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In this thesis, two topics in portfolio management have been studied: utility-

risk portfolio selection and a paradox in time consistency in mean-variance prob-

lem.

The first topic is a comprehensive study on utility maximization subject to

deviation risk constraints. Under the complete Black-Scholes framework, by us-

ing the martingale approach and mean-field heuristic, a static problem includ-

ing a variational inequality and some constraints on nonlinear moments, called

Nonlinear Moment Problem, has been obtained to completely characterize the

optimal terminal payoff. By solving the Nonlinear Moment Problem, the various

well-posed mean-risk problems already known in the literature have been revis-

ited, and also the existence of the optimal solutions for both utility-downside-risk

and utility-strictly-convex-risk problems has been established under the assump-

tion that the underlying utility satisfies the Inada Condition. To the best of

our knowledge, the positive answers to the latter two problems have long been

absent in the literature. In particular, the existence of an optimal solution for

utility-semivariance problem, an example of the utility-downside-risk problem, is

in substantial contrast to the nonexistence of an optimal solution for the mean-
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semivariance problem. This existence result allows us to utilize semivariance as a

risk measure in portfolio management. Furthermore, it has been shown that the

continuity of the optimal terminal wealth in pricing kernel, thus the solutions in

the binomial tree models converge to the solution in the continuous-time Black-

Scholes model. The convergence can be applied to provide a numerical method

to compute the optimal solution for utility-deviation-risk problem by using the

optimal portfolios in the binomial tree models, which are easily computed; such

numerical algorithm for optimal solution to utility-risk problem has been absent

in the literature.

In the second part of this thesis, a paradox in time consistency in mean-

variance has been established. People often change their preference over time,

so the maximizer for current preference may not be optimal in the future. We

call this phenomenon time inconsistency or dynamic inconsistency. To manage

the issues of time inconsistency, a game-theoretic approach is widely utilized to

provide a time-consistent equilibrium solution for dynamic optimization problem.

It has been established that, if investors with mean-variance preference adopt the

equilibrium solutions, an investor facing short-selling prohibition can acquire a

greater objective value than his counterpart without the prohibition in a buoyant

market. It has been further shown that the pure strategy of solely investing in

bond can sometimes simultaneously dominate both constrained and unconstrained

equilibrium strategies. With numerical experiments, the constrained investor can

dominate the unconstrained one for more than 90% of the time horizon. The

source of paradox is rooted from the nature of game-theoretic approach on time

consistency, which purposely seeks for an equilibrium solution but not the ultimate

maximizer. Our obtained results actually advocate that, to properly implement

the concept of time consistency in various financial problems, all economic aspects

should be critically taken into account at a time.
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Chapter 1

Introduction

Since the first introduction in Markowitz (1952), portfolio management has be-

come one of the key research topics in finance. In financial markets, investors

always have to make decisions on asset allocations and plan for the future. In-

vesting more proportion of wealth in a more risky asset can enhance the expected

portfolio payoff, meanwhile, it also increases the uncertainty on the portfolio pay-

off, called “portfolio risk”. Portfolio management is a study on striving for an

optimal portfolio which maintains an ideal balance between portfolio return and

portfolio risk. Hence, the research on portfolio management can provide more

effective portfolio management and monitor prevalent risks in financial markets.

Samuelson (1969) and Merton (1971) extended Markowitz’s portfolio selection

problem from single-period framework to multi-period and continuous time set-

tings respectively. Stochastic control theory is widely applied to dynamic decision

making by formulating a stochastic control problem. A portfolio adopted by the

investor is represented by a control function. An objective function, which is a

functional of the control function, is used for representing the investor’s prefer-

ence in the portfolio. Under this setting, the investor aims to choose the ideal

control function which maximizes the objective function. There are two common

approaches to solve the stochastic control problem and portfolio selection, namely,
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dynamic programming approach and martingale approach. The former approach

makes use of dynamic programming principle (DPP) to obtain the Hamilton-

Jacobi-Bellman (HJB) equation, which characterizes the optimal portfolio, by

invoking the inherent tower property. The optimal portfolio can be obtained by

solving the HJB equation using partial differential equation (PDE) methods; see

Merton (1971), Touzi (2002), and Fleming and Soner (2006) for details. Alterna-

tively, the martingale method can be applied to solve for this utility maximization

problem in a complete market, where the existence of the optimal solution can be

shown by using duality method, and then utilize the Clark-Ocone formula to seek

for the optimal weight; see Pliska (1982, 1986), Karatzas et al. (1987, 1991), Cox

and Huang (1989), and Deelstra et al. (2001) for details.

In this thesis, two topics in portfolio management have been investigated. The

first topic is a comprehensive study of the utility-deviation-risk portfolio selection

problem. In this framework, the investor aims to maximize the expected utility of

portfolio terminal payoff and to minimize the portfolio risk induced by the devi-

ation of the portfolio terminal payoff from the expected payoff at the same time.

We establish the existence and characterization results of optimal solutions to the

utility-risk problems. Furthermore, we provide a numerical algorithm to compute

the optimal solution. As the result, an optimal asset allocation which maximizes

investor’s satisfaction gained from portfolio payoff and manages the risk of the

underlying portfolio simultaneously can be obtained. The second topic concerns

the time consistency in portfolio management. People often change their prefer-

ence over time, thus, in dynamic decision making, a decision which is optimal for

the current preference however may not be optimal for the future preference. We

call this intertemporal conflict time inconsistency or dynamic inconsistency. The

continuous-time mean-variance problem is an example of time-inconsistent prob-

lems. A game-theoretic approach is commonly used to provide a time-consistent

solution, called equilibrium strategy. Our main contribution to the second topic
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1.1. Utility-risk Portfolio Selection

is a paradoxical result in the equilibrium solution to mean-variance problem: an

investor facing more investment constraints can acquire a greater objective value

than his counterpart with less. An overview of these two topics and a summary

of our work in this thesis will be described in this chapter.

1.1 Utility-risk Portfolio Selection

Expected utility and mean-variance are two common criteria for evaluating portfo-

lio performance. For example, Samuelson (1969) and Merton (1971) investigated

utility maximization problems in multi-period and continuous time settings re-

spectively, while Markowitz (1956) and Merton (1972) aimed to minimize the

variance of the portfolio return subject to a constraint on the expected return of

the terminal wealth, and they also established the efficient frontier.

The advantage of the utility maximization formulation allows a direct applica-

tion of dynamic programming or via HJB by invoking the inherent tower property.

The advantage of using mean-variance criteria is due to its relative computational

simplicity and convenience in selling in bulk to accommodate market demand;

indeed, different consumers possess different utilities towards return, but due to

the limitation of resources available, it is more convenient to sell a uniform pack-

age which can cater for the needs of most people. Levy and Markowitz (1979)

showed that the optimal portfolio in utility maximization can be approximated by

the mean-variance efficient frontier over ranges of commonly used utilities, return

rates and volatilities. Hence, the mean-variance portfolio can basically entertain

the almost optimal satisfaction of common consumers. Further studies support

this approximation; for instances, see Markowitz (1959, 2010), Pulley (1981), and

Kroll et al. (1984).

Due to the nonlinear nature of the square function of the expectation of the

terminal wealth involved in the variance, an immediate application of dynamic

3



1.1. Utility-risk Portfolio Selection

programming principle is not viable, which results that the analytic research in

mean-variance portfolio optimization is used to mainly focused on single-period

models at the first stage. The embedding technique developed by Li and Zhou

(2000) broke the ice by converting the mean-variance problems under both contin-

uous time and multi-period settings into the canonical linear-quadratic stochastic

control problems. From that point on, more complicated mean-variance problems

have also been investigated, in work such as Lim and Zhou (2002), Bielecki et al.

(2005), Chen et al. (2008) and Chen and Yang (2011).

Variance is not the only risk measure commonly adopted in the portfolio se-

lection problem. Jin et al. (2005) consider a general convex risk function of the

deviation of the terminal payoff from its own mean, by following the Lagrangian

approach as proposed in Bielecki et al. (2005), to characterize the optimal terminal

payoff, and then they applied the Clark-Ocone formula to determine the optimal

portfolio weights. Besides, they also studied the mean-downside-risk problem and

established the non-existence of an optimal solution by showing that the opti-

mal value function is unattainable by any admissible control. The downside-risk

measure can remedy the common criticism on incurring penalty on the upside

return which happens in the use of variance. Markowitz (1990) also claims that

“semivariance (an example of downside risk measure) seems more plausible than

variance as a measure of risk since it is concerned only with adverse deviations”.

In contrast to continuous time models, Jin et al. (2006) solved for the single-

period mean-semivariance portfolio selection problem. After that, the study on

the optimization problem subject to downside risk measure has been absent until

the recent study by Cao et al. (2014), in which they showed that mean-lower-

partial-moments problem possesses a positive solution if we impose a uniform

upper bound on the terminal payoff. For the relevant literature in connection

with downside risk measure and semivariance, see also Hogan and Warren (1972),

Nantell and Price (1979), Nawrocki (1999), and Steinbach (2001). Apart from
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1.1. Utility-risk Portfolio Selection

using deviation risk measure, He et al. (2015) studied continuous-time mean-risk

portfolio choice problems with general risk measures including VaR, CVaR, and

law-invariant coherent risk measures.

Turning back to reality, a number of financial crises have been observed fre-

quently over recent decades, so tighter government regulations have been enforced

in the financial market. On the other hand, the intensive competition in the

market pushes any old-fashioned profitable strategies to the edge; all of these

urge most companies to provide more tailor-made investment products in order

to maintain their profit margins. A uniform package such as the mean-variance

portfolio mentioned above can barely satisfy the demand of sophisticated investors

nowadays, and a definitive answer to utility maximization with minimal risk is

eagerly sought. Nevertheless, before our present work, the solution to this most

relevant optimization problem has still been long absent in the literature.

In Chapter 2, we first provide a comprehensive study of utility-risk portfolio

selection problems: we suggest that the objective function of portfolio selection

is not simply the expected value of a certain functional of the terminal payoff,

but it also deals with the deviation risk caused by the underlying portfolio. Note

that Jin et al. (2005) call their problem formulation mean-risk problem, though

they only consider deviation risk measure in their work, so to avoid ambiguity,

we use a single word “risk” to stand for the deviation risk measure throughout

this thesis. Our proposed problem follows the recent trend of embedding various

risk management criteria into the utility maximization framework. Such risk-

monitoring mechanisms reduce the drawback caused by the ambitious investment

strategy in pure utility maximization problems, which could lead to higher risk of

potential pecuniary loss (see Zheng, 2009). To name a few along this direction,

Basak and Shapiro (2001) first suggested implementing a Value-at-Risk (VaR)

constraint into the portfolio optimization due to the prevailing regulation on VaR

limitation. The research in Yiu (2004), Leippold et al. (2006), and Cuoco et al.
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1.1. Utility-risk Portfolio Selection

(2008) further turn the VaR limitation from a static constraint to a dynamic

one in various utility-optimization problems. Besides, Zheng (2009) studied the

efficient frontier problem of both maximizing the expected utility of the terminal

wealth and minimizing the conditional VaR of any potential loss. To the best of

our knowledge, our present work is the first attempt to apply risk management to

utility maximization subject to the deviation risk measure.

More precisely, we model the objective function as the difference of deviation

risk (function of the deviation of the terminal payoff from its own mean) from

the utility (concave increasing function of the terminal payoff); see 2.1.2. We first

follow the same idea as in Bielecki et al. (2005) and Jin et al. (2005) to convert our

dynamic optimization problem into an equivalent static problem. By considering

the first-order condition for the objective function, we can obtain a primitive static

problem, called the Nonlinear Moment Problem, which characterizes the optimal

terminal wealth with respect to the respective necessity and sufficiency results

(Sections 2.2.1 and 2.3.1), which are fundamentally different, and not equivalent

to each other. For necessity, the optimal terminal wealth satisfying two mild reg-

ularity conditions (Conditions 2.2.1 (i) and (ii)) solves for the Nonlinear Moment

Problem; while for sufficiency, the solution of the Nonlinear Moment Problem

that satisfies Condition 2.3.1 serves as the optimal terminal wealth. Note that

this Nonlinear Moment Problem includes a variational inequality (2.2.4) with a

set of constraints (2.2.5)-(2.2.7) involving the expectation of some nonlinear func-

tions of the optimal terminal wealth and its own mean, or the “mean-field term”

in the context of mean-field type control theory. The formulation of the Nonlinear

Moment Problem is motivated by the mean-field approach developed in Bensous-

san et al. (2014), in which the authors studied the classical mean-variance problem

with the aid of a novel mean-field type HJB equation. Note that the same static

problem may be obtained via the formal Lagrangian multiplier approach as in

Bielecki et al. (2005) and Jin et al. (2005).
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1.2. Numerical Valuation of Optimal Utility-risk Portfolio Payoff

With the aid of the Nonlinear Moment Problem, our necessity conditions war-

rant an alternative deduction of the non-existence result of the mean-semivariance

problem, first considered in Jin et al. (2005). On the other hand, for the applica-

tion of the sufficiency conditions together with the Nonlinear Moment Problem,

we replicate the explicit construction of the optimal solutions of various well-

posed mean-risk problems in the existing literature. Furthermore, the novelty

of our new approach allows us to establish new existence result for the optimal

solutions for a variety of utility-risk problems, especially the utility-downside-risk

(in Section 2.3.2) and the utility-strictly-convex-risk problems (in Section 2.3.3),

in which the underlying utility satisfies the common Inada Condition. To the

best of our knowledge, these problems have not been considered so far before our

work. Note that by the sufficiency result in Theorem 2.3.2, we can conclude that

there exists an optimal solution for the utility-downside-risk problem including

utility-semivariance problem, and this result is in contrast to Jin et al. (2005), in

which they find that the continuous-time mean-downside-risk problem possesses

no optimal solution at all. As a consequence, the possibility of using semivari-

ance as a natural risk measure in the portfolio selection can now be legitimately

implemented.

1.2 Numerical Valuation of Optimal Utility-risk

Portfolio Payoff

In Chapter 2, we characterize the optimal terminal wealth to utility-risk problem

using Nonlinear Moment Problem. In order to obtain explicit solutions for utility-

risk problems, we need to first obtain the explicit solution for the corresponding

system of nonlinear equations simplified from the Nonlinear Moment Problem.

Since the system consists of improper integrations of the implicit function of a

variable over the positive real line, an explicit numerical solution of the equation
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1.2. Numerical Valuation of Optimal Utility-risk Portfolio Payoff

system is usually difficult to be obtained even in the simple cases such as power-

utility-variance problems (the details can be refer to Remark 3.3.15). To compute

integration numerically, a usual approach is to discretize the domain so that the

integral can be approximated by a finite sum. In Chapter 3, we make use of this

idea in a more intuitive way in the sense that the optimal terminal payoffs for

continuous-time utility-risk problem in Chapter 2 is approximated by the optimal

terminal payoffs in the binomial tree model.

A main objective of portfolio selection is to implement the optimal portfolio

in practice, while the theoretical existence result is an intermediate achievement.

The explicit form of optimal portfolio is eagerly sought as we can compute the

optimal portfolio weight and implement the optimal portfolio directly. However,

most problems in portfolio selection do not have an explicit form of optimal port-

folio, so we may seek for some numerical method to trace the optimal solution.

Through DPP approach, the optimal portfolio can be characterized by a HJB

equation. The discrete approximation of HJB equation such as finite difference

method can be applied to obtain the optimal portfolio and its corresponding

value function. For instance, perpetual utility maximization with the respective

convergence results was studied in Fitzpatrick and Fleming (1991). For the other

literature which uses discrete approximation of HJB equation in portfolio selection

paradigm, one can consult Brennan et al. (1997) and Forsyth and Wang (2010).

Alternative, Campbell and Viceira (1999) obtain approximate closed-form solu-

tions through log-linearizing the first-order condition characterization of optimal

solution. Under the martingale approach, the optimal terminal wealth for portfo-

lio selection can be obtained, but there is no information about the corresponding

optimal portfolio. To resolve this problem, Cvitanić et al. (2003) and Detemple

et al. (2003) utilize a Monte Carlo method to simulate the optimal solutions.

Apart from discretizing the analytic characterization of optimal solution di-

rectly, we can approximate the optimal solution under continuous-time setting
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1.2. Numerical Valuation of Optimal Utility-risk Portfolio Payoff

by using the solution in discrete time model which is easier to compute. He

(1991) establish that the sequence of optimal solutions to utility maximization

under discrete-time lattice models to continuous-time diffusion model with multi

assets. The corresponding discrete-time solution is obtained by solving a partial

differential equation derived through DPP approach. The book by Prigent (2003)

provides a comprehensive study of the weak convergence of the optimal solution

obtained through the martingale method from discrete-time models to continuous

time model.

In Chapter 3, we first extend the utility-risk framework in Chapter 2 to a gen-

eralized model setting such that the dynamics of asset prices can be unspecified.

We make assumptions on the existence of pricing kernel and complete market

(see Section 3.1). In this case, the discrete binomial tree model, the continuous-

time Black-Scholes model (which is used in Chapter 2), and more complicated

stochastic interest rate model are covered (see examples in Section 3.1). In con-

trast with Chapter 2, we focus on the combinations between utility function which

satisfies the Inada conditions and strictly concavity and two types of deviation

risk measure, namely, downside risk and strictly convex risk. Under this problem

formulation, two problems will be studied in Chapter 3:

(i) The existence and uniqueness of the optimal solution.

(ii) The conditions for the convergence of the optimal solutions under different

model settings.

The numerical approximation of the optimal solution under the continuous-time

Black-Scholes model by the solutions in the binomial tree models can be justified

by verifying these models satisfy the conditions in Problem (ii).

Since the solution for Nonlinear Moment Problem in Chapter 2 depends on

market settings in terms of the pricing kernel only, the similar Nonlinear Moment

Problem with the corresponding necessity and sufficiency results can be obtained
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1.2. Numerical Valuation of Optimal Utility-risk Portfolio Payoff

(See Section 3.2) by using the martingale approach, even though the dynamics

of asset prices are not specified. Following the similar arguments in Chapter

2, we establish the existence of optimal solutions for utility-downside-risk and

utility-strictly-convex-risk problems under our generalized framework. Because of

the strictly concavity assumption, any solution to our utility-risk problem is the

unique solution. Hence, Problem (i) is resolved.

As for Problem (ii), we first establish that the optimal terminal payoff to

utility risk problem is a continuous function of pricing kernel in the sense that,

if a sequence of the pricing kernels converges weakly, the corresponding optimal

terminal payoffs under the market with such pricing kernels converge weakly to

optimal terminal payoff under the market with the corresponding pricing kernel

being the limit of the sequence of pricing kernels (see Section 3.3). Larsen and

Žitković (2007) conduct similar convergence studies on how small perturbations of

the market coefficient processes changes the optimal solution for utility maximiza-

tion. The proof of this stability result made use of convex-duality techniques. In

contrast, since the optimal terminal wealth to our utility-risk problem is in terms

of a solution of a nonlinear equation system, we prove our convergence result

in Section 3.3 by establishing the limit of the sequence of the solutions of the

equation system is finite, followed by applications of the Dominated Convergence

Theorem.

Afterward, we shall verify that the conditions in Problem (ii) are satisfied

by the pricing kernels under the discrete binomial tree market models which are

constructed from the continuous-time model in Chapter 2 (see Section 3.3.3). The

proof of weak convergence of pricing kernel is motivated by Föllmer and Schied

(2004) which establish the weak convergence of stock pricing from the binomial-

tree model to the continuous-time Black-Scholes model through an application of

the Central Limit Theorem. With the results in Section 3.3, we have a numerical

algorithm to approximate the optimal solution for the continuous-time utility-risk

10
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problem by the optimal terminal payoffs in the binomial tree model.

1.3 A Paradox in Time Consistency in Mean-

Variance Problem?

In the financial investment context, agents barely keep the same preference over

time; in contrast, they usually make an investment decision that may only be

optimal with respect to their contemporary utility while disregarding its distant

future prospect. This myopic decision may lead to some potential substantial

burden in the longer run as investors currently underestimate their future respon-

sibility. This phenomenon is described as time inconsistency in decision making.

There is a long history of the study on time consistency with intense popu-

larity. Strotz (1955) first raised the issues of time inconsistency, and considered

a continuous-time deterministic consumption problem with non-exponential dis-

count factor, which is not necessarily a constant. The Euler differential equation

obtained in his setting varies with the initial time, and so the corresponding opti-

mal path depends on the initial time (or evaluation time); however, this optimal

solution would no longer be optimal for agent’s future preference. Recall the

Bellman optimality principle (Bellman, 1957):

“An optimal policy has the property that whatever the initial state and initial

decision are, the remaining decisions must constitute an optimal policy with respect

to the state resulting from the first decision.”

The optimization problem under Strotz’s framework is time inconsistent in the

sense that it cannot satisfy the Bellman optimality principle. Loosely speaking,

a dynamic optimization is time-consistent if its maximizer is dependent solely on

the current states. With regard to this inconsistent matter, if the agent could have

a choice of reconsidering his strategy in the future and there is no commitment

11
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on his strategy, he should give up the original strategy which was only optimal at

an earlier time, and adopt another one which is contemporarily optimal at that

future time. Strotz described this agent as spendthrift1 since his behavior is

inconsistent with his original plans.

Furthermore, Strotz (1955) suggested two possible resolutions to deal with

time-inconsistency matter, namely: precommitment and consistent strategies.

Under the precommitment policy, an individual precommits his future activities

so that he will implement the optimal path even though it will then no longer be

optimal in the future. On the other hand, the consistent planning is one through

which the agent is supposed to look for “the best plan among those that he will

actually follow”. The main feature of Strotz’s consistent strategy is that the cur-

rent action is the one that makes the agent to achieve the best possible value

of his contemporary objective function under the assumption that all his future

actions shall be optimal. The Strotz’s idea was later interpreted in terms of game

theory by Peleg and Yaari (1973): we consider a time-inconsistent problem as a

non-cooperative game, in which the players of the game represent different time

points, and choose their strategy in order to maximize their own objective func-

tions; then the notion of Nash subgame perfect equilibrium of this game problem

is then used to define the “time-consistent” strategy for the original problem.

Therefore, the Strotz’s consistent planning and the corresponding time-consistent

strategy are named as game-theoretic approach and equilibrium strategy re-

spectively. Pollak (1968) supplemented Strotz’s notion by suggesting backward

recursive evaluation method, which can serve as an effective algorithm for find-

ing the time-consistent equilibrium solution. Besides, under logarithmic utility,

Pollak also showed that the equilibrium solution coincides with the spendthrift

1In economic literature such as Pollak (1968) and Maŕın-Solano and Navas (2010), the notion

of spendthrift is sometimes referred as “naive”, since the agent may be too naive to even not

recognize the time inconsistency issue.
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solution for Strotz’s problem. Goldman (1980) provided some general conditions

under which the subgame perfect equilibrium, as described in Strotz-Pollak’s work,

exists.

In summary, there are three approaches of tackling time-inconsistent problems

as described above: 1) spendthrift; 2) precommitment; and 3) game theoretic

one. In Section 4.1.2, we shall provide the mathematical descriptions of time

inconsistency and the notion of these three approaches including the definition

of equilibrium solution. The comparison among these three approaches will be

discussed through a concrete example.

It is well known that the classical mean-variance portfolio selection problem

has time-inconsistency aspects. In particular, due to the non-linearity in the ex-

pectation of the second moment in the objective function (see Björk and Murgoci,

2010), the usual Tower Property fails to hold, so the corresponding optimization

problem can never admit the Bellman optimality. For instance, the maximizer

for mean-variance problem depends on both the current and the initial states

(see Li and Zhou (2000) or Example 4.1.2 in Section 4.1.1 of the present the-

sis). Mean-variance problem under multi-period and continuous-time frameworks

were solved using precommitment approach in Li and Ng (2000) and Li and Zhou

(2000) respectively. The literature provided in Sections 1.1 and 1.2 regarding

the optimization problem which does not admit the Bellman optimality principle,

such as Bielecki et al. (2005), Jin et al. (2005), and Chen et al. (2008), and also

our work in Chapters 2 and 3 concern precommitment solution.

Apart from mean-variance problem, the consumption and saving problem sub-

ject to non-exponential discounting is a substantial topic in time consistency. The

game-theoretic approach can be utilized to solve the time inconsistency issues in

this time-inconsistent consumption and saving problem. Phelps and Pollak (1968)

first used quasi-hyperbolic discount to model intergenerational time preference in

discrete-time stationary Ramsey’s saving problem and obtained an explicit time-
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consistent equilibrium solution for isoelastic utility. This quasi-hyperbolic dis-

count is geometrically decaying across all dates except at the current date and it

has a sharp short-run drop at this time. This phenomenon reflects that people is

more impatient in the shorter term so that their discount behaves like a hyper-

bolic function; to name a few, the empirical supports on this observation can be

found in Thaler (1981), Ainslie (1992), and Loewenstein and Prelec (1992). The

study on time consistency in Ramsey’s problems under non-exponential discount

was then followed by Laibson (1997), Harris and Laibson (2001), and Krusell

and Smith (2003), over discrete-time settings; and Barro (1999), Karp (2007),

and Ekeland and Lazrak (2010) over continuous-time settings. Laibson (1997)

and Harris and Laibson (2001) characterized the equilibrium solutions by using

Euler-type equations. Karp (2007) derived the dynamic programming equation

as the necessary condition for equilibrium solutions. Ekeland and Lazrak (2010)

carried the computations in addition to that in Karp (2007), and obtained the

Hamilton-Jacobi-Bellman (HJB) equation with the corresponding verification the-

orem to characterize the equilibrium solution. The study on time consistency over

stochastic frameworks was initiated by Harris and Laibson (2001), and they stud-

ied the Ramsey’s problem with stochastic income subject to the quasi-hyperbolic

discount. Harris and Laibson (2013) later extended their previous work in Ram-

sey’s problem by introducing a randomness in the time duration of short-run

drop. Using HJB equation, Ekeland and Pirvu (2008) and Maŕın-Solano and

Navas (2010) solved the stochastic Merton investment and consumption problem

under non-exponential discount, which includes quasi-hyperbolic discount as a

special case. In addition, Maŕın-Solano and Navas (2010) compared the equilib-

rium strategy with precommitment and spendthrift strategies for specific utility

functions, namely, logarithmic, power, and exponential utilities.

The notion of equilibrium solution for continuous-time optimization problem

is more intricate than that under the discrete-time setting in which time units
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together can be interpreted as a finitely many player non-cooperative game. Eke-

land and Pirvu (2008) provided a precise mathematical definition of equilibrium

solution for the continuous-time problems among all Markovian controls by con-

sidering the limiting case when the decision-maker can commit only over each

infinitesimal unit of time. Björk and Murgoci (2010) supplemented the former

work by extending to a general class of continuous-time time-inconsistent Marko-

vian control problems. With this definition, an extended HJB equation system

was derived to characterize the equilibrium solution. Those two works allow us to

investigate more subtle problems in connection with time consistency, for instance,

see further developments in Ekeland et al. (2012), Bensoussan et al. (2014), Björk

et al. (2014), and Kronborg and Steffensen (2015).

Besides, Hu et al. (2012) extended the notion of the equilibrium control among

all open-loop controls. By using the stochastic maximum principle, they de-

rived a linear forward-backward stochastic differential equation to characterize

the equilibrium control for linear-quadratic time-inconsistent control problems.

They showed that the corresponding equilibrium strategy can sometimes, in a

broader sense, be different from that under the Björk and Murgoci’s framework.

The time-consistent solution for the classical mean-variance paradigm was first

obtained in Basak and Chabakauri (2010) through the derivation of dynamic pro-

gramming principle. On the other hand, Björk and Murgoci (2010) obtained the

same time-consistent solution through the studying of the extended HJB system.

Czichowsky (2013) later studied the mean-variance problem under a general semi-

martingale setting and obtained the time-consistent solution through taking limit

of the solutions for the corresponding discrete-time models, which can be deter-

mined by backward recursive argument. Furthermore, Basak and Chabakauri

(2012) solved the mean-variance problem on incomplete markets.

In contrast to the game theoretic approach, Pedersen and Peskir (2015) solved

the classical mean-variance problem using an alternative notion of time-consistent
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solution, which, in fact, aligns with the spendthrift approach, also see Example

4.1.4 in Section 4.1.2 for detail.

Since the common equilibrium solution of mean-variance problem with con-

stant risk aversion in Basak and Chabakauri (2010) and Björk and Murgoci (2010)

is completely independent of the current state, Björk et al. (2014) criticized that

this state-independent solution is not economically sounding as the investor puts

the same dollar amount in stock regardless of his current wealth. Therefore, Björk

et al. (2014) and Björk and Murgoci (2014) revisited the mean-variance problem

but with wealth-dependent risk aversion under continuous and discrete time set-

tings respectively. Under these new settings, they established that the equilibrium

controls are linear in the current wealth if the risk aversion varies inversely with

the current wealth. Apart from considering the state-dependent risk aversion, Wei

et al. (2013) obtained a state-dependent solution for mean-variance asset-liability

problem, in which the liability process is somehow exogenous so that the market

is incomplete.

It should be noted that the mean-variance problem with such a dependence

of risk aversion on the current wealth in Björk et al. (2014) and Björk and Mur-

goci (2014) critically relies on the positivity of the current wealth all the time.

In the absence of the confinement of short-selling prohibition, one can often find

an admissible control resulting in a negative wealth process, especially over the

discrete-time setting. The negative wealth will cause the investor’s risk aversion

to be negative which lead the investors to be risk seeking. In this case, the mean-

variance utility becomes unbounded, and the problem becomes ill-posed. Since

the obtained equilibrium portfolio in Björk et al. (2014) is only linear in wealth, its

corresponding equilibrium wealth process is a geometric Brownian motion, and

thus the process keeps positive over the time horizon almost surely. However,

in the discrete time framework with the allowance of shortselling in Björk and

Murgoci (2014), the positivity of the optimal wealth process is no longer guaran-

16



1.3. A Paradox in Time Consistency in Mean-Variance Problem?

teed even when the equilibrium strategy is linear (see Remark 2.6 in Bensoussan

et al., 2014). This ill-posed issue seems to expose the economic limitation of the

framework in Björk and Murgoci (2014); to remedy this shortcoming yet with

more economic relevance under the trend of setting tightening regulation in favor

of shortselling prohibition after the recent financial crisis, forbidding shorting of

both bonds and stocks can ensure the positivity of the corresponding equilibrium

wealth process. Hence, with the enforcement of shortselling prohibition, Ben-

soussan et al. (2014) revisited the problems of Björk et al. (2014) and Björk and

Murgoci (2014), and obtained the constrained equilibrium solutions. For other

recently interesting works on the time consistent portfolio selection under mean-

variance setting and more general time-inconsistent framework, one can consult

with Yong (2012), Cui et al. (2015), and Gu et al. (2016).

Besides, Bensoussan et al. (2014) illuminated numerically an observation that

the investor facing a shortselling prohibition (said to be constrained investor) can

even acquire a better value function than another agent without the confinement

(said to be unconstrained investor) for time-consistent mean-variance optimiza-

tion with state-dependent risk aversion; also see Table 4.2 in Section 4.1.3 for

details. This is a unusual numerical observation in optimization problem: what-

ever the constrained investor can do, the unconstrained investor must be able

to do the same, so we should expect that the unconstrained investor always has

a better value function than that of the constrained one. The similar observa-

tion was discovered in Forsyth and Wang (2011), in which they first showed with

an interesting numerical evidence that the strategy of constrained investor could

be sometimes more efficient than that of the unconstrained one. Nevertheless,

the theoretical framework for the paradigm under which similar phenomena will

reappear is still absent in the literature.

In Chapter 4, as motivated by the counter-intuitive numerical examples in

Forsyth and Wang (2011) and Bensoussan et al. (2014), we aim at providing an
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analytic study on how the constrained investor can outperform the unconstrained

investor. We illuminate analytically that, under certain economically meaning-

ful conditions which usually hold in a buoyant market, an investor facing more

investment restrictions can outperform than an investor with less:

(i) An agent can start off his constrained time-consistent strategy at a certain

time in the past or in the future which can outperform the time-consistent

one adopted by his unconstrained rival.

(ii) If the commencement is allowed to be earlier, investing all the wealth in

riskless bond can beat both equilibrium strategies adopted by constrained

and unconstrained investors respectively.

(iii) To a certain extreme, with properly chosen parameters such that the “good-

ness index” of the stock, αt
σt

, studied in Shiryaev et al. (2008) and Du Toit

and Peskir (2009), is close to the index value computed from the market

data, there could even be more than 90% of positive commencement time

over the whole time horizon so that the constrained time-consistent strategy

outperforms the unconstrained one.

The source of these paradoxical results is rooted in the nature of a direct

application of game-theoretic approach on time consistency, which seeks for the

Nash subgame perfect equilibrium of the intertemporal games between different

time-players but not the ultimate maximizer. Therefore, it is not necessary that

the equilibrium solution among a larger admissible set to have a greater value of

objective function. However, the inconsistency and paradox raised in Chapter 4

do not mean that we should give up time-consistent solution. The equilibrium

strategy does resolve the intertemporal conflict which appears in precommitment

solution, thus the study on time consistency should focus on how to obtain a

time-consistent strategy in a proper manner. It is more important to have more

extensive study on the economic meaning behind time-consistent solution, so that
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we can construct a more sophisticated time-consistent strategy which takes ac-

count of immediate economic consideration.

1.4 Outline of this Thesis

Chapter 2 studies utility-deviation-risk portfolio selection problem under continuous-

time Black-Scholes framework. In our framework, the investor aims to maximize

the expected value of utility, which is a function of the portfolio terminal payoff

representing his satisfaction, and to minimize the convex-deviation-risk measure,

used in Jin et al. (2005), simultaneously. By an application of the Martingale

Representation Theorem, we first convert our dynamic optimization problem into

an equivalent static problem. By considering the first-order optimality condi-

tions and mean-field heuristic, we characterize the optimal terminal payoff by

Nonlinear Moment Problem, which includes a variational inequality and some

equality constraints on nonlinear moments, with corresponding necessity and suf-

ficiency results. The Nonlinear Moment Problem can be further simplified into

a system of nonlinear equations. By assuming that utility function satisfies the

Inada conditions, we establish the existence of optimal solutions for both utility-

downside-risk and utility-strictly-convex-risk problems through solving the system

of equations. Moreover, the necessity and sufficiency results regarding Nonlinear

Moment Problem can be applied to revisit several mean-risk problems studied

in Jin et al. (2005), including the non-existence of optimal solution to mean-

semivariance problem. Chapter 2 is based on Wong et al. (2015).

Chapter 3 provides a numerical method to compute the optimal solution to

utility -risk problem. We first extend the utility-risk framework in Chapter 2 from

continuous-time Black-Scholes framework to generalized market framework where

the dynamics of asset prices can be unspecified. Under our generalized market

framework, the continuous-time Black-Scholes model, the discrete binomial tree
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model and the stochastic interest rate model for asset prices can be covered.

Under the generalized framework, the similar existence results as in Chapter 2

for utility-downside-risk and utility-strictly-convex-risk problem are obtained. In

addition, we establish the continuity of optimal terminal wealth in terminal pricing

kernel. The continuity result can be applied to show the convergence of optimal

solution from the binomial tree model to the continuous-time Black-Scholes model.

This convergence result provides a numerical method to approximate the optimal

solution to the continuous-time utility-risk problem in Chapter 2. Chapter 3 is

based on Wong et al. (2016).

Chapter 4 presents a paradox in time consistency in mean-variance problem.

We first introduce the time consistency and revisit the literature about mean-

variance problems through game theoretic approach, including Björk et al. (2014)

and Bensoussan et al. (2014). Motivated by the counter-intuitive numerical obser-

vations in Forsyth and Wang (2011) and Bensoussan et al. (2014) that an investor

with more investment constraints can acquire a greater objective value than an

investor with less, we establish analytically that the similar phenomenon will

reappear in a buoyant market. Moreover, we show that even the pure investment

strategy of solely investing in riskless asset can beat both equilibrium strategies

adopted by the constrained and unconstrained investors for a large enough time

horizon. With numerical experiments, we also illustrate that the constrained

investor can outperform the unconstrained one for more than 90% of the time

horizon. Finally, we shall discuss the meaning beneath our paradoxical results in

time consistency. Chapter 4 is based on Bensoussan et al. (2016).

20



Chapter 2

Utility-Risk Portfolio Selection

In this chapter, we first introduce the problem formulation in Section 2.1 and

convert our continuous-time utility-risk problem into an equivalent static formu-

lation as stated in Theorem 2.1.5. In Section 2.2, we derive the necessary condi-

tion that the optimal terminal wealth satisfying two mild regularity conditions,

Conditions 2.2.1 (i) and (ii), solves for the Nonlinear Moment Problem in Theo-

rem 2.2.2. We then apply this necessity result to revisit the non-existence result

for the mean-semivariance problem (Section 2.2.2). In Section 2.3, we establish

the verification theorem (Theorem 2.3.2), serving as the sufficient condition that

the solution of the Nonlinear Moment Problem satisfying Condition 2.3.1 serves

as the optimal terminal wealth. We then apply the sufficiency result to estab-

lish the existence of the corresponding optimal solutions for utility-downside-risk

and utility-strictly-convex-risk problems in Sections 2.3.2 and 2.3.3 respectively;

the technical proofs are deferred to the Appendix. Finally, we apply the Non-

linear Moment Problem to establish the sufficient condition for the existence of

an optimal solution of mean-risk problem in Section 2.3.4. Such sufficient con-

dition can be used to revisit the various well-known mean risk problems such

as mean-variance (Example 2.3.17), mean-weighted-power-risk (Example 2.3.18)

(which includes mean-weighted-variance and mean-variance as special cases, also
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see Remark 2.3.20) and mean-exponential-risk problems (Example 2.3.21).

2.1 Problem Setting

Let (Ω,F ,P) be a fixed complete probability space, over whichW (t) = (W1(t), . . . ,Wm(t))t

denotes m−dimensional standard Brownian motion; M t denotes the transpose of

a matrix M . We adopt the same market modeling setting as in Jin et al. (2005).

Define Ft := σ(W (s) : s ≤ t). Suppose that the market has one riskless money

account with price process B(t) and m risky assets with the joint price process,

S(t) := (S1(t), . . . , Sm(t))t, such that the pair (B(t), S(t)) satisfies the following

equations:
dB(t) = r(t)B(t)dt, B(0) = b0 > 0,

dSk(t) = µk(t)Sk(t) dt+ Sk(t)
∑m

j=1 σkj(t)dWj(t), Sk(0) = sk > 0,

k = 1, . . . ,m,

where r(t) is the riskless interest-rate, µk(t) and σk(t) := (σk1(t), . . . , σkm(t))

are respectively the appreciation rate and volatility of the k-th risky asset, all

assumed to be uniformly bounded. We also assume that the volatility matrix of

assets σ(t) := (σkj(t))m×m is uniformly elliptic, so that σ(t)σ(t)t ≥ δI for some

δ > 0, so the market is complete and (σ(t))−1 exists for all t.

Let π(t) := (π1(t), . . . , πm(t))t, where πk(t) is the money amount invested in

the k-th risky asset of the portfolio at time t. The dynamics of controlled wealth

process is:

dXπ(t) = (r(t)Xπ(t) + π(t)tα(t))dt+ π(t)tσ(t)dW (t), Xπ(0) = x0 > 0,

(2.1.1)

where α(t) := (α1(t), . . . , αm(t))t and αk(t) := µk(t)−r(t) for any k ∈ {1, . . . ,m}.

The objective functional is:

J(π) := E[U(Xπ(T ))]− γE[D (E[Xπ(T )]−Xπ(T ))], (2.1.2)
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where the terminal time T is finite and γ > 0 denotes the risk-aversion coefficient.

We denote by U a utility function such that U : Dom(U)→ R is strictly increas-

ing, concave and continuously differentiable in the interior; here the domain of U ,

D := Dom(U), is a convex set in R. Define the lower end point of the domain

D, K := inf(D) ∈ [−∞,∞). For completeness, we extend the definition of U

over R so that U(x) = −∞ for x ∈ R/D and U ′(K) := limx↓K U
′(x). Here the

function D : R → R+ stands for a risk function which measures the deviation of

the random return from its own expectation. We assume that D is non-negative,

convex and continuously differentiable.

For any given p ≥ 1, denote Lp :=
{
Z| ‖Z‖p := E[|Z|p]

1
p <∞

}
and L∞ :=

{Z| ‖Z‖∞ := supω∈Ω |Z(ω)| <∞}. Define H2 to be the class of all Ft-adapted

processes π, equipped with a norm ‖π‖2
H2 := E

[∫ T
0
π(t)tπ(t)dt

]
<∞.

Definition 2.1.1. We define the class of all admissible controls π ∈ A as follows:

A :=
{
π ∈ H2

∣∣Xπ(T ) ∈ X
}
,

where X is the class of all admissible terminal wealths, such that

X := {X ∈ L2|X ∈ FT , X ∈ D a.s., U(X) ∈ L1, D(E[X]−X) ∈ L1}.

Note that, for every admissible terminal wealth, both its expected utility and

expected deviation risk are well-defined. Since U is increasing and D is convex,

we have

|U(θx+ (1− θ)y)| ≤ |U(x)|+ |U(y)| for all x, y ∈ D and θ ∈ [0, 1];

0 ≤ D(θx+ (1− θ)y) ≤ θD(x) + (1− θ)D(y) for all x, y ∈ R and θ ∈ [0, 1].

Hence, X is a convex subspace of L2. For any admissible control π, we have

Xπ ∈ H2 and Xπ(t) ∈ L2 for any t ∈ [0, T ] by Theorems 1.2 and 2.1 in Touzi

(2013).

Under the above settings, our utility risk problem can be stated as follows:
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Problem 2.1.2.

Maximize J(π),

subject to π ∈ A and (Xπ(·), π(·)) satisfies (2.1.1) with initial wealth x0.

We define ξ(t) as

ξ(t) := exp

(
−
∫ t

0

(
r(s)ds+

1

2
α(s)t

(
σ(s)σ(s)t

)−1
α(s)ds+ α(s)t

(
σ(s)t

)−1
dW (s)

))
.

By applying Itô’s formula to ξ(t)Xπ(t), it is clear that ξ(t) is the pricing kernel.

Denote ξ := ξ(T ) ∈ Lp for any p ≥ 1. Hence, for a given initial condition

Xπ(0) = x0, E[ξXπ(T )] = x0 for any π ∈ A. If x0 < E [ξ]K, A is empty1.

If x0 = E [ξ]K, even when A is non-empty, all such π ∈ A will give the same

terminal wealth, Xπ(T ) = K a.s.2, so no actual optimization is required, thus the

corresponding problem becomes trivial. In the rest of this chapter, based on this

observation, we only consider our problem under this natural assumption:

Assumption 2.1.3. The initial wealth x0, the lower end point of D, K ∈

[−∞,∞), and pricing kernel ξ := ξ(T ) altogether satisfy:

x0 > E [ξ]K.

Note that if we choose U to be linear and D to be quadratic, i.e. U(x) = x and

D(x) = x2, then Problem 2.1.2 reduces to the classical mean-variance problem.

If we only choose U to be linear, then Problem 2.1.2 reduces to the mean-risk

problem as in Jin et al. (2005); in particular, if we alternatively choose D(x) =

ax+ +bx−, then Problem 2.1.2 reduces to the mean-weighted-variance problem. If

we just set D to be a convex function with D(x) = 0 for x ≤ 0, Problem 2.1.2 is to

maximize utility and minimize the downside risk of terminal wealth; its resolution

will be established in Subsection 2.3.2.
1If A is non-empty, we have x0 = E[ξXπ(T )] ≥ E [ξ]K since Xπ(T ) ∈ X for any π ∈ A,

which implies Xπ(T ) ≥ K a.s.
2If there exists π ∈ A such that P[Xπ(T ) > K] > 0, then x0 = E[ξXπ(T )] > E [ξ]K.
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2.2. Necessary Condition

Since our market is complete, all L2-integrable and FT -measurable terminal

wealth can be attained by an admissible control, in the light of Martingale Repre-

sentation Theorem. Our dynamic utility-risk optimization problem 2.1.2 can be

converted into the following static optimization problem:

Define Ψ : X → R such that Ψ(X) := E[U(X)]− E[D(E[X]−X)].

Problem 2.1.4.

Maximize Ψ(X), (2.1.3)

subject to X ∈ X and E[ξX] = x0.

Then, the optimal solution of Problem 2.1.4 is the optimal terminal wealth of

Problem 2.1.2:

Theorem 2.1.5 (Theorem 2.1 in Bielecki et al. (2005) and Theorem 2.1 in Jin

et al. (2005)). If π(t) is optimal for Problem 2.1.2, then Xπ(T ) is optimal for

Problem 2.1.4. Conversely, if X ∈ X is optimal for Problem 2.1.4, there exists

π ∈ A such that Xπ(T ) = X and π is optimal for Problem 2.1.2.

Note that the maximization in Problem 2.1.4 is confined to the set X , so

that the solution obtained in Problem 2.1.4 is an admissible terminal wealth in

Problem 2.1.2. Our present chapter aims to establish an admissible terminal

wealth X ∈ X that maximizes Ψ(X) under rather general scenarios, including

those not yet covered in the existing literature.

2.2 Necessary Condition

2.2.1 Maximum Principle

To show the necessity for optimality, we assume that the optimal solution of

Problem 2.1.4, X̂ ∈ X , satisfies the following two very mild technical conditions:

25



2.2. Necessary Condition

Condition 2.2.1. (i) Both U ′(Z) ∈ L1 and D′ (E[Z]− Z) ∈ L1.

(ii) There exists δ > 0 such that D (E [Z]− Z − δ) ∈ L1 and D (E [Z]− Z + δ) ∈

L1.

Now, it is necessary for X̂ to solve for the following auxiliary static problem,

we call it the Nonlinear Moment Problem:

Theorem 2.2.2 (Nonlinear Moment Problem). If X̂ is the optimal solution of

Problem 2.1.4 satisfying Conditions 2.2.1 (i) and (ii), then it is necessary that

there exist constants Y,M,R ∈ R such that the quadruple
(
X̂, Y,M,R

)
solves for

the following variational inequality:Y ξ = U ′(X̂)− γR + γD′
(
M − X̂

)
, a.s. on {X̂ > K},

Y ξ ≥ U ′(X̂)− γR + γD′
(
M − X̂

)
, a.s. on {X̂ = K} (if P[X̂ = K] > 0),

(2.2.4)

subject to the nonlinear moment constraints

E[ξX̂] = x0, (2.2.5)

E[X̂] = M, (2.2.6)

E
[
D′
(
M − X̂

)]
= R. (2.2.7)

2.2.1.1 Proof of Theorem 2.2.2

Let X̂ ∈ X be an optimal solution of Problem 2.1.4. We define Γ : L2 × D → R

by

Γ (X, x) := U ′(x)− γE [D′ (E[X]−X)] + γD′ (E[X]− x) . (2.2.8)

For simplicity of notation, in the rest of this chapter, we shall denote the random

variable Γ
(
X̂, X̂

)
by Γ̂.

To prove the necessity, we first apply the first-order conditions as stated in

Proposition 2.2.3. Next, we make use of Proposition 2.2.3 to give a preliminary
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2.2. Necessary Condition

result for characterizing the optimal solution of Problem 2.1.4, X̂, in Lemma

2.2.5: if we can find a random variable, Z, as described in Lemma 2.2.5, then it

is necessary that X̂ has to satisfy the variational inequality (2.2.4). Finally, in

Proposition 2.2.10, we construct such a Z.

Proposition 2.2.3. If X̂ is optimal for Problem 2.1.4 satisfying Condition 2.2.1

(i), then

E
[
X̃Γ̂
]
≤ 0,

for all X̃ ∈ Θ :=
{
Z ∈ L∞ |E[Zξ] = 0 and X̂ + Z ∈ X

}
.

For any X̃ ∈ Θ, by the convexity of X , X̂ + θX̃ ∈ X for all 0 < θ < 1. The

directional derivative of Ψ(X) is

d

dθ
Ψ(X̂ + θX̃)

∣∣∣∣
θ=0

=
d

dθ

(
E
[
U(X̂ + θX̃)

]
− γE

[
D
(
E[X̂ + θX̃]− (X̂ + θX̃)

)]) ∣∣∣∣
θ=0

.

Before we proceed on the proof of Proposition 2.2.3, we first justify the inter-

change of the order of differentiation and taking expectation of the above expres-

sion. To this end, we need the following lemma:

Lemma 2.2.4. Given two random variables X̂ ∈ X and X̃ ∈ L2 such that X̂ +

X̃ ∈ X ,

lim
θ↓0

E

U(X̂ + θX̃)− γD
(
E
[
X̂ + θX̃

]
− (X̂ + θX̃)

)
−
(
U(X̂)− γD

(
E
[
X̂
]
− X̂

))
θ


= E

lim
θ↓0

U(X̂ + θX̃)− γD
(
E
[
X̂ + θX̃

]
− (X̂ + θX̃)

)
−
(
U(X̂)− γD

(
E
[
X̂
]
− X̂

))
θ

 .
Proof. Since U is concave and D is convex function, so f(θ) := U(X̂ + θX̃) −

γD(E[X̂+θX̃]− (X̂+θX̃)) is concave in θ > 0. Thus, for any δ > 0, by concavity

of f , f(θ) ≥ δ
θ+δ

f(0) + θ
θ+δ

f(θ + δ), so

f(θ)− f(0)

θ
≥ f(θ + δ)− f(0)

θ + δ
.
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2.2. Necessary Condition

Hence, 1
θ

(
U(X̂ + θX̃)− γD

(
E
[
X̂ + θX̃

]
− (X̂ + θX̃)

)
−
(
U(X̂)− γD

(
E
[
X̂
]
− X̂

)))
is increasing as θ decreases to 0. Since X̂ and X̂ + X̃ are admissible terminal

wealth, thus U
(
X̂ + X̃

)
−γD

(
E
[
X̂ + X̃

]
− (X̂ + X̃)

)
and U(X̂)−γD

(
E
[
X̂
]
− X̂

)
are both L1-integrable because X̂ + X̃, X̂ ∈ X . Hence, this lemma follows from

the Monotone Convergence Theorem.

Proof of Proposition 2.2.3. By Lemma 2.2.4, the chain rule and Condition 2.2.1

(i), we have

d

dθ
Ψ(X̂ + θX̃)

∣∣∣∣
θ=0

= E
[
U ′(X̂)X̃

]
− γE

[
D′
(
E[X̂]− X̂

)(
E[X̃]− X̃

)]
= E

[
X̃Γ̂
]
. (2.2.9)

Our claim follows by the first-order necessary condition for optimality.

To characterize the optimal solution X̂, we first have the following lemma:

Lemma 2.2.5. Given that X̂ is optimal for Problem 2.1.4 satisfying Condition

2.2.1 (i), if there exists a random variable, Z ∈ [0, 1], such that the following three

items hold: Z > 0 a.s. on
{
X̂ > K

}
,

Z = 0 a.s. on
{
X̂ = K

}
(if P[X̂ = K] > 0), ,

(2.2.10)

ZξΓ̂ ∈ L1, Z
(

Γ̂− Y ξ
)
∈ L∞, and (2.2.11)

X̂ + Z
(

Γ̂− Y ξ
)
∈ X , (2.2.12)

where Y :=
E[ZξΓ̂]
E[Zξ2]

, then it is necessary that Γ̂ defined in (2.2.8) satisfies the

following algebraic structure:Γ̂ = Y ξ a.s. on
{
X̂ > K

}
,

Γ̂ ≤ Y ξ a.s. on
{
X̂ = K

}
(if P[X̂ = K] > 0).

(2.2.13)

Proof. We split our proof into two parts: (i) Γ̂ = Y ξ a.s. on
{
X̂ > K

}
, and (ii)

Γ̂ ≤ Y ξ a.s. on
{
X̂ = K

}
(if P[X̂ = K] > 0).
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2.2. Necessary Condition

(i) Take

X̃ = Z
(

Γ̂− Y ξ
)
, (2.2.14)

(2.2.11) and (2.2.12) warrants that X̃ ∈ L∞ with X̂ + X̃ ∈ X and

E[X̃ξ] = E
[
ZξΓ̂

]
− Y E[Zξ2] = 0.

By Proposition 2.2.3 and the fact that Y = E
[
ZξΓ̂

]
/E[Zξ2],

0 ≥ E
[
X̃Γ̂
]

= E
[
Z
(

Γ̂− Y ξ
)

Γ̂
]
− Y E

[
ZξΓ̂

]
+ Y 2

[
Zξ2

]
= E

[
Z
(

Γ̂− Y ξ
)2
]
.

(2.2.10) ensures that Z
(

Γ̂− Y ξ
)2

≥ 0, and therefore E
[
Z
(

Γ̂− Y ξ
)2
]

= 0,

which implies that Z
(

Γ̂− Y ξ
)2

= 0 a.s. By (2.2.10), on
{
X̂ > K

}
, Z > 0,

hence Γ̂ = Y ξ a.s. on
{
X̂ > K

}
.

(ii) If P[X̂ = K] > 0, assume the contrary that P
[
I
{
X̂ = K

}(
Γ̂− Y ξ

)
> 0
]
>

0. Consider

X̃ = kI
{
X̂ = K

}
− min{X̂ −K, 1}

2

where k := E
[(

min{X̂ −K, 1}
)
ξ
]/(

2E
[
I
{
X̂ = K

}
ξ
])

> 0 in light of

the required feasibility of X and our interest being only on non-trivial set-

ting. We have

X̂ + X̃ =

max
{
X̂+K

2
, X̂ − 1

2

}
, if X̂ > K,

K + k, if X̂ = K.

Obviously, X̃ ∈ L∞, K ≤ X̂ + X̃ ∈ D a.s. and E
[
X̃ξ
]

= 0.

Since U is monotonic,

|U(X̂ + X̃)| ≤ |U(K + k)|+

∣∣∣∣∣U
(

max

{
X̂ +K

2
, X̂ − 1

2

})∣∣∣∣∣
≤ |U(K + k)|+ |U(K)|+ |U(X̂)|.
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2.2. Necessary Condition

As P[X̂ = K] > 0 and P[X̂ = K] · |U(K)| ≤ E[|U(X̂)|] is finite, they prevent

U(K) from taking −∞. Clearly, K+k ∈ D, and so U(K+k) is finite. Since

X̂ ∈ X , we also have U(X̂) ∈ L1. These three claims altogether imply that

U(X̂ + X̃) ∈ L1.

Note that

E
[
X̂ + X̃

]
= E

[
(K + k) I[X̂ = K]

]
+ E

[
max

{
X̂ +K

2
, X̂ − 1

2

}(
1− I[X̂ = K]

)]

= kP[X̂ = K] + E

[
max

{
X̂ +K

2
, X̂ − 1

2

}]
,

we then establish the upper bound of D
(
E
[
X̂ + X̃

]
−
(
X̂ + X̃

))
into

three different cases: (1) X̂ = K, (2) K < X̂ < K + 1, and (3) X̂ ≥ K + 1.

(1) D
(
E
[
X̂ + X̃

]
−
(
X̂ + X̃

))
= D

(
E
[
X̂ + X̃

]
−K − k

)
is a finite

constant.

(2) Note that

E

[
X̂ +K

2

]
− X̂ +K

2
≤ E

[
max

{
X̂ +K

2
, X̂ − 1

2

}]
− X̂ +K

2

≤ E

[
max

{
X̂ +K

2
, X̂ − 1

2

}]
−K.
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2.2. Necessary Condition

By convexity of D, we have

D
(
E
[
X̂ + X̃

]
−
(
X̂ + X̃

))
= D

(
kP
[
X̂ = K

]
+ E

[
max

{
X̂ +K

2
, X̂ − 1

2

}]
− X̂ +K

2

)

≤ D

(
kP
[
X̂ = K

]
+ E

[
max

{
X̂ +K

2
, X̂ − 1

2

}]
−K

)

+D

(
kP
[
X̂ = K

]
+ E

[
X̂ +K

2

]
− X̂ +K

2

)

≤ C +D

kP [X̂ = K
]

+
E
[
X̂
]
− X̂

2


≤ C +D

kP [X̂ = K
]

+
E
[
X̂
]
−K

2

+D

E
[
X̂
]
− X̂

2


≤ C +D(0) +D

(
E
[
X̂
]
− X̂

)
, where C is a constant.

(3) By the same arguments as that for case (ii), we have

D
(
E
[
X̂ + X̃

]
−
(
X̂ + X̃

))
≤ D

(
kP
[
X̂ = K

]
+ E

[
max

{
X̂ +K

2
, X̂ − 1

2

}]
−K

)
+D

(
kP
[
X̂ = K

]
+ E

[
X̂
]
−K

)
+D

(
E
[
X̂
]
− X̂

)
.

Since X̂ ∈ X , we have D(E[X̂]− X̂) ∈ L1, so D(E[X̂+ X̃]− (X̂+ X̃)) ∈ L1.

Finally,

E
[
Γ̂X̃
]

= kE
[
I
{
X̂ = K

}
Γ̂
]
−

E
[(

min
{
X̂ −K, 1

})
Γ̂
]

2

= kE
[
I
{
X̂ = K

}
Γ̂
]
−

E
[(

min
{
X̂ −K, 1

})
Y ξ
]

2

= k
(
E
[
I
{
X̂ = K

}
Γ̂
]
− E

[
I
{
X̂ = K

}
Y ξ
])

> 0, (2.2.15)
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2.2. Necessary Condition

where the second equality follows because we have shown that Γ̂ = Y ξ

when X̂ > K and the third equality follows because k =
E[(min{X̂−K,1})ξ]
(2E[I{X̂=K}ξ]) .

(2.2.15) violates Proposition 2.2.3, this implies that if P[X̂ = K] > 0,

P
[
I
{
X̂ = K

}(
Γ̂− Y ξ

)
> 0
]
> 0 leads to a contradiction. We have

P
[
I
{
X̂ = K

}(
Γ̂− Y ξ

)
≤ 0
]

= 1.

Therefore, the complete characterization as specified in (2.2.13) now follows.

The overall necessity claim will be accomplished if the explicit construction of

Z as described in the hypothesis in Lemma 2.2.5 can be obtained. Even the nature

of such Z appears to be complicated and uncommon in the literature, we shall

devote the remaining part of this subsection to the establishment of its existence.

In order to satisfy (2.2.12), X̃ expressed in terms of Z as in (2.2.14) needs to

be bounded so that the deviation of U(X̂ + X̃) from U(X̂) and that of D(E[X̂ +

X̃]− X̂ − X̃) from D(E[X̂]− X̂) are less than some constant, say 1 for simplicity,

almost surely. To warrant this, we need the following lemma immediate from the

continuity of U :

Lemma 2.2.6. There exists δU : int(D)→ (0, 1] such that for any x0 ∈ int(D)3,

|U(x)− U(x0)| ≤ 1, ∀x ∈ D such that |x− x0| < δU(x0).

We shall make use of δU defined in Lemma 2.2.6 to construct Z so that U(X̂+

X̃) ∈ L1, where X̃ in terms of Z is given in (2.2.14). Beforehand, for any y ∈
3A possible choice of δU can be constructed as the following:

δU (x) := min

{
1

U∗(x)
,
x−K

2
, 1

}
,

where

U∗(x) :=

U
′(x− 1), if x− 2 ∈ D,

U ′(x+K2 ), if x− 2 /∈ D.
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2.2. Necessary Condition

(0,∞), define a random variable Zy ∈ [0, 1] by:

Zy :=


0, if X̂ = K,

1, if X̂ > K and Γ̂ = yξ,

min

{
min{δU(X̂), 12(X̂−K), δ2}

|Γ̂−yξ| , 1

}
, otherwise.

(2.2.16)

First, we show that (2.2.11) is satisfied for any y ∈ (0,∞):

Lemma 2.2.7. For any y ∈ (0,∞), we have ZyξΓ̂ ∈ L1 and Zy

(
Γ̂− yξ

)
∈ L∞.

Proof. By the definition of Zy in (2.2.16),
∣∣∣Zy (Γ̂− yξ

) ∣∣∣ ≤ δ, so Zy

(
Γ̂− yξ

)
∈

L∞. Since ∣∣ZyξΓ̂∣∣ ≤ ∣∣∣Zyξ (Γ̂− yξ
) ∣∣∣+

∣∣yξ2Zy
∣∣ ≤ δξ + yξ2,

we have ZyξΓ̂ ∈ L1.

Next, we want to ensure one can find a y so that y =
E[ξΓ̂Zy]
E[ξ2Zy ]

is satisfied.

Lemma 2.2.8. Define f : (0,∞)→ R by

f(y) := yE
[
ξ2Zy

]
− E

[
ξΓ̂Zy

]
.

There is a root y∗ ∈ (0,∞) such that f(y∗) = 0.

Before we prove Lemma 2.2.8, we require to show the claim that Γ̂ > 0:

Lemma 2.2.9. Given X̂ is optimal for Problem 2.1.4 satisfying Conditions 2.2.1

(i) and (ii), it is necessary that Γ̂ > 0 almost surely.

Proof. We consider two cases: (i) K > −∞ and (ii) K = −∞, respectively.

We consider case (i) K > −∞. With the optimal solution X̂ of Problem 2.1.4,

we define h(x) := Γ
(
X̂, x

)
, which is a decreasing continuous function. Since
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2.2. Necessary Condition

U ′ > 0 on {X̂ > K} and U ′ is decreasing because of concavity of U , we have

limx↓K U
′(x) > 0. Hence,

lim
x↓K

h (x) > −γE
[
D′
(
E
[
X̂
]
− X̂

)]
+ γD′

(
E
[
X̂
]
−K

)
.

By definition, X̂ ≥ K uniformly, and D′ is increasing, thus D′
(
E
[
X̂
]
−K

)
≥

E
[
D′
(
E
[
X̂
]
− X̂

)]
. Consequently, one have limx↓K h (x) > 0. Then, there ex-

ists k0 := inf {x > K |h(x) ≤ 0} ∈ (K,∞], i.e., Γ̂ ≤ 0 implies X̂ ≥ k0. If k0 =∞,

it is immediate that Γ̂ > 0 almost surely, so we consider the case that k0 < ∞.

Assume the contrary, that P
[
Γ̂ ≤ 0

]
> 0. Consider

X̃ :=


−k0−K

2
, if Γ̂ ≤ 0,

k0−K
2

E[I{Γ̂≤0}ξ]
E[I{Γ̂>0}ξ] , if Γ̂ > 0.

(2.2.17)

We have X̂ + X̃ > K and X̃ ∈ L∞. Since U is concave,

U(X̂) + X̃U ′(X̂ + X̃) ≤ U(X̂ + X̃) ≤ U(X̂) + X̃U ′(X̂).

Furthermore, when Γ̂ ≤ 0, we have X̃ < 0 and X̂ ≥ k0, then

X̃U ′
(
X̂ + X̃

)
≥ X̃U ′

(
k0 −

k0 −K
2

)
;

while Γ̂ > 0, we have X̃ > 0 and X̂(T ) ≤ k0, then

X̃U ′
(
X̂ + X̃

)
≥ X̃U ′

k0 +
k0 −K

2

E
[
I
{

Γ̂ ≤ 0
}
ξ
]

E
[
I
{

Γ̂ > 0
}
ξ
]
 .

Thus, U(X̂ + X̃) ∈ L1. On the other hand, since D is convex,

0 ≤ D
(
E
[
X̂ + X̃

]
−
(
X̂ + X̃

))
≤ D

(
E
[
X̂
]
− X̂

)
+
(
E
[
X̃
]
− X̃

)
D′
(
E
[
X̂ + X̃

]
−
(
X̂ + X̃

))
.

Similar to showing X̃U ′(X̂ + X̃) being bounded from below, we can show that(
E
[
X̃
]
− X̃

)
D′
(
E
[
X̂ + X̃

]
−
(
X̂ + X̃

))
is bounded from above, thus

D
(
E
[
X̂ + X̃

]
−
(
X̂ + X̃

))
∈ L1.
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Hence, X̂+ X̃ ∈ X . Also, E
[
X̃ξ
]

= 0, but E
[
X̃Γ̂
]
> 0, which altogether violates

Proposition 2.2.3. As a result, P
[
Γ̂ ≤ 0

]
= 0.

Now, consider the case (ii) D = R; the approach is similar as in the case (i).

Firstly, there exists k0 := inf {x > −∞|h(x) ≤ 0} ∈ (−∞,∞]. If k0 < ∞, we

assume the contrary, that P
[
Γ̂ ≤ 0

]
> 0, and then as in case (i), we can show

that Proposition 2.2.3 is violated by setting X̃ as follows:

X̃ :=


−1, if Γ̂ ≤ 0,

E[I{Γ̂≤0}ξ]
E[I{Γ̂>0}ξ] , if Γ̂ > 0.

Proof of Lemma 2.2.8. For any y ∈ (0,∞), by (2.2.16), we have

∣∣yξ2Zy − ξΓ̂Zy
∣∣ =

∣∣yξ − Γ̂
∣∣ · |Zy|ξ ≤ δξ. (2.2.18)

By the Dominated Convergence Theorem, f is continuous on (0,∞). Since

Γ̂ > 0 almost surely by Lemma 2.2.9,

lim
y↓0

Zy = min

min
{
δU
(
X̂
)
, 1

2

(
X̂ −K

)
, δ

2

}
Γ̂

, 1

 > 0

almost surely on
{
X̂ > K

}
. Since P

[
X̂ > K

]
> 0, we have, by the Dominated

Convergence Theorem,

lim
y→0

f(y) = E
[

lim
y→0

(
yξ2Zy − ξΓ̂Zy

)]
= −E

[
ξΓ̂ lim

y↓0
Zy

]
< 0.

Note that

lim
y→∞

yξ2Zy

= ξmin

{
δU
(
X̂
)
,
1

2

(
X̂ −K

)
,
δ

2

}
> 0 a.s. on

{
X̂ > K

}
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and

lim
y→∞

ξΓ̂Zy

= ξΓ̂ lim
y→∞

min

min
{
δU
(
X̂
)
, 1

2

(
X̂ −K

)
, δ

2

}
|Γ̂− yξ|

, 1

 = 0.

By applying the Dominated Convergence Theorem and the fact that P
[
X̂ > K

]
>

0 under Assumption 2.1.3, we have:

lim
y→∞

f(y) = E
[

lim
y→∞

(
yξ2Zy − ξΓ̂Zy

)]
= E

[
lim
y→∞

yξ2Zy

]
> 0,

Our claim follows by intermediate value theorem.

Proposition 2.2.10. Suppose the optimal solution of Problem 2.1.4, X̂, satisfies

Conditions 2.2.1 (i) and (ii). There exists a random variable Z ∈ [0, 1] satisfying

(2.2.10)-(2.2.12) in Lemma 2.2.5.

Proof. We shall verify that Z := Zy∗ with Zy as defined in (2.2.16) and y∗ obtained

in Lemma 2.2.8 satisfies (2.2.10)-(2.2.12). Note that δU in Lemma 2.2.6 only take

positive values no matter what the corresponding arguments are; in particular,

according to (2.2.16), when X̂ > K, Z > 0. Therefore, Z satisfies (2.2.10).

Note that y∗ = E
[
ZξΓ̂

] /
E[Zξ2] by Lemma 2.2.8. By Lemma 2.2.7, we have

ZξΓ̂ ∈ L1 and Z
(

Γ̂− y∗ξ
)
∈ L∞, thus (2.2.11) is satisfied.

By a simple calculation under the third case in (2.2.16),
∣∣∣Z (Γ̂− y∗ξ

) ∣∣∣ ≤
1
2

(
X̂ −K

)
, thus we have

X̂ + Z

Γ̂−
E
[
ZξΓ̂

]
E[Zξ2]

ξ

 ≥ X̂ − 1

2

(
X̂ −K

)
=

1

2

(
X̂ +K

)
∈ D, a.s..

Since
∣∣∣Z (Γ̂− y∗ξ

) ∣∣∣ ≤ δU
(
X̂
)

, by a direct application of Lemma 2.2.6 (a),

we have
∣∣∣U (X̂ + Z

(
Γ̂− y∗ξ

))
− U(X̂)

∣∣∣ ≤ 1, and thus∣∣∣∣∣U
X̂ + Z

Γ̂−
E
[
ZξΓ̂

]
E[Zξ2]

ξ

∣∣∣∣∣ ≤ ∣∣U(X̂)
∣∣+ 1.
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2.2. Necessary Condition

Hence, U

(
X̂ + Z

(
Γ̂− E[ZξΓ̂]

E[Zξ2]
ξ

))
∈ L1.

Similarly, since we also have
∣∣∣E [Z (Γ̂− y∗ξ

)]
− Z

(
Γ̂− y∗ξ

) ∣∣∣ ≤ δ, we have

D
(
E
[
X̂ + Z

(
Γ̂− y∗ξ

)]
−
(
X̂ + Z

(
Γ̂− y∗ξ

)))
= D

(
E
[
X̂
]
− X̂ − Z

(
Γ̂− y∗ξ

)
+ E

[
Z
(

Γ̂− y∗ξ
)])

≤ D
(
E
[
X̂
]
− X̂ − δ

)
+D

(
E
[
X̂
]
− X̂ + δ

)
.

Hence, by Condition 2.2.1 (ii), D
(
E
[
X̂ + Z

(
Γ̂− y∗ξ

)]
−
(
X̂ + Z

(
Γ̂− y∗ξ

)))
∈

L1.

We can now conclude X̂+Z
(

Γ̂− y∗ξ
)

satisfies all the admissibility conditions

of X , and hence Z satisfies (2.2.12).

In summary, by Proposition 2.2.10, we have Zy∗ satisfying (2.2.10)-(2.2.12) in

Lemma 2.2.5. By Lemma 2.2.5, it is necessary that Γ̂ in terms of X̂ as in (2.2.8)

satisfies the following algebraic structure:Γ̂ = Y ξ a.s. on
{
X̂ > K

}
,

Γ̂ ≤ Y ξ a.s. on
{
X̂ = K

}
(if P[X̂ = K] > 0),

where Y = E
[
ZξΓ̂

] /
E [Zξ2] and Z is obtained in Proposition 2.2.10. Now,

by setting M := E[X̂] and R := E[D′(M − X̂)] together with the constraint

E[X̂ξ] = x0 given in Problem 2.1.4, the claim described in Theorem 2.2.2 follows.

Remark 2.2.11 (Comments on the Proof of Theorem 2.2.2). The Condition

2.2.1(i) has been utilized in order to make E[X̃Γ̂] in Proposition 2.2.3 well-defined.

After establishing Proposition 2.2.3, to show the Nonlinear Moment Problem, a

natural method is to construct another admissible terminal wealth X̂ + X̃, where

X̃ is a perturbation, so that, if the NMP fails to hold, Proposition 2.2.3 will be

violated. However, in order to make X̂ + X̃ admissible, we require the validity of

D′(E[X̂ + X̃]− (X̂ + X̃)) ∈ L1 which is not immediate in general even X̃ is small
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2.2. Necessary Condition

because D is convex. Hence, the establishment of Condition 2.2.1(ii) is crucial for

this purpose.

Condition 2.2.1(ii) is mild and is satisfied under the case of power utility

function.

2.2.2 Application to the Mean-Semivariance Problem

In this subsection, we take U(x) = x, D(x) = 1
2
x2

+. Then D′(x) = x+. We revisit

the non-existence result first obtained in Jin et al. (2005) via our Theorem 2.2.2.

Theorem 2.2.12. There is no optimal solution for the continuous-time mean-

semivariance problem.

Proof. Assume the contrary, that there exists an admissible optimal control π̂;

then its corresponding optimal terminal wealth X̂ ∈ L2 solves Problem 2.1.4 by

Theorem 2.1.5. Since D and D′ are bounded by quadratic and linear functions

respectively, it is clear that X̂ satisfies Conditions 2.2.1 (i) and (ii). Hence, by

Theorem 2.2.2, it is necessary that there exist constants Y,M,R ∈ R such that

the quadruple (X̂, Y,M,R) solves for the following Nonlinear Moment Problem:

Y ξ + γR− 1 = γ
(
M − X̂

)
+

a.s., (2.2.19)

subject to the constraints: E
[
ξX̂
]

= x0, E
[
X̂
]

= M and E
[(
M − X̂

)
+

]
= R.

Firstly, by taking expectation on the both sides of (2.2.19), we immediately

have Y = 1/E[ξ] > 0. If γR − 1 ≥ 0, then by (2.2.19), γ
(
M − X̂

)
+
> 0 a.s.,

and hence E[X̂] < M which is in conflict with the constraint E[X̂] = M . If

γR− 1 < 0, there exists some ξ0 > 0 such that γR− 1 +Y ξ < 0 for all ξ ∈ (0, ξ0),

which contradicts the positivity of the right hand side in (2.2.19). Thus, the

nonlinear moment problem has no solution. We conclude that mean-semivariance

problem does not admit an optimal solution.
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Remark 2.2.13. The mean-semivariance problem has been investigated in Jin

et al. (2005). The authors considered the semivariance minimization problem with

a fixed mean, and showed that this problem does not have an optimal solution

except for the trivial case in which the mean is equal to the terminal wealth, which

is the initial wealth accumulated at riskless interest rate. The nonexistence was

proven in their work by showing that the optimal value function is non-attainable.

The constrained optimization problem in Jin et al. (2005) and in Problem 2.1.2

are equivalent for suitable values of mean and risk aversion parameter. The trivial

riskless solution becomes optimal in Problem 2.1.2 only when γ =∞. For γ <∞,

the riskless strategy is dominated by another strategy attaining x0

E[ξ]
+θ
(

1− E[ξ]
E[ξ2]

ξ
)

as the corresponding terminal wealth for sufficiently small values of θ: Because

the mean of x0

E[ξ]
+ θ

(
1− E[ξ]

E[ξ2]
ξ
)

is greater than x0

E[ξ]
in the order of O(θ) while

the semivariance of x0

E[ξ]
+ θ

(
1− E[ξ]

E[ξ2]
ξ
)

is of the order O(θ2), therefore x0

E[ξ]
+

θ
(

1− E[ξ]
E[ξ2]

ξ
)

has a greater objective value for sufficiently small θ.

2.3 Sufficient Condition

2.3.1 Verification Theorem

We first introduce the following technical condition:

In this subsection, we aim to show that any admissible terminal wealth X̂ ∈

X solving the Nonlinear Moment Problem satisfying the following condition is

optimal terminal wealth of Problem 2.1.2:

Condition 2.3.1. Both U ′(Z) ∈ L2 and D′ (E[Z]− Z) ∈ L2.

There is a fundamental difference between the necessary condition in Theorem

2.2.2 and the sufficient condition in the next theorem. Conditions 2.2.1 (i) and

(ii) are needed for the optimal terminal wealth satisfying the Nonlinear Moment

Problem in the necessity result, while Condition 2.3.1 is required for the sufficiency.
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2.3. Sufficient Condition

Theorem 2.3.2. Suppose that there exists X̂ ∈ X satisfying Condition 2.3.1 and

there exist constants Y,M,R ∈ R so that the quadruple
(
X̂, Y,M,R

)
solves for

the Nonlinear Moment Problem (2.2.4)-(2.2.7). Then, X̂ is optimal for Problem

2.1.4, and it is also the optimal terminal wealth of Problem 2.1.2.

Remark 2.3.3. Theorem 2.3.2 boils the optimal control problem 2.1.2 down to

a static problem. Suppose that there exists an implicit function I(m, y) ∈ R

satisfying:

U ′(I(m, y)) + γD′(m− I(m, y)) = y, for any (m, y). (2.3.20)

Then the Nonlinear Moment Problem (2.2.4)-(2.2.7) will be solved by

(max{I (M,γR + Y ξ) , K}, Y,M,R), where the constants Y,M and R satisfy the

following system of nonlinear equations:

E[ξmax{I (M,γR + Y ξ) , K}] = x0, (2.3.21)

E[max{I (M,γR + Y ξ) , K}] = M, (2.3.22)

E [D′ (M −max{I (M,γR + Y ξ) , K})] = R. (2.3.23)

After we verify that max{I (M,γR + Y ξ) , K} belongs to X and also satisfies

Condition 2.3.1, max{I (M,γR + Y ξ) , K} is the optimal solution for Problem

2.1.4.

Proof of Theorem 2.3.2. Let (X̂, Y,M,R) be the solution of Nonlinear Moment

Problem (2.2.4)-(2.2.7) and X̃ ∈ L2 be an arbitrary random variable such that

X̂+ X̃ is admissible for Problem 2.1.4, i.e. X̂+ X̃ ∈ X and E
[
ξ
(
X̂ + X̃

)]
= x0.

By (2.2.5), we have E
[
ξX̃
]

= 0. By Lemma 2.2.4, the chain rule and and under

our hypothesis that X̂ satisfies (2.2.4) and Condition 2.3.1, we have
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2.3. Sufficient Condition

d

dθ
Ψ(X̂ + θX̃)

∣∣∣∣
θ=0

= E
[
U ′(X̂)X̃

]
− γE

[
D′
(
E[X̂]− X̂

)(
E[X̃]− X̃

)]
= E

[
X̃
(
U ′(X̂)− γE

[
D′
(
E[X̂]− X̂

)]
+ γD′

(
E[X̂]− X̂

))]
≤ E

[
X̃(Y ξ)

]
= 0. (2.3.24)

By the concavity of U and convexity of D, it is clear that Ψ(X̂ + θX̃) ≥ (1 −

θ)Ψ(X̂) + θΨ(X̂ + X̃) for any θ ∈ (0, 1]. Then

Ψ
(
X̂
)
≥ Ψ

(
X̂ + X̃

)
−

Ψ
(
X̂ + θX̃

)
−Ψ(X̂)

θ
. (2.3.25)

By (2.3.24), limθ↓0
Ψ(X̂+θX̃)−Ψ(X̂)

θ
= d

dθ
Ψ(X̂ + θX̃)

∣∣
θ=0
≤ 0. After taking limits

on both sides of (2.3.25), Ψ
(
X̂
)
≥ Ψ

(
X̂ + X̃

)
, hence X̂ is optimal for Problem

2.1.4. By Theorem 2.1.5, We can now conclude that X̂ is the optimal terminal

wealth of Problem 2.1.2.

In the next three subsections, we apply Theorem 2.3.2 to establish the existence

of optimal solutions for different utility-risk frameworks: (i) Utility-Downside-

Risk, (ii) Utility-Strictly-Convex-Risk, and (iii) Mean-Risk. In particular, we

remark that the positive answers to the first two problems have long been absent

in the literature.

2.3.2 Application to the Utility-Downside-Risk Problem

In this subsection, we take D = [0,∞). We assume that U : [0,∞) → [0,∞) is

strictly concave, and U and D : R → [0,∞) are continuously differentiable. We

consider D to be a downside risk function, so D is positive and strictly convex

on (0,∞) and D(x) = 0 for x ≤ 0. Thus, we have D′(x) > 0 when x > 0 and

D′(x) = 0 when x ≤ 0. In this proposed model, the payoff greater than its mean

will not be penalized, and only the downside risk would be taken into account.
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2.3. Sufficient Condition

Moreover, we assume that U and D satisfy the following conditions:

U ′(0) =∞, U ′(∞) = 0 and D′(∞) =∞. (2.3.26)

Thus any utility functions satisfying the Inada conditions can be covered. Note

that this formulation can cover the utility-semivariance problem, its positive an-

swer has a substantial contrast to the nonexistence of an optimal solution to the

mean-semivariance problem. We further make the following assumption on the

utility function:

Assumption 2.3.4. There exists k0 > 0 so that the inverse of the first-order

derivative of U , (U ′)−1, satisfies (U ′)−1(k0ξ) ∈ L2.

Note that Assumption 2.3.4 can be satisfied if there exist β ∈ (0, 1) and γ > 1

such that U ′(βy) ≤ γU ′(y) for all y > 0, and this condition has been adopted in

Zheng (2009).

According to Remark 2.3.3, we first find an implicit function satisfying (2.3.20),

then the Nonlinear Moment Problem (2.2.4)-(2.2.7) can be reduced into a nonlin-

ear programming problem (2.3.21)-(2.3.23).

Proposition 2.3.5. There exists an implicit function I : R× (0,∞)→ (0,∞)

satisfying:

U ′(I(m, y))+γD′(m− I(m, y))−y = 0, for any (m, y) ∈ R× (0,∞). (2.3.27)

Moreover, this function I possesses the following regularities:

(a) (i) For each m ∈ R, I(m, y) is strictly decreasing in y on (0,∞).

(ii) For each y ∈ (0,∞), I(m, y) is strictly increasing in m on {m ∈

R| y ≥ U ′(m)}; I(m, y) = (U ′)−1(y) ∈ (0,∞) for all m ∈ {m ∈ R| y ≤

U ′(m)}.

(b) I(m, y) is jointly continuous in (m, y) ∈ R× (0,∞).
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Proof. Fix (m, y) ∈ R × (0,∞). Since U is strictly concave and D is convex,

U ′(z) + γD′ (m− z)− y is strictly decreasing in z. Since U ′ and D′ is continuous,

U ′(z) + γD′ (m− z)− y is continuous in z. Under Assumptions (2.3.26), we can

also easily show that U ′(z) + γD′ (m− z)− y is coercive in the sense that

lim
z→0

U ′(z) + γD′ (m− z)− y =∞, lim
z→∞

U ′(z) + γD′ (m− z)− y = −y < 0.

Thus, by the intermediate value theorem and strict monotonicity, for any (m, y) ∈

R× (0,∞), there exists a unique I(m, y) ∈ (0,∞) such that

U ′(I(m, y)) + γD′(m− I(m, y))− y = 0.

(a) (i) For fixed (m, y), U ′(z) + γD′ (m− z) − y is strictly decreasing in z.

When (z,m) is fixed, U ′(z) + γD′ (m− z)− y is strictly decreasing in

y, so I(m, y) is strictly decreasing in y.

(ii) We first claim that m ≥ I(m, y) when y ≥ U ′(m). Assume the con-

trary, that m < I(m, y). We have D′(m − I(m, y)) = 0, and then

y = U ′(I(m, y)) ≥ U ′(m), which contradicts to m < I(m, y) as U ′ is

decreasing. Next, we assume another contrary, that there exists m0, y0

with y0 ≤ U ′(m0) and δ > 0 such that I(m0 + δ, y0) ≤ I(m0, y0). Then

we have m0 + δ − I(m0 + δ, y0) > m0 − I(m0, y0) ≥ 0, thus

U ′(I(m0 + δ, y0)) + γD′(m0 + δ − I(m0 + δ, y0))

> U ′(I(m0, y0)) + γD′(m0 − I(m0, y0)),

which contradicts (2.3.27).

For the second assertion, y ≤ U ′(m) implies that m ≤ (U ′)−1(y), thus

I(m, y) = (U ′)−1(y) satisfies (2.3.27), and it is the unique solution by

the main result in this proposition.

(b) Fix (M0, Y0) ∈ R× (0,∞). By part (a), for any small enough ε > 0,

I(M0 − ε, Y0 + ε) ≤ I(m, y) ≤ I(M0 + ε, Y0 − ε) (2.3.28)
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for any |(m, y)− (M0, Y0)| < ε.

It is straightforward to show that limε↓0 I(M0 + ε, Y0 − ε) and I(M0, Y0)

satisfy the same equation in (2.3.27), so we have limε↓0 I(M0 + ε, Y0 − ε) =

I(M0, Y0). Similarly, we have limε↓0 I(M0− ε, Y0 + ε) = I(M0, Y0). Applying

the sandwich theorem to (2.3.28), we can conclude that

lim
(m,y)→(M0,Y0)

I(m, y) = I(M0, Y0).

Since the implicit function I never takes value in the boundary of D, so we

now look for numbers Y,M and R that solve the following system of equations as

described in Remark 2.3.3:

E[ξI (M,γR + Y ξ)] = x0; (2.3.29)

E[I (M,γR + Y ξ)] = M ; (2.3.30)

E [D′ (M − I (M,γR + Y ξ))] = R. (2.3.31)

Proposition 2.3.6. There exist numbers Y,M,R ∈ (0,∞) such that the system of

nonlinear equations of (2.3.29)-(2.3.31) is satisfied. Thus, (I (M,γR + Y ξ) , Y,M,R)

is a solution of the system of Equations (2.2.4)-(2.2.7), where I is given in Propo-

sition 2.3.5.

We shall solve for roots Y,M and R one by one via applying the intermediate

value theorem successively:

Lemma 2.3.7. Given Y,M ∈ (0,∞), there exists a unique R = RY,M ∈ (0, D′(M))

satisfying

E [D′ (M − I (M,γR + Y ξ))] = R; (2.3.32)

or equivalently by (2.3.27):

E [U ′ (I (M,γR + Y ξ))] = Y E[ξ]. (2.3.33)
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Furthermore, RY,M is strictly increasing in M for a fixed Y and is also strictly

increasing in Y for a fixed M .

Proof. We prove the followings in order:

(a) E[D′ (M − I (M,γR + Y ξ))−R] is strictly decreasing in R,

(b) E[D′ (M − I (M,γR + Y ξ))] is continuous in R,

(c1) limR→0 E[D′ (M − I (M,γR + Y ξ))−R] > 0,

(c2) limR→D′(M) E [D′ (M − I (M,γR + Y ξ))−R] < 0.

In light of (b), (c1) and (c2), then by the intermediate value theorem, there exists

R = RY,M satisfying (2.3.32) while the uniqueness of RY,M is guaranteed by (a).

Finally, we show that

(d1) RY,M is strictly increasing in M for fixed Y ,

(d2) RY,M is strictly increasing in Y for fixed M .

For each of the above items:

(a) By Proposition 2.3.5 (a)(i), U ′ (I (M,γR + Y ξ)) is strictly increasing in R al-

most surely. By (2.3.27), D′ (M − I (M,γR + Y ξ))−R = 1
γ

(Y ξ − U ′ (I (M,γR + Y ξ)))

is therefore strictly decreasing inR almost surely. Thus, E [D′ (M − I (M,γR + Y ξ))−R]

is strictly decreasing in R.

(b) Since D′ and I are both continuous, so D′ (M − I (M,γR + Y ξ)) is contin-

uous in R. Hence, the claim follows by an application of the Dominated

Convergence Theorem.

(c1) When Y ξ > U ′(M), we have M > I (M,Y ξ), thus

D′ (M − I (M,Y ξ)) > 0, a.s. on {Y ξ > U ′(M)} .
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Since U ′(M)
Y
∈ (0,∞), by the definition of ξ, we have

P[D′(M − I(M,Y ξ)) > 0] ≥ P
[
ξ >

U ′(M)

Y

]
> 0.

By the Dominated Convergence Theorem,

lim
R→0

E [D′ (M − I (M,γR + Y ξ))−R]

= E
[

lim
R→0

D′ (M − I (M,γR + Y ξ))
]

= E [D′ (M − I (M,Y ξ))] > 0.

(c2) By (2.3.27), we have limR→D′(M) I (M,γR + Y ξ) > 0 almost surely, so

lim
R→D′(M)

D′(M − I (M,γR + Y ξ)) < D′(M), a.s. .

By the Monotone Convergence Theorem,

lim
R→D′(M)

E [D′(M − I (M,γR + Y ξ))] < D′(M),

thus this part follows.

(d1) Assume the contrary, that there exists a M0 ∈ (0,∞) and a δ > 0 such that

RY,M0 ≥ RY,M0+δ.

By Proposition 2.3.5 (a)(ii), when γR + Y ξ ≥ U ′(M), I (M,γR + Y ξ) is

strictly increasing in M , thus D′(M − I (M,γR + Y ξ)) − R is strictly in-

creasing in M on {γR + Y ξ ≥ U ′(M)} by (2.3.27). When γR + Y ξ ≤

U ′(M), D′(M − I (M,γR + Y ξ)) − R = −R. So given Y and R, D′(M −

I (M,γR + Y ξ)) is increasing inM and is strictly increasing on {γR + Y ξ ≥ U ′(M)}.

Thus we have E [D′(M − I (M,γR + Y ξ))−R] is strictly increasing in M .

On the other hand, in (a), D′(M−I (M,γR + Y ξ))−R is strictly decreasing

in R almost surely. Now, we get

0 = E [D′ (M0 + δ − I (M0 + δ, γRY,M0+δ + Y ξ))−RY,M0+δ]

≥ E [D′ (M0 + δ − I (M0 + δ, γRY,M0 + Y ξ))−RY,M0 ]

> E [D′ (M0 − I (M0, γRY,M0 + Y ξ))−RY,M0 ] = 0,
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which is a contradiction.

(d2) In Proposition 2.3.5 (a)(i), we have I (M,γR + Y ξ) strictly decreasing in Y

given a fixed point of M and R, thus E [D′(M − I (M,γR + Y ξ))−R] is

also strictly increasing in Y almost surely given (M,R). Thus, this part can

be verified as in (d1).

Lemma 2.3.8. Given Y ∈ (0,∞) and RY,M as specified for each M ∈ (0,∞) in

Lemma 2.3.7, there exists a unique M = MY ∈ (0,∞) such that

E[I (M,γRY,M + Y ξ)] = M. (2.3.34)

Furthermore, MY is strictly decreasing in Y .

Proof. In this lemma, we prove the following in order:

(a) E[I (M,γRY,M + Y ξ)]−M is strictly decreasing in M ,

(b) E[I (M,γRY,M + Y ξ)] is continuous in M ,

(c1) limM→0 E[I (M,γRY,M + Y ξ)−M ] > 0,

(c2) limM→∞ E [M − I (M,γRY,M + Y ξ)] =∞.

By using (b), (c1) and (c2), in accordance with the intermediate value theorem

and part (a), there exists a unique M = MY satisfying (2.3.34). Finally, we show

that

(d) MY is strictly decreasing in Y .

For each of the above items:
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(a) By Proposition 2.3.5 (a)(ii) , D′ (M − I (M,γR + Y ξ))−R = 1
γ

(Y ξ − U ′ (I (M,γR + Y ξ)))

is strictly increasing in M when γR + Y ξ ≥ U ′(M). Thus, because D′ is

strictly increasing for positive M − I (M,γR + Y ξ), I (M,γR + Y ξ) −M

is strictly decreasing in M on {γR + Y ξ ≥ U ′(M)}. On the other hand,

on {γR + Y ξ ≤ U ′(M)}, I (M,γR + Y ξ) −M = (U ′)−1(γR + Y ξ) −M is

strictly decreasing in M .

By Proposition 2.3.5 (a)(i), I (M,γR + Y ξ)−M is strictly decreasing in R.

By Lemma 2.3.7, RY,M is strictly increasing in M . Thus, for any δ > 0, it

is almost surely that:

I (M,γRY,M + Y ξ)−M > I (M,γRY,M+δ + Y ξ)−M

> I (M + δ, γRY,M+δ + Y ξ)− (M + δ)

Thus, E [I (M,γRY,M + Y ξ)]−M is strictly decreasing in M .

(b) Fix M0 ∈ (0,∞). By the continuity of D′ and I, it is almost surely that:

lim
M↓M0

(D′ (M − I (M,γRY,M + Y ξ))−RY,M)

= D′
(
M0 − I

(
M0, γ lim

M↓M0

RY,M + Y ξ

))
− lim

M↓M0

RY,M (2.3.35)

By (2.3.32), (2.3.35) and the Dominated Convergence Theorem, we have

E
[
D′
(
M0 − I

(
M0, γ lim

M↓M0

RY,M + Y ξ

))]
− lim

M↓M0

RY,M

= lim
M↓M0

(E [D′ (M − I (M,γRY,M + Y ξ))]−RY,M) = 0.

By the uniqueness result in Lemma 2.3.7, we conclude that limM↓M0 RY,M =

RY,M0 . Similarly, we have limM↑M0 RY,M = RY,M0 . By continuity of I,

lim
M↓M0

I (M,γRY,M + Y ξ) = I (M0, γRY,M0 + Y ξ) .

Similarly, the equality of limits from the opposite side can also be deduced,

so

lim
M→M0

I (M,γRY,M + Y ξ) = I (M0, γRY,M0 + Y ξ) .
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Finally, our claim follows by the Dominated Convergence Theorem.

(c1) Since I (M,γRY,M + Y ξ)−M is decreasing in M by (a), thus

lim
M→0

I (M,γRY,M + Y ξ) = lim
M→0

(I (M,γRY,M + Y ξ)−M) .

We claim that limM→0 I (M,γRY,M + Y ξ) > 0 almost surely. Assume the

contrary, that there exists a sample value of ξ0 such that limM→0 I (M,γRY,M + Y ξ0) =

0. Then, we have

lim
M→0

D′ (M − I (M,γRY,M + Y ξ0)) = D′(0) and

lim
M→0

U ′ (I (M,γRY,M + Y ξ0)) = ∞.

But by (2.3.27), we again have:

lim
M→0

U ′ (I (M,γRY,M + Y ξ0))

= ξ0Y + γ lim
M→0

(RY,M −D′ (M − I (M,γRY,M + Y ξ0)))

≤ ξ0Y + γ lim
M→0

(D′(M)−D′ (M − I (M,γRY,M + Y ξ0)))

≤ ξ0Y + γ (D′(0)−D′ (0)) <∞,

which leads to a contradiction. Hence, limM→0 I (M,γRY,M + Y ξ) > 0 al-

most surely. Since I (M,γRY,M + Y ξ)−M is decreasing in M , by the Mono-

tone Convergence Theorem,

lim
M→0

E [I (M,γRY,M + Y ξ)−M ] > 0.

(c2) By (2.3.27), we either have limM→∞ I (M,γRY,M + Y ξ) =∞ almost surely

or limM→∞RY,M =∞.

Assume that limM→∞RY,M < ∞, thus limM→∞ I (M,γRY,M + Y ξ) = ∞

almost surely, then by continuity of U ′,

lim
M→∞

U ′ (I (M,γRY,M + Y ξ)) = 0 a.s. (2.3.36)
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Then, by the Dominated Convergence Theorem and (2.3.36),

lim
M→∞

E [U ′(I (M,γRY,M + Y ξ))] = E
[

lim
M→∞

U ′(I (M,γRY,M + Y ξ))
]

= 0.

Hence, we have limM→∞ E[U ′(I (M,γRY,M + Y ξ)) − ξY ] = −E[ξ]Y < 0.

This contradicts (2.3.33) in Lemma 2.3.7, so we must have limM→∞RY,M =

∞.

Given a sample ξ0, assume the contrary that limM→∞M−I (M,γRY,M + Y ξ0) <

∞, then limM→∞D
′ (M − I (M,γRY,M + Y ξ0)) < ∞. By (2.3.27) and

limM→∞RY,M = ∞, we have limM→∞ U
′ (I (M,γRY,M + Y ξ0)) = ∞, thus

limM→∞ I (M,γRY,M + Y ξ0) = 0 and then it results in:

lim
M→∞

(M − I (M,γRY,M + Y ξ0)) =∞,

a contradiction.

Now, we have limM→∞M − I (M,γRY,M + Y ξ) =∞ almost surely. By the

Monotone Convergence Theorem,

lim
M→∞

E [M − I (M,γRY,M + Y ξ)] =∞ > 0.

(d) In part (a), we have shown that E [I (M,γRY,M + Y ξ)] −M is strictly de-

creasing in M for a fixed Y . On the other hand, in Proposition 2.3.5 (a)(i)

and Lemma 2.3.7 (d1), we can show that E [I (M,γRY,M + Y ξ)] − M is

strictly decreasing in Y for a fixedM . By (2.3.34), E [I (MY , γRY,MY
+ Y ξ)]−

MY = 0 for all values of Y , thus, MY is strictly decreasing in Y .

Lemma 2.3.9. Given RY,M and MY as specified in Lemmas 2.3.7 and 2.3.8 re-

spectively for each Y,M ∈ (0,∞), there exists a (not necessarily unique) Y ∗ ∈

(0,∞) such that

E[ξI (MY , γRY,MY
+ Y ξ)] = x0. (2.3.37)
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Proof. In this lemma, we prove the following in order:

(a) E [ξI (MY , γRY,MY
+ Y ξ)] is continuous in Y ,

(b1) limY→0 E [ξI (MY , γRY,MY
+ Y ξ)] =∞,

(b2) limY→∞ E [ξI (MY , γRY,MY
+ Y ξ)] = 0.

In turn, by the intermediate value theorem with (a), (b1) and (b2), there exists

Y satisfying (2.3.37).

For each of the above items:

(a) Fix Y0 ∈ (0,∞). For any ε > 0, by Lemmas 2.3.7 and 2.3.8, we have

RY0−ε,MY0+ε
< RY,MY

< RY0+ε,MY0−ε
for any Y0 − ε < Y < Y0 + ε,(2.3.38)

and RY0+ε,MY0−ε
is increasing in ε, we therefore have both the finite existence

of limε↓0RY0+ε,MY0−ε
and limε↓0RY0−ε,MY0+ε

. By Proposition 2.3.5 (b), I is

jointly continuous,

lim
ε↓0

I
(
MY0−ε, (Y0 + ε) ξ + γRY0+ε,MY0−ε

)
= I

(
lim
ε↓0

MY0−ε, Y0ξ + γ lim
ε↓0

RY0+ε,MY0−ε

)
.

Hence,

lim
ε↓0

(
D′
(
MY0−ε − I

(
MY0−ε, (Y0 + ε) ξ + γRY0+ε,MY0−ε

))
−RY0+ε,MY0−ε

)
= D′

(
lim
ε↓0

MY0−ε − I
(

lim
ε↓0

MY0−ε, Y0ξ + γ lim
ε↓0

RY0+ε,MY0−ε

))
− lim

ε↓0
RY0+ε,MY0−ε

.

By standard application of the Dominated Convergence Theorem,

E
[
D′
(

lim
ε↓0

MY0−ε − I
(

lim
ε↓0

MY0−ε, Y0ξ + γ lim
ε↓0

RY0+ε,MY0−ε

))
− lim

ε↓0
RY0+ε,MY0−ε

]
= lim

ε↓0
E
[
D′
(
MY0−ε − I

(
MY0−ε, (Y0 + ε) ξ + γRY0+ε,MY0−ε

))
−RY0+ε,MY0−ε

]
= 0.
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Since R in Lemma 2.3.7 is uniquely defined in (2.3.32), thus RY0,limε↓0MY0−ε
=

limε↓0RY0+ε,MY0−ε
. Similarly, we haveRY0,limε↓0MY0+ε

= limε↓0RY0−ε,MY0+ε
. By

the Dominated Convergence Theorem and (2.3.34),

E
[
I

(
lim
ε↓0

MY0−ε, Y0ξ + γRY0,limε↓0 MY0−ε

)
− lim

ε↓0
MY0−ε

]
= E

[
I

(
lim
ε↓0

MY0−ε, Y0ξ + γ lim
ε↓0

RY0+ε,MY0−ε

)
− lim

ε↓0
MY0−ε

]
= E

[
lim
ε↓0

(
I
(
MY0−ε, (Y0 + ε) ξ + γRY0+ε,MY0−ε

)
−MY0−ε

)]
= 0.

Since M in Lemma 2.3.8 is uniquely defined in (2.3.34), thus limε↓0MY0−ε =

MY0 . Similarly, we have limε↑0MY0−ε = MY0 and limY→Y0 MY = MY0 . Hence,

lim
ε↓0

RY0+ε,MY0−ε
= RY0,limε↓0 MY0−ε

= RY0,MY0

= RY0,limε↓0 MY0+ε
= lim

ε↓0
RY0−ε,MY0+ε

.

By (2.3.38), we have limY→Y0 RY,MY
= RY0,MY0

. Then we have

lim
Y→Y0

I (MY , Y ξ + γRY,MY
) = I

(
lim
Y→Y0

MY , Y0ξ + γ lim
Y→Y0

RY,MY

)
= I

(
MY0 , Y0ξ + γRY0,MY0

)
.

Finally, our claim follows from another application of the Dominated Con-

vergence Theorem.

(b1) For an arbitrary a sample value ξ0 ∈ (0,∞). Assume the contrary that

lim inf
Y→0

I (MY , Y ξ0 + γRY,MY
) <∞,

then there exists a sequence {yn} with yn → 0 such that

lim inf
Y→0

I (MY , Y ξ0 + γRY,MY
) = lim

n→∞
I
(
Myn , ynξ0 + γRyn,Myn

)
<∞.

Clearly, limn→∞ U
′ (I (Myn , ynξ0 + γRyn,Myn

))
> 0. Furthermore, since U ′(I(m, ·))

is increasing, thus for any ξ > ξ0,

lim inf
n→∞

U ′
(
I
(
Myn , ynξ + γRyn,Myn

))
≥ lim

n→∞
U ′
(
I
(
Myn , ynξ0 + γRyn,Myn

))
> 0.
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By Fatou’s Lemma and (2.3.33),

lim inf
n→∞

ynE[ξ] = lim inf
n→∞

E
[
U ′
(
I
(
Myn , ynξ + γRyn,Myn

))]
≥ E

[
lim inf
n→∞

U ′
(
I
(
Myn , ynξ + γRyn,Myn

))]
≥ lim

n→∞
U ′
(
I
(
Myn , ynξ0 + γRyn,Myn

))
P [ξ > ξ0] > 0,

which contradict lim infn→∞ ynE[ξ] = 0.

Therefore, lim infY→0 I (MY , Y ξ0 + γRY,MY
) = ∞, for any ξ0 ∈ (0,∞).

Hence, lim infY→0 ξI (MY , Y ξ + γRY,MY
) = ∞ almost surely. By Fatou’s

Lemma,

lim inf
Y→0

E [ξI (MY , γRY,MY
+ Y ξ)] ≥ E

[
lim inf
Y→0

ξI (MY , γRY,MY
+ Y ξ)

]
=∞.

(b2) Since MY is decreasing in Y as shown in Lemma 2.3.8, thus limY→∞MY

exists and is finite.

For any N ∈ (0,∞), it is clear from its definition that limY→∞RN,MY
≥ 0.

Therefore, limY→∞ I (MY , Nξ + γRN,MY
) = I (limY→∞MY , Nξ + γ limY→∞RN,MY

)

is finite almost surely for anyN ∈ (0,∞). Since I (limY→∞MY , Nξ + γ limY→∞RN,MY
)

is decreasing in N , then limN→∞ I (limY→∞MY , Nξ + γ limY→∞RN,MY
) ex-

ists and is finite since I is always non-negative.

For if there exists a sample ξ0 ∈ (0,∞) such that

lim
N→∞

I
(

lim
Y→∞

MY , Nξ0 + γ lim
Y→∞

RN,MY

)
> 0, (2.3.39)

then limN→∞D
′ (limY→∞MY − I (limY→∞MY , Nξ0 + γ limY→∞RN,MY

)) <

∞ and limN→∞ U
′ (I (limY→∞MY , Nξ0 + γ limY→∞RN,MY

)) <∞ if (2.3.39)

holds. By (2.3.27),

Nξ0 + γ lim
Y→∞

RN,MY

= U ′
(
I
(

lim
Y→∞

MY , Nξ0 + γ lim
Y→∞

RN,MY

))
+D′

(
lim
Y→∞

MY − I
(

lim
Y→∞

MY , Nξ0 + γ lim
Y→∞

RN,MY

))
.
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Then taking N → ∞ into the both sides, the limit in the left hand side

tends to infinity as limY→∞RN,MY
≥ 0 > −∞ for any finite fixed N , while

the limit in the right hand side is finite, a contradiction. So

lim
N→∞

I
(

lim
Y→∞

MY , Nξ + γ lim
Y→∞

RN,MY

)
= 0, a.s. (2.3.40)

On the other hand, since I (MY , Y ξ + γRY,MY
) ≤ I (MY , Nξ + γRN,MY

) for

all N ≤ Y < ∞ and limY→∞ I (MY , Nξ + γRN,MY
) exists, we have almost

surely, for any N ,

lim sup
Y→∞

I (MY , Y ξ + γRY,MY
) ≤ lim

Y→∞
I (MY , Nξ + γRN,MY

)

= I
(

lim
Y→∞

MY , Nξ + γ lim
Y→∞

RN,MY

)
.

By (2.3.40), lim supY→∞ I (MY , Y ξ + γRY,MY
) = 0 almost surely. Finally,

by reverse Fatou’s lemma, since I (MY , Y ξ + γRY,MY
) ≤ I (Mk0 , k0ξ) ≤

I (Mk0 , U
′(Mk0)) + (U ′)−1(k0ξ) ∈ L2 for Y ≥ k0, where k0 is given in As-

sumption 2.3.4, we have

lim sup
Y→∞

E [ξI (MY , Y ξ + γRY,MY
)]

≤ E
[
lim sup
Y→∞

ξI (MY , Y ξ + γRY,MY
)

]
= 0. (2.3.41)

Proof of Proposition 2.3.6. According to Lemmas 2.3.7, 2.3.8 and 2.3.9, the triple

(Y ∗,MY ∗ , RY ∗,MY ∗ ) solves the system of nonlinear equations in (2.3.29)-(2.3.31).

Next, we shall verify that X̂ = I (M,γR + Y ξ), where I is given in Proposition

2.3.5 and the numbers Y,M and R are warranted in Proposition 2.3.6, belongs to

X and satisfies Condition 2.3.1. Then, the optimal terminal wealth can be found

by Theorem 2.3.2:
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Theorem 2.3.10. X̂ = I (M,γR + Y ξ) is an optimal terminal wealth to the

utility-downside-risk problem, where I is given in Proposition 2.3.5 and the num-

bers Y,M and R are warranted in Proposition 2.3.6.

Proof. According to Proposition 2.3.5, I(m, y) is finite on R×(0,∞) and is strictly

decreasing in y for a fixed m. We have 0 ≤ I (M,Y ξ + γR) ≤ I (M,γR) <

∞, thus U (I (M,Y ξ + γR)) and D (M − I (M,Y ξ + γR)) are both uniformly

bounded. Hence, X = I (M,Y ξ + γR) ∈ X . Since D′ is increasing, D′(M −

I (M,γR)) ≤ D′ (M − I (M,Y ξ + γR)) ≤ D′(M), and henceD′ (M − I (M,Y ξ + γR))

is uniformly bounded and in L2. Furthermore, by (2.3.27), U ′ (I (M,Y ξ + γR)) =

Y ξ+γR−γD′ (M − I (M,Y ξ + γR)), which is in L2, hence X̂ = I (M,Y ξ + γR)

satisfies Condition 2.3.1.

With (Y,M,R) as warranted in Proposition 2.3.6, (I (M,Y ξ + γR) , Y,M,R)

solves the Nonlinear Moment Problem (2.2.4)-(2.2.7). Then, by Theorem 2.3.2,

X̂ = I (M,Y ξ + γR) is an optimal solution to Problem 2.1.4 with downside risk

function D. Finally, by Theorem 2.1.5, X̂ = I (M,Y ξ + γR) is an optimal termi-

nal wealth of utility-downside-risk problem.

In the proof of Theorem 2.3.10, it seems not immediate that the optimal

terminal wealth is uniformly bounded even if the risk measure is a downside one.

By Theorems 2.1.5 and 2.2.2, there exist numbers Y,M and R so that any optimal

terminal wealth X̂ (satisfying Conditions 2.2.1 (i) and (ii)) satisfies:Y ξ = fM,R(X̂), a.s. on {X̂ > 0},

Y ξ ≤ fM,R(X̂), a.s. on {X̂ = 0},
(2.3.42)

where fM,R(x) := U ′(x) − γR + γD′ (M − x). By taking expectation on both

sides of (2.3.42) with some terms being eliminated in accordance with (2.2.7),

we have Y ≥ E[U ′(X̂)]/E[ξ] > 0. By the definition of I in Proposition 2.3.5

and the fact that fM,R is decreasing, fM,R(x) ≤ 0 whenever x ≥ I (M,γR) > 0,

together with the facts that Y ξ > 0 and X̂ has to satisfy (2.3.42) a.s., there is
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no possibility that X̂ takes value greater than I (M,γR). In other words, X̂ has

to be bounded above by the finite deterministic number I (M,γR). Note that

the optimal terminal wealth is bounded when the risk function is strictly convex.

In particular, the optimal terminal payoff in our utility-risk problem in Theorem

2.3.10 is counter-monotonic with the pricing kernel, which is a commonly found

property in the portfolio selection literature.

To motivate the claim of the boundedness of the optimal payoff from a financial

perspective, we consider a simple single period example. Based on the previous

observation, it is justifiable to simply take the optimal terminal payoff under this

example to be also counter-monotonic with the pricing kernel.

We suppose that the payoff is a random variable Z with two possible outcomes,

0 and a number z > 1, and their respective probabilities are p0 := 1− pz and pz.

For simplicity, we assume the riskless rate is zero. Our objective function is

J(Z) := E[U(Z)]− E[D(E[Z]− Z)] := E[Zθ]− E[(E[Z]− Z)ρ+], (2.3.43)

where θ < 1 and ρ > 1. There is a budget constraint on the payoff, namely

E[ξZ] = qzz = 1, (2.3.44)

where qz is the risk neutral probability of Z = z. We look for the optimal z so that

the corresponding payoff Z maximizes (2.3.43). Since we assume that the payoff

Z and the pricing kernel ξ are counter-monotonic, there exist a ξ0(z) ∈ (0,∞)

such that {Z = z} = {ξ < ξ0(z)}, thus qz =
∫ ξ0(z)

0
ξP[dξ]. Then, in order to

maintain the budget constraint at the same level, increasing z has to be balanced

off with a smaller risk neutral probability qz, thus ξ0(z) decreases in z. Therefore,

pz =
∫ ξ0(z)

0
P[dξ] decreases in z. Define h(z) := qz

pz
=

∫ ξ0(z)
0 ξP[dξ]∫ ξ0(z)
0 P[dξ]

, simple calculus

concludes that h′(z) < 0, and therefore h(z) decreases in z. By (2.3.44), pz =

h(z)−1

z
and E[Z] = h(z)−1. Then, we have

(i) E[U(Z)] = E[Zθ] =
h(z)−1

z1−θ and

(ii) E[D(E[Z]− Z)] = E[(E[Z]− Z)ρ+] = (E[Z])ρ(1− pz) ≥ δ0(h(z)−1)ρ,
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for some δ0 > 0. Next, we consider two cases: (i) limz→∞ h(z)−1 < ∞ or (ii)

limz→∞ h(z)−1 =∞.

(i) We have limz→∞ E[U(Z)] = limz→∞
h(z)−1

z1−θ = 0, i.e. a bounded Z is optimal

even in the ordinary utility maximization.

(ii) We have

lim
z→∞

E[D(E[Z]− Z)]

E[U(Z)]
≥ lim

z→∞

δ0(h(z)−1)ρ

h(z)−1

z1−θ

≥ lim
z→∞

δ0(h(z)−1)ρ−1 =∞,

which means that E[D(E[Z] − Z)] grows with z faster than E[U(Z)] due

to the diminishing marginal value of utility U and the increasing marginal

value of deviation risk D(E[Z] − Z). As a result, taking an arbitrary large

value in z actually causes a negative effect on the objective value. It is

noted that even the downside risk does not penalize on the upside payoff,

the deviation risk of Z still increases in z because E[Z] increases in z.

2.3.3 Application to the Utility-Strictly-Convex-Risk Prob-

lem

In this subsection, we take D = [0,∞). We assume that U : [0,∞) → [0,∞) is

strictly concave and continuously differentiable, while D : R → [0,∞) is strictly

convex and continuously differentiable. Moreover, we assume that U and D satisfy

(2.3.26) and D′(−∞) = −∞. Thus any utility functions satisfying the Inada

conditions can be covered.

We can establish the existence of the solution of the nonlinear moment prob-

lem in (2.2.4) by using the same approach as in Subsection 2.3.2. Since most

derivations are similar, we only indicate here the major differences from the last

subsection.

Proposition 2.3.11.
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There exists an implicit function I : R2 → (0,∞) satisfying:

U ′(I(m, y)) + γD′(m− I(m, y))− y = 0, for any (m, y) ∈ R2. (2.3.45)

Moreover, this function I possesses the following regularities:

(a) (i) For each y ∈ R, I(m, y) is strictly increasing in m.

(ii) For each m ∈ R, I(m, y) is strictly decreasing in y.

(b) I(m, y) is jointly continuous in (m, y) ∈ R2.

Proof. The proof is essentially the same as the proof of Proposition 2.3.5 except

that limZ→∞ U
′(Z) + γD′ (m− Z)− y = −∞ for any (m, y) ∈ R2.

Proposition 2.3.12. There exist constants Y,M ∈ (0,∞) and R ∈ R satisfying a

system of nonlinear equations in (2.3.29)-(2.3.31). Thus, (I (M,γR + Y ξ) , Y,M,R)

is the solution of system of Equations (2.2.4)-(2.2.7), where I is given in Propo-

sition 2.3.11.

Proof. The approach is again the same as that of Proposition 2.3.6 with the

following major changes:

(i) Since R can take values in (−∞, D′(M)) instead. We have to prove the

following in place of that in (c1) in Lemma 2.3.7:

lim
R→−∞

E[D′ (M − I (M,γR + Y ξ))−R] > 0.

By (2.3.45), we have limR→−∞ I (M,γR + Y ξ) =∞ almost surely. Since U ′

is continuous, so we have limR→−∞ Y ξ − U ′(I (M,γR + Y ξ)) = Y ξ almost

surely by the Inada condition. Since Y ξ − U ′ (I (M,γR + Y ξ)) is strictly

increasing as R→ −∞ and Y ξ − U ′ (I (M,γR + Y ξ)) ≥ D′ (M − I (M, 0))
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for R < 0 by (2.3.45), then by the Monotone Convergence Theorem,

lim
R→−∞

E [D′ (M − I (M,γR + Y ξ))−R]

= lim
R→−∞

E
[

1

γ
(Y ξ − U ′(I (M,γR + Y ξ)))

]
=

1

γ
Y E [ξ] > 0.

(ii) In part (d1) in Lemma 2.3.7 , by Proposition 2.3.11 (a), I (M,γR + Y ξ) is

strictly increasing in M , so D′(M−I (M,γR + Y ξ))−R is strictly increasing

in M .

(iii) In part (a) in Lemma 2.3.8, by (2.3.27), D′(M − I (M,γR + Y ξ)) − R

is strictly increasing in M almost surely. Since D′ is strictly increasing,

I (M,γR + Y ξ)−M is strictly decreasing in M for fixed Y,R.

(iv) In part (b2) in Lemma 2.3.9, since R can be negative, we no longer have

limY→∞RN,MY
≥ 0. Instead, we claim that for anyN ∈ (0,∞), limY→∞RN,MY

>

−∞. Assume the contrary, that there exists N such that limY→∞RN,MY
=

−∞. Then

lim
Y→∞

(ξN + γRN,MY
) = −∞ for all ξ ∈ (0,∞). (2.3.46)

Fix a sample ξ0 ∈ (0,∞). Let {yn} be a sequence with yn →∞ such that

lim
n→∞

I
(
Myn , Nξ0 + γRN,Myn

)
= lim inf

Y→∞
I (MY , Nξ0 + γRN,MY

) .

If limn→∞ I
(
Myn , Nξ0 + γRN,Myn

)
<∞, then

lim
n→∞

U ′
(
I
(
Myn , Nξ0 + γRN,Myn

))
> 0 and

lim
n→∞

D′
(
Myn − I

(
Myn , Nξ0 + γRN,Myn

))
> −∞.

With (2.3.45), they contradict to (2.3.46). So

lim inf
Y→∞

I (MY , Nξ0 + γRN,MY
) = lim

n→∞
I
(
Myn , Nξ0 + γRN,Myn

)
=∞.
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Thus, we have lim infY→∞ I (MY , Nξ + γRN,MY
) =∞ almost surely. Then,

lim
Y→∞

U ′ (I (MY , Nξ + γRN,MY
)) = U ′

(
lim
Y→∞

I (MY , Nξ + γRN,MY
)
)

= 0.

Since U ′ (I (MY , Nξ + γRN,MY
)) ≤ Nξ + γRN,MN

−D′(−I(0, γRN,MN
)) for

Y > N , then by the reverse Fatou lemma, we have

0 = E
[
lim sup
Y→∞

U ′ (I (MY , Nξ + γRN,MY
))

]
≥ lim sup

Y→∞
E [U ′ (I (MY , Nξ + γRN,MY

))]

= NE [ξ] > 0,

which is a contradiction; thus for any N ∈ (0,∞), limY→∞RN,MY
> −∞.

From here on the rest of the proof is the same as that for part (b2) in Proof

for Lemma 2.3.9 until the last line,

I (MY , Y ξ + γRY,MY
) ≤ I

(
M1, γ lim

Y→∞
R1,MY

)
<∞,

which is independent of ξ. Hence, the reverse Fatou Lemma still works in

(2.3.41).

Using the same argument as in Section 2.3.2, we can draw the same existence

conclusion:

Theorem 2.3.13. X̂ = I (M,γR + Y ξ) is an optimal terminal wealth of the

utility-strictly-convex-risk problem, where I is specified in Proposition 2.3.11 and

the numbers Y,M and R are warranted in Proposition 2.3.12.

Furthermore, if we specify risk function D to be the square function, i.e.

D(x) = x2, and hence variance of the terminal payoff is the risk measure con-

cerned, then the solution of the Nonlinear Moment Problem in Theorem 2.3.2 is

unique:
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Proposition 2.3.14. There exists a unique set of numbers Y,M ∈ (0,∞) and

R ∈ R such that a system of nonlinear equations in (2.3.29)-(2.3.31) is satisfied.

Thus, X = I (M,γR + Y ξ), where I is a function defined in Proposition 2.3.11,

is the unique optimal terminal wealth of the utility-variance problem.

Proof. Now, D′(x) = 2x, then RY,MY
= 0 for all Y by (2.3.30) and (2.3.31). Since

MY is strictly decreasing in Y , by Proposition 2.3.11 (b), I (MY , γRY,MY
+ Y ξ) =

I (MY , Y ξ) is strictly decreasing in Y . Because ξ is absolute continuous with

no point mass and its support is R, hence E [ξI (MY , γRY,MY
+ Y ξ)] is strictly

decreasing in Y . Therefore, Y ∗ obtained in Proposition 2.3.12 is unique. Thus,

(2.3.29)-(2.3.31) is uniquely solved by (Y ∗,MY ∗ , 0).

By remark 2.3.3, (I (MY ∗ , Y
∗ξ) , Y ∗,MY ∗ , 0) solve the Nonlinear Moment Prob-

lem. By Theorems 2.1.5 and 2.3.2, the second assertion follows.

2.3.4 Application to the Mean-Risk Problem

In this subsection, we assume the utility function to be linear, i.e. U(x) = x, and

we set D = R. Our Problem 2.1.2 reduces to a mean-risk optimization problem:

max
π∈A

E[Xπ(T )]− γE[D (E[Xπ(T )]−Xπ(T ))]. (2.3.47)

As the Inada conditions in (2.3.26) do not hold in this case, the method de-

veloped in the previous subsection cannot be directly translated here. Suppose

that there is an inverse function for the first-order derivative of risk function,

I2 := (D′)−1. The Nonlinear Moment Problem (2.2.4) corresponding to (2.3.47)

can be simplified as follows:

Y ξ = 1− γR + γD′
(
M − X̂

)
, (2.3.48)
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where the numbers Y,M,R ∈ R satisfy

E[ξX̂] = x0, (2.3.49)

E[X̂] = M, (2.3.50)

E
[
D′
(
M − X̂

)]
= R. (2.3.51)

In accordance with Theorem 2.3.2, we are going to show that the reduced

Nonlinear Moment Problem (2.3.48) admits a solution, so that the corresponding

X̂ will be an optimal terminal wealth for the mean-risk problem (2.3.47).

Theorem 2.3.15. If there exists a unique R ∈ R so that:

I2

(
R +

ξ

γE[ξ]
− 1

γ

)
∈ L2 and (2.3.52)

E
[
I2

(
R +

ξ

γE[ξ]
− 1

γ

)]
= 0, (2.3.53)

then by setting

X̂ := M − I2

(
R +

ξY

γ
− 1

γ

)
, (2.3.54)

M :=
x0

E[ξ]
+

E
[
ξI2

(
R + ξY

γ
− 1

γ

)]
E[ξ]

, (2.3.55)

Y :=
1

E[ξ]
, (2.3.56)

together with R, they will solve the reduced Nonlinear Moment Problem (2.3.48)-

(2.3.51).

Proof. Condition (2.3.52) guarantees that X defined in (2.3.54) is in L2 and

E
[
ξI2

(
R + ξY

γ
− 1

γ

)]
is finite, by the Cauchy-Schwarz inequality. It is clear that

Condition 2.3.1 is satisfied. Since D is convex,

D

(
I2

(
R +

ξY

γ
− 1

γ

))
≤ D(0) +

(
R +

ξY

γ
− 1

γ

)
I2

(
R +

ξY

γ
− 1

γ

)
,

hence I2

(
R + ξY

γ
− 1

γ

)
∈ X . (2.3.48)–(2.3.51) can be verified easily by direct

substitution of (2.3.54)–(2.3.56).
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In Theorem 2.3.15, we solve the mean-risk optimization problem for any risk

function satisfying (2.3.52) and (2.3.53). (2.3.53) can be obviously satisfied when

I2 is both continuous and coercive. Note that the uniqueness of R can be war-

ranted by the strict convexity of D and (2.3.52) can be satisfied when I2 is of

polynomial growth.

Remark 2.3.16. In Jin et al. (2005), they studied the same mean-risk optimiza-

tion problem by using the Lagrangian approach, and they also formulated the

problem as follows:

minD(E[X(T )]−X(T )), subject to E[X(T )] = z.

This problem is equivalent to (2.3.47) for appropriate relationship between γ and

z. The work Jin et al. (2005) shows that if the mean-risk problem has a solution,

the optimal terminal wealth X = z − I2(µξ − λ), where λ and µ satisfy the

equations

E[I2(µξ − λ)] = 0,

E[ξI2(µξ − λ)] = zE[ξ]− x0.

For any z such that there exists γ > 0 satisfying

z =
x0

E[ξ]
+

E
[
ξI2

(
R + ξ

γE[ξ]
− 1

γ

)]
E[ξ]

,

if we set

µ =
1

γE[ξ]
, λ =

1

γ
−R,

where R is as obtained in (2.3.53), the solution in Jin et al. (2005) can then be

recovered.

Example 2.3.17 (Mean-Variance Case). We further set D(x) = 1
2
x2, the general

utility risk problem (2.1.2) boils down to the classical mean-variance problem.

Clearly, we have D′(x) = I2(x) = x. By setting ρ = 1 in (2.3.62), we have R = 0,

63



2.3. Sufficient Condition

and also in light of (2.3.55), M = x0

E[ξ]
+ 1

γ

(
E[ξ2]

(E[ξ])2 − 1
)

, one can derive the optimal

terminal wealth from (2.3.61),

X =
x0

E[ξ]
+

1

γ

(
E[ξ2]

(E[ξ])2 −
ξ

E[ξ]

)
. (2.3.57)

Then the optimal trading strategy can be obtained with an application of Mar-

tingale Representation Theorem since the market is complete. Now, we aim to

show that if all market coefficients are deterministic, we can obtain the explicit

form of optimal control. With deterministic market parameters, we have:

E[ξ] = exp

[
−
∫ T

0

r(s)ds

]
E[ξ2] = exp

[∫ T

0

(−2r(s) + α(s)t
(
σ(s)σ(s)t

)−1
α(s))ds

]
.

Using (2.3.57), we have

X = C − 1

γ
exp

[∫ T

0

r(s)ds

]
ξ,

where C := exp
[∫ T

0
r(s)ds

]
x0+ 1

γ
exp

[∫ T
0
α(s)t (σ(s)σ(s)t)

−1
α(s)ds

]
. Since {X̂(t)ξ(t)}

is a martingale, and we have

X̂(t)ξ(t) = E
[
X̂(T )ξ(T )|Ft

]
= CE[ξ|Ft]−

1

γ
e
∫ T
0 r(s)dsE[ξ2|Ft]

= Cξ(t)e−
∫ T
t r(s)ds − 1

γ
e
∫ T
0 r(s)ds (ξ(t))2 e

∫ T
t (−2r(s)+α(s)t(σ(s)σ(s)t)

−1
α(s))ds.

(2.3.58)

Thus, through an application of Itô’s formula to (2.3.58), we have

d
(
X̂(t)ξ(t)

)
= −Cξ(t)e

∫ T
t −r(s)dsα(t)t

(
σ(t)t

)−1
dW (t)

+
1

γ
e
∫ T
0 r(s)ds (ξ(t))2 e

∫ T
t (−2r(s)+α(s)t(σ(s)σ(s)t)

−1
α(s))dsα(t)t

(
σ(t)t

)−1
dW (t)

= Cξ(t)e
∫ T
t −r(s)dsα(t)t

(
σ(t)t

)−1 − 2X̂(t)ξ(t)α(t)t
(
σ(t)t

)−1
dW (t). (2.3.59)
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On the other hand, by applying Itô’s formula to X̂(t)ξ(t) directly, we have

d
(
X̂(t)ξ(t)

)
= ξ(t)

(
−α(t)t

(
σ(t)t

)−1
X̂(t) + π(t)tσ(t)

)
dW (t),(2.3.60)

By comparing the coefficients of (2.3.59) and (2.3.60) and knowing ξ(t) > 0,

we can obtain the optimal control which coincides the result as obtained in Li and

Zhou (2000) and Bensoussan et al. (2014):

π̂(t) =
(
σ(t)σ(t)t

)−1
α(t)

(
−X̂(t) +Ke

∫ T
t −r(s)ds

)
.

Example 2.3.18 (Mean-Weighted-Power-Risk Function case). Consider

D(x) =
a

2

xρ+1
+

ρ+ 1
− b

2

xρ+1
−

ρ+ 1

for ρ > 0 and a ≥ b > 0. a ≥ b means that the risk incurred when the return

is less than the expectation will be greater than that when the return is greater

than the expectation. Now, D′(x) = axρ+−bx
ρ
−, and I2(x) = 1

a
x

1
ρ

+− 1
b
x

1
ρ

−. To verify

(2.3.52), we consider two cases: (i) ρ ≤ 2 and (ii) ρ > 2 respectively.

(i) If ρ ≤ 2, by Minkowski’s inequality, for any R ∈ R,

E

[(
I2

(
1

γE[ξ]
ξ +R− 1

γ

))2
]
≤ E

[
1

b2

∣∣∣∣ 1

γE[ξ]
ξ +R− 1

γ

∣∣∣∣ 2
ρ

]

≤ 1

b2

E

[∣∣∣∣ ξ

γE[ξ]

∣∣∣∣ 2
ρ

] ρ
2

+

∣∣∣∣R− 1

γ

∣∣∣∣
 2

ρ

.

We next show that ξ(t)k is bounded for all k ∈ R and t ∈ [0, T ]:

Lemma 2.3.19. For any k ∈ R, t ∈ [0, T ], ξ(t)k is integrable.

Proof.

E
[
ξ(t)k

]
= E

[
e
−
∫ t
0

(
kr(s)ds+ k

2
α(s)t(σ(s)σ(s)t)

−1
α(s)ds+kα(s)t(σ(s)t)

−1
dW (s)

)]
= E

[
e
−
∫ t
0

(
kr(s)ds+ k−k2

2
α(s)t(σ(s)σ(s)t)

−1
α(s)ds

)

×e−
∫ t
0

(
k2

2
α(s)t(σ(s)σ(s)t)

−1
α(s)ds+kα(s)t(σ(s)t)

−1
dW (s)

)]
.
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Due to the uniform boundedness of the underlying market parameters, there

are some r and K such that |r(s)| ≤ r and |α(s)t (σ(s)σ(s)t)
−1
α(s)| ≤ K

for any s ∈ [0, T ], we thus have

e
−
∫ t
0

(
kr(s)ds+ k−k2

2
α(s)t(σ(s)σ(s)t)

−1
α(s)ds

)
≤ eT (|k|r+|k−k2|K)

Because

{
e
−
∫ t
0

(
k2

2
α(s)t(σ(s)σ(s)t)

−1
α(s)ds+kα(s)t(σ(s)t)

−1
dW (s)

)}
is a martingale,

we can show that for any k ∈ R, t ∈ [0, T ], E
[
ξ(t)k

]
is bounded; indeed,

E
[
ξ(t)k

]
= E

[
e
−
∫ t
0

(
kr(s)ds+ k−k2

2
α(s)t(σ(s)σ(s)t)

−1
α(s)ds

)

×e−
∫ t
0

(
k2

2
α(s)t(σ(s)σ(s)t)

−1
α(s)ds+kα(s)t(σ(s)t)

−1
dW (s)

)]
≤ eT (|k|r+|k−k2|K)E

[
e
−
∫ t
0

(
k2

2
α(s)t(σ(s)σ(s)t)

−1
α(s)ds+kα(s)t(σ(s)t)

−1
dW (s)

)]
= eT (|k|r+|k−k2|K).

Since E
[
ξk
]

is bounded for any k ∈ R, I2

(
ξ

γE[ξ]
+R− 1

γ

)
∈ L2, i.e. (2.3.52)

is satisfied.

(ii) If ρ > 2, for any R ∈ R,

E

[(
I2

(
1

γE[ξ]
ξ +R− 1

γ

))2
]

≤ 1

b2

(
2

1
ρ

γ
2
ρ (E[ξ])

2
ρ

E
[
ξ

2
ρ

]
+

2

p

(
2

γ2 (E[ξ])2

) 1
ρ
−1(

R− 1

γ

)2

E
[
ξ2( 1

ρ
−1)
])

,

by concavity of x
1
ρ . By the fact that E

[
ξk
]

is bounded for any k ∈ R,

(2.3.52) is satisfied.

Note that the expression

I2

(
ξ

γE[ξ]
+R− 1

γ

)
=

1

a

(
ξ

γE[ξ]
+R− 1

γ

) 1
ρ

+

− 1

b

(
ξ

γE[ξ]
+R− 1

γ

) 1
ρ

−
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is increasing in R and L1-integrable by Jensen’s inequality, for all R ∈ R. Thus,

E
[
I2

(
R + ξ

γE[ξ]
− 1

γ

)]
is continuous in R by the Dominated Convergence Theo-

rem. It is not difficult to use the Monotone Convergence Theorem to show that

E
[
I2

(
R + ξ

γE[ξ]
− 1

γ

)]
is coercive in the sense that

lim
R→−∞

E
[
I2

(
R +

ξ

γE[ξ]
− 1

γ

)]
= −∞, lim

R→∞
E
[
I2

(
R +

ξ

γE[ξ]
− 1

γ

)]
=∞.

By the intermediate value theorem, there exists a unique R ∈ R so that (2.3.53)

and (2.3.52) are satisfied. The solution of the mean-weighted-power-risk problem

is:

X̂ =
1

E[ξ]

(
x0 + E

[
ξ

a

(
ξ

γE[ξ]
+R− 1

γ

) 1
ρ

+

− ξ

b

(
ξ

γE[ξ]
+R− 1

γ

) 1
ρ

−

])

−1

a

(
ξ

γE[ξ]
+R− 1

γ

) 1
ρ

+

+
1

b

(
ξ

γE[ξ]
+R− 1

γ

) 1
ρ

−
, (2.3.61)

where R is the unique root of the equation

E

[
1

a

(
ξ

γE[ξ]
+R− 1

γ

) 1
ρ

+

− 1

b

(
ξ

γE[ξ]
+R− 1

γ

) 1
ρ

−

]
= 0. (2.3.62)

Remark 2.3.20. If ρ = 1, this mean-weighted-power-risk model becomes the

mean-weighted-variance one, studied in Jin et al. (2005). The results in Jin et al.

(2005) can be recovered by choosing µ = 1
γE[ξ]

, λ = 1
γ
−R where 1

γ
is selected such

that

z =
1

E[ξ]

(
x0 + E

[
ξ

a

(
R +

ξ

γE[ξ]
− 1

γ

)
+

− ξ

b

(
R +

ξ

γE[ξ]
− 1

γ

)
−

])
.

If a = b = 1, this mean-weighted-variance model further becomes the classical

mean-variance setting. We can easily get that R = 0 from (2.3.62). Then we can

recover the following solution:

X̂ =
x0

E[ξ]
+

1

γ

(
E[ξ2]

(E[ξ])2 −
ξ

E[ξ]

)
.

This result can coincide with the solution on P.226–227 in Bielecki et al. (2005)

by choosing

µ =
1

γE[ξ]
, λ =

x0

E[ξ]
+

E[ξ2]

γ (E[ξ])2 , where
1

γ
=

E[ξ] (zE[ξ]− x0)

V ar[ξ]
.
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Example 2.3.21 (Mean-Exponential-Risk Function Case). We further revisit

another example found in Jin et al. (2005). Consider the exponential risk function

D(x) = ex. Then D′(x) = ex and I2(x) = ln x for x > 0.

Proposition 2.3.22. Mean-Exponential-Risk Problem possesses an optimal solu-

tion if and only if γ ≥ exp
(
E
[
ln
(

ξ
E[ξ]

)])
4. Furthermore, if the problem possesses

an optimal solution, the optimal terminal wealth is

X̂ =
1

E[ξ]

(
x0 + E

[
ξ ln

(
ξ

γE[ξ]
+R− 1

γ

)])
− ln

(
ξ

γE[ξ]
+R− 1

γ

)
,

(2.3.63)

where R ∈ [ 1
γ
,∞) is the unique root of the equation:

E
[
ln

(
ξ

γE[ξ]
+R− 1

γ

)]
= 0.

Proof. Firstly, we know that given x, y > 0, if 0 < x + y ≤ 1, then | ln(x + y)| ≤

| lnx|; on the other hand, if x+ y > 1, then 0 < ln(x+ y) < lnx+ y
x
. Combining,

| ln(x+ y)| ≤ | ln(x)|+
∣∣ y
x

∣∣. For fixed R ∈
[

1
γ
,∞
)

,

E

[∣∣∣∣ ln( ξ

γE[ξ]
+R− 1

γ

) ∣∣∣∣2
]

≤ E

[(∣∣∣∣ ln( ξ

γE[ξ]

) ∣∣∣∣+

∣∣∣∣E[ξ]
γR− 1

ξ

∣∣∣∣)2
]

≤ E
[(
| ln ξ|+ | ln(γE[ξ])|+ (γR− 1)E[ξ]ξ−1

)2
]

≤ 3
(
E
[
| ln ξ|2

]
+ ln(γE[ξ])2 + (γR− 1)2E[ξ]2E

[
ξ−2
])
. (2.3.64)

4E
[
ln
(

E[ξ]
ξ

)]
is known to be the Kullback-Leibler Divergence (relative entropy) from P to

Q, the risk neutral measure.
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Clearly, by a simple calculation,

E
[
| ln ξ|2

]
≤ E

[
2T

∫ T

0

∣∣∣∣r(s) +
1

2
α(s)t

(
σ(s)σ(s)t

)−1
α(s)

∣∣∣∣2ds
+2

∫ T

0

α(s)t
(
σ(s)σ(s)t

)−1
α(s)ds

]
≤ 2T 2

(
r +

C

2

)2

+ 2CT,

where C is a constant. With this last result and the boundedness of E[ξ−2], we

can show that (2.3.64) is bounded, and hence ln
(

ξ
γE[ξ]

+R− 1
γ

)
∈ L2 for any

R ∈ [ 1
γ
,∞).

Now, we consider three different cases: (i) γ > exp
(
E
[
ln
(

ξ
E[ξ]

)])
, (ii) γ =

exp
(
E
[
ln
(

ξ
E[ξ]

)])
, and (iii) γ < exp

(
E
[
ln
(

ξ
E[ξ]

)])
.

(i) Obviously, E
[
ln
(

ξ
γE[ξ]

+R− 1
γ

)]
is strictly increasing and continuous in

R ∈
(

1
γ
,∞
)

. By the Monotone Convergence Theorem,

lim
R→∞

E
[
ln

(
ξ

γE[ξ]
+R− 1

γ

)]
=∞.

On the other hand, limR→ 1
γ
E
[
ln
(

ξ
γE[ξ]

+R− 1
γ

)]
= E

[
ln
(

ξ
γE[ξ]

)]
< 0.

Hence, by intermediate value theorem, there exist an unique R satisfying

(2.3.52) and (2.3.53).

(ii) R = 1
γ

is the unique solution satisfying (2.3.52) and (2.3.53).

(iii) Assume the contrary that there exists an admissible solution X̂ being an

optimal terminal wealth for this mean-exponential-risk problem. Since D =

D′, so X̂ satisfies Condition 2.2.1 (i). It is clear that X̂ satisfies Condition

2.2.1 (ii). Hence, by Theorem 2.2.2, it is necessary that there exist num-

bers Y,M,R such that (X̂, Y,M,R) solves the Nonlinear Moment Problem
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(2.3.48)-(2.3.51). By (2.3.48) and (2.3.51), we first have

X̂ = M − ln

(
R +

ξY

γ
− 1

γ

)
, Y =

1

E[ξ]
. (2.3.65)

Given that γ < exp
(
E
[
ln
(

ξ
E[ξ]

)])
, we have ln

(
ξ

γE[ξ]

)
> ln[ξ] − E[ln[ξ]].

Taking expectation on both sides of X̂ in (2.3.65), for any R ∈
[

1
γ
,∞
)

, we

have

E
[
X̂
]

= M − E
[
ln

(
R +

ξY

γ
− 1

γ

)]
≥M − E

[
ln

(
ξY

γ

)]
> M − E [ln [ξ]− E [ln [ξ]]] = M,

which contradicts with (2.3.50). Therefore, there is no solution for the Non-

linear Moment Problem, and hence, this mean-exponential risk problem has

no optimal solution.

2.4 Conclusion

In this chapter, we studied the utility risk portfolio selection problem. We derived

the Nonlinear Moment Problem in (2.2.4)-(2.2.7), whose solution can completely

characterize the optimal terminal wealth by the necessity and sufficiency results

in Theorems 2.2.2 and 2.3.2 respectively. The nonexistence of optimal solution

for the mean-semivariance problem can be revisited by the application of The-

orem 2.2.2. Furthermore, we applied Theorem 2.3.2 to establish the existence

of optimal solutions for the utility-downside-risk and utility-strictly-convex-risk

problems. Their resolutions have long been missing in the literature, and the

positive answer in utility-downside-risk problem is in big contrast to the negative

answer in mean-downside-risk problem; with our present result, we can now use

semivariance as a proper risk measure in portfolio selection. Finally, we estab-

lished the sufficient condition for the Nonlinear Moment Problem through which

the existence of optimal solution of mean-risk problem can be ensured.
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In this chapter, the derivation of the Nonlinear Moment Problem with necessity

and sufficiency theorem and the existence results of optimal solution to various

specific utility-risk problems rely on the market completeness and existence of

pricing kernel, thus these results can be extended from the present continuous-

time Black-Scholes model to a more general framework. In the next chapter, I

shall investigate this extension.

Also, we have shown that some specific utility-risk problems possess an optimal

solution, however, how to numerically compute the optimal solution for the present

utility-risk problem has not been studied. In the next chapter, I shall develop an

numerical method to compute the optimal terminal wealth.
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Chapter 3

Numerical Valuation of Optimal

Utility-risk Portfolio Payoff

In this chapter, we first introduce the problem formulation and some assumptions

on market model in Section 3.1 and convert our dynamic utility-risk problem into

an equivalent static formulation as stated in Theorem 3.1.9. We will verify that

the aforementioned assumptions can be satisfied by various asset price models. In

Section 3.2, we revisit the results in Chapter 2 including the theory about Non-

linear Moment Problem and the unique existence of optimal solution for utility-

downside-risk problems (Theorem 3.2.8) and utility-strictly-convex-risk problems

(Theorem 3.2.14) under the generalized setting. In Section 3.3, we show that

the sequence of the optimal terminal payoffs in different model settings converges

under some conditions on the pricing kernel for the market model. Such condi-

tions are satisfied by discrete binomial tree model in Section 3.3.3 so that we can

conclude that the optimal solution for utility-risk problem under continuous-time

Black-Scholes model can be approximated by the solutions in discrete binomial

tree models. Since there is fundamental difference between downside risk and

strictly convex risk, all the aforementioned results are essentially presented in a

separate way. In Section 3.4, the convergence results in Section 3.3 are realized to
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compute the numerical solution for utility-risk problem under discrete binomial

tree model in Example 3.1.11.

3.1 Problem Setting

Let (Ω,F ,P) be a fixed complete probability space. Suppose that the market has

m+1 assets with the joint price process S(t) := (S0(t), . . . , Sm(t))t; M t denotes the

transpose of a matrix M . Define the information filtration Ft := σ(S(s) : s ≤ t).

Let π(t) , (π1(t), . . . , πm(t))t, where πk(t) be the money amount invested in

the k-th risky asset of the portfolio at time t. The dynamics of controlled wealth

process is:

dXπ(t) = (Xπ(t)− π(t)t1m)
dS0(t)

S0(t)
+

m∑
k=1

πk(t)
dSk(t)

S(t)
, (3.1.1)

Xπ(0) = x0 > 0,

where 1m is m-dimension vector.

The objective functional is:

J(π) := E[U(Xπ(T ))]− γE[D (E[Xπ(T )]−Xπ(T ))], (3.1.2)

where the terminal time T is finite and γ > 0 denotes the risk aversion coefficient.

The utility function U is defined as follows:

Definition 3.1.1. We define a utility function U such that U : (0,∞) → R is

strictly increasing, strictly concave and continuously differentiable in the interior.

Furthermore, we assume that U ′(0) =∞, U ′(∞) = 0.

Note that any utility functions satisfying Inada conditions can be covered. For

the completeness, we extend the definition of U over R so that U(0) := limx↓0 U(x)

and U(x) := −∞ for x < 0.

The deviation risk function D is used to measure the investor’s dissatisfaction

on the deviation of the random return from its own expectation. We consider
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3.1. Problem Setting

two different types of deviation risk functions: downside risk function and strictly

convex risk function. They are to be defined in Definitions 3.1.2 and 3.1.3 respec-

tively:

Definition 3.1.2. We define a downside risk function D such that D : R → R+

is positive, strictly convex and continuously differentiable on (0,∞) and D(x) = 0

for x ≤ 0. Furthermore, we assume that D′(∞) =∞ and D′(0) = 0.

Definition 3.1.3. We define a strictly convex risk function D such that D : R→

R+ is non-negative, strictly convex and continuously differentiable. Furthermore,

we assume that D′(∞) =∞ and D′(−∞) = −∞.

Under Definition 3.1.2, the payoff greater than its mean will not be penalized,

and only the downside deviation risk would be taken into account. We also have

D′(x) > 0 when x > 0 and D′(x) = 0 when x ≤ 0 in this case.

For any given, p ≥ 1, Lp :=
{
Z| ‖Z‖p := E[|Z|p]

1
p <∞

}
. Define H2 to

be the class of all Ft-adapted processes π, equipped with a norm ‖π‖2
H2 :=

E
[∫ T

0
π(t)tπ(t)dt

]
<∞.

Definition 3.1.4. We define the class of all admissible controls π ∈ A as follows:

A :=
{
π ∈ H2

∣∣Xπ(T ) ∈ X
}
,

here X is the class of all admissible terminal wealths, such that

X := {X ∈ L2|X ∈ FT , X ≥ 0 a.s., U(X) ∈ L1, D(E[X]−X) ∈ L1}.

Note that, for every admissible terminal wealth, both its expected utility and

expected deviation risk are well-defined. It is clear that X is a convex subspace

of L2.

Under the above settings, our utility risk problem can be stated as follows:
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Problem 3.1.5.

Maximize J(π),

subject to π ∈ A and (Xπ(·), π(·)) satisfies (3.1.1) with initial wealth x0.

We have following assumptions on the market:

Assumption 3.1.6 (Pricing Kernel). Assume there exists a pricing kernel ξ(·) ∈

H2 such that ξ := ξ(T ) ∈ L2 and ξ(t)Xπ(t) is martingale for all π ∈ A. We also

assume that ξ(0) = 1 and for each t ∈ [0, T ], ξ(t) ∈ (0,∞) a.s. In addition, we

define ξ := essinf ξ and ξ := esssup ξ.

Assumption 3.1.7 (Complete Market). For every X ∈ L2 and measurable by

FT , there exists a π ∈ H2 such that Xπ(T ) = X.

Since our market is complete by Assumption 3.1.7, all L2-integrable and FT -

measurable terminal wealth can be attained by an admissible control. Our dy-

namic utility-risk optimization problem 3.1.5 can be converted into the following

static optimization problem:

Define Ψ : X → R such that Ψ(X) := E[U(X)]− E[D(E[X]−X)].

Problem 3.1.8.

Maximize Ψ(X), (3.1.3)

subject to X ∈ X and E[ξX] = x0,

Under the complete market assumption in Assumption 3.1.7, same as Theorem

2.1.5, the optimal solution of Problem 3.1.8 is the optimal terminal wealth of

Problem 3.1.5:

Theorem 3.1.9. If π(t) is optimal for Problem 3.1.5, then Xπ(T ) is optimal for

Problem 3.1.8. Conversely, if X ∈ X is optimal for Problem 3.1.8, there exists

π ∈ A such that Xπ(T ) = X and π is optimal for Problem 3.1.5.

75



3.1. Problem Setting

Note that the maximization in Problem 3.1.8 is confined to the set X , so that

the solution obtained in Problem 3.1.8 is an admissible terminal wealth in Problem

3.1.5. Since Theorem 3.1.9 provide the equivalence between Problems 3.1.5 and

3.1.8, our present chapter now aims to establish an admissible terminal wealth

X ∈ X that maximizes Ψ(X).

Example 3.1.10 (Continuous time Black-Scholes Model). Assume that the mar-

ket has one bond and one stock. We consider the bond price and stock price

satisfy the following SDE:dB(t) = rB(t)dt, B(0) = b0 > 0,

dS(t) = µ(t)S(t) dt+ σS(t)dW (t), S(0) = s0 > 0,

where W (t) is a standard Brownian motion. Let π(t) be the money amount of

risky investment, thus the dynamic of wealth process becomes:

dXπ(t) = (rXπ(t) + απ(t))dt+ σπ(t)dW (t), Xπ(0) = x0 > 0.

The continuous time pricing kernel ξ(·) becomes the following:

ξ(t) := exp

[
−rt− α2

2σ2
t− α

σ
Wt

]
, (3.1.4)

Clearly, ξ(t) satisfies Assumption 3.1.6. Assumption 3.1.7 can be satisfied by the

application of Martingale Representation Theorem. Note that all assumptions are

satisfied even when the market parameters are Ft-adapted processes.

Example 3.1.11 (Binomial Tree Model). Assume that the market has one bond

and one stock, we consider a N -period discrete time framework with time interval

∆t := T
N

. The price processes of bond B(N)(t) and stock S
(N)
n are given by

B(N)(t) := B
(N)
bt∆tc and S(N)(t) := S

(N)
bt∆tc respectively, where B

(N)
n and S

(N)
n have

following dynamics:

B
(N)
n+1 = er∆tB(N)

n , B
(N)
0 = b0

S
(N)
n+1 = e

(
µ−σ

2

2

)
∆t+σ

√
∆tZ

(N)
n+1S(N)

n , S
(N)
0 = b0
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3.1. Problem Setting

where Z
(N)
n is an iid Bernoulli random variable measurable by Fn∆t with probabil-

ity: P
[
Z

(N)
n = 1

]
= P

[
Z

(N)
n = −1

]
= 1

2
. Let π

(N)
n be the money amount of risky

investment in n-th period, the corresponding wealth process X(N),π(t) := X
(N),π
bt∆tc

has the following the dynamics:

X
(N),π
n+1 = er∆tX(N),π

n +

(
e

(
µ−σ

2

2

)
∆t+σ

√
∆tZ

(N)
n+1 − er∆t

)
π(N)
n , (3.1.5)

X
(N),π
0 = x0

In this binomial tree model, the pricing kernel is given by ξ(N)(t) := ξ
(N)
bt∆tc,

where:

ξ(N)
n :=

n∏
k=1

2

er∆t

(
e−(α− 1

2
σ2)∆t+σ

√
∆tZ

(N)
k − 1

e2σ
√

∆tZ
(N)
k − 1

)
, (3.1.6)

where α = µ− r. Hence, assumption 3.1.6 is obviously satisfied.

For Assumption 3.1.7, given X ∈ L2 and measurable by FT , the attaining

wealth process can be obtained by

X(N),π
n = E

[
ξ

(N)
N

ξ
(N)
n

X

∣∣∣∣ξ(N)
n

]
= E

[
N∏

k=n+1

2

er∆t

(
e−(α− 1

2
σ2)∆t+σ

√
∆tZ

(N)
k − 1

e2σ
√

∆tZ
(N)
k − 1

)
X

]
,

and the attaining trading strategy can be obtained from (3.1.5).

Example 3.1.12 (Stochastic Interest Rate Model). We follow the market setting

in Bajeux-Besnainou et al. (2003). Assume that the market has one riskless money

account (cash), one stock, and one zero coupon bond fund and their prices at t

are denote by S0(t), S1(t), and S2(t) respectively. The asset prices satisfy the

following SDE:

dS0(t) = r(t)S0(t)dt, S0(t) = s0 > 0,

dS1(t) = (r(t) + α1)S1(t) dt+ σ11S1(t)dW1(t) + σ12S1(t)dW2(t),

S1(0) = s1 > 0,

dS2(t) = (r(t) + α2)S2(t) dt+ σ21S2(t)dW1(t), S2(0) = s2 > 0,
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3.2. Nonlinear Moment Problem (NMP)

where W1(t) and W2(t) are independent standard Brownian motions and the in-

terest rate r(t) follows an Ornstein-Uhlenbeck process with constant parameters

given by

dr(t) = ar (br − r(t)) dt− σrdW1(t), r(0) = r0

Let π := (π1, π2) and π1(t) and π2(t) be the money amount of the investment

in stock and bond fund respectively, thus the dynamic of wealth process becomes:

dXπ(t) = (Xπ(t)− π1(t)− π2(t))
dS0(t)

S0(t)
+ π1(t)

dS1(t)

S1(t)
+ π2(t)

dS2(t)

S2(t)

= (r(t)Xπ(t) + α1π1(t) + α2π2(t)) dt

+ (σ11π1(t) + σ21π2(t)) dW1(t) + σ12π1(t)dW2(t),

Xπ(0) = x0 > 0

The pricing kernel ξ(·) for the market setting becomes the following:

ξ(t) := exp

−∫ t

0

r(s)ds− 1

2


(
α1 − α2

σ12

σ21

)2

σ2
11

+
α2

2

σ2
21

 t

− α2

σ21

W1(t)−
α1 − α2

σ11

σ21

σ12

W2(t)

]
,

By applying Itô’s formula to ξtX
π(t), it is martingale, so Assumption 3.1.6 follows.

The Brownian motions W1(t) and W2(t) can be hedged perfectly through trad-

ing the stock and the zero-coupon bond continuously and freely, so the market is

complete and Assumption 3.1.7 is satisfied.

3.2 Nonlinear Moment Problem (NMP)

In this section, we shall establish the Nonlinear Moment Problem for our general-

ized market framework where the dynamics asset price processes are unspecified.

They can be proven by using the same argument as in Chapter 2, the essential

changes and key steps needed will be provided.
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3.2. Nonlinear Moment Problem (NMP)

3.2.1 Necessary and Sufficient Optimality Conditions

First, we shall derive a static problem, called Nonlinear Moment Problem to char-

acterize the optimal solution for Problem 3.1.8.

To show the necessity for optimality, we assume that the optimal solution of

Problem 3.1.8, X̂ ∈ X , satisfies the following two very mild technical conditions:

Condition 3.2.1. Both U ′(Z) ∈ L1 and D′ (E[Z]− Z) ∈ L1.

Condition 3.2.2. There exists δ > 0 such that D (E [Z]− Z − δ) ∈ L1 and

D (E [Z]− Z + δ) ∈ L1.

Now, it is necessary for X̂ to solve the Nonlinear Moment Problem:

Theorem 3.2.3 (Nonlinear Moment Problem). If X̂ is the optimal solution of

Problem 3.1.8 satisfying Conditions 3.2.1 and 3.2.2, then it is necessary that there

exist constants Y,M,R ∈ R such that the quadruple
(
X̂, Y,M,R

)
solves the fol-

lowing equality:

Y ξ = U ′(X̂)− γR + γD′
(
M − X̂

)
a.s., (3.2.7)

subject to the nonlinear moment constraints

E[ξX̂] = x0, (3.2.8)

E[X̂] = M, (3.2.9)

E
[
D′
(
M − X̂

)]
= R. (3.2.10)

Proof. The proof is exactly the same as Theorem 2.2.2. Note that Condition 3.2.1

confines X̂ > 0 a.s.

We denote the static problem (3.2.7)-(3.2.10) as NMP(ξ) as its solution de-

pends on the choice of the terminal random variable of the pricing kernel, ξ. Next,

we establish the sufficiency result regarding to the Nonlinear Moment Problem.

In this subsection, we aim to show that any admissible terminal wealth X̂ ∈

X solving the Nonlinear Moment Problem satisfying the following condition is

optimal terminal wealth of Problem 3.1.5:
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3.2. Nonlinear Moment Problem (NMP)

Condition 3.2.4. Both U ′(Z) ∈ L2 and D′ (E[Z]− Z) ∈ L2.

There is a fundamental difference between the necessary condition in Theo-

rem 3.2.3 and the sufficient condition in the next theorem. Conditions 3.2.1 and

3.2.2 are needed for the optimal terminal wealth satisfying the Nonlinear Mo-

ment Problem in the necessity result, while Condition 3.2.4 is required for the

sufficiency.

Theorem 3.2.5. Suppose that there exists X̂ ∈ X satisfying Condition 3.2.4 and

there exist constants Y,M,R ∈ R so that the quadruple
(
X̂, Y,M,R

)
solves for

the Nonlinear Moment Problem (3.2.7)-(3.2.10). Then, X̂ is the unique optimal

solution for Problem 3.1.8, and it is also the unique optimal terminal wealth of

Problem 3.1.5.

Proof. Let (X̂, Y,M,R) be the solution of Nonlinear Moment Problem (3.2.7)-

(3.2.10) and X̃ ∈ L2 be an arbitrary nontrivial random variable such that X̂+X̃ is

admissible for Problem 3.1.8, i.e. P[X̃ 6= 0] > 0, X̂+X̃ ∈ X and E
[
ξ
(
X̂ + X̃

)]
=

x0. By (3.2.8), we have E
[
ξX̃
]

= 0.

By the strict concavity of U and convexity of D, it is clear that Ψ is strictly

concave, i.e.

Ψ(X̂ + θX̃) > (1− θ)Ψ(X̂) + θΨ(X̂ + X̃) for any θ ∈ (0, 1). (3.2.11)

By the concavity of Ψ, the chain rule, and under our hypothesis that X̂ satisfies

(3.2.7) and Condition 3.2.4, we have

d

dθ
Ψ(X̂ + θX̃)

∣∣∣∣
θ=0

= E

[
lim
θ↓0

Ψ(X̂ + θX̃)−Ψ(X̂)

θ

]
= E

[
U ′(X̂)X̃

]
− γE

[
D′
(
E[X̂]− X̂

)(
E[X̃]− X̃

)]
= E

[
X̃
(
U ′(X̂)− γE

[
D′
(
E[X̂]− X̂

)]
+ γD′

(
E[X̂]− X̂

))]
= E

[
X̃(Y ξ)

]
= 0. (3.2.12)
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3.2. Nonlinear Moment Problem (NMP)

The first equality follows by Lemma 2.2.4. Since Ψ is strictly concave, we have

Ψ
(
X̂ + θX̃

)
−Ψ(X̂)

θ
≤ d

dθ
Ψ(X̂ + θX̃)

∣∣∣∣
θ=0

= 0.

By (3.2.11), we have

Ψ
(
X̂
)

> Ψ
(
X̂ + X̃

)
−

Ψ
(
X̂ + θX̃

)
−Ψ(X̂)

θ
≥ Ψ

(
X̂ + X̃

)
.

Hence X̂ is the unique solution for Problem 3.1.8. By Theorem 3.1.9, we can now

conclude that X̂ is the unique optimal terminal wealth of Problem 3.1.5.

Remark 3.2.6. Theorem 3.2.5 boils the optimal control problem 3.1.5 down to

a static problem. Suppose that there exists an implicit function I(m, y) ∈ R

satisfying:

U ′(I(m, y)) + γD′(m− I(m, y)) = y, for any (m, y). (3.2.13)

Then the Nonlinear Moment Problem (3.2.7)-(3.2.10) will be solved by (I (M,γR + Y ξ) , Y,M,R),

where the constants Y,M and R satisfy the following system of nonlinear equa-

tions:

E[ξI (M,γR + Y ξ)] = x0, (3.2.14)

E[I (M,γR + Y ξ)] = M, (3.2.15)

E [D′ (M − I (M,γR + Y ξ))] = R. (3.2.16)

After we verify that I (M,γR + Y ξ) belongs to X and also satisfies Condition

3.2.4, I (M,γR + Y ξ) is the unique optimal solution for Problem 3.1.8.

Note that the optimal solution for the utility risk problem in Problem 3.1.8

depends on the choice of the terminal random variable of pricing kernel, ξ ∈ L2.
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3.2.2 Existence of the Solution of NMP: Case of Downside

Risk

After we obtained the sufficiency result in Theorem 3.2.5, we shall show the exis-

tence of the optimal solution of the utility-risk portfolio selection problems.

According to Remark 3.2.6, we first find an implicit function satisfying (3.2.13),

then the Nonlinear Moment Problem (3.2.7)-(3.2.10) can be reduced into a non-

linear programming problem (3.2.14)-(3.2.16). The desired implicit function can

be warranted by the same argument in Proposition 2.3.5:

Proposition 3.2.7. Let U and D are given by Definitions 3.1.1 and 3.1.2 respec-

tively. There exists an implicit function I : R× (0,∞)→ (0,∞) satisfying:

U ′(I(m, y))+γD′(m− I(m, y))−y = 0, for any (m, y) ∈ R× (0,∞). (3.2.17)

Moreover, this function I possesses the following regularities:

(a) (i) For each m ∈ R, I(m, y) is strictly decreasing in y on (0,∞).

(ii) For each y ∈ (0,∞), I(m, y) is strictly increasing in m on {m ∈

R| y ≥ U ′(m)}; I(m, y) = (U ′)−1(y) ∈ (0,∞) for all m ∈ {m ∈ R| y ≤

U ′(m)}.

(b) I(m, y) is jointly continuous in (m, y) ∈ R× (0,∞).

Then, the overall existence claim will be accomplished if we can solve the

nonlinear programming problem (3.2.14)-(3.2.16):

Theorem 3.2.8. Given that Assumption 2.3.4 holds and U and D are given by

Definitions 3.1.1 and 3.1.2 respectively, there exists the unique set of numbers

Y,M,R ∈ (0,∞) such that the system of nonlinear equations of (3.2.14)-(3.2.16)

is satisfied. Thus, (I (M,γR + Y ξ) , Y,M,R) is the unique solution for the Non-

linear Moment Problem (3.2.7)-(3.2.10), NMP(ξ), where I is given in Proposi-

tion 3.2.7. Hence, X̂ = I (M,γR + Y ξ) is the unique optimal terminal wealth of

Utility-Downside-Risk problem.
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Proof. We will solve for roots Y,M and R for (3.2.14)-(3.2.16) one by one via

applying the intermediate value theorem successively as in Proposition 2.3.6. We

shall indicate the key steps and necessary changes in our proof.

Lemma 3.2.9. Given Y ∈ (0,∞), we consider two cases: (i) M ∈
(
(U ′)−1(Y ξ),∞

)
and (ii) M ∈

(
0, (U ′)−1(Y ξ)

)
.

(i) there exists a unique R = RY,M ∈ (0, D′(M)) satisfying

E [D′ (M − I (M,γR + Y ξ))] = R; (3.2.18)

or equivalently by (3.2.17):

E [U ′ (I (M,γR + Y ξ))] = Y E[ξ]. (3.2.19)

Furthermore, RY,M is strictly increasing in M for a fixed Y and is also

strictly increasing in Y for a fixed M .

(ii) R = RY,M = 0 uniquely solve (3.2.18).

Proof. The proof of case (i) is the same as Lemma 2.3.7.

For case (ii), Y ξ ≤ U ′(M), thus for all ξ, we have I (M,Y ξ) = (U ′)−1(Y ξ) ≥

(U ′)−1(Y ξ) ≥ M , so D′ (M − I (M,Y ξ)) = 0 almost surely. Thus RY,M = 0

satisfy (3.2.18). Since R − D′ (M − I (M,γR + Y ξ)) is strictly increasing, thus

R = RY,M = 0 uniquely solve (3.2.18).

Lemma 3.2.10. Given Y ∈ (0,∞) and RY,M as specified for each M ∈ (0,∞) in

Lemma 3.2.9, there exists a unique M = MY ∈ (
(
(U ′)−1(Y ξ),∞

)
such that

E[I (M,γRY,M + Y ξ)] = M. (3.2.20)

Furthermore, MY is strictly decreasing in Y .

Proof. DenoteM := (U ′)−1(Y ξ). We only verify limM↓M (E[I (M,γRY,M + Y ξ)]−M) >

0, the rest are the same as the proof of Lemma 2.3.8.

83



3.2. Nonlinear Moment Problem (NMP)

By the continuity of D′ and I, it is almost surely that:

lim
M↓M

(D′ (M − I (M,γRY,M + Y ξ))−RY,M)

= D′
(
M − I

(
M,γ lim

M↓M
RY,M + Y ξ

))
− lim

M↓M
RY,M (3.2.21)

By (3.2.18), (3.2.21) and the Dominated Convergence Theorem, we have

E
[
D′
(
M − I

(
M,γ lim

M↓M
RY,M + Y ξ

))]
− lim

M↓M
RY,M

= lim
M↓M

(E [D′ (M − I (M,γRY,M + Y ξ))]−RY,M) = 0.

By the uniqueness result in Lemma 3.2.9, we conclude that limM↓M RY,M =

0. Because I is continuous, for ξ < ξ, we have limM↓M I (M,γRY,M + Y ξ) =

I (M,Y ξ) = (U ′)−1(Y ξ) > (U ′)−1(Y ξ) = M . Using the same approach as in

part (a) in the proof of Lemma 2.3.8, we have I (M,γRY,M + Y ξ)−M is strictly

decreasing in M . Finally, by Monotone Convergence Theorem,

lim
M↓M

(E[I (M,γRY,M + Y ξ)]−M) > 0.

Lemma 3.2.11. Given RY,M and MY as specified in Lemmas 3.2.9 and 3.2.10

respectively for each Y,M ∈ (0,∞), there exists a Y ∗ ∈ (0,∞) such that

E[ξI (MY , γRY,MY
+ Y ξ)] = x0. (3.2.22)

Proof. The proof is the same as that of Lemma 2.3.7 except a small change is

needed in part (b1):

The arbitrary sample value in the proof, ξ0, should only be considered in the

range (ξ, ξ). In this case, P[ξ > ξ0] > 0. Then we can follow the same arguments

to verify that lim infY→0 I (MY , Y ξ0 + γRY,MY
) = ∞, for any ξ0 ∈ (ξ, ξ), and

hence we conclude that lim infY→0 ξI (MY , Y ξ + γRY,MY
) =∞ for any ξ ∈ (ξ, ξ).

Finally, by Fatou’s Lemma,

lim inf
Y→0

E [ξI (MY , γRY,MY
+ Y ξ)] ≥ E

[
lim inf
Y→0

ξI (MY , γRY,MY
+ Y ξ)

]
=∞.
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Proof of Theorem 3.2.8. According to Lemmas 3.2.9, 3.2.10 and 3.2.11, the triple

(Y ∗,MY ∗ , RY ∗,MY ∗ ) solves the system of nonlinear equations in (3.2.14)-(3.2.16).

Next, we can verify that X̂ = I (MY ∗ , γRY ∗,MY ∗ + Y ∗ξ) belongs to X and

satisfies Condition 3.2.4 using the same argument as in Theorem 2.3.10. Then,

by Theorem 3.2.5, X̂ = I (MY ∗ , Y
∗ξ + γRY ∗,MY ∗ ) is the unique optimal solution

for Problem 3.1.8 with downside risk function D.

Since X̂ is the unique solution and Y = E
[
U ′
(
X̂
)]
/E[ξ] by (3.2.19), Y

obtained in Lemma 3.2.11 is unique. Hence, only a unique set of triple (Y,M,R)

solves (3.2.14)-(3.2.16). Finally, by Theorem 3.1.9, X̂ = I (M,Y ξ + γR) is the

unique optimal terminal wealth of utility-downside-risk problem.

Remark 3.2.12. Proposition 3.2.7 and Theorem 3.2.8 can be reduced to Propo-

sition 2.3.5 and Theorem 2.3.10 respectively by setting ξ = 0 and ξ = ∞, which

are warranted under the Black-Scholes setting.

Our formulation can cover the utility-semivariance problem. The existence

result in this section has a substantial contrast to the nonexistence of an optimal

solution to the mean-semivariance problem.

3.2.3 Existence of the Solution of NMP: Case of Strictly-

Convex Risk

We can establish the similar existence result by using the same approach as in the

case of downside risk.

Proposition 3.2.13. Let U and D are given by Definitions 3.1.1 and 3.1.3 re-

spectively. There exists an implicit function I : R2 → (0,∞) satisfying:

U ′(I(m, y)) + γD′(m− I(m, y))− y = 0, for any (m, y) ∈ R2. (3.2.23)

Moreover, this function I possesses the following regularities:
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(a) (i) For each y ∈ R, I(m, y) is strictly increasing in m.

(ii) For each m ∈ R, I(m, y) is strictly decreasing in y.

(b) I(m, y) is jointly continuous in (m, y) ∈ R2.

Proof. Same as Proposition 2.3.11.

Using the same argument as in the case of downside risk, we can draw the

same existence conclusion:

Theorem 3.2.14. Given that U and D are given by Definitions 3.1.1 and 3.1.3

respectively, there exists the unique set of numbers Y,M ∈ (0,∞) and R ∈

R such that the system of nonlinear equations of (3.2.14)-(3.2.16) is satisfied.

Thus, (I (M,γR + Y ξ) , Y,M,R) is the unique solution for the Nonlinear Mo-

ment Problem (3.2.7)-(3.2.10), where I is given in Proposition 3.2.13. Hence,

X̂ = I (M,γR + Y ξ) is the unique optimal terminal wealth of Utility-Strictly-

Convex-Risk problem.

Proof. The proof of existence of (Y,M,R) solving the system of equations (3.2.14)-

(3.2.16) is similar in Proposition 2.3.12. Following the similar arguments, we can

prove the following lemmas:

Lemma 3.2.15. Given Y,M ∈ (0,∞), there exists a unique R = RY,M ∈

(−∞, D′(M)) satisfying

E [D′ (M − I (M,γR + Y ξ))] = R; (3.2.24)

or equivalently by (3.2.23):

E [U ′ (I (M,γR + Y ξ))] = Y E[ξ]. (3.2.25)

Furthermore, RY,M is strictly increasing in M for a fixed Y and is also strictly

increasing in Y for a fixed M .
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Lemma 3.2.16. Given Y ∈ (0,∞) and RY,M as specified for each M ∈ (0,∞) in

Lemma 3.2.15, there exists a unique M = MY ∈ (0,∞) such that

E[I (M,γRY,M + Y ξ)] = M. (3.2.26)

Furthermore, MY is strictly decreasing in Y .

Lemma 3.2.17. Given RY,M and MY as specified in Lemmas 3.2.15 and 3.2.16

respectively for each Y,M ∈ (0,∞), there exists a Y ∗ ∈ (0,∞) such that

E[ξI (MY , γRY,MY
+ Y ξ)] = x0. (3.2.27)

Now, we have a set of constants Y,M ∈ (0,∞) and R ∈ R satisfying a sys-

tem of nonlinear equations in (3.2.14)-(3.2.16). The remaining assertions can be

proven using the same arguments in Theorem 3.2.8, and we can conclude that

X̂ = I (M,Y ξ + γR) is an optimal terminal wealth of utility-strictly-convex-risk

problem.

3.3 Main Results

In this section, we first shall establish the continuity of optimal terminal wealth

for utility risk problem: the sequence of optimal terminal payoffs converges weakly

with their corresponding terminal random variables of pricing kernel (or simply

call them terminal pricing kernels for convenience). Then, we show that the

sequence of terminal pricing kernels for binomial tree models converges weakly to

the terminal pricing kernels of the continuous-time Black-Scholes model. Hence,

we can apply these results to compute the optimal solution of utility-risk problem

under the Black-Scholes model using the solutions under the binomial tree models,

which are easily computed.
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3.3.1 Convergence of Optimal Solution: Case of Downside

Risk

We consider a sequence of markets which satisfy Conditions 3.1.6 and 3.1.7, de-

noted by {Π(N)}, thus each market ΠN has its unique pricing kernel ξ(N)(·), and

we have a sequence of the terminal random variables of pricing kernel {ξ(N)},

where ξ(N) := ξ(N)(T ). By Theorem 3.2.8, we know that each market possesses

the unique optimal terminal wealth for the utility risk problem X̂(N), and we have

a sequence of optimal terminal payoffs {X̂(N)}. We aim to show that if this se-

quence of terminal pricing kernels converges weakly to a terminal pricing kernel

{X̂∗} corresponding to a market Π∗, then the weak limit of the sequence of op-

timal terminal payoffs solves the utility-downside-risk problem under the market

Π∗.

Theorem 3.3.1. Given that U and D satisfy Definitions 3.1.1 and 3.1.2 respec-

tively, Assumption 2.3.4 holds, and all markets Π(N) and Π∗ satisfying Conditions

3.1.6 and 3.1.7 with corresponding unique terminal pricing kernels ξN and ξ∗ and

optimal terminal payoffs X̂(N) and X̂∗, as described in Theorem 3.2.8. Suppose

that a sequence of their terminal pricing kernels ξ(N) satisfy the following condi-

tions:

(i) ξ(N) ∈ L2 converges weakly to ξ∗ ∈ L2 as N →∞.

(ii) For any K > 0,
{
ξ(N)

(
(U ′)−1

(
ξ(N)

)
+K

)}
N∈N is uniformly integrable.

Then the sequence {X̂(N)} converges weakly to X̂∗. Hence, Ψ
(
X̂(N)

)
→

Ψ
(
X̂∗
)

, i.e., the sequence of the optimal value functions of utility-risk problem

under Π(N) converges to the optimal value functions under Π∗.

Proof. By Theorem 3.2.8, the unique optimal terminal wealth for utility-downside-

risk problem under ΠN is given by

X̂(N) = I
(
M (N), γR(N) + Y (N)ξ(N)

)
,
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where the function I is given in Proposition 3.2.7 and the triple (Y (N),M (N), R(N))

satisfies the system of equations in (3.2.14)-(3.2.16) under ξ = ξ(N). Similarly, the

unique optimal terminal wealth under Π∗ is given by

X̂∗ = I (M∗, γR∗ + Y ∗ξ∗) .

Note that the choice of I in Proposition 3.2.7 is independent of the pricing kernel

ξ.

By Skorokhod’s representation theorem and condition (i), there exists a se-

quence of random variable ζ(N) which has the same distribution as ξ(N) and

ζ(N) → ξ∗ almost surely.

The following proposition shows that the sequence of
(
Y (N),M (N), R(N)

)
con-

verges to (Y ∗,M∗, R∗); its technical proof will be postponed to Section 3.3.1.1.

Proposition 3.3.2. limN→∞
(
Y (N),M (N), R(N)

)
= (Y ∗,M∗, R∗).

By Proposition 3.3.2, I
(
M (N), γR(N) + Y (N)ζ(N)

)
→ I (M∗, γR∗ + Y ∗ξ∗) al-

most surely. Together with the fact that I
(
M (N), γR(N) + Y (N)ζ(N)

)
and

I
(
M (N), γR(N) + Y (N)ξ(N)

)
have the same distribution,

X̂(N) = I
(
M (N), γR(N) + Y (N)ξ(N)

)
→ I (M∗, γR∗ + Y ∗ξ∗) = X̂∗ weakly.

Since I(m, y) is decreasing in y for fixed m, for each N ,

I
(
M (N), γR(N) + Y (N)ζ(N)

)
≤ I

(
M (N), γR(N)

)
By Proposition 3.3.2, I

(
M (N), γR(N)

)
→ I (M∗, γR∗) <∞, so we have

I
(
M (N), γR(N) + Y (N)ζ(N)

)
≤ I (M∗, γR∗) + 1 a.s., for all large enough N.

By the application of the Dominated Convergence Theorem,

Ψ
(
I
(
M (N), Y (N)ζ(N) + γR(N)

))
→ Ψ

(
X̂∗
)
.

Together with the fact that I
(
M (N), Y (N)ζ(N) + γR(N)

)
and X̂(N) have the same

distribution, the convergence of value functions follows.
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3.3.1.1 Proof of Proposition 3.3.2

Since, for each N , ζ(N) has the same distribution as ξ(N), then the systems of

nonlinear equations in (3.2.14)-(3.2.16) with ξ = ζ(N) and ξ = ξ(N) share the

same set of solution
(
Y (N),M (N), R(N)

)
, i.e.

(
Y (N),M (N), R(N)

)
satisfy:

E
[
D′
(
M (N) − I

(
M (N), γR(N) + Y (N)ζ(N)

))]
= R(N), (3.3.28)

E
[
I
(
M (N), γR(N) + Y (N)ζ(N)

)]
= M (N), (3.3.29)

E
[
ζ(N)I

(
M (N), γR(N) + Y (N)ζ(N)

)]
= x0. (3.3.30)

Given the terminal pricing kernel ξ = ξ∗, we can define R∗Y,M and M∗
Y from

Lemmas 3.2.9 and 3.2.10. We know that
(
Y ∗,M∗

Y ∗ , R
∗
Y ∗,M∗

Y ∗

)
solves the system

of nonlinear equations of (3.2.14)-(3.2.16) with ξ = ξ∗. Since the solution of the

system is unique, we have (Y ∗,M∗, R∗) =
(
Y ∗,M∗

Y ∗ , R
∗
Y ∗,M∗

Y ∗

)
Similarly, for the case of ξ = ζ(N), we can define R

(N)
Y,M and M

(N)
Y in the same

way and we have
(
Y (N),M (N), R(N)

)
=

(
Y (N),M

(N)

Y (N) , R
(N)

Y (N),M
(N)

Y (N)

)
.

We first consider the next three lemmas which show R(N),M (N), Y (N) conver-

gent.

Lemma 3.3.3. Given a sequence {(MN , YN)} ∈ (0,∞)2, assume there exists a

subsequence {Nk} and M0, Y0 ∈ (0,∞) such that M0 = limk→∞MNk and Y0 =

limk→∞ YNk , then limk→∞R
(Nk)
YNk ,MNk

= R∗Y0,M0
where R∗Y,M and R

(N)
Y,M are defined in

Lemma 3.2.9 with ξ = ξ∗ and ξ = ζ(N) respectively.

Proof. For simplicity of notation, we denoteRN := R
(N)
YN ,MN

. By Bolzano-Weierstrass

theorem, there exists a subsequence {Ni} ⊂ {Nk} such that R0 := limi→∞RNi ∈

[0, D′(M0)] exists.

Since I and D′ are continuous, thus

lim
i→∞

D′
(
MNi − I

(
MNi , γRNi + YNiζ

(Ni)
))

= D′ (M0 − I (M0, γR0 + Y0ξ
∗)) .
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Then, by the Dominated Convergence Theorem and Lemma 3.2.9 with ξ = ζ(N),

E [D′ (M0 − I (M0, γR0 + Y0ξ
∗))]

= lim
i→∞

E
[
D′
(
MNi − I

(
MNi , γRNi + YNiζ

(Ni)
))]

= lim
i→∞

RNi = R0 (3.3.31)

Since Lemma 3.2.9 with ξ = ξ∗ is uniquely solved by R∗Y0,M0
, we have R0 =

R∗Y0,M0
. Since every subsequential limits of RNk agree with R∗Y0,M0

, we are done.

Lemma 3.3.4. Given a sequence {YN} ∈ (0,∞), assume there exists a subse-

quence {Nk} and Y0 ∈ (0,∞) such that Y0 = limk→∞ YNk , then limk→∞M
(Nk)
YNk

=

M∗
Y0

where M∗
Y and M

(N)
Y are defined in Lemma 3.2.10 with ξ = ξ∗ and ξ = ζ(N)

respectively.

Proof. For simplicity of notation, we denote MN := M
(N)
YN

and RN := R
(N)
YN ,MN

=

R
(N)

YN ,M
(N)
YN

. By Bolzano-Weierstrass theorem, there exists a subsequence {Ni} ⊂

{Nk} such that M0 := limi→∞MNi ∈ [0,∞] exists.

We first show that M0 ∈ (0,∞) by using following 4 steps:

Step 1: Prove if M0 = 0, then limi→∞ I
(
MNi , γRNi + YNiζ

(Ni)
)
> 0 almost

surely.

Step 2: Prove M0 > 0.

Step 3: Prove if M0 =∞, then limi→∞RNi =∞.

Step 4: Prove M0 <∞.

Step 1:

Given a sample ω ∈ Ω , assume a contrary that there exists a subsequence

{Nj} ⊂ {Ni} such that

lim
j→∞

I
(
MNj , γRNj + YNjζ

(Nj)(ω)
)

= 0.
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Then, we have limj→∞D
′ (MNj − I

(
MNj , γRNj + YNjζ

(Nj)(ω)
))

= D′(0)

and

limj→∞ U
′ (I (MNj , γRNj + YNjζ

(Nj)(ω)
))

= ∞. But by (3.2.17) and the

fact that RNj = R
(Nj)
YNj ,MNj

≤ D′(MNj) from Lemma 3.2.9 with ξ = ζ(N), we

have:

∞ = lim
j→∞

U ′
(
I
(
MNj , γRNj + YNjζ

(Nj)(ω)
))

= ξ∗(ω)Y0 + γ lim
j→∞

(
RNj −D′

(
MNj − I

(
MNj , γRNj + YNjζ

(Nj)(ω)
)))

≤ ξ∗(ω)Y0

+γ lim
j→∞

(
D′(MNj)−D′

(
MNj − I

(
MNj , γRNj + YNjζ

(Nj)(ω)
)))

≤ ξ∗(ω)Y0 + γ (D′(0)−D′ (0)) <∞,

which leads to a contradiction. Hence, limi→∞ I
(
MNi , γRNi + YNiζ

(Ni)
)
> 0

almost surely.

Step 2: By Step 1, we have limi→∞ I
(
MNi , γRNi + YNiζ

(Ni)
)
> 0 almost surely.

By Fatou’s Lemma and Lemma 3.2.10 with ξ = ζ(N), we have

0 = lim inf
i→∞

MNi = lim inf
i→∞

E
[
I
(
MNi , γRNi + YNiζ

(Ni)
)]

≥ E
[
lim inf
i→∞

I
(
MNi , γRNi + YNiζ

(Ni)
)]
> 0.

We have a contradiction, hence M0 > 0.

Step 3: By (3.2.17), we first have

U ′
(
I
(
MNi , γRNi + YNiζ

(Ni)
))
− YNiζ(Ni)

= γRNi − γD′
(
MNi − I

(
MNi , γRNi + YNiζ

(Ni)
))

(3.3.32)

If M0 = limi→∞MNi =∞, then either limi→∞RNi =∞ or

limi→∞ I
(
MNi , γRNi + YNiζ

(Ni)
)

= ∞ almost surely. We further assume a

contrary that there exist a subsequence {Nj} ⊂ {Ni} such that limj→∞RNj <
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∞, then limj→∞ I
(
MNj , γRNj + YNjζ

(Nj)
)

=∞, thus

lim
j→∞

(
U ′
(
I
(
MNj , γRNj + YNjζ

(Nj)
))
− YNjζ(Nj)

)
= −Y0ξ

∗ a.s. (3.3.33)

Since, for large enough j, by (3.3.32),

U ′
(
I
(
MNj , γRNj + YNjζ

(Nj)
))
− YNjζ(Nj)

≤ U ′
(
I
(
1, γRNj + YNjζ

(Nj)
))
− YNjζ(Nj)

≤ γ

(
lim
j→∞

RNj + 1

)
− γD′

(
1− I

(
1,
γ

2
lim
j→∞

RNj

))
, (3.3.34)

then by Reverse Fatou’s lemma, (3.3.33), and Lemma 3.2.9 with ξ = ζ(N),

we have:

0 > −Y0E[ξ∗] = E
[
lim sup
j→∞

(
U ′
(
I
(
MNj , γRNj + YNjζ

(Nj)
))
− YNjζ(Nj)

)]
≥ lim sup

j→∞
E
[
U ′
(
I
(
MNj , γRNj + YNjζ

(Nj)
))
− YNjζ(Nj)

]
= 0. (3.3.35)

We have a contradiction, therefore, limi→∞RNi =∞.

Step 4:

AssumeM0 =∞, we claim that limi→∞
(
MNi − I

(
MNi , γRNi + YNiζ

(Ni)
))

=

∞ almost surely. Given a sample ω ∈ Ω , assume a contrary that there exists

a subsequence {Nj} ⊂ {Ni} such that limj→∞
(
MNj − I

(
MNj , γRNj + YNjζ

(Nj)(ω)
))
<

∞, then

lim
j→∞

D′
(
MNj − I

(
MNj , γRNj + YNjζ

(Nj)(ω)
))
<∞.

Since limj→∞RNj =∞ by Step 3, we have

lim
j→∞

U ′
(
I
(
MNj , γRNj + YNjζ

(Nj)(ω)
))

=∞,

thus limj→∞ I
(
MNj , γRNj + YNjζ

(Nj)(ω)
)

= 0 and then it results in

lim
j→∞

(
MNj − I

(
MNj , γRNj + YNjζ

(Nj)(ω)
))

=∞, (3.3.36)
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which contradicts the assumption on its finiteness at the first place. Now,

we have limi→∞
(
MNi − I

(
MNi , γRNi + YNiζ

(Ni)
))

=∞ almost surely.

On {(Y,M)|Y ≥ U ′(M)}, we have D′ (M − I (M,Y )) = Y − U ′ (I (M,Y ))

is strictly increasing inM . Thus, becauseD′ is strictly increasing for positive

M−I (M,Y ), M−I (M,Y ) is strictly increasing inM on {(Y,M)|Y ≤ U ′(M)}.

On the other hand, on {(Y,M)|Y ≤ U ′(M)}, M−I (M,Y ) = M−(U ′)−1(Y )

is strictly increasing in M . Hence, M−I (M,Y ) increases in M for any fixed

Y , then we have

MNi − I
(
MNi , γRNi + YNiζ

(Ni)
)
≥ 1− I

(
1, γRNi + YNiζ

(Ni)
)
≥ −I(1, 1),

for large enough i, where the last inequality follows because limi→∞RNi =∞

by Step 3, and I (M,Y ) decreases in Y for any fixed M .

By Fatou’s Lemma, (3.3.36), and Lemma 3.2.10 with ξ = ζ(N), we have

contradiction:

0 = lim inf
i→∞

E
[
MNi − I

(
MNi , γRNi + YNiζ

(Ni)
)]

≥ E
[
lim inf
i→∞

(
MNi − I

(
MNi , γRNi + YNiζ

(Ni)
))]

=∞.

By Steps 2 and 4, we have M0 ∈ (0,∞). By Lemma 3.3.3, limi→∞RNi =

limi→∞R
(Ni)
YNi ,MNi

= R∗Y0,M0
, thus

lim
i→∞

I
(
MNi , γRNi + YNiζ

(Ni)
)

= I
(
M0, γR

∗
Y0,M0

+ Y0ξ
∗) .

By the Dominated Convergence Theorem and Lemma 3.2.10 with ξ = ζ(N),

E
[
I
(
M0, γR

∗
Y0,M0

+ Y0ξ
∗)] = lim

i→∞
E
[
I
(
MNi , γRNi + YNiζ

(Ni)
)]

= lim
i→∞

MNi = M0.

By the uniqueness of Lemma 3.2.10 with ξ = ξ∗, we have M0 = M∗
Y0

.

Since every subsequential limits of {MNk} agree with M0 = limi→∞MNi =

M∗
Y0

, we are done.
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Lemma 3.3.5. limN→∞ Y
(N) = Y ∗.

Proof. By Bolzano-Weierstrass theorem, there exist a subsequence {Nk} such that

Y0 := limk→∞ Y
(Nk) ∈ [0,∞] exists.

We will prove Y0 ∈ (0,∞) by using following 4 steps:

Step 1: Prove if Y0 = 0, P
[
limk→∞ I

(
M (Nk), γR(Nk) + Y (Nk)ζ(Nk)

)
=∞

]
> 0 .

Step 2: Prove Y0 > 0.

Step 3: Prove if Y0 = ∞, limk→∞ I
(
M (Nk), Y (Nk)ζ(Nk) + γR(Nk)

)
= 0 almost

surely.

Step 4: Prove Y0 <∞.

Step 1:

Assume the contrary that there exists an arbitrary a sample ω0 ∈ {ω ∈

Ω | ξ∗(ω) < ξ∗} and a sequence {Ni} ⊂ {Nk} such that

lim
i→∞

I
(
M (Ni), γR(Ni) + Y (Ni)ζ(Ni) (ω0)

)
<∞.

For any sample ω ∈ {ω ∈ Ω | ξ∗ (ω) > ξ∗ (ω0)} , we have ζ(Ni) (ω) > ζ(Ni) (ω0)

for large enough i, hence

U ′
(
I
(
M (Ni), γR(Ni) + Y (Ni)ζ(Ni) (ω)

))
> U ′

(
I
(
M (Ni), γR(Ni) + Y (Ni)ζ(Ni) (ω0)

))
.

Therefore, for any ω ∈ {ω ∈ Ω | ξ∗ (ω) > ξ∗ (ω0)},

lim inf
i→∞

U ′
(
I
(
M (Ni), γR(Ni) + Y (Ni)ζ(Ni) (ω)

))
≥ lim

i→∞
U ′
(
I
(
M (Ni), γR(Ni) + Y (Ni)ζ(Ni) (ω0)

))
> 0.
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The satisfaction of Condition (ii) in Theorem 3.2.8 implies that E[ζ(Ni)]

is uniformly bounded from above, then, by Fatou’s Lemma, (3.2.17), and

(3.3.28),

0 = lim inf
i→∞

Y (Ni)E[ζ(Ni)]

= lim inf
i→∞

E
[
U ′
(
I
(
M (Ni), γR(Ni) + Y (Ni)ζ(Ni)

))]
≥ E

[
lim inf
i→∞

U ′
(
I
(
M (Ni), γR(Ni) + Y (Ni)ζ(Ni)

))]
≥ lim

i→∞
U ′
(
I
(
M (Ni), γR(Ni) + Y (Ni)ζ(Ni) (ω0)

))
P [ξ∗ > ξ∗(ω0)] > 0.

We have contradiction, hence

lim
k→∞

I
(
M (Ni), γR(Ni) + Y (Ni)ζ(Ni) (ω0)

)
=∞

for all ω0 ∈ {ω ∈ Ω | ξ∗(ω) < ξ∗}.

Step 2: Assume a contrary that Y0 = 0, by Step 1, we further have

P
[
limk→∞

(
ζ(Nk)I

(
M (Nk), γR(Nk) + Y (Nk)ζ(Nk)

))
=∞

]
> 0. By Fatou’s Lemma

and (3.3.30), we have

x0 = lim inf
k→∞

E
[
ζ(Nk)I

(
M (Nk), γR(Nk) + Y (Nk)ζ(Nk)

)]
≥ E

[
lim inf
k→∞

ζ(Nk)I
(
M (Nk), γR(Nk) + Y (Nk)ζ(Nk)

)]
=∞.

We have contradiction, thus Y0 > 0.

Step 3: SinceMY is decreasing in Y as shown in Lemma 3.2.10, and limk→∞M
(Nk)
1 =

M∗
1 by Lemma 3.3.4, we have

M (Nk) = M
(Nk)

Y (Nk) ≤M
(Nk)
1 ≤ 2M∗

1 <∞ for large enough k (3.3.37)

. Then, since D′ is increasing, we have

lim sup
k→∞

D′
(
M (Nk)

)
≤ D′(2M∗

1 ) <∞. (3.3.38)
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Assume a contrary that there exists a sample ω ∈ Ω and a sequence {Nj} ⊂

{Nk} with Y (Nj) →∞ such that

lim
j→∞

I
(
M (Nj), Y (Nj)ζ(Nj)(ω) + γR(Nj)

)
> 0. (3.3.39)

By (3.2.17), we have

Y (Nj)ζ(Nj)(ω)− U ′
(
I
(
M (Nj), Y (Nj)ζ(Nj)(ω) + γR(Nj)

))
= D′

(
M (Nj) − I

(
M (Nj), Y (Nj)ζ(Nj)(ω) + γR(Nj)

))
− γR(Nj)

≤ D′
(
M (Nj)

)
− γR(Nj), (3.3.40)

where the last inequality follows because I
(
M (Nj), Y (Nj)ζ(Nj)(ω) + γR(Nj)

)
is positive. Taking the limit superior with j → ∞ in the both sides of

(3.3.40), the limit in the left hand side tends to infinity because

limj→∞ U
′ (I (M (Nj), Y (Nj)ζ(Nj)(ω) + γR(Nj)

))
< ∞ by (3.3.39), while the

limit in the right hand side is finite due to (3.3.38) and the non-negativity

of R(Nj), we have contradiction. Therefore, we have

lim
k→∞

I
(
M (Nk), Y (Nk)ζ(Nk) + γR(Nk)

)
= 0, a.s. (3.3.41)

Step 4:

Assume Y0 = ∞. By step 3, limk→∞ I
(
M (Nk), Y (Nk)ζ(Nk) + γR(Nk)

)
= 0

almost surely.

Since M (Nk) ≤ 2M∗
1 for large enough k by (3.3.37) and R(Nk) ≥ 0 for all k,

we have

I
(
M (Nk), Y (Nk)ζ(Nk) + γR(Nk)

)
≤ I

(
2M∗

1 , ζ
(Nk)
)

≤ I (2M∗
1 , U

′(2M∗
1 )) + (U ′)−1(ζ(Nk)),

for large enough k.

By the satisfaction of Condition (iii) in Theorem 3.2.8,{
ζ(Nk)I

(
M (Nk), Y (Nk)ζ(Nk) + γR(Nk)

)}
k∈N is uniformly integrable. By the

97



3.3. Main Results

Dominated Convergence Theorem under uniform integrability assumption,

(3.3.30), and Step 3,

x0 = lim
k→∞

E
[
ζ(Nk)I

(
M (Nk), Y (Nk)ζ(Nk) + γR(Nk)

)]
= E

[
lim
k→∞

ζ(Nk)I
(
M (Nk), Y (Nk)ζ(Nk) + γR(Nk)

)]
= 0. (3.3.42)

We have a contradiction, so Y0 <∞.

By Steps 2 and 4, we have Y0 ∈ (0,∞). By Lemmas 3.3.3 and 3.3.4,

lim
k→∞

(
Y (Nk),M (Nk), R(Nk)

)
=

(
Y0, lim

k→∞
M

(Nk)

Y (Nk) , lim
k→∞

R
(Nk)

Y (Nk),M
(Nk)

Y (Nk)

)
=

(
Y0,M

∗
Y0
, R∗Y0,M∗Y0

)
,

therefore, we have

lim
k→∞

ζ(Nk)I
(
M (Nk), γR(Nk) + Y (Nk)ζ(Nk)

)
= ξ∗I

(
M∗

Y0
, γR∗Y0,M∗Y0

+ Y0ξ
∗
)
.

Since the satisfaction of Condition (ii) in Theorem 3.2.8 implies that
{
ζ(Nk)

}
k∈N

is uniformly integrable, by Dominated Convergence Theorem and (3.3.30),

x0 = lim
k→∞

E
[
ζ(Nk)I

(
M (Nk), γR(Nk) + Y (Nk)ζ(Nk)

)]
= E

[
ξ∗I
(
M∗

Y0
, γR∗Y0,M∗Y0

+ Y0ξ
∗
)]
.

Together with the fact that R∗Y,M and M∗
Y solve (3.2.18) and (3.2.20) with

ξ = ξ∗,
(
Y0,M

∗
Y0
, R∗Y0,M∗Y0

)
solves the system of equations (3.2.14)-(3.2.16) with

ξ = ξ∗. Since the solution of the system is unique, so we have
(
Y0,M

∗
Y0
, R∗Y0,M∗Y0

)
=

(Y ∗,M∗, R∗).

Since every subsequential limits of {Y (N)} agree with Y0 = limk→∞ Y
(Nk) = Y ∗,

we have Y ∗ = limN→∞ Y
(N).
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By Lemmas 3.3.3 and 3.3.4, we have

lim
N→∞

(
Y (N),M (N), R(N)

)
=

(
Y ∗, lim

N→∞
M

(N)

Y (N) , lim
N→∞

R
(N)

Y (N),M
(N)

Y (N)

)
=

(
Y ∗,M∗

Y ∗ , R
∗
Y ∗,M∗

Y ∗

)
= (Y ∗,M∗, R∗) . (3.3.43)

Hence, this proposition follows.

3.3.2 Convergence of Optimal Solution: Case of Strictly-

Convex Risk

We aim to show the similar convergence result as the case of downside risk. {Π(N)}

denotes a sequence of markets which satisfy Conditions 3.1.6 and 3.1.7, thus we

have a sequence of terminal pricing kernels {ξ(N)}. Similar argument applies to X̂∗

and Π∗. By Theorem 3.2.14, there exist optimal terminal payoffs of utility-strictly-

convex-risk problems X̂(N) and X̂∗ under the markets Π(N) and Π∗ respectively.

Theorem 3.3.6. Given that U and D satisfy Definitions 3.1.1 and 3.1.3 respec-

tively and all markets Π(N) and Π∗ satisfying Conditions 3.1.6 and 3.1.7 with

corresponding unique terminal pricing kernels ξN and ξ∗ and optimal terminal

payoffs X̂(N) and X̂∗, as described in Theorem 3.2.14. Suppose that a sequence of

their terminal pricing kernels {ξ(N)} satisfy the following conditions:

(i) ξ(N) ∈ L2 converges weakly to ξ∗ ∈ L2 as N →∞.

(ii)
{
ξ(N)

}
N∈N is uniformly integrable.

Then the sequence {X̂(N)} converges weakly to X̂∗. Hence, Ψ
(
X̂(N)

)
→

Ψ
(
X̂∗
)

, i.e., the sequence of the optimal value functions of utility-risk problem

under Π(N) converges to the optimal value functions under Π∗.

Proof. The proof is similar to Theorem 3.3.1, the essential changes are the follows:
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• Lemma 3.3.3. To apply the Dominated Convergence Theorem in (3.3.31),

we need to first verify that R0 > −∞.

We assume the contrary that R0 = −∞ for strictly convex risk D, then

limi→∞ I
(
MNi , γRNi + YNiζ

(Ni)
)

=∞ almost surely by (3.2.23). Since U ′ is

continuous, by Inada condition, we have

lim
i→∞

YNiζ
(Ni) − U ′

(
I
(
MNi , γRNi + YNiζ

(Ni)
))

= Y0ξ
∗ a.s. (3.3.44)

By (3.2.23), for all i such that RNi < 0,

YNiζ
(Ni) − U ′

(
I
(
MNi , γRNi + YNiζ

(Ni)
))

≥ YNiζ
(Ni) − U ′

(
I
(
MNi , YNiζ

(Ni)
))

= γD′
(
MNi − I

(
MNi , YNiζ

(Ni)
))

≥ γD′ (−I (M0 + 1, 0))

By Fatou’s lemma, (3.3.44), and Lemma 3.2.15 with ξ = ζ(N), we have

0 = lim
i→∞

E
[
D′
(
MNi − I

(
MNi , γRNi + YNiζ

(Ni)
))
−RNi

]
≥ lim inf

i→∞
E
[

1

γ

(
YNiζ

(Ni) − U ′
(
I
(
MNi , γRNi + YNiζ

(Ni)
)))]

≥ 1

γ
Y0E [ξ∗] > 0.

We have contradiction, therefore, R0 > −∞.

Then, we can show that D′
(
MNi − I

(
MNi , γRNi + YNiζ

(Ni)
))

is uniformly

bounded by D′
(
M0

2
− I (2M0, γ(R0 − 1))

)
and D′ (2M0) in large enough i,

so we can apply the Dominated Convergence Theorem in (3.3.31).

• Step 3 in Lemma 3.3.4. Since limj→∞R
(Nj) may not be non-negative in the

case of strictly convex risk, we can prove the boundedness as (3.3.34) by

follows:
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for large enough j,

U ′
(
I
(
MNj , γRNj + YNjζ

(Nj)
))
− YNjζ(Nj)

≤ U ′
(
I
(
1, γRNj + YNjζ

(Nj)
))
− YNjζ(Nj)

≤ γ

(
lim
j→∞

R(Nj) + 1

)
−D′

(
1− I

(
1, γ lim

j→∞
R(Nj) − 1

))
.

Then, we can apply reverse Fatou’s Lemma to have (3.3.35).

• Step 3 in Lemma 3.3.5. Since the non-negativity of R(Nk) does not hold in

the case of strictly convex risk, we have to verify that if Y0 =∞,

lim inf
k→∞

R(Nk) > −∞

in order to show the right hand size in (3.3.40) is finite as j →∞.

By Lemma 3.2.15 with ξ = ζ(Ni), R
(Ni)
Y,M is increasing in Y ,

lim inf
k→∞

R(Nk) = lim inf
k→∞

R
(Nk)

Y (Nk),M(Nk) ≥ lim inf
k→∞

R
(Nk)

K,M(Nk) for all K > 0,

so we claim that lim infk→∞R
(Nk)

K,M(Nk) > −∞ for all K > 0.

Assume the contrary that there exists K > 0 and a subsequence {Ni} ⊂

{Nk} such that limi→∞R
(Ni)

K,M(Ni)
= −∞. Then,

lim
i→∞

(
ζ(Ni)K + γR

(Ni)

K,M(Ni)

)
= −∞.

Therefore, limi→∞ I
(
M (Ni), ζ(Ni)K + γR

(Ni)

K,M(Ni)

)
=∞. Then,

lim
i→∞

U ′
(
I
(
M (Ni), ζ(Ni)K + γR

(Ni)

K,M(Ni)

))
= 0. (3.3.45)

Since

U ′
(
I

(
M

(Ni)

Y (Ni)
, ζ(Ni)K + γR

(Ni)

K,M
(Ni)

Y (Ni)

))
≤ U ′

(
I
(
0, ζ(Ni)K

))
≤ ζ(Ni)K −D′ (−I (0, 0))
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for large enough i, L1 boundedness is preserved by the uniform integrability

of ξ′N . Then, applying reverse Fatou’s lemma with (3.3.45) and using the

fact that R
(Ni)
Y,M satisfies (3.2.25), we have:

0 = E
[
lim sup
i→∞

U ′
(
I
(
M (Ni), ζ(Ni)K + γR

(Ni)

K,M(Ni)

))]
≥ lim sup

i→∞
E
[
U ′
(
I
(
M (Ni), ζ(Ni)K + γR

(Ni)

K,M(Ni)

))]
= K lim sup

i→∞
E
[
ζ(Ni)

]
> 0.

We have a contradiction, thus

lim inf
k→∞

R
(Nk)

K,M(Nk) > −∞ for any K ∈ (0,∞), (3.3.46)

and hence, by Lemma 3.3.45, we have

lim inf
k→∞

R(Nk) > −∞.

From here on, the rest of the proof of Step 3 in Lemma 3.3.5 is the same as

the case of downside risk.

• Step 4 in Lemma 3.3.5. By Lemma 3.2.15, for any K ∈ (0,∞), R(Nk) =

R
(Nk)

Y (Nk),M(Nk) ≥ R
(Nk)

K,M(Nk) for large enough k. Thus, lim infk→∞R
(Nk) ≥

lim infk→∞R
(Nk)

K,M(Nk) > −∞, where the last inequality has been verified in

(3.3.46). Since M (Nk) = M
(Nk)

Y (Nk) ≤ M
(Nk)
1 ≤ 2M∗

1 by Lemmas 3.2.16 and

3.3.4, we have

I
(
M (Nk), Y (Nk)ζ(Nk) + γR(Nk)

)
≤ I

(
2M∗

1 , γ lim inf
k→∞

R
(Nk)

K,M(Nk)

)
<∞.

By the uniform integrability of ζ(Nk), we can apply the Dominated Conver-

gence Theorem under uniform integrability assumption to obtain the same

contradiction in (3.3.42).
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3.3.3 Application: Approximation of Optimal Solution to

Continuous-Time Utility-Risk Problem

In this section, we will show that the sequence of the terminal pricing kernels

ξ(N) := ξ
(N)
N , where ξ

(N)
n defined in (3.1.6) satisfies the conditions stated in The-

orems 3.3.1 and 3.3.6 with ξ∗ := ξT , where ξt is defined in (3.1.4). Then, by

Theorems 3.3.1 and 3.3.6, the optimal terminal wealth of utility-risk problems

under continuous-time Black-Scholes model can be approximated by the optimal

solution in discrete-time binomial-tree model.

To show the terminal pricing kernels ξ(N) := ξ
(N)
N satisfying the conditions

stated in Theorem 3.3.1 for utility-downside-risk problem, the following assump-

tion stronger than Assumption 2.3.4, which is adopted in Remark 4.4 in Karatzas

and Shreve (1998), is required:

Assumption 3.3.7. There exist η ∈ (0, 1) and β > 1 such that U ′(ηy) ≤ βU ′(y)

for all y > 0.

Theorem 3.3.8. Given that Assumption 3.3.7 holds and U and D are given by

Definitions 3.1.1 and 3.1.2, the sequence of the terminal pricing kernels ξ(N) :=

ξ
(N)
N defined in (3.1.6) satisfies the conditions stated in Theorem 3.3.1 with ξ∗ :=

ξT where ξt is defined in (3.1.4). Hence, the sequence of the optimal terminal

wealth for utility-downside-risk problem under binomial tree models converge to

the optimal terminal wealth under the Black-Scholes model described in Example

3.1.10.

Before we proceed to the proof, we first need the following two technical lem-

mas for verifying the conditions in Theorem 3.3.8.

Lemma 3.3.9. ξ(N) defined in (3.1.6) converges weakly to ξ∗ defined in (3.1.4).

Lemma 3.3.10. Given that ξ(N) is defined in (3.1.6), we have

(i) E
[
(ξ(N))3

]
< eKT , where K is a constant independent of N .
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(ii) For any fixed n ∈ N, there exist a constant Mn such that E
[
(ξ(N))−n

]
≤Mn

for all N ∈ N.

Remark 3.3.11. Since the pricing kernel can be expressed as a function of stock

price, the weak convergence of stock prices from the binomial-tree models to the

continuous-time Black-Scholes model is sufficient for Lemma 3.3.9. The conver-

gence of stock price has been studied in plenty of literature; such as Prigent (2003)

and Föllmer and Schied (2004). Alternatively, we can show the convergence of

pricing kernels directly by the application of the Central Limit Theorem; the proof

is provided for the sake of convenience of reader.

Proof of Lemma 3.3.9.

To show the weak convergence of pricing kernels, we first need the following

alternative version of central limit theorem:

Theorem 3.3.12 (Theorem A.36 in Föllmer and Schied (2004)). Suppose that for

each N ∈ N, we are given N independent random variables Y
(N)

1 , . . . , Y
(N)
N which

satisfy the following conditions:

(i) There are constants γN such that γN → 0 and |Y (N)
k | ≤ γN a.s. for all k.

(ii)
∑N

k=1 E
[
Y

(N)
k

]
→ m

(iii)
∑N

k=1 V ar
[
Y

(N)
k

]
→ σ2

Then the distributions of
∑N

k=1 Y
(N)
k converge weakly to the normal distribution

with mean m and variance σ2.

By considering ξ
(N)
n defined in (3.1.6), we have ξ(N) = e−rT

∏N
k=1

(
1 +R

(N)
k

)
,

where

R
(N)
k := 2

e−λ∆t+σ
√

∆tZ
(N)
k − 1

e2σ
√

∆tZ
(N)
k − 1

− 1.
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Hence,

R
(N)
k =

αN := 2 e
−λ∆t+σ

√
∆t−1

e2σ
√

∆t−1
− 1, if Z

(N)
k = 1;

βN := 2 e
2σ
√

∆t−e−λ∆t+σ
√

∆t

e2σ
√

∆t−1
− 1, if Z

(N)
k = −1;

for all k = 1, 2, . . . , N.

Since

e−λ∆t+σ
√

∆t − 1

e2σ
√

∆t − 1
=

σ
√

∆t+O(∆t)

2σ
√

∆t+O(∆t)
=

1

2
+O(

√
∆t)

and similarly

e2σ
√

∆t − e−λ∆t+σ
√

∆t

e2σ
√

∆t − 1
=

(
σ
√

∆t+O(∆t)
)( 1

2σ
√

∆t
+O(1)

)
=

1

2
+O(

√
∆t),

we have αN = βN = O(
√

∆t)→ 0 as N →∞.

Then by Taylor expansion,

Y
(N)
k := ln

(
1 +R

(N)
k

)
= R

(N)
k − 1

2

(
R

(N)
k

)2

+O(∆t
3
2 ) a.s. (3.3.47)

Since R
(N)
k is bounded by γN := max{αN , βN} = O(

√
∆t),

|Y (N)
k | = γN +

1

2
γ2
N +O(∆t

3
2 )→ 0.

Hence, Condition (i) in Theorem 3.3.12 follows.

Next, to compute E
[
Y

(N)
k

]
, we consider E[R

(N)
k ] and E

[(
R

(N)
k

)2
]

first. By a

standard computation, we have E[R
(N)
k ] = 0 for all k,N . Next,

E
[(
R

(N)
k

)2
]

=
α2
N + β2

N

2
=

(
e2σ
√

∆t − 2e−λ∆t+σ
√

∆t + 1

e2σ
√

∆t − 1

)2

=

((
2α∆t+O(∆t

3
2 )
)( 1

2σ
√

∆t
+O(1)

))2

=
(α
σ

√
∆t+O(∆t)

)2

=
α2

σ2
∆t+O(∆t

3
2 ).

Then, by (3.3.47), we have

E
[
Y

(N)
k

]
= E

[
R

(N)
k

]
− 1

2
E
[(
R

(N)
k

)2
]

+O(∆t
3
2 )

= − α2

2σ2
∆t+O(∆t

3
2 ) (3.3.48)
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Hence,

N∑
k=1

E
[
Y

(N)
k

]
= − α2

2σ2
T +O(∆t

1
2 )→ − α2

2σ2
T as N →∞.

By (3.3.47) and the fact that R
(N)
k has an order of O(

√
∆t), we have

(
Y

(N)
k

)2

=(
R

(N)
k

)2

+O(∆t
3
2 ) almost surely. Then, by (3.3.48),

V ar
[
Y

(N)
k

]
= E

[(
Y

(N)
k

)2
]
−
(
E
[
Y

(N)
k

])2

= E
[(
R

(N)
k

)2
]

+O(∆t
3
2 )

=
α2

σ2
∆t+O(∆t

3
2 ).

Hence,

N∑
k=1

V ar
[
Y

(N)
k

]
=

α2

σ2
T +O(∆t

1
2 )→ α2

σ2
T as N →∞.

By Theorem 3.3.12, we have
∑N

k=1 Y
(N)
k converge weakly to the normal distri-

bution with mean− α2

2σ2T and variance α2

σ2T . Hence, ξ(N) = e−rT e
∑N
k=1 Y

(N)
k converge

weakly to log-normally distributed random variable with mean −rT − α2

2σ2T and

variance α2

σ2T , which has the same distribution as ξT .

Proof of Lemma 3.3.10.
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By Taylor series expansion, we have

E
[(

1 +R
(N)
k

)3
]

=
4
(
e6σ
√

∆t − 3e5σ
√

∆t−λ∆t + 3e4σ
√

∆t−2λ∆t − 3e2σ
√

∆t−2λ∆t + 3eσ
√

∆t−λ∆t − 1
)

(
e2σ
√

∆t − 1
)3

≤ 1 + 3
(
eσ
√

∆t − 1
)2

+
3eσ
√

∆t−λ∆t
(
eλ∆t − 1

) (
e2σ
√

∆t − eσ
√

∆t−λ∆t(eλ∆t + 1) + 1
)

σ2∆t

= 1 + 3
(
σ
√

∆t+O(∆t)
)2

+
3eσ
√

∆t−λ∆t (λ∆t+O(∆t2))
(

(2σ2 + λ)∆t+O(∆t
3
2 )
)

σ2∆t

= 1 +K∆t

for some constant K independent of N . Then,

E
[(
ξ(N)

)3
]

= E

[
N∏
i=1

(
1 +R

(N)
k

)3
]
≤ (1 +K∆t)N ≤ eKT for all N.

Therefore, (i) follows.

Given fixed n ∈ N, by standard computations with the application of Taylor

series expansions, we have:

E
[(

1 +R
(N)
k

)−n]

=

(
e2σ
√

∆t − 1
)n

2n+1

(
1(

e−λ∆t+σ
√

∆t − 1
)n +

1(
e2σ
√

∆t − e−λ∆t+σ
√

∆t
)n
)

= 1 +
(n+ 1)n

2σ2

(
1

2
σ2 + λ

)2

∆t+O(∆t
3
2 ).

Then, there exist a constant Kn independent of N such that

E
[(
ξ(N)

)−n]
= E

[
N∏
i=1

(
1 +R

(N)
k

)−n]

=

(
1 +

(n+ 1)n

2σ2

(
1

2
σ2 + λ

)2

∆t+O(∆t
3
2 )

)N

≤ eKnT .
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Proof of Theorem 3.3.8.

By Lemma 3.3.9, Condition (i) in Theorem 3.3.1 follows.

By Assumption 3.3.7, its inverse function (U ′)−1 satisfy the property: (U ′)−1(ηx) ≤

β(U ′)−1(x) for all x > 0. Thus, (U ′)−1(ηyx) ≤ βy+1(U ′)−1(x) for all x, y > 0 and

further we have (U ′)−1(ηyx) ≤ βy+1(U ′)−1(x) + (U ′)−1(x) for all y ∈ R, x > 0.

Hence,

(U ′)−1(z) ≤ βz
ln β
ln η (U ′)−1(1) + (U ′)−1(1) for any z > 0.

Then, by Minkowski inequality, we have(
E
[(

(U ′)−1
(
ξ(N)

))3
]) 1

3 ≤ (U ′)−1(1)

(
β3E

[(
ξ(N)

)3 ln β
ln η

]
+ 1

) 1
3

.

In turn, by Lemma 3.3.10(ii), we have E
[(

(U ′)−1
(
ξ(N)

))3
]
<∞.

Consider that

E
[(
ξ(N)

(
(U ′)−1

(
ξ(N)

)
+M

)) 3
2

]
≤ E

[(
1

2

((
ξ(N)

)2
+ 2

(
(U ′)−1

(
ξ(N)

))2
+ 2M2

)) 3
2

]
,

then, by Minkowski inequality and Lemma 3.3.10(i), we can show that

E
[(
ξ(N)

(
(U ′)−1

(
ξ(N)

)
+M

)) 3
2

]
<∞.

Hence, Condition (ii) in Theorem 3.3.1 follows by 13.3(a) in Williams (1991).

By Theorem 3.3.1, the desired convergence result of the optimal terminal

wealth follows.

Similarly, we can show that the terminal pricing kernels ξ(N) := ξ
(N)
N satisfies

the conditions stated in Theorem 3.3.1 for utility-strictly-convex-risk problem.

Theorem 3.3.13. Let U and D are given by Definitions 3.1.1 and 3.1.3. The

sequence of the terminal pricing kernels ξ(N) := ξ
(N)
N defined in (3.1.6) satisfies
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the conditions stated in Theorem 3.3.6 with ξ∗ := ξT where ξt is defined in (3.1.4).

Hence, the sequence of the optimal terminal wealth for utility-strictly-convex-risk

problem under binomial tree models converge to the optimal terminal wealth under

the Black-Scholes model described in Example 3.1.10.

Proof. Condition (i) in Theorem 3.3.6 follows in Lemma 3.3.9.

By Lemma 3.3.10(i), E
[
(ξ(N))3

]
< eKT , where K is a constant independent of

N . Hence, Condition (ii) in Theorem 3.3.6 follows by 13.3(a) in Williams (1991).

By Theorem 3.3.6, we have the desired convergence result of the optimal ter-

minal wealth.

Furthermore, similar approximation of optimal value function can be done:

Corollary 3.3.14. (i) Given that Assumption 3.3.7 holds, the optimal value

function for utility-downside-risk problem under discrete binomial tree model

as in Example 3.1.11 converges to the optimal value function under continuous-

time Black-Scholes model as in Example 3.1.10 as time interval decreases

(i.e. N →∞).

(ii) The optimal value function for utility-strictly-convex-risk problem under dis-

crete binomial tree model as in Example 3.1.11 converges to the optimal value

function under continuous-time Black-Scholes model as in Example 3.1.10

as time interval decreases (i.e. N →∞).

Remark 3.3.15. Chapter 2 provided a comprehensive study of utility-risk port-

folio selection under the continuous-time Black-Scholes framework. By Remark

3.2.6, the optimal terminal wealth obtained in Chapter 2 is in the analytical form

of I(M,Y ξ+γR) where I is an implicit function satisfying (3.2.13) and Y,M and

R are constants satisfying the nonlinear moment constraints in (3.2.14)-(3.2.16).

However, it is difficult to numerically compute the solution in Chapter 2 even we
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have an explicit form of I. It is because ξ is a continuous random variable with a

support of the positive half real line. Hence, the expectations in (3.2.14)-(3.2.16)

become improper integrals in which the integrand is a nonlinear function of un-

known parameters Y,M and R. Thus, it is difficult to compute the improper

integrals numerically and so do the nonlinear programming problem for Y,M and

R under the continuous-time Black-Scholes framework.

Under the binomial-tree model, ξ has finite possibilities, so the expectations

in (3.2.14)-(3.2.16) become finite sums. Therefore, it is easier to solve the system

of equations in (3.2.14)-(3.2.16) numerically. With Theorems 3.3.8 and 3.3.13, we

can approximate the optimal terminal wealth in continuous-time Black-Scholes

model by the optimal terminal wealth in discrete binomial tree model, which is

more easier to compute.

3.4 Numerical Simulation

In this subsection, we compute the numerical solution for utility risk problem

under binomial tree model as described in Example 3.1.11. Without any specific

instruction, we set the parameters to be: r = 0.03, α = 0.07, σ = 0.2, T = 1, x0 =

1. We consider utility function to be a power function: U(x) = 2x
1
2 , then U ′(x) =

x−
1
2 , we consider risk function to be either variance (D(x) = x2

2
) or semivariance

(D(x) =
x2

+

2
).

3.4.1 Convergence by Decreasing Time Interval

In this subsection, we will illustrate numerically Corollary 3.3.14 that the optimal

terminal wealth and value function will converges when the number of period N

increases so that ∆ = T
N

decreases, then by Theorems 3.3.8 and 3.3.13. We will

verify this result numerically. We fix γ = 0.1. We shall compute the solution

of the nonlinear system in (3.2.14)-(3.2.16) (Y, M, R), optimal control at t = 0
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Table 3.1: The Convergence of Optimal Solutions of Utility-Variance Problems as

Decreasing Time Interval

N Y M R π∗(0) Utility Variance J∗ % Change

25 1.2041 2.9321 0 1.8851 3.1548 1.8665 2.9682 -0.0563%

50 1.2055 2.9243 0 1.8727 3.1517 1.8519 2.9665 -0.0279%

100 1.2061 2.9205 0 1.8667 3.1502 1.8448 2.9657 -0.0139%

200 1.2065 2.9186 0 1.8636 3.1494 1.8412 2.9653 -0.0069%

400 1.2066 2.9176 0 1.8621 3.1490 1.8394 2.9651 -0.0035%

800 1.2067 2.9171 0 1.8613 3.1488 1.8385 2.9650

(π∗(0)), optimal expected utility, optimal variance, optimal objective value (J∗),

and the relative change of optimal objective value if the number of period is further

doubled for different number of period (N).

From the numerical result in Tables 3.1 and 3.2, we see that whenever we

double the number of period N , the change in value function is approximately

halved. Under this trend, the results in N = 50 is a good approximation to

the optimal solution for utility risk problem under continuous time Black-Scholes

model as in Example 3.1.10 with the error less than 0.1% in terms of the optimal

objective value.

3.4.2 Utility-Risk Efficient Frontiers

In this subsection, we plot the utility-variance and utility-semivariance efficient

frontiers for different volatility (σ = 0.1, 0.2, and 0.4). Smaller γ lead more risky

investment, which increases both utility and risk, then we can obtain an efficient

frontier by varying γ.

In Figure 3.1, we observe that given same value of risk, smaller σ will give
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Table 3.2: The Convergence of Optimal Solutions to Utility-Semivariance Prob-

lems as Decreasing Time Interval

N Y M R π∗(0) Utility Semivariance J∗ % Change

25 1.2551 3.8750 1.5450 2.2335 3.3928 2.2067 3.1721 -0.0752%

50 1.2563 3.8656 1.5397 2.2172 3.3888 2.1908 3.1698 -0.0384%

100 1.2571 3.8587 1.5399 2.2091 3.3867 2.1813 3.1685 -0.0193%

200 1.2573 3.8567 1.5379 2.2050 3.3857 2.1777 3.1679 -0.0095%

400 1.2575 3.8553 1.5376 2.2030 3.3852 2.1756 3.1676 -0.0050%

800 1.2575 3.8547 1.5372 2.2020 3.3849 2.1746 3.1675

greater utility. It is because, when σ is doubled, the investor has to bear more risk

in order to have additional expected return or expected utility through increasing

risky investment.

In Figure 3.2, we observe that smaller volatility of the risky asset encourages

investor to have more risky investment because, under the smaller volatility, risky

investment induces comparatively smaller deviation risk, hence the risky invest-

ment becomes comparatively more profitable.

Now, we fix σ = 0.2, we examine extreme value of γ. If γ = 0, our utility

risk problem will reduce to a canonical utility maximization, this topic will be

discussed in the next subsection. If γ → ∞, then we put all of the focus on the

deviation risk, so the solution will tend to riskless investment. Hence, in Table

3.3, we observe that the utility will tend to U(erTx0) = 2e
rT
2 , which is the utility

of terminal payoff under riskless strategy. Meanwhile, the deviation risk and the

optimal control will tend to 0.
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Table 3.3: The Convergence of Optimal Solution for Utility-Risk Problems to

Riskless Solution

The Case of Utility-Variance

γ π∗(0) Utility Variance

100 3.145× 10−2 2.2677 6.341× 10−5

10000 3.174× 10−4 2.2551 6.458× 10−9

1000000 3.174× 10−6 2.2550 6.459× 10−13

∞ (riskless) 0 2.2550 0

The Case of Utility-Semivariance

γ π∗(0) Utility Semivariance

100 3.376× 10−2 2.2737 9.186× 10−5

10000 3.305× 10−4 2.2552 1.007× 10−8

1000000 3.243× 10−6 2.2550 1.026× 10−12

∞ (riskless) 0 2.2550 0
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Table 3.4: The Convergence of Optimal Solution from Utility-Variance Problem

to Solely Utility Maximization

γ π∗(0) Utility Utility loss Variance Risk reduced

0 3.5119 3.6829 1681.1068

0.0001 3.3407 3.6692 0.37% 219.8164 86.92%

0.001 3.0599 3.6181 1.76% 62.9261 96.26%

0.01 2.5704 3.4663 5.88% 12.9751 99.23%

0.1 1.8667 3.1502 14.47% 1.8448 99.89%

3.4.3 Comparison between Utility-Risk Optimization and

Solely Utility Maximization

When γ = 0, our utility risk problem will reduce to a canonical solely util-

ity maximization. The optimal terminal wealth of the utility maximization is

X = 1

E[ 1
ξ ]ξ2

. Furthermore, under the continuous-time Black-Scholes model, X =

erT+α2

σ2 T+2α
σ
WT , then the corresponding expected utility and variance in diffusion

model will become 2e
r
2
T+ α2

2σ2 T and 1
2
e2rT+4α

2

σ2 T

(
e4α

2

σ2 T − 1

)
respectively.

As γ → 0, the expected utility in utility-risk problem will converge to the

expected utility in solely utility maximization (we set N = 100) in Tables 3.4 and

3.5.

From Tables 4a and 4b, we observe that adding a risk term to utility maxi-

mization problem can help to reduce the variance risk and semivariance risk. For

example, in Table 4a, adding variance with γ = 0.01 can reduce 99% of variance in

simple utility maximization with less than 6% utility loss as expense. In Table 4b,

the additional semivariance term can reduce more 90% of semivariance in simple

utility maximization with less than 10% utility loss as expense.

We also notice that there are limit points in the efficient frontiers when σ = 0.4
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Table 3.5: The Convergence of Optimal Solution from Utility-Semivariance Prob-

lem to Solely Utility Maximization

The Case of Utility-Semivariance

γ π∗(0) Utility Utility loss Semivariance Risk reduced

0 3.5119 3.6829 23.6906

0.0001 3.5011 3.6829 0.0007% 23.1534 2.27%

0.001 3.4203 3.6811 0.05% 19.6849 16.91%

0.01 3.0437 3.6403 1.16% 9.8944 58.23%

0.1 2.2091 3.3867 8.04% 2.1813 90.79%

in Figure 3.1, it is because the efficient frontiers reach the points representing

canonical utility maximizations. In contrast to mean-variance case that the ef-

ficient frontier will go to infinity when we set γ → 0, the expected utility in

utility-risk problem is bounded above by the expected utility in simple utility

maximization, thus there is always a limit point in the utility-risk efficient frontier,

where the limit point represents the case of γ = 0, i.e. solely utility maximization.

In the case in Figure 3.1(a), it becomes (3.443, 2.548).

3.4.4 Comparison between Variance and Semivariance

In this subsection, we compare the ratio of downside semivariance to upside semi-

variance (
E[(E[X]−X)2

+]

E[(E[X]−X)2
−]

) and the corresponding trading strategy given a fixed utility

target between utility-variance and utility-semivariance investors.

In Figures 3.3 (a), utility-semivariance investor has smaller the ratio of down-

side semivariance to upside semivariance than utility-variance investor because the

former investor specially focus on reducing downside semivariance. Two curves

converge as the utility target increase, since risk aversion toward the deviation
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risks decrease and will tend to zero when the utility target reaches the optimal

utility value for solely utility maximization. In Figure 3.3 (b), utility-semivariance

investor has more conservative investment than utility-variance investor under the

same utility target.

3.5 Conclusion

In this chapter, we considered dynamic utility-deviation-risk portfolio selection

under a generalized model setting where the dynamics of asset prices can be

unspecified. Our generalized model can cover the discrete binomial tree model,

the continuous-time Black-Scholes model and stochastic interest rate model.

Under the complete market assumption in Assumption 3.1.7, we first converted

our dynamic optimization problem into an equivalent static problem by Theorem

3.1.9. We further derived Nonlinear Moment Problem, which includes a equation

involving terminal pricing kernel described in Assumption 3.1.6 and three equality

constraints on nonlinear moments, to characterize the optimal terminal wealth for

utility-risk problem. The corresponding necessary and sufficient optimality theo-

rems related to the Nonlinear Moment Problem were given in Theorems 3.2.3 and

3.2.5 respectively. Under the satisfaction of the Inada Conditions, we established

the existence of optimal solutions for utility-downside-risk problems, and utility-

strictly-convex-risk problems in Theorems 3.2.8 and 3.2.14 respectively under our

generalized framework. The existence and uniqueness of the optimal solution for

utility-risk problem have been resolved.

In Theorems 3.3.1 and 3.3.6, we established the continuity of optimal termi-

nal payoff in terminal pricing kernel in the sense that the sequence of optimal

terminal payoffs converges weakly as the terminal pricing kernels. The limit of

such sequence of payoffs is the terminal payoff under a market with the limit of

terminal pricing kernel. These convergence results were then applied to establish
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the weak convergence of optimal terminal payoffs from the discrete binomial tree

model to the continuous-time Black-Scholes model in Theorems 3.3.8 and 3.3.13.

As the result, we have a numerical algorithm to compute the optimal solution for

the continuous-time utility-risk problem numerically. In numerical examples in

Section 3.4, we observe that, after adding a risk management term such variance

or semivariance of the terminal payoff, the deviation risk incurred in the case of

solely utility maximization can be reduced by more than 90% with less than 10%

loss in utility as a trade-off.
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(a)

(b)

Figure 3.1: Utility-Risk Efficient Frontiers. (a) The comparison of utility-variance

efficient frontiers between different σ, (b) The comparison of utility-semivariance

efficient frontiers between different σ. Horizontal-axis represents variance in (a)

and semivariance in (b). Vertical-axis represents utility. Solid lines represent

σ = 0.1, dotted line represents σ = 0.2, and dashed lines represent σ = 0.4.
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(a)

(b)

Figure 3.2: Optimal Utility-Risk Portfolio. (a) The comparison of optimal control

at t = 0, π∗(0), for utility-variance problem against risk aversion, γ, between

different σ. (b) The comparison of optimal control at t = 0 for utility-semivariance

problem against γ between different σ. Horizontal-axis represents γ. Vertical-axis

represents π∗(0). Solid lines represent σ = 0.1, dotted lines represent σ = 0.2,

and dashed lines represent σ = 0.4.
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(a)

(b)

Figure 3.3: (a) The comparison of the ratio of downside semivariance to upside

semivariance,
E[(E[X]−X)2

+]

E[(E[X]−X)2
−]

, against a given utility target, 2E[X1/2] , between dif-

ferent deviation risk functions. (b) The comparison of optimal control at t = 0,

π∗(0), against a given utility target, 2E[X1/2], between different risk functions.

Horizontal-axis represents 2E[X1/2]. Vertical-axis represents
E[(E[X]−X)2

+]

E[(E[X]−X)2
−]

in (a)

and π∗(0) in (b). Solid lines represent the case of variance and dashed lines rep-

resent the case of semivariance.
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Chapter 4

A Paradox in Time Consistency

in Mean-Variance Problem?

In Section 4.1.1, we shall introduce the market framework and the investors’ pref-

erence. The three solution approaches to tackle time inconsistent problems are

described and compared using the classical mean-variance problem in Section

4.1.2. In Section 4.1.3, we shall provide an overview of the theoretical results of

time-consistent mean-variance optimization under state-dependent risk-aversion

in Bensoussan et al. (2014) and Björk et al. (2014) and the non-intuitive numer-

ical results in Bensoussan et al. (2014). In Section 4.2, we shall first list out the

sufficient conditions together with their economic implications, under which the

mentioned obscure phenomena will appear as shown in the main theorems stated

at the end of the section; namely, one can start off his/her constrained equilibrium

strategy at a certain time to beat the unconstrained counterpart (Theorem 4.2.4),

even more, the pure strategy of solely investing in bond can sometimes simul-

taneously dominate both constrained and unconstrained equilibrium strategies

(Theorems 4.2.5 and 4.2.6). In Section 4.3, we shall establish the main results.

Further numerical illustrations will be provided in Section 4.4; and we observe

that the constrained time-consistent strategy dominates the unconstrained one
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for over 90% of the whole time horizon. We finally conclude in Section 4.5.

4.1 Model Setting and Time Consistency

4.1.1 Market Model and Investors’ Preference

In this chapter, we adopt the continuous time framework as in Section 5 of Ben-

soussan et al. (2014). We fix a finite terminal time T > 0. Given the probability

space (Ω,F ,P), E denotes the expectation with respect to P, and Wt denotes

the standard one-dimensional P-Brownian motion which then generates a natural

filtration Ft := σ(Wt : s ≤ t) ∨N0 on F , where N0 is P-null set. We assume that

there are one bond and a single stock in the market. The dynamics of bond and

stock are given by:

dBt = rtBtdt, B0 = b0;

dSt = µtStdt+ σtStdWt, S0 = s0,

where rt is the riskless return rate, µt and σt are the appreciation and the volatility

rates of the stock respectively. Also assume that αt := µt − rt > 0. All market

parameters rt, αt and σt are time dependent, deterministic, differentiable, and

uniformly bounded on R, i.e. 0 < r ≤ rt ≤ r < ∞, 0 < α ≤ αt ≤ α < ∞, and

0 < σ ≤ αt ≤ σ <∞ for all t ∈ R. Let ut (the admissible control) be the amount

of money invested in the stock at time t. The dynamics of the controlled wealth

process is:

dXu
t = (rtX

u
t + αtut)dt+ σtutdWt, Xu

0 = x0. (4.1.1)

We now consider two different investors: unconstrained and constrained in-

vestors. The former one can shortsell both bond and stock; while the latter one

cannot. Their common objective function at the commencement t ∈ R with the

current wealth x > 0 is:

J(t, x;u) := Et,x[Xu
T ]− γt

2x
V art,x[X

u
T ], (4.1.2)

122



4.1. Model Setting and Time Consistency

where Et,x and V art,x denote the conditional expectation and conditional variance

on the event {Xu
t = x}, and the risk aversion coefficient γt is assumed to be

positive, increasing, and differentiable in t ∈ R. Note that it is reasonable to

assume an increasing γt since people usually look for a more stable income when

they are getting elder, so they become more risk-averse, relative to the current

wealth, on their own terminal payoffs.

Furthermore, in this chapter, the admissible controls are confined to be Marko-

vian: ut = u(t,Xt), i.e. the admissible control is a function, which is a feedback

one, in both the current time t and the current wealth Xt only. The sole differ-

ence in the setting between unconstrained and constrained investors is the set of

admissible controls: the risky investment strategy of the unconstrained investor,

u(U)(t, x), can be chosen on R; while that of the constrained investor, u(C), is con-

fined by the shortselling prohibition, so that 0 ≤ u(C)(t, x) ≤ x. More precisely,

the collection of the admissible controls of the unconstrained and constrained

investors, A(U) and A(C), are defined respectively as follows:

A(U) :=
{
u(U) : R× R+ → R

∣∣∣u(U)(t, x) ∈ R
}

;

A(C) :=
{
u(C) : R× R+ → R

∣∣∣0 ≤ u(C)(t, x) ≤ x
}
.

In summary, an unconstrained investor looks for an admissible strategy ut ∈

A(U) to maximize the objective function (4.1.2), where the portfolio wealth is

generated by dynamics (4.1.1). A constrained investor concerned a similar port-

folio management problem as the unconstrained investor except that the class of

admissible strategies is instead restricted to A(C).

The optimization problems of unconstrained and constrained investors are

both time-inconsistent (which will be elaborated in Section 4.1.2), and we seek

for time-consistent solutions for these optimization problems in Problems 4.1.7

and 4.1.9 in Section 4.1.3 respectively.
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4.1.2 Time Consistency and Mean-Variance Problems

In this section, we shall describe three solution approaches for time inconsistent

problems, namely: (i) precommitment; (ii) spendthrift; and (iii) game-theoretic.

And as an illustration on their usefulness, we shall compare them through the

celebrated classical mean-variance model.

(i) Precommitment Approach

For the precommitment approach, we fix an initial state and then find a max-

imizer for the objective function at that initial state; the maximizer is called

precommitment solution. Under this approach, the maximizer may depend on

initial states, then it may not be optimal for the objective function at any fu-

ture state. Hence, the solution obtained through precommitment approach is still

time-inconsistent.

Definition 4.1.1. Given a continuous-time Markovian control problem with an

objective function J(t, x;u) and an admissible control set A, ut0,x0 ∈ A is said to

be a precommitment strategy at (t0, x0) if

ut0,x0 := arg max
u∈A

J(t0, x0;u).

Example 4.1.2 (Time-Inconsistent Mean-Variance Problem, Li and Zhou (2000)).

Consider the following maximization problem:

max
u∈A(U)

J0(t0, x0;u), where J0(t, x;u) := Et,x[Xu
T ]− γV art,x[Xu

T ], (4.1.3)

subject to (4.1.1).

The precommitment solution, that maximize J0(t0, x0;u),

ut0,x0(t, x) = −αt
σ2
t

(
x− e

∫ t
t0
rsds

[
x0 +

1

2γ
e
−
∫ T
t0

(
rs−

α2
s
σ2
s

)
ds

])
. (4.1.4)

Since the maximizer ut0,x0 for mean-variance problem in Example 4.1.2 de-

pends on the initial state (t0, x0), so this problem is time-inconsistent. To be
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frank, The optimality of the precommitment solution only makes sense at only

one moment - the initial time. For instance, we know that ut0,x0 is optimal for

J(t0, x0;u), but ut0,x0 may not be optimal for J
(
t1, X

ut0,x0

t1
;u
)

whenever t1 > t0,

which should be maximized by ut1,X
ut0,x0
t1 instead.

(ii) Spendthrift Approach

At (t1, x1), if an individual re-evaluate his plan and he has no commitment on

the plan, it should be rational for him to give up ut0,x0 and adopt ut1,x1 . If the plan

is re-evaluated continuously, any single plan ut0,x0 chosen can only have validity at

t0, and his actual strategy becomes ũ(t, x) := ut,x(t, x) for (t, x) ∈ R2. In this case,

the agent keeps changing his strategy to the currently optimal one for every time

point, Strotz (1955) termed this behavior spendthrift and Pedersen and Peskir

(2015) termed the corresponding strategy dynamically optimal strategy:

Definition 4.1.3. Given a continuous-time Markovian control problem with an

objective function J(t, x;u) and an admissible control set A, ũ ∈ A is said to be

a dynamically optimal strategy if

ũ(t, x) := ut,x(t, x) for (t, x) ∈ R2,

where

ut,x := arg max
u∈A

J(t, x;u), for each (t, x) ∈ R2

Under the spendthrift approach, the individual can apparently maintain his

objective value to be the maximum one, J(t, x;ut,x), over the whole time hori-

zon; however, it can actually never be the case. Indeed, the maximized objective

function value can only be achieved by the investor who commits to adopt the cor-

responding maximizing strategy without revising it at all future time points.

Hence, the investor who keeps changing his strategy to the currently optimal one

can never achieve the maximum objective value as specified at an earlier time.

For instance, J(t0, x0;ut0,x0) is attained by the investor who adopts ut0,x0(t, x) for
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all t ∈ [t0, T ] and x ∈ R, but can never be attained by the investor who adopts

ũ(t, x) for t ∈ [t0, T ] and x ∈ R.

Nevertheless, the solution from the spendthrift approach is meaningful in some

aspects. First, as mentioned in Strotz (1955), this spendthrift strategy is adopted

by any individual who cannot be aware of the time-inconsistency matter or has

no intention on resolving this inconsistency issue. Thus, this myopic individual

always revises his strategy to satisfy his contemporary desire. Indeed, ũ is inde-

pendent of the initial states, so it is time-consistent. In particular, Pedersen

and Peskir (2015) treated ũ as a time-consistent strategy:

Example 4.1.4 (Time-Consistent Mean-Variance Problem (Spendthrift), Peder-

sen and Peskir (2015)). Consider the following portfolio selection problem:

max
u∈A(U)

J0(t0, x0;u), where J0(t, x;u) is defined in (4.1.3), subject to (4.1.1),

the dynamically optimal solution (under Definition 4.1.3 with objective function

J0 and admissible set A(U)) is:

ũ(t, x) =
αt

2γσ2
t

e
−
∫ T
t

(
rs−

α2
s
σ2
s

)
ds
. (4.1.5)

The solution under the spendthrift notion ũ can be obtained from the pre-

commitment solution ut0,x0 by replacing the initial states (t0, x0) by the current

states (t, x). Therefore, the solutions under precommitment and spendthrift can

be obtained by the same mathematical arguments. The difference between the

two notions is how to implement the mathematical solution: whether or not the

investor will revise his strategy during the re-evaluation in some future time points.

As the mathematical context for spendthrift strategy is essentially the same

as the precommitment strategy, the spendthrift strategy is mostly considered as

the strategy adopted by the investor who cannot be aware the time inconsistency

issues, the spendthrift strategy is perceived to be inferior and its effect on actual

behavior in market trading is usually overlooked which is only partially covered in
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the literature. The spendthrift strategy was mainly studied in order to compare

with other strategies, such as precommitment and equilibrium strategies, under

various time inconsistent problems: Pollak (1968) for Ramsey’s consumption and

saving problem, Maŕın-Solano and Navas (2010) for Merton’s consumption and

investment problem, and Pedersen and Peskir (2015) for Mean-variance problem.

(iii) Game-theoretic Approach

Alternatively, game-theoretic approach is more widely used to recommend a

time-consistent solution. This approach purposely seeks for a solution that one

will consistently follow but it is not the ultimate maximizer. Under this approach,

the portfolio selection problem is converted into a non-cooperative intertemporal

game, in which every time point in the time horizon is represented by the corre-

sponding time player. The time player chooses his strategy, which becomes the

portfolio allocation at the time point he representing, to maximize the objective

function at this time point. The strategies by all time players form a solution path

for the original dynamic optimization problem. After formulating the game, the

Nash equilibrium of the intertemporal game is then obtained and utilized to be

a time-consistent solution, called equilibrium solution, for the portfolio selection

problem (see Table 4.1). At the equilibrium point, all the time players have no

incentive to choose the strategy other than û given that all later time players have

chosen their own equilibrium ones. Hence, the equilibrium control is a solution

that we will consistently follow over time and thus time-consistent.

The following definition of equilibrium control is provided by Ekeland and

Pirvu (2008) as a time-consistent solution for continuous-time control problem:

Definition 4.1.5 (Ekeland and Pirvu (2008)). Given a continuous-time Marko-

vian control problem with an objective function J(t, x;u) and an admissible con-

trol set A, a Markovian control û ∈ A is said to be an equilibrium control if for
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Non-cooperative game Dynamic optimization

Time player t Time point t

Objective function of Player t Objective function at t, J(t, x;u)

Strategy by Player t Portfolio at t, ut ∈ R

Strategies by all players Solution path over time horizon, u : [0, T ]× R+ → R

Nash equilibrium Time-consistent solution

Table 4.1: The Construction of Non-cooperative Game Problem under Game-

theoretic Approach

every admissible u ∈ A,

lim inf
h→0+

J(t, x; û)− J(t, x;uh)

h
≥ 0, for any t < T and x ∈ R, (4.1.6)

where uh is given by

uh(s, x) :=

u(s, x), for t ≤ s < t+ h, x > 0;

û(s, x), for t+ h ≤ s ≤ T, x > 0.

With the equilibrium control, we can further define the equilibrium value function,

V (t, x) := J(t, x; û), attained at û.

To solve a dynamic optimization problem using game-theoretic approach, we

look for an admissible solution satisfying Definition 4.1.5. This precise definition

allows us to find a time-consistent solution for dynamic decision problems through

modeling the equivalent stochastic control problems. To elaborate Definition 4.1.5

using the language of game theory, we consider our dynamic optimization problem

as a non-cooperative game problem with a continuum of players: For each t ∈

[0, T ], there is a time player, player t, who chooses a strategy u(t) (only at t;

the state variable is omitted) to maximize his objective function J(t;u) which

depends not only on u(t), the strategy chosen by player t, but also on all u(s)

with s ≥ t, the strategies chosen by player s. Following the notion of equilibrium
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control in Definition 4.1.5, provided that all players s > t have already chosen û, it

is optimal for the player t to also choose û. Based on this game with a continuum

of players, the time-consistent strategy of the original dynamic optimization can

be defined using the concept of a “subgame perfect Nash equilibrium point”. For

further motivations of Definition 4.1.5, one can consult the works by Peleg and

Yaari (1973), Ekeland and Pirvu (2008), and Björk and Murgoci (2010).

For the application of time-consistent solution approach to mean-variance set-

ting, Basak and Chabakauri (2010) and Björk and Murgoci (2010) are the first to

obtain the equilibrium solution:

Example 4.1.6 (Time-Consistent Mean-Variance Problem (Equilibrium Solu-

tion), Basak and Chabakauri (2010) and Björk and Murgoci (2010)). Consider

the following portfolio selection problem:

max
u∈A(U)

J0(t0, x0;u), where J0(t, x;u) is defined in (4.1.3), subject to (4.1.1),

the equilibrium solution (under Definition 4.1.5 with objective function J0 and

admissible set A(U)) is:

û(t, x) =
αt

2γσ2
t

e−
∫ T
t rsds. (4.1.7)

Although the solutions obtained from both spendthrift and game theoretic

approaches are time-consistent, they are completely different. The value functions

of dynamically optimal and equilibrium strategies are established respectively in

Pedersen and Peskir (2015) and Björk and Murgoci (2010) as follows:

Ṽ (t, x) := J(t, x; ũ) = e
∫ T
t rsdsx+

1

2γ

(
e
∫ T
t

α2
s
σ2
s
ds − 1

4
e

2
∫ T
t

α2
s
σ2
s
ds − 3

4

)
,

V̂ (t, x) := J(t, x; û) = e
∫ T
t rsdsx+

1

4γ

∫ T

t

α2
s

σ2
s

ds,

where ũ and û are given in (4.1.5) and (4.1.7) respectively.

By an immediate application of the mean-value theorem, the value function

evaluated at the equilibrium strategy is actually greater than that at dynamically

129



4.1. Model Setting and Time Consistency

Figure 4.1: The value functions of dynamically optimal solution, Ṽ (t, 1) (solid

line) and equilibrium solution, V̂ (t, 1) (dashed line), against the current time t.

optimal strategy:

V̂ (t, x)− Ṽ (t, x) =
1

2γ

(
1

2

∫ T

t

α2
s

σ2
s

ds− e
∫ T
t

α2
s
σ2
s
ds

+
1

4
e

2
∫ T
t

α2
s
σ2
s
ds

+
3

4

)
=

1

2γ

(∫ T

t

α2
s

σ2
s

ds

)(
1

2
− eη +

1

2
e2η

)
> 0,

for some η ∈
(

0,
∫ T
t

α2
s

σ2
s
ds
)

. A numerical illustration is shown in Figure 4.1 with

rt = 0.03, µt = 0.1, and σt = 0.2 for all t ∈ [0, 10] and γ = 1, x = 1, and T =

10, where the value functions of dynamically optimal and equilibrium solutions,

Ṽ (t, x) and V̂ (t, x), are shown. The dynamically optimal solution has a greater

expected value, as this spendthrift solution actually always suggests to invest more

in risky asset than that using the equilibrium solution. However, in the meanwhile,

this more aggressive strategy will also give a greater variance in magnitude than

that under the equilibrium strategy. In sum, the value function of the dynamically

optimal solution, which the investor concerns, will be smaller than that using
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equilibrium solution.

To the best of our knowledge, the comparative study on the performance

between equilibrium and dynamically optimal strategies has been up to specific

time-inconsistent problems. We here illustrate that difference in performance

through the classical mean-variance models; nevertheless, we still look forward to

the further similar analysis over the general time-inconsistent settings, and up to

this point, we cannot completely claim on which one could be uniformly better

than another. From our viewpoint, the importance of spendthrift approach is

not to provide a strategy which gives out a better objective value, but to mimic

the actual behavior in the market. Most practitioners are not aware about the

time inconsistency issues, so they usually behave as spendthrift strategy. The

inferior performance of the spendthrift strategy may explain why the managers in

the market perform weaker than widely expected, because they are incapable of

refraining from their deeply rooted inconsistent and spendthrift habit. Therefore,

the study on spendthrift strategy is subtle. It may explain the actual behavioral

bias of practitioners and helps us to look for superior strategy that transcends

against the “market”.

In this chapter, we shall concern on the equilibrium solution from the game-

theoretic approach only and treat it as the time-consistent solution. In the next

subsection, we shall introduce the motivation behind our observed paradoxical

results that appear in (time-consistent) equilibrium approach.

4.1.3 Motivation: Time-Consistent Mean-Variance Opti-

mization with Wealth-Dependent Risk Aversion

Note that, when the risk aversion stays constant over the whole time horizon, the

equilibrium solution for the classical mean-variance problem as shown in Example

4.1.6 is state-independent. Later, Björk et al. (2014) discovered that, under a

more realistic mean-variance framework under which the risk aversion is inversely
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proportional to the current wealth, the equilibrium solution varies linearly with

the current wealth, and hence the solution is state-dependent which seems more

economically sounding. More precisely, Björk et al. (2014) studied the following

time-consistent optimization problem:

Problem 4.1.7 (Unconstrained investor’s problem, Björk et al. (2014)). Find an

equilibrium control û(U) ∈ A(U) according to Definition 4.1.5, where the objective

function J is given by (4.1.2), and the portfolio wealth is generated by dynamics

(4.1.1), and the admissible class is given by A(U).

Björk et al. (2014) characterized the equilibrium solution by the extended HJB

equations systems, and then, by using a suitable Ansatz, a semi-explicit form of

the equilibrium solution could be obtained:

Theorem 4.1.8 (Theorem 4.6 in Björk et al. (2014)). The equilibrium solution

to Problem 4.1.7 is given by û(U)(t, x) = c
(U)
t x, where c

(U)
t satisfies the following

integral equation:
c

(U)
t = αt

σ2
t
d

(U)
t ;

d
(U)
t = 1

γt
e
−
∫ T
t

(
rs+αsc

(U)
s +σ2

s

(
c
(U)
s

)2
)
ds

+ e
−
∫ T
t σ2

s

(
c
(U)
s

)2
ds − 1,

(4.1.8)

The equilibrium value function is given by

V (U)(t, x) = e
∫ T
t (rs+αsc

(U)
s )dsx− γt

2

(
e
∫ T
t 2(rs+αsc

(U)
s )+σ2

s

(
c
(U)
s

)2
ds − e

∫ T
t 2(rs+αsc

(U)
s )ds

)
x.

(4.1.9)

Since there is no shortselling restrictions in Problem 4.1.7, the equilibrium

control û(C) in Theorem 4.1.8 can take value outside the range of [0, x], i.e. the

investor can shortsell when he implements the equilibrium strategy. However,

the shortselling in discrete framework as in Björk and Murgoci (2014) can cause

the wealth in the next period to take a non-positive value, making the mean-

variance maximization problem with wealth-dependent risk version ill-posed, and
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this observation was explained in detail in Bensoussan et al. (2014). Therefore, in

Bensoussan et al. (2014), we looked for an equilibrium solution for mean-variance

problem with wealth-dependent risk aversion subject to the shortselling prohibi-

tion on both stock and bond as recall as below again:

Problem 4.1.9 (Constrained investor’s problem, Bensoussan et al. (2014)). Find

an equilibrium control û(C) ∈ A(C) according to Definition 4.1.5, where the ob-

jective function J is given by (4.1.2), where the portfolio wealth is generated by

dynamics (4.1.1), and the admissible class is given by A(C).

Remark 4.1.10. The objective functions in Problems 4.1.7 and 4.1.9 are the

same, their only difference is the admissible set. With different admissible set, the

equilibrium solution obtained are different. As we are not seeking for the ultimate

maximizer, it is not necessary that the equilibrium solution with larger admissible

set can achieve a greater objective value.

By solving the extended HJB system for the constrained Problem 4.1.9, Ben-

soussan et al. (2014) obtained an equilibrium solution:

Theorem 4.1.11 (Theorem 6.1 in Bensoussan et al. (2014)). The equilibrium

solution to Problem 4.1.7 is given by û(C)(t, x) = c
(C)
t x, where c

(C)
t satisfies the

following integral equation:
c

(C)
t = G

(
αt
σ2
t
d

(C)
t

)
;

d
(C)
t = 1

γt
e
−
∫ T
t

(
rs+αsc

(C)
s +σ2

s

(
c
(C)
s

)2
)
ds

+ e
−
∫ T
t σ2

s

(
c
(C)
s

)2
ds − 1,

(4.1.10)

where G is a layer function defined as:

G(x) :=


1 if x > 1,

x if x ∈ [0, 1],

0 if x < 0.
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Equilibrium objective value for different investors

in different T with t = 0, x = 1.

Investor Unconstrained Constrained

T=1 1.2839 1.2069

T=10 2.4730 4.1623

T=20 5.3994 9.0910

T=50 78.8514 128.2294

Table 4.2: The Counter-intuitive Numerical Observation in Bensoussan et al.

(2014).

The equilibrium value function is given by

V (C)(t, x) = e
∫ T
t (rs+αsc

(C)
s )dsx− γt

2

(
e
∫ T
t 2(rs+αsc

(C)
s )+σ2

s

(
c
(C)
s

)2
ds − e

∫ T
t 2(rs+αsc

(C)
s )ds

)
x.

(4.1.11)

In the numerical studies in Bensoussan et al. (2014), we further compare the

performances of equilibrium strategies adopted by unconstrained and constrained

investors; their semi-explicit forms are those stated in Theorems 4.1.8 and 4.1.11.

In Bensoussan et al. (2014), we fixed r = 0.05, µ = 0.2, σ = 0.2, and

γ(t;T ) :=
1

1 + e−0.1(t−T )
,

we observed that the constrained investor can acquire a greater mean-variance

objective value than that of the unconstrained investor as quoted in Table 4.2.

These numerical observation is surprising because whatever the constrained

investor can do, it is supposed that the unconstrained investor can do the same.

Therefore, we expect that the unconstrained investor should perform better than

his constrained counterpart.

Motivated by our counter-intuitive numerical observation, in this chapter, we

shall provide an analytical support to these non-intuitive numerical observations.
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We investigate the economically meaningful conditions under which the same

non-typical phenomenon reappear: the constrained investor dominates the un-

constrained investor. An analytical comparison on the equilibrium mean-variance

value functions for unconstrained and constrained investors will be demonstrated.

Furthermore, we shall compare the performance of equilibrium strategies (for both

constrained and unconstrained investors) with the pure strategy of solely investing

in bond.

4.2 Main Results

We set the following conditions for our paradoxical main results :

Condition 4.2.1.
αT
σ2
T

> γT .

Condition 4.2.2. There exists δ0 > 0 such that

r − γ′t
γt

+

min

{(
αt
σ2
t

)′
, 0

}
αt
σ2
t

> δ0 for all t ∈ R.

We further set a more relaxing condition replacing Condition 4.2.2:

Condition 4.2.3. There exists δ1 > 0 such that

r − γ′t
γt
> δ1 for all t ∈ R.

Obviously, for taking δ1 ≥ δ0 > 0, Condition 4.2.2 implies Condition 4.2.3,

and Condition 4.2.3 implies that γT e
−(r−δ1)(T−t) ≤ γt ≤ γT for all t ≤ T .

Assume that the riskfree rate rt, the appreciation rate µt and the volatility

σt of the stock is constant over t. In Shiryaev et al. (2008) (also see Du Toit

and Peskir, 2009), the ratio α
σ2 is described as the “goodness index” of the stock,

which justifies a particular stock on whether it should be sold-at-once or bought-

and-hold. In particular, they showed that if the ratio α
σ2 ≥ 1

2
, the investor should

135



4.2. Main Results

hold the stock until the expiry of the predetermined time horizon; otherwise, he

should sell the stock at once (i.e. to invest solely in bond). The strategy based on

such “goodness index” can maximize the expected ratio of the discounted stock

selling price to the ultimate maximum over the planned time horizon. Hence,

the ratio α
σ2 can indicate the favorable performance or not of the stock over the

bond. Our Condition 4.2.1 can be interpreted as comparing whether the terminal

performance of the stock is beyond the investor’s own risk aversion γT at the

expiry. Loosely speaking, it is expected that the validity of Condition 4.2.1 would

normally encourage the investor to buy more stock as the outperformance of the

stock may compensate his fear towards risk.

Condition 4.2.2 can be interpreted as comparing whether the sum of the rela-

tive decrease in “goodness index” and the relative increase in risk aversion coeffi-

cient is bounded above by the riskfree rate. When the market is going well, most

investors have an optimistic anticipation on the continuing market appreciation,

their risk aversion of the investor should expect to enjoy a more gentle progres-

sive growth over time, while the “goodness index” of the stock against the bond

should show a better performance in the future. In reality, in order to avoid any

irrational exuberance in the security market during the rapid economic boom, it

is common to set the riskfree rate high enough to slow down any over-investment.

In this case, Condition 4.2.2 is likely to be satisfied.

In contrast, in a lull market, investors’ pessimistic view on the market growth

guides them to have a substantial increase in risk aversion over time while the stock

may probably possess a sharp decline in its own “goodness index”; to remedy the

economic downturn, reducing borrowing interest rate can help to boost up the

investment environment. Hence, Condition 4.2.2 is less likely to be satisfied in a

weak market.

In the financial world, it is commonly observed that under a growing mar-

ket, such that Conditions 4.2.1 and 4.2.2 could be naturally satisfied as discussed
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above, would prefer investors to hold a relatively larger proportion in stock, while

any restriction on shortselling will set extra hurdle for investors on leveraging to

a more decent profit. However, our mathematical result demonstrates a paradox-

ical claim that any time-consistent investor should sometimes prefer the confined

strategy even when the market goes very well: under Conditions 4.2.1 and 4.2.2,

the constrained strategy dominates the unconstrained one.

Theorem 4.2.4. Under Conditions 4.2.1 and 4.2.2, there exists some t < T such

that V (C)(t, x) > V (U)(t, x) for all x > 0.

Its proof will be given in Section 4.3.2. Note that the expression of the equilib-

rium mean-variance value functions for unconstrained and constrained investors,

denoted by V (U) and V (C) respectively, are given in Theorems 4.1.8 and 4.1.11.

As a relatively less restrictive version of Condition 4.2.2, Condition 4.2.3 can be

interpreted as comparing whether the relative increase in risk aversion coefficient is

bounded above by the riskfree rate. Again, the latter condition is likely to appear

when the market is performing well, which can be argued as above for Condition

4.2.2. Similarly, in the prevailing understanding of the market behavior, investors

should allocate at least a noticeable portion in stock, especially in a very good

economy. However, the following two main theorems provide another paradoxical,

yet mathematically precise, assertion that the time-consistent strategy, no matter

confined or unconfined one, is sometimes beaten by the pure strategy of solely

investing in bond even in a well-performed market:

Theorem 4.2.5. Under Condition 4.2.3, there exists a t∗ < T such that V (Rf)(t, x) >

V (U)(t, x) for all x > 0 and t < t∗, where V (Rf) is value function of the pure strat-

egy of solely investing in bond given by

V (Rf)(t, x) := e
∫ T
t rsdsx. (4.2.12)

Theorem 4.2.6. Under Condition 4.2.3, there exists a t† < T such that V (Rf)(t, x) >

V (C)(t, x) for all x > 0 and t < t†, where V (Rf) is given in (4.2.12)
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Their proofs of above theorems will be given in Sections 4.3.3 and 4.3.4 re-

spectively.

4.3 Proof of Main Results

Note that the ratios of investment to wealth of equilibrium strategy for uncon-

strained and constrained investors, denoted by c(U) and c(C) respectively, are given

by (4.1.8) in Theorem 4.1.8 and (4.1.10) in Theorem 4.1.11; the corresponding

equilibrium mean-variance value functions for unconstrained and constrained in-

vestors, denoted by V (U) and V (C) respectively, are given by (4.1.9) and (4.1.11).

4.3.1 Preliminary Lemmas for Main Theorems

Before we proceed to the proof of the main theorems, we first establish some

preliminary lemmas.

4.3.1.1 Unconstrained case

We first establish that under Conditions 4.2.1 and 4.2.2, the ratio of investment

to wealth, c
(U)
t , is increasing in t whenever one is holding some of the stock at t;

similar results for d
(U)
t hold under Condition 4.2.3:

Lemma 4.3.1. (i) Suppose that Conditions 4.2.1 and 4.2.2 hold. For any t ≤ T ,

whenever c
(U)
t > 0, we have

(
c

(U)
t

)′
> 0, i.e. c

(U)
t is increasing corresponding

to those t’s. Hence,

c
(U)
t ≤ c(U) :=

α

γTσ2
, for all ∞ < t ≤ T (4.3.13)

(ii) Suppose that Condition 4.2.3 holds. For any t ≤ T , whenever d
(U)
t > −σ2

t

α2
t
δ1,

we have
(
d

(U)
t

)′
> 0.
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Proof. (
c

(U)
t

)′
=

(
αt
σ2
t

){
1

γt

(
rt + αtc

(U)
t + σ2

t

(
c

(U)
t

)2

− γ′t
γt

)
e
−
∫ T
t

(
rs+αsc

(U)
s +σ2

s

(
c
(U)
s

)2
)
ds

+σ2
t

(
c

(U)
t

)2

e
−
∫ T
t σ2

s

(
c
(U)
s

)2
ds

}
+

(
αt
σ2
t

)′
d

(U)
t

>
αt
σ2
t

(rt + αtc
(U)
t −

γ′t
γt

)
+

min

{(
αt
σ2
t

)′
, 0

}
αt
σ2
t


×
(

1

γt
e
−
∫ T
t (rs+αsc

(U)
s +σ2

s

(
c
(U)
s

)2
)ds

)
> 0. (4.3.14)

The first inequality follows because d
(U)
t is positively proportional to c

(U)
t by (4.1.8)

and so d
(U)
t > 0, and e

−
∫ T
t σ2

s

(
c
(U)
s

)2
ds − 1 < 0. The last inequality follows after

Condition 4.2.2. By (4.3.14), we have c
(U)
t ≤ c

(U)
T = αT

γT σ
2
T
≤ α

γT σ2 = c(U), so the

second assertion in (i) follows. The case in (ii) can also be proven similarly.

For any k ∈ (0, 1
γT

), define

τ
(U)
k := sup

{
t < T

∣∣d(U)
t = k

}
∈ [−∞, T ). (4.3.15)

Note that Lemma 4.3.1 (ii) implies that d
(U)
t > k if and only if t > τ

(U)
k . We shall

then establish some finite upper and lower bounds for τ
(U)
k as follows.

Lemma 4.3.2. Suppose that Condition 4.2.3 holds. For any k ∈
(

0, 1
γT

)
, τ

(U)
k ≤

τ
(U)
k ≤ τ

(U)
k , where τ

(U)
k is given by (4.3.15),

T − τ (U)
k := min

{
1

δ1

ln

[
1

γTk

]
,
σ2

k2α2
ln

[
1 + 1

γT

1 + k

]}
,

T − τ (U)
k :=

1

r + αc(U) + σ2
(
c(U)
)2 ln

[
1 + 1

γT

1 + k

]
,
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and c(U) is defined in (4.3.13).

Proof. Since d(U) is increasing by Lemma 4.3.1 (ii), we have c
(U)
t = αt

σ2
t
d

(U)
t ≤

α
σ2d

(U)
T ≤ c(U). By considering (4.1.8), for any t such that d

(U)
t > 0, we have

e
−
(
r+αc(U)+σ2

(
c(U)

)2
)

(T−t)
(

1 +
1

γT

)
− 1

≤ d
(U)
t ≤ min

{
e−

α2

σ2 k
2(T−max{t,τ (U)

k })
(

1 +
1

γT

)
− 1,

e−δ1(T−t)

γT

}
.(4.3.16)

By taking t = τ
(U)
k in the last-handed inequality in (4.3.16), we have

d
(U)

τ
(U)
k

≥ e
−
(
r+αc(U)+σ2

(
c(U)

)2
)(

T−τ (U)
k

)(
1 +

1

γT

)
− 1 = k,

then τ
(U)
k ≤ τ

(U)
k follows by recalling that d(U) is increasing in accordance with

Lemma 4.3.1 (ii).

To show that τ
(U)
k ≤ τ

(U)
k , we consider two cases: (i) T − τ (U)

k = 1
δ1

ln
[

1
kγT

]
;

(ii) T − τ (U)
k = σ2

k2α2 ln

[
1+ 1

γT

1+k

]
.

(i) By taking t = τ
(U)
k in the right-handed inequality in (4.3.16), we have

d
(U)

τ
(U)
k

≤ e
−δ1

(
T−τ (U)

k

)
γT

= k,

then τ
(U)
k ≥ τ

(U)
k follows by recalling that d(U) is increasing in light of Lemma

4.3.1 (ii).

(ii) Assume the contrary that τ
(U)
k < τ

(U)
k . Since d(U) is strictly increasing

according to Lemma 4.3.1 (ii), d
(U)

τ
(U)
k

> d
(U)

τ
(U)
k

= k, where the last equality

is due to the definition of τ
(U)
k in (4.3.15). On the other hand, by taking

t = τ
(U)
k in the right-handed inequality in (4.3.16) and using the assumption

that τ
(U)
k < τ

(U)
k , we have

d
(U)

τ
(U)
k

≤ e
−α

2

σ2 k
2
(
T−max

{
τ

(U)
k ,τ

(U)
k

})(
1 +

1

γT

)
− 1

= e
−α

2

σ2 k
2
(
T−τ (U)

k

)(
1 +

1

γT

)
− 1 = k,
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which leads to a contradiction.

Hence, both cases can result in τ
(U)
k ≥ τ

(U)
k .

By Lemma 4.3.2, for t ≤ τ
(U)
k , we have

1− e−
∫ T
t σ2

s

(
c
(U)
s

)2
ds

> 1− e−
α2

σ2 k
2(T−τ (U)

k ) ≥ 1− e
−α

2

σ2 k
2

(
T−τ (U)

k

)
=: pk,

(4.3.17)

and so pk = 1−
(

1+k
1+ 1

γT

) α2k2

σ2

(
r+αc(U)+σ2(c(U))

2
)

.

Define k∗ such that pk∗ = max
k∈
(

0, 1
γT

) pk. Next, we shall show that d
(U)
t will have

a negative upper bound for large enough T − t. Define

−L∗ := max

{
−δ1σ

2

2α2 ,−
pk∗

2

}
< 0 and τ ∗ := sup

{
t < T

∣∣d(U)
t = −L∗

}
∈ [−∞, T ),

(4.3.18)

Lemma 4.3.3. Suppose that Condition 4.2.3 holds. T − τ ∗ ≤ T − τ ∗, where

T − τ ∗ := max
{

2
δ1

ln
[

2
γT pk∗

]
, T − τ (U)

k∗

}
and, τ ∗ and τ

(U)
k are defined in (4.3.18)

and (4.3.15) respectively.

Proof. Assume the contrary that τ ∗ < τ ∗, by the fact that d
(U)
t > L∗ for all

t ∈ [τ ∗, T ) in accordance with Lemma 4.3.1 (ii), we have c
(U)
t > −αt

σ2
t
L∗. On the

other hand, we have

1

γτ∗
e
−
∫ T
τ∗ (rs+αsc

(U)
s +σ2

s

(
c
(U)
s

)2
)ds

<
1

γT
e
−
(
δ1−α

2

σ2 L
∗
)

(T−τ∗) ≤ 1

γT
e−

1
2
δ1(T−τ∗) ≤ pk∗

2
;

indeed, the first inequality follows from Condition 4.2.3 and the fact that c
(U)
t >

−αt
σ2
t
L∗ for all t ∈ [τ ∗, T ); while the second and third inequalities follow from the

definitions of L∗ and τ ∗ respectively.

Since τ ∗ ≤ τ
(U)
k∗ , then by (4.3.17), we have

d
(U)
τ∗ =

1

γτ∗
e
−
∫ T
τ∗ (rs+αsc

(U)
s +σ2

s

(
c
(U)
s

)2
)ds

+ e
−
∫ T
τ∗ σ

2
s

(
c
(U)
s

)2
ds − 1 < −pk

∗

2
≤ −L∗,
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Figure 4.2: The graphical illustration for τ ∗, τ ∗, τ
(U)
k , τ

(U)
k and τ

(U)
k . The black line

represents d
(U)
t . τ

(U)
k , τ

(U)
k and τ

(U)
k are defined in Lemma 4.3.2. L∗, τ ∗ and τ ∗ are

defined in 4.3.4.

which contradicts that τ ∗ < τ ∗.

Lemma 4.3.4. Suppose that Condition 4.2.3 holds. d
(U)
t ≤ −L∗ for all t < τ ∗,

where L∗ and τ ∗ are defined in (4.3.18).

Proof. Since −L∗ > − δ1σ2
t

α2
t

and
(
d

(U)
t

)′
> 0 whenever d

(U)
t > − δ1σ2

t

α2
t

by Lemma

4.3.1 (ii), so d
(U)
t ≤ −L∗ for all t ≤ τ ∗, hence our claim follows.

Figure 4.2 illustrates the relative magnitude between τ ∗, τ ∗, τ
(U)
k , τ

(U)
k and τ

(U)
k .
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4.3.1.2 Constrained case

The results established in the previous subsection are also valid for the constrained

setting. The following lemma can be proven using the same argument as Lemma

4.3.1.

Lemma 4.3.5. (i) Suppose that Conditions 4.2.1 and 4.2.2 hold. For any t ≤

T , whenever c
(C)
t ∈ (0, 1), we have

(
c

(C)
t

)′
> 0, i.e. c

(C)
t is increasing

corresponding to those t’s.

(ii) Suppose that Condition 4.2.3 holds. For any t ≤ T , whenever d
(C)
t > −σ2

t

α2
t
δ1,

we have
(
d

(C)
t

)′
> 0.

For any k ∈
(

0,min
{

1
γT
, σ

2

α

})
, define

τ
(C)
k := sup

{
t < T

∣∣d(C)
t = k

}
∈ [−∞, T ), (4.3.19)

we shall then establish some finite upper and lower bounds for τ
(C)
k as follows

using the same argument as Lemma 4.3.2.

Lemma 4.3.6. Suppose that Condition 4.2.3 holds. For any k ∈
(

0,min
{

1
γT
, σ

2

α

})
,

τ
(C)
k ≤ τ

(C)
k ≤ τ

(C)
k , where τ

(C)
k is defined in (4.3.19),

T − τ (C)
k := T − τ (U)

k = min

{
1

δ1

ln

[
1

γTk

]
,
σ2

k2α2
ln

[
1 + 1

γT

1 + k

]}
,

T − τ (C)
k :=

1

r + α + σ2 ln

[
1 + 1

γT

1 + k

]
.

By Lemma 4.3.6, for t < τ
(C)
k , we have

1− e−
∫ T
t σ2

s

(
c
(C)
s

)2
ds

> 1− e
−α

2

σ2 k
2

(
T−τ (C)

k

)
=: qk, (4.3.20)

and so qk = 1−
(

1+k
1+ 1

γT

) α2k2

σ2(r+α+σ2)
. Define k† such that qk† = max

k∈
(

0,min
{

1
γT
,σ

2

α

}) qk.
Similar to the unconstrained case, we shall show that c

(C)
t will be zero for large

enough T − t.
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Figure 4.3: The graphical illustration for τ †, τ †, τ
(C)
k , τ

(C)
k and τ

(C)
k . The black

line represents d
(C)
t . τ

(C)
k , τ

(C)
k and τ

(C)
k are defined in Lemma 4.3.6. τ † :=

sup
{
t < T

∣∣d(C)
t = 0

}
and τ † are defined in Lemma 4.3.7.

Lemma 4.3.7. Suppose that Condition 4.2.3 holds. c
(C)
t = 0 for all t < τ †, where

T − τ † := max
{

1
δ1

ln
[

1
γT qk†

]
, T − τ (C)

k†

}
, and τ

(C)
k is defined in (4.3.19).

Proof. By (4.3.20), for any t < τ † ≤ τ
(C)

k†
,

d
(C)
t =

1

γt
e
−
∫ T
t (rs+αsc

(C)
s +σ2

s

(
c
(C)
s

)2
)ds

+ e
−
∫ T
t σ2

s

(
c
(C)
s

)2
ds− 1 <

1

γT
e−δ1(T−τ

†)− qk† ≤ 0,

where the second last term being less than zero is followed by the fact that T−τ † ≥
1
δ1

ln
[

1
γT qk†

]
.

Figure 4.3 illustrates the relative magnitude between τ †, τ †, τ
(C)
k , τ

(C)
k and τ

(C)
k ,

where τ † := sup
{
t < T

∣∣d(C)
t = 0

}
∈ [−∞, T ).
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4.3.2 Proof of Theorem 4.2.4

Define

t0 := sup

{
t < T

∣∣ ∫ T

t

αs
(
c(U)
s − c(C)

s

)
ds = 0

}
∈ [−∞, T ), (4.3.21)

in particular, t0 = −∞ means
∫ T
t
αs

(
c

(U)
s − c(C)

s

)
ds > 0 for all t < T . Under

Condition 4.2.1, it is obvious that 1 = c
(C)
T < c

(U)
T = αT

γT σ
2
T

(i.e. the unconstrained

investor will shortsell bond to buy more stock at T ), thus by the continuity of c’s,∫ T

t

αs
(
c(U)
s − c(C)

s

)
ds > 0 when t is close enough to T. (4.3.22)

We now establish that the constrained solution can outperform the uncon-

strained one when the investor commences the strategies at t0; for the justification

of the existence of a finite t0, it will be shown in Proposition 4.3.10.

Proposition 4.3.8. Given that Conditions 4.2.1 and 4.2.2 hold. With such a

finite t0 < T defined in (4.3.21), we have that V (C)(t0, x) > V (U)(t0, x) for all

x > 0.

Define

t1 := sup
{
t < T

∣∣c(U)
t = c

(C)
t

}
∈ [−∞, T ). (4.3.23)

Before we proceed on its proof, we first establish the following useful lemma:

Lemma 4.3.9. Under Conditions 4.2.1 and 4.2.2, the followings hold:

(i) t1 ∈ (t0, T ); (ii) c
(C)
t = 1 for all t ∈ [t1, T ]; (iii) There exists ε > 0 such

that c
(U)
t < c

(C)
t for all t ∈ (t1 − ε, t1); (iv) c

(U)
t < c

(C)
t for all t ∈ (t0, t1).

Proof. (i) Assume the contrary that t1 ≤ t0, c
(C)
t < c

(U)
t for all t ∈ (t0, T ), then∫ T

t0
αs

(
c

(U)
s − c(C)

s

)
ds > 0, which contradicts to the definition of t0.

(ii) Since c
(C)
t < c

(U)
t for all t ∈ (t1, T ), by (4.1.8) and (4.1.10), we have αt

σ2
t
d

(C)
t >

αt
σ2
t
d

(U)
t = c

(U)
t ≥ c

(C)
t for all t ∈ (t1, T ), which implies that G takes its

maximum value 1 and so c
(C)
t = 1 for all t ∈ (t1, T ).
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(iii) By the proof of (ii),
αt1
σ2
t1

d
(C)
t1 > 1. The continuity of d ensures that there

exists ε1 > 0 such that c
(C)
t = 1 for all t ∈ (t1 − ε1, t1). By Lemma 4.3.1(i),(

c
(U)
t1

)′
> 0 implies that there exists ε2 > 0 such that c

(U)
t < 1 = c

(C)
t for all

t ∈ (t1 − ε2, t1). The result follows by choosing ε := min {ε1, ε2}.

(iv) By Lemma 4.3.5 (ii) and (4.1.10),
(
σ2
t

αt
c

(C)
t

)′
≥ 0 for all t ∈ (−∞, T ] almost

everywhere (except t = τ † or t = inf
{
t
∣∣c(C)
t = 1

}
). Assume the contrary,

so as there exists t2 := sup
{
t < t1

∣∣c(U)
t = c

(C)
t

}
∈ (t0, t1). By (iii), we have

that c
(U)
t > c

(C)
t for all t ∈ (t1, T ) and c

(U)
t < c

(C)
t for all t ∈ (t2, t1). Then∫ T

t2

σ2
s

((
c(U)
s

)2 −
(
c(C)
s

)2
)
ds

= 2

∫ T

t2

(
σ2
s

αs
c(C)
s

)
αs
(
c(U)
s − c(C)

s

)
ds+

∫ T

t2

σ2
s

(
c(U)
s − c(C)

s

)2
ds

> 2

(
σ2
t1

αt1
c

(C)
t1

)∫ T

t2

αs
(
c(U)
s − c(C)

s

)
ds, (4.3.24)

where the last inequality follows by the fact that
(
σ2
t

αt
c

(C)
t

)′
≥ 0 for all t.

By considering the definition of t0 in (4.3.21), t0 < t2, and the fact of (4.3.22),∫ T
t2
αs

(
c

(U)
s − c(C)

s

)
ds > 0, and hence

∫ T
t2
σ2
s

((
c

(U)
s

)2

−
(
c

(C)
s

)2
)
ds > 0.

Then, d
(U)
t2 < d

(C)
t2 by comparing (4.1.8) and (4.1.10). Due to (iii) and c

(U)
t is

increasing whenever c
(U)
t > 0 in accordance with Lemma 4.3.1 (i), we have

c
(U)
t2 < 1. However, because d

(U)
t2 < d

(C)
t2 , it is impossible that c

(U)
t2 = c

(C)
t2 ,

which contradicts to the definition of t2.

Proof of Proposition 4.3.8. Following the same computation as in (4.3.24), we

have ∫ T

t0

σ2
s

((
c(U)
s

)2 −
(
c(C)
s

)2
)
ds > 2

(
σ2
t1

αt1
c

(C)
t1

)∫ T

t0

αs
(
c(U)
s − c(C)

s

)
ds = 0.

Our claim follows by comparing (4.1.9) and (4.1.11).
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We finally establish the existence of t0 (i.e. t0 > −∞) by constructing a finite

lower bound.

Proposition 4.3.10. Given that Conditions 4.2.1 and 4.2.2 hold. There exists

t0 ∈ [t0, T ) defined in (4.3.21), where t0 := τ ∗−
ασ2

(
c
(U)
T −1

)(
T−τ (U)

θ

)
α2L∗

> −∞, θ := σ2

α
,

τ (U) and τ ∗ are defined in Lemmas 4.3.2 and 4.3.3, and L∗ is given in (4.3.18).

Hence, t0 > −∞.

Proof. Assume the contrary that t0 < t0. Since t0 < τ ∗ < τ ∗ (by Lemma 4.3.3),

then c
(U)
t0 < 0 (by Lemma 4.3.4). By continuity of c(U) and c(C), c

(U)
T > 1 and

c(C) ∈ [0, 1], the Intermediate Value Theorem ensures that t1 > t0. By Lemma

4.3.9(ii), we have c
(U)
t1 = c

(C)
t1 = 1. By Lemma 4.3.1 and the definition of t1 in

(4.3.23), we have c
(U)
T > c

(U)
t > c

(C)
t = 1 for all t ∈ (t1, T ). By Lemma 4.3.9(iv)

and the assumption that t0 < t0, c
(U)
t < c

(C)
t for all t ∈ (t0, t1). By definition of

τ
(U)
θ in (4.3.15) and definition of θ, d

(U)

τ
(U)
θ

= σ2

α
, then c

(U)

τ
(U)
θ

≤ 1 = c
(U)
t1 . By Lemma

4.3.1(i) and Lemma 4.3.2, we have t1 ≥ τ
(U)
θ ≥ τ

(U)
θ .

With the above results, we have∫ T

t0

αs
(
c(U)
s − c(C)

s

)
ds

≤ α

∫ T

t1

(
c(U)
s − c(C)

s

)
ds+ α

∫ t1

t0

(
c(U)
s − c(C)

s

)
ds

< α

∫ T

t1

(
c

(U)
T − 1

)
ds+ α

∫ τ∗

t0

αs
σ2
s

d(U)
s ds

< α
(
c

(U)
T − 1

)
(T − τ (U)

θ )− α2

σ2L
∗ (τ ∗ − t0) = 0, (4.3.25)

where the second inequality follows from c
(C)
t = 1 for all t ∈ (t1, T ) and c

(U)
t < c

(C)
t

for all t ∈ (τ ∗, t1); the third inequality follows from t1 ≥ τ
(U)
θ and Lemmas 4.3.3

and 4.3.4; and the last equality follows from the definition of t0. Note that (4.3.25)

contradicts to the assumption that t0 < t0.

Since the finiteness of t0, defined in (4.3.21), is warranted by Proposition 4.3.10,

Theorem 4.2.4 follows from Proposition 4.3.8.
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4.3. Proof of Main Results

Figure 4.4: The graphical illustration to showing how equilibrium strategy changes

with commencement time. The solid line and the dashed line represent the equi-

librium investment to the wealth ratio of unconstrained and constrained investor

respectively. L∗, τ ∗ and τ † are defined in Lemmas 4.3.4 and 4.3.7. t1 is defined in

Lemma 4.3.9.
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Remark 4.3.11. The idea of the proof of Theorem 4.2.4 is to seek for a t0 such

that
∫ T
t0
αs

(
c

(U)
s − c(C)

s

)
ds = 0 subject to the sufficient condition assumed in

Proposition 4.3.8. Assume that the market parameters r, α and σ are constant.

In Figure 4.4,
∫ T
t

(
c

(U)
s − c(C)

s

)
ds represents the difference of the area of the yellow

region from the area of the orange one between t and T , so t0 will be taken to

be the first t < T such that this difference vanishes. To obtain such t0, we

can argue as follows. By Lemma 4.3.9, we know that there is exactly one finite

time t1 such that c(U) and c(C) intercept with each other after t0. Hence, as

c(U) is bounded from above, there exists a M > 0 so that, for any t ∈ (t0, t1),∫ T
t

max
{
c

(U)
s − c(C)

s , 0
}
ds =

∫ T
t1

(
c

(U)
s − c(C)

s

)
ds ≤M , i.e. the area of the orange

region in Figure 4.4 is bounded. By Lemma 4.3.4, we know that before τ ∗, c(U) <

− α
σ2L∗, thus c(U) − c(C) < − α

σ2L∗, so we can find a large enough T − t such that∫ T
t

max
{
−
(
c

(U)
s − c(C)

s

)
, 0
}
ds > M (In Figure 4.4, when t < τ ∗ moves to the

left, the area of the yellow region increases at a rate = |c(U) − c(C)| > α
σ2L∗, so we

can choose an earlier enough t such that the area of the yellow region from t to T

is greater than M), hence t0 can be identified.

4.3.3 Proof of Theorem 4.2.5

By Lemmas 4.3.3 and 4.3.4, for t < τ ∗ ≤ τ ∗, c
(U)
t ≤ − α

σ2L∗, where L∗ is given in

(4.3.18). Define t∗ := τ ∗ − ασ2c(U)(T−τ∗)
α2L∗

, where c(U) and τ ∗ are defined in (4.3.13)

and Lemma 4.3.3 respectively. For all t < t∗, we have∫ T

t

αsc
(U)
s ds =

∫ T

τ∗
αsc

(U)
s ds+

∫ τ∗

t

αsc
(U)
s ds

≤ αc(U)(T − τ ∗)− α2

σ2L
∗(τ ∗ − t) < 0.
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4.3. Proof of Main Results

Recall the expression of V (U) in (4.1.9), for any t < t∗,

V (U)(t, x)

= e
∫ T
t (rs+αsc

(U)
s )dsx− γt

(
e
∫ T
t 2(rs+αsc

(U)
s )+σ2

s

(
c
(U)
s

)2
ds − e

∫ T
t 2(rs+αsc

(U)
s )ds

)
x

< e
∫ T
t (rs+αsc

(U)
s )dsx < e

∫ T
t rsdsx = V (Rf)(t, x).

Remark 4.3.12. By Theorem 4.2.5, the value function of riskless strategy is

greater than that of unconstrained strategy whenever the commencing time t < t∗.

Considering the expected terminal wealth with the ratio c of investment to wealth,

i.e. Et,x[XT ] = e
∫ T
t (rs+αscs)dsx, any holding of stock in an amount of c > 0 can

boost up this expectation through a factor of e
∫ T
t αscsds. By Lemma 4.3.4, we

know that the unconstrained investor will shortsell stock to invest more in bond

for any time before τ ∗ with c less than a negative constant, so that
∫ T
t
αscsds

is increasing in t before τ ∗. Therefore, there exists a earlier enough t so that∫ T
t
αscsds < 0 making the factor e

∫ T
t αscsds < 1. As a result, the unconstrained

strategy at such commencement time t < t∗ will be beaten by the riskless strategy

of solely investing in bond.

4.3.4 Proof of Theorem 4.2.6

By Lemma 4.3.7, we know for t < τ †, c
(C)
t = 0. Define t† such that

T − t† := max

 1

δ1

ln

2
(

1− e−α(T−τ†)
)

γT qk†

 , T − τ †
 ,

where τ † is defined in Lemma 4.3.7.

For any t < t†, we have t < t† ≤ τ † ≤ τ
(C)

k†
, so

1− γt
2
e
∫ T
t

(
rs+αsc

(C)
s

)
ds

(
e
∫ T
t σ2

s

(
c
(C)
s

)2
ds − 1

)
< 1− γT qk†

2
eδ1(T−t) < e−α(T−τ

†)

≤ e−
∫ T
t αsc

(C)
s ds,
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4.4. Numerical Illustration

where the first inequality follows from (4.3.20), the second inequality follows from

the definition of t†, and the last inequality is a consequence of the facts that

c
(C)
s ≤ 1 for all s and c

(C)
s = 0 for s < τ †.

Recall the expression of V (C) in (4.1.11), for any t < t†,

V (C)(t, x)

= e
∫ T
t (rs+αsc

(C)
s )dsx− γt

2

(
e
∫ T
t 2(rs+αsc

(C)
s )+σ2

s

(
c
(C)
s

)2
ds − e

∫ T
t 2(rs+αsc

(C)
s )ds

)
x

= e
∫ T
t (rs+αsc

(C)
s )dsx

(
1− γt

2
e
∫ T
t

(
rs+αsc

(C)
s

)
ds

(
e
∫ T
t σ2

s

(
c
(C)
s

)2
ds − 1

))
< e

∫ T
t rsdsx = V (Rf)(t, x).

Remark 4.3.13. Similar to Remark 4.3.12, by Lemma 4.3.7, we know that the

constrained investor will adopt riskfree strategy for any time before τ †, thus by

(4.1.11), whenever t < τ †,

∂

∂t

(
V (C)(t, x)

e
∫ T
t rsdsx

)
=

γt
2
rt

(
e
∫ T
t (rs+2αsc

(C)
s )+2σ2

s

(
c
(C)
s

)2
ds − e

∫ T
t (rs+2αsc

(C)
s )ds

)
≥ r

γT
2

(
e
∫ T
τ† 2σ2

s

(
c
(C)
s

)2
ds − 1

)
> 0

Therefore, there exists a small enough t such that V (C)(t,x)

e
∫T
t rsdsx

< 1. Again, the

constrained strategy at such commencement time t < τ † will be beaten by the

riskless strategy, as claimed in Theorem 4.2.6.

4.4 Numerical Illustration

In this section, for different value of risk aversion γt, we provide a graphical illus-

tration between the ratios of equilibrium investment to wealth, c
(U)
t and c

(C)
t , and

the equilibrium value functions, V (U)(t, x) and V (C)(t, x), for unconstrained and

constrained investors. Their expressions are shown in Theorems 4.1.8 and 4.1.11.

In each plot, the respective ratios and the value functions of both unconstrained
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4.4. Numerical Illustration

Table 4.3: The Parameters Used in γt for Figures

γT = 0.2 γT = 1 γT = 3

k=0.025 Figure 4.5 Figure 4.7 Figure 4.9

k=0 Figure 4.6 Figure 4.8 Figure 4.10

and constrained investor against the commencement time are shown. The perfor-

mance of the investor who takes the pure strategy by simply putting all his wealth

in bank is considered and compared with that of unconstrained and constrained

investors, for illustrating the implication of Theorems 4.2.5 and 4.2.6.

We set risk aversion γt to be time-varying such that an investor behaves more

risk averse over time. For illustration, we propose to model γt by the following

logistic function with some known parameters γT and k:

γt :=
2γT

1 + e−k(t−T )
.

Larger value of k will result more considerable increase in risk aversion as time

goes on; so the risk aversion of an investor with long time to the expiry will

be smaller for larger value of k. We consider 6 different functions of γ(t) with

γT ∈ {0.2, 1, 3} and k ∈ {0.025, 0} (see Table 4.3). Note that the risk aversion

coefficient keeps constant if k = 0. For γT = 0.2, 1, Condition 4.2.1 is clearly

satisfied; while for γT = 3, Condition 4.2.1 is not satisfied, through the example,

we show that the claim in Theorem 4.2.4 also very likely fails to hold, while suggest

that our proposed Condition 4.2.1 could be “optimal” in form. Besides, we fix

r = 0.03, µ = 0.1, σ = 0.2, and T = 40.

Furthermore, we illustrate Theorems 4.2.4, 4.2.5 and 4.2.6 by computing the

following constants:

• t∗ := sup
{
t < T |V (U)(t, x) ≤ V (Rf)(t, x)

}
;

• t† := sup
{
t < T |V (C)(t, x) ≤ V (Rf)(t, x)

}
;
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• t0 := sup
{
t < T |V (U)(t, x) ≤ V (C)(t, x)

}
;

• t0 := sup
{
t < T

∣∣ ∫ T
t
αs

(
c

(U)
s − c(C)

s

)
ds = 0

}
as defined in (4.3.21);

• ∆V (t0, 1) := V (U)(t, 1)− V (C)(t, 1);

where V (Rf) is given in (4.2.12).

All 6 figures show that the ratios of investment to wealth of both unconstrained

and constrained investors increase in commencement time as in Lemma 4.3.1 (i).

Furthermore, c
(U)
t becomes negative and c

(C)
t stays at zero for all earlier enough t,

which is consistent with Lemmas 4.3.4 and 4.3.7.

Theorem 4.2.4 says that there exists some commencement time such that from

that time on, the constrained equilibrium strategy performs better than the un-

constrained one. In Table 4.4, the feasible set of such commencement times occupy

more than 90% of the whole time horizon. This means that there is more than

90% of the time that the constrained equilibrium strategy performs better than

the unconstrained one. Furthermore, we have shown that the outperformance of

the constrained strategy against the unconstrained one if both commence at t0 as

defined in (4.3.21) in Proposition 4.3.8, this explains that ∆V (t0, 1) is negative in

Table 4.4.

t∗ and t† in Table 4.5 indicate the respective time points where the riskfree in-

vestor performs better than unconstrained and constrained investors before which,

as established in Theorems 4.2.5 and 4.2.6 respectively. It is reasonable to describe

a strategy, which underperforms than the riskless one, to be inferior, and so the

unconstrained equilibrium strategy and constrained equilibrium strategy are both

less favorable if one starts to invest before t∗ and t† respectively. Note that when

the terminal risk aversion coefficient γT decreases, t∗ would get closer to the expiry.

Hence, the time portion over which the unconstrained strategy remains more fa-

vorable than the riskless one reduces, as γT decreases. In contrast, as γT decreases,

t† gets departed from t∗. The shortselling constraints enlarges the time portion
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Table 4.4: When the Constrained Investor Dominates the Unconstrained Investor

for Different γt

γT k t0 % of t which V (C) > V (U) t0 ∆V (t0, 1)

0.2 0.025 36.9271 92.32% 29.3924 -0.8408

0.2 0 37.1294 92.82% 30.0075 -0.8328

1 0.025 38.5363 96.34% 31.7436 -0.0580

1 0 38.6208 96.55% 31.8949 -0.0605

Table 4.5: When the Riskless Strategy Dominate the Equilibrium Strategies for

Different γt

γT k t∗ t† k t∗ t†

0.2 0.025 15.6295 -26.9883 0 25.6088 4.3168

0.5 0.025 12.3127 -9.2159 0 23.5456 12.6319

1 0.025 7.6871 1.7609 0 21.0064 17.7313

1.75 0.025 2.1902 2.1902 0 18.3645 18.3645

3 0.025 -4.7595 -4.7595 0 15.5073 15.5073

of the equilibrium strategy being more favorable than the riskless one. So one

can interpret that the shortselling constraints are more useful for time-consistent

investor when he becomes less risk averse. This observation can be interpreted as

the less risk averse attitude misleading to make over-investment, while shortselling

constraints can save the investor from running into dangerous investment which

may actually be unfavorable in term of the other objective functions.
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4.5. Discussion

4.5 Discussion

Our result suggests some reasonable economic conditions, that could often happen

in the reality, under which, the constrained equilibrium strategy can dominate the

unconstrained one at a certain commencement time (Theorem 4.2.4); furthermore

both of these strategies can be beaten by the pure one of solely investing in bond

for early enough commencement time (Theorems 4.2.5 and 4.2.6). The numerical

study also illustrate that the unconstrained strategy is dominated by another

time-consistent one in the most of the time over the time horizon.

Theorem 4.2.4 shows that the equilibrium solution for the unconstrained in-

vestor is not a maximizer because it cannot beat that of the constrained coun-

terpart which is still time-consistent, and commonly accessible and admissible to

the unconstrained investor. Even worse, both the unconstrained and constrained

equilibrium strategies are beaten by the riskless strategy in Theorems 4.2.5 and

4.2.6. Hence, game theoretic approach may not provide an alternative maximizer

even among all time-consistent strategies, even though our objective is apparent

to looking for a “maximizer” (actually just an equilibrium solution).

There is no mathematical paradox for the present time-consistent solution.

The equilibrium strategies of both unconstrained and constrained investors do

satisfy the Nash equilibrium nature under game theoretic approach. From this

idea of game theoretic approach, any such equilibrium strategy is a time-consistent

strategy which has a portion being optimal at the commencement time close to

the expiry time T ; this also explains why we observe that the unconstrained

strategy has the best possible performance against that of the constrained and

riskless strategies in Figures 4.5-4.10 when t close to T . In the meanwhile, the

later time players set a routine to which the optimal control of the earlier time

players refers, so the preference of the earlier time players will be overlooked. On

the one hand, the appearance of the paradox suggests that the strategy of the

later time players in the unconstrained optimization can be more unfavorable for
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the earlier time players than those in the constrained case. While on the other

hand, the game theoretic approach assigns a “precommitment” strategy to the

later time players. In principle, if this time-consistent approach is appropriate,

a sophisticated investor should not care that his unconstrained strategy being

beaten by another (constrained) time-consistent strategy, and even by a riskless

strategy, at the earlier time point. However, based on our results obtained, it is

too tempting to make a change, isn’t it?

The rationale behind the present acclaimed paradox should be rooted in the

economic interpretation of game theoretic approach. Strotz (1955) first suggested

to use game theoretic approach as a “time-consistent plan”, and said that it should

be “the best plan among those that he (would) actually follow”. However, we have

established that the equilibrium strategy of unconstrained investor obtained by

game theoretic approach, which is described as the “best time-consistent strat-

egy” in Strotz (1955), is essentially beaten by another admissible time-consistent

strategy (the strategy adopted by constrained investor). Even worse, in the nu-

merical examples in Table 4.4, the constrained strategy outperforms against the

unconstrained one for more than 90% of the whole time horizon, which is just like

an unconstrained equilibrium investor giving up the victory over his constrained

counterpart for more than 18 years in order to attain a triumph only at the final

year. Of course, there is no correct answer whether it is worthwhile to achieve

a perfect ending. Nevertheless, before becoming the premier, the unconstrained

investor needs to bear the stress from the inferior performance of unconstrained

equilibrium strategy, especially even an investor who puts all his wealth into the

bank account can gain more satisfaction than adopting the unconstrained strategy

by Table 4.5 and Theorem 4.2.5. Actually, sometimes the unconstrained investor

can also acquire the performance under the constrained strategy by confining his

admissible set, it seems too tempting for him to give up the unconstrained strategy

and pursue his “best plan among consistent plans”.
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On the other hand, for open-loop controls in light of the definition of equilib-

rium control in Hu et al. (2012), whether the equilibrium control over a smaller

admissible set can out-perform the one over a larger set is an open problem. Also,

it is an interesting study to compare the performance of the respective equilibrium

control among the class of open-loop ones and the class of Markovian ones.

Game theoretic approach can help us to find a time-consistent solution, but

whether it is a good solution for an investor is a question that we have to think

about carefully. The inconsistency and paradox raised in this Chapter show that

the solution concept of equilibrium control is subtle, so an intensive study on

underlying economic interpretation behind the time-consistent solution should be

encouraged. It is interesting to have a more comprehensive empirical study on the

connection between the mathematical solution and investors’ behavior for equi-

librium strategy, and we should reconsider carefully whether the solution via the

simple non-cooperative game theoretic approach is justifiable as an ideal strategy

used by a time-consistent investor. As pointed out by Schweizer (2010), to find

a time-consistent formulation in general is an open problem, which means that

there could be other ideal formats of time-consistent strategy. Since time incon-

sistent problems can be intricate, different problems should be tackled by their

own tailor-made “time consistent” approach in accordance with their respective

economic considerations. We hope that our present work can motivate more sub-

stantial research on time consistency that can cunningly link mathematics and

economics in a proper manner.

157



4.5. Discussion

(a)

(b)

Figure 4.5: Fix γT = 0.2, k = 0.025: (a) The ratio of investment to wealth, ct,

and (b) the equilibrium value function, V (t, 1), against the commencement time

t, for unconstrained (solid line), constrained (dashed line) and riskless investors

(dotted line).
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(a)

(b)

Figure 4.6: Fix γT = 0.2, k = 0: (a) The ratio of investment to wealth, ct, and

(b) the equilibrium value function, V (t, 1), against the commencement time t, for

unconstrained (solid line), constrained (dashed line) and riskless investors (dotted

line).
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(a)

(b)

Figure 4.7: Fix γT = 1, k = 0.025: (a) The ratio of investment to wealth, ct, and

(b) the equilibrium value function, V (t, 1), against the commencement time t, for

unconstrained (solid line), constrained (dashed line) and riskless investors (dotted

line).
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(a)

(b)

Figure 4.8: Fix γT = 1, k = 0: (a) The ratio of investment to wealth, ct, and

(b) the equilibrium value function, V (t, 1), against the commencement time t, for

unconstrained (solid line), constrained (dashed line) and riskless investors (dotted

line).
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(a)

(b)

Figure 4.9: Fix γT = 3, k = 0.025: (a) The ratio of investment to wealth, ct, and

(b) the equilibrium value function, V (t, 1), against the commencement time t, for

unconstrained (solid line), constrained (dashed line) and riskless investors (dotted

line).
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(a)

(b)

Figure 4.10: Fix γT = 3, k = 0: (a) The ratio of investment to wealth, ct, and

(b) the equilibrium value function, V (t, 1), against the commencement time t, for

unconstrained (solid line), constrained (dashed line) and riskless investors (dotted

line).
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