k

zk+1
dk +

∫
L2

z′k

zk+1
dk +

∫
L3

e2πik

1− e2πik
z′k

zk+1
dk. (2.29)

For |z| > 1 the Cauchy integral formula is given by

f(z) = − 1

2πi

∮
|z′|=1

f(z′)
z′ − z

dz′. (2.30)

This is valid for an analytic function outside the unit disc that decays like 1/z as z → ∞.

Using (the uniformly valid) expression (2.29) in the Cauchy integral formula gives the

following transform pair:

⎧⎨
⎩ f(z) =

1

2πi

[∫
L1

ρ(k)
1−e2πik

dk
zk+1 +

∫
L2
ρ(k) dk

zk+1 +
∫
L3

ρ(k)e2πik

1−e2πik z
dk

zk+1

]
,

ρ(k) =
∮
|z′|=1

f(z′)z′kdz′,
(2.31)

The global relation is now given by

ρ(k) = 0, k ∈ −N (2.32)

since, for this discrete set of k-values, the integrand of the integral defining ρk is analytic

outside the disc and is O(1/z2) as z → ∞.

2.2.3 Domains with both straight and circular edges

Of interest in this thesis is the analysis of boundary value problems in domains with both

straight and circular edges. In Chapters 8-10, we shall be analyzing Stokes flow problems

in such domains and present the associated transform pairs involving mixture of the results

presented in this Chapter.

2.3 Summary

In this Chapter, following Crowdy [18, 19], we have presented a review of the Unified

transform method, also known as the Fokas method, for Laplace’s equation in polygonal
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and circular domains. As we will see in the next Chapter, when solving a biharmonic

boundary value problem it is necessary to find two unknown analytic functions; in all prob-

lems to be analyzed in this thesis, we will show how to find these two functions using the

Unified transform method.
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Chapter 3

Complex variable formulation of Stokes

flows

In this chapter, we present a complex variable formulation of Stokes equations and then

show how all physical quantities, flows of interest and fundamental singularities used to

model fluid flows can be expressed using complex variables.

The Stokes equations are derived from the Navier-Stokes equations and they describe flows

where the Reynolds number is very small, Re � 1, where Reynolds number is defined as

the ratio of inertial forces to viscous forces. Therefore, these are flows in which inertial

forces are negligible compared to viscous forces meaning that either the viscosity of the

fluid is very high or velocity/length scales are very small.

3.1 Stokes equations in two dimensions

The two-dimensional Stokes equations are given by

∇p = η∇2u,

∇.u = 0,
(3.1)

where u = (u, v) is the two-dimensional velocity field, p is the fluid pressure and η is

the viscosity. Since the flow is incompressible and two-dimensional, we can introduce a
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streamfunction ψ such that

u =
∂ψ

∂y
, v = −∂ψ

∂x
. (3.2)

Taking the curl of the first equation in (3.1), we find that

∇×∇p = η∇×∇2u. (3.3)

Since the curl of a gradient field is equal to zero, we can write:

0 = η∇×∇2u. (3.4)

Moreover, using the second equation in (3.1), (3.4) can be written as

0 = η∇2(∇× u). (3.5)

Next, we define the fluid vorticity ω as the curl of the velocity field, which means that (3.5)

can equivalently be written as

∇2ω = 0, ω ≡ ∂v

∂x
− ∂u

∂y
. (3.6)

Using (3.2), we also have the relation:

∇2ψ = −ω. (3.7)

Combining (3.6) and (3.7), we find that the streamfunction satisfies the biharmonic equa-

tion

∇4ψ = 0. (3.8)

We now present how to express the biharmonic operator using complex variables. Define

the variable z = x+ iy and its complex conjugate z = x− iy. Using these, we have

∂

∂z
=

1

2

[
∂

∂x
− i

∂

∂y

]
,

∂

∂z
=

1

2

[
∂

∂x
+ i

∂

∂y

]
, (3.9)
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which implies that the harmonic and biharmonic operators can be expressed as

∇2 = 4
∂2

∂z∂z
, ∇4 = 16

∂4

∂z2∂z2
. (3.10)

Therefore, (3.8) can be written in terms of complex variables as

∂4ψ

∂z2∂z2
= 0. (3.11)

On integration of (3.11), we find that its general solution can be written as

ψ = Im[zf(z) + g(z)], (3.12)

where f(z) and g(z) are analytic functions of the complex variable z = x + iy and are

known as the Goursat functions (Langlois [69]). It is clear, then, that to solve a Stokes flow

problem in two dimensions, it is sufficient to determine these two analytic functions; this

is usually done by making use of the boundary conditions. In this thesis, we will show that

these two analytic functions can be found using the Unified transform method. It should be

noted at this point that expression (3.12) also appears in plane elasticity with ψ in that case

being the Airy stress function (Muskhelishvili [86]).

In the following subsections, we show that all physical quantities of interest can be ex-

pressed in terms of the Goursat functions f(z) and g(z).

3.1.1 Velocity

We employ the notation 	→ to indicate a change to the complex form of some vector quan-

tity, i.e.,

a =

(
a1

a2

)
	→ a1 + ia2. (3.13)

With this convention, using (3.2) we can write

u 	→ u+ iv =
∂ψ

∂y
− i

∂ψ

∂x
= −i

[
∂ψ

∂x
+ i

∂ψ

∂y

]
= −2i

∂ψ

∂z
, (3.14)
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where we have used (3.9). Next, using (3.12), we can write

ψ =
[zf(z) + g(z)]− [zf(z) + g(z)]

2i
, (3.15)

or, equivalently:

2iψ = zf(z) + g(z)− zf(z)− g(z). (3.16)

The final expression can be used in (3.14) to give

u+ iv = −f(z) + zf ′(z) + g′(z). (3.17)

It it sometimes useful to deal with the complex conjugate velocity which can be expressed

as

u− iv = −f(z) + zf ′(z) + g′(z). (3.18)

For example, the no-slip boundary condition which we shall refer to throughout this thesis

can be expressed as

− f(z) + zf ′(z) + g′(z) = 0. (3.19)

3.1.2 Pressure and vorticity

The first equation in (3.1) can be written in complex form as

∇p = η∇2u 	→ 2
∂

∂z
p = 4η

∂2

∂z∂z
(u+ iv). (3.20)

On integration with respect to z, we find that

p

η
= 2

∂

∂z
(u+ iv) + F (z), (3.21)

where F (z) is an unknown analytic function. Using (3.17), this can be written as

p

η
= 2(−f ′(z) + f ′(z)) + F (z). (3.22)

But since pressure p is a real quantity, we must pick the analytic function F (z) = 4f ′(z);
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we therefore have
p

η
= 2(f ′(z) + f ′(z)) = 4Re[f ′(z)]. (3.23)

Next, expression (3.7) can be expressed in complex form as

ω = −4
∂2ψ

∂z∂z
, (3.24)

which, on substitution of (3.15), can be written as

ω = −4
∂2

∂z∂z

[
1

2i

(
zf(z) + g(z)− zf(z)− g(z)

)]

= −4

(
f ′(z)− f ′(z)

2i

)

= −4Im[f ′(z)].

(3.25)

Expressions (3.23) and (3.25) can be written together as:

p

η
− iω = 4f ′(z). (3.26)

3.1.3 Fluid stress

The fluid stress on a surface is given by

− pni + 2ηeijnj, (3.27)

where ni denotes the components of the unit normal vector to some closed curve in the

fluid and eij is the usual fluid rate-of-strain tensor, see definition (3.31) below.

The complex form of the unit tangent vector t on some closed curve is

t =

(
t1

t2

)
	→ t1 + it2 =

dz

ds
, (3.28)

where s is arclength around the boundary and ds2 = dx2 + dy2 = dzdz. Therefore, the
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complex form of the unit outward normal n is

n =

(
n1

n2

)
	→ n1 + in2 = −i

dz

ds
, (3.29)

where we have rotated the unit tangent vector t by −π/2. This rotation corresponds to

multiplication by (−i) if expressed in complex variable form. Using (3.23) and (3.29), we

can write the complex form of −pni as

− pni 	→ 2iη
(
f ′(z) + f ′(z)

) dz
ds
. (3.30)

Next, the term 2ηeijnj includes the rate-of-strain tensor eij and, hence, we need to express

this in complex form. We define the fluid rate-of-strain tensor to be

eij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
(3.31)

where u1 ≡ u, u2 ≡ v, x1 ≡ x and x2 ≡ y, and consider

∂

∂z
(u+ iv) =

1

2

(
∂

∂x
+ i

∂

∂y

)
(u+ iv) =

1

2

[
∂u

∂x
− ∂v

∂y
+ i

(
∂u

∂y
+
∂v

∂x

)]
. (3.32)

On use of the second equation in (3.1), this becomes

∂

∂z
(u+ iv) = zf ′′(z) + g′′(z) = e11 + ie12. (3.33)

The second term in (3.27) is

2ηeijnj = 2η

(
e11n1 + e12n2

e21n1 + e22n2

)
= 2η

(
e11n1 + e12n2

e12n1 − e11n2,

)
(3.34)

where we have used that e22 = −e11 and e21 = e12. We also have that

(e11 + ie12)(n1 − in2) = e11n1 + e12n2 + i(e12n1 − e11n2). (3.35)
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which means that

2ηeijnj 	→ 2iη(e11 + ie12)
dz

ds
= 2iη

(
zf ′′(z) + g′′(z)

) dz
ds
. (3.36)

Therefore, the complex form of the fluid stress on a surface is given by

− pni + 2ηeijnj 	→ 2iη
(
f ′(z) + f ′(z)

) dz
ds

+ 2iη
(
zf ′′(z) + g′′(z)

) dz
ds
. (3.37)

To express this in a concise form, we introduce

H(z, z) ≡ f(z) + zf ′(z) + g′(z). (3.38)

It can be seen that

∂H

∂z
= f ′(z) + f ′(z),

∂H

∂z
= zf ′′(z) + g′′(z), (3.39)

which can be used in (3.37) to give:

− pni + 2ηeijnj 	→ 2iη
dH

ds
. (3.40)

3.1.4 Force

The integral of the fluid stress around the boundary of a body is known as the Stokes drag.

Any net Stokes drag on a body must be balanced by an external force on the body. The

total Stokes drag on a body D with boundary ∂D is given by

F =

∮
∂D

(−pni + 2ηeijnj)ds 	→ 2iη

∮
∂D

dH

ds
ds = 2iη[H]∂D, (3.41)

where the square brackets denote the change in H on traversing ∂D. Thus logarithmic sin-

gularities of the Goursat functions inside the body are associated with non-zero net external

forces on the it. Also, the force is zero if f(z) and g′(z) are both single-valued functions.
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3.1.5 Torque

The torque on a body centred at zd is defined as the integral (x − xd) ∧ F around its

boundary, where F is the hydrodynamic force on the body at position x − xd. Since the

cross product of two vectors a and b is Im[ab] (where a and b denotes the complex forms

of the corresponding vectors), the torque can be written in complex form as

T = Im

[
2ηi

∮
∂D

(z − zd)
dH

ds
ds

]
, (3.42)

where ∂D denotes the boundary of the body.

3.1.6 Remark

There is an additive degree of freedom in the definition of the Goursat functions, since

redefining these to be

f(z) 	→ f(z) + c, g′(z) 	→ g′(z) + c, (3.43)

or/and:

f(z) 	→ f(z) +
p∞z
4η

, (3.44)

for some constant c and pressure p∞, all the physical quantities remain unchanged. As we

will see in the following chapters, (3.43)-(3.44) are useful to ensure that various conditions

appearing in the analysis of sub-problems are compatible.

3.2 Goursat functions representations for flows of interest

In this section, we show how some flows of interest, namely a pressure-driven flow, shear

flow and stagnation point flow, can be modeled and described using the Goursat functions

f(z) and g(z). These will be useful in the next chapters, as we will be analysing some of

these flows in more complex geometries.
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3.2.1 Pressure-driven flow in a channel

Consider a pressure-driven flow in a channel defined by −∞ < x <∞, 0 < y < h, where

the streamfunction is of the form

ψ = −Uy2
(
h

4
− y

6

)
, (3.45)

where U is a real constant related to the pressure drop between the channel ends and h is

the channel height. A schematic of the configuration is illustrated in Figure 3.1.

x

y

0

h

Figure 3.1: Pressure-driven flow

Using (3.2), the velocity components u, v can be computed:

u =
Uy(y − h)

2
, v = 0. (3.46)

Then, the complex velocity can be written as

u+ iv =
Uy(y − h)

2
= −Uz

2

8
+
Uzz

4
− Uz2

8
+

iUhz

4
− iUhz

4

= −f(z) + zf ′(z) + g′(z),
(3.47)

where we have used that y = (z − z)/2i. From this, we choose:

f(z) =
Uz

8
[z − ih] , g′(z) =

Uz

4

[
ih− z

2

]
, (3.48)
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These are the Goursat functions related to a pressure-driven flow in the channel geometry

−∞ < x <∞, 0 < y < h. Clearly, since this is a pressure-driven flow, we can redefine

f(z) 	→ f(z) +
p∞z
4η

, (3.49)

where p∞ is an additive pressure, without affecting any of the physical quantities (as dis-

cussed previously).

3.2.2 Shear flow

Now, consider a uniform shear flow above a wall (Figure 3.2) of the form

ψ = Uy2, (3.50)

where U is a real constant which determines the strength of the flow.

x

y

0

Figure 3.2: Shear flow

Using (3.2), the velocity components u, v can be computed:

u = 2Uy, v = 0. (3.51)
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The complex velocity can be written as

u+ iv = 2Uy = −iU(z − z),

= −f(z) + zf ′(z) + g′(z),
(3.52)

where we have used that y = (z − z)/2i. From this, we deduce that we must have

f(z) =
iUz

2
, g′(z) = −iUz. (3.53)

3.2.3 Stagnation point flow

Consider a stagnation point flow of the form

ψ = Uxy2, (3.54)

where U is a real constant which determines the strength of the flow. A schematic is shown

in Figure 3.3.

x

y

0

Figure 3.3: Stagnation point flow

Using (3.2), the velocity components u, v can be computed:

u = 2Uxy, v = −Uy2. (3.55)
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The complex velocity can be written as

u+ iv = 2Uxy − iUy2 = − iUz2

4
− iUzz

2
+

3iUz2

4

= −f(z) + zf ′(z) + g′(z),
(3.56)

In this case, we deduce that we must have:

f(z) =
iUz2

4
, g′(z) = −3iUz2

4
. (3.57)

3.3 Fundamental singularities of Stokes flows

In two-dimensional Stokes flows, in order to model various flows, such as bubbles, de-

forming bodies, microswimmers’ dynamics, a distribution of point singularities can be

used to describe the fluid flow. The fundamental singularities in Stokes flows are Stokeslet,

stresslet, source (or sink), rotlet, irrotational dipole, irrotational quadrupole etc. (Blake [8],

Crowdy & Or [23], Pozrikidis [89]). Figure 3.4 shows some of these singularities and their

local streamlines.

Stokeslet (point force) stresslet (force dipole)

source sink rotlet

Figure 3.4: A collection of some Stokes flow singularities and their local streamlines.

In this section, we present how the fundamental singularities in Stokes flows appear as sin-

gularities of functions f(z) and g(z). Although f(z) and g(z) are supposed to be analytic
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in the fluid region, they are allowed to have isolated singularities to model flows of interest.

3.3.1 Stokeslet (point force)

Consider a concentrated force (point force) whose magnitude and angle are represented by

μ ∈ C applied at a given point z0. The resulting flow is called a Stokeslet at z0 and requires

that f(z) and g′(z) have the local expansions

f(z) = μ log(z − z0), g′(z) = −μ log(z − z0)− μz0
z − z0

. (3.58)

Note that the singularities in g′(z) were chosen according to those in f(z) in order to ensure

that the velocity field is both single-valued and logarithmically singular at z0 (Crowdy &

Or [23]).

3.3.2 Force dipole (stresslet)

Now, the form for f(z) and g′(z) given by

f(z) =
μ

z − z0
, g′(z) =

μz0
(z − z0)2

. (3.59)

corresponds to a point stresslet of strength μ ∈ C at z0. In this case, g′(z) was imposed by

the choice of f(z) in order to ensure that the velocity field is singular like 1/|z− z0| (rather

than 1/|z − z0|2).

3.3.3 Force quadrupole

Next, the choice for f(z) and g′(z):

f(z) =
μ

(z − z0)2
, g′(z) =

2μz0
(z − z0)3

(3.60)

corresponds to a force quadrupole of strength μ ∈ C at z0. In this case, g′(z) was imposed

by the choice of f(z) in order to ensure that the velocity field is singular like 1/|z − z0|2.
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3.3.4 Source/sink

Note that g(z) can additionally have its own singularities, independently of those imposed

by the choice of f(z). If the function g(z) has the following form:

g(z) = c log(z − z0) (3.61)

and c ∈ R, we have a source (or sink) at z0.

3.3.5 Rotlet (rotational torque)

If the function g(z) has the following form:

g(z) = c log(z − z0) (3.62)

and c ∈ iR, we have a rotlet at z0, which corresponds to a rotational torque applied at the

point z0.

3.3.6 Source dipole

A simple pole of g(z) is a source dipole singularity.

3.3.7 Source quadrupole

A double pole of g(z) is a source quadrupole and so on.



49

Chapter 4

Stokes flows in the half-plane

4.1 Introduction

In this chapter, we illustrate how the transform method for polygonal domains can be used

to solve boundary value problems in the half-plane. Specifically, we show how to solve the

problem of a point singularity above a no-slip wall and above a wall with mixed boundary

conditions.

The first problem to be considered is that of a point singularity in the upper half-plane satis-

fying a no-slip boundary condition along the real axis. Blake [8] presented, among others,

the solution or the “image system” for various Stokes singularities in the half-plane due to

the presence of the no-slip boundary. Crowdy & Or [23] used a complex variable formula-

tion to solve for point singularities above a no-slip wall and proposed a simple singularity

description for a point swimmer in the same geometry. Their model was able to capture

qualitative agreement with experiments and was later used in various more complicated ge-

ometries (Davis & Crowdy [26, 27]). Motivated by these studies, we show how to rederive

the “image system” solution for a point singularity above a no-slip wall using the transform

method for polygonal domains. In addition, our solution to this problem serves as a model

example for the standard steps to be followed when solving boundary value problems using

the transform method.
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Although there has been a lot of interest in solving Stokes flow problems in bounded by

no-slip boundaries geometries, much more attention has recently been paid to the study of

Stokes flow problems in geometries involving mixed boundary conditions. The analysis

of such problems is of particular interest, since these can be used to model physical prob-

lems arising in the study of superhydrophobic surfaces and microfluidics. We mention the

classical work by Philip [88] who motivated by porous media flows, studied various flow

problems with mixed no-slip and no-shear stress boundary conditions and found analytical

solutions using conformal mapping techniques. Lauga & Stone [72] studied Stokes flow

problems with mixed boundary conditions to model superhydrophobic surfaces and inves-

tigate their frictional properties.

Other problems with mixed boundary conditions are the so called die-swell problems, con-

cerning the emergence of a fluid jet from a confined channel geometry (or a circular tube

for the three-dimensional case) into the atmosphere; these have received a great interest in

the last decades owing to their direct relation with applications such as the polymer pro-

cessing, the manufacture process of optical fibers (Ebendorff-Heidepriem & Monro [36]),

etc.. It is known that, unlike high-Reynolds-number fluid flows, at low-Reynolds number

a jet expands rather than contracts when exiting a no-slip region. Early investigations of

these problems include the work of Richardson [92] within a two-dimensional model and

the studies of Trogdon & Joseph [108, 109] for a three-dimensional round jet. Richardson

[92] considered a two-dimensional pressure-driven fluid flow confined between two par-

allel stick-slip (i.e. no-slip and no-stress) boundaries which transforms to a uniform flow

downstream in response to no-stress boundary conditions and obtained analytical solutions

using the Wiener-Hopf method.

Our aim in later chapters is to present a systematic way to solve Stokes flow problems

in complex geometries involving mixed boundary conditions. Therefore, as a first step

towards understanding how to solve them using the transform method, we consider (as a

second problem to be analyzed in this chapter) the following: the problem domain is the

upper half-plane and the real axis is composed of mixed boundary conditions: no-slip along

the negative real axis and no-shear stress along the positive one. According to Philip [88],
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the no-shear stress boundary condition on a surface is defined “as the requirement that the

shearing stress tangential to the surface and the component of flow velocity normal to the

surface both vanish on it”. Similarly to the no-slip boundary condition, we show that the no-

shear boundary condition can also be expressed in terms of the Goursat functions. Then, we

solve this problem using the transform method for polygonal domains and Riemann-Hilbert

problem techniques along the real axis (Ablowitz & Fokas [1]). Interestingly, this problem

allows us to investigate how these methods can be combined to solve mixed boundary

value problems. Our solution is checked against an exact solution found using conformal

mapping techniques.

4.2 A point stresslet above a no-slip boundary

4.2.1 Problem formulation

Consider the fluid domain to be the upper half-plane −∞ < x < ∞, y > 0 bounded by a

no-slip wall along the real axis. Using complex variables z = x + iy, the upper half-plane

can be expressed as Im[z] > 0 and the real axis as Im[z] = 0 (or z = z). A point stresslet of

strength μ ∈ C is placed at point z0 above the wall, as shown in Figure 4.1. The aim is to

compute the ‘image system’ due to the presence of the boundary and therefore determine

the resulting flow everywhere in the fluid region.

x

y

0

z0

Figure 4.1: Problem configuration: a point stresslet at point z0 above a wall.
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The Goursat functions are represented by

{
f(z) = fs(z) + f̂(z),

g′(z) = g′s(z) + ĝ′(z),
(4.1)

where fs(z), g
′
s(z) are related to the point stresslet of strength μ ∈ C at point z0:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

fs(z) =
μ

z − z0
,

g′s(z) =
μz0

(z − z0)2
,

(4.2)

and f̂(z), ĝ′(z) are unknown analytic functions in the fluid region vanishing in the far-field.

From now on, we shall refer to functions fs(z), g
′
s(z) as the forcing functions and to f̂(z),

ĝ′(z) as the (unknown) correction functions.

The no-slip boundary condition on the real axis (z = z) can be expressed as

− f(z) + zf ′(z) + g′(z) = 0. (4.3)

It is clear that, in general, the forcing functions fs(z), g
′
s(z) will not satisfy the given

boundary conditions, in this case (4.3). But correction functions are included in (4.1);

these will ensure that f(z) and g′(z) satisfy the boundary conditions. In the following

subsections, we show how the correction functions f̂(z), ĝ′(z) can be found after analyzing

(4.3) using either a transform approach or a ‘method of images’ approach.

4.2.2 Transform approach

Function representation: We represent f̂(z) by

f̂(z) =
1

2π

∫ ∞

0

ρ1(k)e
ikzdk, (4.4)



Chapter 4. Stokes flows in the half-plane 53

where the spectral function ρ1(k) is defined by

ρ1(k) =

∫ ∞

−∞
f̂(z)e−ikzdz. (4.5)

Similarly, we can write

ĝ′(z) =
1

2π

∫ ∞

0

ρ̂1(k)e
ikzdk, (4.6)

where the spectral function ρ̂1(k) is defined by

ρ̂1(k) =

∫ ∞

−∞
ĝ′(z)e−ikzdz. (4.7)

ρ1 (ρ̂1)

Figure 4.2: Schematic of the spectral functions along the real axis.

Global relations: Since the fluid domain is the upper half-plane, the global relations are

given by

ρ1(k) = 0, for k < 0,

ρ̂1(k) = 0, for k < 0.
(4.8)

Boundary condition: Substitution of (4.1) into (4.3) gives

− f̂(z) + zf̂ ′(z) + ĝ′(z) = fs(z)− zf ′
s(z)− g′s(z), (4.9)

where the right-hand side of this equation involves known quantities.

Preliminary observations: The Schwarz conjugate function of an analytic function f(z)
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is defined by

f(z) ≡ f(z) (4.10)

and it is an analytic function. Taking the Schwarz conjugate of ρ1(k) we find that

ρ1(k) =

∫ ∞

−∞
f̂(z)eikzdz. (4.11)

If we let k 	→ −k we find

ρ1(−k) =
∫ ∞

−∞
f̂(z)e−ikzdz. (4.12)

In addition, it can be shown that, after integration by parts, we find

∫ ∞

−∞
zf̂ ′(z)e−ikzdz = −∂[kρ1(k)]

∂k
. (4.13)

Expressions (4.12)-(4.13) will be used in the spectral analysis which follows.

Spectral analysis: In this section, we will obtain more information about the spectral func-

tions by making use of the boundary condition.

We multiply (4.9) by e−ikz and integrate along the real axis:

−
∫ ∞

−∞
f̂(z)e−ikzdz +

∫ ∞

−∞
zf̂ ′(z)e−ikzdz +

∫ ∞

−∞
ĝ′(z)e−ikzdz = R(k), (4.14)

where

R(k) ≡
∫ ∞

−∞
[fs(z)− zf ′

s(z)− g′s(z)]e
−ikzdz. (4.15)

Using (4.12)-(4.13), this can be expressed in terms of the spectral functions as

− ρ1(−k)− ∂[kρ1(k)]

∂k
+ ρ̂1(k) = R(k). (4.16)

Using the global relations (4.8), expression (4.16) can be simplified to

ρ1(−k) = −R(k), for k < 0, (4.17)
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or, taking Schwarz conjugate and letting k 	→ −k,

ρ1(k) = −R(−k), for k > 0. (4.18)

Expression R(k) (and therefore R(−k)) can be computed using residue calculus; we find

that

ρ1(k) = 2πiμe−ikz0 + 2πμ(z0 − z0)ke
−ikz0 . (4.19)

This is finally substituted into (4.4) to give

f̂(z) =
1

2π

∫ ∞

0

ρ1(k)e
ikzdk

= iμ

∫ ∞

0

eik(z0−z0)dk + μ(z0 − z0)

∫ ∞

0

keik(z0−z0)dk

= − μ

z − z0
+
μ(z0 − z0)

(z − z0)2
,

(4.20)

where we have used that

∫ ∞

0

eik(z−z0)dk = − 1

i(z − z0)
,

∫ ∞

0

keik(z−z0)dk = − 1

(z − z0)2
. (4.21)

The correction function ĝ′(z) can be computed from (4.9):

ĝ′(z) =
2μz0 − 3μz0
(z − z0)2

+
2μz0(z0 − z0)

(z − z0)3
. (4.22)

Note that although (4.9) is only valid on the real axis, it is also valid off the real axis by

analytic continuation, which means that (4.22) is valid everywhere in the fluid region. Al-

ternatively, the correction function ĝ′(z) can be computed using the spectral relation (4.16)

to find ρ̂1(k) which can be then substituted in (4.6).

Summary: The Goursat functions related to a point stresslet of strength μ ∈ C at point z0
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above a no-slip boundary are therefore given by

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

f(z) = fs(z) + f̂(z) =
μ

z − z0
− μ

z − z0
+
μ(z0 − z0)

(z − z0)2
,

g′(z) = g′s(z) + ĝ′(z) =
μz0

(z − z0)2
+

2μz0 − 3μz0
(z − z0)2

+
2μz0(z0 − z0)

(z − z0)3
.

(4.23)

4.2.3 Method of images

Crowdy & Or [23] presented a complex variable approach to solve for a point singularity

above a no-slip wall; their analysis was akin to the classical method of images. In this

section, we follow their work to retrieve their solution for a point stresslet. For a point

stresslet of strength μ ∈ C at z0, we know that function f(z) must have the form

f(z) =
μ

z − z0
+ locally analytic function. (4.24)

Since the point singularity is near (above) a wall, we expect that image singularities will

appear in the solution. It is natural to try:

f(z) =
μ

z − z0
+

δ

z − z0
+

λ

(z − z0)2
, (4.25)

where we have included a first and second order image singularities at z0 for some constants

δ and λ to be found. Note that higher order image singularities can be added, but as we will

see these are not needed in the solution. Next, solving for g′(z) in the boundary condition

(4.3), we find that

g′(z) = f(z)− zf ′(z), (4.26)

where we have used that, on z = z,

f(z) = f(z). (4.27)
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On use of (4.25) in (4.26), ĝ′(z) is found to be

g′(z) =
μ+ δ

z − z0
+

λ+ μz0
(z − z0)2

+
μ+ δ

z − z0
+
δz0 + 2λ

(z − z0)2
+

2λz0
(z − z0)3

. (4.28)

But we know that g′(z) must have the form

g′(z) =
μz0

(z − z0)2
+ locally analytic function, (4.29)

which implies that we must choose

δ = −μ, λ = μ(z0 − z0) (4.30)

to obtain the required singularity. With this choice, we find

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

f(z) =
μ

z − z0
− μ

z − z0
+
μ(z0 − z0)

(z − z0)2
,

g′(z) =
μz0

(z − z0)2
+

2μz0 − 3μz0
(z − z0)2

+
2μz0(z0 − z0)

(z − z0)3
,

(4.31)

which is identical to (4.23) found using the transform approach.

4.3 A point stresslet above a boundary with mixed boundary condi-

tions

4.3.1 Problem formulation

Consider the fluid region to be again the upper half-plane −∞ < x <∞, y > 0 (Figure

4.3), but now the boundary x ∈ R, y = 0 consists of mixed boundary conditions; it is

no-slip for x < 0 and no-stress for x > 0. A point stresslet of strength μ ∈ C is placed at

point z0 in the fluid region.
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x

y

0no-slip ‘no-stress’

z0

Figure 4.3: Problem configuration: a point stresslet at z0 near a boundary with mixed

boundary conditions.

The Goursat functions are, again, represented by

{
f(z) = fs(z) + f̂(z),

g′(z) = g′s(z) + ĝ′(z),
(4.32)

where fs(z), g
′
s(z) are related to the point stresslet:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

fs(z) =
μ

z − z0
,

g′s(z) =
μz0

(z − z0)2
,

(4.33)

and f̂(z), ĝ′(z) are unknown analytic functions in the fluid region vanishing in the far-field.

For x < 0, y = 0, the no-slip condition can be written as:

− f(z) + zf ′(z) + g′(z) = 0. (4.34)

For x > 0, y = 0, the no-stress condition can be written as:

f(z) + zf ′(z) + g′(z) = 0, (4.35)
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which is equivalent to H(z) = 0; this, in turn, is equivalent to insisting that both tangen-

tial stress and normal velocity components on the boundary are equal to zero (Philip [88]).

We observe that boundary conditions (4.34) and (4.35) look very similar, with only differ-

ence being the sign of the first term. This opposite sign implies that there is an associated

square-root singularity at point z = 0 where the boundary conditions change type. This is

crucial, since as we will see in the following subsections this singularity behaviour at the

origin should be incorporated in the solution scheme.

The aim is again to determine the resulting fluid flow everywhere in the upper half-plane

which has the required local behaviour near z0 and which satisfies the given boundary

conditions. To solve this problem, we decompose it into two sub-problems which can be

solved separately using different techniques and whose superposition produces the problem

of interest described above. This is, of course, possible due to the linearity of Stokes

equations. The reason for decomposing into two sub-problems rather than solving the full

problem directly is because we are then able to reduce, at each sub-problem, the number of

unknown functions to one and this simplifies the analysis.

4.3.2 Problem I

Suppose that functions f(z) and g′(z) are such that

{
f(z) = fs(z) + f̂(z),

g(z) = −zf(z),
(4.36)

where f̂(z) is analytic in the fluid region and decaying in the far-field and

fs(z) =
μ

z − z0
. (4.37)
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Riemann-Hilbert approach (I):

Boundary conditions: For x < 0, we have no-slip condition on the boundary given by

(4.34). Since g′(z) = −zf ′(z)− f(z), on substitution of (4.36) we find that

f̂(z) + f̂(z) = −fs(z)− fs(z), (4.38)

where the terms on the right hand side of (4.38) are known functions.

For x > 0, we have ‘no-stress’ condition given by (4.35). On substitution of (4.36), we find

that

f̂(z)− f̂(z) = −fs(z) + fs(z). (4.39)

Analysis of the boundary conditions: We know that at point z = 0, where the boundary

conditions change from no-slip to no-stress, there is an associated square-root singularity

(Philip [88]). In this section, we will show how to incorporate this singularity structure in

our solution scheme and then obtain the solution. It should be noted that, in general, it is

not always possible to parametrise other singularity structures analytically.

Define the function

X(z) =
1√
z
, (4.40)

which is a multivalued function; without loss of generality we take a branch cut on the

negative real axis. Then

{
X+(z) +X−(z) = 0, for x < 0.

X+(z)−X−(z) = 0, for x > 0.
(4.41)

whereX+(z) andX−(z) are the limiting values ofX(z) as z approaches the real axis from

the upper and lower half-plane respectively.
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Next, we multiply (4.38) and (4.39) by X+(z) to obtain

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

X+(z)f̂(z) +X+(z)f̂(z) = −μX
+(z)

z − z0
− μX+(z)

z − z0
, for x < 0.

X+(z)f̂(z)−X+(z)f̂(z) = −μX
+(z)

z − z0
+
μX+(z)

z − z0
, for x > 0.

(4.42)

Using (4.41), we can write:

X+(z)f̂(z)−X−(z)f̂(z) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−μX
+(z)

z − z0
− μX+(z)

z − z0
, for x < 0.

−μX
+(z)

z − z0
+
μX+(z)

z − z0
, for x > 0.

(4.43)

Let r(z) = X(z)f̂(z), such that

{
r(z) ≡ r+(z) = X+(z)f̂(z), for z in the upper half-plane.

r(z) ≡ r−(z) = X−(z)f̂(z), for z in the lower half-plane.
(4.44)

Expressions (4.43) can be then written as

r+(z)− r−(z) = φ(z), (4.45)

where

φ(z) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−μX
+(z)

z − z0
− μX+(z)

z − z0
, for x < 0.

−μX
+(z)

z − z0
+
μX+(z)

z − z0
, for x > 0.

(4.46)

This is a Riemann-Hilbert problem on the real axis. It can be solved in closed form

(Ablowitz & Fokas [1]) using the fact that f̂(z) is analytic in the upper half-plane (fluid

region) and hence f̂(z) is analytic in the lower half-plane. Using the Cauchy integral for-
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mula, we find

r(z) = X(z)f̂(z) =
1

2πi

∫ 0

−∞

(
− μ√

z′(z′ − z0)
− μ√

z′(z′ − z0)

)
dz′

z′ − z

+
1

2πi

∫ ∞

0

(
− μ√

z′(z′ − z0)
+

μ√
z′(z′ − z0)

)
dz′

z′ − z
.

(4.47)

Using residue calculus, we find that

∫ ∞

−∞

μ√
z′(z′ − z0)(z′ − z)

dz′ =
2πiμ

z − z0

(
1√
z
− 1√

z0

)
,

∫ 0

−∞

μ√
z′(z′ − z0)(z′ − z)

dz′ =
πiμ

z − z0

(
1√
z
− 1√

z0

)
,

∫ ∞

0

μ√
z′(z′ − z0)(z′ − z)

dz′ =
πiμ

z − z0

(
1√
z
+

1√
z0

)
.

(4.48)

Substitution of (4.48) into (4.47) and solving for f̂(z) gives

f̂(z) =
μ

z − z0

( √
z√
z0

− 1

)
+

μ

z − z0

√
z√
z0
. (4.49)

Summary: The solution is given by

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

f(z) =
μ

z − z0

√
z√
z0

+
μ

z − z0

√
z√
z0
,

g(z) = −zf(z),
(4.50)

which is found upon substitution of (4.49) into (4.36).
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Conformal mapping (I):

We now present a different method for solving problem I which is based on conformal

mappings. Note that, as already mentioned, although Stokes equations are not conformally

invariant, analytical progress can be made in some cases. As we show in this subsection, a

closed-form solution can be found in this problem.

Consider the composed conformal mapping (Crowdy [16]):

z = z(ζ) = χ(η(ζ)), (4.51)

where

η(ζ) =
(ζ − α)(ζ − 1/α)

(ζ − α)(ζ − 1/α)
, α = ir, 0 < r < 1, (4.52)

and

χ(η) = e−iβ

(
η − c

η − c

)
, c = eiβ, 0 < β < π. (4.53)

ζ - plane

η - plane

z - plane

α = ir

β

1

η(ζ) χ(η)

Figure 4.4: Conformal mapping from the upper unit ζ-disc (left) to the unit η-disc (centre)

and finally to the fluid region in the upper half-plane (right). The correspondence of the

boundaries is illustrated by the solid and dashed lines.

The conformal mapping (5.47) (Fig. 4.4) takes the parametric ζ-plane and transplants it on

the physical z-plane. More specifically, the first mapping (5.48) transplants the upper unit

semi-disc in a parametric ζ-plane to a unit disc in another parametric η-plane. The point

ζ = α maps to η = 0, the real interval ζ ∈ [−1, 1] maps to the arc of the unit η circle with

arg[η] ∈ [−β, β], and the upper half semicircle |ζ| = 1, Im[ζ] ≥ 0 maps to the arc of the
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unit η circle with arg[η] ∈ [β, 2π − β]. The point η = c = e−iβ for 0 < β < π is the image

of ζ = −1 so that c = e−iβ = η(−1), from which it can be deduced that

r = tan

(
π

4
− β

4

)
. (4.54)

Next, the second mapping given by (4.53) transplants the unit η disc to the fluid region

(z-plane) above the planar boundary. The arc given by arg[η] ∈ [−β, β] is mapped to the

negative real axis while the arc given by arg[η] ∈ [β, 2π−β] is mapped to the positive one.

Next, we define the composed functions

F (ζ) ≡ f(z(ζ)), G(ζ) ≡ g′(z(ζ)). (4.55)

which will be fully determined using the boundary conditions and the expressions for f(z)

and g′(z) associated with a point stresslet.

Mathematical formulation: The no-slip condition on z = x < 0 is given by (4.34) which

upon substitution of g(z) = −zf(z) becomes

f(z) + f(z) = 0. (4.56)

Since the no-slip boundary z = x < 0 corresponds to the real interval ζ ∈ [−1, 1] in the

ζ-plane, (4.56) is equivalent to

F (ζ) = −F (ζ). (4.57)

In a similar way, the ‘no-stress’ condition on z = x > 0 is given by (4.35) which upon

substitution of g(z) = −zf(z) becomes

f(z)− f(z) = 0. (4.58)

Since the ‘no-stress’ boundary z = x > 0 corresponds to the upper half semicircle |ζ| = 1
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in the ζ-plane, (4.58) is equivalent to

F (1/ζ) = F (ζ). (4.59)

Requiring F (ζ) to have the local behaviour of (4.36) and satisfying the conditions (4.57)

and (4.59), we can write down its general form

F (ζ) =
A

ζ − ζ0
− A

ζ − ζ0
− A

1/ζ − ζ0
+

A

1/ζ − ζ0
, (4.60)

where A is a constant to be determined. Using partial fractions and equating coefficients

such that F (ζ) has the local behaviour of (4.36), we find that

A =
μ

z′(ζ0)
. (4.61)

FunctionG(ζ) can be found upon substitution of (4.60) into one of the boundary conditions.

Comparison of the two methods:

The solutions found using the two methods have been compared numerically and were

found to be identical. Note that, although we have closed-form expressions for the Goursat

functions in both cases, the conformal mapping approach gives expressions for these func-

tions in terms of variable ζ . Therefore, we can also check the two methods by expressing

both solutions in terms of ζ using the conformal mapping z(ζ).

4.3.3 Problem II

Now, suppose that

{
f(z) = f̂(z),

g′(z) = g′s(z) + ĝ′(z),
(4.62)
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where f̂(z) and ĝ′(z) are analytic functions which decay in the far-field and

g′s(z) =
μ(z0 − z0)

(z − z0)2
. (4.63)

The choice of these functions was led by the requirement that superposition of the two

problems (I & II) produces (4.32).

Transform approach (II):

Boundary conditions: Again, for x < 0, we have no-slip condition (4.34). On substitution

of (4.62), we find that

− f̂(z) + zf̂ ′(z) + ĝ′(z) = −g′s(z). (4.64)

For x > 0, we have ‘no-stress’ condition on the boundary (4.35). On substitution of (4.62),

we find that

f̂(z) + zf̂ ′(z) + ĝ′(z) = −g′s(z). (4.65)

Function representation: Function f̂(z), which is analytic in the region above the planar

boundary and decaying in the far-field, will be represented by

f̂(z) =
1

2π

∫ ∞

0

ρ1(k)e
ikzdk, (4.66)

with ρ1(k) defined by

ρ1(k) =

∫ ∞

−∞
f̂(z)e−ikzdz = σ1(k) + σ2(k), (4.67)

where

σ1(k) =

∫ 0

−∞
f̂(z)e−ikzdz, σ2(k) =

∫ ∞

0

f̂(z)e−ikzdz. (4.68)

Similarly, we write:

ĝ′(z) =
1

2π

∫ ∞

0

ρ̂1(k)e
ikzdk, (4.69)
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with ρ̂1(k) defined by

ρ̂1(k) =

∫ ∞

−∞
ĝ′(z)e−ikzdz = σ̂1(k) + σ̂2(k), (4.70)

where

σ̂1(k) =

∫ 0

−∞
ĝ′(z)e−ikzdz, σ̂2(k) =

∫ ∞

0

ĝ′(z)e−ikzdz. (4.71)

σ1 (σ̂1) σ2 (σ̂2)

0

Figure 4.5: Schematic of the spectral functions along the real axis.

Global relations: The spectral functions satisfy

ρ1(k) = σ1(k) + σ2(k) = 0, for k < 0,

ρ̂1(k) = σ̂1(k) + σ̂2(k) = 0, for k < 0.
(4.72)

Preliminary observations: Taking the Schwarz conjugate of σ1(k) we find that

σ1(k) =

∫ 0

−∞
f̂(z)eikzdz. (4.73)

If we let k 	→ −k we find

σ1(−k) =
∫ 0

−∞
f̂(z)e−ikzdz. (4.74)

Similarly, taking the Schwarz conjugate of σ2(k) and mapping k → −k, we find

σ2(−k) =
∫ ∞

0

f̂(z)e−ikzdz. (4.75)
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In addition, it can be shown that, after integration by parts,

∫ 0

−∞
zf̂ ′(z)e−ikzdz = −∂[kσ1(k)]

∂k
,

∫ ∞

0

zf̂ ′(z)e−ikzdz = −∂[kσ2(k)]
∂k

. (4.76)

The expressions above will be needed in the spectral analysis which follows.

Spectral analysis: In this section, we will obtain more information about the spectral func-

tions by making use of the boundary conditions.

We multiply the boundary condition (4.64) by e−ikz and integrate along the negative real

axis:

−
∫ 0

−∞
f̂(z)e−ikzdz +

∫ 0

−∞
zf̂ ′(z)e−ikzdz +

∫ 0

−∞
ĝ′(z)e−ikzdz = R1(k), (4.77)

where

R1(k) ≡ −
∫ 0

−∞
g′s(z)e

−ikzdz. (4.78)

The function R1(k) is known. On use of (4.74) and the first expression in (4.76), this can

be written as

− σ1(−k)− ∂[kσ1(k)]

∂k
+ σ̂1(k) = R1(k). (4.79)

Next, we multiply the second boundary condition (4.65) by e−ikz and integrate along the

positive real axis we find

∫ ∞

0

f̂(z)e−ikzdz +

∫ ∞

0

zf̂ ′(z)e−ikzdz +

∫ ∞

0

ĝ′(z)e−ikzdz = R2(k), (4.80)

where

R2(k) ≡ −
∫ ∞

0

g′s(z)e
−ikzdz. (4.81)

Simlarly, on use of (4.75) and the second expression in (4.76), (4.80) can be written as

σ2(−k)− ∂[kσ2(k)]

∂k
+ σ̂2(k) = R2(k). (4.82)
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Analysis of derived relations: Adding (4.79) and (4.82), we obtain

− σ1(−k) + σ2(−k)− ∂[k(σ1(k) + σ2(k))]

∂k
+ σ̂1(k) + σ̂2(k) = S(k), (4.83)

where

S(k) ≡ R1(k) +R2(k) = −
∫ ∞

−∞
g′s(z)e

−ikzdz. (4.84)

Using the global relations (4.72), we obtain

− σ1(−k) + σ2(−k) = S(k), for k < 0. (4.85)

Taking a complex conjugate and letting k 	→ −k, we find

− σ1(k) + σ2(k) = S(−k), for k > 0. (4.86)

Hence we have two equations for σ1(k) and σ2(k) given by (4.72) and (4.86) which are

defined on the negative and positive real axis respectively. Note that, for z = x ∈ R,

|e−ikz| = |e−i(kr+iki)x| = ekix, (4.87)

and therefore σ1(k) is upper analytic (since it is integrated over x < 0), while σ2(k) is

lower analytic (since it is integrated over x > 0).

Riemann-Hilbert problem on the real axis: We have found that

{
σ1(k)− σ2(k) = −S(−k), for k > 0.

σ1(k) + σ2(k) = 0, for k < 0.
(4.88)

Note that σ1(k) is analytic in the upper half-plane, while σ2(k) is analytic in the lower

half-plane. Next, let

X(k) =
√
k (4.89)
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and, without loss of generality, introduce a branch cut on the negative real axis. Using that

{
X+(k) +X−(k) = 0, for k < 0.

X+(k)−X−(k) = 0, for k > 0.
(4.90)

we multiply (4.88) by X+(k) to obtain

X+(k)σ1(k)−X−(k)σ2(k) = φ(k) =

{
−X+(k)S(−k), for k > 0.

0, for k < 0.
(4.91)

This is again a Riemann-Hilbert problem on the real axis, where X+(k)σ1(k) is analytic in

the upper half-plane and X−(k)σ2(k) is analytic in the lower half-plane. Using the Plemelj

formulae (since the sum of σ1(k) and σ2(k) is the unknown) [1], we find that

X+(k)σ1(k) +X−(k)σ2(k) =
1

πi
−
∫ ∞

−∞

φ(k′)
k′ − k

dk′, for k ∈ R. (4.92)

Recall that, for k > 0, X+(k) = X−(k). Therefore dividing by X+(k) gives

ρ1(k) = σ1(k) + σ2(k) =
1

πi

1

X+(k)
−
∫ ∞

−∞

φ(k′)
k′ − k

dk′, for k > 0. (4.93)

Note that S(−k′) can be computed explicitly using residue calculus;

S(−k′) = 2πμk′(z0 − z0)e
−ik′z0 , for k′ > 0. (4.94)

which is finally substituted in (4.93) to give

ρ1(k) =
2iμ(z0 − z0)√

k
−
∫ ∞

0

(k′)
3
2 e−ik′z0

k′ − k
dk′, for k > 0, (4.95)

and hence f̂(z) is found using

f̂(z) =
1

2π

∫ ∞

0

ρ1(k)e
ikzdk. (4.96)

The spectral function ρ̂1(k) can be computed from (4.83) and therefore ĝ′(z) can be com-
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puted.

Conformal mapping (II):

Consider the composed conformal mapping given by (5.47)-(4.53) and define the composed

functions

F (ζ) ≡ f(z(ζ)), G(ζ) = g′(z(ζ)). (4.97)

Mathematical formulation: The no-slip condition on z = x < 0 (which corresponds to

ζ ∈ [−1, 1] in the ζ-plane) implies that

G(ζ) = F (ζ)− z(ζ)
F ′(ζ)
z′(ζ)

, (4.98)

while the no-stress condition on z = x > 0 (which corresponds to the upper half semicircle

|ζ| = 1 in the ζ-plane) gives

G(ζ) = −F (1/ζ)− z(1/ζ)
F ′(ζ)
z′(ζ)

. (4.99)

Analytic continuation off the boundaries and use of the fact that z(ζ) = z(1/ζ) implies the

following condition,

F (ζ) = −F (1/ζ). (4.100)

Requiring G(ζ) to have the local behavior of (4.62), we can write down the general form

of function F (ζ) satisfying (4.100); this is given by

F (ζ) =
A

ζ − ζ0
− A

1/ζ − ζ0
+

B

(ζ − ζ0)2
− B

(1/ζ − ζ0)2
, (4.101)

where A and B are constants to be determined. Using partial fractions and equating coef-

ficients such that G(ζ) has the local behavior of (4.62), we find that

B =
μ(z0 − z0)

α̂
2 , where α̂ = z′(ζ0), (4.102)

A = −β̂B, where β̂ =
z′′(ζ0)
z′(ζ0)

. (4.103)



4.3 A point stresslet above a boundary with mixed boundary conditions 72

Function G(ζ) can be computed using either (4.98) or (4.99).

Comparison of the two approaches:

The solutions found using the two methods have been compared numerically. We have

found that our solution (4.95)-(4.96) given in ‘closed form’ (as infinite integrals) converges

to the exact conformal mapping solution. It should be noted that expression (4.95) involves

computation of a Cauchy principal value integral which means that special care should be

taken when numerically integrating (4.96).

4.3.4 Conformal mapping (full problem)

For completeness, we present a conformal mapping approach to solve the full problem

(4.32)-(4.35). We have also used this solution to check that superposition of problems I

and II produces the solution to the problem of interest.

Consider the composed conformal mapping given by (5.47)-(4.53) and define the composed

functions

F (ζ) ≡ f(z(ζ)), G(ζ) = g′(z(ζ)). (4.104)

The no-slip condition on z = x < 0 implies that, on ζ = ζ ,

0 = −F (ζ) + z(ζ)
F ′(ζ)
z′(ζ)

+G(ζ), (4.105)

while the no-stress condition on z = x > 0 implies that, on |ζ| = 1 (upper semicircle),

0 = F (1/ζ) + z(1/ζ)
F ′(ζ)
z′(ζ)

+G(ζ). (4.106)

Adding (4.105) and (4.106) (analytic continuation off the boundary) and using the fact that

z(ζ) = z(1/ζ), (4.107)
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which can be demonstrated from (5.47)-(4.53), it can be deduced that

F (ζ) = −F (1/ζ). (4.108)

Also (4.105) can be rearranged to

F (ζ) = z(ζ)
F ′(ζ)
z′(ζ)

+G(ζ). (4.109)

Simple observations reveal that both terms on the right-hand side of (4.109) have a second-

order pole at ζ0 (z0 = z(ζ0)) and as a result F (ζ) has a second-order pole at ζ0.

Requiring F (ζ) to have the local behaviour of (4.32)-(4.33) and satisfying the conditions

deduced above, we can write down its general form

F (ζ) =
A

ζ − ζ0
− A

1/ζ − ζ0
+

B

(ζ − ζ0)2
− B

(1/ζ − ζ0)2
+

C

ζ − ζ0
− C

1/ζ − ζ0
, (4.110)

where A, B and C are constants to be determined. The function G(ζ) can be computed

using (4.105)

G(ζ) = F (ζ)− h(ζ)F ′(ζ), where h(ζ) =
z(ζ)

z′(ζ)
(4.111)

Using partial fractions and equating coefficients such that F (ζ) and G(ζ) have the local

behaviour of (4.33), we find that

A =
μ

z′(ζ0)
, (4.112)

B =
μz0

α̂
2 − Ah(ζ0), where α̂ = z′(ζ0), (4.113)

C = −β̂
[
B + Ah(ζ0)

]
− Ah′(ζ0), where β̂ =

z′′(ζ0)
z′(ζ0)

. (4.114)

4.4 Summary

In this chapter, we have shown how to solve boundary value problems in the half-plane

using the transform method for polygonal domains. The two problems considered were
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that of a point singularity above a no-slip wall and above a wall with mixed boundary

conditions. In the first problem, we have shown that the transform method can be used

to retrieve the exact solution which can be found using the classical method of images.

The second problem was analyzed using the transform method and Riemann-Hilbert prob-

lem techniques along the real axis. Notably, we have shown how these two methods can

be combined to solve this mixed boundary value problem. All solutions found using the

transform method were checked against other techniques (method of images, conformal

mapping).
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Chapter 5

Shear flow past a periodic array of

semi-infinite plates

5.1 Introduction

In this chapter, we present our transform approach for polygonal domains for solving two

mixed-type boundary value problems which were previously solved using the Wiener-Hopf

technique. The model problems involve shear flow past a periodic array of semi-infinite flat

plates: if the shear flow is longitudinal, the boundary value problem is for a harmonic field;

if the shear flow is transverse a biharmonic field is relevant. Luchini et al. [78] were the

first to use Wiener-Hopf techniques to solve both problems in 1991 in the physical context

of shear flow over riblets; ten years later Jeong [54], who was motivated by porous media

flows, solved the same boundary value problem also using the Wiener-Hopf method but

with some technical differences in his approach.

The four main steps of our approach to problems of Wiener-Hopf type are as follows:

(a) Domain splitting: for a problem domain involving boundary conditions of mixed

type, find a convenient “splitting” of the problem domain (domain decomposition)

into distinct boundary value sub-problems and solve each using the unified transform

method;
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Figure 5.1: Shear flow past a periodic array of semi-infinite flat plates in the longitudinal

direction: the boundary value problem to be solved is for a harmonic field. This problem

was solved by Luchini et al. [78] and Jeong [54].

Figure 5.2: Shear flow past a periodic array of semi-infinite flat plates in the transverse

direction: the boundary value problem to be solved is for a biharmonic field. This problem

was solved by Luchini et al. [78] and Jeong [54].
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λ

no slip partial slip perfect slip
λ = 0 0 < λ < ∞ λ = ∞

Figure 5.3: Interpretation of the slip length λ: the fictitious distance below the surface

where the no-slip boundary condition would be satisfied.

(b) Boundary conditions: couple the resulting sub-problems by employing the same

spectral parameter for each and by imposing appropriate continuity conditions on

any common edges;

(c) Spectral analysis: analyse the spectral relations arising from the boundary condi-

tions, together with the global relations, to identify special points in the spectral

plane whereby information on a reduced set of unknown spectral functions can be

determined;

(d) Solution scheme and function representation: identify the precise nature of the

singularities occurring at boundary points where the boundary conditions change

type and represent unknown boundary data in terms of specially tailored variables

that incorporate those edge singularities. Solve for a reduced set of spectral functions,

with the rest following by back-substitution into the spectral relations.

5.2 The slip length λ

In both longitudinal and transverse flow problems, there is an associated slip length λ

(which is different for these flow directions). The slip length λ is a characteristic quantity

in problems with mixed boundary conditions in low-Reynolds-number flows (applications
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to microfluidics and superhydrophobic surfaces). For a shear flow, λ can be interpreted

as the fictitious distance below the surface where the no-slip boundary condition would be

satisfied (Lauga, Brenner & Stone [70]), as shown in Figure 5.3.

5.3 Longitudinal flow problem

Consider a steady longitudinal shear flow past an array of semi-infinite walls where the

velocity u in Cartesian coordinates (x, y, z) has the form

u = (0, 0, w(x, y)). (5.1)

The walls are half-planes parallel to the flow direction occupying the region −∞ < x < 0

for y = h/2+nhwhere n ∈ Z and h > 0. Since the geometry is periodic in the y-direction,

it is enough to analyze the problem in the domain −∞ < x < ∞,−h/2 < y < h/2 as

shown in Figure 6.1.

Assuming no pressure gradient drives the flow then velocity w(x, y) satisfies Laplace’s

equation

∇2w(x, y) = 0 (5.2)

in the flow domain. As x→ +∞, the flow tends to a shear flow of the form

(u, v, w) → (0, 0, Ux+ λ), (5.3)

where U is the shear rate and λ has an interpretation as the longitudinal slip length. While

U is externally specifiable the value of λ is determined by the solution. On the other hand,

as x→ −∞,

w(x, y) → 0. (5.4)

Next, we introduce a complex potential function q(z) given by

q(z) = w(x, y) + iχ(x, y), (5.5)
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y

x

h/2

−h/2

Figure 5.4: Schematic of a single period of the longitudinal problem of shear flow past an

array of semi-infinite flat plates (extending indefinitely into y → ±∞). The no-slip walls

of this period window are defined for x < 0 and y = ±h/2. The velocity w(x, y), which is

into the page (direction is denoted by the two circles), tends to a uniform shear as x→ +∞
and vanishes as x→ −∞.

with χ(x, y) being the harmonic conjugate to w(x, y). It is clear that finding the complex

potential and then taking its real part will give us the velocity in the fluid region.

Flow symmetry: The flow is symmetric with respect to y = 0 and this implies that the

complex potential and its Schwarz conjugate satisfy the condition

q(z) = q(z). (5.6)

5.3.1 Domain splitting: left and right semi-strips

Since the configuration consists of mixed boundary conditions in a channel geometry, it is

natural to split the domain into left and right semi-strips separated by the common edge

x = 0, y ∈ [−h/2, h/2]. Figure 5.5 shows a schematic of the domain splitting.

Left semi-strip: In the left semi-strip we define the complex potential to be given by

q(z) = qL(z), (5.7)
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σ2

σ1ρ1

ρ2

σ3ρ3

Figure 5.5: Domain splitting into two semi-strips and related spectral functions. (the com-

mon edge at x = 0 is shown separately for each sub-problem).

where qL(z) is analytic in the left semi-strip and vanishes as x→ −∞.

Following Fokas & Kapaev [43] and Fokas [38], the analytic function qL(z) can be rep-

resented by

qL(z) =
1

2π

[∫ ∞

0

ρ1(k)e
ikzdk +

∫ −∞

0

ρ2(k)e
ikzdk +

∫ −i∞

0

ρ3(k)e
ikzdk

]
, (5.8)

where the spectral functions ρ1(k), ρ2(k) and ρ3(k) are defined by

ρ1(k) =

∫ −ih/2

−∞−ih/2

qL(z)e
−ikzdz,

ρ2(k) =

∫ −∞+ih/2

ih/2

qL(z)e
−ikzdz,

ρ3(k) =

∫ ih/2

−ih/2

qL(z)e
−ikzdz

(5.9)

and are illustrated in Figure 5.5.

The global relation (Fokas & Kapaev [43], Fokas [38]) for the left semi-strip is given by

ρ1(k) + ρ2(k) + ρ3(k) = 0, Imk ≥ 0. (5.10)
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Right semi-strip: In the right semi-strip the complex potential is defined to be

q(z) = qs(z) + qR(z), (5.11)

where qs(z) is the forcing function related to the longitudinal shear flow

qs(z) = Uz + λ, (5.12)

and qR(z) is analytic in the right semi-strip and vanishes as x→ +∞.

Similarly, the analytic function qR(z) can be represented by

qR(z) =
1

2π

[∫ ∞

0

σ1(k)e
ikzdk +

∫ −∞

0

σ2(k)e
ikzdk +

∫ i∞

0

σ3(k)e
ikzdk

]
, (5.13)

where σ1(k), σ2(k) and σ3(k) are defined by

σ1(k) =

∫ ∞−ih/2

−ih/2

qR(z)e
−ikzdz,

σ2(k) =

∫ ih/2

∞+ih/2

qR(z)e
−ikzdz,

σ3(k) =

∫ −ih/2

ih/2

qR(z)e
−ikzdz.

(5.14)

The global relation for the right semi-strip is given by

σ1(k) + σ2(k) + σ3(k) = 0, Imk ≤ 0. (5.15)

5.3.2 Boundary conditions

Left semi-strip: For x < 0, we have no-slip conditions on the two boundaries:

w = Re[q(z)] = 0, on z = z + ih and z = z − ih. (5.16)
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On use of the symmetry condition (5.6), this can be written as

q(z) = −q(z). (5.17)

On substitution of (5.7), we find that, on z = z + ih,

qL(z) = −qL(z + ih). (5.18)

Right semi-strip: For x > 0, the symmetry of the flow implies the condition

∂χ

∂x
= 0, on z = z + ih and z = z − ih. (5.19)

The Cauchy-Riemann equations imply that ∂w/∂y = 0 and, therefore, we can write

Im[q′(z)] = 0, on z = z + ih and z = z − ih. (5.20)

On use of the symmetry condition (5.6), this can be written as

q′(z) = q′(z). (5.21)

On substitution of (5.11) we find that, on z = z + ih,

q′R(z) = q′R(z + ih). (5.22)

5.3.3 Spectral analysis

We now show how to deduce more information about the spectral functions using the

boundary conditions.

Left semi-strip: We multiply the boundary condition (5.18) by e−ikz and integrate along

the lower boundary (x < 0):

∫ −ih/2

−∞−ih/2

qL(z)e
−ikzdz = −

∫ −ih/2

−∞−ih/2

qL(z + ih)e−ikzdz. (5.23)
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This can be written in terms of the spectral functions as

ρ1(k) = e−khρ2(k), (5.24)

or,

ρ2(k) = ekhρ1(k). (5.25)

Substitution of this into the global relation (5.10) gives

[1 + ekh]ρ1(k) + ρ3(k) = 0, Imk ≥ 0. (5.26)

Right semi-strip: We multiply (5.22) by e−ikz and integrate along the lower boundary

(x > 0) to find

∫ ∞−ih/2

−ih/2

q′R(z)e
−ikzdz =

∫ ∞−ih/2

−ih/2

q′R(z + ih)e−ikzdz. (5.27)

On integration by parts,

ikσ1(k) = −ike−khσ2(k)− [qR(+)− qR(−)]e−kh/2, (5.28)

where qR(+) ≡ qR(ih/2) and qR(−) ≡ qR(−ih/2). From this relation we immediately

deduce that we must have

qR(+) = qR(−), (5.29)

otherwise the spectral function σ1(k) will have a singularity at k = 0. Therefore

σ1(k) = −e−khσ2(k). (5.30)

Substitution into the global relation (5.15) gives

[1− ekh]σ1(k) + σ3(k) = 0, Imk ≤ 0. (5.31)

Continuity conditions: Additional relations between the spectral functions arise from the

requirement of continuity of the global solution across the common edge at x = 0.
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The complex potentials are continuous at x = 0 and this implies the condition

ρ3(k) + σ3(k) = R(k), k ∈ C, (5.32)

where

R(k) =

∫ ih/2

−ih/2

qs(z)e
−ikzdz = −Uh

k
cosh

(
kh

2

)
+

[
2iλ

k
+

2U

k2

]
sinh

(
kh

2

)
. (5.33)

In addition, the no-slip condition on the two walls for x < 0 implies that the solution of the

right semi-strip problem must satisfy this condition at points z = ±ih/2, i.e.

Re[q(z)] = Re[qs(z) + qR(z)] = 0. (5.34)

On substitution of (5.11) we find that

λ = −1

2

[
qR(+) + qR(+)

]
. (5.35)

Using the symmetry condition (5.6) and (5.29), this can be written as

λ = −1

2
[qR(+) + qR(−)] = −qR(+). (5.36)

5.3.4 Solution scheme and function representation

From equation (5.26) and the fact that ρ1(k) is analytic in the upper half plane we deduce

that ρ3(k) must vanish at solutions of 1+ekh = 0 in the upper half k-plane, that is, at points

in the set

Σ1 ≡
{
km =

imπ

h

∣∣∣∣m = 2p+ 1, p = 0, 1, 2, . . .

}
. (5.37)

But (5.32) then implies that

σ3(k) = R(k), k ∈ Σ1. (5.38)

Similarly, (5.31) and the fact that σ1(k) is a lower analytic function together imply that
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σ3(k) must satisfy

σ3(k) = 0, k ∈ Σ2, (5.39)

where

Σ2 ≡
{
km =

imπ

h

∣∣∣∣m = −2p, p = 0, 1, 2, . . .

}
. (5.40)

The conditions on the spectral function σ3(k) at discrete points in the k-plane are illustrated

in Figure 5.6 and these clearly have different forms in the upper and lower half spectral

k-plane; these conditions are enough to determine σ3(k). It is precisely this asymmetry

between the conditions on σ3(k) in the upper and lower-half spectral k-plane that reflects

the need, using the traditional Wiener-Hopf approach, to factorize the associated kernel

functions arising there. Our approach obviates the need for any such factorization and the

inherent spectral asymmetry in the problem now manifests itself differently. Once σ3(k)

has been determined the other unknown spectral functions follow by back substitution into

the various spectral relations just derived.

We now show how to find σ3(k) by a highly accurate numerical scheme that properly ac-

counts for known singularities of the solution at the corners of the semi-strip. It is easy to

show by a local analysis that, at a transition point between a boundary condition of Dirich-

let type (left semi-strip) to one of Neumann type (right semi-strip), a harmonic function

exhibits a branch point singularity of order 1/2 (a square root) (Driscoll & Trefethen [35]).

At z = ±ih/2 we know that the problem admits square-root singularities; this suggests

use of a specially tailored basis which will implicitly take them into account. A convenient

option is to define the new complex variable ζ via the relation

z(ζ) =
h

4

(
ζ − 1

ζ

)
, (5.41)
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0

σ3(k) = R(k),

for k = imπ
h , where m = 2p+ 1, p = 0, 1, 2, ...

σ3(k) = 0,

for k = imπ
h , where m = −2p, p = 0, 1, 2, ...

Figure 5.6: Schematic illustrating the conditions on σ3(k) from different sectors of the

complex k-plane.

for ζ on the semi-circle ζ = eiθ, θ ∈ [π/2, 3π/2] and to write

qR(z(ζ)) =
∞∑

n=−∞
anζ

n, (5.42)

to represent qR(z) on the common boundary for some set of coefficients {an} to be found.

This approach is especially suited to this problem because the inverse function ζ = ζ(z)

has precisely the same square root singularities at z = ±ih/2 as required of the solution,

i.e., with h = 2,

ζ = z −
√
z2 + 1, (5.43)

which clearly has square root singularities at the semi-strip corner points z = ±ih/2 = ±i.

It follows that

σ3(k) =
∞∑

n=−∞
an

[
ih

2

∫ 3π/2

π/2

(einθ+
kh
2

sin θ) cos θdθ

]
. (5.44)

The expression in square brackets in (5.44) can be written in terms of Bessel functions
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N slip length λ
8 0.4412712602353

9 0.4412712107070

10 0.4412712021809

11 0.4412712006539

12 0.4412712003716

13 0.4412712003181

14 0.4412712003078

15 0.4412712003058

16 0.4412712003053

Table 5.1: Evaluation of the longitudinal slip length λ for h = 2 and U = 1 for different

values of the truncation parameter N of the sum (5.42).

using well-known integral representations thereof [5]. It is also noted that in other stud-

ies of boundary value problems by the same unified transform method, previous authors

have proposed alternative representations of unknown boundary data in terms of Fourier

[98], Chebyshev [100], and Legendre [46] expansions. We emphasize that our own choice

(5.41) is motivated by the specific demands of the problem, i.e., the known form of the

corner singularities.

The sum (5.42) is truncated to include only terms n = −N, ..., N for suitable N and an

overdetermined linear system for the 2N + 1 unknown coefficients {an} and slip length

λ is solved by a least-squares method. This linear system comprises (5.36) together with

(5.38) and (5.39) evaluated at sufficiently many points in Σ1 and Σ2 closest to the real k

axis (typically we used twice as many equations as the number of unknowns).

5.3.5 Comparison with Jeong [54] and Luchini et al. [78]

On solving the linear system for U = 1, h = 2 we show in Table 5.1 the rapid convergence

to the theoretical value

λ =
log 4

π
= 0.4412712003053 (5.45)

given by Jeong [54]. The fact that adding just a few more coefficients can give an order of

magnitude improvement in accuracy is indicative of a spectrally accurate method.
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5.3.6 Conformal geometric approach

It turns out to be possible to bypass Wiener-Hopf and transform methods altogether and

solve this particular problem by means of a construction based on conformal slit mappings

([13, 15, 17, 16]). The solution is

q(z) =
2U

π
log

[√
1 + eπz + eπz/2

]
, (5.46)

where we have taken h = 2 (note that the square root branch points at z = ±i are clearly

seen in this explicit form of the solution). To confirm that the results in Table 5.1 for λ prop-

erly reflect convergence of the method we have also used (5.46) to check other features of

the transform solution. Jeong [54] also derived (5.46) by summing an infinite series gener-

ated by his Wiener-Hopf method.

Consider the composed conformal mapping given by

z = z(ζ) = P (χ(η(ζ))), (5.47)

where

η(ζ) =
1

2

(
1

ζ
+ ζ

)
=

1 + ζ2

2ζ
,

χ(η) =
2

η − 1
,

P (χ) =
h

2π
logχ =

h

2π
log

[
4ζ

(1− ζ)2

]
.

(5.48)

The conformal mapping (5.47) (Figure 5.7) takes the parametric ζ plane and transplants

it on the physical z plane. More specifically, the first mapping in (5.48) takes the unit ζ

disc to the whole complex plane in the η plane: the unit ζ circle and [−1, 1] of ζ plane

are mapped to the real line in the η plane. A second mapping transplants the unbounded η

plane to the unbounded χ plane, where the slits on real axis of η plane are rearranged on

the real axis of χ plane. Finally, the mapping P (χ) takes the unbounded χ plane to our

fluid region in z plane.
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-1 1 -1 1

-1

ζ plane

η plane

χ plane

ih/2

−ih/2

z plane

Figure 5.7: The sequence of conformal mappings (5.48).

ζ plane

A B0

A

B0 0

A

B

η plane q plane

Figure 5.8: The sequence of conformal mappings (5.49)–(5.50).
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Now define a second sequence of conformal mappings shown in Figure 5.8 by

ζ 	→ η =
√
ζ (5.49)

and

η 	→ q =
Uh

π
log

[
1 + η

1− η

]
=
Uh

π
log

[
(1 +

√
ζ)2

1− ζ

]
. (5.50)

It can be shown that (5.50) satifies the required boundary conditions (5.16) and (5.20). With

z =
h

2π
log

[
4ζ

(1− ζ)2

]
, (5.51)

we can deduce that √
ζ = −e−πz/h +

√
e−2πz/h + 1, (5.52)

where a branch of the inverse is chosen so that ζ = 0 corresponds to z → −∞.

Substitution into (5.50) gives

q(z) =
Uh

π
log

[√
1 + e2πz/h + eπz/h

]
. (5.53)

On setting h = 2 and U = a, we find

q(z) =
2a

π
log

[√
1 + eπz + eπz/2

]
, (5.54)

which is identical to the solution reported by Jeong [54] once we let z 	→ −z + i.

5.4 Transverse flow problem

We now consider the transverse flow problem in which the flow now takes place in the

(x, y)-plane and is independent of the perpendicular direction. The velocity field has the

form

(u, v) =

(
∂ψ

∂y
,−∂ψ

∂x

)
, (5.55)

where ψ is the streamfunction describing shear flow past an array of semi-infinite plates

occupying −∞ < x < 0, y = h/2 + nh for n ∈ Z and h > 0. By the periodicity in the
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y-direction it is enough to consider the domain −∞ < x <∞,−h/2 < y < h/2 shown in

Figure 5.9. We have

(u, v) = (0, Ux+ λ), as x→ ∞, (5.56)

with shear rate U and slip length λ. As x → −∞ the flow is taken to vanish. It is

important to note that, as in the previous problem, the nature of the boundary conditions on

y = ±h/2 changes type at x = 0: for x < 0 the boundary conditions are those of no-slip;

for x > 0 we must impose that p = u = 0 where p is the fluid pressure [54]. It is known

[13, 15, 17, 16] that, at any boundary point zc where the boundary condition changes from

a no-slip condition to a no-shear condition there are square root singularities where f(z)

and g′(z) have the local behaviour

f(z) = f0 + f1/2(z − zc)
1/2 + f1(z − zc) + f3/2(z − zc)

3/2 + . . . ,

g(z) = g0 + g1/2(z − zc)
1/2 + g1(z − zc) + g3/2(z − zc)

3/2 + . . . ,
(5.57)

where {f0, f1/2, . . . , g0, g1/2, . . . } are some coefficients.

The resulting flow is antisymmetric about y = 0; this implies that the Goursat functions

satisfy the following conditions:

{
f(z) = −f(z),
g′(z) = −g′(z).

(5.58)

5.4.1 Domain splitting: left and right semi-strips

Left semi-strip: The Goursat functions are given by

{
f(z) = μ+ fL(z),

g′(z) = μ+ g′L(z),
(5.59)

for some constant μ and where fL(z), g
′
L(z) are analytic in the fluid region and vanish as

x → −∞. The antisymmetry condition together with the fact that fL(z) and g′L(z) vanish
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y

x

h/2

−h/2

Figure 5.9: Schematic of a single period of the transverse shear flow problem past an array

of semi-infinite plates.

at x→ −∞ implies that

μ = −μ. (5.60)

The function fL(z) can be represented by

fL(z) =
1

2π

[∫ ∞

0

ρ1(k)e
ikzdk +

∫ −∞

0

ρ2(k)e
ikzdk +

∫ −i∞

0

ρ3(k)e
ikzdk

]
, (5.61)

where the spectral functions ρ1(k), ρ2(k) and ρ3(k) are defined by

ρ1(k) =

∫ −ih/2

−∞−ih/2

fL(z)e
−ikzdz,

ρ2(k) =

∫ −∞+ih/2

ih/2

fL(z)e
−ikzdz,

ρ3(k) =

∫ ih/2

−ih/2

fL(z)e
−ikzdz.

(5.62)

Similarly, we can write

g′L(z) =
1

2π

[∫ ∞

0

ρ̂1(k)e
ikzdk +

∫ −∞

0

ρ̂2(k)e
ikzdk +

∫ −i∞

0

ρ̂3(k)e
ikzdk

]
, (5.63)
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where

ρ̂1(k) =

∫ −ih/2

−∞−ih/2

g′L(z)e
−ikzdz,

ρ̂2(k) =

∫ −∞+ih/2

ih/2

g′L(z)e
−ikzdz,

ρ̂3(k) =

∫ ih/2

−ih/2

g′L(z)e
−ikzdz.

(5.64)

The global relations for the left semi-strip satisfy

ρ1(k) + ρ2(k) + ρ3(k) = 0, Imk ≥ 0,

ρ̂1(k) + ρ̂2(k) + ρ̂3(k) = 0, Imk ≥ 0.
(5.65)

Right semi-strip: The Goursat functions are given by

{
f(z) = fs(z) + fR(z),

g′(z) = g′s(z) + g′R(z),
(5.66)

where fR(z), g
′
R(z) are analytic in the fluid region and vanishing as x → +∞ while, in

order to satisfy the far-field condition (5.56), we take

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

fs(z) = − iUz

4
,

g′s(z) = − iUz

2
− iλ.

(5.67)

As before, the shear rate U is externally specified but we expect μ and λ to be determined

by the solution.

Representations analogous to (5.61) and (5.63), albeit with different spectral functions as

indicated in Figure 5.10, can be written for fR(z) and g′R(z) with spectral functions σj(k),

σ̂j(k), j = 1, 2, 3 as illustrated in Figure 5.10. The global relations associated with the
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σ2 (σ̂2)

σ1 (σ̂1)ρ1 (ρ̂1)

ρ2 (ρ̂2)

σ3 (σ̂3)ρ3 (ρ̂3)

Figure 5.10: The two semi-strips and assignation of the associated spectral functions. In

this problem each edge has two associated spectral functions.

right semi-strip satisfy

σ1(k) + σ2(k) + σ3(k) = 0, Imk ≤ 0,

σ̂1(k) + σ̂2(k) + σ̂3(k) = 0, Imk ≤ 0.
(5.68)

5.4.2 Boundary conditions

Left semi-strip: For x < 0 we have no-slip conditions on the two boundaries:

− f(z) + zf ′(z) + g′(z) = 0, on z = z + ih and z = z − ih. (5.69)

On substitution of (5.59), we find that, on z = z + ih,

− fL(z) + (z + ih)f ′
L(z) + g′L(z) = 0, (5.70)

which, using (5.58), can be written as

fL(z + ih) + (z + ih)f ′
L(z) + g′L(z) = 0. (5.71)

Similarly, we find that, on z = z − ih,

fL(z − ih) + (z − ih)f ′
L(z) + g′L(z) = 0. (5.72)
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Right semi-strip: For x > 0 we have

p = 0 and u = 0, on z = z + ih and z = z − ih. (5.73)

The first condition in (5.73) can be expressed as

Re[f ′(z)] = 0. (5.74)

On substitution of (5.66), we find

Re[f ′
s(z) + f ′

R(z)] = 0. (5.75)

Using the fact that Re[f ′
s(z)] = 0, we have

Re[f ′
R(z)] = 0. (5.76)

On use of (5.58), we find that, on z = z + ih,

f ′
R(z) = −f ′

R(z) = −f ′
R(z + ih) = f ′

R(z + ih). (5.77)

The second condition in (5.73) can be expressed as

Re[u− iv] = Re[−f(z) + zf ′(z) + g′(z)] = 0. (5.78)

On substitution of (5.66) and use of (5.77), we find that, on z = z + ih,

g′R(z)− g′R(z + ih) = fR(z)− fR(z + ih)− ihf ′
R(z). (5.79)
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5.4.3 Spectral analysis

Preliminary observations: Note that

∫ −ih/2

−∞−ih/2

fL(z + ih)e−ikzdz = e−kh

∫ ih/2

−∞+ih/2

fL(z)e
−ikzdz

= −e−khρ2(k) (5.80)

and

∫ −∞+ih/2

ih/2

fL(z − ih)e−ikzdz = ekh
∫ −∞−ih/2

−ih/2

fL(z)e
−ikzdz

= −ekhρ1(k). (5.81)

In addition, integration by parts gives

∫ −ih/2

−∞−ih/2

(z + ih)f ′
L(z)e

−ikzdz = −∂[kρ1(k)]
∂k

− khρ1(k) +
ih

2
fL(−)e−kh/2 (5.82)

and

∫ −∞+ih/2

ih/2

(z − ih)f ′
L(z)e

−ikzdz = −∂[kρ2(k)]
∂k

+ khρ2(k) +
ih

2
fL(+)ekh/2, (5.83)

where, henceforth, we employ the shorthand notation fL(+) ≡ fL(ih/2) and fL(−) ≡
fL(−ih/2). Expressions (5.82)–(5.83) will appear in the transform of the boundary condi-

tions on the no-slip boundaries.

Left semi-strip: We multiply the boundary condition (5.71) by e−ikz and integrate along

the lower no-slip boundary:

∫ −ih/2

−∞−ih/2

[fL(z + ih)e−ikz + (z + ih)f ′
L(z)e

−ikz + g′L(z)e
−ikz]dz = 0. (5.84)
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On use of (5.80) and (5.82), this can be written as

− e−khρ2(k)− ∂[kρ1(k)]

∂k
− khρ1(k) +

ihfL(−)

2
e−kh/2 + ρ̂1(k) = 0. (5.85)

We multiply (5.72) by e−ikz and integrate over the upper no-slip boundary

∫ −∞+ih/2

ih/2

[fL(z − ih)e−ikz + (z − ih)f ′
L(z)e

−ikz + g′L(z)e
−ikz]dz = 0. (5.86)

On use of (5.81) and (5.83), we find

− ekhρ1(k)− ∂[kρ2(k)]

∂k
+ khρ2(k) +

ihfL(+)

2
ekh/2 + ρ̂2(k) = 0. (5.87)

Addition of (5.85) and (5.87) gives

−ekhρ1(k)− e−khρ2(k)− ∂[k(ρ1(k) + ρ2(k))]

∂k
− khρ1(k) + khρ2(k)

+
ih

2
[fL(+)ekh/2 + fL(−)e−kh/2] + ρ̂1(k) + ρ̂2(k) = 0. (5.88)

On use of the global relations (5.65), this can be written as

2[sinh(kh) + kh]ρ1(k) = (e−kh − kh)ρ3(k) +
∂[kρ3(k)]

∂k
− ρ̂3(k)

+
ih

2
[fL(+)ekh/2 + fL(−)e−kh/2], Imk ≥ 0. (5.89)

Right semi-strip: In the right semi-strip we multiply (5.77) by e−ikz and integrate along

the lower boundary:

∫ ∞−ih/2

−ih/2

f ′
R(z)e

−ikzdz =

∫ ∞−ih/2

−ih/2

f ′
R(z + ih)e−ikzdz. (5.90)

Integration by parts gives

ikσ1(k) = −ike−khσ2(k)− [fR(+)− fR(−)]e−kh/2. (5.91)
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From this relation we deduce that we must have

fR(+) = fR(−) (5.92)

and therefore we have

σ1(k) = −e−khσ2(k). (5.93)

Equation (5.93) relates σ1(k) and σ2(k). On substitution of (5.93) into the global relation

(5.68), we find

[1− ekh]σ1(k) = −σ3(k), Imk ≤ 0. (5.94)

Similarly, we can obtain a relation between the spectral functions σ̂1(k) and σ̂2(k). Substi-

tution of (5.79) into the expression for σ̂1(k) gives

σ̂1(k) + e−khσ̂2(k) = ihfR(−)e−kh/2 + khσ1(k), (5.95)

so that

σ̂2(k) = −σ̂1(k)ekh + khσ1(k)e
kh + ihfR(−)ekh/2. (5.96)

On use of (5.68) and (5.94), we find

σ̂1(k)[1− ekh] = −σ̂3(k) + khekh

1− ekh
σ3(k)− ihfR(−)ekh/2, Imk ≤ 0. (5.97)

Continuity conditions: We must impose continuity of velocity, pressure and vorticity

across the common edge. This is equivalent to insisting that f(z) and g′(z) are continuous

at x = 0. The spectral form of these conditions can be written as

ρ3(k) + σ3(k) = R(k), for k ∈ C,

ρ̂3(k) + σ̂3(k) = R̂(k), for k ∈ C,
(5.98)
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where

R(k) =

∫ ih/2

−ih/2

[fs(z)− μ] e−ikzdz =
iUh

4k
cosh

(
kh

2

)
−
[
2iμ

k
+

iU

2k2

]
sinh

(
kh

2

)
(5.99)

and

R̂(k) =

∫ ih/2

−ih/2

[g′s(z)− μ] e−ikzdz =
iUh

2k
cosh

(
kh

2

)
+

[
2(λ+ iμ)

k
− iU

k2

]
sinh

(
kh

2

)
.

(5.100)

In addition, we insist that functions f(z) for left and right semi-strip problems are compat-

ible at the corner points z = ±ih/2: this can be written as

μ+ fL(+) =
Uh

8
+ fR(+), μ+ fL(−) = −Uh

8
+ fR(−). (5.101)

Finally, the no-slip condition on the two walls for x < 0 implies that the solution of the

right semi-strip problem must satisfy this condition at points z = ±ih/2, i.e.,

− f(z) + zf ′(z) + g′(z) = 0 (5.102)

for f(z) and g′(z) of the right semi-strip problem. On substitution of (5.58) and (5.66), we

find that

fR(−)− ih

2
f ′
R(+) + g′R(+) = iλ. (5.103)

5.4.4 Solution scheme and function representation

Substitution of (5.98) and (5.101) into (5.89) gives

2[sinh(kh) + kh]ρ1(k) = W (k), (5.104)
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where

W (k) =− (e−kh − kh+ 1)σ3(k)− kσ′
3(k) + ihfR(−) cosh

(
kh

2

)
+ σ̂3(k)

+ (e−kh − kh+ 1)R(k) + kR′(k)− R̂(k)− iμh cosh

(
kh

2

)
+

iUh2

8
sinh

(
kh

2

)
.

(5.105)

The right hand side of (5.105) contains only known functions, the two unknown spectral

functions σ3(k), σ̂3(k) and unknown constants μ, λ. But ρ1(k) is upper analytic which

implies that

W (k) = 0, k ∈ Σ3, (5.106)

where Σ3 denotes the set of zeros of sinh(kh)+ kh = 0 in the upper half-plane. This gives

one set of conditions to be satisfied by the unknown σ3(k) and σ̂3(k).

We now take advantage of the fact that σ1(k) and σ̂1(k) are analytic in the lower half-plane

to obtain additional conditions on σ3(k) and σ̂3(k). Equation (5.94) implies

σ3(k) = 0, k ∈ Σ2, (5.107)

where Σ2 is the same set defined in (5.40). Similarly, equation (5.97) gives

− σ̂3(k) +
khekh

1− ekh
σ3(k)− ihfR(−)ekh/2 = 0, k ∈ Σ2, (5.108)

or,

σ̂3(k) + kσ′
3(k) + ihfR(−)ekh/2 = 0, k ∈ Σ2, (5.109)

where we have performed a Taylor expansion of the second term on the left hand side of

(5.108).

Figure 5.11 shows a schematic of the points in the spectral k-plane where information on

σ3(k) and σ̂3(k) is available. Note that the single condition (5.106) holds at the left-right

symmetric set of points Σ3 in the upper half plane while two conditions (5.107) and (5.108)
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k : sinh(kh) + kh = 0

k = imπ
h , where m = −2p, p = 0, 1, 2, ...

0

Figure 5.11: Schematic of the points in the spectral k-plane at which information on the

spectral functions is available.

hold at the points in Σ2. Again, this up-down asymmetric distribution of information in the

spectral plane underlies the need for a kernel decomposition in the usual Wiener-Hopf

method.

The known square-root form of the singularities in the Goursat functions at z = ±ih/2

means that we should again use the variable ζ defined by (5.41) together with the represen-

tations

fR(z(ζ)) =
∞∑

n=−∞
cnζ

n, gR(z(ζ)) =
∞∑

n=−∞
dnζ

n (5.110)

for values of z on the slit [−ih/2, ih/2]. It can be shown that,

σ3(k) =
∞∑

n=−∞
cn

[
ih

2

∫ 3π/2

π/2

(einθ+
kh
2

sin θ) cos θdθ

]
,

σ̂3(k) =
∞∑

n=−∞
dn

[
in

∫ 3π/2

π/2

(einθ+
kh
2

sin θ)dθ

]
.

(5.111)
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By truncating the expansions (5.110) for fR(z) and g′R(z) as before, we formed an overde-

termined linear system for the unknown coefficients {cn}, {dn} and the parameters μ and

λ. It is noted that two conditions associated with equation (5.103) are included in the linear

system; the known square-root singularity of f(z) and g(z) at point z = ih/2 implies that

the second and third terms in the left hand side of (5.103) are unbounded and therefore one

condition (independent of λ) forces cancellation of these singularities while a balancing of

the regular terms gives an equation containing λ. Other equations in the linear system are

found by evaluating (5.106), (5.107) and (5.109) at as many points in the sets Σ2 and Σ3 as

needed. Once coefficients {cn}, {dn} and parameters μ and λ are determined, all spectral

functions follow by back substitution into the various spectral relations.

5.4.5 Comparison with solution of Jeong [54]

Jeong [54] derived the following formula for λ:

λ = i
K ′

+(0)

K+(0)
, (5.112)

where the kernel function K+(ζ) is defined as

K+(ζ) ≡
∞∏
n=1

[
(1 + ζ/ζn)(1− ζ/ζn)

(1 + ζ/(nπi))2

]
(5.113)

and where ζn are the roots of ζ + sinh ζ cosh ζ = 0 with positive real and imaginary parts.

Table 5.2 records the values for λ computed from (5.112) by truncating the infinite product

(5.113) toM terms. Clearly the convergence of the scheme is impracticably slow if high ac-

curacy is required. On the other hand, Table 5.3 shows that only a moderate number of coef-

ficients are required to achieve many digits of accuracy using the new approach expounded

herein. It should be pointed out that the set Σ3 coincides with the eigenvalue set associated

with the so-called Papkovich-Fadle eigenfunctions in a semi-strip. While our formulation

does not involve consideration of these functions we anticipated that finding the solution

to our linear system might be problematic owing to well-known ill-conditioning associated

with these eigenfunctions [107]. However, as seen in Table 5.3, no such difficulties were
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M slip length λ
102 0.1755868669

103 0.1769731985

104 0.1771156720

105 0.1771299844

Table 5.2: Convergence of slip length λ, for h = 2 and U = 1, computed using (5.112)

and by truncating the infinite product (5.113) to M terms. This formula is generated by the

Wiener-Hopf method of [54].

N slip length λ
8 0.1771308458

9 0.1771314127

10 0.1771315397

11 0.1771315677

12 0.1771315739

13 0.1771315753

14 0.1771315757

15 0.1771315758
16 0.1771315758

Table 5.3: Convergence of slip length λ, for h = 2 and U = 1, as computed by truncating

the sums (5.110) in the new transform approach.

encountered using a least-squares approach.

5.5 Summary

We presented a transform approach for solving two mixed-type boundary value problems

previously solved by Luchini et al. [78] and Jeong [54] using Wiener-Hopf techniques.

These involved shear flow past a periodic array of semi-infinite flat plates in longitudinal

(harmonic field) and transverse (biharmonic field) flow directions.

The idea of our transform approach (in both longitudinal and transverse flow problems)

was, firstly, to split the domain into sub-polygons (semi-strips) and solve each sub-problem

separately using the Fokas method for polygonal domains. Then we analyzed the boundary

conditions by performing spectral analysis and imposing continuity conditions across the
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common edge. The analysis of spectral relations provided conditions at distinct points in

the spectral k-plane satisfied by a reduced set of spectral functions (those related to the

edge of finite length). These conditions were sufficient to determine the unknown bound-

ary data. Importantly, we used an appropriate function representation for the unknown

boundary data on the edge of finite length which accounted for the square-root singulari-

ties associated with points where boundary conditions changed type. A linear system was

solved for the unknown coefficients of the series expansion(s) and slip length λ. Once this

was solved, all the spectral functions followed by back-substitution into the spectral rela-

tions.

Our transform approach reduced the spectral problem to simple linear systems that was

solved to high accuracy with strategic choices of basis representations that take account of

any corner singularities inherent in the problem. Our choice of representation of unknown

boundary data in terms of the Joukowski-type conformal slit mapping (5.41) was tailored to

the known form of the corner singularities in our examples; with this choice of basis func-

tions, we have seen that small systems can give spectral convergence. In a similar vein,

Smitheman et al. [100] have introduced a so-called spectral collocation method in which

a spectral analysis of the boundary conditions and use of the global relations gives rise to

a set of equations to determine the unknown boundary data. Their numerical experiments

suggest that the method inherits the order of convergence of the basis used to expand the

unknown functions, namely, exponential for a polynomial basis such as Chebyshev, and

algebraic for a Fourier basis. On the other hand Fornberg & Flyer [46] have presented an

alternative numerical approach based on Legendre expansions of the unknown boundary

data on polygonal boundary segments. When the corner points are free of singularities the

method gives exponential accuracy, but that fails when corner singularities are present. In

the latter case, the authors show that including leading order singular terms of known type

improves accuracy. A crucial distinction between the work of Smitheman et al. [100] and

Fornberg & Flyer [46] is that the former workers derive equations for the unknown spectral

data by inspecting the spectral relations to find special points in the spectral plane where

information on a reduced set of spectral functions can be found (as we have done here); the

latter authors, on the other hand, evaluate the global relations – which relate all unknown
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spectral functions – at a set of points in the spectral plane chosen to provide good numerical

conditioning.

Fokas [38] and Fokas & Spence [45] have discussed general connections between the uni-

fied transform method and Wiener-Hopf techniques. In this chapter, we have shown how

Wiener-Hopf problems for harmonic and biharmonic fields can be solved using the trans-

form method. The advantage of our approach was that we were able to avoid the chal-

lenging part of kernel factorization associated to the Wiener-Hopf method and propose a

systematic method for solving problems with mixed boundary conditions. A collection of

other Stokes flow problems in polygonal domains, including matrix and three-part Wiener-

Hopf problems and a brief discussion of how the transform method for polygonal domains

can be used to solve them will be presented in Chapter 7.
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Chapter 6

Periodic array of point singularities in a

channel

6.1 Introduction

A number of studies have been devoted to finding solutions to Stokes flow problems in

singly/doubly/triply-periodic domains in two/three dimensions, owing to their many ap-

plications in various fields of fluid dynamics. Hasimoto [50] studied problems for the

fundamental singularities of the Stokes equations in two/three -dimensional periodic ar-

rays and proposed various techniques to improve the convergence of the associated Fourier

series [51]. Pozrikidis in his monograph [89] developed boundary integral methods and

singularity methods to solve problems in general geometries, including periodic domains.

Also, Pozrikidis [90] proposed efficient summation methods to solve problems in periodic

structures.

In this chapter, we present our transform approach to solve for a periodic array of point

stresslets in a two-dimensional channel geometry. We then compare our approach to an

alternative method based on conformal mapping (Crowdy [private communication]). The

main purpose is to show that the transform method for polygonal domains can be used to

solve problems with periodic boundary conditions, as well as to illustrate how periodicity

conditions can be utilized to reduce the number of unknown spectral functions and therefore
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provide solutions to these problems. Results obtained are compared to Crowdy’s [private

communication] alternative method.

6.2 Problem formulation

In this section, we solve the problem of a periodic array of point singularities in a channel

geometry using the transform method for polygonal domains. As we see, since the geom-

etry is periodic it is sufficient to analyze the problem in a single period window. In the

previous chapter, we have analyzed problems in semi-strip geometries; we now show how

the transform method can be used to solve problems in bounded rectangular domains.

Consider a two-dimensional channel −∞ < x < ∞, 0 ≤ y ≤ h and a periodic array of

point stresslets (with period l) placed at points z = z0 + nl, n ∈ Z, with 0 < Re[z0] < l.

Figure 6.1 shows a schematic of the configuration. The aim is to determine the resulting

fluid flow due to these point singularities. It should be noted that the following analysis can

be very easily adapted to other Stokes flow singularities, namely Stokeslets, quadrupoles

etc. (presented in Chapter 3); we have chosen to consider point stresslets, since these have

applications in modelling of microswimmers in low-Reynolds-number flows.

0 x

y

h

l

z0 z0 + lz0 − l

Figure 6.1: Schematic of the configuration: A periodic array of point stresslets placed at

points z = z0 + nl, n ∈ Z in a two-dimensional channel −∞ < x <∞, 0 ≤ y ≤ h.

Given the periodic structure of the configuration, it is sufficient to consider a single periodic

window; for simplicity, we will analyze the problem in 0 ≤ x ≤ l, 0 ≤ y ≤ h (Figure 6.2).
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ρ1(ρ̂1)

ρ2(ρ̂2)

ρ3(ρ̂3)

ρ4(ρ̂4)

0 l

l + ihih

Figure 6.2: The period window 0 ≤ x ≤ l, 0 ≤ y ≤ h and associated spectral functions.

6.3 Goursat functions and transform representation

The Goursat functions can be represented by

{
f(z) = fs(z) + f̂(z),

g′(z) = g′s(z) + ĝ′(z),
(6.1)

where fs(z), g
′
s(z) are the forcing functions related to a point stresslet of strength μ ∈ C at

point z0:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

fs(z) =
μ

z − z0
,

g′s(z) =
μz0

(z − z0)2

(6.2)

and f̂(z), ĝ′(z) are the correction functions to be found. As already mentioned, the cor-

rection functions are analytic and single-valued in the fluid region. We note that (6.2) can

alternatively be replaced by trigonometric meromorphic functions which have the same lo-

cal behaviour (Crowdy & Davis [20]).

We can write the following integral representation for f̂(z):

f̂(z) =
1

2π

[∫ ∞

0

ρ1(k)e
ikzdk +

∫ −i∞

0

ρ2(k)e
ikzdk +

∫ −∞

0

ρ3(k)e
ikzdk +

∫ i∞

0

ρ4(k)e
ikzdk

]
,

(6.3)
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where ρj(k), j = 1, 2, 3, 4 are the spectral functions defined by

ρ1(k) =

∫ l

0

f̂(z)e−ikzdz,

ρ2(k) =

∫ l+ih

l

f̂(z)e−ikzdz,

ρ3(k) =

∫ ih

l+ih

f̂(z)e−ikzdz,

ρ4(k) =

∫ 0

ih

f̂(z)e−ikzdz.

(6.4)

Similarly, we can write an integral representation for ĝ′(z):

ĝ′(z) =
1

2π

[∫ ∞

0

ρ̂1(k)e
ikzdk +

∫ −i∞

0

ρ̂2(k)e
ikzdk +

∫ −∞

0

ρ̂3(k)e
ikzdk +

∫ i∞

0

ρ̂4(k)e
ikzdk

]
,

(6.5)

where ρ̂j(k), j = 1, 2, 3, 4 are defined by

ρ̂1(k) =

∫ l

0

ĝ′(z)e−ikzdz,

ρ̂2(k) =

∫ l+ih

l

ĝ′(z)e−ikzdz,

ρ̂3(k) =

∫ ih

l+ih

ĝ′(z)e−ikzdz,

ρ̂4(k) =

∫ 0

ih

ĝ′(z)e−ikzdz.

(6.6)

Spectral functions (A.6) and (6.6) are illustrated in Figure 6.2.

Global relations: Since the period window is a bounded polygon, the global relations are

valid for all k ∈ C and they are given by

ρ1(k) + ρ2(k) + ρ3(k) + ρ4(k) = 0, k ∈ C,

ρ̂1(k) + ρ̂2(k) + ρ̂3(k) + ρ̂4(k) = 0, k ∈ C.
(6.7)
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6.4 Boundary conditions

The channel walls are no-slip boundaries and therefore on substitution of (6.1) into (3.19),

we find that, on the lower boundary z = z,

− f̂(z) + zf̂ ′(z) + ĝ′(z) = fs(z)− zf ′
s(z)− g′s(z). (6.8)

Similarly, on the upper boundary z = z − 2ih,

− f̂(z) + (z − 2ih)f̂ ′(z) + ĝ′(z) = fs(z)− (z − 2ih)f ′
s(z)− g′s(z). (6.9)

The periodicity of the configuration implies that velocity, pressure and vorticity must be l-

periodic. Without loss of generality, we assume that fluid is of unit viscosity which implies

that pressure and vorticity can be expressed in terms of the Goursat functions as

p− iω = 4f ′(z). (6.10)

Therefore, since p and ω are l-periodic, we must require

f ′(z) = f ′(z + l), (6.11)

or, on integration with respect to z,

f(z) + c = f(z + l), (6.12)

where c is a complex constant. Substitution of (6.1) into (6.12) gives

f̂(z)− f̂(z + l) + c = −fs(z) + fs(z + l). (6.13)

In addition, the l-periodicity of velocity can be expressed as

− f(z) + zf ′(z) + g′(z) = −f(z + l) + (z + l)f ′(z + l) + g′(z + l), (6.14)
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which on use of (6.11)-(6.12) simplifies to

− lf ′(z) + g′(z)− g′(z + l) + c = 0. (6.15)

On substitution of (6.1) we obtain

− lf̂ ′(z) + ĝ′(z)− ĝ′(z + l) + c = lf ′
s(z)− g′s(z) + g′s(z + l). (6.16)

Note that periodicity conditions (6.11) and (6.14) are valid in the entire fluid domain. How-

ever, as we will see in the next section, these will only be used to relate the unknown

spectral functions on the vertical ‘boundaries’ of the period window.

6.5 Spectral analysis

The boundary and periodicity conditions allow us to deduce more information about the

spectral functions.

We multiply (6.8) by e−ikz and integrate along the lower boundary:

−
∫ l

0

f̂(z)e−ikzdz +

∫ l

0

zf̂ ′(z)e−ikzdz +

∫ l

0

ĝ′(z)e−ikzdz = R1(k), (6.17)

where

R1(k) ≡
∫ l

0

[fs(z)− zf ′
s(z)− g′s(z)]e

−ikzdz. (6.18)

Expression (6.17) can be written in terms of the spectral functions as

− ρ1(−k)− ∂[kρ1(k)]

∂k
+ ρ̂1(k) + lf̂(l)e−ikl = R1(k). (6.19)
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Similarly, we multiply (6.9) by e−ikz and integrate along the upper boundary:

−
∫ ih

l+ih

f̂(z)e−ikzdz +

∫ ih

l+ih

(z − 2ih)f̂ ′(z)e−ikzdz +

∫ ih

l+ih

ĝ′(z)e−ikzdz = R3(k), (6.20)

where

R3(k) ≡
∫ ih

l+ih

[fs(z)− (z − 2ih)f ′
s(z)− g′s(z)]e

−ikzdz. (6.21)

Expression (6.20) can be written in terms of the spectral functions as

−e2khρ3(−k)−∂[kρ3(k)]
∂k

+2khρ3(k)+ρ̂3(k)−ihf̂(ih)ekh−(l−ih)f̂(l+ih)e−ik(l+ih) = R3(k).

(6.22)

To obtain relations between the spectral functions ρ2(k), ρ4(k) (and ρ̂2(k), ρ̂4(k)), we use

the periodicity conditions (6.13) and (6.16):

We multiply (6.13) by e−ikz and integrate along ‘boundary’ z = iy, 0 ≤ y ≤ h:

∫ 0

ih

f̂(z)e−ikzdz −
∫ 0

ih

f̂(z + l)e−ikzdz + c

∫ 0

ih

e−ikzdz = R2(k), (6.23)

where

R2(k) ≡
∫ 0

ih

[−fs(z) + fs(z + l)]e−ikzdz. (6.24)

This can be written in terms of the spectral functions as

ρ4(k) + eiklρ2(k) + c q(k) = R2(k), (6.25)

with

q(k) ≡
∫ 0

ih

e−ikzdz =

⎧⎨
⎩

i(1− ekh)

k
, if k �= 0,

−ih, if k = 0.
(6.26)
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We multiply (6.16) by e−ikz and integrate, again, along ‘boundary’ z = iy, 0 ≤ y ≤ h:

−l
∫ 0

ih

f̂ ′(z)e−ikzdz +

∫ 0

ih

ĝ′(z)e−ikzdz −
∫ 0

ih

ĝ′(z + l)e−ikzdz + c q(k) = R4(k), (6.27)

where

R4(k) ≡
∫ 0

ih

[lf ′
s(z)− g′s(z) + g′s(z + l)]e−ikzdz. (6.28)

Expression (6.27) can be written in terms of the spectral functions as

− iklρ4(k) + ρ̂4(k) + eiklρ̂2(k)− lf̂(0) + lf̂(ih)ekh + c q(k) = R4(k). (6.29)

6.6 Solution scheme

Addition of (6.19) and (6.22) and use of the global relations (A.16) gives

(e2kh − 1)ρ1(−k)− 2khρ1(k) = W (k), (6.30)

where

W (k) =2kh[ρ2(k) + ρ4(k)]−
[
∂[kρ2(k)]

∂k
+
∂[kρ4(k)]

∂k

]
− e2kh[ρ2(−k) + ρ4(−k)]

− lf̂(l)e−ikl + ihf̂(ih)ekh + (l − ih)f̂(l + ih)e−ik(l+ih) + [ρ̂2(k) + ρ̂4(k)]

+R1(k) +R3(k).

(6.31)

On use of (6.13), (6.25) and (6.29), spectral functions {ρ2(k), ρ̂2(k)} and corner values

f̂(l), f̂(l + ih) can be eliminated from W (k) to give an expression for W (k) in terms of

{ρ4(k), ρ̂4(k)}, corner values f̂(0), f̂(ih), parameter c and known quantities only.

Taking Schwarz conjugate and letting k 	→ −k in (6.30), we find

(e−2kh − 1)ρ1(k) + 2khρ1(−k)ρ1(k) = W (−k). (6.32)
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Elimination of ρ1(−k) from (6.30) and (6.32) gives:

ρ1(k) =
2khW (k)− (e2kh − 1)W (−k)

Δ(k)
, (6.33)

where

Δ(k) ≡ 4[sinh2(kh)− k2h2]. (6.34)

But spectral function ρ1(k) is analytic everywhere in the complex k-plane (since its inte-

grand is over an edge of finite length) which means that its numerator in (6.33) must vanish

at zeros of Δ(k) in the k-plane, i.e. we must require

X(k) ≡ 2khW (k)− (e2kh − 1)W (−k) = 0, (6.35)

for points in the set

Σ1 ≡ {k ∈ C|Δ(k) = 0}. (6.36)

The set of points Σ1 coincides with the eigenvalue set associated with the so-called Papkovich-

Fadle eigenfunctions in a semi-strip (Joseph [64, 65]). Figure 6.3 shows a schematic of the

points in the spectral k-plane where information on ρ4(k) and ρ̂4(k) is available. In addi-

tion, using Taylor expansions, it can be shown that

Δ(k) = 4[sinh2(kh)− k2h2] = O(k4), as k → 0, (6.37)

which implies that X(k) must also satisfy

X(0) = X ′(0) = X ′′(0) = X ′′′(0) = 0. (6.38)

Conditions (6.35) and (6.38) are enough to determine {ρ4(k), ρ̂4(k)}, corner values f̂(0),

f̂(ih) and complex parameter c.
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k: sinh(kh)+kh=0
k: sinh(kh)-kh=0

k-plane

Figure 6.3: Schematic of the points in the spectral k-plane at which information on the

spectral functions is available. These points coincide with the eigenvalue set associated

with the so-called Papkovich-Fadle eigenfunctions in a semi-strip.

6.6.1 Function representations

The correction functions f̂(z) and ĝ′(z) on the ‘boundary’ z = iy, 0 ≤ y ≤ h are repre-

sented using Fourier type series expansions:

f̂(z) =
1

h

∞∑
m=−∞

ame
mπz/h, ĝ(z) =

1

h

∞∑
m=−∞

bme
mπz/h, (6.39)

where {am, bm ∈ C|m ∈ Z} are to be found. We note that these function representations

can be replaced by different basis expansions, such as Chebyshev, but since there are not

any associated singularities at the endpoints of the boundary, a Fourier type basis seems a
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natural choice. Using (6.39), we can write

ρ4(k) =
∞∑

m=−∞
am[T (k,m)], ρ̂4(k) =

∞∑
m=−∞

bm[U(k,m)], (6.40)

where

T (k,m) ≡ 1

h

∫ 0

ih

e(mπ/h−ik)zdz =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1− eimπ+kh

mπ − ikh
, k �= mπ

ih
,

−i, k =
mπ

ih
.

(6.41)

and

U(k,m) =
(mπ
h

)
T (k,m). (6.42)

6.6.2 Formulation of a linear system

The sums in (6.39) are truncated to include only terms m = −M, ...,M for suitable M

and we formulate a linear system for the unknown coefficients {am}, {bm} and parameter

c (and their complex conjugates). The linear system comprises conditions (6.35) evaluated

at as many points in the set Σ1 as needed, together with conditions (6.38). Note that, since

(6.38) must be added in the linear system, this implies that we must analytically compute

expressions forX(k) and its derivatives (up to third order) and then evaluate them at k = 0.

To avoid this (since this involves a considerable amount of algebra), we observe that, if we

insist ∮
|k|=r

X(k)

ks
dk = 0, for s = 1, 2, 3, 4, (6.43)

for sufficiently small r ∈ R so that |k| = r does not enclose any roots of Δ(k) other than

k = 0, then we obtain equivalent conditions to (6.38). The advantage is that (6.43) can be

computed numerically for small r.

Once coefficients {am}, {bm} are found, spectral functions {ρ4(k), ρ̂4(k)} can be com-

puted. The remaining spectral functions can be found by back substitution into various

relations and therefore the correction functions f̂(z) and ĝ′(z) can be computed. The cor-
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rection functions are then substituted into (6.1) to find f(z) and g′(z).

6.7 Comparison to an alternative method

Our solution was compared with a solution obtained using an alternative method based

on conformal mappings (Crowdy [private communication]) and results were the same to

within an accuracy of O(10−8).

6.8 Summary

In this chapter, we analyzed the problem of a periodic array of point stresslets in a two-

dimensional channel geometry using our transform approach for polygonal domains. Our

aim was to show that the transform method for polygonal domains can be used to solve

problems with periodic boundary conditions, as well as to illustrate how periodicity condi-

tions can be utilized to reduce the number of unknown spectral functions.

The idea of our transform approach was again to obtain conditions at some special points in

the spectral k-plane satisfied by a reduced number of spectral functions. These conditions

were found by performing spectral analysis of the boundary and periodicity conditions and

analyzing the obtained relations between spectral functions. By exploiting the analyticity

of one of the spectral functions (ρ1(k)) in the entire k-plane, we obtained conditions on

the spectral functions associated to one of the vertical ‘boundaries’ of the period window.

Using series expansions to represent the unknown boundary data on that edge, we showed

that the set of conditions obtained was sufficient to determine the solution.

Our results were compared to an alternative method based on conformal mappings (Crowdy

[private communication]) and we obtained an agreement to within an accuracy of O(10−8).

The transform approach produces accurate results with only few truncation terms. In addi-

tion, it should be noted that the transform method can be very easily adapted to other point

singularities with minor differences (only functions Rj(k), j = 1, 2, 3, 4 will be different).

Remarkably, our approach can be generalized to finding the solution due to periodic ar-
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ray of Stokeslets in a two-dimensional channel which is known that the evaluation of the

associated Green’s function using classical boundary integral methods has numerical diffi-

culties and slow convergence [50, 51, 89, 90].

Finally, we mention that our transform approach can also be used to solve problems in

doubly-periodic domains where there are two periods l and h in the x and y directions re-

spectively. A schematic of a doubly-periodic array of point singularities is shown in Figure

6.4. Hasimoto [50] studied problems for the fundamental singularities of the Stokes equa-

tions in two and three-dimensional periodic arrays and proposed various techniques to im-

prove the convergence of the associated Fourier series. Pozrikidis [89] presented solutions

in such geometries using boundary integral methods and proposed efficient summation

methods to solve them. It is an interesting application to solve problems in doubly-periodic

domains using the transform method and, furthermore, to investigate the convergence of the

resulting schemes. To illustrate how the transform method can be used to solve problems

in doubly-periodic domains, we present a problem in such geometry in Appendix A. The

problem analyzed concerns the Weierstrass P- function (Abramowitz & Stegun[5]) and the

aim is to find a spectral representation for it. Although it is not a biharmonic boundary value

problem, it is instructive to see how the doubly-periodicity nature of the problem provides

conditions between the spectral functions which can be used to solve the problem. It is

expected that similar ideas can be used to find spectral representations for doubly-periodic

arrays of the fundamental Stokes flow singularities.

z0

z0 + ih

z0 + l

l

h

Figure 6.4: A doubly-periodic array of point singularities placed at points z = z0+nl+imh,

n,m ∈ Z.
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Chapter 7

Applications in polygonal domains

7.1 Introduction

In Chapters 5 and 6, we analyzed problems in semi-strip and rectangular domains (Fig-

ure 7.1). In this chapter, we discuss how Stokes flow problems in more complex channel

geometries can be solved by decomposing the problem domain into semi-strips and rectan-

gles.

semi-strip
rectangle

Figure 7.1: Problems presented in Chapters 5 and 6 were solved by decomposing the prob-

lem domain into semi-strip and rectangular domains.

The ideas to solve these problems are similar to those used to solve Scalar Wiener-Hopf

problems (Chapter 5). For completeness, we present the four main steps again (with an

addition in step (a)):

(a) Domain splitting: for a problem domain involving boundary conditions of mixed

type, find a convenient “splitting” of the problem domain (domain decomposition)
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into distinct boundary value sub-problems. Preferably, sub-domains have the same

type of boundary conditions on at least two opposite sides and any symmetry of the

resulting flow should be taken into consideration when splitting the domain. Once

the problem domain is decomposed into semi-strip and rectangular domains, solve

each sub-problem using the transform method for polygonal domains;

(b) Boundary conditions: couple the resulting sub-problems by employing the same

spectral parameter for each and by imposing appropriate continuity conditions on

any common edges;

(c) Spectral analysis: analyse the spectral relations arising from the boundary condi-

tions, together with the global relations, to identify special points in the spectral

plane whereby information on a reduced set of unknown spectral functions can be

determined;

(d) Solution scheme and function representation: identify the precise nature of the

singularities occurring at boundary points where the boundary conditions change

type and represent unknown boundary data in terms of specially tailored variables

that incorporate those edge singularities. Solve for a reduced set of spectral functions,

with the rest following by back-substitution into the spectral relations.

Following steps (a)-(d), we will discuss how problems in more complex channel geometries

can be solved using the transform method. The problems presented have appeared in the

literature and have been solved using different techniques: scalar (Jeong [55]) and matrix

Wiener-Hopf (Abrahams, Davis & Llewellyn Smith [4]) problems, three-part Wiener-Hopf

problem (Setchi et al. [97]) and biorthogonal expansions of Papkovich-Fadle eigenfunc-

tions (Kim & Chung [67]). Our aim is to illustrate that the transform method for polygonal

domains can be used to solve these problems following the main steps presented above. Al-

though analytical solutions using our transform approach are not presented in detail in this

chapter, we outline the key ideas to solve them; similar ideas have already been presented

to solve problems in Chapters 5-6.
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7.2 Flow in a ‘partitioned’ channel (or symmetric channel divider)

Jeong [55] considered a Stokes flow in a ‘partitioned’ channel composed of two infinite

walls and a semi-infinite one located midway between the infinite walls. The flow was

allowed to ‘turn around’ the semi-infinite wall driven by a pressure gradient. A schematic

is shown in Figure 7.2. This author obtained an exact solution for the streamfunction using

the Wiener-Hopf technique (scalar case) and, then, investigated among others the formation

of Moffatt eddies in the channel for different flux rates. Owing to the linearity of Stokes

equations, general flows were solved by superposing symmetric and antisymmetric flows.

x

h

−h

y

0

Figure 7.2: Stokes flow in a symmetric channel divider driven by pressure gradient. This

problem was solved by Jeong [55] using the Wiener-Hopf technique (scalar case).

Assuming (without loss of generality) that the flow is either symmetric or antisymmetric,

if we wish to solve this problem using our transform approach, it is sufficient to analyze

the problem in domains I and II as illustrated in Figure 7.3. The resulting flow in domain

I is either symmetric or antisymmetric and this should be used to eliminate the complex

conjugate expressions of the Goursat functions appearing in the boundary conditions (this

idea was used in Chapter 5). In domain II , the flow does not possess any symmetry.

The spectral analysis in each sub-domain will give conditions on the spectral functions
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associated to the vertical edges of semi-strips I and II at points in the spectral k-plane:

ΣI = {k ∈ C
+| sinh(2kh)± 2kh = 0},

ΣII = {k ∈ C
−| sinh2(kh)− k2h2 = 0},

(7.1)

where C
+ and C

− denote the upper and lower half-planes respectively and the ± in ΣI is

found according to the symmetry of the flow. Using the symmety and continuity conditions,

all conditions can be written in terms of the spectral functions associated to the vertical

edge of semi-strip II . The next step is to use appropriate basis expansions to represent the

unknown boundary data on that edge taking into account that now the Goursat functions

f(z) and g′(z) have square-roots singularities only at one end, instead of at both ends

(Chapter 5). Solving for these expansions, all other spectral functions will follow from

back substitution into relations found in the spectral analysis part.

Domain I

Domain II

Figure 7.3: Domain decomposition for Jeong’s [55] problem.

7.3 Flow in an asymmetric channel divider

Abrahams, Davis & Llewellyn Smith [4] considered a flow in the asymmetric channel

divider shown in Figure 7.4. The flow was driven by the motion of the upper and lower

boundaries with prescribed velocities U1 and U2 respectively. These authors solved this

problem using the Wiener-Hopf technique (matrix case) and use of Padé approximants.
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x

h1

−h2

U1

U2

y

0

Figure 7.4: Stokes flow in an asymmetric channel divider driven by the motion of the upper

and lower boundaries with prescribed velocities U1 and U2 respectively. This problem was

solved by Abrahams, Davis & Llewellyn Smith [4].

Our transform approach can be used to solve this problem; in order to do so, the fluid

domain should be decomposed into the three sub-domains illustrated in Figure 7.5 and

follow similar steps to obtain conditions on the spectral functions associated to the vertical

edges at spectral k-points:

ΣI = {k ∈ C
+| sinh2(kh1)− k2h21 = 0},

ΣII = {k ∈ C
+| sinh2(kh2)− k2h22 = 0},

ΣIII = {k ∈ C
−| sinh2(k(h1 + h2))− k2(h1 + h2)

2 = 0}.
(7.2)

Using the continuity conditions, the conditions on the spectral functions at k-points in the

sets (7.2) can be written in terms of spectral functions associated to the vertical edges of

semi-strips I and II only. Again, the unknown data can be presented by suitable basis

expansions taking account of the singularity at point z = 0. For this problem, two sets of

representations are needed: for the vertical edges of semi-strips I and II . It is therefore

necessary to add compatibility conditions at points where they are both valid, in this case

at point z = 0. Solving for these expansions, all other spectral functions will follow from

back substitution into relations found in the spectral analysis part.
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Domain I

Domain II

Domain III

Figure 7.5: Domain decomposition for Abrahams, Davis & Llewellyn Smith’s [4] problem.

7.4 Flow through a shunt between two channels

Setchi et al. [97] considered Stokes flows through a shunt between two channel for different

inlet and outlet fluxes. They obtained analytical solution for the streamfunction by match-

ing biorthogonal expansions of Papkovich-Fadle eigenfunctions in rectangular subregions.

As they state, although the geometry suggested the use of Wiener-Hopf techniques similar

to problems in the previous subsections, these authors preferred to analyze the problem us-

ing the method of Papkovich-Fadle eigenfunctions, since the additional boundaries would

have complicated the analysis.

y

x

h

−h

−l l

0

Figure 7.6: Stokes flow through a shunt between two channels; the flow is driven by pres-

sure gradient. This problem was solved by Setchi et al. [97] for different inlet and outlet

fluxes.
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Our transform approach can again be used to solve this problem. If the resulting flow

does not, in general, possess any symmetry, the problem domain should be decomposed

into the five sub-domains illustrated in Figure 7.7 and steps (a)-(d) should be followed. If

the problem admits symmetries with respect to, for example, the horizontal and vertical

centrelines, then it is sufficient to analyze the problem in domains I and II as shown in

Figure 7.7. The difference of this problem from previously presented problems is that

the domains for the two sub-problems are a rectangle and a semi-strip: a bounded and an

unbounded polygon respectively. But the main steps are the same and spectral analysis will

give conditions on the spectral functions of the vertical edges at k-points in the sets:

ΣI = {k ∈ C| sinh2(2kh)− (2kh)2 = 0},
ΣII = {k ∈ C

−| sinh2(kh)− k2h2 = 0}.
(7.3)

Domain I

Domain II

Figure 7.7: Domain decomposition for the one of the problems considered by Setchi et al.
[97]: For a flow admitting symmetries with respect to x = 0 and y = 0, it is sufficient to

analyze the problem in the two domains only.

7.5 Flow past a plate located midway in a channel

The final problem presented in this chapter was solved by Kim & Chung [67]. It concerns

a pressure-driven flow in a channel with a plate located midway. These authors employed

Wiener-Hopf techniques and specifically they analyzed this problem as a three-part Wiener-

Hopf problem.
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y

x

h

−h

0 l

Figure 7.8: Pressure-driven flow past a plate located midway in a channel; this problem

was solved by Kim & Chung [67] using a three-part Wiener-Hopf method.

The domain decomposition for solving this problem using our transform approach is shown

in Figure 7.9 and obviously has many similarities with the problem presented in the previ-

ous subsection. Following the main steps again, we can solve this problem.

Domain I

II

Figure 7.9: Domain decomposition for Kim & Chung’s [67] problem.

Interestingly, the fluid domain in this case is a multiply-connected one and, as discussed

above, the problem can be solved by splitting the domain into sub-regions. We note

that our transform approach can be used to solve problems in more general multiply-

connected polygonal domains with main idea being the decomposition of the exterior of

any slits/rectangular ‘holes’ into a collection of convex polygons which can be analyzed

using the unified transform method. This idea was introduced by Charalambopoulos, Das-

sios & Fokas [12] for solving Laplace’s equation in the exterior of an equilateral triangle.
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7.6 Summary

In this chapter, we presented a brief discussion on how to solve problems in more complex

channel geometries using our transform approach by showing its implementation to a num-

ber of problems. The example problems presented in this chapter were previously solved

using different techniques: scalar and matrix Wiener-Hopf problems, three-part Wiener-

Hopf problem and biorthogonal expansions of Papkovich-Fadle eigenfunctions. We illus-

trated how these can be solved following the four basic steps (a)-(d). Our main purpose

was to show that our transform approach can be adopted to analyze problems in complex

simply- and multiply-connected polygonal domains.
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Chapter 8

Stagnation point flow past a semicircular

ridge

8.1 Introduction

In previous chapters, we have solved different problems in domains with boundaries con-

sisting of straight line edges using the transform method for polygonal domains. In this

chapter, we present a transform approach for a Stokes flow problem in a simply connected

circular domain - whose boundary consists of a combination of straight and circular edges.

We have chosen to study a problem previously solved by Davis & O’Neill [30]. Davis

& O’Neill [30] considered a stagnation point flow past a ridge or trough with the aim of

understanding the separation of the flow near the point of intersection. They investigated

the formation of Moffatt eddies [85] which are formed if the angle of intersection between

the planar and ridge boundaries is less than 146◦, as well as the separation of the flow for

different angles of intersection. To solve this problem, these authors employed bipolar co-

ordinates to map the fluid domain to a channel geometry and then used Fourier transform

techniques.

In this chapter, we will first present Davis & O’Neill’s [30] problem followed by a brief

overview of their solution. We will then show how to solve the problem using our transform
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approach for circular domains. The fluid domain in this case can be thought as the inter-

section of the upper half-plane and the exterior of unit disc and therefore ideas presented

in Chapter 2 will be employed. Next, owing to the simplicity of the configuration, we will

show how this problem can also be solved using ideas from conformal mapping theory and

the transform method for polygonal domains. The idea in this second approach is to map

the fluid domain to a semi-strip and then analyse the problem in this new geometry. We will

then show a comparison of our results to Davis & O’Neill’s solution [30]. Finally, we will

present a variety of problems in similar geometries which are amenable to our transform

approach for circular domains.

8.2 Problem formulation

Consider a stagnation point flow past a plane with a cylindrical ridge as shown in Figure

8.1. Davis & O’Neill [30] analysed this problem for a general angle of intersection, but we

hereby assume a cylinder of unit radius which intersects the plane boundary at a corner of

angle π/2.

x

y

−1 10

Figure 8.1: Schematic of the configuration. A stagnation point flow past a plane with a

cylindrical ridge with angle of intersection between the two boundaries equal to π/2.

In the far-field, the stagnation point flow has associated velocity profile

(u, v) = (2axy,−ay2), (8.1)
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where a ∈ R is a constant which determines the strength of the flow (Davis & O’Neill [30]

chose a = 1/2). In the absence of the semicircular boundary, the flow is a stagnation point

flow described by (8.1); however, the presence of the no-slip semicircular boundary alters

the resulting fluid flow.

8.3 Davis & O’Neill’s [30] solution

Davis & O’Neill [30] introduced bipolar coordinates ξ and η which are defined by

x =
c sinh ξ

(cosh ξ − cos η)
, y =

c sin η

(cosh ξ − cos η)
. (8.2)

In terms of these coordinates, the plane and cylindrical parts of the boundary are given by

η = 0 and η = η0 respectively, the region of flow being defined by 0 < η < η0 ≤ 2π,

−∞ < ξ < ∞. Parameter η0 is related to the angle of intersection between the plane and

cylindrical boundaries and c is related to the points of intersection x = ±c of the circular

arc with the planar boundary. Using Fourier transform techniques to analyse the boundary

conditions, they found that the streamfunction (for ξ > 0 since the streamfunction is an

odd function of ξ) is given by

ψ =
πc3

(cosh ξ − cos η)
×

Re
[
k1

∞∑
n=1

tn[sin(tnη) sin(η0 − η)− sin(η) sin(tn(η0 − η))]

(η0 cos(tnη0 − sin(η0))
e−tnξ

− k2

∞∑
n=1

Tn[sin(Tnη) sin(η0 − η) + sin(η) sin(Tn(η0 − η))]

(η0 cos(Tnη0 + sin(η0))
e−Tnξ

]
, for ξ > 0,

(8.3)
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where tn and Tn are respectively the roots of equations

sin(tη0) = t sin(η0), (8.4)

sin(tη0) = −t sin(η0), (8.5)

in the first quadrant of the complex t-plane. The constants ki (i = 1, 2) take the values

1/2 or 1 according (8.4) or (8.5) has real or complex roots. Using expression (8.3) for the

streamfunction, all physical quantities of interest (velocity, pressure, vorticity etc.) can be

computed. Expression (8.3) will be used later to compare/validate our results to Davis &

O’Neill’s solution [30].

8.4 Approach I: Transform method for circular domains

In this section, we show how the transform method for circular domains presented in Chap-

ter 2 can be used to solve this problem.

8.4.1 Goursat functions and transform representation

The Goursat functions can be represented by

{
f(z) = fs(z) + f̂(z),

g′(z) = g′s(z) + ĝ′(z),
(8.6)

where fs(z), g
′
s(z) are the forcing functions related to the stagnation point flow and f̂(z),

ĝ′(z) are the correction functions to be found. It can be shown (Chapter 3) that the following

forcing functions

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

fs(z) =
iaz2

4
,

g′s(z) = −3iaz2

4

(8.7)
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satisfy the far-field conditions (8.1). In addition, the resulting flow admits symmetry with

respect to x = 0 which implies that the Goursat functions satisfy the following conditions

{
f(z) = −f(−z),
g′(z) = −g′(−z).

(8.8)

We will use the transform method for circular domains and therefore we firstly write inte-

gral representations for the unknown correction functions f̂(z) and ĝ′(z) in terms of spec-

tral functions. The fluid domain can be thought as the intersection of the upper half-plane

and the exterior of the unit disc centred at the origin. Therefore, we can write the following

integral representation for the analytic correction function f̂(z) (and similarly for ĝ′(z)):

f̂(z) =
1

2π

∫
L
ρ11(k)e

ikzdk

− 1

2πi

[∫
L1

ρ22(k)

1− e2πik
1

zk+1
dk +

∫
L2

ρ22(k)
1

zk+1
dk +

∫
L3

ρ22(k)e
2πik

1− e2πik
1

zk+1
dk

]
,

(8.9)

where L = [0,∞) is the fundamental contour for straight line edges and {Lj|j = 1, 2, 3}
are the fundamental contours for circular edges. The two spectral functions are given by

ρ11(k) =

∫
L

f̂(z)e−ikzdz, ρ22(k) = −
∫
C

f̂(z)zkdz. (8.10)

with L = [1,∞) ∪ (−∞,−1] and C = {z : |z| = 1, Im[z] > 0} (contour C is transversed

counterclockwise). The other elements of the spectral matrix are

ρ12(k) = −
∫
C

f̂(z)e−ikzdz, ρ21(k) =

∫
L

f̂(z)zkdz. (8.11)

The global relations are

ρ11(k) + ρ12(k) = 0, k < 0 (8.12)

and

ρ21(k) + ρ22(k) = 0, k ∈ −N. (8.13)

The global relations (8.12)-(8.13) are equivalent statements of analyticity of f̂(z) in the
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fluid domain.

Similar expressions to (8.9)-(8.13) can be written for the analytic correction function ĝ′(z)

(and ρ̂mn(k), m,n = 1, 2). The analytic function ĝ′(z) can be represented by

ĝ′(z) =
1

2π

∫
L
ρ̂11(k)e

ikzdk

− 1

2πi

[∫
L1

ρ̂22(k)

1− e2πik
1

zk+1
dk +

∫
L2

ρ̂22(k)
1

zk+1
dk +

∫
L3

ρ̂22(k)e
2πik

1− e2πik
1

zk+1
dk

]
,

(8.14)

with elements of the spectral matrix given by

ρ̂11(k) =

∫
L

ĝ′(z)e−ikzdz, ρ̂12(k) = −
∫
C

ĝ′(z)e−ikzdz,

ρ̂21(k) =

∫
L

ĝ′(z)zkdz, ρ̂22(k) = −
∫
C

ĝ′(z)zkdz.
(8.15)

The global relations are

ρ̂11(k) + ρ̂12(k) = 0, k < 0 (8.16)

and

ρ̂21(k) + ρ̂22(k) = 0, k ∈ −N. (8.17)

8.4.2 Boundary conditions

The no-slip boundary condition on boundary L = [1,∞) ∪ (−∞,−1], where z = z is

given by (3.19). On substitution of (8.6) becomes

− f̂(z) + zf̂ ′(z) + ĝ′(z) = fs(z)− zf ′
s(z)− g′s(z) = 0. (8.18)

Note that the forcing functions for a stagnation point flow satisfy the no-slip boundary con-

dition on z = z and therefore the right-hand side is equal to zero.

Similarly, on the semicircular boundary C = {z : |z| = 1, Im[z] > 0}, where z = 1/z,
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(3.19) can be expressed as

− f(z) + (1/z)f ′(z) + g′(z) = 0. (8.19)

Substitution of (8.6) into (8.19) gives

− f̂(z) + (1/z)f̂ ′(z) + ĝ′(z) = fs(z)− (1/z)f ′
s(z)− g′s(z). (8.20)

8.4.3 Spectral analysis

We multiply (8.18) by zk and integrate along L:

−
∫
L

f̂(z)zkdz +

∫
L

zf̂ ′(z)zkdz +
∫
L

ĝ′(z)zkdz = R21(k), (8.21)

where

R21(k) ≡
∫
L

[fs(z)− zf ′
s(z)− g′s(z)]z

kdz = 0. (8.22)

This can be written in terms of the spectral functions as

− ρ21(k)− (k + 1)ρ21(k) + ρ̂21(k) + (−1)k+1f̂(−1)− f̂(1) = R21(k) = 0. (8.23)

Next, we multiply (8.20) by zk and integrate along C (orientation is counterclockwise):

∫
C

f̂(z)zkdz −
∫
C

(1/z)f̂ ′(z)zkdz −
∫
C

ĝ′(z)zkdz = R22(k), (8.24)

where

R22(k) ≡ −
∫
C

[fs(z)− (1/z)f ′
s(z)− g′s(z)]z

kdz

= − 2iak(1 + eiπk)

(k + 3)(k2 − 1)
, k �= ±1, 3,

(8.25)

and

R22(−3) =
3aπ

4
, R22(−1) = −aπ

2
, R22(1) = −aπ

4
. (8.26)

Expression R22(k) was computed using residue calculus. Expression (8.24) can be written
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in terms of the spectral functions as

ρ22(−k − 2)− (k − 1)ρ22(k − 2) + ρ̂22(k) + f̂(1)− (−1)k−1f̂(−1) = R22(k). (8.27)

At this stage, we pause to make a remark. In this section, we have transformed our bound-

ary conditions by performing a Mellin-type spectral analysis (our boundary conditions were

multiplied by zk) and integrating along the boundaries to obtain conditions between the

spectral functions. A possible question would be why not perform a Fourier-type spectral

analysis to analyse the boundary conditions. The answer is firstly that for simply connected

circular domains performing a Fourier or a Mellin -type analysis is equivalent. Secondly,

the reason for performing a Mellin-type analysis in this problem was only for convenience;

for this particular geometry, as we will see in the next subsection, this gives relations be-

tween spectral functions which can be simplified using the global relation (8.13).

8.4.4 Solution scheme

From the spectral analysis we have found two expressions for the unknown spectral func-

tions given by

−ρ21(k)− (k + 1)ρ21(k) + ρ̂21(k) + (−1)k+1f̂(−1)− f̂(1) = R21(k), (8.28)

ρ22(−k − 2)− (k − 1)ρ22(k − 2) + ρ̂22(k) + f̂(1)− (−1)k−1f̂(−1) = R22(k), (8.29)

to be analysed together with the global relations

ρ21(k) + ρ22(k) = 0, k ∈ −N,

ρ̂21(k) + ρ̂22(k) = 0, k ∈ −N.
(8.30)

Addition of (8.28)-(8.29) and use of the global relations (8.30) to eliminate the spectral

functions ρ21(k), ρ̂21(k), ρ̂22(k) gives

(k+1)ρ22(k)+ρ22(k)− (k−1)ρ22(k−2)+ρ22(−k−2) = R(k), for k ∈ −N, (8.31)
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where

R(k) ≡ R21(k) +R22(k). (8.32)

As we will see next, this (infinite) set of conditions is sufficient to determine the unknown

spectral function ρ22(k).

Function representation

Conditions (8.31) contain only the spectral function ρ22(k) which is related to the semi-

circular boundary C. The next step is to represent f̂(z) on this boundary using a suitable

basis expansion. Note that, as already mentioned, Moffatt eddies will be former near the

points of intersection between the planar and semicircular boundaries and therefore our

basis expansion should be able to capture this complex behaviour. We propose the use of

a Chebyshev basis to represent the unknown boundary data along the semicircular edge C;

this boundary can be parametrized by

z(s) = eiπ(s+1)/2, for s ∈ [−1, 1], (8.33)

with z(−1) = 1 and z(1) = −1. We write

f̂(z(s)) =
∞∑

m=0

amTm(s), (8.34)

for some set of coefficients {am} to be found and where Tm(s) = cos(macoss), s ∈ [−1, 1].

Substitution of (8.34) into the expression for ρ22(k) gives

ρ22(k) =
∞∑

m=0

amT (k,m), (8.35)

where

T (k,m) = − iπ

2

∫ 1

−1

Tm(s)e
iπ(k+1)(s+1)/2ds. (8.36)

The sum in (8.35) is truncated to include only terms m = 0, ...,M . Substitution of (8.35)
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into (8.31) gives

M∑
m=0

am

[
(k + 1)T (k,m)− (k − 1)T (k − 2,m)

]
+

M∑
m=0

am

[
T (k,m) + T (−k − 2,m)

]

= R(k), for k ∈ −N.

(8.37)

The unknown coefficients {a0, ..., aM} (and their complex conjugates) are computed by

solving an overdetermined linear system for suitable number of k ∈ −N. Once the coeffi-

cients {am} are found, ρ22(k) can be computed using (8.35).

Finding the other spectral functions

As discussed previously, once the coefficients {am} are found, ρ22(k) can be computed us-

ing (8.35). Then, expansion (8.34) is substituted in (8.20) to give an expression for ĝ′(z) on

the semicircular boundary. Substitution of this expression into ρ̂22(k) will give us this spec-

tral function. But the transform representations for f̂(z) and ĝ′(z) given by (8.9) and (8.14)

respectively also contain the spectral functions ρ11(k) and ρ̂11(k) (integrated on k > 0). To

find these, we proceed as follows:

We multiply (8.18) by e−ikz and integrate along L:

−
∫
L

f̂(z)e−ikzdz +

∫
L

zf̂ ′(z)e−ikzdz +

∫
L

ĝ′(z)e−ikzdz = 0. (8.38)

The right-hand side is equal to zero, since the forcing functions fs(z) and g′s(z) satisfy

the no-slip boundary condition on z = z. This expression can be written in terms of the

spectral functions as

− ρ11(−k)− ∂[kρ11(k)]

∂k
+ ρ̂11(k)− f̂(−1)eik − f̂(1)e−ik = 0. (8.39)
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Solving for ρ11(−k) and using the global relations (8.12) and (8.16), this becomes

ρ11(−k) = ∂[kρ12(k)]

∂k
− ρ̂12(k)− f̂(−1)eik − f̂(1)e−ik, for k < 0. (8.40)

If we take Schwarz conjugate and let k 	→ −k, we find

ρ11(k) =
∂[kρ12(−k)]

∂k
− ρ̂12(−k)− f̂(−1)eik − f̂(1)e−ik, for k > 0. (8.41)

This gives an expression for the unknown spectral function ρ11(k) (for k > 0) in terms

of quantities associated to the semicircular boundary; all these can be computed using the

expressions for f̂(z) and ĝ′(z) on this boundary found above.

Finally, to find ρ̂11(k), we rearrange (8.39):

ρ̂11(k) = ρ11(−k) + ∂[kρ11(k)]

∂k
+ f̂(−1)eik + f̂(1)e−ik, (8.42)

which, on use of the global relations, can be written as

ρ̂11(k) = −ρ12(−k) + ∂[kρ11(k)]

∂k
+ f̂(−1)eik + f̂(1)e−ik, for k > 0. (8.43)

Again, this is an expression for the unknown spectral function ρ̂11(k) (for k > 0) in terms

of quantities associated to the semicircular boundary (having used (8.41)).

In this section, we have shown that all spectral functions needed for the computation of

the corrections functions f̂(z) and ĝ′(z) can be expressed in terms of ‘known’ quantities.

The forcing functions (8.7) together with the correction functions fully determine the Gour-

sat functions f(z) and g′(z) which are enough to describe the resulting flow (as we have

shown earlier, all the physical parameters of interest can be expressed in terms of these two

functions).
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8.5 Approach II: Transform method for polygons

We now present an alternative approach to the problem considered in the previous section.

We show that, using a conformal mapping, the fluid domain can be mapped to a semi-strip

geometry and then the tranform method for polygonal domains (consisting of straight line

edges) can be used to solve the problem. It should be noted that, although the biharmonic

equation is not conformally invariant (as discussed in Chapter 1), analytical progress can

still be made in the new parametric plane.

8.5.1 Conformal mapping and function representation

Consider the conformal mapping given by

η = η(z) = log z, (8.44)

which maps the fluid region in the z-plane to the semi-strip geometry in the parametric

η-plane (Figure 8.2). The inverse map is given by

z(η) = eη. (8.45)

z-plane

0

iπ

η-plane

σ1(σ̂1)

σ2(σ̂2)

σ3(σ̂3)

0−1 1

η(z)

Figure 8.2: Conformal mapping from the physical z-plane to the parametric η-plane. As-

sociated spectral functions are also illustrated (η-plane).

Next, introduce

F (η) = f(z(η)), G(η) = g′(z(η)), (8.46)
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and write

{
F (η) = Fs(η) + F̂ (η),

G(η) = Gs(η) + Ĝ(η),
(8.47)

where Fs(η), Gs(η) are the forcing functions related to the stagnation point flow and F̂ (η),

Ĝ(η) are the correction functions to be found using the transform method. It is necessary

to express the forcing functions (8.7) in terms of variable η; using (8.45), we can write

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Fs(η) =
iae2η

4
,

Gs(η) = −3iae2η

4
.

(8.48)

The symmetry condition with respect to x = 0 in the physical plane corresponds to sym-

metry with respect to the semi-strip centre-line Im[η] = π/2 in the η-plane. For η on the

boundaries, this symmetry corresponds to

{
F (η) = −F (η + iπ),

G(η) = −G(η + iπ).
(8.49)

The analytic correction function F̂ (η) in the semi-strip geometry can be represented by

F̂ (η) =
1

2π

[∫ ∞

0

σ1(k)e
ikηdk +

∫ −∞

0

σ2(k)e
ikηdk +

∫ i∞

0

σ3(k)e
ikηdk

]
, (8.50)

where the spectral functions are given by

σ1(k) =

∫ ∞

0

F̂ (η)e−ikηdη,

σ2(k) =

∫ iπ

∞+iπ

F̂ (η)e−ikηdη,

σ3(k) =

∫ 0

iπ

F̂ (η)e−ikηdη.

(8.51)
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Similarly, we can write an integral representation for Ĝ(η):

Ĝ(η) =
1

2π

[∫ ∞

0

σ̂1(k)e
ikηdk +

∫ −∞

0

σ̂2(k)e
ikηdk +

∫ i∞

0

σ̂3(k)e
ikηdk

]
, (8.52)

where

σ̂1(k) =

∫ ∞

0

Ĝ(η)e−ikηdη,

σ̂2(k) =

∫ iπ

∞+iπ

Ĝ(η)e−ikηdη,

σ̂3(k) =

∫ 0

iπ

Ĝ(η)e−ikηdη.

(8.53)

The global relations are given by

σ1(k) + σ2(k) + σ3(k) = 0, Imk ≤ 0,

σ̂1(k) + σ̂2(k) + σ̂3(k) = 0, Imk ≤ 0.
(8.54)

8.5.2 Boundary conditions

We will analyze the problem in the η-plane and we must therefore express our boundary

conditions in terms of variable η. In order to do so, the chain rule will be useful:

d

dz
=
dη

dz

d

dη
= e−η d

dη
. (8.55)

The no-slip boundary condition on z = z (corresponding to the horizontal boundaries

η = η and η = η − 2iπ in the η-plane) can be expressed as

− F (η) + F ′(η) +G(η) = 0. (8.56)

Substitution of (8.47) into (8.56) gives

− F̂ (η) + F̂ ′(η) + Ĝ(η) = Fs(η)− F ′
s(η)−Gs(η) = 0. (8.57)

The boundary condition on z = 1/z (corresponding to the vertical boundary η = −η in the
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η-plane) can be expressed as

− F (η) + e−2ηF ′(η) +G(η) = 0. (8.58)

Substitution of (8.47) into (8.58) gives

− F̂ (η) + e−2ηF̂ ′(η) + Ĝ(η) = Fs(η)− e−2ηF ′
s(η)−Gs(η). (8.59)

8.5.3 Spectral analysis

We multiply (8.57) by e−ikη and integrate along the lower boundary:

−
∫ ∞

0

F̂ (η)e−ikηdη +

∫ ∞

0

F̂ ′(η)e−ikηdη +

∫ ∞

0

Ĝ(η)e−ikηdη = S1(k), (8.60)

where

S1(k) ≡
∫ ∞

0

[Fs(η)− F ′
s(η)−Gs(η)]e

−ikηdη = 0. (8.61)

It can be shown that this can be written in terms of the spectral functions as

− σ1(−k) + ikσ1(k) + σ̂1(k)− F̂ (0) = S1(k). (8.62)

Similarly, we multiply (8.57) by e−ikη and integrate along the upper boundary:

−
∫ iπ

iπ+∞
F̂ (η)e−ikηdη +

∫ iπ

iπ+∞
F̂ ′(η)e−ikηdη +

∫ iπ

iπ+∞
Ĝ(η)e−ikηdη = S2(k), (8.63)

where

S2(k) ≡
∫ iπ

iπ+∞
[Fs(η)− F ′

s(η)−Gs(η)]e
−ikηdη = 0. (8.64)

This can be written in terms of the spectral functions as

− e2kπσ2(−k) + ikσ2(k) + σ̂2(k) + F̂ (iπ)ekπ = S2(k). (8.65)
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Finally, we multiply (8.59) by e−ikη and integrate along the third edge of the semi-strip:

−
∫ 0

iπ

F̂ (η)e−ikηdη +

∫ 0

iπ

e−2ηF̂ ′(η)e−ikηdη +

∫ 0

iπ

Ĝ(η)e−ikηdη = S3(k), (8.66)

where

S3(k) ≡
∫ 0

iπ

[
Fs(η)− e−2ηF ′

s(η)−Gs(η)
]
e−ikηdη

=
2a(1− ekπ)(ik + 1)

k(k2 + 4)
, k �= 0,±2i,

(8.67)

and

S3(0) = −aπ
2
, S3(−2i) =

3aπ

4
, S3(2i) = −aπ

4
. (8.68)

It can be shown that this can be written in terms of the spectral functions as

σ3(k) + i(k − 2i)σ3(k − 2i) + σ̂3(k) + F̂ (0)− F̂ (iπ)ekπ = S3(k). (8.69)

8.5.4 Solution scheme

From the spectral analysis we have found three expressions for the unknown spectral func-

tions given by

−σ1(−k) + ikσ1(k) + σ̂1(k)− F̂ (0) = S1(k), (8.70)

−e2kπσ2(−k) + ikσ2(k) + σ̂2(k) + F̂ (iπ)ekπ = S2(k), (8.71)

σ3(k) + i(k − 2i)σ3(k − 2i) + σ̂3(k) + F̂ (0)− F̂ (iπ)ekπ = S3(k), (8.72)

to be analyzed together with the global relations

σ1(k) + σ2(k) + σ3(k) = 0, Imk ≤ 0,

σ̂1(k) + σ̂2(k) + σ̂3(k) = 0, Imk ≤ 0.
(8.73)

Addition of (8.70)-(8.72) and use of the global relations (8.73) gives (after rearrangement):

(1− e2kπ)σ1(−k) = e2kπσ3(−k)− ikσ3(k) + σ3(k) + i(k− 2i)σ3(k− 2i)−S(k), (8.74)
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where

S(k) ≡ S1(k) + S2(k) + S3(k). (8.75)

But σ1(−k) is analytic in the lower half-plane which implies that the right-hand side of

(8.74) must vanish at solutions of 1 − e2kπ = 0 in the lower half k-plane, that is, at points

in the set

Σ1 ≡
{
kp = −ip

∣∣∣∣p = 0, 1, 2, . . .

}
. (8.76)

We must therefore have

σ3(−k)− ikσ3(k) + σ3(k) + i(k − 2i)σ3(k − 2i) = S(k), for k ∈ Σ1. (8.77)

It is interesting to note the similarities between (8.31) and (8.77) found using the two ap-

proaches. As we will see next, the (infinite) set of conditions (8.77) is sufficient to deter-

mine the unknown spectral function σ3(k).

Function representation

The next step is to represent F̂ (η) on η = iηy, ηy ∈ [0, π] using a Chebyshev basis expan-

sion. The boundary η = iηy, ηy ∈ [0, π] can be parametrized by

η(s) =
iπ

2
(1− s), for s ∈ [−1, 1], (8.78)

with η(−1) = iπ and η(1) = 0. We write

F̂ (η(s)) =
∞∑

m=0

bmTm(s), (8.79)

for some set of coefficients {bm} to be found and where Tm(s) = cos(macoss), s ∈ [−1, 1].

Substitution of (8.79) into the expression for σ3(k) gives

σ3(k) =
∞∑

m=0

bmT (k,m), (8.80)
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where

T (k,m) = − iπ

2

∫ 1

−1

Tm(s)e
kπ(1−s)/2ds. (8.81)

The sum in (8.80) is truncated to include only terms m = 0, ...,M . Substitution of (8.80)

into (8.77) gives

M∑
m=0

bm

[
− ikT (k,m) + i(k − 2i)T (k − 2i,m)

]
+

M∑
m=0

bm

[
T (k,m) + T (−k,m)

]

= S(k), for k ∈ Σ1.

(8.82)

The unknown coefficients {b0, ..., bM} (and their complex conjugates) are computed by

solving an overdetermined linear system for suitable number of k ∈ Σ1. Once the coeffi-

cients {bm} are found, σ3(k) can be computed using (8.80). Once σ3(k) is found, all the

other spectral functions can be found by back substitution into various relations.

8.6 Results and comparison to Davis & O’Neill’s solution [30]

Davis & O’Neill [30] found an expression for the streamfunction ψ given by (8.3); using

this, all physical quantities of interest can be computed. For example, recall that vorticity

can be expressed in terms of the streamfunction as

ω = −∇2ψ (8.83)

(Chapter 3). Since their solution is found in terms of bipolar coordinates ξ and η, it is

necessary to express the Laplacian operator in terms of (ξ, η). It is straightforward to show

that

∇2ψ =
(cosh ξ − cos η)2

c2

(
∂2ψ

∂η2
+
∂2ψ

∂ξ2

)
. (8.84)

Using (8.84), we can compute the vorticity in the fluid region. In a similar manner, all other

physical quantities of interest can be found by expressing them in terms of (ξ, η).

To compare our results to Davis & O’Neills’ [30], we use that the angle of intersection is
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η0 = π/2 and the semicircular boundary intersects the planar boundary at points x = ±1

hence c = 1. Also, we choose k1 = k2 = 1, since for η0 = π/2 both (8.4)-(8.5) have

complex roots. Our results were checked against Davis & O’Neills’ [30] and were foung

to be the same to within an accuracy of O(10−3) of each other (with truncation parameter

M = 12). Also, as we increased the truncation parameters, the solutions were converging

to each other.
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ω

Figure 8.3: Vorticity ω along the circular boundary in terms of parametrization variable s
defined in (8.33) computed using our transform approach (I/II).
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Figure 8.4: Pressure p along the circular boundary in terms of parametrization variable of

s defined in (8.33)computed using our transform approach (I/II).

8.7 Summary

We have presented new transform approaches for solving a Stokes flow problem in a sim-

ply connected circular domain. The problem considered was that of a stagnation point flow

past a semicircular ridge with angle of intersection between the plane and circular bound-

aries taken to be π/2. This problem was previously solved by Davis & O’Neill [30] for a

general angle of intersection, using bipolar coordinates and Fourier transform techniques.

Our transform approaches were based on the transform method for circular domains (I) and

combination of ideas from conformal mapping theory together with the transform method

for polygonal domains (II).

In the first approach, by first noticing that the fluid region can be thought as the intersec-

tion of the upper half-plane and the exterior of unit disc, we used the transform method

for circular domains presented in Chapter 2. The spectral analysis allowed us to derive an

infinite set of conditions satisfied by the (Mellin-type) spectral function associated to the

cylindrical boundary. The unknown boundary data was then represented using an appropri-
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ate basis expansion which allowed us to form and solve an overdetermined linear system

for the unknown coefficients. Finally, we showed that all spectral functions and, therefore,

correction functions f̂(z), ĝ′(z) were expressed in terms of ‘known’ quantities.

Next, owing to the simplicity of the configuration, we showed that ideas from conformal

mapping theory and the transform method for polygonal domains can also be used to solve

this problem. The idea was to map the fluid domain to a semi-strip and then analyse the

problem in this new geometry. The spectral analysis gave again an infinite set of conditions

on the spectral function associated to the edge of finite length and these conditions were

sufficient to determine it. However, in this case, the unknown boundary data was repre-

sented on a straight edge rather than a semicircular arc (of approach I).

Both approaches were checked against Davis & O’Neill’s solution [30] and results were

found to be in good agreement. In both methods, Chebyshev-like basis expansions were

used to represent the unknown boundary data, but different series representations can also

be used. Although not presented here, we have checked if using different expansions, such

as a Fourier series, can improve the accuracy but we have concluded that the Chebyshev-

like basis expansions give better accuracy against the solution of Davis & O’Neill [30].

Although in this chapter we have analysed the particular problem of a stagnation point flow

past a semicircular ridge of angle of intersection π/2, it should be noted that a significant

advantage of this new transform approach is that it can be adapted to model other interest-

ing problems in the same or similar geometries. To name a few:

Modelling other flows of interest: Other flows can be analysed in the same geometry by

only changing the forcing functions fs(z), g
′
s(z) to satify the given far-field conditions. For

example, we can solve for a shear flow by choosing the correct form for the forcing func-

tions.

Dynamics of a point swimmer near this geometry: Crowdy & Or [23] proposed a sin-

gularity description of a non-self-propelling microswimmer in order to investigate wall ef-
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fects. This consisted of a point stresslet with a superposed source quadrupole at swimmer’s

position. They wrote

{
f(z) = fstresslet(z) + ε2fquadrupole(z),

g′(z) = g′stresslet(z) + ε2g′quadrupole(z),
(8.85)

where parameter ε measured the strength of the source quadrupole relative to the stresslet.

point swimmer

Figure 8.5: Schematic of the configuration. A point swimmer near a semicircular ridge of

unit radius.

Therefore, by changing the forcing functions fs(z), g
′
s(z) in our transform approaches, we

can solve for a point stresslet and then for a source quadrupole. The resulting Goursat func-

tions can then be substituted in (8.85). Following Crowdy & Or [23], to find the evolution

equations governing the point swimmer dynamics, we compute the first few coefficients

of the Taylor expansion of the analytic parts of the Goursat functions at the singularity

position z0. For a point stresslet, we write

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

fstresslet(z) =
μ

z − z0
+ f0s + f1s(z − z0) + ...

g′stresslet(z) =
μz0

(z − z0)2
+ g0s + g1s(z − z0) + ...

(8.86)

and, similarly, for a point quadrupole we have

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

fquadrupole(z) = f0q + f1q(z − z0) + ...

g′quadrupole(z) =
2μ

(z − z0)3
+ g0q + g1q(z − z0) + ...

(8.87)
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Following Crowdy & Or [23], the evolution of the swimmer is given by the solution of the

system

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

dz0
dt

= −f0s + z0f1s + g0s + ε2
[− f0q + z0f1q + g0q

]
,

dθ

dt
= −2Im[f1s]− ε2Im[f1q].

(8.88)

Flows past a trough: Davis & O’Neill [30] also presented the problem of a stagnation

point flow past a trough where the angle of intersection between the plane and cylindrical

boundaries was greater than π. A schematic is illustrated in Figure 8.6.

x

y

−1 10

Figure 8.6: A stagnation point flow past a plane with a cylindrical trough. The angle of

intersection θ between the plane and cylindrical boundaries is θ > π (here θ = 3π/2). This

problem was solved by Davis & O’Neill [30] for a general angle of intersection.

This problem can also be solved using the transform methods presented in this chapter.

First, we recall that the transform method for circular domains works for domains which

can be formed from the intersection of half-planes and exterior or interior of unit discs.

However, the configuration illustrated in Figure 8.7 can not be directly formed from these

two fundamental objects. To solve this problem, it is therefore necessary to split the fluid

domain into two sub-domains as illustrated in Figure 8.7. In each of these sub-domains, a

different transform representation can be written. Domain 1 is the upper half-plane exte-
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rior to the semi-disc and Domain 2 is the interior of the semi-disc. The idea is then (similar

to problems of Wiener-Hopf type presented in Chapter 5) to solve each sub-problem sep-

arately and then couple the two sub-problems by imposing continuity conditions along

common boundaries. This procedure provides, again, an infinite set of conditions which

are sufficient to determine the unknown spectral functions.

Domain 1Domain 2

continuity conditions

Figure 8.7: Domain splitting for analysis using the transform method for circular domains.

On the other hand, this problem can be easily solved using our transform approach II (con-

formal mapping theory and the transform method for polygonal domains). The difference

from the analysis presented previously in this chapter will only be that the semi-strip will

be shifted in the vertical direction in the η-plane. However, it is straightforward to adapt

the spectral analysis and solve this problem.

General angle of intersection: Although in this chapter we have analysed the particular

case of configuration where the angle of intersection between the plane and cylindrical

boundaries was θ = π/2, it is an interesting extension to consider a general angle of in-

tersection. In the latter case, the unknown boundary data must be represented on a general

circular arc rather than a semicircular boundary.

Bubble matresses: Davis & Lauga [28] considered a shear flow past a two-dimensional

array of bubbles and calculated analytically the effective slip length of the surface as a

function of the bubble geometry in the dilute limit (c/l � 1). A schematic is shown in

Figure 8.8. The boundary conditions for this problem are no-slip on the rigid plane on

either side of the bubble and perfect slip (no-shear) on the bubble surface. A possible
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application of the transform method would be, firstly, to rederive this problem, as well as

solve it in the non-dilute limit. In the non-dilute limit, the periodicity of the configuration

implies that it will be sufficient to analyse the problem in a single period window e.g.

−l < x < l, 0 < y < ∞ and periodicity conditions must be imposed at the ends of the

period window (similar to problem presented in Chapter 6).

x

y

0

θ

−c c

bubble

−l l

Figure 8.8: Shear flow past a periodic array of bubbles. This problem was solved by Davis

& Lauga [28] in the dilute limit c/l � 1.

Plane elasticity problems: The monograph by Muskhelishvili [86] provides a detailed

account of mathematical techniques to solve elasticity problems. In plane elasticity, the

associated Airy stress function ψ satisfies the biharmonic equation and it is, therefore, an

interesting application to use the transform method to solve these problems. Previous work

on using the unified transform method for solving elasticity problems was presented by

Crowdy & Fokas [21] who solved problems in a semi-strip geometry. Extending this work,

the transform method for circular domains can be employed to solve various other prob-

lems (some of these are listed below).

It is remarkable, that several elasticity problems in a similar configuration to the Davis &

O’Neill [30] geometry have been solved. Maunsell [80] and Isibasi [52] solved the problem

of a notched plate under tension when the notch was of semicircular shape in the real plane;

the configuration was the same with the problem presented in this chapter. Yeung [116]

reformulated and solved the same problem using complex variable techniques. Ling [75]

and Weinel [114] (Figure 8.9) extended previous work to circular notch for a general angle

of intersection between the planar and circular boundaries using bipolar coordinates and
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infinite integrals.

Figure 8.9: Weinel [114] considered a notched plate under tension for a general angle of

intrsection between the planar and circular boundaries. (Figure reproduced from [114]).

There have been several other investigations in similar geometries. To name a few, we

mention the work of Ling [76] who considered an infinite strip under tension containing

two semicircular notches placed symmetrically on the opposite edges. Atsumi [7] used

Mausell’s method [80] to obtain the stresses in a plate under tension containing a periodic

row of semicircular nodges. A schematic from this work is shown in Figure 8.10. In another

study, Atsumi [6] analysed the stress problem for a strip with periodic row of semicircular

nodges (Figure 8.11).

It is expected that all problems presented in this section can be analysed and solved using

the transform method for circular (simply-connected) domains.
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Figure 8.10: Problem configuration considered by Atsumi [7]. This author determined the

stresses in a plate under tension containing a periodic row of semicircular nodges. (Figure

reproduced from [7]).

Figure 8.11: In another study, Atsumi [6] analyzed the problem of determining the stresses

in an infinite strip under tension containing an infinite row of semicircular notches. (Figure

reproduced from [6]).
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Chapter 9

A translating and rotating cylinder near

a wall

9.1 Introduction

In this chapter, we present our transform approach for solving a Stokes flow problem in a

multiply connected circular domain, particularly in a doubly connected one. The problem

considered concerns a translating and rotating cylinder near a wall and our aim is to com-

pute the forces and torques acting on the cylinder for given translational/angular velocities.

Since Stokes equations are linear, forces and torques are linearly related to translational

and angular velocities and this relation can be expressed through a tensor which is known

as the mobility or resistance matrix (Lauga & Powers [71]).

The problem of a translating and rotating cylinder near a wall is a classical problem in two-

dimensional slow viscous flows and importantly it is one of few problems which admits an

exact solution. This problem was originally solved by Jeffrey & Onishi [53] who employed

bipolar coordinates to solve for the resulting flow and to compute forces and torque acting

on the cylinder. More recently, Crowdy [14] rederived Jeffrey & Onishi’s [53] solution us-

ing complex variable techniques and then combined it with the reciprocal theorem (Stone

& Samuel [104]) to compute the dynamics of a circular swimmer above a wall. Remark-

ably, the reciprocal theorem was used to find the linear and angular velocity of a force-free
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and torque-free circular swimmer with an imposed velocity profile on its surface, without

solving for the entire flow field.

In the following sections, we present our transform appoach to solve this problem and show

that all elements of the mobility matrix can be computed. We also show a comparison of

our results to Jeffrey & Onishi’s [53] exact solution.

9.2 Problem formulation

Consider a circular cylinder of unit radius centred at z0 = iy0, with y0 > 1, above a wall

along the real axis in a z-plane (Figure 9.1). The cylinder is translating with complex speed

U = Ux + iUy, (Ux, Uy ∈ R) and rotating with angular velocity Ω and experiencing a

non-zero net force F = Fx + iFy, (Fx, Fy ∈ R) and torque T .

y

x

z0

U
Ω

Figure 9.1: Schematic of the configuration: a translating and rotating cylinder of unit radius

centred at z0 = iy0, with y0 > 1, above a straight wall.

The relation between {U,Ω} and {F, T} acting on the cylinder can be expressed through
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the mobility matrix A:

⎡
⎢⎢⎣
U

V

Ω

⎤
⎥⎥⎦ = A

⎡
⎢⎢⎣
Fx

Fy

T

⎤
⎥⎥⎦ , where A =

⎡
⎢⎢⎣
a11 0 0

0 a22 0

0 0 a33

⎤
⎥⎥⎦ , (9.1)

with ajj ∈ R, j = 1, 2, 3. In general, A is a 3× 3 full-element tensor, but for this particular

problem it has a diagonal form (Jeffrey & Onishi [53], Crowdy [14]). Equivalently, (9.1)

can be written as ⎡
⎢⎢⎣
Fx

Fy

T

⎤
⎥⎥⎦ = B

⎡
⎢⎢⎣
U

V

Ω

⎤
⎥⎥⎦ , (9.2)

where B = A−1 is called the resistance matrix (Lauga & Powers [71]).

9.3 Jeffrey & Onishi’s [53] solution

Jeffrey & Onishi [53] using bipolar coordinates, they found explicit expressions for the

forces and torque in terms of linear and angular velocities. They found that:

• if the cylinder translates parallel to the wall with velocity U = U , then the force on

it is given by

F = Fx = − 4πηU

log
(
y0/r +

√
(y0/r)2 − 1

) , (9.3)

where r is the cylinder radius.

• if the cylinder translates parallel to the wall with velocity U = −U , then the force on

it is given by

F = iFy = − 4πηU

log((d+ a)/r)− (a/d)
. (9.4)

• if the cylinder is in pure rotation with angular velocity Ω, then the torque acting on it

is given by

T = − 4πηΩy0r
2

(y20 − r2)1/2
, (9.5)

where a2 = y20 − r2.
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Using (9.3)-(9.5), all the elements of the mobility matrix A given by (9.1) can be found.

These expressions will be used later to compare/validate our results to Jeffrey & Onishi’s

[53] solution.

9.4 Goursat functions and transform representation

The Goursat functions are represented by

{
f(z) = fs(z) + f̂(z),

g′(z) = g′s(z) + ĝ′(z),
(9.6)

where fs(z), g
′
s(z) are defined by

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

fs(z) = λ log

(
z − z0
z + z0

)
,

g′s(z) = −λ log
(
z − z0
z + z0

)
,

(9.7)

where λ ∈ C is an unknown constant which will be found as part of the solution and f̂(z),

ĝ′(z) are the correction functions to be found using the transform method. The above form

of fs(z) and ĝ′s(z) has be chosen for the following reasons: First, the logarithmic singular-

ities at z0 were included to ensure that there is a non-zero contribution in function H(z),

defined by (3.37), as traversing the cylinder |z − z0| = 1 and therefore a force. The co-

efficients of the logarithmic terms were forced to have the above form by requiring that

velocity is single-valued. Finally, the appropriate image singularities at z0 = −z0 have

been included to facilitate the computation of integral expressions appearing in the analy-

sis; with this choice, it can be shown that the velocity decays at infinity.

In this problem, the fluid domain can be thought as the intersection of the upper half-plane

and the exterior of the unit disc centred at z0. Therefore, we can write the following integral
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representation for f̂(z):

f̂(z) =
1

2π

∫
L
ρ11(k)e

ikzdk

− 1

2πi

[ ∫
L1

ρ22(k)

1− e2πik
1

(z − z0)k+1
dk +

∫
L2

ρ22(k)
1

(z − z0)k+1
dk

+

∫
L3

ρ22(k)e
2πik

1− e2πik
1

(z − z0)k+1
dk
]
,

(9.8)

where L = [0,∞) and {Lj|j = 1, 2, 3} are the fundamental contours for circular edges.

The two spectral functions are given by

ρ11(k) =

∫ ∞

−∞
f̂(z)e−ikzdz, ρ22(k) = −

∮
|z−z0|=1

f̂(z)(z − z0)
kdz. (9.9)

The other elements of the spectral matrix are given by

ρ12(k) = −
∮
|z−z0|=1

f̂(z)e−ikzdz, ρ21(k) =

∫ ∞

−∞
f̂(z)(z − z0)

kdz. (9.10)

The global relations are

ρ11(k) + ρ12(k) = 0, k < 0 (9.11)

and

ρ21(k) + ρ22(k) = 0, k ∈ −N. (9.12)

Similarly, we can write an integral representation for ĝ′(z):

ĝ′(z) =
1

2π

∫
L
ρ̂11(k)e

ikzdk

− 1

2πi

[ ∫
L1

ρ̂22(k)

1− e2πik
1

(z − z0)k+1
dk +

∫
L2

ρ̂22(k)
1

(z − z0)k+1
dk

+

∫
L3

ρ̂22(k)e
2πik

1− e2πik
1

(z − z0)k+1
dk
]
,

(9.13)
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where the two spectral functions are given by

ρ̂11(k) =

∫ ∞

−∞
ĝ′(z)e−ikzdz, ρ̂22(k) = −

∮
|z−z0|=1

ĝ′(z)(z − z0)
kdz. (9.14)

The other elements of the spectral matrix are given by

ρ̂12(k) = −
∮
|z−z0|=1

ĝ′(z)e−ikzdz, ρ̂21(k) =

∫ ∞

−∞
ĝ′(z)(z − z0)

kdz. (9.15)

Finally, the global relations are given by

ρ̂11(k) + ρ̂12(k) = 0, k < 0 (9.16)

and

ρ̂21(k) + ρ̂22(k) = 0, k ∈ −N. (9.17)

9.5 Boundary conditions

The no-slip boundary condition on z = z is given by (3.19), which on substitution of (9.6)

becomes

− f̂(z) + zf̂ ′(z) + ĝ′(z) = fs(z)− zf ′
s(z)− g′s(z). (9.18)

The boundary condition on the cylinder can be written as

− f(z) +

(
z0 +

1

z − z0

)
f ′(z) + g′(z) = U − iΩ

1

z − z0
. (9.19)

Substitution of (9.6) and solving for ĝ′(z) gives

ĝ′(z) = f̂(z)−
(
z0 +

1

z − z0

)
f̂ ′(z)

+ fs(z)−
(
z0 +

1

z − z0

)
f ′
s(z)− g′s(z) + U − iΩ

1

z − z0
.

(9.20)
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9.6 Spectral analysis

9.6.1 Fourier transform

We multiply (9.18) by e−ikz and integrate along the lower boundary:

−
∫ ∞

−∞
f̂(z)e−ikzdz +

∫ ∞

−∞
zf̂ ′(z)e−ikzdz +

∫ ∞

−∞
ĝ′(z)e−ikzdz = R(k), (9.21)

where

R(k) ≡
∫ ∞

−∞
[fs(z)− zf ′

s(z)− g′s(z)]e
−ikzdz. (9.22)

Using residue calculus, we can compute R(k):

R(k) = λ

⎧⎪⎪⎨
⎪⎪⎩

2πiz0e
ikz0 , k > 0,

0, k = 0,

−2πiz0e
−ikz0 , k < 0.

(9.23)

Expression (9.21) can be written in terms of the spectral functions as

− ρ11(−k)− ∂[kρ11(k)]

∂k
+ ρ̂11(k) = R(k), (9.24)

which can equivalently be written as

ρ11(−k) = −∂[kρ11(k)]
∂k

+ ρ̂11(k)−R(k), (9.25)

or

ρ11(k) = −∂[kρ11(−k)]
∂k

+ ρ̂11(−k)−R(−k). (9.26)

On use of the global relation (9.11), we can write

ρ11(k) =
∂[kρ12(−k)]

∂k
− ρ̂12(−k)−R(−k), for k > 0. (9.27)
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Next, we observe that

ρ11(k) =

∫ ∞

−∞
f̂(x)e−ikxdx =

∂[kρ12(−k)]
∂k

− ρ̂12(−k)−R(−k), for k > 0, (9.28)

which means that taking the inverse Fourier transform for the upper half-plane (Crowdy

[19]), we can write

f̂(x) =
1

2π

∫ ∞

0

[
∂[kρ12(−k)]

∂k
− ρ̂12(−k)−R(−k)

]
eikxdk, for x ∈ R. (9.29)

This gives a relation between the unknown function f̂(x) on the lower boundary in terms

of spectral functions associated to the cylindrical boundary. Note that, using (9.29) in

(9.18), the correction function ĝ′(z) on the lower boundary can be also expressed in terms

of spectral functions associated to the cylinder.

9.6.2 Mellin-type transforms

Function f̂(z): The second global relation (9.12):

ρ21(k) + ρ22(k) = 0, k ∈ −N, (9.30)

can be written as

∫ ∞

−∞
f̂(z)(z − z0)

−ndz −
∮
|z−z0|=1

f̂(z)(z − z0)
−ndz = 0, n ∈ N. (9.31)

Using expression (9.29) for f̂(z) on the lower boundary, this becomes

∮
|z−z0|=1

f̂(z)(z − z0)
−ndz =

∫ ∞

0

I(k, n)

[
∂[kρ12(−k)]

∂k
− ρ̂12(−k)−R(−k)

]
dk,

(9.32)

for n ∈ N, where we have defined

I(k, n) ≡ 1

2π

∫ ∞

−∞

eikx

(x− z0)n
dx. (9.33)
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It can be shown that, for n = 1,

I(k, 1) ≡ 1

2π

∫ ∞

−∞

eikx

(x− z0)n
dx =

⎧⎪⎪⎨
⎪⎪⎩

ieikz0 , k > 0,

i/2, k = 0,

0, k < 0,

(9.34)

and, for n ≥ 2,

I(k, n) ≡ 1

2π

∫ ∞

−∞

eikx

(x− z0)n
dx =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

inkn−1eikz0

(n− 1)!
, k ≥ 0,

0, k < 0.

(9.35)

Function ĝ′(z): Next, the second global relation for ĝ′(z):

ρ̂21(k) + ρ̂22(k) = 0, k ∈ −N, (9.36)

can be equivalently expressed as

∮
|z−z0|=1

ĝ′(z)(z − z0)
−ndz =

∫ ∞

−∞
ĝ′(z)(z − z0)

−ndz, n ∈ N. (9.37)

But for ĝ′(z) on the lower boundary, we can use the boundary condition (9.18) and the

(inverse Fourier transform) representation for f̂(z) found previously to express ĝ′(z) in

terms of quantities integrated on the cylindrical boundary. It can be shown that

∮
|z−z0|=1

ĝ′(z)(z − z0)
−ndz = (n−1)ρ22(−n)+nz0ρ22(−n−1)+B(n), n ∈ N, (9.38)

with

B(n) ≡
∫ ∞

−∞
[fs(z)− zf ′

s(z)− g′s(z)](z − z0)
−ndz. (9.39)

where we have used the global relation (9.12).
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9.7 Solution scheme

From the spectral analysis part presented in the previous section, we have found two sets

of conditions given by (9.32) and (9.38) which are both valid for n ∈ N. In this section, we

show how on use of these conditions and a Laurent series expansion for f̂(z) on the cylin-

drical boundary, a linear system for the unknown coefficients (of the Laurent expansion)

and parameter λ can be formulated. The solution of this linear system gives the unknown

boundary data on the cylinder and this is sufficient to compute the mobility matrix (as we

will see in a subsequent section). However, in general, the solution in the fluid domain

is required; in this case, once the unknown data on the cylinder is found, all the spectral

functions can be computed by back substitution in various relations.

9.7.1 Function representation

To represent f̂(z) on the cylinder |z − z0| = 1, we use a Laurent series expansion:

f̂(z) =
∞∑

m=−∞
am(z − z0)

m, (9.40)

where the coefficients {am|m ∈ Z} are to be found. Using (9.40), we have

ρ12(k) = −
∮
|z−z0|=1

f̂(z)e−ikzdz =
∞∑

m=−∞
am[T (k,m)], (9.41)

where

T (k,m) ≡ −
∮
|z−z0|=1

(z − z0)
me−ikzdz =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, m ≥ 0,

−2πi(−ik)−m−1e−ikz0

(−m− 1)!
, m < 0.

(9.42)
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In addition,

ρ̂12(k) = −
∮
|z−z0|=1

ĝ′(z)e−ikzdz,

= −
∮
|z−z0|=1

[
f̂(z)−

(
z0 +

1

z − z0

)
f̂ ′(z)

]
e−ikzdz + S(k),

(9.43)

where we have used the boundary condition (9.20) and

S(k) ≡ −
∮
|z−z0|=1

[
fs(z)−

(
z0 +

1

z − z0

)
f ′
s(z)− g′s(z) + U − iΩ

1

z − z0

]
e−ikzdz,

= −2πΩe−ikz0 −
∮
|z−z0|=1

[
fs(z)−

(
z0 +

1

z − z0

)
f ′
s(z)− g′s(z)

]
e−ikzdz.

(9.44)

On substitution of (9.40) into (9.43), we find that ρ̂12(k) can be written as

ρ̂12(k) =
∞∑

m=−∞
am[Y (k,m)] +

∞∑
m=−∞

am[V (k,m)] + S(k), (9.45)

with

Y (k,m) = mz0 T (k,m− 1)−mT (k,m− 2), (9.46)

V (k,m) = T (k,−m). (9.47)

9.7.2 Formulation of the linear system

Using the function representation for f̂(z) and expressions ρ12(k) and ρ̂12(k) defined by

(9.41) and (9.45) respectively, conditions (9.32) and (9.38) can be expressed in terms of the

unknown coefficients am, parameter λ and known quantities.

Conditions (9.32): These can be written as

an−1 =
∞∑

m=−∞
amPnm +

∞∑
m=−∞

amQnm + Ln, n = 1, 2, ..., (9.48)
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where

Pnm = − 1

2πi

∫ ∞

0

I(k, n)V (−k,m)dk, (9.49)

Qnm =
1

2πi

∫ ∞

0

I(k, n)

[
T (−k,m) + k

∂T (−k,m)

∂k
− Y (−k,m)

]
dk, (9.50)

Ln = − 1

2πi

∫ ∞

0

I(k, n)
[
S(−k) +R(−k)] dk. (9.51)

Note that terms {Ln|n = 1, 2, ...} contain the unknown complex parameter λ. Conditions

(9.48) together with their complex conjugates are added to the linear system.

Conditions (9.38): Similarly, these can be expressed as:

(n−1)an−1+2nz0an−(n+1)an+1+a−n+1 =
1

2πi
[B(n)− A(n)] , n = 1, 2, ..., (9.52)

where

A(n) ≡
∮
|z−z0|=1

[
fs(z)−

(
z0 +

1

z − z0

)
f ′
s(z)− g′s(z) + U − iΩ

1

z − z0

]
(z − z0)

−ndz,

(9.53)

Conditions (9.52) together with their complex conjugates are added to the linear system.

The linear system consisting of (9.48) and (9.52) (and their complex conjugates) is solved

for coefficients {am|m = −M, ...M} (for suitable truncation parameter M ) and the com-

plex parameter λ and their complex conjugates. It is found that the coefficient matrix is

well-conditioned and as we see in the next section, we get good agreement with the exact

solution (Jeffrey & Onishi [53], Crowdy [14]).
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9.8 Computation of the mobility matrix

Once {am|m ∈ Z} and λ are computed, we can calculate all elements of the mobility ma-

trix, i.e. forces and torque acting on the cylinder for given translational/angular velocities.

To determine these, we consider the following cylinder motions: (a) motion parallel to the

wall, i.e. U = U , Ω = 0, (b) motion away from the wall, i.e. U = −U , Ω = 0 and (c) pure

rotation, i.e. U = 0, Ω �= 0. The mobility matrix for this problem is diagonal (Jeffrey & On-

ishi [53]) which means that for case (a) we expect a horizontal force acting on the cylinder

and no torque, for (b) a vertical force and no torque and finally for (c) a torque and no force.

The force F on the cylinder is given by

F = [2ηiH(z)]|z−z0|=1 = [2ηi(2λ log(z − z0)]|z−z0|=1 = −8πηλ, (9.54)

where η is the viscosity and square brackets with subscript denote the change in the quan-

tity they contain as a single circuit |z− z0| = 1 is traversed. Expression H(z) is defined by

(3.37). We note that if the cylinder is in pure rotation, the solution of the linear system gives

λ equal to zero which means that, as expected, there is no force exerted on the cylinder.

The torque T on the cylinder is given by

T = 2η Re

[
2πiz0λ+

∮
|z−z0|=1

(z − z0)g
′′(z)dz

]
(9.55)

where Re[.] denotes the real part of the expression in square brackets. Derivation of this

formula is given in the Appendix B. Using (9.20) and (9.40) in (B.6), we find that

T = 4ηπ
[
Re[iz0λ]− Ω− 2Im[a1]

]
, (9.56)

in terms of parameter λ, angular velocity Ω and coefficient a1. If the cylinder is moving

parallel or perpendicular to the wall, expression (9.56) is found to be equal to zero. If the
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cylinder is in pure rotation, parameter λ is equal to zero and (9.56) simplifies to

T = −4ηπ
[
Ω + 2Im[a1]

]
. (9.57)

Interestingly, knowing that the mobility matrix for this problem is diagonal, the form of

(9.57) suggests that coefficient a1 has an inherent linear relation with angular velocity Ω

through the linear system.

9.9 Comparison to Jeffrey & Onishi’s [53] solution

Figures 9.2-9.4 show comparison of horizontal force Fx, vertical force Fy and torque T for

cases (a)-(c) respectively as computed using our transform approach and exact solution by

Jeffrey & Onishi [53] (and Crowdy [14]). The results were found to be the same to within

an accuracy of O(10−3 − 10−4). As noted, as cylinder approaches the planar no-slip wall,

more terms are required in the sum (9.40). Also, many integral expressions appearing in our

analysis are computed numerically: the results presented here are for moderate truncation

parameters, e.g. dk = 0.01, ∞ = 10; increasing these parameters improves the accuracy,

but on the other hand the solution scheme becomes slower.

9.10 Summary

We have presented a transform approach for solving a Stokes flow problem in a doubly

connected circular domain. The problem considered was that of a translating and rotating

cylinder near a wall. This problem was previously solved exactly by Jeffrey & Onishi [53]

using bipolar coordinates and, more recently, rederived by Crowdy [14] using complex

variable techniques. The idea of our transform approach was to consider the fluid region as

being the intersection of the upper half-plane and the exterior of unit disc, write an appro-

priate integral representations for the unknown correction functions f̂(z), ĝ′(z) and proceed

to spectral analysis to determine the unknown boundary data and spectral functions. Our

method was checked against Jeffrey & Onishi’s [53] solution (Crowdy [14]) and results

were found to be in good agreement.
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Figure 9.2: Comparison between our transform approach and the exact solution by Jeffrey

& Onishi [53]: (a) computation of the force F = Fx when cylinder is moving parallel to

the wall (for U = 1) as a function of the distance from the wall y0.



9.10 Summary 170

1 1.5 2 2.5
y0

-250

-200

-150

-100

-50

0

F y

Exact solution
Transform method

Figure 9.3: Comparison between our transform approach and the exact solution by Jeffrey

& Onishi [53]: (b) computation of the force F = iFy when the cylinder is moving away

from the wall (for U = i) as a function of the distance from the wall y0.
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Figure 9.4: Comparison between our transform approach and the exact solution by Jeffrey

& Onishi [53]: (c) computation of the torque T when the cylinder is in pure rotation (for

Ω = 1) as a function of the distance from the wall y0.
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Our transform approach can also be used to solve other Stokes flow problems in the same

geometry. We mention the work by Davis & O’Neill [29] who solved the problem of a

shear flow past a cylinder above a wall. Davis & O’Neill [29] used bipolar coordinates to

map the fluid region to a channel geometry and then employ Fourier transform techniques.

They investigated the separation from the boundaries as a function of cylinder’s distance

from the wall, as well as the formation of Moffatt eddies [85]. In addition, Samson [95]

presented an accurate method based on conformal mapping theory and numerical methods

to solve problems in doubly connected regions, including Davis & O’Neill’s [29]. Since

Davis & O’Neill’s [29] geometry is the same to the problem analysed in this chapter, our

transform method can also be used to solve this problem; the only difference would be

the definition of forcing functions fs(z), g
′
s(z) (any symmetry of the resulting flow can be

exploited to obtain additional relations between the spectral functions which can further

simplify spectral analysis).
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Chapter 10

A translating and rotating cylinder in a

channel

10.1 Introduction

In this Chapter, we shall be considering the problem of a translating and rotating cylinder

in a channel geometry and again the aim is to compute the mobility matrix, i.e. the tensor

relating forces and torques and translational/angular velocities.

Jeong & Yoon [63] and Jeong & Jang [58] have recently analyzed Stokes flow problems

for a cylinder in a channel geometry. Jeong & Yoon [63] have considered the problem of

a translating cylinder along the centreline of the channel subject to a background pressure-

driven flow using Papkovich-Fadle eigenfunction expansion and a least square method.

Jeong & Jang [58] have solved the problem of a translating and rotating cylinder not nec-

essarily placed along the centreline subject to a background pressure-driven flow using the

same techniques as Jeong & Yoon [63].

In this chapter, we follow Jeong & Jang [58] and restrict our interest to the case where there

is no background flow.
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10.2 Problem formulation

Consider a circular cylinder of unit radius centred at z0 = iy0, 1 < y0 < h − 1 in a

channel −∞ < x < ∞, 0 < y < h (Figure 10.1). Similarly to the problem considered

in the previous Chapter, the cylinder is translating with complex speed U and rotating with

angular velocity Ω and experiencing a non-zero net force F = Fx + iFy, (Fx, Fy ∈ R) and

torque T . The aim is again to compute the mobility matrix for the cylinder, i.e. a tensor

relating {U,Ω} and {F, T}.

y

x

h

0

U
Ω

z0

Figure 10.1: Schematic of the configuration: a translating and rotating cylinder of unit

radius centred at z0 in a channel geometry.

10.3 Goursat functions and transform representation

The Goursat functions are respresented by

{
f(z) = fs(z) + f̂(z),

g′(z) = g′s(z) + ĝ′(z),
(10.1)

where fs(z), g
′
s(z) are defined by

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

fs(z) = λ log
[
tanh

( π
2h

(z − z0)
)]
,

g′s(z) = −λ log
[
tanh

( π
2h

(z − z0)
)]
,

(10.2)



Chapter 10. A translating and rotating cylinder in a channel 175

where λ ∈ C is an unknown constant which will be found as part of the solution and f̂(z),

ĝ′(z) are the correction functions to be found. Note that fs(z), g
′
s(z) are 2hi-periodic and

this will be useful later.

In this problem, the fluid domain can be thought as the intersection of two half-planes

(upper and shifted lower) and the exterior of the unit disc centred at z0. Therefore, we can

write the following integral representation for f̂(z):

f̂(z) =
1

2π

∫
L1

ρ11(k)e
ikzdk

− 1

2πi

[∫
L1

ρ22(k)

1− e2πik
1

(z − z0)k+1
dk +

∫
L2

ρ22(k)

(z − z0)k+1
dk +

∫
L3

ρ22(k)e
2πik

1− e2πik
1

(z − z0)k+1
dk

]

+
1

2π

∫
L2

ρ33(k)e
ikzdk,

(10.3)

where L1 = [0,∞) and L2 = [0,−∞) and {Lj|j = 1, 2, 3} are the fundamental contours

for circular edges. The three spectral functions are given by

ρ11(k) =

∫ ∞

−∞
f̂(z)e−ikzdz, ρ22(k) = −

∮
|z−z0|=1

f̂(z)(z − z0)
kdz (10.4)

and

ρ33(k) =

∫ −∞+ih

∞+ih

f̂(z)e−ikzdz. (10.5)

The remaining elements of the matrix of spectral functions are given by

ρ21(k) =

∫ ∞

−∞
f̂(z)(z − z0)

kdz, ρ23(k) =

∫ −∞+ih

∞+ih

f̂(z)(z − z0)
kdz, (10.6)

ρ12(k) = ρ32(k) = −
∮
|z−z0|=1

f̂(z)e−ikzdz (10.7)

and ρ31(k) = ρ11(k) and ρ13(k) = ρ33(k).
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The global relations are

ρ11(k) + ρ12(k) + ρ13(k) = 0, k ∈ R,

ρ31(k) + ρ32(k) + ρ33(k) = 0, k ∈ R,
(10.8)

which are equivalent, and

ρ21(k) + ρ22(k) + ρ23(k) = 0, k ∈ −N. (10.9)

Similar expressions to (10.3)-(10.9) can be written for ĝ′(z) (and ρ̂mn(k), m,n = 1, 2, 3).

We write

ĝ′(z) =
1

2π

∫
L1

ρ̂11(k)e
ikzdk

− 1

2πi

[∫
L1

ρ̂22(k)

1− e2πik
1

(z − z0)k+1
dk +

∫
L2

ρ̂22(k)

(z − z0)k+1
dk +

∫
L3

ρ̂22(k)e
2πik

1− e2πik
1

(z − z0)k+1
dk

]

+
1

2π

∫
L2

ρ̂33(k)e
ikzdk,

(10.10)

where the three spectral functions are given by

ρ̂11(k) =

∫ ∞

−∞
ĝ′(z)e−ikzdz, ρ̂22(k) = −

∮
|z−z0|=1

ĝ′(z)(z − z0)
kdz (10.11)

and

ρ̂33(k) =

∫ −∞+ih

∞+ih

ĝ′(z)e−ikzdz. (10.12)

The remaining elements of the matrix of spectral functions are given by

ρ̂21(k) =

∫ ∞

−∞
ĝ′(z)(z − z0)

kdz, ρ̂23(k) =

∫ −∞+ih

∞+ih

ĝ′(z)(z − z0)
kdz, (10.13)

ρ̂12(k) = ρ̂32(k) = −
∮
|z−z0|=1

ĝ′(z)e−ikzdz (10.14)

and ρ̂31(k) = ρ̂11(k) and ρ̂13(k) = ρ̂33(k).
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The global relations are

ρ̂11(k) + ρ̂12(k) + ρ̂13(k) = 0, k ∈ R,

ρ̂31(k) + ρ̂32(k) + ρ̂33(k) = 0, k ∈ R,
(10.15)

which are equivalent, and

ρ̂21(k) + ρ̂22(k) + ρ̂23(k) = 0, k ∈ −N. (10.16)

10.4 Boundary conditions

The no-slip boundary condition on z = z (lower channel wall) is given by (3.19). Substi-

tution of (10.1) gives

− f̂(z) + zf̂ ′(z) + ĝ′(z) = fs(z)− zf ′
s(z)− g′s(z). (10.17)

Similarly, the no-slip boundary condition on z = z − 2ih (upper channel wall) can be

written as

− f̂(z) + (z − 2ih)f̂ ′(z) + ĝ′(z) = fs(z)− (z − 2ih)f ′
s(z)− g′s(z). (10.18)

Finally, the boundary condition on |z − z0| = 1 can be written as

− f(z) +

(
z0 +

1

z − z0

)
f ′(z) + g′(z) = U − iΩ

1

z − z0
. (10.19)

Substitution of (10.1) and solving for ĝ′(z) gives

ĝ′(z) = f̂(z)−
(
z0 +

1

z − z0

)
f̂ ′(z)

+ fs(z)−
(
z0 +

1

z − z0

)
f ′
s(z)− g′s(z) + U − iΩ

1

z − z0
.

(10.20)
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10.5 Spectral analysis

10.5.1 Fourier transforms

We multiply (10.17) by e−ikz and integrate along the lower boundary:

−
∫ ∞

−∞
f̂(z)e−ikzdz +

∫ ∞

−∞
zf̂ ′(z)e−ikzdz +

∫ ∞

−∞
ĝ′(z)e−ikzdz = R1(k), (10.21)

where

R1(k) ≡
∫ ∞

−∞
[fs(z)− zf ′

s(z)− g′s(z)]e
−ikzdz. (10.22)

This can be written in terms of the spectral functions as

− ρ11(−k)− ∂[kρ11(k)]

∂k
+ ρ̂11(k) = R1(k). (10.23)

Similarly if we multiply (10.18) by e−ikz and integrate along the upper boundary we find

− e2khρ13(−k)− ∂[kρ13(k)]

∂k
+ 2khρ13(k) + ρ̂13(k) = R3(k), (10.24)

where

R3(k) ≡
∫ −∞+ih

∞+ih

[fs(z)− (z − 2ih)f ′
s(z)− g′s(z)]e

−ikzdz. (10.25)

Addition of (10.23) and (10.24) and use of the first global relation (10.8) gives (after some

algebra):

ρ11(k) =
2khW (k)− (e2kh − 1)W (−k)

Δ(k)
, for k ∈ R, (10.26)

where

W (k) = −e2khρ12(−k)− ∂[kρ12(k)]

∂k
+ 2khρ12(k) + ρ̂12(k) +R(k), (10.27)

with

R(k) = R1(k) +R3(k) (10.28)
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and

Δ(k) ≡ 4(sinh2(hk)− h2k2). (10.29)

But

ρ11(k) =

∫ ∞

−∞
f̂(z)e−ikzdz (10.30)

and therefore taking inverse Fourier transform, we find

f̂(z) =
1

2π

∫ ∞

−∞
ρ11(k)e

ikzdk =
1

2π

∫ ∞

−∞

[
2khW (k)− (e2kh − 1)W (−k)

Δ(k)

]
eikzdk,

(10.31)

for z = x ∈ R. This expression gives a relation between the unknown function f̂(z) on

the lower channel wall in terms of quantities on the cylinder. Note that, using (10.31) in

(10.17), the correction function ĝ′(z) on the lower channel wall can be also expressed in

terms of spectral functions associated to the cylinder. But, near k = 0,

Δ(k) ∼ O(k4) (10.32)

which means that, if we define

L(k) ≡ 2khW (k)− (e2kh − 1)W (−k), (10.33)

then we must require

L(0) = L′(0) = L′′(0) = L′′′(0) = 0 (10.34)

in order to remove the singularity at k = 0 of the integrand in (10.31).

A similar expression to (10.31) can be written for f̂(z) on the upper channel wall. In fact,

using the first global relation in (10.8), we can write

ρ13(k) =

∫ −∞+ih

∞+ih

f̂(z)e−ikzdz = −ρ11(k)− ρ12(k), for k ∈ R. (10.35)
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Again, taking inverse Fourier transform, we find

f̂(z) =
1

2π

∫ ∞

−∞
[ρ11(k) + ρ12(k)] e

ikzdk, (10.36)

for z = x+ih, x ∈ R. Using (10.26), this expression gives a relation between the unknown

function f̂(z) on the upper channel wall in terms of quantities on the cylinder. Similarly,

using (10.36) in (10.18), the correction function ĝ′(z) on the lower channel wall can be

expressed in terms of spectral functions associated to the cylinder.

10.5.2 Mellin-type transforms

Function f̂(z): The second global relation given by (10.9):

ρ21(k) + ρ22(k) + ρ23(k) = 0, k ∈ −N, (10.37)

can be written as

∫ ∞

−∞
f̂(z)(z − z0)

−ndz+

∫ −∞+ih

∞+ih

f̂(z)(z − z0)
−ndz−

∮
|z−z0|=1

f̂(z)(z − z0)
−ndz = 0, n ∈ N.

(10.38)

Substitution of (10.31) and (10.36) on their respective integrals gives

∮
|z−z0|=1

f̂(z)(z − z0)
−ndz =

∫ ∞

−∞

[
1

2π

∫ ∞

−∞
ρ11(k)e

ikzdk

]
(z − z0)

−ndz

+

∫ −∞+ih

∞+ih

[
1

2π

∫ ∞

−∞
[ρ11(k) + ρ12(k)] e

ikzdk

]
(z − z0)

−ndz,

(10.39)

which, after changing the order of integration, can be written as

∮
|z−z0|=1

f̂(z)(z − z0)
−ndz =

∫ ∞

−∞
ρ11(k)I1(k, n)dk +

∫ ∞

−∞
[ρ11(k) + ρ12(k)] I2(k, n)dk,

(10.40)
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for n ∈ N, where we have defined

I1(k, n) ≡ 1

2π

∫ ∞

−∞

eikz

(z − z0)n
dz, I2(k, n) ≡ 1

2π

∫ −∞+ih

∞+ih

eikz

(z − z0)n
dz. (10.41)

Using residue calculus, it can be shown that, for n = 1,

I1(k, 1) =
1

2π

∫ ∞

−∞

eikz

(z − z0)
dz =

⎧⎪⎪⎨
⎪⎪⎩

ieikz0 , k > 0,

i/2, k = 0,

0, k < 0,

(10.42)

and, for n ≥ 2,

I1(k, n) =
1

2π

∫ ∞

−∞

eikz

(z − z0)n
dz =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

inkn−1eikz0

(n− 1)!
, k ≥ 0,

0, k < 0.

(10.43)

Similarly, for n = 1, we have

I2(k, 1) =
1

2π

∫ −∞+ih

∞+ih

eikz

(z − z0)
dz =

⎧⎪⎪⎨
⎪⎪⎩

0, k > 0,

i/2, k = 0,

ieikz0 , k < 0,

(10.44)

and, for n ≥ 2,

I2(k, n) =
1

2π

∫ −∞+ih

∞+ih

eikz

(z − z0)n
dz =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, k ≥ 0,

inkn−1eikz0

(n− 1)!
, k < 0.

(10.45)

Function ĝ′(z): The second global relation for ĝ′(z) (similar to (10.9)):

ρ̂21(k) + ρ̂22(k) + ρ̂23(k) = 0, k ∈ −N, (10.46)
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which can be equivalently expressed as

∮
|z−z0|=1

ĝ′(z)(z − z0)
−ndz =

∫ ∞

−∞
ĝ′(z)(z − z0)

−ndz+

∫ −∞+ih

∞+ih

ĝ′(z)(z − z0)
−ndz, n ∈ N.

(10.47)

But for ĝ′(z) on the channel boundaries, we can use the boundary conditions (10.17) and

(10.18) and the (inverse Fourier transform) representations for f̂(z) found previously to

express ĝ′(z) in terms of quantities integrated on the cylindrical boundary. It can be shown

that∮
|z−z0|=1

ĝ′(z)(z − z0)
−ndz =

∫ ∞

−∞
ρ11(k)I1(−k, n)dk +

∫ ∞

−∞
[ρ11(k) + ρ12(k)]e

−2khI2(−k, n)dk

+ 2inh

∫ ∞

−∞
[ρ11(k) + ρ12(k)]I2(k, n+ 1)dk

+ (n− 1)ρ22(−n) + nz0ρ22(−n− 1) + B(n) + C(n), n ∈ N,

(10.48)

with

B(n) ≡
∫ ∞

−∞
[fs(z)− zf ′

s(z)− g′s(z)](z − z0)
−ndz,

C(n) ≡
∫ −∞+ih

∞+ih

[fs(z)− (z − 2ih)f ′
s(z)− g′s(z)](z − z0)

−ndz,

(10.49)

where we have used the global relation (10.9).

10.6 Solution scheme

From the spectral analysis of the previous section, we have found conditions (10.40) and

(10.48) which are both valid for n ∈ N. In this section, we show how using these conditions
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and a Laurent series expansion for f̂(z) on the cylindrical boundary, one can formulate a

linear system for the unknown coefficients and parameter λ. The solution of this linear sys-

tem gives the unknown boundary data on the cylinder and this is sufficient to compute the

mobility matrix (as we will see in a subsequent section). However, in general, the solution

in the fluid domain is required; in this case, once the unknown data on the cylinder is found,

all the spectral functions can be computed by back-substitution in various relations.

10.6.1 Function representation

We use a Laurent series expansion to represent f̂(z) on |z − z0| = 1:

f̂(z) =
∞∑

m=−∞
am(z − z0)

m, (10.50)

where the coefficients {am|m ∈ Z} are to be found. Using (10.50), it can be shown that

ρ12(k) =
∞∑

m=−∞
am[T (k,m)],

ρ̂12(k) =
∞∑

m=−∞
am[Y (k,m)] +

∞∑
m=−∞

am[V (k,m)] + S(k),

(10.51)

with

Y (k,m) = mz0 T (k,m− 1)−mT (k,m− 2), (10.52)

V (k,m) = T (k,−m). (10.53)

Expressions T (k,m), Y (k,m) and V (k,m) are given by (9.42), (9.46) and (9.47).
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10.6.2 Formulation of the linear system

Conditions (10.40): Using the function representation presented in the previous subsection

and ρ12(k) and ρ̂12(k) written as infinite series, these conditions can be expressed as

an−1 =
∞∑

m=−∞
amAnm +

∞∑
m=−∞

amBnm + Cn, n = 1, 2, ..., (10.54)

where

Anm =
1

2πi

∫ ∞

−∞
P (k,m)I1(k, n)dk

+
1

2πi

∫ ∞

−∞
[P (k,m) + T (k,m)]I2(k, n)dk, (10.55)

Bnm =
1

2πi

∫ ∞

−∞
Q(k,m)[I1(k, n) + I2(k, n)]dk, (10.56)

Cn =
1

2πi

∫ ∞

−∞
N(k)[I1(k, n) + I2(k, n)]dk, (10.57)

with

P (k,m) =
2khw1(k,m)− (e2kh − 1)w2(−k,m)

Δ(k)
,

Q(k,m) =
2khw2(k,m)− (e2kh − 1)w1(−k,m)

Δ(k)
,

N(k) =
2khw3(k)− (e2kh − 1)w3(−k)

Δ(k)
,

(10.58)
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and

w1(k,m) = −∂[kT (k,m)]

∂k
+ 2khT (k,m) + Y (k,m),

w2(k,m) = −e2khT (−k,m) + V (k,m),

w3(k) = S(k) +R(k).

(10.59)

Note that terms {Cn|n = 1, 2, ...} contain the unknown complex parameter λ. Conditions

(10.54) together with their complex conjugates are added to the linear system.

Conditions (10.48): Similarly, these can be expressed as:

(n−1)an−1+2nz0an−(n+1)an+1+a−n+1 =
∞∑

m=−∞
amA

′
nm+

∞∑
m=−∞

amB
′
nm+C

′
n, (10.60)

for n = 1, 2, ..., and where

A′
nm =

1

2πi

∫ ∞

−∞
Q(−k,m)[I1(k, n) + e2khI2(k, n)]dk

+
nh

π

∫ ∞

−∞
[P (k,m) + T (k,m)]I2(k, n+ 1)dk,

(10.61)

B′
nm =

1

2πi

∫ ∞

−∞
P (−k,m)I1(k, n)dk

+
1

2πi

∫ ∞

−∞
[P (−k,m) + T (−k,m)]e2khI2(k, n)dk

+
nh

π

∫ ∞

−∞
Q(k,m)I2(k, n+ 1)dk,

(10.62)
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C ′
n =

1

2πi

∫ ∞

−∞
N(−k)[I1(k, n) + e2khI2(k, n)]dk

+
nh

π

∫ ∞

−∞
N(k)I2(k, n+ 1)dk

+
1

2πi
[B(n) + C(n)− A(n)],

(10.63)

with

A(n) ≡
∮
|z−z0|

[
fs(z)−

(
z0 +

1

z − z0

)
f ′
s(z)− g′s(z) + U − iΩ

1

z − z0

]
(z − z0)

−ndz,

(10.64)

Conditions (10.60) together with their complex conjugates are added to the linear system.

Conditions at k = 0: We must require

L(0) = L′(0) = L′′(0) = L′′′(0) = 0, (10.65)

with L(k) given by

L(k) ≡ 2khW (k)− (e2kh − 1)W (−k). (10.66)

Note, however, that these would require computation of the first few terms in the Taylor ex-

pansion of L(k) which is a complicated expression. To avoid this, the following equivalent

conditions which can be computed numerically are added to the linear system:

∮
|k|=ε

L(k)

ks
dk = 0, for s = 1, 2, 3, 4, (10.67)

where ε is a small constant.

The linear system consisting of (10.54) and (10.60) together with (10.67) and their complex

conjugates is solved for {am|m ∈ Z} and the complex parameter λ (and their complex

conjugates).
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10.7 Computation of the mobility matrix

Once {am|m ∈ Z} and λ are computed, we can calculate all elements of the mobility ma-

trix, i.e. forces and torque acting on the cylinder for given translational/angular velocities.

The formulae for computing the forces and torque on the cylinder are the same to those

found in the previous Chapter; they are given by

F = −8πηλ, T = 2η Re

[
2πiz0λ+

∮
|z−z0|=1

(z − z0)g
′′(z)dz

]
. (10.68)

To determine the mobility matrix, we consider, as previously, the following cylinder mo-

tions: (a) motion parallel to the channel wall, i.e. U = U , Ω = 0, (b) motion to/away from

the channel walls, i.e. U = −U , Ω = 0 and (c) pure rotation, i.e. U = 0, Ω �= 0. Our

results show agreement to the results obtained by Jeong & Jang [58] for these three differ-

ent cylinder motions. In addition, if the cylinder is placed near the lower channel wall and

the upper boundary is located at a large distance h away from the lower boundary, then the

mobility matrix converges to Jeffrey & Onishi’s [53] results for a translating and rotating

cylinder above a wall.

10.8 Summary

We have presented a transform approach for solving a Stokes flow problem in a doubly

connected circular domain. The problem considered was that of a translating and rotat-

ing cylinder in a channel. This problem was previously solved by Jeong & Jang [58] using

Papkovich-Fadle eigenfunction expansion and a least square method. The idea of our trans-

form approach was to consider the fluid region as being the intersection of two half-planes

and the exterior of unit disc, write an appropriate integral representations for the unknown

correction functions f̂(z), ĝ′(z) and proceed to spectral analysis to determine the unknown

boundary data and spectral functions. Our results were checked to Jeong & Jang’s [58] and

Jeffrey & Onishi’s [53] (for large h) solutions.
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z0

U
Ω

Figure 10.2: A translating and rotating cylinder centred at z0 in a wedge geometry.

An interesting further application of our transform approach would be to consider a trans-

lating and rotating cylinder in a wedge, as illustrated in Figure 10.2 and analyze the problem

using Mellin tranforms. We mention the work by Kim [66] who considered a cylinder lo-

cated and translating along the centre-line of the wedge and computed the drag and the

velocity field of the cylinder using an approximation technique.
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Chapter 11

Conclusion

In this thesis we have presented a transform approach for solving biharmonic boundary

value problems and shown its implementation in various Stokes flow problems in polyg-

onal and circular domains. Specifically, we analyzed problems in simply- and multiply-

connected circular domains previously solved using other techniques and presented a sys-

tematic approach to solve them. It should be noted that similar ideas can be used to solve

problems in plane elasticity, since the associate stress field also satisfies the biharmonic

equation. Our approach was based on the Unified transform method (Fokas [38, 39]).

Fokas & Kapaev [42, 43] presented a transform method for solving Laplace’s equation in

polygonal domains. Recently, Crowdy [18] has presented an alternative derivation of the

associated transform pairs for Laplace’s equation in polygonal domains and has extended

the method to circular domains. Our analysis in this thesis follows the latter work.

We firstly showed how to use our transform approach to solve boundary value problems in

the half-plane; we showed how to solve the problem of a point singularity above a no-slip

wall and above a wall with mixed boundary conditions. In the first case, we were able to

retrieve the exact solution which can be found using a method of images approach. In the

second case, we analyzed the problem in the half-plane subject to mixed boundary condi-

tions along the real axis: no-slip along the negative real axis and no-shear stress along the

positive one and solved this problem using the transform method for polygonal domains

and Riemann-Hilbert problem techniques along the real axis.
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In Chapter 5, we solved two mixed-type boundary value problems which were previously

solved using the Wiener-Hopf technique by Luchini et al. [78] and Jeong [54]. The model

problems involved a shear flow past a periodic array of semi-infinite flat plates: if the shear

flow was longitudinal, the boundary value problem was for a harmonic field; if the shear

flow was transverse a biharmonic field was relevant. The idea of our transform approach

for these Wiener-Hopf problems was, firstly, to split the domain into sub-polygons (semi-

strips) and solve each sub-problem separately using the transform method for polygonal

domains. Then we analyzed the boundary conditions by performing spectral analysis and

imposing continuity conditions across the common edge. The analysis of spectral rela-

tions provided conditions at distinct points in the spectral k-plane satisfied by a reduced

set of spectral functions (those related to the edge of finite length). These conditions were

sufficient to determine the unknown boundary data. Importantly, we used an appropriate

function representation for the unknown boundary data on the edge of finite length which

accounted for the square-root singularities associated with points where boundary condi-

tions changed type. A linear system was solved for the unknown coefficients of the series

expansion(s) and slip length λ. Once this was solved, all the spectral functions followed by

back-substitution into the spectral relations.

Next, we analyzed the problem of a periodic array of point stresslets in a two-dimensional

channel geometry. The key idea of our transform approach was again to obtain conditions

at some special points in the spectral k-plane satisfied by a reduced number of spectral

functions. These conditions were found by performing spectral analysis of the boundary

and periodicity conditions and analyzing the obtained relations between spectral functions.

By exploiting the analyticity of the spectral functions, we obtained conditions on the spec-

tral functions associated to one of the vertical ‘boundaries’ of the period window. Using

series expansions to represent the unknown boundary data on that edge, we showed that the

set of conditions obtained was sufficient to determine the solution.

In Chapter 7, we discussed how Stokes flow problems in more complex channel geometries

can be solved by decomposing the problem domain into semi-strips and rectangles, simi-
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lar to problems presented in Chapter 5 and 6. In summary, the main steps to be followed

when solving problems in polygonal domains are: (a) domain splitting into subproblems

which can be analysed using the transform method for polygonal domains, (b) analysis of

the boundary and continuity conditions, (c) spectral analysis to obtain information on a re-

duced set of spectral functions and (d) solution scheme and function representation to form

linear systems which can be easily solved numerically.

In Chapters 8-10, we analyzed problems in circular domains; whose boundaries consisted

of a combination of straight and circular edges, First, we solved a problem previously ana-

lyzed by Davis & O’Neill [30]. This concerned a stagnation point flow past a semicircular

ridge. The idea of our transform approach was to consider the fluid region as being the

intersection of the upper half-plane and the exterior of the unit disc centred at the origin,

write an appropriate integral representations for the unknown correction functions f̂(z),

ĝ′(z) and proceed to spectral analysis to determine the unknown boundary data and spec-

tral functions. Our method was checked against Davis & O’Neill’s [30] solution.

Next, we solved the problem of a translating and rotating cylinder near a wall, previously

solved by Jeffrey & Onishi [53]. The idea of our transform approach was to consider the

fluid region as being the intersection of the upper half-plane and the exterior of unit disc,

write an appropriate integral representations for the unknown correction functions f̂(z),

ĝ′(z) and proceed to spectral analysis to determine the unknown boundary data and spec-

tral functions. Our method was checked against Jeffrey & Onishi’s [53] solution (Crowdy

[14]) and results were found to be in good agreement. Finally, we considered the problem

of a translating and rotating cylinder in a channel geometry. Following similar steps as

previously, we obtained the unknown boundary data and checked our results to Jeong &

Jang’s [58] and Jeffrey & Onishi’s [53] solutions.

An important step of our transform approach was the numerical part and the choice of the

basis expansion to represent unknown boundary data along edges of finite length. Other

studies where numerical methods were used to solve problems using the Unified transform

method include the study by Smitheman et al. [100] who introduced a spectral collocation
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method in which a spectral analysis of the boundary conditions and use of the global rela-

tions gives a linear system to determine the unknown boundary data. They found that the

efficacy of their numerical scheme was related to the basis choice (Fourier, Chebyshev etc.)

used to represent the unknown boundary data. Fornberg & Flyer [46] presented an alter-

native numerical approach based on Legendre expansions of the unknown boundary data

on polygonal boundary segments. More recently, Hashemzadeh, Fokas & Smitheman [49]

proposed a numerical technique for linear elliptic partial differential equations in bounded

polygonal domains and gave formulae for best choosing the collocation k-points for which

to evaluate the global relations.

In this thesis, we have used different basis expansions to represent unknown boundary data:

Chebyshev-like expansions (Chapter 5), Fourier (Chapter 6), Chebyshev (Chapter 8) and

Laurent series expansions (Chapters 9-10). We conclude by proposing an empirical rule for

choosing the basis expansion when solving a biharmonic boundary value problem; if the

unknown boundary data is a periodic function or if the Goursat functions are singularity-

free at the endpoints, then Fourier type basis should be chosen (Chapter 6). If there is a

known singularity structure at the endpoints which can be parametrized as done in Chapter

5, then a Chebyshev-like expansion should be used. If the unknown boundary data must

be represented along circular boundaries, then Laurent series expansions should be used.

Finally, if the singularity structure at the endpoints is complex (e.g. formation of Moffatt

eddies near corners [85]), then a Chebyshev basis expansion should be used.

The aim of this thesis was to present a general and systematic approach for solving bihar-

monic boundary value problems in polygonal and circular domains. The main steps of our

transform approach were: domain splitting (if required) and transform representation in

each domain, analysis of the boundary conditions, spectral analysis and solution scheme

and function representation. A number of Stokes flow and plane elasticity problems which

can be solved using our transform method (following the main steps stated above) have

been presented at the end of each chapter.
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Appendix A

Spectral representation of the

Weierstrass P-function

In this appendix, we present our transform approach for polygonal domains to solve a

problem in a doubly-period domain. The problem considered concerns the Weierstrass

P-function (Abramowitz & Stegun [5]). Our aim is to show that our transform approach

can also be used to solve problems in doubly-periodic domains, as well as to see how the

doubly-periodicity nature of the problem provides conditions between the spectral func-

tions which can be used to solve the problem.

Although the problem presented in this appendix is not a biharmonic boundary value prob-

lem, it is expected that similar ideas can be used to solve doubly-periodic biharmonic

boundary value problems - for example, to find spectral representations for doubly-periodic

arrays of Stokes flow singularities.

A.1 The Weierstrass P-function

The Weierstrass P-function (Abramowitz & Stegun [5]) is a doubly-periodic and meromor-

phic function with second-order poles at points z = z0+nl+imh, n,m ∈ Z with l, h > 0,

where z0 is in the interior of the period rectangle shown in Figure A.1. If we denote it by
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f(z), then we can write

f(z) =
1

(z − z0)2
+ f̂(z), (A.1)

where f̂(z) is analytic in the period rectangle and which must ensure that f(z) has the

following properties

f(z + l) = f(z), f(z + ih) = f(z). (A.2)

In the following subsections, we will show that the analytic correction function f̂(z) can

be found using our transform approach for polygonal domains.

A.2 Problem formulation and solution

Consider a period rectangle x ∈ [0, l] and y ∈ [0, h] as shown in Figure A.1.

ρ1

ρ2

ρ3

ρ4

0 l

ih l + ih

z0

Figure A.1: Schematic of a period window and associated spectral functions.

Let

f(z) =
1

(z − z0)2
+ f̂(z), (A.3)

where f̂(z) is to be determined so that f(z) is a doubly periodic function with periods l

and h:

f(z + l) = f(z), f(z + ih) = f(z). (A.4)

We only expect to determine f̂(z) up to an arbitrary constant since it is clear that any con-
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stant can be added to f̂(z) and (A.4) will still hold.

Transform representation: We can write the following integral representation for f̂(z):

f̂(z) =
1

2π

[∫ ∞

0

ρ1(k)e
ikzdk +

∫ −i∞

0

ρ2(k)e
ikzdk +

∫ −∞

0

ρ3(k)e
ikzdk +

∫ i∞

0

ρ4(k)e
ikzdk

]
,

(A.5)

where ρj(k), j = 1, 2, 3, 4 are the spectral functions defined by

ρ1(k) =

∫ l

0

f̂(z)e−ikzdz,

ρ2(k) =

∫ l+ih

l

f̂(z)e−ikzdz,

ρ3(k) =

∫ ih

l+ih

f̂(z)e−ikzdz,

ρ4(k) =

∫ 0

ih

f̂(z)e−ikzdz.

(A.6)

Spectral analysis: We integrate the x-periodicity condition along −L4 we find

∫ ih

0

e−ikzf(z + l)dz =

∫ ih

0

e−ikzf(z)dz (A.7)

which can be rewritten as

∫ ih

0

e−ikz

[
1

(z + l − z0)2
− 1

(z − z0)2

]
dz =

∫ ih

0

e−ikz[f̂(z)− f̂(z + l)]dz. (A.8)

But ∫ ih

0

e−ikzf̂(z + l)dz =

∫ l+ih

l

e−ik(u−l)f̂(u)du = eiklρ2(k), (A.9)

where we have made the substitution u = z + l. Therefore defining

R1(k) ≡
∫ ih

0

e−ikz

[
1

(z + l − z0)2
− 1

(z − z0)2

]
dz, (A.10)

then (A.8) is

− ρ4(k)− eiklρ2(k) = R1(k). (A.11)
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Similarly if we integrate the y-periodicity condition along L1 we find

∫ l

0

e−ikz[f̂(z + ih)− f̂(z)]dz = R2(k), (A.12)

where

R2(k) ≡
∫ l

0

e−ikz

[
1

(z − z0)2
− 1

(z + ih− z0)2

]
dz. (A.13)

But ∫ l

0

e−ikzf̂(z + ih)dz =

∫ l+ih

ih

e−ik(u−ih)f̂(u)du = −e−khρ3(k), (A.14)

where we have made the substitution u = z + ih. Hence

− ρ1(k)− e−khρ3(k) = R2(k). (A.15)

Global relation:

ρ1(k) + ρ2(k) + ρ3(k) + ρ4(k) = 0, k ∈ C. (A.16)

Solution scheme: Relations (A.11) and (A.15) imply that

ρ4(k) = −R1(k)− eiklρ2(k), ρ3(k) = −R2(k)e
kh − ρ1(k)e

kh, (A.17)

and on substitution of these relations into (A.16) we find

ρ1(k)[1− ekh] + ρ2(k)[1− eikl] = R1(k) +R2(k)e
kh. (A.18)

Now let {kn} denote all the non-zero solutions of

1− eikl = 0, (A.19)

namely,

kn =
2nπ

l
, n ∈ Z/{0}. (A.20)
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Then, from (A.18), we find

ρ1(kn) = Gn, (A.21)

where

Gn ≡ R1(kn) +R2(kn)e
knh

1− eknh
. (A.22)

However

ρ1(kn) =

∫ l

0

f̂(z)e−iknzdz =

∫ l

0

f̂(z)e−i2πnz/ldz, (A.23)

implying ∫ l

0

f̂(z)e−2nπiz/ldz = Gn, n ∈ Z/{0}. (A.24)

We write

f̂(z) = αz +
1

l

∑
m �=0

Cme
2mπiz/l + a0. (A.25)

Here a0 is some undetermined constant which we can, without loss of generality, take to be

zero.

Note: In general, the correction function f̂(z) can be defined as

f̂(z) = g(z) +
1

l

∑
m �=0

Cme
2mπiz/l, (A.26)

where g(z) is an analytic function (e.g. g(z) = αez) to model the ‘jump’ of the forcing

term in f(z) between points z = 0 and z = l.

Substitution of (A.25) into (A.24) gives

∫ l

0

[
1

l

∑
m �=0

Cme
2mπiz/l

]
e−2nπiz/ldz + α

∫ l

0

ze−2nπiz/ldz = Gn. (A.27)
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Using the orthogonality properties

∫ l

0

e2πi(m−n)z/ldz =

{
l if m = n,

0 otherwise.
(A.28)

expression (A.27) can be written as

Cn = Gn − αHn, n ∈ Z/{0}, (A.29)

where

Hn ≡
∫ l

0

ze−2nπiz/ldz =
il2

2nπ
. (A.30)

In addition, constant α can be found explicitly using the x-periodicity of f(z); using that

f(0) = f(l), we find

α =
1

l

[
1

z20
− 1

(l − z0)2

]
. (A.31)

Therefore, coefficients {Cn, n ∈ Z/{0}} defined by (A.29) are expressed in terms of

known quantities.

It follows that ρ1(k) is now known:

ρ1(k) =

∫ l

0

[
1

l

∑
m �=0

Cme
2mπiz/l

]
e−ikzdz + α

∫ l

0

ze−ikzdz,

=
∑
m �=0

iCm

[
1− e−ikl

2mπ − kl

]
+ α

[
il

k
e−ikl +

1

k2
(e−ikl − 1)

]
.

(A.32)

With ρ1(k) determined, ρ2(k) follows from (A.18) while ρ3(k) and ρ4(k) follow from

(A.17). Hence f̂(z) can be computed using (A.5) and therefore f(z) can be found.
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A.3 Alternative solution

We now present an alternative derivation which is based on analytic function theory; this

will provide a check of our transform approach solution.

Consider the conformal mapping

z(ζ) = − il

2π
log ζ, (A.33)

which transplants the annulus ρ < |ζ| < 1 with ρ = e−2πh/l in a parametric ζ-plane to a

period rectangle in the physical z-plane occupying the region

0 ≤ x ≤ l, 0 ≤ y ≤ h, (A.34)

as illustrated in Figure A.2.

z(ζ)
ζ0

ζ-plane

ρ 1
h

l

z0

z-plane

0

Figure A.2: Conformal mapping from the annulus ρ < |ζ| < 1 in ζ-plane to the period

rectangle in the physical z-plane occupying the region 0 ≤ x ≤ l, 0 ≤ y ≤ h.

Our aim is to find analytical expression for the Weierstrass P-function in terms of variable

ζ using analytic function theory. If required to re-express the solution in terms of z, then

we can use the inverse mapping of (A.33) which is given by

ζ = e2πiz/l. (A.35)

Next, we write

F (ζ) ≡ f(z(ζ)), (A.36)
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to represent the Weierstrass P-function which is a doubly-periodic, meromorphic function

with second-order poles at points z = z0 + nl + imh, n,m ∈ Z with l, h > 0, where z0 is

in the interior of the period rectangle shown in Figure A.2. Next, we write z0 = z(ζ0) and

using the inverse mapping, we have

ζ0 = e2πiz0/l. (A.37)

Next, we introduce the Schottky-Klein prime function associated with the annulus ρ <

|ζ| < 1 (a detailed review of associated analytic function theory is given in Crowdy [?]):

P (ζ, ρ) ≡ (1− ζ)
∞∏
n=1

(1− ρnζ)(1− ρn/ζ), (A.38)

which is a convergent infinite product expansion. It can be seen from this representation

that, P (ζ, ρ) has simple zeros at ζ = ρn, n ∈ Z. We also define

K(ζ, ρ) =
ζPζ(ζ, ρ)

P (ζ, ρ)
, (A.39)

which is related to the logarithmic derivative of P (ζ, ρ) and function L(ζ, ρ):

L(ζ, ρ) = ζKζ(ζ, ρ). (A.40)

As we will see, function L(ζ, ρ) will be used to construct the representation for the Weier-

strass P-function. It can be shown that, as ζ → ζ0,

L(ζ/ζ0, ρ) ∼ − ζ20
(ζ − ζ0)2

− ζ0
ζ − ζ0

. (A.41)

As a function of z, L(ζ/ζ0, ρ) has a double-order pole at z0. Using Taylor expansions, we

can write

z − z0 = − il

2πζ0
(ζ − ζ0) + ..., as ζ → ζ0, (A.42)
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which can be used in (A.41) to give

L(ζ/ζ0, ρ) ∼ −ζ20
[
− il

2πζ0

]2
1

(z − z0)2
, as z → z0. (A.43)

Finally, using (A.43), we can write

F (ζ) =

(
2π

l

)2

L(ζ/ζ0, ρ) + c, (A.44)

for some additive constant c. This is an alternative (and rapidly convergent) representation

of the Weierstrass P-function.

A.4 Comparison of the two methods

We have numerically checked the solutions found using the two methods (transform ap-

proach and function theory) and results were the same to within an accuracy of O(10−5)

of each other for moderate truncation parameters (e.g. in our transform approach, we take

dk = 0.01, ∞ = 10). Our transform approach solution converged to the rapidly con-

vergent function theoretic solution (A.44) as we increased the integration steps and other

parameters when numerically evaluating the solution (A.5).

A.5 Summary

In this appendix, we presented a spectral representation of the Weierstrass P-function using

our transform approach for polygonal domains.We showed that our transform approach

can also be used to solve problems in doubly-periodic domains. Our results were checked

against an alternative (and rapidly convergent) representation of the Weierstrass P-function

found using analytic function theory. Results were found to be in good agreement. It

is expected that similar ideas can be used to solve doubly-periodic biharmonic boundary

value problems.
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Appendix B

Calculation of the torque on a cylinder

In this appendix, we present a derivation of the expression for the torque on a cylinder given

by (9.56). The torque on a cylinder centred at z0 with boundary ∂D is given by

T = Im

[
2ηi

∮
∂D

(z − z0)
dH

ds
ds

]
= Im

[
2ηi

∮
∂D

(z − z0)dH

]
, (B.1)

whereH ≡ H(z) is given by (3.38) (definition was presented in Chapter 3). On integration

by parts, this can be written as

T = Im [2ηiH(z − z0)]∂D − Im

[
2ηi

∮
∂D

Hdz

]

= η
[
H(z − z0) +H(z − z0)

]
∂D

− Im

[
2ηi

∮
∂D

Hdz

]
,

(B.2)

where the square brackets denote the change in the quantity they contain on traversing ∂D.

Using that

H(z, z) ≡ f(z) + zf ′(z) + g′(z), (B.3)

we find, after some algebra, that expression (B.2) can be simplified to

T = 2η Re

[∮
∂D

(z − z0)g
′′(z)dz

]
− η

[∮
∂D

z0df + z0df

]
. (B.4)

For the translating and rotating cylinder of unit radius presented in Chapters 9 and 10,
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function f(z) was represented by

f(z) = λ log(z − z0) + single-valued components, (B.5)

which means that expression (B.4) for a cylinder of unit radius centred at z0 can further be

simplified to

T = 2η Re

[
2πiz0λ+

∮
|z−z0|=1

(z − z0)g
′′(z)dz

]
. (B.6)
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