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Abstract 
 

Glycobiology is the comprehensive study of the structure, biosynthesis, function and 

evolution of saccharides which are also named sugars or glycans. Glycosylation is a type of 

modification in which sugars are added to another molecule, such as a protein molecule or a 

ceramide. Abnormal glycosylation is frequently associated with diseases such as cancer and 

immune responses. Defining glycan structures is therefore important for understanding 

glycan function in health and disease. In addition, identification of glycan populations can 

provide essential information for further research on glycoproteins and glycolipids. In this 

thesis, glycomic experimental approaches were employed to characterize the structures and 

populations of glycans of glycoconjugates from HeLa cells, normal human dermal fibroblast 

(NHDF) cells, myoblasts, myotubes and trophoblasts. These approaches include sample 

preparation methodologies which were followed by the application of highly sensitive mass 

spectrometry, particularly MALDI-TOF MS, MALDI-TOF/TOF MS/MS and GC-MS. 

Ribosome inactivating proteins (RIPs) and lectins from elderberry are more toxic to HeLa 

cells than to NHDF cells. The difference in the cytotoxicity was hypothesized to be caused by 

the difference in the glycome patterns of HeLa and NHDF cells. To test the hypothesis, 

glycome patterns on both glycoproteins and glycolipids of HeLa and NHDF cells were 

investigated. Glycomic results have revealed that glycome patterns in HeLa cells and NHDF 

are different, and this gives a possible explanation for the difference observed in the 

cytotoxicity assay. 

Glutamine-fructose-6-phosphate transaminase 1 (GFPT1) is the first enzyme of the 

hexosamine biosynthetic pathway which yields uridine diphosphate N-acetylglucosamine 

(UDP-GlcNAc), an essential substrate for protein glycosylation. N-glycan branching is 

especially sensitive to alterations in the concentration of this sugar nucleotide. Mutations in 

the gene GFPT1 can result in “limb-girdle CMS with tubular aggregates” which is a subtype 

of congenital myasthenic syndromes (CMS). To investigate whether protein glycosylation at 

the neuromuscular junction might be involved in this impairment, the N-glycomes of 

myoblasts and myotubes derived from healthy controls and patients were investigated. My 

result showed that global glycosylation is not significantly impaired in the muscle cells from 

the CMS patients caused by GFPT1 mutations.  
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The human fetoembryonic defense system hypothesis (hu-FEDS) is a hypothetical model 

depicting a way via which the human immune system is able to recognize foreign substances 

as "own species" as has been observed with maternal immune tolerance in pregnancy. The 

fundamental idea of this hypothesis is that glycoproteins existing in the reproductive system 

and exposed on gametes can either inhibit immune responses or prevent rejection of the 

foetus. This model has not been tested in human trophoblasts. My glycomic analyses of three 

trophoblast populations (CTB, STB and evCTB) revealed that functional glycan structures 

that are present on human gametes are also expressed on trophoblasts, and this provides 

further evidence for the hu-FEDS hypothesis. 
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1. Introduction 
 

1.1. Glycobiology 
 

Glycobiology is the comprehensive study of the structure, biosynthesis, function and 

evolution of saccharides in biological systems (Kiessling and Splain, 2010; Cummings and 

Pierce, 2014). It has only recently become a branch of molecular and cellular biology. The 

term glycobiology, formally coined in August 1988, is used to recognize the coming together 

of the traditional disciplines of carbohydrate chemistry and biochemistry (Blow, 2009). This 

union is a consequence of the dramatically increased understanding of glycans in molecular 

and cellular biology in the last 30 years. 

Glycans are compounds consisting of a series of glycosidically linked monosaccharides. Like 

amino acids and nucleic acids, glycans are also widely distributed in nature (Hart, 2013). All 

cells in nature are covered with a complex array of sugar chains, termed the glycocalyx 

(Varki, 2007). As an example, an erythrocyte surface glycocalyx in cross-section is shown in 

Figure 1.1. Consistent with the high glycan abundance on cells, genomic sequencing studies 

from eubacteria to eukaryotes show that approximately 1% of the genome contributes to 

sugar processing enzymes. Moreover, these glycan related genes are highly conserved 

(Coutinho et al., 2003; Kiessling and Splain, 2010).  

 

Figure 1.1 Electron microscopy: an erythrocyte surface glycocalyx 

The cell has been stained using special staining techniques. It is up to 1400 Å thick, and the 
oligosaccharide filaments are 12–25 Å in diameter. The glycocalyx is comprised of abundant 
carbohydrate-rich molecules, polysaccharides, proteoglycans, glycoproteins and glycolipids 
(Roseman, 2001; Voet and Voet, 2004). 
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It has long been known that carbohydrates serve as an energy source. However, a re-

evaluation of the biological role of glycans is required (Rademacher et al., 1988) because 

glycans have many other functions. For example, they were found to be the essence of 

antigenic determinants in the ABO blood group system (Cohen et al., 2009). In addition, 

glycans play a pivotal role in the attachment of the influenza virus to the host cells (Chu and 

Whittaker, 2004; Varki, 2007). Indeed glycans are involved in the recognition of host cells by 

most pathogens. Over the last 30 years a large amount of data has been assembled 

demonstrating the importance of glycans. In point of fact, for the most part, carbohydrates do 

not exist and function as simple sugars but as complex molecular conjugates. Thus glycans 

are usually found in covalent association with proteins and lipids via glycosylation 

(Rademacher et al., 1988). 

 

1.2. Glycosylation 
 

In biology, glycosylation is an enzymatic reaction that attaches glycans to proteins, lipids, or 

other organic molecules (Taylor and Drickamer, 2011; Freeze, 2006). In this thesis, the main 

focus is protein N- and O-glycosylation and glycosphingolipid glycosylation. 

 

1.2.1. Monosaccharides 

 

Monosaccharides are the basic constituents of glycans. Hexoses are monosaccharides which 

possess six carbons  designated carbon 1 (C1) to carbon 6 (C6) from the top which is an 

aldehyde group to the bottom which is a hydroxymethyl group (Figure 1.2). Four of these six 

carbons (C2, C3, C4 and C5) are chiral, which means each one has two configurations, so 

theoretically there are sixteen (24) potential structures, half of which are defined as L-hexoses 

and the remaining are termed D-hexoses. The difference between the D- and L- structure is 

determined by the configuration of C5. The structure of a D-monosaccharide is the mirror 

image of the structure of its corresponding L-form. Two stereoisomers (not identical) that are 

mirror images of each other are termed enantiomers. For instance, D-Glucose and L-Glucose 

are enantiomers. An alteration of configuration at each chiral carbon is called epimerization, 
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which will yield a new monosaccharide. For instance, epimerization at C4 of D-Glucose 

produces D-Galactose (Figure 1.2), and thus these two monosaccharides are termed epimers. 

 

Figure 1.2 Fischer projection of D-Glucose and D-Galactose, chair conformations of D-Glucose 
and Haworth representations of D-Glucose 

The D-Glucose linear structure is shown in the form of Fischer projection. It converted into D-
Galactose after the epimerization occurred at C4 (red frame) of the Glu. The ring structure of D-
Glucose is formed via the reaction of the hydroxyl group at C5 and the aldehyde group at C1 which 
are labelled using purple frames. C1 in α and β anomers of D-Glucose are emphasized in light blue 
frames.     

 

The hexose linear structure is transformed into the ring structure via reaction of the hydroxyl 

group at C5 with aldehyde group at C1 (Figure 1.2). In the ring structure, C1 becomes a 

chiral or “anomeric” carbon, and the different configurations of this carbon are known as α 

and β anomers. It is easy to distinguish these two anomers: in the Haworth representation of a 
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D-monosaccharide if the anomeric hydroxyl group is below the ring plane the 

monosaccharide is the α anomer; if the hydroxyl group is above the plane the 

monosaccharide is the β anomer.  

Other monosaccharides can be obtained from hexoses via some modifications. For instance, a 

deoxyhexose can be acquired via the removal of an oxygen from a hexose, and an N-

acetylhexosamine (HexNAc) can be produced by replacing a hydroxyl group with an 

acetylated amino group. In addition, HexNAcs can be further modified to yield acidic sugars.      

Monosaccharides are connected via glycosidic bonds to form oligo- and polysaccharides. 

Figure 1.3 displays a linkage between a glucose (Glc) and a galactose (Gal), which is formed 

via the reaction of the anomeric carbon C1 of the Gal and the hydroxyl group at C4 of the Glc. 

This disaccharide is called lactose. Because the oxygen in the hydroxyl group at the C1 

position of Gal is in the β configuration and this oxygen is linked to the C4 of Glc, the 

glycosidic bond is called a β1,4 linkage. In this newly formed disaccharide, there is a 

reducing end and a non-reducing end. The reducing end is actually a hemiacetal group, which 

can reduce inorganic ions like Cu2+ while the non-reducing end does not have this activity. It 

is conventional that the non-reducing end and the reducing end are drawn on the left hand 

side and right hand side, respectively. 
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Figure 1.3 The β1,4 linkage between a Gal and a Glc 

A β1,4 linkage is formed between a Gal and a Glc via the reaction of the anomeric carbon C1 of Gal 
and the hydroxyl group on the C4 of Glc. The product is lactose. The reducing end and the non-
reducing end of the project are labelled. Cartoon symbols for Gal and Glc are also shown. 

 

In addition, it is convenient to show a glycan, such as lactose, via symbolic representation; 

symbols such as these are used to represent the sequences of glycans in this thesis and are 

discussed in detail below. 

 

 

 

 

 



29 
 

Table 1.1 Seven common monosaccharides in humans 

The classification, name, abbreviation and structure of each monosaccharide are listed. 

 

 

In human glycoproteins and glycolipids there are 7 common monosaccharides (Table 1.1): 4 

neutral monosaccharides, 2 amino monosaccharides and 1 acidic monosaccharide (Goldberg 

et al., 2009). As shown in the table, Man and Gal are different from Glc at C2 and C4 

respectively. Fucose (Fuc) is different from other monosaccharides as its natural 

configuration is the L-stereoisomer while others are D-form. The difference between D-Gal 

and D-Fuc is that at C6 position there is a hydroxyl group in the former while in the latter the 

hydroxyl group is replaced by a hydrogen atom, and thus the Fuc can also be called 6-deoxy-

Gal. Replacing the hydroxyl group with an acetylated amino group at C2 in Glc and Gal 

forms N-acetylglucosamine (GlcNAc) and N-acetylgalactosamine (GalNAc) respectively; 

both of which are amino monosaccharides. The acidic sugar (sialic acid) is more complicated: 

1. it possesses 11 carbon atoms, 2. it still forms a ring structure, but unlike previously 

mentioned monosaccharides, the ring structure is formed via the reaction of the carbonyl 
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group at C2 and hydroxyl group at C6, 3. it carries a carboxyl group at C1, an acetylamino 

group at C5 and a glycerol group at C6.   

Human glycoproteins have a limited repertoire of sugars; useful parameters of these glycans 

have been summarized in Table 1.2, which can be used as a reference for the glycomic data 

analysis.  

Table 1.2 Parameters of the seven common monosaccharides in humans 

The classification, abbreviation, symbol, mass, residue mass and permethylated residue mass of each 
monosaccharide are listed. The symbol is assigned to each monosaccharide according to the rules 
adopted by the Consortium for Functional Glycomics (CFG) (http://www.functionalglycomics.org/) 
and the Essentials of Glycobiology (http://www.ncbi.nlm.nih.gov/books/NBK1931/figure/ch1.f5/?r 
eport=objectonl) online textbook.     

Monosaccharide Symbol Mass Residue mass Permethylated residue mass 

Deoxyhexose Fuc   164 146 174 

Hexose Glc  

Gal  

Man  

 

180 

 

162 

 

204 

HexNAc GalNAc  

GlcNAc  

 

221 

 

203 

 

245 

Sialic acid NeuAc  309 291 361 

 

1.2.2. Protein glycosylation 

 

Protein glycosylation is ubiquitous in eukaryotes especially in extracellular matrices and 

cellular surfaces (Weerapana and Imperiali, 2006). It has been estimated that more than 50% 

of all proteins in nature are glycosylated (Apweiler et al., 1999). Glycosylation usually 

contributes to the maintenance of a protein structure; and therefore has an influence on the 

glycoprotein function. For instance, glycans contribute to the structure and stability of 

immunoglobulins, which is essential for their binding to receptors (Arnold et al., 2007; 

Schroeder and Cavacini, 2010). Sometimes, glycosylation-associated function is more 

dependent on the presence of the carbohydrates, rather than on the protein structure (Kent, 
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2004). For instance, the binding of human sperm to an ovum is regulated by a tetrasaccharide 

sialyl-Lewis X [NeuAcα2,3Galβ1,4(Fucα1,3) GlcNAc] on the zona pellucida (Pang et al., 

2011).  

As previously mentioned, glycans are attached to proteins by covalent bonds via 

glycosylation. There are two common glycosylation types: ‘N-linked’ to asparagine (Asn) 

residues and ‘O-linked’ to serine (Ser) or threonine (Thr) residues (Tissot et al., 2009; Taylor 

and Drickamer, 2011). 

 

1.2.2.1. N-glycosylation 

 

Most N-glycosylation occurs co-translationally, which means the glycosylation occurs before 

the protein is folded (Culyba, 2012). Intriguingly, unlike proteins which use DNA as template, 

no template is involved for the biosynthesis of N-glycans (Kiessling and Splain, 2010). 

 

Figure 1.4 Biosynthesis of the lipid-linked N-glycan precursor 

L, dolichol; PP, a pyrophosphate;  GlcNAc,  Man,  Glc. 
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The biosynthesis pathway of N-glycans can be divided into 3 steps:  

1. A lipid-linked 14-sugar (2 GlcNAc, 9 Man and 3 Glc) precursor is produced by a series of 

glycosyltransferases (Kornfeld and Kornfeld, 1985; Freeze, 2006). The lipid and the 

oligosaccharide are connected via a pyrophosphate linkage. The synthesis of the precursor 

occurs in two cellular locations (Figure 1.4): firstly on the cytoplasmic side of the 

endoplasmic reticulum (ER) membrane, the first GlcNAc from a uridine diphosphate (UDP)–

GlcNAc is attached to a dolichol via an enzyme, dolichyl-phosphate (UDP-N-

acetylglucosamine) N-acetylglucosaminephosphotransferase 1 (DPAGT1), then the 

remaining 6 monosaccharides (1 GlcNAc and 5 Man) are synthesized using UDP–GlcNAc 

and guanosine diphosphate (GDP)–Man, after that this structure is translocated into the ER 

lumen via a flippase; secondly in the ER lumen another 7 monosaccharides (4 Man and 3 Glc) 

from dolichol phosphate Man and dolichol phosphate Glc are sequentially added to complete 

the synthesis of the precursor (Freeze et al., 2014). Defects in enzymes which are responsible 

for the biosynthesis of the 14-sugar (2 GlcNAc, 9 Man and 3 Glc) lipid-linked precursor 

oligosaccharide typically result in type 1 congenital disorders of glycosylation (CDG-1) 

(Freeze and Aebi, 2005; Freeze, 2006; Freeze et al., 2014).  

2. The oligosaccharide is entirely transferred to an N-glycosylation site of a polypeptide by 

the oligosaccharyltransferase (OST) in the ER (Figure 1.5A). In mammalian cells, it starts 

with the formation of a β-linkage between the oligosaccharide reducing terminal N-

acetylglucosamine (GlcNAc) and the amide nitrogen of asparagine (Asn) on a target 

polypeptide (Figure 1.5B) (Freeze, 2006; Lowe and Marth, 2003). The Asn is usually found 

in a conserved sequence Asn-B-Thr or Asn-B-Ser, in which B can be any amino acid except 

Proline (Pro), although Asn in other sequences, such as Asn-B-Cys (cysteine), can be 

glycosylated as well (Matsui et al., 2011). Pro cannot be the middle residue because it will 

prevent the formation of a loop which is essential for the glycan transfer.  

3. Following the transfer of the precursor to the target polypeptide, oligosaccharide 

processing is carried out initially in the ER and then in the Golgi apparatus (Aebi et al., 2010). 

The three Glc residues are firstly removed; the outer one is cleaved by ER glucosidase І and 

the inner two are removed by ER glucosidase ІІ. The remaining oligosaccharide is then 

processed by a series of mannosidases (ER mannosidase, Golgi mannosidases 1A, 1B and 1C) 

yielding a high mannose oligosaccharide (usually possessing 9 to 5 Man residues). The 

initiation of a hybrid or complex N-glycan begins with the action of GlcNAc transferase I 
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(GlcNAc-T I) on a heptasaccharide in the Golgi apparatus, the structure of which is 

Manα1,3(Manα1,3(Manα1,6Manα1,6))Manβ1,4GlcNAcβ1,4GlcNAc. After this, an 

octasaccharide is yielded. Hybrid glycans will be formed when mannosidases do not act on 

this octasaccharide. The two outer mannose residues in the octasaccharide are removed by α-

Mannosidase II generating a substrate for GlcNAc-T II (Figure 1.5A). A Fuc can be 

transferred from GDP-Fuc to the proximal GlcNAc via the action of fucosyltransferase VIII. 

The resulting N-glycan is extended by the addition of Gal to generate a complex N-glycan 

(Freeze et al., 2014; Schwarz and Aebi, 2011; Freeze, 2006; Takahashi et al., 2009).  
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Figure 1.5 A simplified biosynthesis pathway of N-glycans and the structure of a GlcNAc 
residue on an Asn 

A. The linkage in the precursor is labelled. The heptasaccharide (5 Man and 2 GlcNAc) is the core 
structure of both hybrid and complex N-glycans. In addition to these processes, others can also occur 
including biosynthesis of polylactosamine antenna, addition of Fuc, and other modifications; L, 
dolichol; PP, a pyrophosphate; the process highlighted in pink shadow is carried out in the ER and the 
process highlighted in green shadow is performed in the Golgi apparatus;  GlcNAc,  Man,  Glc,

 Gal,  Fuc,  NeuAc, OST, oligosaccharyltransferase. B. The structure of a GlcNAc (black) 
attached to an Asn (red) residue. The linkage between the GlcNAc and the Asn is β-form. 
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A GlcNAc attached to the 4-position of the β-linked core Man by GlcNAc-T III is considered 

as a bisecting structure which is not considered as an antenna (Figure 1.6). Addition of this 

GlcNAc requires the prior action of GlcNAc-T I. Bisecting GlcNAc cannot be further 

extended. In vitro, the presence of this structure prevents the actions of GlcNAc-T II, IV and 

V, α-mannosidase II and core α 1,6-Fuc-T (Schachter, 1991; Takahashi et al., 2009). 

However, in vivo GlcNAc T-III can act after core fucosylation and antennae initiation, so 

bisected structures can be core fucosylated as well as multiantennary (Hashii et al., 2009; 

Klisch et al., 2008). 

 
Figure 1.6 Branching of complex N-glycan 

The first antenna is initiated by GlcNAc-T I, GlcNAc-T II yields a biantennary glycan, GlcNAc-T III 
creates a bisecting glycan. More branched complex N-glycans can be produced via the action of 
GlcNAc-T IV, V and VI.  GlcNAc,  Man. 

 

Complex glycans can have more than four antennae in some vertebrates, but human N-

glycans usually possess four antennae at the most. These antennae can be modified with a 

variety of monosaccharides, such as Fuc and NeuAc. These modifications occur in the trans-

Golgi apparatus and lead to many terminal structures which can be functionally important. 

Figure 1.7 shows that an antenna in a biantennary glycan can be modified variously. In 

addition, the core of this biantennary glycan can also be modified with Fuc, which in 

mammals, is linked to the 6 position of the proximal GlcNAc. The order of monosaccharide 

addition and removal is not random but guided, and some enzymes are able to compete for 

the same substrate, which generates various N-glycans. Nearly all proteins that pass through 
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the ER–Golgi conduit are N-glycosylated, and a lack of this modification can be fatal in 

species ranging from yeast to mammals (Freeze, 2006).  

 

Figure 1.7 Common modifications of the antennae in N-glycans 

The antennae labelled in red frame are Lewis blood groups, their names are written in red under the 
structures. The antennae labelled in blue frame are ABO blood groups, their names are written in blue 
under the structures. S, sulphate group.  GlcNAc,  GalNAc,  Gal,  Man,  Fuc,   NeuAc.   
 

As previously mentioned, each antenna can be extended in the form of LacNAc (N-

acetyllactosamine), and then further decorated by Fuc, sialic acid and/or sulpho groups to 

yield many structures (see Figure 1.7) which could bear variable functional roles. For 

instance, with L-selectin, optimal recognition involves a sulphated type of sialyl Lewis X, in 

which the sulphate group is specifically at the 6 position of the GlcNAc residue (Varki, 2007). 

Since there are N-glycosylation consensus sites, a program named NetNGlyc 1.0 Server has 

been developed, which is widely used for looking for the consensus sequence and thus 

making a general N-glycosylation site prediction (Gupta and Brunak, 2002). 
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1.2.2.2. O-glycosylation 

 

Generally speaking, O-glycosylation is not as well understood as N-linked glycosylation. 

There are several types of O-glycans that are classified by the first carbohydrate residue 

which is added to the amino acid residue, such as O-fucosylation for fucose (Fuc), O-

glucosylation for glucose (Glc), O-mannosylation for mannose (Man) and O-GalNAcylation 

for N-acetylgalactosamine (GalNAc) (Wopereis et al., 2006; Martínez-Duncker et al., 2012; 

Gebauer et al., 2008). Some O-glycosylations can occur in conserved domains, for instance, 

in epidermal growth factor (EGF)-like domains O-fucosylation and O-glucosylation can 

occur in conserved sequences Cys-B-Ser-B-Pro-Cys and Cys-B-B-Gly-Gly-Thr/Ser-Cys 

respectively, in the conserved sequences B can be any amino acid (Harris and Spellman, 1993; 

Gebauer et al., 2008). However, some other O-glycosylation, such as the O-GalNAc 

glycosylation, does not occur in conserved sequences. This may be due to the fact that there 

are various transferases with overlapping but different substrate specificities.  

Unlike N-glycans, the biosynthesis of O-glycans is carried out after protein folding in the late 

ER or in one of the Golgi compartments (Wopereis et al., 2006; Spiro, 2002; Rapoport et al., 

1996). The biosynthesis of O-glycans does not start with the en-bloc transfer of a dolichol-

linked precursor, but with the attachment of a monosaccharide to the target peptide chain 

(Wopereis et al., 2006). 

 

1.2.2.2.1. O-GalNAc glycosylation 

 

GalNAc-linked O-glycans are often referred to as mucin type (Bergstrom and Xia, 2013). It 

has been considered as the most differentially and complex controlled type of protein 

glycosylation (Steentoft et al., 2013; Lira-Navarrete et al., 2015). 

O-GalNAc glycosylation is initiated in the Golgi apparatus by the addition of a GalNAc to 

the oxygen of the hydroxyl group of Ser or Thr forming an O-GalNAc linkage (Figure 1.8), 

and this reaction is catalysed by polypeptide N-acetylgalactosaminyltransferases (pp-

GalNAc-T) (Yoshimura et al., 2012; Ten Hagen et al., 2003). They feature two domains: a 

catalytic domain and a lectin domain (Lira-Navarrete et al., 2015). It is reported that in 

humans there are 20 pp-GalNAc-Ts (Bennett et al., 2012; Lira-Navarrete et al., 2015). These 
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enzymes can be classified into two categories, those that add a GalNAc to an unmodified 

peptide acceptor and those that favour acceptor peptides containing a GalNAc already (Ten 

Hagen et al., 2003; Lira-Navarrete et al., 2015). The underlying mechanism of how the 

GalNAc-T lectin domain contributes to glycopeptide specificity and catalysis is still not clear. 

Very recently, a group of scientists have presented the first crystal structures of GalNAc-T2 

in complex with defined GalNAc-glycopeptide substrates, and they also demonstrated a 

cooperative mechanism via which the GalNAc-T lectin domain enables unoccupied acceptor 

site binding of glycopeptides in the catalytic domain (Lira-Navarrete et al., 2015). 

 

Figure 1.8 The structure of a GalNAc attached to a Ser or a Thr 

The linkage between the GalNAc (black) and the Ser or Thr (red) is α-type. R=H in Ser, R = CH3 in 
Thr. 

 

O-GalNAc, the simplest mucin O-glycan, is also termed the Tn antigen (Gill et al., 2011). 

This antigen and its sialylated form (NeuAcα2,6GalNAc) are usually observed in mucins 

from tumours but not normal tissues or cells (Brockhausen et al., 1995; Julien et al., 2012). 

Further addition of one or two monosaccharides to the Tn antigen creates 8 core structures of 

O-glycans (Figure 1.9), 4 of which are most common: core 1 (T antigen), core 2, core 3 and 

core 4. The T antigen is derived from O-GalNAc by a core 1 β1,3-galactosyltransferase 

(β1,3Gal-T). In many glycoproteins, the antigen is usually sialylated at the C3 position of the 

Gal or GlcNAcylated at the C6 position of the GalNAc by a β1,6-N-

acetylglucosaminyltransferase creating the core 2 structure. In another pathway the core 3 

structure can be created by a core 3 β1,3-N-acetylglucosaminyltransferase. The core 4 

structure is yielded by adding a GlcNAc to the core 3 GlcNAc in a β1,6 linkage. The core 5 

to core 8 structures show restricted expression: core 5 has been found in human meconium 

and intestinal adenocarcinoma tissue, core 6 has been detected in human intestinal mucin and 
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ovarian cyst mucin, core 8 has been reported in human respiratory mucin, and core 7 has only 

been found in bovine submaxillary mucin (Brockhausen, 1999; Wopereis et al., 2006; Varki, 

2009; Chai et al., 1992). 

Antennae on O-glycans can be extended in a similar mode to that described in the N-glycan 

biosynthesis in section 1.2.2.1.  

 

Figure 1.9 Eight Core structures of mucin type O-glycans  

The enzymes involved in the synthesis of these core structures are labelled in blue. These structures 
may be further modified by other glycosyltransferases.  GlcNAc,  GalNAc,  Gal. 

 

Although there is no O-GalNAcylation (mucin type) consensus sequence, statistical studies 

have shown several general rules for the mucin type glycans, such as O-GalNAcylation 
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preferring sequences rich in Ser, Thr and Pro (Elhammer et al., 1993). Based on these rules, a 

program called NetOGlyc 4.0 Server has been developed and it is now available on the 

Internet and is able to predict approximately 75% of mucin-type glycosylated residues 

correctly (Julenius et al., 2005; Wopereis et al., 2006). 

 

1.2.3. Glycolipid glycosylation 

 

In addition to being attached to proteins, glycans can also be added to lipids, and this type of 

glycoconjugate is termed glycolipid. Glycolipids play pivotal roles in cell membrane 

structure, cell-cell interaction, cell-molecule interaction and modulating the function of 

membrane proteins (Varki, 2009; Lahiri and Futerman, 2007). Based on the locus of the lipid 

parts, glycolipids can be divided into two categories: glycosphingolipids (GSLs) which are 

built on a ceramide and glycophospholipids which are located at a phosphatidylglycerol core 

(Taylor and Drickamer, 2011). GSLs can be found in virtually all plasma membranes of 

mammalian cells (Yamashita et al., 1999; Kolter and Sandhoff, 1998). In this thesis, the main 

focus is the glycosylation of GSL. 

 

1.2.3.1. Glycosphingolipid glycosylation 

 

GSLs are composed of ceramide (Cer), which contains a fatty acid portion and a sphingosine 

portion and one or more attached saccharides (Figure 1.10). GSL is a functionally important 

group of glycolipids found in the membranes of cells from bacteria to humans (Jia et al., 2014; 

Varki, 2009). It functions either like membrane glycoproteins which are involved in cell-cell 

interactions or in the formation of membrane domains (Taylor and Drickamer, 2011). For 

instance, one type of glycosphingolipid, gangliosides, can function as toxin receptors (Lahiri 

and Futerman, 2007). 
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Figure 1.10 The structure of a Glc residue attached to ceramide 

The ceramide (Cer) of glycosphingolipids is composed of a long-chain amino alcohol, sphingosine 
(red), in amide linkage to a fatty acid (green). 
 

Based on the first sugar attached to the sphingosine, GSLs can be divided into two subgroups: 

when the first sugar is a Gal, the GSL belongs to galactosphingolipid subgroup, when the first 

sugar is a Glc, the GSL is a member of the glucosphingolipid subgroup (Sillence, 2007). In 

mammals only Glc and Gal can be added to the Cer directly. GalCer can be sulphated, and its 

sulphated derivatives are termed sulfatides. The sulfatide is abundant in myelin (Merrill, 2011; 

Gault et al., 2010). It is reported that the sulfatide plays an important role in the maintenance 

of CNS myelin and axon structure in mice (Marcus et al., 2006). GlcCer serves as the 

precursor for complex glycosphingolipids while GalCer is simpler (Merrill, 2011). In this 

thesis, the glucosphingolipid subgroup is the focus. 

The biosynthesis of glucosphingolipids starts with the synthesis of Cer in the ER (D'Angelo 

et al., 2013; Merrill, 2002; Kolter et al., 2002). The sugar addition is initiated in the Golgi: 

the Cer moves to the cis-Golgi, probably via vesicular transport (Gault et al., 2010), and the 

addition of the first Glc residue from a nucleotide sugar donor UDP-Glc to the Cer occurs at 

the cytosolic surface of the Golgi apparatus. This reaction is catalysed by ceramide 

glucosyltransferase which was initially detected in an embryonic chicken brain in 1968 

(D'Angelo et al., 2013; Funakoshi et al., 2000; Ichikawa et al., 1996; Basu et al., 1968). After 

this the GlcCer is transferred by a poorly defined GlcCer transporter to trans-Golgi network. 

This is proposed to be operated by a protein termed four-phosphate adaptor protein 2 (FAPP2) 

which also controls vesicular trafficking from the Golgi apparatus to the plasma membrane 

(D'Angelo et al., 2012; D'Angelo et al., 2007). Additional sugars are added from nucleotide 

sugar donors in the Golgi apparatus. Firstly, lactosylceramide (Galβ1,4GlcβCer) is produced 

by addition of Gal, catalysed by a β1,4 galactosyltransferase (GalT) (Lannert et al., 1994; 
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D'Angelo et al., 2013). Further modifications of this structure can yield a series of core 

structures (Figure 1.11).  

 

Figure 1.11 Several core structures of glycosphingolipids (GSLs) 

GSLs have lacto-, neolacto-, ganglio- and globo-core structures. As shown in the figure, the lacto-
series GSLs are based on the core structure Galβ1,3GlcNAcβ1,3Galβ1,4GlcβCer, whereas neolacto-
type is built on core structure Galβ1,4GlcNAcβ1,3Galβ1,4GlcβCer, ganglio-series is constructed on 
Galβ1,3GalNAcβ1,4Galβ1,4GlcβCer, globo-type is formed on GalNAcβ1,3Galα1,4Galβ1,4GlcβCer. 

 GlcNAc,  GalNAc,  Glc,  Gal. 

 

A group of glycosphingolipids were extracted from ganglion cells, and based on this fact this 

group of glycosphingolipids were called gangliosides. This term was coined by the German 

biochemist Klenk (Kolter, 2012).  

In gangliosides the core is extended by a β1,4 N-acetylgalactosaminyltransferase (GalNAc-T) 

transferring a GalNAc to the Galβ1,4GlcβCer described previously. In addition, ganglioside 

biosynthesis involves the activities of Gal and NeuAc transferases, the abbreviations of which 

are Gal-T and Sia-T shown in Figure 1.12. The ganglioside-glycans are synthesised when 

they travel through Golgi as the enzymes required are attached at the membrane of the Golgi 

and function sequentially. 
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Figure 1.12 Biosynthesis pathway, structure and nomenclature of brain gangliosides 

The ganglioside is labelled via Svennerholm nomenclature which is complicated: the G is the abbreviation of ganglioside. The second capital character stands 
for the sialylation state of every glycans: A means asialylated, M stands for monosialylated, D is short for disialylated, T is the abbreviation of trisialylated 
and so forth. The number here assigned to individual glycan refers the migration order of this glycan in a certain chromatographic system (Svennerholm, 
1963).  GalNAc,  Glc,  Gal,  NeuAc.   



44 
 

 

As shown in the figure, in some ganglioside-glycans, such as GD1b, GD3 and GT3, there is 

α2,8 linked NeuAc (Figure 1.12). This linkage has been observed in disialosyl motifs on 

human O-glycans but not in N-glycans (Traving and Schauer, 1998; Fukuda et al., 1987). 

This can be explained by an in vitro study, the result of which showed that the hST8Sia VI 

recombinant enzyme has substrate specificity; this enzyme needed the trisaccharide 

Neu5Acα2,3Galβ1,3GalNAc to produce disialosyl motifs particularly on O-glycans 

(Teintenier-Lelievre et al., 2005). 

 

1.3. Biological importance of glycans in glycoproteins and GSLs  
 

Since glycoproteins and GSLs are commonly found on cell membranes, they play important 

roles in cell-cell and cell-molecule interactions.  

It has long been realized that proteins with various glycosylation have varied biological 

properties. Although the glycan portion is considered as a decoration on the proteins, some 

glycans are also important (Bateman et al., 2010; Yoshida-Moriguchi et al., 2010). For 

instance, the binding of human sperm to the zona pellucida (ZP) which is the extracellular 

matrix coating of the oocyte is regulated by the oligosaccharide sialyl-Lewis X 

[NeuAcα2,3Galβ1,4(Fucα1,3)GlcNAc] on the ovum surface but not Lewis X 

[Galβ1,4(Fucα1,3)GlcNAc] (Pang et al., 2011).  

GSLs are considered to be integral for many vital cell membrane biological events, including 

cellular interactions, signalling, and trafficking (Yamashita et al., 1999). GSLs are capable of 

forming microdomains on membranes, and these microdomains are believed to be involved 

in recognition events and cell signalling (Hakomori, 2004; Gupta and Surolia, 2010). It is 

known that some growth factor receptors, such as the epidermal growth factor receptor and 

the nerve growth factor receptor are located in membrane microdomains and there is 

evidence that signalling functions are considerably regulated by glycolipids (Hakomori, 

2003). It has also been reported that in the mouse, in the absence of GSL synthesis, 

embryogenesis proceeded well into gastrulation with differentiation into primitive germ 

layers and patterning of the embryo but was finally ceased by an apoptotic process 

(Yamashita et al., 1999).  
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The following table gives a few more examples to show the biological importance of glycans. 

Table 1.3. A few more examples showing that N-, O- and GSL glycans are biologically 
important 

Glycan type Related enzyme/gene Results 

 

 

N-glycan 

 

Phosphomannose 
isomerase 

Mutations in this gene could cause deficient N-glycan 
biosynthesis, which could result in congenital disorder of 
glycosylation type Ib (Lonlay and Seta, 2009). 

Fuc-T VIII Fut8-knockout mice displayed severe growth retardation, 
and 70% of the mice died within a few days after birth 
(Zhao et al., 2008). 

 

 

O-glycan 

Core 1 β1,3Gal-T Genetic ablation of this enzyme in mice results in 
defective angiogenesis and fatal brain hemorrhages 
(Guzman-Aranguez and Argueso, 2010). 

Core 2 GlcNAc-T I Mutations in this gene lead to defective leukocyte P-
selectin ligand activity (Ellies et al., 1998). 

 

GSL glycan 

GM2 (see Figure 
1.12 for the GM2 
structure) synthase 

Mice display severe neurological pathology and die soon 
after birth once the GM2 synthase is deleted (Lingwood, 
2011). 

  

Furthermore, the 2012 National Academy Sciences report has demonstrated that a better 

understanding of glycoscience is essential for advancement of human health and 

sustainability on the earth (Hart, 2013). 

Even the 2014 FDA Guidance for Industry implies the importance of glycans (FDA, 2014): 

“For proteins that are normally glycosylated, use of a cell substrate production system and 

appropriate manufacturing methods that glycosylate the therapeutic protein product in a 

nonimmunogenic manner is recommended ”. 

All these indicate that the glycosylation and glycans play vital roles in biological processes. 

 

1.4. Glycomics 
 

Since the importance of glycans has been highlighted in the previous section, it is now 

necessary to introduce glycomics.   
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1.4.1. Introduction to glycomics 

 

Glycomics is the comprehensive study of all glycan structures in a provided organism, tissue 

or cell cluster (Varki, 2009). Glycomic experimental approaches had been employed in all the 

projects. The term ‘glycomics’ is composed of two parts: the prefix ‘glyco-’ which means 

sweetness, and the suffix"-mics" which relates to a field of study in biology for example 

genomics and proteomics. Like genomics and proteomics  are focused on genes and proteins, 

respectively, glycomics seeks to illustrate the importance of glycans in biological systems 

(Cummings and Pierce, 2014). It is believed that the increased understanding of glycan 

functions is beneficial for drug discovery and disease treatments as there are more than 100 

human genetic disorders which are related to deficiencies in the different glycosylation 

pathways (Freeze et al., 2015). Additionally, some scientists are now paying attention to how 

carbohydrates affect neuromuscular junction disorders and immune tolerance in the human 

female reproductive tract (Senderek et al., 2011; Clark and Schust, 2013; Cummings and 

Pierce, 2014). New findings in these promising areas will be a significant step in biomedical 

research. 

Based on the ‘omics’ research trend from DNA to proteins of the past decade, it is expected 

that the next ten years will see a move towards greater exploitation of glycomics. 

 

1.4.2. Difficulties in a glycomic study 

 

Glycosylation is a complicated process. A single protein can be glycosylated heterogeneously. 

Here the ‘heterogeneously’ has two meanings, it either means that a glycosylation site is 

occupied by different glycans or a protein has more than one glycosylation site, but not all of 

the sites are occupied. For instance, there are two N-glycosylation sites in human transferrin, 

the locations of which are Asn-432 and Asn-630 respectively (Spik et al., 1975). In normal 

healthy people, these two sites are primarily occupied by two disialylated N-glycans, 

however in congenital disorders of glycosylation (CDG) type I patients only one site is 

primarily glycosylated, and in CDG type II patients two sites are fully occupied by 

underglycosylated (immature) structures (Freeze et al., 2015; Freeze, 2006). In addition, 
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unlike DNA and proteins which only have linear structures, glycans usually have antennae, 

which also complicate the research. 

Although traditional biological approaches such as gene knock out and Western blot are able 

to analyse glycan-related genes and the products, certain glycan-related information may be 

not clear. For instance, the glycan structures cannot be determined and it is not clear whether 

the glycosylation sites are fully occupied. In addition, it is also difficult to know the 

glycosyltransferases and glycosidases which are responsible for transferring and cleaving 

monosaccharides during glycan biosynthesis. Therefore glycomic research requires 

continuous development of new techniques which can overcome these difficulties. One of 

these techniques is mass spectrometry. 

 

1.5. Mass spectrometry 
 

Mass spectrometry (MS) is a technique that measures the mass-to-charge ratios of ions 

(Calvete, 2014). A mass spectrometer can be used to determine masses of molecules, analyse 

chemical compounds, and profile the structure of a molecule. MS has played an important 

role in the “Omics” Era (Di Girolamo et al., 2013). The apparatus is composed of three parts: 

an ion source, a mass analyser and a detector (Calvete, 2014).  

Although MS has been demonstrated since World War I, it could only be used to analyse 

small molecules due to the undeveloped technology (Keith, 1999). In 1960s, electron 

ionization was already used for the structural elucidation of di- and trisaccharides (Kochetkov 

et al., 1968). At that time it was difficult to analyse more complex oligosaccharides as the 

analyte should be sufficiently volatile and increased molecular weight of the analyte resulted 

in decreasing volatility. In addition, the mass range of the mass spectrometer also limited the 

analysis of the oligosaccharides with higher molecular weight. In the early 1970s, the 

Forssman glycolipid hapten of horse kidney was characterized using mass spectrometry 

(Karlsson et al., 1974). In this MS analysis, the signals of the molecular ions in the high mass 

range were generally small or absent, and thus its usefulness was limited. In late 1970s, mass 

spectrometry was firstly employed in glycoprotein sequencing (Morris et al., 1978; Dell and 

Morris, 2001). In addition, Dell and Morris carried out the first structural determination of 

glycans using Fast-atom-bombardment mass-spectrometry (Dell et al., 1983a). These indicate 
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that MS can be used in glycan related analysis. In the 1980s, the molecular weight of ions 

that mass spectrometers can deal with did not exceed 10,000 (Keith, 1999). Nowadays, with 

the development of related technology, MS hardware has been significantly improved. For 

instance, the employing of matrix-assisted laser desorption ionization tandem time-of-flight 

(MALDI-TOF/TOF) instrumentation permits the analysis of carbohydrates and proteins with 

masses up to hundreds of thousands (North et al., 2009). It is therefore considered to be a 

potent tool for expeditiously and precisely investigating high-mass and fragile molecules.  

 

1.5.1. Ion source techniques 

 

All mass spectrometry experiments require the analyte to be ionized before being analysed in 

the mass spectrometer. The ionization is achieved either via electron ejection or capture, or 

protonation/cationization or deprotonation. When choosing an ionization technique, the 

physicochemical properties of the analyte need to be considered. 

In the early days, electron impact or electron ionization (EI) and chemical ionisation (CI) 

were used (Munson, 1966; Rudge, 1968). However, these techniques are not so suitable for 

high molecular weight and non-volatile molecules. Since then new techniques, such as fast-

atom-bombardment (FAB) and matrix-assisted laser desorption ionization (MALDI), were 

developed, making direct ionisation and desorption of non-volatile substances possible. Here 

three ionization techniques EI, FAB and MALDI are introduced in detail as they are either 

closely related to my glycomic technologies or directly employed in my experiments.   

 

1.5.1.1. Electron ionization (EI) 

 

Electron ionization (EI), also known as electron impact, is an ionization technique in which 

accelerated electrons collide with volatile atoms or molecules to produce ions (Wittmann, 

2007; Horning et al., 1977). For ionizing small molecules, EI is widely used due to its 

advantages: it is a well-understood technique (Rudge, 1968); the ion source is inexpensive 

compared to others; it is easy to construct as basically it requires a small gap between two 

electrodes. This ion source is usually connected with gas chromatography (GC).  



49 
 

EI requires the analyte to have volatile and thermally stable properties (Dell and Morris, 

2001). During the ionization process (Figure 1.13) a beam of high-energy electrons strikes 

the analyte and knocks one electron out of the electron cloud of the analyte. Due to the loss of 

the electron, a singly charged cation M+· is formed. This ion has obtained a large amount of 

energy from the strike, as a result of which it fragments subsequently, yielding fragment ions 

with various relative abundances, which provides a 'fingerprint' for the analyte structure 

(Wittmann, 2007; Busch, 1995).  

 

Figure 1.13 Schematic view of the EI ion source 

The red M stands for an analyte molecule; Uacc is the electron accelerating potential, GC is short for 
gas chromatography. The efficiency of this technique and the yield of fragments are mainly 
determined by the property of the analyte and the energy of the electron beam. If the energy of the 
electrons is much lower than required, the interaction between the electron and the analyte is not able 
to transfer adequate energy, as a result of which the ionization will not occur. If the energy of the 
electron is much higher than the required, the ionization will not occur either. Only when the energy is 
around the required value does the De Broglie wavelength of the electron match the length of the 
chemical bonds in the analyte, and maximum energy can transfer to the analyte, resulting in ionization. 

 

Although this technique works well for volatile analytes, it causes substantial fragmentation, 

as a result of which the molecular ions are usually absent or very weak. Thus EI is considered 

as a ‘hard’ (it causes the ion to fragment) ionization technique (Hejazi et al., 2009; Horning et 

al., 1977; Dell and Morris, 1974; Sutton-Smith and Dell, 2006). 
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1.5.1.2. Fast atom bombardment (FAB) 

 

FAB has become a potent structural analysis tool since the reports of its application in 1981 

(Dell et al., 1981; Barber et al., 1981a; Barber et al., 1981d; Morris et al., 1981b). This 

ionization technique is usually coupled with a magnetic sector mass analyser. It has been 

employed to analyse inorganic ion clusters to mass 25800 Da and peptides to mass 5700 Da 

in the early 1980s (Rinehart, 1982). In FAB (Figure 1.14), the sample to be analysed was 

mixed with a viscous and non-volatile matrix (usually thioglycerol) and bombarded in 

vacuum by a high energy beam of ions or atoms (Rinehart, 1982; Barber et al., 1981c; Dell 

and Morris, 2001). The bombardment transfers energy to the sample molecule in the matrix, 

which allows the molecule to sputter out of the matrix and into the vacuum of the ion source 

(Dell and Morris, 2001). In this process the majority of the molecules couple with a single ion 

such as H+ and produce a singly charged cation such as [M+H]+ (Barber et al., 1981c; Barber 

et al., 1981b; Dell and Morris, 2001). The aim of using a matrix is to minimise sample 

damage by the atom or ion beam and to absorb spare energy from the beam and thus to 

prevent extensive fragmentation of the sample. 

The main advantage of using FAB in glycan mixture analysis is that an individual FAB-MS 

experiment is able to give both sequence and compositional information which are obtained 

from fragment ions and molecular ions, respectively. Thus it has been used to determine 

structures of interest within a complex mixture of glycans such as biologically functional 

terminal epitopes (Dell and Morris, 2001; Dell, 1987). For instance, the presence of sialyl-

Lewis X on leukocytes was first observed using FAB (Fukuda et al., 1984). In addition, 

compared to EI it is not limited to analysing volatile samples.  

When FAB began a revolution in the MS analysis of glycoconjugates, it was soon recognized, 

via research at Imperial College London in the early 1980s, that permethylation enhanced its 

versatility (Bern et al., 2013; Oates et al., 1985; North et al., 2009). This procedure remains 

unaltered from that used nearly 30 years ago, and it is still applicable to MALDI-MS 

nowadays (North et al., 2010). This is due to the fact that glycan permethylation significantly 

improves sensitivity of detection, and the fragment ions yielded from the permethylated 

glycans are more reproducible than those derived from their native counterparts (Sutton-

Smith and Dell, 2006; Dell et al., 1983b).  

http://dict.cn/unaltered
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Due to the limited availability of many biological samples, and their high molecular weights, 

high sensitivity and extended mass ranges became increasingly important. From the end of 

the 1990s, FAB was replaced by more sensitive techniques, notably MALDI, which were 

capable of analysing much larger molecules. 

 

Figure 1.14 Schematic view of the FAB ionization source 

 

1.5.1.3. Matrix-assisted laser desorption ionization (MALDI) 

 

MALDI is currently one of the most sensitive ionization methods for glycan analysis (Loo et 

al., 1999; Varki, 2009; Kailemia et al., 2014). This ionization technique is usually coupled 

with time-of-flight (TOF) mass analysers. The wide application of MALDI in the biological 

area has especially promoted innovation in the design of TOF analysers (see section 1.5.2.2), 

which results in enhanced mass resolution and sensitivity (Radionova et al., 2015). 

In 1963 the laser desorption ionization technique was introduced by Honig and Woolston 

(Honig and Woolston, 1963) and later improved by Posthumus and employed in 

biomolecular studies (Posthumus et al., 1978). In the 1980s, this technique was further 

developed by Hillenkamp and Tanaka (Tanaka et al., 1988; Karas et al., 1985). The 2002 

Nobel Prize in chemistry was awarded to the latter due to his contribution to the soft 

desorption ionisation techniques in MS. 

http://dict.cn/especially
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As indicated in the term MALDI, a matrix is involved in the ionization process: the analyte is 

mixed with a large excess of low molecular weight matrix which can absorb laser energy, and 

this prevents fragmentation of the sample molecules. The analyte and matrix mixture is 

loaded onto a metal plate. The analyte co-crystallises with the matrix when the mixture is 

dried. When the laser is fired at the dried mixture under vacuum conditions, a large amount of 

energy from the laser is absorbed by the matrix, as a result of which desorption of sample and 

matrix molecules at the surface layer occurs and a plume forms. Finally, the analyte 

molecules are ionized (Glish and Vachet, 2003). The velocity that the ions obtained in 

MALDI is independent of their molecular mass (Beavis and Chait, 1991). High voltage is 

applied to the metal plate, which accelerates the resulting ions out of the ion source into the 

mass analyser, which is usually a time-of-flight (TOF) analyser. Unlike EI, the processes of 

volatilization and ionization in MALDI are intimately related (Busch, 1995). However, the 

mechanism of the ionization is still poorly understood, but it is widely accepted that the 

energy from the laser promotes the ion formation by proton transfer in the matrix plume and 

chemical reactions between the excited matrix and the analyte (Zenobi and Knochenmuss, 

1998; Knochenmuss, 2006). Figure 1.15 shows a schematic view of the most widely accepted 

ion formation mechanism in MALDI. 

The analyte molecule ionized by MALDI forms mainly monocharged ions which are denoted 

as [M+H]+ or [M+Na]+ (Zaia, 2004), thus it is rapid and convenient for the determination of 

the analyte molecular weight.  
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Figure 1.15 Schematic view of the most widely accepted ion formation mechanism in MALDI 

The red M stands for an analyte molecule, the black spots are matrix molecules, the blue triangle can 
be either H or Na.  

 

The resolution of the MALDI mass spectrum can be improved by “delayed extraction” which 

is basically a time delay between ion generation and ion extraction from the source. The high 

voltage applied to accelerate the ions is not continuous but pulsed. To some extent this 

narrows the initial kinetic energy distribution and corrects the energy dispersion of the ions, 

as a result of which the ions fly with more uniform kinetic energies improving resolution 

(Kaufmann et al., 1996; Vestal et al., 1995; Vestal and Campbell, 2005; Signor and Erba, 

2013).  

 

1.5.2. Mass analysers 

 

The ions need to be separated once they have been produced. A mass analyser is a part of a 

mass spectrometer that takes control of ionized microscopic particles and separates these 

particles based on their mass to charge ratios. This form of separation method was originally 

discovered by Joseph John Thomson who discovered the electron and measured its mass-to-

charge ratio and thus won the 1906 Nobel Prize in Physics. Mass analysers employ either 
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electric or magnetic fields or a combination of both to achieve the separation. Three types of 

mass analyser will be introduced in detail as they are either more commonly coupled with the 

previously mentioned ionization techniques or utilised in my projects. 

 

1.5.2.1. Magnetic sector  

 

Magnetic fields have been employed in MS since A.J. Dempster developed the first 

spectrometer with a sector-shaped magnet in 1918 (Münzenberg, 2013). The development of 

high-field magnets in the 1970s, pioneered by Morris (Morris et al., 1981a), had a profound 

effect on biological MS. Thus, employing a combination of FAB and high field magnet 

technology allowed MS of analytes whose molecular weight could go up to 6000 Dalton (Da) 

(Dell and Morris, 1982). Approximately 15 years ago researchers in our laboratory still used 

a magnetic sector mass analyser coupled with FAB. Although magnetic mass analysers are 

expensive, they are still popular in certain type of work, for example, it can be employed in 

environmental sciences for the analysis of dioxins and furans (Hernandez et al., 2012) as well 

as mass separation of rare isotopes at accelerator facilities (Münzenberg, 2013).   

The passage of analyte ions through a magnetic sector analyser is as follows: the ions 

generated from the ion source are accelerated via a relatively high potential (Figure 1.16), 

usually the accelerating potential U is 7-8 keV. The kinetic energy (Ek) that an ion gains is 

equal to the potential loss, which means that Ek=mv2/2=Uq (m is the mass of the ion, q stands 

for the charge of the ion, v is the velocity of the ion). Once the ions pass this acceleration 

region, they come into a magnetic field, in which they will be separated according to their 

mass to charge ratios (m/z). In this magnetic field there is a flight tube with a bend of fixed 

radius r permitting only the ions possessing a required mass-to-charge ratio to travel through. 

Once the ions enter the magnetic field, they obtain a magnetic force FB=qvBsinθ (because the 

B is applied perpendicular to the velocity direction, sinθ=sin90º=1). This magnetic force 

make the ions fly in a circular trajectory with the radius r, thus FB is equal to the centrifugal 

force, which means qvB=mv2/r=2Uq/r. Finally the equation can be written as m/q=r2B2/2U 

(m/q is the mass to charge ratio m/z), which provides the theoretical basis for separating ions 

according to their m/z. Only the ion with selected m/z can be transmitted to the detector, 

those ions with higher or lower m/z will be deflected. By scanning the magnetic field 
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(m/q=r2B2/2U, fixing r and altering either U or B) ions with different m/z ions are detected, 

as a result of which a mass spectrum can be obtained (Glish and Vachet, 2003). 

 

Figure 1.16 Schematic of the magnetic sector analyser 

 

However, due to the initial kinetic energy (Ek) difference the analyte ions with the same m/z 

can be dispersed by the magnetic field as r=(2mEk)1/2/qB. In order to overcome this, the Ek 

difference needs to be controlled. To achieve this, an electrostatic sector can be incorporated 

with the magnetic sector (Nier, 1955). The electrostatic sector functions as an energy 

focusing device, which is able to increase the resolution of the instrument. This two-sector 

instrument is called double focusing as in this instrument both the energies and the angular 

dispersions are focused (Münzenberg, 2013). 

 

1.5.2.2. Time-of-flight (TOF) 

 

The concept of a time-of-flight mass analyser was initially mentioned by William in 1946 at 

MIT (Stephens, 1946). This mass analyser separates ions with different m/z by the flight time 

difference due to their various velocities in a flight tube without the use of an external field 

(Cameron and Eggers, 1948; Guilhaus, 1995).  

The travelling of ions via a TOF mass analyser can be described as follows. Analyte ions are 

produced in the ion source. These ions are accelerated via a known potential U. In this 
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electric field, the electric potential energy of one ion will be converted into its kinetic energy, 

Uq =Ek=mv2/2 (m is the mass of the ion, v is the velocity of the ion, U is the accelerating 

potential, q stands for the charge of the ion). After the acceleration, this ion will travel 

linearly in the flight tube at constant velocity to the detector. The time that the ion requires to 

travel is t=L/v=L(m/q)1/2(1/2U)1/2 (L is the length of tube). As shown in the equation, t, time 

of flight is directly proportional to (m/q)1/2 (L and U are held constant, m/q is m/z) (Guilhaus, 

1995). If all other factors are equal, the equation also shows that, the smaller the mass of an 

ion, the shorter the time it requires to reach the detector. 

Theoretically, this type of mass analyser does not have upper mass limit. In 1996 a sample 

with mass over 333 kDa was measured using MALDI-TOF (Moniatte et al., 1996).  

Historically poor mass resolution was a drawback of the TOF analyser. The resolution is 

mainly limited by the existence of a spread in the initial velocities of analyte ions formed in 

the source (Mamyrin et al., 1973). Although velocity filters were used to increase the 

resolution, they also reduced the sensitivity. With the development of numerous techniques, 

such as the application of a reflectron, the resolution of the TOF mass analyser has been 

improved. 

The reflectron was initially proposed by Mamyrin in 1973 (Mamyrin et al., 1973). The 

principle of a reflectron is that a retarding field created by the reflectron functions as an ion 

mirror to deflect the ions penetrating the field and send them back to reach the detector. It 

corrects the kinetic energy of dispersion of the analyte ions; both fast and slow ions with the 

same m/z reach the detector simultaneously rather than at different time, which narrows the 

peak width of the output signal, thus improving the resolution (Figure 1.17).  
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Figure 1.17 Schematic of a TOF mass spectrometer equipped with a reflectron  

○ represents the ion with greater energy which travels deeper in the reflectron and follows the full line 
trajectory; ● the ion with smaller energy travels shallower in the reflectron and follows the dotted line 
trajectory. These two ions arrive at the detector simultaneously via the adjusting voltages and fields. 

 

The resolution can also be improved via decreasing the accelerating potential. However, 

decreasing the potential is not workable as it leads to lower sensitivity.  

It is widely acknowledged that the TOF mass spectrometer has a number of advantages over 

other mass spectrometers: the ability of obtaining a broad mass range spectrum in 

microseconds; the theoretically unlimited mass range for the ions analysed and the possibility 

of displaying both the full mass spectrum and the individual section of interest (Mamyrin et 

al., 1973). 

TOF is usually coupled with MALDI. A main reason for this is that MALDI delayed 

extraction (see section 1.5.1.3) is ideally suitable for TOF analysis. The following MALDI-

TOF mass spectrometer, Voyager-DETM STR (Figure 1.18), is the instrument mainly 

employed in my projects to collect the MS data. When the instrument operates in linear mode, 

the linear detector collects the ions. However, when the instrument runs in reflectron mode, 

the reflectron is switched on and it deflects the ions to the reflected detector. The linear mode 

is usually employed in intact protein studies as it does not lose efficiency for large molecules 

while the reflectron mode does.     
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Figure 1.18 Schematic of the Voyager-DETM STR  

Delayed extraction (variable-voltage grid and ground grid) and a reflectron are applied in this 
instrument. Practically the reflection angle is less than 2°, which makes the displacement along the y 
axis smaller.  In the above figure, a much greater angle has been used for clarity in the drawings. The 
TOF analyser with a reflectron allows the ions to travel longer, which is able to improve the 
resolution of ions with similar masses as the longer the ions travel the greater their arrival time 
difference will be. 

 

1.5.2.3. Quadrupole (Q) 

 

This type of mass analyser was described by Paul and Steinwedel in 1953 at Bonn University, 

and later they patented this apparatus (Paul and Steinwedel, 1960; Keith, 1999). 

As the term implies this mass analyser is made up of four parallel metal rods which are 

circular or ideally, hyperbolic. It is an instrument which sorts ions according to their m/z 

ratios using the stability of the trajectories in oscillating electric fields (Paul and Steinwedel, 

1960). As shown in Figure 1.19, one rod is paired with the diagonally opposite rod, and thus 

there are two pairs in total. Each pair is electrically connected; a direct current (DC) potential 

is imposed positively on one pair of rods and negatively on the other, then a radio frequency 

(RF) voltage is superimposed on the DC potential, as a result of which one pair of rods is 

positively charged and the other is negatively charged. These potentials generate a total 

electric field which has an influence on ions travelling in the quadrupole between the metal 

rods. Since there is an RF voltage, the generated electric field varies as time goes by and it 

only allows an ion with a stable trajectory to travel through the quadrupole (Figure 1.19). For 

instance, when a positive ion enters the analyser, it undergoes an electric field force which 
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pulls it to a negative rod. If the potential changes sign, the ion will change direction and not 

hit the rod. The path of the ion will be stable if it never reaches the rod. Ion oscillations 

depend on the total electric field; only an ion with a specific m/z travelling in a stable 

trajectory is able to pass through the analyser (Glish and Vachet, 2003).  

A mass spectrum is built up via the scan of RF taking ions of successively higher to lower 

m/z values into focus on the detector. Consequently, the rods function as a mass filter. The 

quadrupole mass analyser has a number of advantages, including robustness and low cost 

(Wittmann, 2007). It is compatible with the EI source, and is the most common analyser in 

GC-MS (Glish and Vachet, 2003). 

 

Figure 1.19 The path of ions travelling through a quadrupole mass analyser 

Two ions are generated from the ion source. The blue line is a stable trajectory of an ion passing 
through the analyser, the red dotted line stands for an unstable trajectory of an ion which is 
intercepted by a rod and thus this ion cannot reach the detector.   

 

1.5.3. The detector 

 

The detector is the final element of a mass spectrometer. Once the ions pass through the mass 

analyser and then reach the detector, they will be converted into usable signals. The detector 

either provides a direct measurement of ion charges or amplifies the signal. There are two 

types of detectors: some detectors are manufactured to count ions with a single mass at a time 

and thus they count all the ions in sequence at one point (point detectors); other detectors, 

such as photographic plates and image current detectors, are designed to count ions with 

different masses at the same time and detect the arrival of these ions in the same plane (array 

detectors) (Barnes and Hieftje, 2004). 
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The microchannel plate electron multiplier, a type of array detector, consists of a group of 

parallel and small channels which are covered with a secondary electron emitting 

semiconductor substance and drilled into a plate. Electron multiplication is achieved via this 

substance giving off secondary electrons. The characteristic of this detector is the short 

response time resulting from the short path of the secondary electron inside the channel, and 

this is well suited to the TOF analyser which requires precise arrival time. However, this 

detector has some disadvantages; it is fragile, sensitive to air and expensive. 

 

1.5.4. Tandem mass spectrometry (MS/MS) 

 

As mentioned in section 1.5.1.3, MALDI is a soft ionization technique, producing very 

limited fragment ions. Therefore, it is suitable for glycan profiling. However, to further 

analyse monosaccharide composition and sequence of each glycan, fragmentation of the 

glycan ion is required. The fragmentation allows rigorous sequencing which usually includes 

glycan branch determination and terminal epitope confirmation. This fragmentation can be 

achieved by employing two mass analysers in tandem. The term MS/MS refers to this type of 

coupling.  

In this technique, there are two mass analysers which are separated by a collision cell. The 

first mass analyser functions as a ‘filter’ to choose a precursor molecular ion of interest from 

the ion cluster yielded at the source. The chosen ion then enters a collision cell filled with an 

inert gas such as argon and encounters collision induced dissociation (CID). This collision 

facilitates fragmentation of the precursor ion; in which the cleavage of glycosidic bonds 

occurs. The fragments produced in this process continue flying towards the second analyser, 

which separates these fragments thus generating a fingerprint pattern of the precursor ion. 

This fingerprint contains sequence informative fragment ions which provide vital structural 

information. These two mass analysers could be the same or different, for instance they could 

be tandem time-of-flight (TOF/TOF) analysers or a combination of quadrupole and time-of-

flight (Q-TOF) (Morris et al., 1997; Morris et al., 1996b; Vestal and Campbell, 2005). 

Tandem MS has now become a potent tool for characterizing components in glycans. All the 

MS/MS data mentioned in the thesis were obtained using an Applied Biosystems SCIEX 
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MALDI-TOF/TOF mass spectrometer. Therefore it is necessary to introduce TOF/TOF in 

detail.   

 

1.5.4.1. Tandem time-of-flight (TOF/TOF) 

 

The schematic of the MALDI-TOF/TOF mass spectrometer, Applied Biosystems SCIEX 

4800, used in my Ph.D. study is shown (Figure 1.20). This MALDI-TOF/TOF instrument is 

composed of a linear delayed extraction MALDI-TOF, a time ion selector (TIS), a collision 

cell and one more TOF analyser. In the MS mode, ions produced are directly guided to the 

detector. However, in the MS/MS mode, ions need to pass through the first TOF and then are 

selected by the TIS. Only ions of interest can pass through. The collision energy is adjustable. 

The adjustment is achieved by modulating the ion source potential to that of the collision cell, 

in which the inert gas pressure is managed to make the fragmentation acceptable. The mass 

spectrometer is able to yield CID fragment ions at both high and low energies, and the 

resolution and sensitivity of the single TOF can be ensured simultaneously (Vestal and 

Campbell, 2005). Fragment ions yielded in the collision cell are then re-accelerated towards a 

reflectron which deflects the ions to a reflected detector.  



62 
 

 

Figure 1.20 A schematic illustration of 4800 MALDI TOF/TOF analyser in MS/MS mode 

Ions yielded in the source are flying upwards. The time ion selector (TIS) selects the ion of interest 
which will be firstly decelerated by the deceleration stack and then fragmented in the collision cell 
which is blue in the figure. 

 

1.5.4.2. Fragmentation patterns of permethylated glycans 

 

To interpret the MS/MS spectrum, it is necessary to know the fragmentation patterns of 

glycans. Currently most of the knowledge concerning glycan fragmentation patterns is 

originally from the work carried out using FAB (Dell, 1987; Dell et al., 1983a; Egge et al., 

1983). All the MS/MS data in this thesis were obtained via MALDI, but carbohydrate 

fragmentation patterns established by FAB are still valid. 

Compared to a native glycan, a permethylated glycan yields a limited number of fragment 

ions, which makes the data interpretation easier. In addition, its fragmentation is more 
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reliable (Sutton-Smith and Dell, 2006; Dell, 1990; Yu et al., 2006). Therefore glycans in my 

projects were permethylated prior to being analysed. 

The fragmentation of glycans in MS/MS is mainly due to glycosidic bond breakage between 

two monosaccharide rings. This breakage can be achieved via a cleavage termed β-cleavage 

in which a hydrogen transfer is involved. This cleavage does not yield any charge. The 

charge on the fragment ion is produced via protonation or cationization (e.g. sodiation). The 

fragment ion can be either reducing or non-reducing, and this depends on which of the two 

bonds to the middle oxygen is cleaved (Figure 1.21) (Dell et al., 1994; Dell, 1987). 

 

Figure 1.21 β-cleavage occurring at a glycosidic bond can result in either a reducing ion (top 
panel) or a non-reducing ion (bottom panel) 

R1 is the non-reducing end, R2 is the reducing end. R stands for the ‘remainder’ of the chemical group. 

 

In addition to β-cleavage, there is another type of cleavage, A type-cleavage, which also leads 

to glycan fragmentation (Dell, 1987). The cleavage occurs at the left side of the middle 

oxygen, it produces an oxonium ion (Figure 1.22). This cleavage favours occurring at the 

amino sugar residues. In addition, it is sometimes accompanied by a further fragmentation in 

which the substituent at the 3 position of the ring is eliminated (Dell et al., 1994). 
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Figure 1.22 A type-cleavage yields an oxonium ion (top panel), β-elimination of the 3 position of 
the oxonium ion (bottom panel) 

R1 is the non-reducing end, R2 is the reducing end. R stands for the ‘remainder’ of the chemical group. 

 

1.5.5. Applications in glycomic analysis 

 

The development of modern mass spectrometry, especially the revolution which occurred in 

the 1980s when MS could readily be used to analyse non-volatile samples, has facilitated 

glycomic analysis (Bern et al., 2013; Oates et al., 1985; North et al., 2010). Usually there are 

two goals in the glycomic analysis: structural determination and semi-quantitative analysis. 

These two goals can be achieved via the applications of MS. 

 

1.5.5.1. Structural analysis 

 

Not only can the structures of glycoproteins be determined by mass spectrometry (Dell and 

Morris, 2001; Morris et al., 1978), but also the glycans (Dell et al., 1983a; Babu et al., 2009; 

Jia et al., 2014). To determine structures of glycans in a sample, firstly the m/z values of 

these glycans are measured via MS. For MALDI-TOF instrumentation, the ions yielded are 

usually monocharged, therefore the m/z values obtained from the MS are actually the 

molecular weight of the glycans. Since the molecular weight is clear, possible 

monosaccharide compositions can be deduced. Moreover, the number of potential glycan 
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structures can be minimised either by using mass spectrometers with high mass accuracy or 

by the knowledge of the glycan biosynthesis pathway which has been well characterized (see 

sections 1.2.2 and 1.2.3) (Schwarz and Aebi, 2011; Varki, 2009; Weerapana and Imperiali, 

2006; Dell et al., 2010).  

N-glycan data from a glycomic paper is described below as an example of how to apply mass 

spectrometry in glycan structural analysis. 

The N-glycan profile of ferret lung was obtained via MS analysis and glycans of interest were 

noted. For instance, one of the glycans, the m/z of which is 3252.4, has been determined to 

have the following composition Fuc1Hex4HexNAc6NeuAc2. The composition implies that 

the glycan may contain an Sda epitope (NeuAcα2,3(GalNAcβ1,4)Galβ1,4GlcNAc). Since 

MS analysis could not check the presence of the Sda, further investigation was carried out by 

breaking the glycan into fragment ions and then measuring the m/z of each fragment using 

MS/MS. The principle of MS/MS is that various glycans will yield different groups of 

fragment ions, and these fragments constitute a fingerprint of particular glycan structures. As 

shown in Figure 1.23, the most abundant fragment ion at m/z 2387.3 arose from cleavage of 

amino sugar glycosidic bonds. The signal at m/z 2183.2 corresponds to a loss of the 

tetrasaccharide constituent of the Sda capping group. Its concurrent ion is also observed at 

m/z 1092.5. This demonstrates the presence of Sda epitope (Jia et al., 2014). In addition, to 

make the result more accurate Jia et al. have also carried out GC-MS analysis on partially 

methylated alditol acetates derived from the permethylated glycans. The expression of the 

Sda epitope was confirmed by the presence of terminal GalNAc together with 3,4-linked Gal 

(Jia et al., 2014). Taken together, the results of MS, MS/MS and GC-MS have confirmed the 

presence of the Sda capping group in the sample.   
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Figure 1.23 MALDI-TOF/TOF MS/MS spectrum of permethylated glycan at m/z 3252 which 
was derived from the ferret lung 

Data were acquired in the form of [M+Na]+ ions. The number indicated above the peak is the m/z 
value of the fragment ion (resulting ion) that has been detected by the mass spectrometry. Peaks were 
annotated with putative fragment ions according to the molecular weight (Jia et al., 2014).  GlcNAc, 

 GalNAc,  Man,  Gal,  Fuc,  NeuAc. 
 

1.5.5.2. Semi-quantitative analysis 

 

The reason why analysis is called semi-quantitative is that the MS spectrum shows relative 

abundance of each glycan but not the absolute amount. Although it is not fully quantitative, it 

has been reported that relative quantitation based on signal abundances of permethylated 

glycans investigated by MALDI-TOF MS is a reliable approach, especially when making a 

comparison of signals over a small mass range between glycans with similar structures within 

the same spectrum (Haslam et al., 2008; Wada et al., 2007). 

In our laboratory, the most commonly used strategy in quantitative analysis is called label 

free. The label free approach together with mass spectrometry has been extensively employed 

in glycomic and proteomic studies (Neilson et al., 2011; Wada et al., 2007; Babu et al., 2009; 

Kailemia et al., 2014). MS spectra show not only m/z values of glycans but also their relative 

abundance. The relative abundance of different glycans is determined by label free 

quantification via comparing their molecular ion signals. It has been demonstrated that 

relative quantitation based on signal intensities of permethylated glycans analyzed by 

MALDI-TOF MS is a reliable method (Wada et al., 2007; Bateman et al., 2010). The 

permethylation leads to more consistent ionization due to the fact that chemical groups –OH, 

–COOH and –NHCOCH3 on glycans have been replaced by –OCH3, –COOCH3 and –

NCH3COCH3 respectively. In addition, for those sialic acids containing glycans which easily 
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lose sialic acids in MS in-source fragmentation, permethylation makes them more stable.  

A glycomic study of neutrophils demonstrated the reliability of quantitative analysis of 

permethylated glycans: although the two normal samples are from two different countries, 

their glycan profiles are similar (Babu et al., 2009).  

For semi-quantitative analysis of a mixture of glycan isomers, the characteristic fragment 

ions of each isomer can be observed during MS/MS analysis. In this case, the greater the 

percentage of an isomer in this mixture is, the higher the intensity of its characteristic ion will 

be, and this implies the relative abundance of the characteristic ions can be used to compare 

the amount of the isomers (North et al., 2010).  

In this thesis I am employing mass spectrometry strategies in three projects which are 

comparative glycomic profiling of HeLa cells and normal human dermal fibroblast (NHDF), 

investigation of glycosylation in patients with muscular diseases, and glycomic profiling of 

human trophoblasts. Details of these projects are introduced successively in the following 

sections. 

 

1.6. Ribosome-inactivating proteins (RIPs) and lectins from elderberry 
 

1.6.1. RIPs  

 

Ribosome-inactivating proteins (RIPs) are a group of proteins that function as protein 

synthesis inhibitors that enzymatically act at the ribosome (Stirpe, 2004; Stirpe, 2013). Since 

1970 it has been reported that RIPs are less toxic to normal cells than cancer cells (Lin et al., 

1970). Therefore RIPs have received a lot of attention as they may be potential antitumor 

therapeutic medicines. However, not all RIPs are suitable for being medicine candidates. 

Some RIPs, such as ricin and abrin, are not acceptable as they show powerful cytotoxicity 

towards mammalian cells, but some other RIPs are suitable as they possess strong protein 

synthesis inhibition activity in vitro but they are approximately 103-105 less toxic than ricin 

towards animal cells (Ferreras et al., 2011; Tejero et al., 2015). These less toxic RIPs include 

RIPs from Sambucus. Recently Van Damme and Shang at Ghent University found that lectins 

from Sambucus nigra (elderberry) are also less toxic to normal cells (Shang et al., 2015). 
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Although not all of the mechanism of cytotoxicity triggered by RIPs and lectins is completely 

clear, at least the well-studied RIPs can provide further impetus to study the physiological 

activities of RIPs and lectins on mammalian cells. More importantly, the way that RIPs and 

lectins from Sambucus nigra employed to show their cytotoxicity may be initiated by binding 

to cells, and this binding is probably achieved via their lectin chains.  

The most intensively studied RIP by far is ricin. Hitherto, RIPs have been generally divided 

into two groups (Figure 1.24): type 1 RIPs, consisting of a single peptidic chain, the 

molecular weight of which is approximately 30 kDa, and type 2 RIPs which are composed of 

an enzymatically active A chain which is similar to type 1 RIPs, connected by a single 

disulphide bond to a B chain which has specific lectin properties (Stirpe, 2004; Lord et al., 

1994; Stirpe, 2013; Tejero et al., 2015).  

A RIP enzymatically cleaves one adenine base from the sugar-phosphate backbone of the 

rRNA via the N-glycosidase activity of the A chain, thus inhibiting protein synthesis (Endo 

and Tsurugi, 1987). Only specific adenines are targeted by the RIP. For example, if it is in rat 

liver, the adenine should be adenine 4324 which is located on a big loop of the 28S rRNA 

(Endo et al., 1987). 

 

 

Figure 1.24 Schematic representation of the structures of two different types of RIP 

The red bar stands for the one chain in type 1 RIP; the black bar is the chain B which has specific 
lectin properties. After one adenine (A) is removed, the r-RNA becomes inactivated. 

 

In this project the RIPs that I focused on are SNA-I, SNA-V and SNALRP, which are 

classified as type 2 RIPs. Here SNA is short for Sambucus nigra agglutinin. For historical 

reasons the proteins are usually termed as SNA followed by Roman numbers attributed in 
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chronological order of their discovery (Shang and Van Damme, 2014). The full name of 

SNLRP is Sambucus nigra lectin related protein and this is due to the fact that it is closely 

related to type 2 RIP but it does not show agglutination activity (Van Damme et al., 1997a; 

Shang and Van Damme, 2014).  

SNA-I is obtained from the storage parenchyma cells of elderberry bark and it is the most 

widely studied so far (Tejero et al., 2015). This protein can be extracted via affinity 

chromatography using immobilised fetuin. Analysis of SNA-I has demonstrated that this 

protein exists as a tetramer which is composed of four subunits, and each of the four subunits 

contains two disulphide bond linked chains. The molecular weight of the subunit is 

approximately 60kDa. Each subunit possesses eight putative N-glycosylation sites (Van 

Damme et al., 1997b; Shang and Van Damme, 2014). A main biological function of SNA-I is 

the RNA N-glycosidase activity. As its name implies, it can agglutinate animal and human 

erythrocytes. In addition, it also prevents protein synthesis and development of some insects. 

For instance, it has been reported that in the insect midgut SNA-I can trigger caspase 3-like 

protease-induced cell apoptosis (Van Damme et al., 1997b; Shahidi-Noghabi et al., 2011; 

Van Damme et al., 1998). 

SNA-V, also termed Nigrin b, also exists in elderberry bark. This glycoprotein can be 

purified using affinity chromatography with immobilized GalNAc. It is a dimer which 

contains two [A-s-s-B] subunits, and each of them possesses six putative N-glycosylation 

sites. SNA-V also has RNA N-glycosidase activity, and thus can result in agglutination of 

rabbit and human erythrocytes (Van Damme et al., 1998; Tejero et al., 2015). 

SNLRP is a predominant lectin in elderberry bark. It is a monomer which contains an 

enzymatically active A chain and a not fully active B chain, and thus it possesses RNA N-

glycosidase activity but no agglutination activity. It has five potential N-glycosylation sites. 

This is probably due to the fact that there are several amino acid substitutions in the B chain 

sugar binding sites, and these substitutions have affected the binding affinity (Van Damme et 

al., 2001). 

The parameters of the above three type 2 RIPs are summarized in the following table (Shang 

and Van Damme, 2014).  
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Table 1.4 Overview of type 2 RIPs from Sambucus nigra 

Name  Source Structure Molecular 
weight 

Protein synthesis 
inhibition 

Agglutination 
activity 

SNA-I Bark Tetramer 
[A-s-s-B]4 

240kDa 
(4×60kDa) 

+ + 

SNA-V Bark Dimer 
[A-s-s-B]2 

120kDa 
(2×60kDa) 

+ + 

SNLRP Bark Monomer 
[A-s-s-B] 

62kDa + - 

 

1.6.2. Lectins  

 

Lectins are specific carbohydrate-binding proteins. They are ubiquitous, being identified in 

microorganisms, plants and animals (Berg et al., 2002b). Sambucus nigra lectins can be 

classified as R-type which is a superfamily of glycan-binding proteins that contain a 

carbohydrate-recognition domain which is structurally similar to that in ricin (Varki, 2009). 

The difference between the lectin from Sambucus nigra and the RIP is the former only has a 

lectin chain.   

In this project the lectins that I am interested in are SNA-II and SNA-IV. An overview of 

these two lectins is shown in Table 1.5 (Shang and Van Damme, 2014). The nomenclature of 

these lectins is the same as the one used in the RIPs.  

SNA-II is one of the most abundant lectins in elderberry bark. It can be purified using affinity 

chromatography with immobilized asialoglycophorin. This SNA actually shares a precursor 

with SNA-V. The precursor is processed in two different ways, as a result of which two 

different products, SNA-II and V, are yielded. SNA-II is a homodimer containing two B 

chains which are the same as the B chain in SNA-V without the initial eight amino acids. 

Each of the B chain has four putative N-glycosylation sites (Shahidi-Noghabi et al., 2011). 

Due to the lack of an A chain, SNA-II is not able to show RNA N-glycoside activity and thus 

it cannot inhibit protein synthesis (Van Damme et al., 1998; Maveyraud et al., 2009). 

Unlike SNA-II, SNA-IV is a predominant lectin in the elderberry fruit. It can be purified 

using affinity chromatography with immobilized GalNAc. Like SNA-II, it shows 

agglutination activity but it does not exhibit RNA N-glycosidase activity and cannot inhibit 

protein synthesis. There are three putative N-glycosylation sites in each B chain.  

 



71 
 

Table 1.5 Overview of lectins from Sambucus nigra  

Name  Source Structure Molecular 
weight 

Protein synthesis 
inhibition 

Agglutination 
activity 

SNA-II Bark Dimer 
[B]2 

60kDa 
(2×30kDa) 

- + 

SNA-IV Fruit Dimer 
[B]2 

64kDa 
(2×32kDa) 

- + 

 

Lectins of the ricin B chain form are composed of two β-trefoil domains which are the 

binding domains and contain 3 subdomains, α, β and γ. The amino acid residues that form the 

glycan-binding site in ricin have been determined via cocrystalization of ricin with several 

glycan structures (Montfort et al., 1987). It has been reported that the α-subdomain of the first 

β-trefoil domain and the γ-subdomain of the second β-trefoil domain are involved in the 

glycan binding (Rutenber and Robertus, 1991).  

The result of sequence alignment of the ricin B chain and the RIP B chains and lectins from 

Sambucus nigra shows that in both subdomain-Iα and subdomain-IIγ three of five residues 

which form the carbohydrate binding site are conserved between ricin and all SNAs (Table 

1.6) (Shang and Van Damme, 2014). This suggests that in respect of glycan binding the B 

chains of SNAs show similarity to that of ricin. 

Table 1.6 Comparative analysis of the residues forming the carbohydrate binding sites of the 
five SNA lectin chain and ricin lectin chain  

RIP B chain/lectin Subdomain-Iα Subdomain-IIγ 
SNA-I Asp26, Gln39, Arg41, Asn48, Gln49 Asp231, Ile243, Tyr245, Asn252, Gln253 
SNA-II Asp16, Gln29, Trp31, Asn38, Gln39 Asp227, Ile239, Phe241, Asn248, Gln249 
SNA-IV Asp18, Gln31, Trp33, Asn40, Gln41 Asp229, Ile241, Phe243, Asn250, Gln251 
SNA-V Asp24, Gln37, Trp39, Asn46, Gln47 Asp235, Ile247, Phe249, Asn256, Gln257 
SNLRP Asp23, Gln36, Leu38, Ser45, Gln46 Glu230, Ile242, Tyr244, Asn251, Gln252 
Ricin Asp15, Gln27, Trp29, Asn39, Gln40 Asp227, Ile238, Tyr241, Asn248, Gln249 

 

1.6.3. Glycan binding 

 

Van Damme and Shang have carried out glycan array analyses of these five proteins. The 

result showed that SNA-I exhibited strong binding affinity to glycans containing α2,6 linked 

terminal sialic acid, and all strongly interacting glycans contain at least one this sialic acid. 

SNA-I exhibited the strongest binding to the glycan array among all SNAs, and this is 

consistent with its very strong interaction with cells and glycoproteins. SNA-II, IV and V all 
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interacted with glycans possessing Gal or GalNAc. Unlike SNA-II and V, SNA-IV also binds 

to sialylated Gal residues. SNLRP binds to glycans containing GlcNAc (Shang and Van 

Damme, 2014). The top three glycan motifs that reacted with these five SNAs have been 

summarized in the following table (Shang and Van Damme, 2014) to show the SNA binding 

preference. 

Table 1.7 Top three glycan motifs that reacted with Sambucus nigra type 2 RIPs and lectins  

 GlcNAc,  GalNAc,  Glc,  Gal,  NeuAc,  Fuc.   

 

 

1.7. Muscular diseases caused by gene mutations 
 

Gene mutations are changes occurring in the genetic sequence, and they can have different 

consequences. One of the consequences is that gene mutations can result in various diseases, 

such as muscular diseases. According to the clinical features of the muscular diseases 

mentioned in the papers (Guergueltcheva et al., 2012; Senderek et al., 2011; Palace, 2012; 

Palace et al., 2007; Downham et al., 2008; van der Ploeg and Reuser, 2008), this group of 

mutations can be classified as ‘loss of function’ type, the effect of which is that the gene 

products are complete or partial loss of function. The phenotypes connected with these 
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mutations are usually recessive. Many of the genes, such as GFPT1, DPAGT1, ALG2 and 

ALG14, play important roles in the synthesis of dolichol-linked oligosaccharide, and the 

mutations in these genes result in congenital myasthenic syndromes (Freeze et al., 2015; 

Senderek et al., 2011; Cossins et al., 2013; Belaya et al., 2012). Although the gene mutation 

sites and most of carbohydrate metabolism have already been detected, our knowledge and 

understanding of these diseases is limited, especially in the glycobiology field. For instance, 

it is unknown why, although the phenotypes of CDG and myasthenic patients are different, 

they could be caused by mutations in a same gene, such as GFPT1 (Freeze et al., 2015). 

 

1.7.1. Congenital myasthenic syndromes (CMS) caused by GFPT1 mutations 

 

In the past few years mutations in genes encoding protein glycosylation enzymes, or enzymes 

synthesising the building blocks for protein glycosylation, have been identified to cause a 

neuromuscular transmission defect named congenital myasthenic syndromes (CMS) which 

are autosomal recessive diseases that characterized by a limb-girdle pattern of muscle 

weakness and usually accompanied by the presence of tubular aggregates in muscle biopsies 

(Senderek et al., 2011; Guergueltcheva et al., 2012). The first of these genes to be correlated 

with CMS was GFPT1 (glutamine-fructose-6-phosphate transaminase 1), which has been 

recently identified by a group of researchers including Lochmuller and Mueller at Newcastle 

University using classical positional cloning (Senderek et al., 2011; Guergueltcheva et al., 

2012). Subsequently, mutations in two genes (ALG2 and ALG14), encoding enzymes of the 

protein N-glycosylation pathway were also found to cause CMS (Cossins et al., 2013). CMS 

caused by GFPT1 mutations is a type of neuromuscular junction disorder in which the 

synapses that form between motorneurons and skeletal muscle fibres that transmit the 

impulse resulting in muscle contraction have impaired function (Senderek et al., 2011; Sanes 

and Lichtman, 1999; Martin, 2002; Guergueltcheva et al., 2012). Synapses are the 

fundamental units of the human nervous system (Martin, 2002; Senderek et al., 2011), which 

implies that synapses could play an important role in the function of the neuromuscular 

junction. Research from 40 years ago suggested that some glycoproteins, such as 

acetylcholine receptors and acetylcholinesterase, are concentrated at neuromuscular synapses 

(Sanes and Cheney, 1982; Conti-Tronconi and Raftery, 1982; Massoulie and Bon, 1982), and 

this implies that glycoproteins are essential for synaptic function or development. In addition, 
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many vital neuromuscular proteins are glycosylated, such as agrin and dystroglycan 

(Senderek et al., 2011; Martin, 2002). Thus attention should be paid to the glycosylation in 

the neuromuscular junction. However, most neurobiologists usually ignored the glycosylation 

when they were thinking about synapses, thus research on synaptic function has been carried 

out using approaches in which glycans were not considered (Martin, 2002), as a result of 

which they would narrowly miss an opportunity to discover something of interest in the 

synapse. Nowadays, some neurobiologists have realized this problem. 

 

Figure 1.25 A simplified hexosamine biosynthesis pathway  

Usually less than 5 % of the fructose-6-phosphate isomerized takes part in hexosamine pathway. The 
first and rate-determining step is coupling of an amino group from glutamine (Gln) to fructose-6-
phosphate. This reaction is catalysed by GFPT1 or GFAT1. The product Glucosamine-6-phosphate 
then reacts with acetyl-CoA to form N-acetylglucosamine-6-phosphate. After that, an isomerase 
change N-acetylglucosamine-6-phosphate into N-acetylglucoseamine-1-phosphate. Finally, the latter 
reacts with UTP, producing UDP-N-acetylglucosamine (UDP-GlcNAc) which acts as a precursor for 
amino sugar used for synthesis of proteoglycans, glycoproteins, glycolipids and O-GlcNAc (Senderek 
et al., 2011). 

 

GFPT1 (glutamine-fructose-6-phosphate transaminase 1), also named GFAT1 (glutamine-

fructose-6-phosphate aminotransferase 1), is the first enzyme of the hexosamine biosynthesis 

pathway which has been shown in Figure 1.25 (UniProtKB, 2012; Senderek et al., 2011). It 
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transfers an amino group from glutamine to fructose-6-phosphate to yield glucosamine-6-

phosphate, providing the precursor for uridine diphosphate N-acetylglucosamine (UDP-

GlcNAc) synthesis. UDP-GlcNAc is an essential substrate for all mammalian glycosylation 

biosynthesis pathways and N-glycan branching is especially sensitive to alterations in the 

concentration of this sugar nucleotide (Senderek et al., 2011; UniProtKB, 2012; Freeze et al., 

2015).  

In GFPT1, there are two sugar isomerase (SIS) domains and one glutamine amidotransferase 

domain (UniProtKB, 2012; Senderek et al., 2011). The active site of this protein is still 

unclear though there is a prediction about the active site (UniProtKB, 2012). GFPT1 has two 

isoforms: isoform 1 and isoform 2 which are composed of 699 amino acids and 681 amino 

acids, respectively. The sequence difference between isoform 1 and isoform 2 is that peptide 

229-246 is missing in the latter (UniProtKB, 2012). 

In 2011, 16 CMS patients caused by GFPT1 mutations were reported (Senderek et al., 2011). 

In the next year, more CMS patients were discovered and the clinical features of all these 

patients were further documented (Guergueltcheva et al., 2012). In 2013, 12 novel mutations 

in CMS patients were identified (Selcen et al., 2013). The details of the GFPT1 CMS patients 

that are associated with this project are listed in the following table. The mutation sites in the 

other four patients are not clear. 

Table 1.8 The country of origin, gene mutation sites and the amino acid changes caused by the 
mutations 

CMS Country of origin Nucleotide change Amino acid changes 
GFPT1 patient 1 Germany 595G>T Val199Phe 
GFPT1 patient 2 Spain 1475T>C Met492Thr 
GFPT1 patient 3 Spain 1475T>C Met492Thr 

 

Having discovered that some of their CMS patients had mutations in GFPT1, Lochmuller et 

al. had found that these patients have a recognizable pattern of weakness of shoulder and 

pelvic girdle muscles, and defects in ocular or facial muscles showing a favourable treatment 

response to acetylcholinesterase (AChE) inhibitors. They discovered that the enzymatic 

activity of control GFPT1 did not change too much compared that of the mutants (Figure 

1.26A). The comparison of GFPT1 amounts in patients and the control showed that the 

amount of GFPT1 in the two patients reduced to 51% and 22% of the GFPT1 amount in the 

control (Figure 1.26B) (Senderek et al., 2011). In addition, they also set up an animal model 

using zebrafish. The result from the animal model showed that low expression level of 
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GFPT1 resulted in delayed neuromuscular junction development and abnormal muscle 

morphology (Senderek et al., 2011), GFPT1 was found to be essential for events in 

neuromuscular transmission. GFPT1 knockout mice are not available yet.  

A 

 
B    

 
Figure 1.26 Analysis of the enzymatic activity of GFPT1 mutants (A), Western blot analysis of 
GFPT1 expression in myoblasts (B) 

In A, HEK293 cells were transfected with either wild type or mutant GFPT1 constructs. Enzyme 
activity of GFPT1 was measured in cell lysates with the glutamate dehydrogenase method 48 h after 
transfection. The enzymatic activity of every mutant was normalized to GFPT1 protein amounts 
determined by western blot analysis of cell lysates used for activity measurements. Triplicate 
experiments were carried. Error bars indicate ± SD; significant differences from wild type **P < 0.01; 
***P < 0.001. n.s., not significant (Senderek et al., 2011). In B, cell lysates of cultured myoblasts and 
differentiated myotubes of patients 3 and 5 (shown in Table 1) and one healthy control donor were 
immunoblotted with an anti-GFPT1 antibody (upper panel). Actin was used as a control. GFPT1 band 
intensities were normalized to actin bands in the same lane (Senderek et al., 2011). 
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Since they have not carried out any glycomic investigation on GFPT1 patients, and GFPT1 

plays an essential role in synthesizing UDP-GlcNAc which is involved in the initiation of N-

glycan antennae (Figure 1.27), we hypothesized that mutations in GFPT1 may cause N-

glycan branching variations and thus have an influence on protein glycosylation. This 

hypothesis can be tested via a  systematic glycomic study on GFPT1 patients. Additionally, 

samples from DOK7 CMS patient and other muscular disease patients were also investigated. 

This was to check if there was a glycosylation variation and whether this variation was 

unique in the GFPT1 CMS patients. 

 

Figure 1.27 UDP-GlcNAc is involved in the initiation of N-glycan antennae 

 GlcNAc,  Man, the numbers in the brackets under the enzyme are the Km values (Lau et al., 2007). 

 

1.7.2. Muscular diseases caused by other gene mutations 

 

Mutations occurring in other genes which are not encoding protein glycosylation enzymes, or 

enzymes synthesising the building blocks for protein glycosylation can also result in 

muscular diseases. 

 

1.7.2.1. CMS caused by DOK 7 mutations 
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DOK7 encoded by DOK7 is a postsynaptic protein involved in the acetylcholine receptor 

(AChR) clustering pathway (Palace, 2012). It functions as an activator of muscle, skeletal 

receptor tyrosine kinase (MuSK) via dimerization (Bergamin et al., 2010). It is likely that it 

plays an important role in neuromuscular synaptogenesis. 

In 2006, DOK7 mutation was firstly reported as a cause of CMS (Beeson et al., 2006). One 

year later, this type of mutation has been further shown to underlie a recessive CMS 

associated with small simplified neuromuscular junctions but normal acetylcholine receptor 

and acetylcholinesterase function (Palace et al., 2007). Onset of DOK7 CMS tends to occur at 

the ages of two to three years (Palace, 2012). The characteristic of the onset is that patients 

show difficulty in walking development after normal motor milestones (Palace et al., 2007). 

Proximal muscles were severely affected, resulting in weakness in limb-girdle. It is common 

that the symptoms become worse in adulthood, particularly impacting respiratory function. 

Treatment with ephedrine or oral salbutamol can result in a slow, steady, and often dramatic 

improvement over months (Palace, 2012). These characteristics of DOK7 CMS are different 

from limb-girdle myasthenia associated with tubular aggregates, in which GFPT1 mutations 

were detected and patients showed positive response to anticholinesterase treatments (Palace 

et al., 2007; Senderek et al., 2011).  

It has been reported that DOK7 mutation is the third most common cause of CMS in the UK 

(Palace, 2012). Our knowledge and understanding of this disease is limited, thus investigation 

will help clinical diagnosis and potential treatment. 

 

1.7.2.2. Muscular disease caused by MTND5 mutations  

 

MTND5 is short for mitochondrial NADH dehydrogenase 5 gene which encodes the subunit 5 

of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I). Like 

the position of GFPT1 in hexosamine pathway, Complex I is the first enzyme in the 

mitochondrial electron transport chain (Liolitsa et al., 2003). In eukaryotes, Complex I is 

situated in the inner membrane of the mitochondria. It functions as a catalyst to transfer 

electrons from NADH to coenzyme Q10. 

It has been reported that mutations in MTND5 can result in neurodegenerative disorders, such 

as Leigh syndrome and Parkinson's disease (Parker and Parks, 2005; Bannwarth et al., 2013; 
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Petruzzella et al., 2003). However, researchers also find that MTND5 mutations can lead to 

muscular diseases, such as myopathies (Alston et al., 2010; Downham et al., 2008).  

Recently a young girl with defect in Complex I in muscle caused by a mutation, 

m.12425delA, within the MTND5 gene was reported. This single deletion was not detected in 

her mother but identified in some tissues from her proband, which implies that this is a de 

novo mutation. Her cardinal symptoms are renal failure and myopathy (Alston et al., 2010).  

 

1.7.2.3. Limb girdle muscular dystrophy type 2A (LGMD2A) caused by CAPN3 mutations 

 

LGMD2A is considered to be the most common form of recessive LGMD. It is an autosomal 

recessive disorder caused by mutated CAPN3 gene which encodes deficient calpain-3 protein 

(calcium-activated neutral protease 3). Calpain-3 protein is a cysteine protease belonging to 

the intracellular calpain family (Rocha and Hoffman, 2010; Richard et al., 1995). It is a 

muscle-specific enzyme. Although the role of this enzyme plays in normal skeletal muscle 

physiology and in LGMD2A pathophysiology is not clear (Richard et al., 1995; Fanin and 

Angelini, 2015), a study suggests that it is important for a physiological process in muscle 

termed “sarcomere remodelling” (Kramerova et al., 2005).   

Currently the way to diagnose LGMD2A is detecting calpain-3 protein deficiency in muscle 

and then identifying the causative mutations. Other biochemical tests are not sensitive (Fanin 

and Angelini, 2015; Rocha and Hoffman, 2010).   

 

1.7.2.4. Pompe disease caused by GAA mutations 

 

Pompe disease is a disorder of glycogen accumulation. It is caused by mutations in the gene 

GAA which encodes acid α1,4 glucosidase, a lysosomal enzyme. This enzyme plays an 

essential role in the decomposition of glycogen in lysosomes. Its deficiency mainly results in 

lysosomal glycogen over storage, usually in cardiac and skeletal muscles, due to the 

incapacity of breaking down glycogen into Glc (Matalon et al., 2006; Turaca et al., 2015). 
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In the process of translation, lysosomal enzymes enter the ER where glycosylation occurs co-

translationally (Hermans et al., 1993). Research shows that a suitable protein conformation is 

indispensable for recognition and glycosylation of a site (Bause and Legler, 1981). After the 

three terminal Glc residues are removed from the 14-sugar (2 GlcNAc, 9 Man and 3 Glc) 

precursor in the ER, a Man-6-phosphate recognition marker is acquired as a lysosomal 

targeting sign by most of the lysosomal enzymes. This is achieved by transferring GlcNAc-1-

phosphate from UDP-GlcNAc to a specific mannose residue, and subsequently the phosphate 

is released by a phosphodiesterase. Combining with the mannose 6-phosphate receptor this 

process is vital for lysosomal targeting. The enzyme is then shipped to the endosomes in 

which a pH decrease results in the dissociation of the ligand and the receptor. The enzyme 

continues its way to the lysosome and the receptor goes back to the Golgi apparatus 

(Hermans et al., 1993). It is known that the acid α1,4 glucosidase will follow this pathway 

and undergo modification with Man-6 phosphate substituted N-glycans. It possesses 7 N-

glycosylation sites. Importantly, removal of the second glycosylation site at Asn-233 affects 

significantly the formation of mature enzyme (Hermans et al., 1993). However, it is not clear 

whether the mutation occurring in this gene had altered the cell glycome.  

 

1.8. The protection of the embryo/foetus from the maternal immune system 
 

1.8.1. Background 

 

In 1953 Sir Peter Medawar raised a question 'how can the mother nourish a foetus which is 

similar to a "foreign organ" (paternal contribution to its half genome) within itself for several 

months but not reject it?' He gave three possible explanations: the antigenicity of the foetus is 

immature; maternal immunological indolence or inertness, and anatomical separation from 

the mother (Medawar, 1953). However, Medawar’s hypotheses could not be supported by 

subsequent investigations. Immunity can be induced in skin transplantation tests when 

injecting foetal tissue (Billingham et al., 1956), arguing against the first possible explanation; 

the mother shows response to pathogens in pregnancy (Head and Billingham, 1986), which 

means the second one has been denied; the extravillous cytotrophoblast (evCTB) can invade 

the maternal decidua and myometrium and remodel the uterine arteries for the foetus 
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(Handschuh et al., 2007; Clark and Schust, 2013; Benirschke, 1994), and this is in conflict 

with the last one.  

 

1.8.2. The human fetoembryonic defense system hypothesis (hu-FEDS) 

 

To address the question, in 1996 Gary F. Clark et al. raised a hypothesis termed the human 

fetoembryonic defense system hypothesis (hu-FEDS) (Clark et al., 1996), and later it was 

renamed as eutherian fetoembryonic defence system hypothesis (eu-FEDS) to apply more 

broadly. It is a hypothetical model depicting a way via which the human immune system is 

able to recognize foreign substance as "own species" as has been observed with maternal 

immune tolerance in pregnancy. The fundamental idea of this hypothesis is that glycoproteins, 

which exist in the reproductive system and are exposed on gametes can either inhibit immune 

responses or prevent rejection of the foetus (Clark et al., 2001). Biomolecules in human 

seminal plasma and the pregnant uterus had been shown to suppress immune responses in 

vitro (Bolton et al., 1987; Kelly and Critchley, 1997), but the idea that human gametes could 

have an influence on immune responses was novel. This model has been intensively tested 

since it was conceived, and an increasing amount of supportive evidence for this model has 

been collected (Kui Wong et al., 2003; Pang et al., 2007). The following section talks about 

the gametes, from which the foetus initially develops.    

 

1.8.3. Human gametes and maternal immune responses 

 

In humans the gametes are sperm and eggs. Most of the information available suggests that 

sperm and eggs do not express detectable amounts of human leukocyte antigens (HLA) on 

the surface (Hutter and Dohr, 1998; Clark, 2014). If they did, the mother would reject the 

paternal sperm as a foreign organ transplant. The genes encoding HLA antigens are located 

on chromosome 6p21. HLA class I genes have been divided into two types, class Ia and class 

Ib which contains HLA-A, -B, -C, and HLA-E, -F, and -G, respectively. HLA class II (HLA-

D) genes are not translated in human trophoblast cells (Murphy and Tomasi, 1998; Hunt et al., 

2005; Apps et al., 2009). The cytotoxic T lymphocyte (CTL) is responsible for this HLA 

rejection as it kills cells with foreign HLA. Since sperm does not express detectable amounts 
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of HLA, it is ‘invisible’ to CTL. However, in the mother there are other immune cells, such 

as natural killer (NK) cells, which can eliminate cells without detectable HLA class I 

molecules (Karre, 2002; Jaeger and Vivier, 2012). Therefore, it is likely that the sperm will 

be killed by NK cells. However, studies have shown that human sperm express bisecting type 

N-glycans which could inhibit NK cell cytotoxicity (Pang et al., 2007; Patankar et al., 1997). 

Indeed, multiple pieces of evidence have shown that bisecting type N-glycan can suppress 

NK cell cytotoxicity. For instance, human K562 erythroleukaemic cells are easily killed by 

natural killer cells. However, stable transfection of K562 cells with the gene that encodes 

GlcNAc-transferase III which is responsible for transferring a GlcNAc to the bisecting site 

could produce NK cell resistant transformants (Patankar et al., 1997; Yoshimura et al., 1996). 

It is therefore likely that the sperm can evade these two major immune cells via glycan-

mediated processes. 

Recent studies also suggest that mechanisms to avoid the human immune system used by 

gametes, tumour cells and pathogens may have something in common. To some extent, they 

display molecular mimicry which is the expression of surface structures similar to those 

found in the host (Kui Wong et al., 2003; Pang et al., 2007; Clark, 2014).  

 

1.8.4. Human foetus and maternal immune responses 

 

A zygote forms as a result of fertilization, and then it becomes an embryo which develops 

into a foetus. The foetus floats in the amniotic fluid in the uterus, and it communicates with 

the mother via an interface termed placenta. Foetal development in utero requires a functional 

placenta that mediates the transport of nutrients and gases from the maternal blood which are 

essential for maintaining foetal viability. In addition to this, its development also requires the 

protection of the embryo/foetus from the maternal immune system. The blood circulations of 

the foetus and the mother are separate (Hunt et al., 2005). The foetus is like a foreign 

transplant organ for the latter due to the fact that it expresses paternal HLA molecules 

(Guleria and Sayegh, 2007). The pregnant uterus yields two major glycoprotein molecules, 

CA125 and glycodelin-A (GdA), which can suppress the potential maternal immune response 

against the foetus (Lee et al., 2009; Kui Wong et al., 2003; Clark and Schust, 2013), so the 

foetus is safe. Clinically, the major part of the placenta is composed of foetal elements; only a 

very small amount of maternal decidua will be shed at delivery (Benirschke, 1998). This 
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suggests that for the mother the placenta is foreign. Anatomically, a placenta is composed of 

three principal parts: trophoblasts, connective tissue with chorionic membrane and blood 

vessels, and the amnion (Benirschke, 1998). Among these 3 parts, the trophoblast is in very 

intimate contact with the maternal blood in which the immune cells can circulate (Benirschke, 

1998; Juch et al., 2012), which suggests that it is the placenta trophoblast that would be the 

target for the maternal immune cells. The attack would normally be expected to result in 

immune responses, and this could trigger severe pregnancy complications. However, the fact 

is that most pregnant women do not suffer these pregnancy complications, which implies that 

the immune response has been suppressed. The underlying mechanism of how the immune 

response is suppressed at the placenta trophoblasts remains unknown. It is therefore 

necessary to pay attention to the trophoblasts. 

Placenta trophoblasts (TB) are originally derived from the trophectoderm, the outter layer of 

a blastocyst (Georgiades et al., 2002; Paria et al., 2002). They are considered to be 

trophoblastic stem cells as they can differentiate into two different types of cells: the villous 

cytotrophoblast (CTB) and the extravillous cytotrophoblast (evCTB). The former fuses with 

each other, forming syncytiotrophoblasts (STB) which are multinucleated. CTB and STB stay 

on the foetal side (Figure 1.28), and they cover the chorionic villi and are responsible for the 

exchange of gases and nutrients between the mother and the foetus via the blood (Tarrade et 

al., 2001; Georgiades et al., 2002; Handschuh et al., 2007; Ji et al., 2013). The latter, evCTB, 

extravasates and invades the maternal decidua and myometrium where they act with decidual 

NK cells to remodel uterine arteries into flaccid conduits. Thus evCTB cells are spread out on 

the maternal side (Figure 1.28). Defects in the invasion can result in pregnancy complications, 

including late miscarriage and preeclampsia (Handschuh et al., 2007; Clark and Schust, 2013; 

Benirschke, 1994; Robson et al., 2012; Parham, 2004).  
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Figure 1.28 Human placental plate structure after 12 weeks of gestation: the placenta has a 
foetal and a maternal side 

The foetal part is composed of branched villous structures which are soaked in maternal blood for 
nutrition and gas exchange. The maternal decidua is full of stromal and immune cells and is traversed 
by spiral arteries which pump blood into the intervillous space. The placental villi are covered by an 
inner layer of mononucleated villous cytotrophoblasts (CTB) and an outer layer of fused 
syncytiotrophoblasts (STB). The extravillous cytotrophoblasts (evCTB) are extravasated (green spots) 
and then spread out in the maternal part (Clark and Schust, 2013).  

 

1.9. Aims of this thesis 
 

The main aim is to investigate biomedically important glycosylation using mass 

spectrometric approaches. 

There are three specific aims: 

• Glycomic analysis of HeLa cells and NHDF for developing potential antitumor 

therapeutic medicines (Chapter 3).  

• Glycomic investigation of CMS caused by GFPT1 mutations and other muscular 

diseases caused by other gene mutations (Chapter 4).  

• To further understand the role of glycans in human fetoembryonic defence system by 

structurally characterizing trophoblast N-glycans using mass spectrometry (Chapter 5). 
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2. Materials and methods 
 

2.1.  Materials 
 

2.1.1. General chemicals and reagents 

 

The ultra-pure water (Neptune Purite water purification system, Purite Ltd, Oxfordshire, UK), 

nitrogen and argon (BOC, Guildford, UK), sodium chloride (NaCl) (Rose Chemicals Ltd, 

London, UK) and 3,4-diaminobenzophenone (DABP) (Acros Organics, Geel, Belgium). 

Methanol, ammonia, dimethylsulphoxide (DMSO), propan-1-ol, acetic acid, acetonitrile, 

chloroform, butanol, sodium hydroxide and trifluoroacetic acid (TFA) are from Romil 

(Cambridge, UK). Idoacetic acid (IAA), tris(hydroxymethyl)aminomethane (Tris), α-cyano-

4-hydroxycinnamic acid, sodium cholate, hexane, potassium borohydride (KBH4), 2,5-

dihydroxybenzoic acid (DHB) and sodium borodeuteride (NaBD4) are from Sigma-Aldrich 

(Poole, UK). Ammonium bicarbonate (AMBIC, NH4HCO3), 3-(N-Morpholino)-

propanesulfonic acid (MOPS), manganese chloride 4-hydrate, UDP-Gal, sodium acetate 

(CH3COONa), ethylenediaminetetraacetic acid (EDTA), potassium hydroxide (KOH), formic 

acid and Dowex 50WX8 beads are from Fluka (Polle, UK). 3-[(3-Cholamidopropyl) 

dimethylammonio]-1-propanesulfonate hydrate (CHAPS) and dithiothreitol (DTT) are from 

Roche (East Sussex, UK). Acetic anhydride and methyl iodide are from Alfa Aesar 

(Lancaster, UK). 

 

2.1.2. Standards and enzymes 

 

Calibration standards for MS and MS/MS are 4700 calibration standard kit (AB Sciex, 

Warrington, UK), glycan standards (Dextra, Reading, UK). 

Porcine pancreas trypsin (Sigma-Aldrich, Poole, UK), PNGase F (Flavobacterium 

meningosepticum, recombinant from E. coli, Roche, East Sussex, UK), rEGCase II (E. coli 

encoding the gene of this enzyme yielded by Rhodococcus sp., Takara, Saint-Germain-en-

Laye, France), β1,4-galactosyltransferase (Merk, Darmstadt, Germany), endo-β-galactosidase 
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(Escherichia freundii, AMSBIO, Oxford, UK), sialidase S (expressed in E. coli, recombinant 

from Streptococcus pneumonia, Prozyme, Cambridge, UK) and sialidase A (expressed in E. 

coli, recombinant from Arthrobacter ureafaciens, Prozyme, Cambridge, UK). 

 

2.1.3. Biological samples 

 

All samples were kindly provided by my collaborators, the samples were then subjected to 

glycomic analysis in our laboratory. 

 

2.1.3.1. NHDF (normal human dermal fibroblasts) and HeLa cells 

 

Two batches of NHDF and HeLa cells were cultured in vitro by Professor Els Van Damme 

and Miss Chenjing Shang at Ghent University, Belgium. 

  

2.1.3.2. Myoblasts and myotubes 

 

Three batches of samples were provided by Professor Hanns Lochmuller and Dr. Juliane 

Mueller at Newcastle University. The first two batches are myoblasts; the last batch is the 

myotube. 

In the first batch there were five myoblast cell lines which were derived from the muscle 

biopsies obtained from five separate patients and then immortalised in vitro. These patients 

are one DOK7 patient, one MTND5 patient, GFPT1 patients 1, 2 and 3. Each cell line except 

GFPT1 patient 3 has three pellets which were harvested from myoblasts cultured in the 

skeletal muscle cell growth medium containing 5%, 10% and 15% foetal calf serum (FCS). 

The GFPT1 patient 3 cells grew extremely slowly and they only grew in the medium with 15% 

FCS.  

In the second batch, there were nine myoblast cell lines. In addition to the five mentioned in 

the first batch, the other four cell lines were derived from the muscle biopsies obtained from 

four separate people and then immortalised in vitro. These four people are healthy controls 1 
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and 2, one LGMD2A (limb girdle muscular dystrophy type 2A) patient and one Pompe 

disease patient. Samples from two healthy controls were obtained via orthopaedic surgery. 

These myoblasts were cultured in the medium containing 15% FCS.  

In the third batch, there were nine myotube cell lines. These myotubes were differentiated 

from myoblasts which were derived from the muscle biopsies obtained from patients and 

healthy controls and then immortalised in vitro. The myotubes were cultured in the medium 

containing 15% FCS.  

The total number of the sample is shown in section 4.2. 

 

2.1.3.3. Trophoblasts 

 

There were four sets of primary human trophoblasts isolated from four separate patients who 

had undergone an uncomplicated pregnancy and requested Cesarean section delivery. These 

trophoblasts were cultured in vitro. Four cytotrophoblast (CTB) and four syncytiotrophoblast 

(STB) samples were received in duplicate from Professor Gary F. Clark at University of 

Missouri. The STB was differentiated from the CTB.  

Two batches of extravillous cytotrophoblast (evCTB) samples were provided by Dr. Sandra 

M. Blois at University Medicine Berlin, Germany.  

 

2.2. Methods  
 

To acquire N-, O- and glycolipid glycans, samples were processed following an established 

protocol which has been summarized in Figure 2.1 (Jang-Lee et al., 2006; North et al., 2010; 

Jia et al., 2014; Parry et al., 2007). 
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Figure 2.1 An overview of the glycomic approaches 

 

2.2.1. Sonicator cleaning 

 

It is important to clean the sonicator (VC130PB, Sonics & Materials, Inc.) that will be used in 

the homogenisation step as mass spectrometry is a very sensitive technique and any 

contaminant left on the sonicator could have an influence on the experiment result. 
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To clean the sonicator, firstly, the tip of the sonicator was dipped into ultra-pure water in a 

clean beaker and sonicated in continuous mode (10 seconds, 20 Amps). The first step was 

repeated with a solution containing 33.33% (volume percent) methanol, 33.33% formic acid 

and 33.33% ultra-pure water. After that the tip of the sonicator was immersed in ultra-pure 

water and kept in an ultrasonic bath (FS200, Decon) 10 minutes. The first step was repeated 

with following solutions: ultra-pure water, methanol, methanol chloroform mixture (v: v=1: 

1), methanol, ultra-pure water (twice). Finally the sonicator was activated at 40 Amps in an 

empty Falcon tube for 1 minute.  

 

2.2.2. Homogenisation 

 

In order to extract the glycoproteins and glycolipids from cells, homogenisation is required to 

mechanically disrupt cells. However, because glycoproteins and glycolipids have different 

properties, different extraction approaches were employed. 

 

2.2.2.1. Glycoprotein extraction   

 

Lyophilized cell pellets were suspended in 1ml homogenization buffer (150 mM NaCl, 25 

mM Tris, 5 mM EDTA and 1% CHAPS (volume percent), pH 7.4), sonicated in continuous 

mode for 10 seconds at 40 Amps. This was repeated 5 times pausing on ice for 15 seconds 

between each sonication.  

Lysed sample was transferred into a dialysis cassette (3.5K MWCO, 0.5 - 3 ml, Thermo 

Scientific) and dialysed against the 4.5 L dialysis buffer (50 mM ammonia bicarbonate, pH 

7.5) at 4 °C for 48 hours. Constant stirring was used during the dialysis process, the dialysis 

buffer was changed regularly (approximately every 12 hours). After dialysis, the sample was 

transferred into a 15 ml Falcon tube, covered with perforated Parafilm (Bemis) and 

lyophilized using a freeze dryer (Modulyod-230, Thermo Fisher). 
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2.2.2.2. Glycolipid extraction 

 

Lyophilized cell pellets were suspended in 2 ml ice cold ultra-pure water and then transferred 

into a 15 ml Falcon tube. The sample was sonicated on ice in continuous mode (10 seconds, 

40 Amps). This was repeated 2-3 times pausing on ice for 15 seconds between each 

sonication. Then the tube was taken into fume hood, in which 2.67 volumes of methanol 

(2.67 × volume of the ice cold ultra-pure water) was added and mixed fully. After that 1.33 

volumes of chloroform (1.33 × volume of the water) was added and mixed fully. The mixture 

was centrifuged (IEC Centra CL3 centrifuge, Thermo) at 3000 rpm for 10 minutes (100 µl 

0.6 M Tris buffer was added when the protein did not precipitate, and then the mixture was 

centrifuged again). The final supernatant (glycolipid fraction) was collected and its volume 

was measured. Then 0.173 volume of ultra-pure water (0.173 × volume of the supernatant) 

was added and mixed fully. The mixture was centrifuged (3000 rpm, 15 minutes). The 

mixture was divided into two layers which were collected separately: up layer is polar 

glycolipid; bottom layer is nonpolar glycolipid.  

 

2.2.3. Reduction and carboxymethylation 

 

Tris buffer (0.6 M, pH 8.5) was freshly made; pH was adjusted using acetic acid. The buffer 

was degased by bubbling gently nitrogen at the bottom of the buffer for 30 minutes.   

The lyophilized sample from section 2.2.2.1 was suspended in 200 µl degased Tris buffer. 

Then 200 µl 10 mg/ml DTT (prepared from the degased Tris buffer) was added. The mixture 

was incubated (37 °C, 90 minutes). After the incubation the sample was centrifuged shortly. 

200 µl 60 mg/ml IAA (prepared from the degased Tris buffer) was then added, this mixture 

was incubated at room temperature in dark (approximately 20 °C, 90 minutes). The reaction 

was terminated by transferring the sample into a dialysis cassette. The mixture was dialysed 

in 4.5 L dialysis buffer (see section 2.2.2.1) at 4 °C for 48 hours. Constant stirring was also 

used during the dialysis process; the dialysis buffer was changed regularly as mentioned 

previously (see section 2.2.2.1). After dialysis, the sample was transferred into a clean 

disposable glass tube (GPI 15-415, 13x100mm, Corning), covered with perforated Parafilm 

and lyophilized. 
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2.2.4. Tryptic digestion and glycopeptide purification 

 

Ammonium bicarbonate (AMBIC) buffer (50 mM, pH 8.4) was freshly made; pH was 

adjusted using ammonia solution.  

The lyophilized sample from section 2.2.3 was dissolved in 100 µl AMBIC buffer, then 200 

µl 1 mg/ml trypsin (prepared from the AMBIC buffer) was added. The mixture was incubated 

(37 °C, 14-16 hours). After the incubation the sample was centrifuged shortly. The tryptic 

digestion was terminated by heating the sample (100 °C, 2 minutes). 1 drop of acetic acid 

was added to neutralize the sample. The sample was then preceded to the purification step. 

A purification cartridge (Oasis HLB Plus, Waters) was attached to a 5 ml glass syringe 

(Samco) and then conditioned by eluting successively with 5 ml methanol, 5 ml 5% acetic 

acid (volume percent), 5 ml propan-1-ol, and 15 ml 5% acetic acid. The sample was loaded 

dropwise onto the cartridge. In order to avoid losing sample, the tube was washed 1-2 times 

using 5% acetic acid, the washing solution was also loaded onto the cartridge. The cartridge 

was washed using 20 ml 5% acetic acid, 4 ml 20% propan-1-ol solution (volume percent, 20% 

propan-1-ol in 80% 5% acetic acid), 4 ml 40% propan-1-ol solution, 4 ml 100% propan-1-ol. 

All propanol fractions were collected while the 5% acetic acid fraction was discarded as it 

contained hydrophilic contaminants. The volume of the fractions was reduced in a 

concentrator centrifuge, SpeedVac (SPD121P-230, Thermo) until these fractions could be 

combined into a single tube. Finally, the sample was covered with perforated Parafilm and 

lyophilized. 

 

2.2.5. Polar glycolipid recovery 

 

The step was carried out in the fume hood due to the use of chloroform. A purification 

cartridge (tC18, Sep-Pak, Waters) was attached to a 5 ml glass syringe (Samco) and then 

conditioned by eluting successively with 5 ml methanol, 5 ml methanol water mixture (v: v=1: 

1), 5 ml methanol chloroform mixture (v: v=1: 1), and again 15 ml methanol water mixture. 

The polar glycolipid fraction from section 2.2.2.2 was loaded dropwise onto the cartridge. 
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The cartridge was washed using 15 ml methanol water mixture, 5 ml methanol and 5 ml 

methanol chloroform mixture. The methanol containing fractions were collected, combined 

and dried under nitrogen.  

 

2.2.6. Release of glycans from glycoconjugates and purification of released glycans 

 

As previously mentioned in sections 1.2.2.1, 1.2.2.2 and 1.2.3.1, N-, O- and glycolipid 

glycans are linked to proteins and lipids in different patterns, the approaches that employed to 

release these glycans are various. 

All N-glycans were cleaved by peptide-N-glycosidase F (PNGase F). PNGase F is an 

endoglycosidase that cleaves the linkage between the N-glycan inner most GlcNAc and the 

amine group of the GlcNAc linked Asn residue on glycoproteins (Varki, 2009; Tarentino et 

al., 1985). This cleavage did not cause any change on the glycan portion but resulted in 

variation on the protein backbone: the Asn residue is substituted by an aspartic acid (Asp) 

residue.  

All O-glycans were released by alkaline borohydride treatment (alkaline elimination) (Wada 

et al., 2010; Varki, 2009). Although O-glycosidase is also available, but it only cleaves some 

simple core 1 glycans, thus a chemical method, alkaline elimination, was used to release O-

glycans. The reaction was performed under reducing environment which is helpful for 

preventing 'peeling reaction' of the released glycans via reducing the terminal GalNAc to its 

alditol form, thus it is also termed reductive elimination. This elimination was usually carried 

out after N-glycan release; otherwise it would cleave both N- and O-glycans, which would 

complicate subsequent data analysis.   

The glycolipid glycans were released using ceramide glycanase (Recombinant 

endoglycoceramidase II). Like PNGase F, this enzyme is also an endo-enzyme which cuts in 

the chain between the glycan and the ceramide (see section 1.2.3.1) (Izu et al., 1997).  
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2.2.6.1. Release of N-glycans and purification of released N-glycans 

 

AMBIC buffer was freshly made (see section 2.2.4 for details). PNGase F cleaves N-glycan 

chains from glycoproteins/glycopeptides. However, it cannot cleave the glycan chain which 

carries an α1,3-linked core fucose residue at the innermost GlcNAc (Tretter et al., 1991; Parc 

et al., 2015).  

The lyophilized sample from section 2.2.4 was dissolved in AMBIC buffer (200-300 µl, 

depends on the amount of the sample), then 4 U of PNGase F was added (the amount of the 

enzyme added is determined by the amount of the sample) and incubated (37 °C, 24 hours, 

another 4 U of PNGase F after the first 12-hour incubation). After incubation the sample was 

covered with perforated Parafilm and lyophilized. The lyophilized sample was proceeded to 

purification. 

A classic C18 Sep-Pak cartridge (Waters) was attached to a 5 ml glass syringe and then 

conditioned as previously mentioned in section 2.2.4. The sample was loaded dropwise onto 

the cartridge. The cartridge was washed using 5 ml 5% acetic acid, followed by 4 ml 20% 

propan-1-ol solution, 4 ml 40% propan-1-ol solution, 4 ml 100% propan-1-ol. The 5% acetic 

acid fraction was collected as it contained released N-glycans. All propanol fractions were 

also collected as they contained the remaining peptides and O-glycopeptides. The volume of 

the fractions was reduced in SpeedVac until the fractions could be combined into a single 

tube. Finally, both 5% acetic acid fraction and propanol fraction were covered with 

perforated Parafilm and lyophilized. 

 

2.2.6.2. Release of O-glycans and purification of released O-glycans 

 

KOH solution (50 ml, 0.1 M) was made, and it is used for KBH4 solution (1 M) preparation. 

The lyophilized propanol fraction from section 2.2.6.1 was dissolved in KBH4 solution (400 

μl), and then incubated (45 °C, 20–24 hours). After incubation, acetic acid was added 

dropwise until there was no bubbling. The sample was briefly centrifuged and proceeded to 

the next step. 
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A small amount of glass wool was filled at the narrow end of a Pasteur pipette, and the 

narrow end was inserted into a section of silicone tube, the internal bore diameter of the tube 

is 1–2 mm. A screw-adjustable switch was attached close to the tip of the tube. This Pasteur 

pipette was fixed by a retort stand. The pipette was filled with 5% acetic acid, and then the 

switch was opened to make the acid run out slowly. At the same time, the pipette was refilled 

with ion-exchange Dowex 50W-X8 beads which were used to remove peptides and cationic 

salts. The beads were washed using 5% acetic acid (20 ml). The switch was employed to 

control flow to keep the level of the acid above the bead level. The sample was loaded 

dropwise into the pipette. The acid should be controlled to pass slowly the pipette. The beads 

were washed using 2 × 3 ml 5% acetic acid. The two 3 ml acetic acid fractions were collected 

though usually the first 3 ml contains released O-glycans. The volume of the fractions was 

reduced in SpeedVac to approximately 1 ml, and then covered with perforated Parafilm and 

lyophilized. However, the borates could not be removed by beads, thus an extra step, 

coevaporation, was required: after lyophilisation 0.5 ml methanolic acetic acid (volume 

percent, 10% acetic acid in 90% methanol) was added to the lyophilized sample, the mixture 

was dried under nitrogen, and this was repeated 3-4 times. 

 

2.2.6.3. Release of glycolipid glycans and purification of released glycolipid glycans 

 

Sodium acetate buffer (50 mM, pH 5.5) was freshly made, pH was adjusted using 5% acetic 

acid, sodium cholate was finally added to the buffer make its concentration as 0.2% (v/w). 

The lyophilized sample from section 2.2.5 was resuspended in the sodium acetate buffer (200 

µl). Then 25 mU ceramide glycanase was added to the sample and the mixture was incubated 

(37 °C, 24 hours). After this another 25 mU of the enzyme was added and the incubation was 

carried out for another 24 hours. After incubation, ultra-pure water was added to the sample 

to make the total volume 2 ml. Then 2 ml butanol was added. The mixture was centrifuged 

vigorously, the up layer was discarded. This step was repeated 1-2 times. Trace of butanol 

that left in the remaining liquid fraction was removed via drying under nitrogen.    

A classic C18 Sep-Pak cartridge was attached to a 5 ml glass syringe and then conditioned by 

eluting successively with 5 ml methanol, 5 ml 5% acetic acid, 5 ml acetonitrile and 15 ml 5% 

acetic acid. The sample was loaded dropwise onto the cartridge, the cartridge was then 
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washed using 5 ml 5% acetic acid. The acetic acid fraction was collected using a clean glass 

culture tube.  

This sample was further purified using Hypercarb column (Thermo Scientific) 

chromatography. The column was conditioned by eluting successively with 3 column 

volumes of 80% acetonitrile in 0.1% TFA (volume percent, the remaining 19.9% is ultra-pure 

water) and 3 column volumes of ultra-pure water. The sample was loaded dropwise onto the 

cartridge, the cartridge was then washed using 3 column volumes of ultra-pure water and 2 

column volumes of 25% acetonitrile in 0.05% TFA (volume percent, the remaining 74.95% is 

ultra-pure water). The acetonitrile fraction was collected. The volume of the fractions was 

reduced in SpeedVac until the fraction volume was approximately 1 ml. Finally, the sample 

was covered with perforated Parafilm and lyophilized. 

 

2.2.7. Other enzymatic digestions and digested glycan purification 

 

Released glycans from glycoproteins and glycolipids can be digested by enzymes, such as 

sialidase S, sialidase A, β1,4-galactosyltransferase and endo-β-galactosidase. These 

digestions can provide extra structural information.     

 

2.2.7.1. Sialidase S digestion 

 

Sialidase S is an enzyme which specifically removes non-reducing terminal unbranched α2,3 

linked sialic acid from glycoconjugates (Corfield et al., 1983). Sodium acetate buffer was 

freshly made as mentioned in section 2.2.6.3. 1 unit sialidase S powder was dissolved in the 

buffer (200 µl) to make 5mU/µl enzyme solution. 

The sample from previous was dissolved in the buffer (200 µl). 20 µl of enzyme solution was 

added to the sample, then the sample was incubated (37 °C, 24 hours, another 20 µl of the 

enzyme solution was added to the sample after the first 12 hours). After incubation, the 

sample was briefly centrifuged and proceeded to the purification step. 
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2.2.7.2. Sialidase A digestion 

 

Sialidase A is an enzyme which can specifically cleave all non-reducing terminal sialic acid 

from glycoconjugates (Ohta et al., 1989). 1 unit sialidase A powder was made into solution 

following the procedure in section 2.2.7.1. 

The sample from previous section was treated with sialidase A following the procedure that 

described in section 2.2.7.1. 

 

2.2.7.3. β1, 4-galactosyltransferase reaction 

 

β1,4-galactosyltransferase is the enzyme which can transfer a Gal from a UDP-Gal to a 

GlcNac producing a disaccharide unit, Galβ1,4GlcNac. However, if a GlcNac is bisected (see 

section 1.2.2.1), it will not be modified by this enzyme (Qasba et al., 2008; Narasimhan et al., 

1985). 3-(N-Morpholino) - propanesulfonic acid (MOPS) solution (50 mM, pH 7.4, contains 

45 uM UDP-Gal) was freshly made, pH was adjusted using ammonia, and then manganese 

chloride 4-hydrate was added to make its final concentration as 20 mM. 1 unit β1,4-

galactosyltransferase was dissolved in the solution (200 µl). 

The sample from previous section was dissolved in the enzyme solution (50 µl), then the 

sample was incubated (37 °C, 24 hours, another 50 µl of the enzyme solution was added to 

the sample after first 12 hours). The sample was briefly centrifuged and proceeded to the next 

step. 

 

2.2.7.4. Endo- β-galactosidase digestion 

 

Endo-β-galactosidase is an enzyme which hydrolyses internal β1,4 galactosidic linkage in 

this favoured repeating unit [GlcNAcβ1,3Galβ1,4]n (Scudder et al., 1983). Sodium acetate 

buffer (100 mM, pH 5.8) was freshly made; pH was adjusted using 5% acetic acid. 0.1 unit 

endo-β-galactosidase powder was dissolved in the buffer (100 µl). 
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The sample from previous section was dissolved in the sodium acetate buffer (150 µl). 20 µl 

of enzyme solution was added to the sample, then the sample was incubated (37 °C, 48 hours, 

another 20 µl of the enzyme solution was added to the sample after first 24 hours). The 

sample was briefly centrifuged and proceeded to the separation step. 

 

2.2.7.5. Digested glycan purification 

 

A purification classic C18 Sep-Pak cartridge (Waters) was attached to a 5 ml glass syringe 

and then conditioned as described in section 2.2.4. The sample was loaded dropwise onto the 

cartridge. The cartridge was washed using 5 ml 5% acetic acid. The 5% acetic acid fraction 

was collected as it contained glycans required. The volume of the fractions was reduced to 

about 1 ml by SpeedVac. Finally, the fraction was covered with perforated Parafilm and 

lyophilized.   

 

2.2.8. Permethylation of released glycans  

 

3-5 sodium hydroxide pellets and 3 ml dimethyl sulfoxide (DMSO) were added in a mortar 

and ground with a pestle. The pellet should be ground into slurry. The slurry (about 1 ml) was 

added to the glass tube which contained lyophilized sample from previous section. Then 

methyl iodide (about 0.6 ml) was added into the tube. The tube was capped and fixed on an 

automatic vortexer (VX-2500, VWR) and vortexed (15-20 minutes, 20 °C). The reaction was 

terminated by addition of ultra-pure water dropwise until there was no bubbling. Then 1 ml 

chloroform was added, ultra-pure water was added to make the final volume of the mixture 5 

ml. The mixture was centrifuged (2500 rpm, 30 seconds), the up layer was discarded. This 

step was repeated 4 times. The bottom layer was chloroform layer which contained 

permethylated glycans. It was dried under a gentle stream of nitrogen.  

Figure 2.2 shows the reducing end (OR), the non-reducing end (R) and the method of how to 

calculate the mass of a permethylated glycan.  
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Figure 2.2 The method used to calculate the mass of a permethylated glycan residue 

 

2.2.9. Purification of permethylated glycans  

 

1.5 ml, 3.5 ml, 5 ml and 7.5 ml acetonitrile was mixed with 8.5 ml, 6.5 ml, 5 ml and 2.5 ml 

ultra-pure water respectively to make 10 ml 15%, 35%, 50% and 75% acetonitrile solution. 

A classic C18 Sep-Pak cartridge (Waters) was attached to a 5 ml glass syringe and then 

conditioned by eluting successively with 5 ml methanol, 5 ml ultra-pure water, 5 ml 

acetonitrile, and 15 ml ultra-pure water. The sample from section 2.2.8 was dissolved in 

methanol/ultra-pure water (200 µl, v:v=1:1) and then loaded dropwise onto the cartridge. The 

cartridge was washed using 5 ml ultra-pure water following by 3 ml 15%, 35%, 50% and 75% 

acetonitrile solution. All acetonitrile fractions were collected. The volume of the fractions 

was reduced to about 1 ml by SpeedVac. Finally, the fractions were covered by perforated 

Parafilm and lyophilized.  

 

2.2.10. Mass spectrometry 

 

The mass spectrometric techniques used are matrix assisted laser desorption ionization time-

of-flight (MALDI-TOF), matrix assisted laser desorption ionization time-of-flight/time-of-

flight (MALDI-TOF/TOF) and gas chromatography mass spectrometry (GC-MS).  
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2.2.10.1. MS data acquisition and analysis 

 

The MS matrix, 2,5-dihydroxybenzoic acid (DHB) (20 mg/ml) in methanol/water mixture 

(v:v=7:3), for permethylated glycans was freshly made. The MS matrix, α-cyano-4-

hydroxycinnamic acid (10 mg/ml) in acetonitrile/TFA/water mixture (v:v:v=500:1:499), for 

calibration standard was freshly made. 

Purified permethylated glycans from section 2.2.9 was dissolved in methanol (10 µl). 1 µl of 

the sample was combined with 1 µl of DHB matrix and then loaded onto a metal plate. In 

addition, prepared calibration standard (AB Sciex) mixed with calibration matrix was also 

spotted on the plate. After the sample and calibration standard were dried, the plate was put 

into a Voyager-DE STR MALDI workstation (Applied Biosystems) mass spectrometer, via 

which the calibration was carried out and the MS data could be acquired. The Voyager was 

run in the reflectron positive ion mode and its accelerating voltage was set as 20kV. 

Obtained MS data was processed using Data Explorer Software version 4.9 (Applied 

Biosystems). Generally, the MS spectrum was baseline corrected with the default setting and 

then smoothed with the noise filter at a correlation factor of 0.7. The processed spectrum was 

annotated using a glycoinformatic tool, GlycoWorkBench (Ceroni et al., 2008) and a graphic 

design software, CorelDraw X3. 

 

2.2.10.2. MS/MS data acquisition and analysis 

 

The MS/MS matrix, 3,4-diamino-benzophenone (DABP) (10 mg/ml) in acetonitrile/water 

mixture (v:v=7:3), for permethylated glycans was freshly made. The MS/MS matrix for 

calibration standard is the same as the MS matrix for calibration standard described in section 

2.2.10.1. 

Previous dissolved sample from section 2.2.10.1 was dried and then redissolved in methanol 

(10 µl), 1 µl of the sample was combined with 1 µl of DABP matrix and then loaded onto a 

metal target plate. In addition, prepared calibration standard (AB Sciex) mixed with 

calibration matrix was also spotted on the plate. After the sample and calibration standard 

were dried, the plate was loaded into a 4800 MALDI-TOF/TOF mass spectrometer (AB 

SCIEX), via which the calibration was carried out. MS spectrum was firstly obtained, and 
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then peaks of interest were selected for MS/MS analyses and the MS/MS data could be 

acquired. The 4800 instrument was also run in the reflectron positive ion mode. The collision 

energy was set to 1 kV with argon as the collision gas.  

Obtained MS/MS data was also processed using the same method described in section 

2.2.10.1. 

 

2.2.10.3. GC-MS  

 

GC-MS requires the analyte to be volatile but the permethylated glycans are not volatile, 

therefore, permethylated glycans cannot be analysed directly. Further treatment of these 

glycans is required.  

 

2.2.10.3.1. GC-MS sample preparation 

 

TFA solution (2 M) was made freshly using ultra-pure water. NaBD4 solution (10 mg/ml) 

was freshly made using 2 M ammonia.   

TFA solution (200 µl) was added to the sample left in previous step and incubated (121 °C, 2 

hours). After the incubation, the sample cooled down to the room temperature, briefly 

centrifuged and then dried under a gentle stream of nitrogen. NaBD4 solution (200 µl) was 

added to the dried sample and incubated (room temperature, 2 hours). The incubation was 

terminated by adding acetic acid dropwise until there was no bubbling. The sample was 

redried under nitrogen. Because borates were introduced, coevaporation was required (see 

section 2.2.6.2). After coevaporation, acetic anhydride (200 µl) was added to the sample and 

then the mixture was incubated for acetylation (100 °C, 1 hour). Then the sample was briefly 

centrifuged and redried under nitrogen. 1 ml chloroform was added to the dry sample and 

then ultra-pure water was added to make the total volume 5 ml, the mixture was vortexed and 

then allowed it to separate into two layers, the up layer was discarded. This washing step was 

repeated 4 times. The bottom chloroform fraction was finally dried under a gentle stream of 

nitrogen. The final partially methylated alditol acetates (PMAA) were ready for analysis. 
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2.2.10.3.2. GC-MS data acquisition and analysis 

 

A blank (usually hexane) was injected into RTX-5MS column (Restek Corp.) which was 

fitted in Perkin Elmer Clarus 500 GC-MS. This was performed to make sure the column was 

clean and the instrument  was in good condition (could be used in the experiment). A glycan 

standard was firstly run and then the sample; retention times of the standard would be 

compared with the sample and would help us determine the compound of the sample. Sample 

from section 2.2.10.3.1 was usually dissolved in hexane (usually 50 µl, depends on the 

amount of the sample), and then 2 µl of dissolved sample was injected. All injections were 

carried out after the oven temperature reached 60 °C. Running a blank was required before 

every sample running.  

A list of retention times and characteristic ions were prepared for comparison. Obtained GC-

MS data, the gas chromatographic profiles and electron ionization spectra were processed 

using TurboMass version 4.5.0 (Perkin Elmer Instruments). 
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Comparative glycomic profiling of HeLa cells and 
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3. Comparative glycomic profiling of HeLa cells and normal human 

dermal fibroblast (NHDF) 
 

3.1. Introduction to the project 
 

This project is in collaboration with Professor Els Van Damme and Miss Chenjing Shang at 

Ghent University.  

In addition to performing glycan array analyses of the five SNAs (Shang and Van Damme, 

2014) mentioned in section 1.6.3, Van Damme and Shang have carried out cytotoxicity assay 

of these five SNAs using HeLa and NHDF cells, and found that all the SNAs are more toxic 

towards HeLa than NHDF cells. They have also performed in vivo luciferase (internalization) 

assay of SNAs using HeLa cells and found that the SNAs could get into the cell (Shang et al., 

2015). All these made us hypothesize that HeLa and NHDF cells could express glycans that 

the SNAs can bind to and the patterns of the glycans in these cells would be different leading 

to the different cytotoxicities, and thus glycomic analysis of these two types of cells were 

carried out to check the hypothesis. Specifically, MS and MS/MS analyses provided general 

structural information of the glycans; the result of the glycan array analyses suggested the 

determination of sialic acid linkages in the glycans as the five SNAs favoured different 

glycan motifs (see section 1.6.3); quantification of nonsialylated (gal-terminated) and 

sialylated glycans may provide a possible explanation for the result of the cytotoxicity assay 

of these five SNAs. 

The glycome patterns on both glycoproteins and glycolipids of HeLa and NHDF cells (see 

section 3.2) were analysed using MS to test the hypothesis. 

 

3.2. Sample details and sample processing 
 

Two batches of HeLa and NHDF cells were cutured in the same media (Shang et al., 2015) 

but on different days. The cells were sent to our laboratory once being harvested. The detail 

of two batches of NHDF and HeLa cells is shown in Table 3.1. 
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Table 3.1 Detail of NHDF and HeLa cells received from Ghent University 

First batch 
Cell type Cell number 

NHDF Approximately 4 million 
HeLa cells Approximately 7.5 million 

NHDF Approximately 7.5 million 
HeLa cells Approximately 10 million 

Second batch 
Cell type Cell number 

NHDF Approximately 4 million 
HeLa cells Approximately 21 million 

NHDF Approximately 7.3 million 
HeLa cells Approximately 30 million 

 

All samples were analysed using glycomic methodologies which have been described in 

section 2.2.  

 

3.3. Results 
 

3.3.1. HeLa and NHDF N-glycans 

 

3.3.1.1. MALDI-TOF MS analysis of the N-glycans of HeLa and NHDF cells 

 

Duplicate analyses of N-glycans were carried out to check the reproducibility (Figure 3.1) 

and whether combining the duplicate for the more detailed structural research would be valid.    
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Figure 3.1 MALDI-TOF MS spectra of permethylated N-glycans (m/z 2200-5680) from two 
batches of HeLa cells (top) and two batches of NHDF cells (bottom)  

The MS spectra of the cells from the first batch are black; the MS spectra of the cells from the second 
batch are red. The black spectra are overlaid on the red spectra with an offset of approximately 8 Da. 
In HeLa cells, the average peak variation between the spectra from different batches is approximately 
33%. In NHDF cells, the average peak variation between the spectra from different batches is 
approximately 19%. The result shows that there is no significant difference in the N-glycan profile of 
biological replicates.  

 

High quality MALDI data were obtained for the N-glycans from the HeLa and NHDF cells. 

Here ‘high quality’ means: 1. The spectrum does not show 14 dalton smaller 

underpermethylated peaks which could be due to the fact that the hydrogen of one of the 

hydroxyl groups in the glycan is not replaced by a methyl group (Morris et al., 1996a); 2. 

When zoom in the spectrum, the isotope peaks observed in the spectrum can be clearly 

distinguished; 3. The signal to noise ratio (S/N) of the spectrum is acceptable, which means 

the signal peaks of analyte ions do not merge with the baseline ("noise") and can be 

distinguished. S/N is a measure of a peak signal intensity relative to the "noise" level 

(Williams et al., 2003; Krutchinsky and Chait, 2002). Representative MALDI-TOF MS 

spectra of their N-glycans are shown in Figure 3.2 and Figure 3.3. Molecular ions were 

observed up to approximately m/z 5700 indicating that very good sensitivity was being 

achieved. The spectra show that high mannose and complex glycans are present in both cell 

types. Non-core fucosylated glycans, such as m/z 2792 and 3603, are more evident in HeLa 

cells. The dominant complex N-glycans in both HeLa and NHDF are sialylated with NeuAc 
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or are terminated with uncapped Gal. The result of a more detailed comparison of the glycan 

profiles of these two cell types has been summarized in section 3.3.1.7.   

 
Figure 3.2 Annotated MALDI-TOF MS spectra of permethylated N-glycans (m/z 2200-3900) 
from HeLa (top) and NHDF cells (bottom) 

Profiles were obtained from the 50% acetonitrile fraction from a C18 Sep-Pak column. All ions are 
[M+Na]+. Putative structures are based on the molecular weight, N-glycan biosynthesis pathway and 
MS/MS data. Due to the presence of heterogeneous multiantennary structures with extended LacNAc 
(Gal-GlcNAc) repeats, the annotations are simplified throughout by using biantennary structures with 
the extensions or sugars listed outside a bracket.  GlcNAc,  Man,  Gal,  Fuc,  NeuAc.   
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Figure 3.3 Annotated MALDI-TOF MS spectra of permethylated N-glycans (m/z 3900-5680) 
from HeLa (top) and NHDF cells (bottom) 

Profiles were obtained from the 50% acetonitrile fraction from a C18 Sep-Pak column. All ions are 
[M+Na]+. See legend to Figure 3.2 for explanation of structure assignments.  GlcNAc,  Man,  
Gal,  Fuc,  NeuAc.   
 

3.3.1.2. MALDI-TOF/TOF MS/MS analyses of the N-glycan at m/z 3143 of HeLa and NHDF 

cells 

 

Peaks of interest were chosen for further characterization via MALDI-TOF/TOF MS/MS 

analysis. This analysis was used to distinguish isobaric glycans with different sequences as 

well as glycans of similar masses whose isotope clusters were overlapping. 

Here the MS/MS data for the molecular ion clusters centred at m/z 3142 in two cells are 

described as an example of the latter. In HeLa cells the isotope peaks of the glycan(s) at m/z 

3143 span a wider mass range than predicted for a single glycan composition, while the 

isotope pattern in NHDF is more akin to that expected for a glycan at that molecular weight 

(Figure 3.4). This implies that this peak cluster may include a LacNAc containing glycan as 
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well as a potential sialyl-Lewis X containing glycan which differ by 2 Da. This situation has 

been reported in dendritic cells and neutrophils (Babu et al., 2009; Bax et al., 2007). 

  

 

Figure 3.4 Isotope peak cluster is wider in HeLa cells than that in NHDF 

The isotope peaks of m/z 3141 and 3143 are overlapping in spectra from HeLa cells, as a result of 
which the peak cluster is wider than in the NHDF data. 

 

In order to confirm the presence of potential sialyl-Lewis X and LacNAc and their relative 

abundance, MS/MS analyses were carried out for the two samples. As shown in Figure 3.5 

(top) the fragment ions at m/z 2679, 2230 and 1781 correspond to loss of LacNac, LacNac2 

and LacNac3 respectively, and their concurrent ions are also observed at m/z 486 and 1385. 

This demonstrates the presence of oligo-LacNAc containing glycans, in accordance with the 

isotope pattern of the molecular ion cluster (Figure 3.4). The third most abundant fragment 

ion at m/z 2142 and its concurrent ion at m/z 1021 are attributable to a sialylated, fucosylated 

glycan. Fuc is confirmed to be 3-linked as the signal at m/z 2934 corresponds to the loss of a 

Fuc from the C3 position of GlcNAc via beta elimination. These provide evidence of the 

presence of potential sialyl-Lewis X. The abundance of the fragment ions corresponding to 

potential sialyl-Lewis X containing glycan suggests that it is minor compared to the LacNAc 

containing glycan in HeLa cells. In contrast to the HeLa data, MS/MS of m/z 3142 from 

NHDF cells showed fragment ions that correspond solely to oligo-LacNAc antennae (Figure 

3.5 bottom), which is consistent with its isotope pattern.   
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Figure 3.5 Annotated MALDI-TOF/TOF MS/MS spectra of permethylated N-glycan peak 
centred at m/z 3142 in HeLa cells (top) and NHDF cells (bottom) 

Assignments of the fragment ions are indicated on the cartoons and on the spectra the horizontal red 
arrows show antennae losses whilst antennae-derived fragment ions are annotated with their 
sequences. The number indicated above the peak in the spectra is the m/z value of the fragment ion 
(resulting ion) that has been detected by the mass spectrometer. Data were acquired in the form of 
[M+Na]+ ions. The glycan molecule and its corresponding fragment ions are labelled in the same 
colour (red or black). Due to the presence of heterogeneous multiantennary structures with extended 
LacNAc repeats, the annotations are simplified throughout by using biantennary structures with the 
extensions listed outside a bracket.  GlcNAc,  Man,  Gal,  Fuc,  NeuAc. 
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3.3.1.3. Sialidase S digestion of the N-glycans of HeLa and NHDF cells 

 

It is necessary to know the linkage of the NeuAc because NeuAc linkage differences might 

cause the carbohydrate binding differences. To determine the NeuAc linkages, the glycans 

were digested with sialidase S and sialidase A, which cleave α2,3 linked and all non-reducing 

terminal NeuAc residues, respectively. 

Digestion of HeLa and NHDF cells with sialidase S resulted in partial desialylation, and with 

sialylated N-glycans at m/z 2431, 2605, 3055 and 3504 being observed (Figure 3.6 and 

Figure 3.7). The comparison of Figure 3.2 (top) and Figure 3.3 (top) to Figure 3.6 (top) and 

Figure 3.7 (top) showed that the relative abundances of many sialylated glycans in HeLa cells 

were decreased, the most obvious decrease was observed in the glycans at m/z 2966, 3416, 

3777, 3865, 4226 and 4587 which completely disappeared; simultaneously, the relative 

abundance of nonsialylated glycans was increased, the most obvious increase being observed 

in the glycans at m/z 2244, 2693 and 3143 which increased approximately 1004.9%, 1937.6% 

and 2152.5% respectively. Similarly, the comparison of Figure 3.2 (bottom) and Figure 3.3 

(bottom) to Figure 3.6 (bottom) and Figure 3.7 (bottom) also showed that the relative 

abundance of many sialylated glycans decreased in NHDF cells, the most obvious decreases 

were observed in the glycans at m/z 2966, 3416, 3865, 4226 and 4587 which completely 

disappeared; simultaneously, the relative abundance of nonsialylated glycans increased, the 

most obvious increases were observed in the glycans at m/z 3143, 4041 and 4490 which were 

increased approximately 2080.7%, 2617.0% and 745.1% respectively. In addition, sialyl 

Lewis X disappeared after the desialylation (see section 3.3.1.4 for evidence). This indicated 

that both HeLa and NHDF contain a mixture of α2,3 and α2,6 linked NeuAc. The ratio of 

desialylated glycans in HeLa cells is slightly higher than that in NHDF cells (see section 

3.3.1.7 for details). 
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Figure 3.6 Annotated MALDI-TOF MS spectra of permethylated sialidase S treated N-glycans 
(m/z 2200-3900) from HeLa (top) and NHDF cells (bottom) 

Profiles were obtained from the 50% acetonitrile fraction from a C18 Sep-Pak column. All ions are 
[M+Na]+. See legend to Figure 3.2 for explanation of structure assignments.   GlcNAc,  Man,  
Gal,  Fuc,  NeuAc.   

 

 

 

 

 



113 
 

 

 

Figure 3.7 Annotated MALDI-TOF MS spectra of permethylated sialidase S treated N-glycans 
(m/z 3900-5680) from HeLa (top) and NHDF cells (bottom) 

Profiles were obtained from the 50% acetonitrile fraction from a C18 Sep-Pak column. All ions are 
[M+Na]+. See legend to Figure 3.2 for explanation of structure assignments.   GlcNAc,  Man,  
Gal,  Fuc,  NeuAc.   

 

3.3.1.4. MALDI-TOF/TOF MS/MS analysis of glycan cluster at m/z 3143 of HeLa cells after 

sialidase S digestion 

 

After sialidase S digestion, the isotope peak of the glycan at m/z 3143 in HeLa cells is akin to 

that predicted. This implies that this peak only includes one glycan, probably the LacNAc 

containing glycan. In order to confirm this, MS/MS analysis was carried out. The presence of 

fragment ions at m/z 2230, 1781 and 1385 (Figure 3.8) demonstrated the presence of an 

oligo-LacNAc containing glycan only. 
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Figure 3.8 Annotated MALDI-TOF/TOF MS/MS spectrum of permethylated sialidase S treated 
N-glycan at m/z 3143 in HeLa cells 

Data were acquired in the form of [M+Na]+ ions. See legend to Figure 3.5 for explanation of 
assignments.  GlcNAc,  Man,  Gal,  Fuc. 

 

3.3.1.5. Sialidase A digestion of the N-glycans of HeLa cells and NHDF 

 

The glycan profiles are similar between the two cell types after sialidase A digestion. 

Treatment with sialidase A resulted in a complete desialylation of the N-glycans (Figure 3.9 

and Figure 3.10), for instance, the sialyl Lewis X containing glycan at m/z 3141 in Figure 3.2 

(top) became the glycan at m/z 2418 in Figure 3.9 (top). LacNAc or polyLacNAc containing 

glycans, such as m/z 2244, 2693 and 3143, were the main products of the enzymatic reaction. 

With the disappearance of sialylated N-glycans, glycans at 2244, 2693 and 3143 increased 

approximately 2309.5%, 3119.7% and 2208.7% in HeLa cells respectively, 100.9%, 145.1% 

and 1632.2% in NHDF cells respectively. In addition, some novel nonsialylated N-glycans 

which were not observed in Figure 3.2 were shown in Figure 3.9. For instance, glycans at m/z 

2867 in HeLa cells and glycan at m/z 2418 in NHDF cells were only observed after sialidase 

A digestion. All these glycans (m/z 2418, 2592, 2867, 3317, 3766, 4215, 4664 and 5114) 

possessed more than one Fuc. Within the displayed mass range, the completely desialylated 

form of the glycan peaks annotated in Figure 3.2 and Figure 3.3 could all be found in Figure 

3.9 and Figure 3.10.    

These confirmed that in both HeLa and NHDF cells the complex glycans contained terminal 
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Gal and NeuAc as well as fucosylated antennae. 

 

Figure 3.9 Annotated MALDI-TOF MS spectra of permethylated sialidase A treated N-glycans 
(m/z 2200-3900) from HeLa (top) and NHDF cells (bottom) 

Profiles were obtained from the 50% acetonitrile fraction from a C18 Sep-Pak column. All ions are 
[M+Na]+. See legend to Figure 3.2 for explanation of structure assignments.  GlcNAc,  Man,  
Gal,  Fuc,  NeuAc. 
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Figure 3.10 Annotated MALDI-TOF MS spectra of permethylated sialidase A treated N-glycans 
(m/z 3900-5680) from HeLa (top) and NHDF cells (bottom) 

Profiles were obtained from the 50% acetonitrile fraction from a C18 Sep-Pak column. All ions are 
[M+Na]+. See legend to Figure 3.2 for explanation of structure assignments.  GlcNAc,  Man,  
Gal,  Fuc,  NeuAc. 
 

3.3.1.6. Quantification of the N-glycans 

 

Since terminal Gal and NeuAc play important roles in the carbohydrate binding, it is 

necessary to quantify the Gal and NeuAc and then make a comparison. Quantification of 

terminal Gal and terminal NeuAc on glycan antennae of each cell type was carried out via 

comparing the relative abundance of LacNAc (Gal-GlcNAc) antenna and sialylated LacNAc 

antenna.  

The following figure shows the quantification method. According to the Figure 3.11A, the 

glycan at m/z 3055 is a mixture of biantennary and triantennary. The ratio of the two 

structures in the mixture was calculated by dividing the relative intensity sum of the 

corresponding characteristic ions. The assumption was made that the probabilities of losing 

one LacNAc and one sialylated LacNAc in biantennary structure are 50% and 50% 
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respectively, and the probabilities of losing one LacNAc and one sialylated LacNAc in 

triantennary structure are 67% and 33% respectively. Therefore the expected values of losing 

one LacNAc and one sialylated LacNAc are 0.51 and 0.49 respectively. Since the relative ion 

count of the glycan at m/z 3055 is 4452.7 (Figure 3.11B); it is possible to calculate the 

individual ion abundance of the LacNAc and sialylated LacNAc. 

A 

 
B 

 

Figure 3.11 Annotated MALDI-TOF/TOF MS/MS spectrum of permethylated N-glycan at m/z 
3055 in NHDF cells (A), the relative intensity of the same glycan in the MALDI-TOF MS 
spectrum (B) 

Data were acquired in the form of [M+Na]+ ions. See legends to Figure 3.2 and Figure 3.5 for 
explanation of structure assignments. In Panel A, only peaks of interest were labelled, the biantennary 
(bi) and triantennary (tri) characteristic ions are labelled in red and black frame respectively, RI is 
short for relative intensity. In B, the isotope peak of the glycan at m/z 3055 has been magnified.  
GlcNAc,  Man,  Gal,  Fuc,  NeuAc.   
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3.3.1.7. Summary 

 

Complex N-glycans in both HeLa and NHDF cells have been quantified using the above 

method; the result (Figure 3.12) showed that before sialidase S digestion, the proportion of 

the glycan terminated with Gal was approximately 54% in NHDF cells, which is higher than 

that in HeLa cells (approximately 30%). After sialidase S treatment, the percentage of the 

glycan terminated with α2,6 linked NeuAc in HeLa cells is around 17%, which is 

significantly higher than the 3% shown in NHDF cells; sialidase A digestion removed all 

NeuAc residues supporting the glycomic assignments.  

 

Figure 3.12 A comparison of the relative intensities of LacNAc antenna and sialylated LacNAc 
antenna in all complex glycans in HeLa and NHDF (A), sialidase S digested (B) and sialidase A 
digested (C) 

Black colour stands for relative intensity of α2,3 and α2,6 sialylated LacNAc antenna; blue colour 
stands for relative intensity of LacNAc antenna; red colour stands for relative intensity of α2,6 
sialylated LacNAc antenna.  GlcNAc,  Gal,  NeuAc. 
 

 

 

 

http://dict.cn/proportion
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3.3.2. HeLa and NHDF O-glycans 

 

3.3.2.1. MALDI-TOF MS analysis of the O-glycans of HeLa cells and NHDF 

 

Duplicate analyses of O-glycans were also carried out to check the reproducibility and 

whether combining duplicates for the more detailed structural research would be valid. High 

quality MALDI data were obtained for the O-glycans from HeLa and NHDF cells. 

Representative MALDI-TOF MS spectra of HeLa and NHDF cell O-glycans are shown in 

Figure 3.13. The profile showed that in HeLa cells the glycan structures are core 1 

(Galβ1,3GalNAc-O) type; monosialylated and disialylated core 1 were observed at m/z 895 

and 1257 respectively. While in NHDF cells the glycan structures are core 1 

(Galβ1,3GalNAc) and core 2 (Galβ1,3(GlcNAcβ1,6)GalNAc) types: in addition to observing 

monosialylated and disialylated core 1 at m/z at 895 and 1257 respectively, three core 2 

derived glycans m/z 984, 1345 (monosialylated) and 1706 (disialylated) were also detected. 

In NHDF cells, core 1 derived glycans account for approximately 79.5% of all the O-glycans. 
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Figure 3.13 Annotated MALDI-TOF MS spectra of permethylated O-glycans in Hela (top) and 
in NHDF cells (bottom) 

Profiles were obtained from the 35% acetonitrile fraction from a C18 Sep-Pak column. All ions are 
[M+Na]+. Putative structures are based on the molecular weight, O-glycan biosynthesis pathway and 
MS/MS data.  GalNAc,  GlcNAc,  Gal,  NeuAc. 

 

According to the O-glycan biosynthesis pathway, all O-glycan structures displayed in Figure 

3.13 are unambiguous except the structures of the glycans at m/z 895 and 1345. The NeuAc 

in the glycan at m/z 895 can be either linked to the Gal or to the GalNAc. The NeuAc in the 

glycan at m/z 1345 glycans can be either linked to the Gal or to the Gal-GlcNAc. The 

position of sialylation was established by MS/MS where there were ambiguities. 

As shown in Figure 3.14, in both HeLa and NHDF cells the Gal was confirmed to be 3-linked 

to the GalNAc as the signal at m/z 620 corresponds to an eliminated ion O-Gal-NeuAc which 

was derived from the elimination occurring at the C3 position of GalNAc. The presence of 

the fragment ion at m/z 620 and the absence of the fragment ions at m/z 259 (losing a single 

Gal via elimination) and 659 (the product of loss of a single Gal via elimination) showed that 

the NeuAc in the glycan at m/z 895 is linked to the Gal.  
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Figure 3.14 Annotated MALDI-TOF/TOF MS/MS spectra of permethylated O-glycan at m/z 
895 in HeLa cells (top) and NHDF cells (bottom) 

Data were acquired in the form of [M+Na]+ ions. See legend to Figure 3.5 for explanation of structure 
assignments.  GalNAc,  Gal,  NeuAc. 

 

As shown in Figure 3.15, in NHDF cells the Gal was confirmed to be 3-linked to the GalNAc 

as the signal at m/z 620 corresponds to an eliminated ion O-Gal-NeuAc which was derived 

from the elimination occurring at the C3 position of GalNAc, its concurrent ion at m/z 747 

was also observed. In addition, the fragment ion at m/z 881 corresponds to a loss of LacNac, 

this demonstrates the presence of LacNAc. All these implied that the NeuAc was linked to 

the Gal. However, the molecular ion at m/z 520 corresponds to a loss of sialylated LacNac, 

this showed that the NeuAc was linked to the Gal-GlcNAc. Taken together, the MS/MS data 

provided evidence that the NeuAc was linked to either Gal or Gal-GlcNAc, which is 

indicated by drawing this NeuAc outside the bracket. 
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Figure 3.15 Annotated MALDI-TOF/TOF MS/MS spectra of permethylated O-glycan at m/z 
1345 in NHDF cells 

Data were acquired in the form of [M+Na]+ ions. See legend to Figure 3.5 for explanation of structure 
assignments.  GalNAc,  GlcNAc,  Gal,  NeuAc. 

 

3.3.2.2. Sialidase S digestion of the O-glycans of HeLa and NHDF cells 

 

Sialidase S digestion was carried out on O-glycans to determine the NeuAc linkage. 

Digestion of both HeLa and NHDF cells with sialidase S resulted in partial desialylation 

(Figure 3.16). The core 1 structure (m/z 534) and monosialylated core 1 structure (m/z 895) 

shown in HeLa cells (Figure 3.16 top) were originally from the glycans at m/z 895 and 1257 

in Figure 3.13 (top) respectively. A similar phenomenon was also observed in Figure 3.13 

(bottom) and Figure 3.16 (bottom). In addition, the core 2 structure (m/z 984) shown in 

NHDF cells (Figure 3.16 bottom) was derived from the glycans at m/z 984, 1345 and 1706 in 

Figure 3.13 (bottom). 

This indicated that both HeLa and NHDF contain α2,3 linked NeuAc. The following figure 

showed that a small amount of core 2 containing glycan (m/z 984) was observed in HeLa 

cells after sialidase S digestion, but this type of glycan was not detected prior to sialidase S 

treatment due to its low abundance.  
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Figure 3.16 Annotated MALDI-TOF MS spectra of permethylated sialidase S treated O-glycans 
in Hela cells (top) and NHDF (bottom) 

Profiles were obtained from the 35% acetonitrile fraction from a C18 Sep-Pak column. All ions are 
[M+Na]+. See legend to Figure 3.13 for explanation of structure assignments.  GalNAc,  GlcNAc, 

 Gal,  NeuAc. 

  

3.3.2.3. Sialidase A digestion of the O-glycans of HeLa and NHDF cells 

 

Treatment with sialidase A led to a complete desialylation of the O-glycans in both cell types. 

Both core 1 and core 2 type glycans were observed after the desialylation (see Table 3.2). 
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Table 3.2 O-glycan structures observed in the MALDI-TOF MS spectra of Hela and NHDF af-
ter sialidase A digestion 

Glycans were obtained from the 35% acetonitrile fraction from a C18 Sep-Pak column. All ions are 
[M+Na]+. Glycan structures and linkages are drawn based on the molecular weight, O-glycan 
biosynthesis pathway and MS/MS data. The rough percentage of the glycan relative abundance to the 
whole group is also indicated.  GalNAc,  GlcNAc,  Gal. 

 
m/z 

 
Structure 

After sialidase A digestion 
HeLa cells (percentage) NHDF cells (percentage) 

 
534 

 
 

 

 
96.0% 

 
60.4% 

 
 

984 
 

 

 
 

4.0% 

 
 

39.6% 
 

 

3.3.2.4. Summary 

 

In both HeLa and NHDF cells the O-glycans are either terminated with NeuAc or with 

uncapped Gal. Comparison of the relative abundances of the O-glycans (Table 3.3) showed 

that in HeLa cells O-glycans were sialylated, the monosialylated core 1 glycan accounted for 

approximately 22.9% of all the O-glycans, the remaining was the disialylated core 1 glycan. 

A small amount of core 2 containing glycan was only observed after sialidase digestions (see 

sections 3.3.2.2 and 3.3.2.3). It also showed that in NHDF cells, the relative abundances of 

non- mono- and disialylated glycans accounted for 35.7%, 37.4% and 26.9% of all the O-

glycans respectively. The relative abundance of disialylated glycans is greater in HeLa cells. 

After sialidase A digestion, the abundances of cores 1 and 2 (containing) glycans accounted 

for 60.4% and 39.6% respectively. 
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Table 3.3 O-glycan structures observed in the MALDI-TOF MS spectra of Hela and NHDF 

All glycans are permethylated and [M+Na]+. Glycan structures and linkages are drawn based on the 
molecular weight, O-glycan biosynthesis pathway and MS/MS data. ND, not detected. The ratio of 
the glycan relative abundance to the whole group is indicated using *; *=minor (<20%), **=medium 
(20-50%), ***=major (>50%).   GalNAc  GlcNAc,  Gal,  NeuAc. 

 

 

3.3.3. HeLa and NHDF glycolipid glycans 

 

3.3.3.1. MALDI-TOF MS analyses of the glycolipid glycans of HeLa cells and NHDF 

 

The glycolipid glycans were obtained following the procedure described in section 2.2. High 

quality MALDI data were obtained for the glycans from HeLa and NHDF cells. MALDI-

TOF MS spectra of HeLa and NHDF cell glycolipid glycans are shown in Figure 3.17 and 

Figure 3.18. The spectra show that nearly all glycans detected in both HeLa and NHDF are 

sialylated with NeuAc. In HeLa cells glycolipid glycans with m/z 855, 943, 1101, 1305 and 

1666 were detected in the 35% acetonitrile fraction. Their relative abundances are 

approximately 6.5%, 1.4%, 67.9%, 22.3% and 1.9% respectively. In addition, glycolipid 

glycans with m/z 1101, 1305 and 1666 were observed in the 50% acetonitrile fraction 
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(relative abundances 2.4%, 3.2% and 94.4% respectively). In NHDF cells glycolipid glycans 

with m/z 855, 943, 1217 and 1305 were detected in the 35% acetonitrile fraction, their 

relative abundances accounted for approximately 66.8%, 0.3%, 29.9% and 3.1% respectively. 

Additionally, glycolipid glycans with m/z 855, 1217, 1305 and 1666 were observed in the 50% 

acetonitrile fraction, their relative abundances accounted for 27.8%, 69.4%, 1.7% and 1.1% 

respectively. The glycan at m/z 1101 terminated with HexNAc is only observed in HeLa cells 

(see Table 3.4 for a compact summary). 

 

Figure 3.17 Annotated MALDI-TOF MS spectra of deuteroreduced, permethylated glycolipid 
derived glycans from Hela (top) and NHDF (bottom) 

These profiles were obtained from the 35% acetonitrile fractions from a C18 Sep-Pak column. All 
glycans are deuteroreduced (DR) and in the form of [M+Na]+. Putative structures are based on the 
molecular weight, glycolipid glycan biosynthesis pathway and MS/MS data.  GalNAc,  Glc,  Gal, 

 NeuAc. 
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Figure 3.18 Annotated MALDI-TOF MS spectra of deuteroreduced, permethylated glycolipid 
derived glycans from Hela (top) and NHDF (bottom) 

These profiles were obtained from the 50% acetonitrile fractions from a C18 Sep-Pak column. All 
glycans are deuteroreduced (DR) and in the form of [M+Na]+. See legend to Figure 3.17 for 
explanation of structure assignments.  GalNAc,  Glc,  Gal,  NeuAc. 

 

Peaks of interest were chosen for further characterization via MALDI-TOF/TOF MS/MS 

analysis. For instance, the glycan at m/z 1305 (the position of the NeuAc could not be 

determined). 

As shown in Figure 3.19 (top), the presence of the fragment ion at m/z 847 and its concurrent 

ion at m/z 480 showed that the NeuAc is linked to the terminal Gal. The presence of the 

fragment ion at m/z 486 and the presence of its concurrent ion at m/z 841 showed that the 

NeuAc is linked to the internal Gal. In addition, the presence of the double-cleavage ion at 

m/z 466 could also support this. All these showed that the glycan at m/z 1305 in HeLa cells 

possessed two structures; the NeuAc is either linked to the terminal Gal or to the internal Gal. 

In contrast to the HeLa data, MS/MS of m/z 1305 from NHDF cells showed fragment ions 

that correspond solely to one structure (Figure 3.19 bottom), in which the NeuAc is linked to 

terminal Gal. 
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Figure 3.19 Annotated MALDI-TOF/TOF MS/MS spectra of permethylated glycolipid glycan at 
m/z 1305 in HeLa cells (top) and NHDF cells (bottom) 

Data were acquired in the form of [M+Na]+ ions. DR, deuteroreduced. See legend to Figure 3.5 for 
explanation of structure assignments.  GalNAc,  Glc,  Gal,  NeuAc. 

 

The following table summarises the structural conclusions which are extracted from the MS 

and MS/MS analyses, taking into account glycolipid glycan biosynthetic considerations. 
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Table 3.4 Structures of glycans derived from glycolipids observed in the MALDI-TOF MS 
spectra of Hela and NHDF cells 

All glycans are deuteroreduced (DR), permethylated and in the form of [M+Na]+. Glycan structures 
are drawn based on the molecular weight, glycolipid glycan biosynthesis pathway and MS/MS data; 
ND, not detected. The ratio of the glycan relative abundance to the whole group is indicated using *. 
*=minor (<20%), **=medium (20-50%), ***=major (>50%).  GalNAc,  Glc,  Gal,  NeuAc.   

 

 

3.3.3.2. Sialidase digestion of the glycolipid glycans of HeLa cells 

 

Sialidase digestions were only carried out on the glycolipid glycans from HeLa cells due to 

the fact that the amount of NHDF cells was limited. A new batch of HeLa cells was used for 

this enzymatic digestion. High quality MALDI data were obtained. As shown in Figure 3.20, 

digestion of the glycans with sialidase S resulted in partial desialylation. Thus the sialylated 

glycan at m/z 1101 was still observed while the glycan at m/z 1666 was absent. One structure 

giving the original signal at m/z 1305 was absent, whilst the other was still observed. A new 

glycan, the m/z of which is 943, was detected. All these confirmed the α2,3 linkage of the 
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peripheral NeuAc in glycans at m/z 1305 and 1666. Sialidase A digestion resulted in a 

complete loss of NeuAc supporting the glycomic assignments. 

 

Figure 3.20 Annotated MALDI-TOF MS spectra of deuteroreduced, permethylated glycolipid 
derived glycans from Hela cells, untreated (top), sialidase S treated (middle), sialidase A treated 
(bottom)  

These profiles were obtained from the 35% acetonitrile fractions from a C18 Sep-Pak column. All 
ions are [M+Na]+. See legend to Figure 3.17 for explanation of structure assignments.  GalNAc,  
Glc,  Gal,  NeuAc. 

 

The result of glycomic analyses showed similar sialylation in the glycolipid glycans in the 

two cell types. 



131 
 

 

3.4. Discussion 
 

Although Van Damme and Shang had investigated these SNAs using glycan array and HeLa 

and NHDF cells, they did not determine the cell glycomes; this is essential as it could bridge 

what they did determine (glycan array result, SNA cytotoxicity result (Table 3.5), etc.) 

(Shang et al., 2015; Shang and Van Damme, 2014) and form a more complete story on these 

SNAs. Therefore, the glycomic analysis was carried out. 

Table 3.5 Comparison of LC50 values for the S. nigra proteins in HeLa and NHDF cell lines 

Data are shown as means ± SE based on 4 replications per treatment, and each experiment was 
repeated 3 times. LC50, lethal concentration that kills half of the sample population. The 
concentration of SNAs used for the cell viability test is in the range of 0.1-2 µM. The concentrations 
(>2 µM) were obtained via calculated according to the trend of the dose response curve. Since these 
predict LC50 concentrations (>2 µM) were not tested, accurate values were not given. Therefore, this 
conclusion, " the LC50 value is > 2 µM ", was made (Shang et al., 2015). 

 

 

The glycomic analyses of HeLa cells and NHDF cells demonstrated a clear correlation with 

the results from cytotoxicity and internalization studies, which indicates the importance of 

protein-carbohydrate interactions for the proteins entering the cells. Particularly, the result of 

N- and O-glycomic analyses showed that compared to NHDF cells the overall sialylation 

level of N- and O-glycans in HeLa cells is greater (see Figure 3.12 and Figure 3.13), which 

could explain why SNA-IV was more toxic towards HeLa cells. Similarly, significantly more 

α2,6 linked NeuAc residues in the glycoprotein glycans from HeLa cells (see Figure 3.12) 

could explain the greater cytotoxicity of SNA-I to HeLa cells. In addition, SNA-II and SNA-

V also showed more cytotoxicity to the HeLa cells (see Table 3.5), which was possibly due to 

the fact that these two SNAs preferred binding to O-glycan core 1 glycan (see Table 1.7). 

http://www.businessdictionary.com/definition/kill.html
http://www.businessdictionary.com/definition/sample.html
http://www.businessdictionary.com/definition/population.html
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Moreover, compared to other SNAs, SNA-V is the only protein that revealed remarkable 

cytotoxicity to NHDF cells (see Table 3.5), and this could be caused by the higher abundance 

of terminal Gal residues in these cells. As shown in Table 1.7, SNLRP prefers binding to the 

structure GlcNAcβ1,4GlcNAc which is the chitobiose core moiety (Barry et al., 2013). 

Therefore, this SNA should interact with all N-glycans as this disaccharide is a core structure 

for all N-glycans. However, the LC50 values in the cytotoxicity experiment for SNLRP are 

very great (see Table 3.5), implicating low binding to the cell surface. More importantly, this 

was consistent with the result of the SNA internalization experiment performed using HeLa 

cells. In the experiment the amount of SNLRP internalized by HeLa cells was extremely low 

(Shang et al., 2015), and this suggested that the binding of SNLRP to the chitobiose core 

moiety is probably blocked as the structure GlcNAcβ1,4GlcNAc is cryptic due to capping 

structures.  

Although the MS data provided glycan profiles of HeLa and NHDF cells and new insights on 

potential carbohydrate binding sites which associate with cell binding/uptake for SNAs, it is 

evident that this interaction is complicated and not adequate to explicate the cytotoxicity of 

the proteins under study. For instance, although the amount of terminal Gal on HeLa cells is 

obviously lower than that of sialic acid, the reason why the SNA-V and SNA-II are more 

toxic to HeLa cells than SNA-I is still unknown. A possible explanation for this could be 

differential intracellular trafficking of the proteins. It has been reported that the cytotoxicity 

of some type 2 RIPs, such as ricin and abrin, relies on the binding of the B chain to 

glycoconjugates at the cell surface, as such promoting cellular uptake of the RIPs (Sandvig et 

al., 1978; Lannoo and Van Damme, 2014; Shang et al., 2015). Incubation of mammalian cells 

with ricin leads to it being endocytosed and then transported to the trans-Golgi network, 

followed by retrogradely transported from the Golgi to the ER in which the disulphide bond 

is cleaved, after that the A chain gets into the cytoplasm where it finally refolds and inhibits 

protein synthesis via removing a key adenine from the 28S ribosomal subunit (Sandvig et al., 

1991; Lord and Roberts, 1998; Spooner and Lord, 2015). However, the intracellular 

trafficking of SNA V is different; it enters the cytosol without passing the Golgi and ER 

(Barbieri et al., 2004; Battelli et al., 1997; Shang et al., 2015). Therefore, it is possible that 

these SNAs follow different intracellular trafficking and exhibit the cytotoxicity via different 

ways. 

It has been reported that RIPs are able to induce cell death via apoptosis (Das et al., 2012). 

Since SNA-I, SNA-V and SNLRP are type-2 RIPs, they should be able to cause cell 

http://dict.cn/remarkable
http://dict.cn/explicate
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apoptosis. In addition, it has been reported that SNA-II can cause apoptosis (Shahidi-Noghabi 

et al., 2010), and both SNA-II and SNA-IV possess one lectin chain, this implies that SNA-

IV is probably able to cause apoptosis as well. Therefore, all these SNAs are able to cause 

apoptosis via which HeLa and NHDF cells could be killed in the experiment. However, it is 

not clear that how SNAs trigger the apoptosis. It is reported that SNA-I and SNA-II could 

trigger caspase-3 like activities in cells (Shahidi-Noghabi et al., 2010), and caspase-3 is a cell 

death protease and it plays an essential role in apoptosis (Porter and Janicke, 1999). It is 

therefore possible that the binding of SNAs to cells yields a stimulus which subsequently 

activates the caspase pathway resulting in apoptosis. 

Sambucus species have been used for medicinal purposes since Pedanius Dioscorides’s (a 

Greek physician, pharmacologist and botanist) period (40-90 A.D.). Among these, Sambucus 

nigra lectins are the most relevant species researched (Tejero et al., 2015). However, its 

application has been restricted to some extent due to the fact that the proteins are bioactive 

and the ingestion of these compounds could result in deleterious effects. In the last few years, 

the chemical and pharmacological characteristics of Sambucus species have been investigated. 

SNA-V (Nigrin b) can be used for the construction of conjugates which target the transferrin 

receptor, and this receptor is over-expressed in cancer cells (Citores et al., 2002). Although 

the biological role of proteins derived from Sambucus remains unclear, they are speculated to 

be involved in helping plants against insects and viruses (Tejero et al., 2015). Therefore, 

these SNAs could be potentially used in agriculture to protect crops against plant insects and 

viruses.  

This study reports for the first time the glycolipid glycans in NHDF cells by MALDI-TOF 

MS and MALDI-TOF/TOF MS/MS. Although a paper reported N- and O-glycan profile of 

NHDF in 2012 (Engelstaedter et al., 2012), half of their sample amount was used and 31 

more complex N-glycans were detected in this glycomic analysis. Therefore the analysis here 

is more sensitive and complete, In addition, the detection of the potential sialyl-Lewis X in 

the N-glycans from HeLa cells supports the accuracy of the glycomic analyses as sialyl-

Lewis X is expressed in cervical cancer (Engelstaedter et al., 2012). More work is required 

for uncovering the veil of the biological role and the mechanism of SNA proteins. For 

instance, plants can be genetically modified (being transfected with the gene that encodes 

SNA-I or SNA-II) to express the SNA. Theoretically, these transformants should possess 

enhanced insect resistance as these two SNAs can cause insect midgut cell apoptosis 
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(Shahidi-Noghabi et al., 2010). If this is working, it can be applied to tobacco plants, which 

will bring great profits.       
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Chapter 4 
 

Mass spectrometric investigation of glycosylation in 

patients with muscular diseases 
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4. Mass spectrometric investigation of glycosylation in patients with 

muscular diseases 
 

4.1. Introduction to the project  
 

This project is in collaboration with Professor Hanns Lochmuller and Dr. Juliane Mueller at 

Newcastle University. 

To test the hypothesis which is mutations in GFPT1 may cause N-glycan branching 

variations and thus have an influence on protein glycosylation (see section 1.7.1), glycomic 

analysis was performed to determine whether protein glycosylation is generally impaired or 

modified in CMS patients with GFPT1 mutations. The N-glycomes in myoblasts from 

healthy controls and patients with GFPT1 mutations, as well as myotubes obtained by in vitro 

differentiation were rigorously characterised. Simultaneously, myoblasts and myotubes from 

other patients were also investigated in the same way to check whether this possible 

impairment or modification is unique in the GFPT1 patients. Specifically, MS analyses could 

give general structural information of the glycans from healthy controls and patients. Since 

the focus is on glycan branching variations, potential branched glycans from the controls and 

patients were further analysed with MS/MS as this technique can determine glycan branch 

structures. Sialidase S digestion was only carried out in the myoblast and myotube samples 

from the DOK7 patient to determine the sialic acid linkage due to the fact that the cell pellets 

(myoblast and myotube) from this patient were visually greater than others.  

This investigation would provide a better understanding of glycosylation in neuromuscular 

junction disorders with the long term objective of establishing structure/function relationships. 

Additionally, potential glyco-biomarkers of congenital myasthenic syndrome (CMS) may be 

discovered when comparing glycan profiles of healthy controls, GFPT1 patients and other 

muscular disease patients. 
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4.2. Sample details and sample processing 
 

The detail of three batches of samples is shown in the following 3 Tables. Cell culture details 

are described in section 2.1.3.2. 

Table 4.1 Detail of myoblasts and myotubes  

“GFPT1 patient” means a CMS patient with GFPT1 mutations; similarly for DOK7 and MTND5 
patients. Each of the cell lines, except for GFPT1 patient 3, has three pellets. The myotubes were 
differentiated from myoblasts. (The table has been changed as required: previous three tables have 
been combined) 

First batch 
Myoblasts are from Cell number Number of samples 

GFPT1 patient 1 Estimated to be 10 million 3 
GFPT1 patient 2 Estimated to be 10 million 3 
GFPT1 patient 3 Estimated to be 10 million 1 

DOK7 patient Estimated to be 10 million 3 
MTND5 patient Estimated to be 10 million 3 

Second batch 
Myoblasts are from Cell number Number of samples 

GFPT1 patient 1 Estimated to be 10 million 1 
GFPT1 patient 2 Estimated to be 10 million 1 
GFPT1 patient 3 Estimated to be 10 million 1 
DOK 7 patient Estimated to be 10 million 1 
MTND5 patient Estimated to be 10 million 1 

Healthy control 1 Estimated to be 10 million 2 
Healthy control 2 Estimated to be 10 million 2 
LGMD2A patient Estimated to be 10 million 2 

Pompe disease patient Estimated to be 10 million 2 
Third batch 

Myotubes are from Cell number Number of samples 
GFPT1 patient 1 unknown 1 
GFPT1 patient 2 unknown 1 
GFPT1 patient 3 unknown 1 
Healthy control 1 unknown 1 
Healthy control 2 unknown 1 

DOK 7 patient unknown 1 
MTND5 patient unknown 1 

LGMD2A patient unknown 1 
Pompe disease patient unknown 1 

 

All samples were analysed using glycomic methodologies which have been described in 

section 2.2.  
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4.3. Results 
 

4.3.1. Determination of optimal conditions for cell culture 

 

Because sufficient sample for glycomic analysis could not be provided by human muscle 

biopsies, suitable cell culture conditions for producing cells are required to be established 

whilst the amount of FCS used in the culture medium should be minimised. The latter was 

important as it is known that glycans derived from FCS are frequently co-purified with cell-

derived glycans during glycomic analyses (Monk et al., 2006). 

 

4.3.1.1. MALDI-TOF MS analysis of the N-glycans of the myoblasts cultured in the medium 

containing 5%, 10% and 15% serum 

 

Myoblast samples listed in Table 4.1 were analysed using glycomic methodologies. These 

myoblasts were cultured in medium with different FCS concentrations. Good quality 

MALDI-MS spectra were only yielded from myoblasts cultured in 15% FCS. Representative 

data are shown in Figure 4.1. The spectra demonstrate the presence of high mannose (m/z 

1580, 1784, 1988, 2192 and 2396) and complex glycans (bi-, tri- and tetraantennary, e.g. m/z 

2966, 3777 and 4587) in the cell line. The relative abundance of all complex glycans in top, 

middle and bottom panels which were obtained from myoblasts cultured in the medium 

supplemented with 5%, 10% and 15% FCS respectively accounted for approximately 9.5%, 

29.6% and 45.4% respectively of all detected glycans. Especially, Top and middle panels 

showed that the high mass glycans were not as abundant compared to that in bottom panel. 

More detailed interpretations of figures will be shown in the next section. 
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Figure 4.1 Annotated MALDI-TOF MS spectra of permethylated N-glycans from DOK 7 patient 
myoblast cultured in the medium containing 5% (A), 10% (B) and 15% (C) FCS 

Profiles were obtained from the 50% acetonitrile fraction from a C18 Sep-Pak column. All ions are 
[M+Na]+. See legend to Figure 3.2 for explanation of structure assignments.  GlcNAc,  Man,  
Gal,  Fuc,  NeuAc.   
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4.3.1.2. Summary 

 

According to the hypothesis (see section 1.7.1), the focus of this project is on N-glycan 

branching variation. Therefore, glycans with at least 2 LacNAc units are required to check the 

variation. Glycans with at least 2 LacNAc units were sufficiently abundant when cells grew 

in the medium containing 15% FCS, which enabled us to make firm conclusions about 

branching. In addition, one cell line (GFPT1 patient 3) grew extremely slowly in the medium 

containing 5% and 10% FCS.Therefore, all cells that analysed in this project afterwards were 

cultured in the medium containing 15% FCS.  

The glycans which lack core fucose shown in the spectra (Figure 4.1) are probably derived 

from FCS (Monk et al., 2006) and these glycans do not seem to be a problem as they are not 

dominating the spectra, thus the contamination will not have too much influence on the final 

result. In all the comparisons carried out afterward, the non-core fucosylated glycans are 

excluded. 

 

4.3.2. Myoblast N-glycans 

 

4.3.2.1. MALDI-TOF MS analysis of the N-glycans of the myoblasts from healthy controls and 

GFPT1 patients and other muscular disease patients 

 

Myoblast samples listed in Table 4.1 were analysed. High quality MALDI data were obtained 

for the N-glycans from all myoblast samples with the exception of GFPT1 patient 3 whose 

myoblasts were difficult to culture. Combining with the five MALDI MS spectra (myoblasts 

cultured in 15% FCS containing medium) from the previous section a total of eighteen 

MALDI MS data sets were generated which included duplicate experiments. Representative 

MALDI-TOF MS spectra from a healthy control, a GFPT1 patient and the DOK7 patient are 

shown in Figure 4.2 top, middle and bottom panel, respectively.   

The N-glycans comprised high mannose and complex glycans. High mannose glycan 

structures were the same as the ones mentioned in section 4.3.1.1. In addition to being bi-, tri- 

and tetraantennary (see section 4.3.1.1), the complex N-glycans in the myoblasts (Figure 4.2 

and Figure 4.3) could be nonsialylated (e.g. m/z 2244, 2693 and 3143), monosialylated (e.g. 
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m/z 2605, 3055 and 3504), disialylated (e.g. m/z 2966, 3416 and 3865), trisialylated (e.g. m/z 

3777 and 4226) and tetrasialylated (m/z 4587). No disease-unique glycan structure was 

identified. Some common characteristics of mammalian cell N-glycomes (Dell and Morris, 

2001; Antonopoulos et al., 2012) were observed, such as core fucosylated GlcNAc, LacNAc 

antenna building blocks which in some cases are tandemly repeated to produce oligo-LacNAc 

extensions, and NeuAc capped antennae. The number of LacNAc units observed in the 

detected glycan was up to nine (m/z 5389, Figure 4.2 middle). Significantly, the N-glycan 

profile of healthy control 1 showed a broadly similar pattern to those of GFPT1 patient 1 and 

DOK7 patient. 
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Figure 4.2 Annotated MALDI-TOF MS spectra of permethylated N-glycans of myoblasts from 
healthy control 1 (top), GFPT1 patient 1 (middle) and the DOK7 patient (bottom) 

Profiles were obtained from the 50% acetonitrile fraction from a C18 Sep-Pak column. All ions are 
[M+Na]+. The number indicated in the spectra is the mass to charge ratio (m/z) of the corresponding 
ion. Since the ion is monocharged, the value of m/z is equal to the molecular weight value of the 
glycan. Annotations are based on the molecular weight, N-glycan biosynthesis pathway and MS/MS 
data. Glycans at m/z 2966, 3777 and 4587 are clearly annotated, this is due to the fact that their 
structures are unequivocal because each antenna is capped with a sialic acid and thus they are 
homogeneous bi-, tri- and tetraantennary glycans. However, the glycan structure is not always as 
unequivocal as the glycan at m/z 2966 as biosynthetically non-fully sialylated glycan molecular ion 
species could be made up of mixtures of structural isoforms. Therefore, for those heterogeneous 
multiantennary structures with extended LacNAc repeats, the annotations are simplified throughout 
by using biantennary structures with the extensions and NeuAcs listed outside a bracket.  GlcNAc, 

 Man,  Gal,  Fuc,  NeuAc.   
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Figure 4.3 Annotated MALDI-TOF MS spectra of permethylated N-glycans (m/z 2900-4700) of 
myoblasts from healthy control 1 (top), GFPT1 patient 1 (middle) and the DOK7 patient 
(bottom) 

This figure amplifies the mass range (m/z 2900-4700) where the majority of tri- and tetra-antennary 
glycans are found in Figure 4.2. Profiles were obtained from the 50% acetonitrile fraction from a C18 
Sep-Pak column. All ions are [M+Na]+. See legend to Figure 4.2 for explanation of structure assign-
ments.  GlcNAc,  Man,  Gal,  Fuc,  NeuAc.   
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MALDI data for the other patients and control are shown in Figure 4.4, Figure 4.5, Figure 4.6 

and Figure 4.7; there was also no significant difference in the N-glycan profile among these 

samples.  

 
Figure 4.4 Annotated MALDI-TOF MS spectra of permethylated N-glycans from myoblasts of 
healthy control 2 (top), GFPT1 patient 2 (middle), the MTND5 patient (bottom)  

Profiles were obtained from the 50% acetonitrile fraction from a C18 Sep-Pak column. All ions are 
[M+Na]+. See legend to Figure 4.2 for explanation of structure assignments.  GlcNAc,  Man,  
Gal,  Fuc,  NeuAc.   
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Figure 4.5 Annotated MALDI-TOF MS spectra of permethylated N-glycans (m/z 2900-4700) 
from myoblasts of healthy control 2 (top), GFPT1 patient 2 (middle), the MTND5 patient 
(bottom) 

This figure amplifies the mass range (m/z 2900-4700) where the majority of tri- and tetra-antennary 
glycans are found in Figure 4.4. Profiles were obtained from the 50% acetonitrile fraction from a C18 
Sep-Pak column. All ions are [M+Na]+. See legend to Figure 4.2 for explanation of structure assign-
ments.  GlcNAc,  Man,  Gal,  Fuc,  NeuAc.   
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Figure 4.6 Annotated MALDI-TOF MS spectra of permethylated N-glycans from myoblasts of 
healthy control 2 (top), LGMD2A patient 2 (middle), Pompe disease patient (bottom)  

Profiles were obtained from the 50% acetonitrile fraction from a C18 Sep-Pak column. All ions are 
[M+Na]+. See legend to Figure 4.2 for explanation of structure assignments.  GlcNAc,  Man,  
Gal,  Fuc,  NeuAc.   
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Figure 4.7 Annotated MALDI-TOF MS spectra of permethylated N-glycans (m/z 2900-4700) 
from myoblasts of healthy control 2 (top), LGMD2A patient 2 (middle), Pompe disease patient 
(bottom) 

This figure amplifies the mass range (m/z 2900-4700) where the majority of tri- and tetra-antennary 
glycans are found in Figure 4.6. Profiles were obtained from the 50% acetonitrile fraction from a C18 
Sep-Pak column. All ions are [M+Na]+. See legend to Figure 4.2 for explanation of structure 
assignments.  GlcNAc,  Man,  Gal,  Fuc,  NeuAc.   

 

In addition, MALDI spectra for biological replicates are shown in Figure 4.8; the result 

shows that there is no significant difference in the N-glycan profile of biological replicates. 
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Figure 4.8 MALDI-TOF MS spectra of permethylated N-glycans (m/z 2900-4700) from two 
batches of healthy control 1 myoblasts (top) and two batches of GFPT1 patient 1 myoblasts 
(bottom) 

See legend to Figure 3.1 for explanation of spectra arrangement. In healthy control 1, the average peak 
variation between the spectra from different batches is approximately 18%. In GFPT1 patient 1, the 
average peak variation between the spectra from different batches is approximately 14%.  

 

To check whether the GFPT1 patients exhibited impaired N-glycan branching, the N-glycans 

were classified into families with different levels of sialylation and then glycan abundances 

within these families were compared. Sialylation levels were determined to be similar in the 

various myoblast samples, which was achieved by calculating abundance ratios of pairs of 

glycans in which one glycan of the pair possessed one more sialic acid than the other but 

otherwise other compositions in the pair are identical. The results of these calculations are 

displayed in Figure 4.9 for the various myoblast samples. The data show that there is no 

significant difference in the glycan sialylation between these samples and sialylation patterns 

are broadly similar.  
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Figure 4.9 Comparison of N-glycan sialylation in the myoblasts 

Each point in the graph indicates a ratio which was obtained by comparing the relative intensity (RI) 
of one glycan to that of another glycan which possesses one fewer NeuAc. The numbers in the 
brackets correspond to the m/z of the comparing glycans. 

 

The N-glycans were classified into nonsialylated, monosialylated, disialylated, trisialylated 

and tetrasialylated families. For each family of glycans, the abundance ratios of pairs of 

glycans varying in composition by a single LacNAc unit were determined. For instance, 

Figure 4.10 shows comparative data for nonsialylated (Panel A) and monosialylated (Panel B) 

glycans possessing from two to six LacNAc units. All samples showed a similar profile of 

abundance ratios, albeit there is a two to three-fold divergence of ratios when comparing four 

LacNAcs with three LacNAcs (m/z 3143 and 2693, Panel A), with the GFPT1 patient 

samples displaying somewhat higher levels of the former than observed in the other samples. 
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A

 

B 

 

Figure 4.10 Comparison of the relative intensities of a family of nonsialylated glycans with 
different numbers of LacNAc (A) in myoblasts, comparison of the relative intensities of a family 
of monosialylated glycans with different numbers of LacNAc (B) in myoblasts 

Each point in the graph indicates a ratio which was obtained by comparing the relative intensity (RI) 
of one glycan to that of the corresponding glycan which possesses one fewer LacNAc moiety. The 
number under the glycan structure is the m/z value of the glycan; the number is increasing with the 
addition of LacNAc moiety. In each comparison, the numbers in the brackets correspond to the m/z of 
the comparing glycans.  GlcNAc,  Man,  Gal,  Fuc,  NeuAc.   
 

4.3.2.2. MALDI-TOF/TOF MS/MS analyses of the N-glycans of the myoblasts from healthy 

controls and GFPT1 patients and other muscular disease patients  

 

No significant difference between the MS spectra of the GFPT1 patients and healthy controls 

and other muscular disease patients was observed, and this unexpected result could not 

support the initial hypothesis (see section 1.7.1) that branching might be impaired in GFPT1 

myoblasts. On the contrary, the result suggested that multiantennary glycans were likely to be 

slightly more abundant in GFPT1 patients than in controls. However, it is important to realise 

that increasing numbers of LacNAc units does not mean increased branching because these 

units can be present in extended oligo-LacNAc antennae rather than as additional antennae. 

For instance, when a LacNAc is added to the glycan at m/z 2244, this LacNAc could be an 

extra antenna or an extension of an existed antenna, no matter where this LacNAc is, the m/z 
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value of the resulting glycan should be 2693. In this case it will be difficult to determine 

branching alteration via only MS analyses. Indeed the MALDI data in Figure 4.2, Figure 4.4 

and Figure 4.6 confirm that the N-glycans are able to extend their antennae due to the fact 

that many of the glycans at high mass have more than four LacNAc moieties which are the 

basis of a tetra-antennary glycan. Fortunately isomeric glycans varying in oligo-LacNAc 

extensions and branching can be distinguished and their abundances can be compared via 

analysing characteristic fragment ions in MS/MS analyses. Therefore additional MS/MS 

investigations were carried out. 

In the MS/MS analyses, it is not very accurate to compare the relative abundance of an 

identical glycan isoform in two different samples as the isoform may account for a greater 

proportion of the glycan mixture in one sample but the corresponding relative abundance may 

be lower than the same isoform in the other sample. Therefore glycan isoform ratios were 

compared within the same MS/MS analysis. Because the amounts of sample were limited, it 

was not practicable to characterise all components by MS/MS. Therefore only peaks that 

were expected to be most informative for comparative purposes were analysed with MS/MS. 

Note, though, that analysing every glycan peak is usually unnecessary because the N-glycans 

are closely related since they share a biosynthesis pathway.  

For example Figure 4.11 shows MS/MS spectra acquired from the monosialylated glycan at 

m/z 3055 that contains three LacNAc units in the MALDI data (see Figure 4.2) for healthy 

control 1, GFPT1 patient 1 and the DOK7 patient. There are two antennae arrangements 

which are consistent with this composition: triantennary and biantennary with one of the 

antennae possessing one LacNAc extension. As shown in Figure 4.11, the MS/MS spectra are 

dominated by fragment ions arising from loss of a single terminal LacNAc, with or without a 

NeuAc. These fragment ions can be obtained from both the bi- and tri-antennary structures. 

Nevertheless there are several fragment ions that are characteristic for the biantennary 

structure with extended LacNAc. These ions are observed at m/z 935, 1781 and 2142. The 

peak signals of them in the spectra are weak. Importantly their relative abundances to the 

major fragment ions are similar in the three samples. It is estimated from abundance 

comparisons that the ratios of the biantennary glycan is in myoblasts from healthy control 1, 

GFPT1 patient 1 and the DOK7 patient are approximately 10.6%, 13.1% and 10.4%, 

respectively. 
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Figure 4.11 Annotated MALDI-TOF/TOF MS/MS spectra of permethylated N-glycan at m/z 
3055 in myoblasts from healthy control 1 (top), GFPT1 patient 1 (middle) and the DOK7 patient 
(bottom) 

Data were acquired in the form of [M+Na]+ ions. See legend to Figure 3.5 for explanation of structure 
assignments.  GlcNAc,  Man,  Gal,  Fuc,  NeuAc. 



153 
 

 

The analyses of other glycans with similarly ambiguous compositions gave similar results as 

described above. One more example is shown in Figure 4.12 which was obtained from the 

glycan at m/z 2693 which contains one fewer NeuAc than the previously mentioned glycan 

m/z 3055 (see Figure 4.11) in the MALDI data (see Figure 4.2) for the same three subjects. 

There are also two antennae arragements which are consistent with this composition: 

triantennary and biantennary with one extended antenna. As shown in Figure 4.12, the 

fragment ion (m/z 2230) arising from loss of a single terminal LacNAc can be derived from 

both the bi- and tri- antennary structures, in addition to that, there is no characteristic ion for 

triantennary structure but there are two characteristic ions for the biantennary structure. These 

are observed at m/z 935 and 1781. The peaks of them in the spectra are also minor and their 

relative abundances to the major fragment ion (m/z 2230) are similar in the three samples. 

Similarly, the ratios of the biantennary glycan in myoblasts from healthy control 1, GFPT1 

patient 1 and the DOK7 patient are estimated to be approximately 9.2%, 14.1% and 12.3% 

respectively. 

Taken together, the MS and MS/MS results provide strong evidence that the patterns of 

glycan antennae are very similar amongst the myoblasts from healthy controls, GFPT1 

patients, and other muscular disease patients. 
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Figure 4.12 Annotated MALDI-TOF/TOF MS/MS spectra of permethylated N-glycan at m/z 
2693 in myoblasts from healthy control 1 (top), GFPT1 patient 1 (middle) and the DOK7 patient 
(bottom) 

Data were acquired in the form of [M+Na]+ ions. See legend to Figure 3.5 for explanation of structure 
assignments.  GlcNAc,  Man,  Gal,  Fuc. 

 

 

 



155 
 

4.3.2.3. Sialidase S digestion of N-glycans of the myoblasts from the DOK7 patient  

 

The myoblast sample from DOK7 patient in the second batch was split into two aliquots. One 

aliquot was used for normal glycomic analysis, and the other could be used for sialidase S 

digestion to determine the NeuAc linkages in myoblast N-glycome, which could give us more 

information concerning the myoblast N-glycome. This enzyme is specific for α2,3 linked 

sialic aicd. 

As shown in Figure 4.13 (bottom), sialidase S digestion of N-glycans from the DOK7 patient 

myoblast resulted in nearly complete desialylation of all of the core fucosylated N-glycans. A 

handful of sialylated glycans were still shown at m/z 2431, 2880 and 3242. These α2,6 linked 

sialylated glycans are lacking core fucose and are likely to be derived from FCS in the culture 

medium (Monk et al., 2006). Therefore, I can conclude that the NeuAc in the myoblast N-

glycans is predominantly α2,3 linked. 

 

Figure 4.13 Annotated MALDI-TOF MS spectra of permethylated N-glycans (top) and sialidase 
S treated N-glycans (bottom) of myoblasts from DOK7 patient, second batch 

Profiles were obtained from the 50% acetonitrile fraction from a C18 Sep-Pak column. All ions are 
[M+Na]+. See legend to Figure 4.2 for explanation of structure assignments.  GlcNAc,  Man,  
Gal,  Fuc,  NeuAc.   
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4.3.3. Myotube N-glycans 

 

4.3.3.1. MALDI-TOF MS analysis of the N-glycans of myotubes from healthy controls and 

GFPT1 patients and other muscular disease patients 

 

Myotube samples listed in Table 4.1 were analysed. These myotubes were obtained via in 

vitro differentiation of the myoblasts that used in the previous experiment. They were 

subjected to the same glycomic analysis that used in the myoblasts. Most of the myotube 

samples showed good quality data. However, the high m/z glycans were not always observed 

due to the fact that myotube sample quantities were more limited than for myoblasts. 

Representative MALDI-TOF MS spectra from healthy control 1, a GFPT1 patient 1 and the 

DOK7 patient are shown in Figure 4.14 and Figure 4.15.  

Some common characteristics of mammalian cell N-glycomes were observed in Figure 4.14 

and Figure 4.15 (see section 4.3.2.1 for detailed describtion). However, there is a difference 

in the myotube data between healthy control 1 and the GFPT1 patient 1 and the DOK7 

patient, the difference is that although all showed minor signals for glycans with more than 

four LacNAcs, healthy control 1 and the GFPT1 patient 1 showed a predominance of 

biantennary glycans and relatively high levels of glycans with three and four LacNAcs 

(Figure 4.15, top and middle panels) while the  DOK7 patient showed more abundant glycans 

with three and four LacNAcs (e.g. m/z 3055, 3143, 3504 and 3865) (Figure 4.15, bottom 

panel). 
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Figure 4.14 Annotated MALDI-TOF MS spectra of permethylated N-glycans of myotubes from 
healthy control 1 (top), GFPT1 patient 1 (middle) and the DOK7 patient (bottom) 

Profiles were obtained from the 50% acetonitrile fraction from a C18 Sep-Pak column. All ions are 
[M+Na]+. See legend to Figure 4.2 for explanation of structure assignments.   GlcNAc,  Man,  
Gal,  Fuc,  NeuAc.   
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Figure 4.15 Annotated MALDI-TOF MS spectra of permethylated N-glycans (m/z 2900-4700) of 
myotubes from healthy control 1 (top), GFPT1 patient 1 (middle) and the DOK7 patient (bottom) 

This figure amplifies the mass range (m/z 2900-4700) where the majority of tri- and tetra-antennary 
glycans are found in Figure 4.14. Profiles were obtained from the 50% acetonitrile fraction from a 
C18 Sep-Pak column. All ions are [M+Na]+. See legend to Figure 4.2 for explanation of structure as-
signments.  GlcNAc,  Man,  Gal,  Fuc,  NeuAc.   
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MALDI MS data for the other patients and control are shown in Figure 4.16 to Figure 4.19; 

they all showed generally similar glycan profiles as those shown in healthy control 1 and the 

GFPT1 patient 1 (Figure 4.14 and Figure 4.15). 

 

Figure 4.16 Annotated MALDI-TOF MS spectra of permethylated N-glycans from myotubes of 
healthy control 2 (top), GFPT1 patient 2 (middle), the MTND5 patient (bottom)  

Profiles were obtained from the 50% acetonitrile fraction from a C18 Sep-Pak column. All ions are 
[M+Na]+. See legend to Figure 4.2 for explanation of structure assignments.  GlcNAc,  Man,  
Gal,  Fuc,  NeuAc.   
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Figure 4.17 Annotated MALDI-TOF MS spectra of permethylated N-glycans (m/z 2900-4700) 
from myotubes of healthy control 2 (top), GFPT1 patient 2 (middle), the MTND5 patient (bot-
tom) 

This figure amplifies the mass range (m/z 2900-4700) where the majority of tri- and tetra-antennary 
glycans are found in Figure 4.16. Profiles were obtained from the 50% acetonitrile fraction from a 
C18 Sep-Pak column. All ions are [M+Na]+. See legend to Figure 4.2 for explanation of structure as-
signments.  GlcNAc,  Man,  Gal,  Fuc,  NeuAc.   
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Figure 4.18 Annotated MALDI-TOF MS spectra of permethylated N-glycans from myotubes of 
healthy control 2 (top), LGMD2A patient 2 (middle), the MTND5 patient (bottom) 

Profiles were obtained from the 50% acetonitrile fraction from a C18 Sep-Pak column. All ions are 
[M+Na]+. See legend to Figure 4.2 for explanation of structure assignments.  GlcNAc,  Man,  
Gal,  Fuc,  NeuAc.   
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Figure 4.19 Annotated MALDI-TOF MS spectra of permethylated N-glycans (m/z 2900-4700) 
from myotubes of healthy control 2 (top), LGMD2A patient 2 (middle), the MTND5 patient 
(bottom) 

This figure amplifies the mass range (m/z 2900-4700) where the majority of tri- and tetra-antennary 
glycans are found in Figure 4.18. Profiles were obtained from the 50% acetonitrile fraction from a 
C18 Sep-Pak column. All ions are [M+Na]+. See legend to Figure 4.2 for explanation of structure as-
signments.  GlcNAc,  Man,  Gal,  Fuc,  NeuAc.   
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In order to check whether the GFPT1 patients exhibited impaired N-glycan branching in 

myotubes, the N-glycans were also classified into families with different sialylation levels 

and then the glycan abundances within these families was compared. The sialylation levels 

were determined to be similar in the various myotube samples, which was achieved via using 

the same method employed in section 4.3.2.1. The results of these calculations are shown in 

Figure 4.20 for the various myotube samples. In the figure, the red line which stands for 

MTND5 patient is obviously different from other lines at two comparison points (m/z 3055 

and 2693, m/z 3504 and 3143), especially when comparing the abundance of the glycan with 

three LacNAcs and one NeuAc (m/z 3055) to the that of the glycan with three LacNAcs (m/z 

2693), the resulting ratio is two to seven-fold of others. In addition, at the same comparison 

point (m/z 3055 and 2693) somewhat higher level of ratios (two to three-fold) are shown in 

GFPT1 patient 1 and the DOK7 patient. Except for these differences, there is no other evident 

difference in the glycan sialylation between the samples and sialylation patterns are broadly 

similar. 

 

Figure 4.20 Comparison of N-glycan sialylation in the myotubes  

See legend to Figure 4.9 for explanation of structure assignments. 

 

Then the N-glycans were compared in the same way as described in section 4.3.2.1 (same 

sialylation level, but different number of LacNAc). Figure 4.21 shows myotube comparative 

data for nonsialylated (Panel A) and monosialylated (Panel B) glycans containing from two 

to six LacNAc units. The result is similar to that of myobolasts which has been described in 

section 4.3.2.1, except for a two to four-fold divergence of ratios when comparing 4 LacNAcs 

with 3 LacNAcs (m/z 3143 and 2693 in Panel A, m/z 3504 and 3055 in Panel B) shown in the 

DOK7 patient. 
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A

B

 
Figure 4.21 Comparison of the relative intensities of a family of nonsialylated glycans with 
different numbers of LacNAc (A) in myotubes, comparison of the relative intensities of a family 
of monosialylated glycans with different numbers of LacNAc (B) in myotubes 

See legend to Figure 4.10 for explanation of structure assignments.  GlcNAc,  Man,  Gal,  Fuc, 
 NeuAc.   

 

Except for the differences mentioned previously, there was no significant difference between 

the myotube MS spectra of the GFPT1 patients and healthy controls and other muscular 

disease patients, and this unexpected result was similar to the myoblast result described in 

section 4.3.2.1.  

 

4.3.3.2. Sialidase S digestion of N-glycans of the myotubes from the DOK7 patient 

 

The myotube sample from DOK7 patient was split into two aliquots. One aliquot was used in 

section 4.3.3.1, and the other was used for sialidase S digestion to determine the NeuAc 

linkages in myotube N-glycome. 

Digestion of N-glycans from DOK7 patient myotubes with sialidase S resulted in a nearly 

complete desialylation on all core fucosylated N-glycans (Figure 4.22). Several minor 

sialylated glycans were observed at m/z 2431 and 2792. These sialylated glycans are 
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probably α2,6 linked sialylated glycans and they are likely to be derived from FCS (see 

section 4.3.2.3). Therefore, I conclude that the NeuAc linkage in myotubes is not changed 

upon differentiation. 

 

 

Figure 4.22 Annotated MALDI-TOF MS spectra of permethylated N-glycans (top) and sialidase 
S treated N-glycans (bottom) of myotubes from DOK7 patient 

Profiles were obtained from the 50% acetonitrile fraction from a C18 Sep-Pak column. All ions are 
[M+Na]+. See legend to Figure 4.2 for explanation of structure assignments.  GlcNAc,  Man,  
Gal,  Fuc,  NeuAc.   
 

4.3.4. Myotube O-glycans 

 

4.3.4.1. MALDI-TOF MS analysis of the O-glycans of the myotubes  

 

In addition to analysing N-glycans, the analysis of O-glycans was also performed; however, 

MALDI MS data were only obtained from myotubes of 2 healthy controls and 4 muscular 

disease patients. The O-glycan profiles are shown in Figure 4.23 and Figure 4.24. The figure 

showed the presence of both core 1 (m/z 534, 895 and 1257) and core 2 (m/z 779, 984, 1345 
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and 1706) structures. The profiles of healthy controls, the DOK7 patient, MTND5 patient, 

LGMD2A patient and Pompe disease patient are broadly similar. This result was obtained via 

comparing the relative abundance of glycans within the same family in each sample. In the 

core 1 containing glycan family, all samples showed that the relative abundance of 

nonsialylated glycan (m/z 534) was higher than monosialylated (m/z 895) which was higher 

than disialylated (m/z 1257). In the core 2 containing glycan family, all samples showed that 

there was no significant difference between the relative abundance of the nonsialylated 

glycan (m/z 984) and the monosialylated (m/z 1345).  

 

 

 

Figure 4.23 Annotated MALDI-TOF MS spectra of permethylated O-glycans of myotubes from 
healthy control 1 (top), the DOK7 patient (middle), MTND5 patient (bottom) 

These profiles were obtained from the 35% acetonitrile fraction from a C18 Sep-Pak column. All ions 
were obtained in the form of [M+Na]+. See legend to Figure 3.13 for explanation of structure 
assignments.  GalNAc,  GlcNAc,  Gal,  NeuAc. 
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Figure 4.24 Annotated MALDI-TOF MS spectra of permethylated O-glycans of myotubes from 
healthy control 2 (top), LGMD2A patient (middle) and Pompe disease patient (bottom)  

These profiles were obtained from the 35% acetonitrile fraction from a C18 Sep-Pak column. All ions 
were obtained in the form of [M+Na]+. See legend to Figure 3.13 for explanation of structure 
assignments.  GalNAc,  GlcNAc,  Gal,  NeuAc.   

 

According to the O-glycan biosynthesis pathway, all O-glycan structures displayed in Figure 

4.23 and Figure 4.24 are unambiguous except the structure of the glycan at m/z 895 and 1345. 

The MS/MS spectra of these glycans gave same results as described in section 3.3.2.1. 

Glycan cartoons were assigned accordingly. 

 

 

 



168 
 

4.3.4.2. Sialidase S digestion of O-glycans of the myotubes from the DOK7 patient 

 

Sialidase S digestion was also carried out on O-glycans to determine the NeuAc linkage. As 

shown in Figure 4.25 (bottom), digestion of O-glycans from DOK7 patient myotubes with 

sialidase S resulted in a nearly complete desialylation on O-glycans, and with the sialylated 

O-glycan at m/z 895 being observed. This indicated that the NeuAc in myotubes is mainly 

α2,3 linked. 

 

 

Figure 4.25 Annotated MALDI-TOF MS spectra of permethylated O-glycans (top) and sialidase 
S treated O-glycans (bottom) of myotubes from DOK7 patient  

Profiles were obtained from the 35% acetonitrile fraction from a C18 Sep-Pak column. All ions are 
[M+Na]+. See legend to Figure 3.13 for explanation of structure assignments.  GalNAc,  GlcNAc, 

 Gal,   NeuAc. 

 

4.4. Discussion 
 

It has been reported that CMS patients  with GFPT1 mutations shared clinical features with 

CMS patients  with DPAGT1 mutations (Belaya et al., 2012; Guergueltcheva et al., 2012). In 

addition, both GFPT1 and DPAGT1 play important roles in N-glycan biosynthesis pathway, 

and their mutations could result in muscle endplate AChR instability (Zoltowska et al., 2013; 
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Belaya et al., 2012; Freeze et al., 2015). These indicate faulty N-glycosylation of the 

receptors. Muscle specimens from CMS patients  with GFPT1 mutations showed that their 

endplates were poorly developed, ans this implied that the endplate specific glycoproteins, 

such as MuSK and dystroglycans, could be hypoglycosylated (Engel et al., 2015; Selcen et al., 

2013). This thesis for the first time reports N-glycan profiles of in vitro cultured human 

myoblasts and N- and O-glycan profiles of human myotubes  that differentiate from 

myoblasts in vitro.  

Employing ultrasensitive MALDI-TOF MS combined with MALDI TOF/TOF MS/MS, I 

observed that more high mass glycans were detected when the cells were grown in the 

medium containing FCS with higher concentration (see section 4.3.1.1). FCS possesses N-

glycans (Monk et al., 2006), however, their N-glycans which are non-core fucosylated can be  

distinguished from the ones I am interested in which are core fucosylated (see section 4.3.2). 

More importantly, in this project the FCS derived glycans do not seem to be a problem as 

they are not dominating the spectra, thus the contamination will not have too much influence 

on the conclusion that I made. In all the comparisons carried out in this project, the non-core 

fucosylated glycans are excluded. 

The data of cells  from GFPT1 patient 3 gave  less information (only high mannose glycans 

and three complex N-glycans were detected) than the other patients. This is in accordance 

with the fact that the cells grew more slowly than the others (see section 2.1.3.2). 

The main findings of this project are: the N-glycan profiles of myoblasts (Figure 4.2 and 

Figure 4.4) and myotubes (Figure 4.14 and Figure 4.16) from healthy controls, GFPT1 

patients and other patients are broadly similar, the O-glycan profiles of myotubes seem to be 

broadly similar as well, the absence of core 2 containing glycans in healthy control 1 is 

probably caused by the smaller amount of the analyte. 

Sialidase S digestion demonstrated the presence of α2,3 linked NeuAc in both myoblast and 

myotubes from DOK7 patient; and this implies that the NeuAc in the myoblasts and 

myotubes from healthy controls and other patients is probably also α2,3 linked (Figure 4.13, 

Figure 4.22 and Figure 4.25). Indeed, selective expression of sialyltransferase is common, for 

instance, Galβ1,3(4)GlcNAcα2,3-sialyltransferase is specifically expressed in human K562 

leukemia cells (Kitagawa and Paulson, 1994). Therefore I can reasonably conclude that my 

data indicate 2-3 sialyl  transferases, not 2-6, are mainly expressed in myoblasts and 

myotubes. This could be tested using SNA-I which is an important tool in glycoconjugate 
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research as it possesses binding specificity to α2,6 linked NeuAc not α2,3 linked NeuAc 

(Shang and Van Damme, 2014; Shibuya et al., 1987). SNA-I will probably not bind or show 

low binding affinity to myoblasts and myotubes.    

The differences observed in the DOK7 patient and MTND5 patient between other samples in 

Figure 4.20 and Figure 4.21 respectively implied that these two patients did not appear to be 

the same as the others and so perhaps they are not good “controls” for GFPT1 patients and 

healthy controls. Another  explanation for the difference is that it might be caused by 

individual differences between the samples, even biological replicates could show difference 

(see Figure 4.8). Except for these differences, there was no other difference in the comparison 

of the relative abundances of the bi-, tri- and tetraantennary N-glycans in all myoblast and 

myotube samples. These findings are unexpected as the original hypothesis (see section 1.7.1) 

that GFPT1 mutations in the cells would result in changes in the N-glycan branching. This 

hypothesis was made based on a recent glycomic analysis concerning N-glycosylation of 

leukocytes from patients with mutations in the PGM3 gene which encodes a protein 

immediately after GFPT1 in the hexosamine biosynthesis pathway (Sassi et al., 2014). A 

reduced level of tri- and tetraantennary N-glycans was observed, and this was rationalized by 

the fact that the initiations of four antennae are catalysed by 4 different enzymes which are 

GlcNAc-T І (medial Golgi-branching N-acetylglucosamine transferase І), GlcNAc-T II, 

GlcNAc-T ІV and GlcNAc-T V, the Km values of which are 0.04, 0.96, 5.0 and 11.0 mM 

UDP-GlcNAc respectively (Lau et al., 2007). In Michaelis-Menten kinetics, the value of Km 

is a measure of the substrate concentration needed for effective reaction to occur and is an 

important characteristic of enzyme-substrate interactions (Berg et al., 2002a). Higher Km 

value corresponds to lower substrate affinity and thus a lower catalytic activity. Therefore, by 

requiring higher substrate concentration the tri- and tetraantennary N-glycans will be most 

impaired by a reduction in UDP-GlcNAc concentration. However, the glycomic results did 

not support this hypothesis.  

Although the glycomic result of the myoblasts and myotubes implies that the gene (GFPT1) 

mutations do not result in global glycan alterations, it does not rule out the possibility that 

individual glycoproteins have altered glycosylation. It could be that alterations in N-

glycosylation are subtle and such subtle differences are lost in the general glycomic profiling 

or are difficult to identify. Additionally, it could be that the original glycosylation in the 

patient muscle is different from that in the in vitro cultured cells or the glycosylation might 

have changed during the muscle tissue regeneration. Therefore, detailed glycoproteomic 
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analysis of specific glycoproteins, such as acetylcholine receptor and agrin, could be carried 

out as future work. Indeed phenotypic similarities between CMS caused by GFPT1 mutations 

and CMS caused by DPAGT1 mutations would suggest that reduced endplate acetylcholine 

receptor in GFPT1 CMS patients might at least partially be due to abnormal glycosylation 

(Zoltowska et al., 2013). It could also be that there is a bypass of the reaction catalysed by 

GFPT1 existing in humans, and this bypass has diminished or eliminated the effects caused 

by GFPT1 mutations. The observation of the clinical features of CMS patients with GFPT1 

mutations suggests that this bypass could only partially replace GFPT1. 

Bearing in mind that not only could N-glycan antenna initiation be affected by the yield of 

UDP-GlcNAc, but also O-GlcNAcylation. O-GlcNAcylation is the transfer of GlcNAc to a 

serine or threonine residue of nuclear or cytoplasmic proteins (Hart et al., 2011). O-

GlcNAcylation has been long postulated to be a unique intracellular modification (Ogawa et 

al., 2015; Hurtado-Guerrero et al., 2008) and the cell surface glycans seem to be more 

important in this study. In addition, I did not have electron transfer dissociation (ETD) MS 

which is an essential tool for O-GlcNAcylation analysis (Myers et al., 2013) when this 

project was launched, therefore I did not analyse O-GlcNAcylation in myoblasts and 

myotubes. However, extracellular O-GlcNAcylation has been reported (Matsuura et al., 

2008). It is therefore reasonable to investigate O-GlcNAcylation in myoblast and myotubes in 

the future. The Km values of the enzymes related to O-GlcNAcylation, such as intracellular 

O-GlcNAc transferase (OGT) and epidermal growth factor O-GlcNAc transferase (EOGT), 

are much smaller than those of Golgi-resident GlcNAc transferases (Ogawa et al., 2015; 

Haltiwanger et al., 1992; Ma et al., 2013; Lau et al., 2007). This indicates that the O-

GlcNAcylation is  expected to be more easily impaired by a reduction in UDP-GlcNAc 

concentration than N-glycans. In addition, the EOGT-catalysed O-GlcNAcylation responds to 

stimulation of the hexosamine biosynthesis pathway (Ogawa et al., 2015). It is likely that O-

GlcNAcylation level has been affected by the GFPT1 mutations. One function of O-

GlcNAcylation in cells is to act as a sensor to regulate signalling, transcription and translation 

(Lau et al., 2007; Hart et al., 2011). As signalling is closely related to neuromuscular junction 

function it is possible that the GFPT1 mutations might result in abnormal O-GlcNAcylation 

which might contribute to the human neuromuscular junction defect. This might be an 

explanation for the mechanism  by which GFPT1 mutations cause CMS.  

The reason why O-glycans were not detected in the myotubes from GFPT1 patients was 

probably that the amount of cells for analysis was limited. This explanation can be supported 
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by the phenomenon that fewer high mass N-glycans were observed in the GFPT1 patient 

myotube samples (Figure 4.14 and Figure 4.16). 

My collaborators chose other muscular diseases,  namely CMS caused by DOK7 mutations, 

and myopathy caused by MTND5 mutations, Limb girdle muscular dystrophy type 2A 

(LGMD2A) caused by CAPN3 mutations and Pompe disease caused by GAA mutations, as 

exemplars of muscular diseases which have not been previously found to show defective N-

glycosylation. However, a very recently published paper reported that Pompe disease can 

result in a Golgi-based glycosylation deficit in human skin fibroblast-derived induced 

pluripotent stem cells which were differentiated in culture to cardiomyocytes (iPSC-CMs) 

(Raval et al., 2015). Employing a similar glycomic strategy to ours, Raval et al. have found 

that there is a decreased diversity of multiantennary structures and hyposialylation in Pompe 

disease iPSC-CMs. However, my results did not show any obvious glycosylation defect, and 

the multiantennary N-glycans that I observed in my results are not evident in their control 

cells. This might be due to the fact that the glycosylation defects in Pompe disease are cell-

specific or dependent on culture conditions.  

The underlying mechanism by which GFPT1 mutations cause CMS remains unknown. 

Elucidation of the mechanism could help the development of new treatment options.  
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5. Glycomic profiling of trophoblasts  
 

5.1. Introduction to the project 
 

This project is in collaboration with Professor Gary F. Clark at University of Missouri and Dr. 

Sandra M. Blois at University Medicine of Berlin. 

In order to further investigate the hu-FEDS hypothesis described in section 1.8.2 and test our 

hypothesis which is that functional glycan structures on human gametes (Lewis X, sialyl-

Lewis X and bisecting GlcNAc) could also be detected on human trophoblasts. The N-

glycomes of three trophoblast populations (CTB, STB and evCTB) were rigorously 

characterised. Specifically, MS analyses provided general structural information of the 

glycans; sialidase S digestion and MS/MS analyses were used to check whether sialyl-Lewis 

X structure was present; MS/MS analyses and endo-β-galactosidase digestion were employed 

to check whether there was Lewis X structure; linkage analysis and β1, 4-

galactosyltransferase treatment were applied to verify the presence of bisecting GlcNAc.   

 

5.2. Sample details and sample processing 
 

The four sets of samples which were obtained from four donors were labelled as 86, 96, 114 

and 117. In each set, there were one cytotrophoblast (CTB) sample and one 

syncytiotrophoblast (STB) sample. The detail of these samples is shown in Table 5.1. 

Table 5.1 Detail of CTB and STB received from University of Missouri 

Cell Type Cell number in each sample Number of samples 
CTB86 Approximately 3 million 2 
STB86 Approximately 3 million 2 
CTB96 Approximately 3 million 2 
STB96 Approximately 3 million 2 

CTB114 Approximately 3 million 2 
STB114 Approximately 3 million 2 
CTB117 Approximately 3 million 2 
STB117 Approximately 3 million 2 
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The extravillous cytotrophoblast (evCTB) samples were more authentic as they were less in 

vitro cultured and thus were closer to the real human tissues. To reduce the costs of shipping 

and for safety reasons, the protein extraction was carried out following the methods 

mentioned in section 2.2.2.1 in Germany. The detail of these evCTB samples is shown in 

Table 5.2. 

Table 5.2 Detail of evCTB protein samples received from University Medicine Berlin 

First batch 
Sample ID Origin Cell number Number of samples 

evCTB pool of samples 12 to 15 million 1 
evCTB1 pool of samples 12 to 15 million 1 
evCTB3 pool of samples 12 to 15 million 1 

Second batch 
Sample ID Origin Cell number Number of samples 
evCTB9W pool of samples Approximately 6 million 1 

evCTB10W pool of samples Approximately 24 million 1 
evCTB11W Individual patient Approximately 25 million 1 

evCTB10 5/7 Individual patient Approximately 18 million 1 
 

All samples were analysed using glycomic methodologies which have been described in 

section 2.2: the processing of CTB and STB samples started with section 2.2.1 while the 

handling of evCTB samples began with section 2.2.3.   

 

5.3. Results 
 

5.3.1. CTB and STB N-glycans 

 

5.3.1.1. MALDI-TOF MS analyses of the N-glycans of CTB and STB 

 

High quality MALDI data were obtained for the N-glycans of all the CTB and STB samples. 

Representative MALDI-TOF MS spectra of N-glycans of each cell type, CTB86 and STB86, 

are shown in Figure 5.1. The spectra show that high mannose (e.g. m/z 1580, 1784 and 1988) 

and complex glycans (e.g. m/z 2693 and 4226) are present in both CTB and STB. The 

antenna number and sialic acid numer of these complex glycans are similar to that described 

in section 4.3.2.1. Some common characteristics of mammalian cell N-glycomes were 

observed in Figure 5.1 (see section 4.3.2.1 for detailed description). In addition to the 
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common structures, some potentially more interesting structures, such as sialyl-Lewis X  

and/or A, Lewis X and/or A and bisecting GlcNAc, were observed. The sialylated N-glycans 

accounted for approximately 57%, 40%, 63% and 43% of the complex glycans in CTB86, 

CTB96, CTB114 and CTB117 respectively, and approximately 64%, 67%, 64% and 67% of 

the complex glycans in STB86, STB96, STB114 and STB117 respectively. 

 

 

Figure 5.1 Annotated MALDI-TOF MS spectra of permethylated N-glycans from CTB86 (top) 
and STB86 (bottom)  

Profiles were obtained from the 50% acetonitrile fraction from a C18 Sep-Pak column. All ions are 
[M+Na]+. See legend to Figure 3.2 for explanation of structure assignments. The NeuGc in the minor 
glycan at m/z 2635 is likely diet-derived (Tangvoranuntakul et al., 2003; Banda et al., 2012).  
GlcNAc,  Man,  Gal,  Glc,  Fuc,  NeuAc,  NeuGc. 

 

The method described in section 4.3.2.1 was employed to compare fucosylation between 

CTB and its corresponding STB. Fucosylation level is higher in CTB when comparing the 

relative intensity of m/z 2779 to m/z 2605, but this difference is not observed when 
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comparing the relative intensity of m/z 3025 to m/z 2850 (see Table 5.3). Therefore, a firm 

conclusion could not be made on this fucosylation comparison. 

Table 5.3 Comparisons of N-glycan fucosylation between CTB and STB 

The fucosylation comparison was achieved via comparing the relative intensity (RI) of one glycan to 
that of the previous glycan which possesses one fewer Fuc.  

Modification RI comparison CTB 
86 

STB 
86 

CTB 
96 

STB 
96 

CTB 
114 

STB 
114 

CTB 
117 

STB 
117 

 
Fucosylation 

RI(2779)/RI(2605) 0.79 0.32 0.29 0.15 0.65 0.35 0.53 0.36 
RI(3025)/RI(2850) 0.13 0.12 0.18 0.17 0.09 0.09 0.09 0.11 

 

5.3.1.2. MALDI-TOF/TOF MS/MS analysis of the N-glycan at m/z 2592 

 

MALDI-TOF/TOF MS/MS analyses were carried out to further characterize structures of 

peaks of interest, i.e. those glycans containing potential Lewis structures and sialyl-Lewis 

structures. Here the MS/MS data for the glycan at m/z 2592 which contains potential Lewis 

structures are described as an example.    

As shown in Figure 5.2, the fragment ion at m/z 1955 corresponds to loss of a Lewis structure 

which can be either Lewis A [Galβ1,3(Fucα1,4)GlcNAc] or Lewis X 

[Galβ1,4(Fucα1,3)GlcNAc] or a mixture of both, and its concurrent ion is also observed at 

m/z 660. The signals of these two ions dominate the two spectra. These demonstrate the 

presence of Lewis A and/or X structure. In addition, in Figure 5.2 (bottom) the fragment ion 

at m/z 1781 corresponds to loss of a Lewis B [(Fucα1,2)Galβ1,3(Fucα1,4)GlcNAc] or Lewis 

Y [(Fucα1,2)Galβ1,4(Fucα1,3)GlcNAc] or a mixture of both, its concurrent ion is also 

observed at M/Z 834 though the peak signal is weak. These demonstrate the presence of 

Lewis B and/or Y in STB86. Fuc is confirmed to be 3-linked in the Lewis moiety as the 

signal at m/z 2386 corresponds to the loss of a Fuc from the C3 position of GlcNAc via beta 

elimination. This 3-linked Fuc is either come from the Lewis X or the Lewis Y or both. This 

provides evidence for the presence of potential Lewis X and/or Y. In addition, there is no 

detectable characteristic ion for Lewis A or B, and this can rule out the possibility that Lewis 

A and Lewis B are present in the CTB and STB. Therefore, these data demonstrate the 

presence of Lewis X in CTB and Lewis X and Y in STB. 

More detailed annotation of these two spectra is shown in Figure 5.3. 
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Figure 5.2 Annotated MALDI-TOF/TOF MS/MS spectra of permethylated N-glycan at m/z 
2592 in CTB86 (top) and STB86 (bottom) 

Data were acquired in the form of [M+Na]+ ions. Peaks were annotated with putative fragment ions 
according to the molecular weight.  GlcNAc,  Man,  Gal,  Fuc. 
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Figure 5.3 Fully annotated MALDI-TOF/TOF MS/MS spectra of permethylated N-glycan at 
m/z 2592 in CTB86 (top) and STB86 (bottom) 

Data were acquired in the form of [M+Na]+ ions. Peaks were annotated with putative fragment ions 
according to the molecular weight. The glycan m/z values and their corresponding fragment ions are 
labelled in the same colour (red, green, black or blue).  GlcNAc,  Man,  Gal,  Glc,  Fuc,  
NeuAc,  NeuGc. 

 

5.3.1.3. MALDI-TOF/TOF MS/MS analysis of the N-glycan at m/z 3143 

 

The MS/MS data for the glycan at m/z 3143 which contains potential sialyl-Lewis X and/or 

A are described as another example. 

As observed in HeLa cells (section 3.3.1.2), the isotope peaks of the glycan at m/z 3143 span 

a wider mass range than expected for one single sugar composition. This implies that this 

peak cluster may also include LacNAc containing glycans as well as potential sialyl-Lewis X 
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and/or A containing glycans which differ by 2 Da. MS/MS analyses were carried out to check 

this. 

The spectra shown in Figure 5.4 are similar to that in Figure 3.5 (top), see section 3.3.1.2 for 

detailed explanation. This figure provides evidence for the presence of potential sialyl-Lewis 

X. A comparison of the relative intensity of characteristic fragment ions (m/z 847, 1021, 

2142, 2316, 2765 and 2934) of potential sialyl-Lewis X containing glycan to the sum of all 

fragment ions shows that the potential sialyl-Lewis X containing glycan accounts for 

approximately 60% and 56% of the glycan mixture in CTB86 and STB86 respectively. 

Similary, a comparison of the relative intensity of the characteristic fragment ions (m/z 935, 

1781 and 2230) to the sum of all fragment ions shows that the polyLacNAc containing glycan 

accounts for approximately 7% of the glycan mixture in both CTB86 and STB86. The 

remaining should be tetraantennary glycan with each antenna possessing one LacNAc. 

To further check the presence of sialyl-Lewis X, it is necessary to determine the linkage of 

NeuAc, and this can be achieved via sialidase S digestion. 
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Figure 5.4 Annotated MALDI-TOF/TOF MS/MS spectra of permethylated N-glycan peak 
centred at m/z 3142 in the CTB86 (top) and STB86 (bottom) 

Data were acquired in the form of [M+Na]+ ions. See legend to Figure 3.5 for explanation of structure 
assignments.  GlcNAc,  Man,  Gal,  Fuc,  NeuAc. 

 

5.3.1.4. Sialidase S digestion of the N-glycans of CTB and STB 

 

Digestion of both CTB and STB with sialidase S resulted in partial desialylation, with only a 

handful of minor sialylated N-glycans at m/z 2431, 2605 and 2850 being observed (Figure 

5.5). The glycan at m/z 2489 is the major component in the complex N-glycans. Comparison 

of this figure and Figure 5.1 indicated that both CTB and STB mainly contain α2,3 linked 
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NeuAc, which could be observed via a significant but not complete loss of NeuAc residues 

from the assigned structures. After the digestion, the isotope peak cluster around m/z 3142 in 

both CTB and STB was consistent with a single composition, which was the same as 

described in section 3.3.1.4. In addition, some high mass glycans, such as m/z 4041, 4490 and 

4939, were not detected previously but observed after the enzymatic digestion. Their putative 

structures suggest the existence of α2,3 sialylated polyLacNAc in both CTB and STB. The 

desialylated high mass components were checked by MS/MS analyses. 

 

 

Figure 5.5 Annotated MALDI-TOF MS spectra of permethylated sialidase S treated N-glycans 
from CTB86 (top) and STB86 (bottom)  

Profiles were obtained from the 50% acetonitrile fraction from a C18 Sep-Pak column. All ions are 
[M+Na]+. See legend to Figure 3.2 for explanation of structure assignments. See legend to Figure 5.1 
for explanation of the NeuGc containing glycan.  GlcNAc,  Man,  Gal,  Fuc,  NeuAc,  
NeuGc. 
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5.3.1.5. MALDI-TOF/TOF MS/MS analysis of the N-glycan at m/z 3143 after sialidase S 

digestion 

 

As shown in Figure 5.6, the fragment ions corresponding to loss of LacNAc, diLacNAc and 

triLacNAc were observed at m/z 2679, 2230 and 1781 respectively, while fragment ions 

corresponding to loss of NeuAc or NeuAc related structure were not detected. The fragment 

ion at m/z 2691 corresponds to the loss of a fucosylated GlcNAc. This fragment ion has been 

previously observed in Figure 5.4. There is no other fragment ion corresponding to Fuc or 

Fuc containing residues. This suggested that the NeuAc in the previous potential sialyl-Lewis 

X glycan (m/z 3141) had been cleaved and thus the NeuAc should be α2,3 linked, after 

sialidase S digestion the m/z valude of the glycan has shifted. This demonstrates the presence 

of sialyl-Lewis X in both CTB and STB. 

 

 

Figure 5.6 Annotated MALDI-TOF/TOF MS/MS spectra of permethylated sialidase S treated 
N-glycan at m/z 3143 in CTB86 (top) and STB86 (bottom) 

Data were acquired in the form of [M+Na]+ ions. See legend to Figure 3.5 for explanation of 
assignments.  GlcNAc,  Man,  Gal,  Fuc. 
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5.3.1.6. MALDI-TOF/TOF MS/MS analysis of the N-glycan at m/z 4939 after sialidase S 

digestion 

 

As mentioned previously, high mass glycans, such as such as m/z 4041, 4490 and 4939, may 

contain polyLacNAc. Therefore, MS/MS analyses were carried out on these glycans. As an 

example, data obtained from the sialidase S digested glycan at m/z 4939 are shown in Figure 

5.7. The fragment ions corresponding to loss of LacNAc, diLacNAc, triLacNAc, 

tetraLacNAc and pentaLacNAc were observed at m/z 4476, 4027, 3578, 3129 and 2679 

respectively. These fragment ions  dominate the spectra. Some of their concurrent ions were 

also observed at m/z 486, 935, 1385 and 1834. These clearly demonstrate the presence of 

polyLacNAc. The maximum number of the LacNAc repeating unit observed in the CTB and 

STB MS/MS data is six (see Figure 5.7 bottom), although the signal is weak. 
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Figure 5.7 Annotated MALDI-TOF MS/MS spectra of permethylated sialidase S digested N-
glycan at 4939 in CTB114 (top) and STB114 (bottom) 

Data were acquired in the form of [M+Na]+ ions. See legend to Figure 3.5 for explanation of 
assignments.  GlcNAc,  Man,  Gal,  Fuc. 

 

5.3.1.7. Linkage analysis of the N-glycans of CTB and STB 

 

In addition to Lewis X, Lewis Y, sialyl-Lewis X and polyLacNAc, bisecting GlcNAc may 

also exist in the CTB and STB. However, MS/MS analysis is not able to check the presence 
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of bisecting GlcNAc as its fragment ion cannot be distinguished from that of a truncated 

antenna. 

As shown in Figure 1.6, bisecting GlcNAc is linked to 3, 4, 6-linked Man, therefore the 

presence of 3, 4, 6-linked Man can reflect the existence of bisecting GlcNAc. GC-MS is able 

to check the presence of 3, 4, 6-linked Man. Table 5.4 summarizes the result of GC-MS 

linkage analysis of the glycan derivatives from CTB117 and STB117 and demonstrates the 

presence of 3, 4, 6-linked Man, and this provides evidence for the existence of bisecting 

GlcNAc.     

Table 5.4 Summary of GC-MS linkage analysis of partially methylated alditol acetates derived 
from the 50% acetonitrile fraction of permethylated N-glycans of CTB117 and STB117 

The elution time is indicated in minutes and the relative abundance is normalised to the abundance of 
2-linked mannose (major component) which is designated as 1. 

Elution 
time, min 
(CTB117) 

Elution 
time, min 
(STB117) 

Characteristic fragment ions Assignments Relative 
abundance 
(CTB117) 

Relative 
abundance 
(STB117) 

16.95 16.90 102, 115, 118, 131, 162, 175 Terminal Fuc 0.16 0.14 
18.45 18.40 102, 118, 129, 145, 161, 205 Terminal 

Man 
0.68 0.62 

18.71 18.67 102, 118, 129, 145, 161, 205 Terminal Gal 0.15 0.17 
19.62 19.56 129, 130, 161, 190, 234 2-linked Man 1 1 
19.90 19.85 118, 129, 161, 203, 234 3-linked Gal 0.07 0.10 
21.18 21.14 87, 88, 129, 130, 189, 190 2,6-linked 

Man 
0.05 0.05 

21.34 21.30 118, 129, 189, 202, 234 3,6-linked 
Man 

0.33 0.34 

21.80 21.76 118, 139, 259, 333 3,4,6-linked 
Man 

0.08 0.07 

22.27 22.23 117, 129, 145, 205, 247 Terminal 
GlcNAc 

0.04 0.04 

23.15 23.12 117, 159, 233 4-linked 
GlcNAc 

0.22 0.39 

24.00 23.96 117, 159, 346 3,4-linked 
GlcNAc 

0.03 0.03 

24.46 24.42 117, 159, 261 4,6-linked 
GlcNAc 

0.04 0.08 

 

5.3.1.8. The N-glycans of CTB and STB treated with β1, 4-galactosyltransferase 

 

In addition to GC-MS linkage analysis, β1,4-galactosyltransferase incubation was also 

carried out to prove the presence of bisecting GlcNAc. β1,4-galactosyltransferase can transfer 

a Gal from UDP-Gal to a GlcNAc producing the disaccharide unit, Galβ1,4GlcNAc. 
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However, if the GlcNAc is bisecting, it will not be modified by this enzyme (Qasba et al., 

2008; Narasimhan et al., 1985). This incubation was carried out on the same samples (117C 

and 117S) which had been investigated by linkage analysis. Glycans at m/z 2489, 2850 and 

3212 were chosen as the research subjects in this experiment as all of them have a GlcNAc 

which could be either truncated or bisecting. Figure 5.8 shows that after β1,4-

galactosyltransferase incubation, the relative intensities of glycans at m/z 2489, 2850 and 

3212 in both CTB and STB did not alter significantly compared to that of glycans at m/z 

2693, 3055 and 3416 respectively. This indicates that β1,4-galactosyltransferase could not 

modify the GlcNAc in these glycans and thus the GlcNAc present in these glycans are 

bisecting.    

A

 

B

 

Figure 5.8 Annotated MALDI-TOF MS spectra of permethylated N-glycans from CTB117 (A, 
top) and STB117 (B, top) and permethylated β1,4-galactosyltransferase incubated N-glycans 
from CTB117 (A, bottom) and STB117 (B, bottom)  

Profiles were obtained from the 50% acetonitrile fraction from a C18 Sep-Pak column. All ions are 
[M+Na]+. See legend to Figure 3.2 for explanation of structure assignments.  GlcNAc,  Man,  
Gal,  Fuc,  NeuAc. 
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The bisecting GlcNAc-containing N-glycans account for approximately 32%, 15%, 50% and 

59% of the complex glycans in CTB86, CTB96, CTB114 and CTB117 respectively, and 

approximately 15%, 22%, 41% and 49% of the complex glycans in STB86, STB96, STB114 

and STB117 respectively.   

 

5.3.2. evCTB N-glycans 

 

5.3.2.1. MALDI-TOF MS analysis of the N-glycans of evCTB 

 

There were seven evCTB samples in total. They were in turn labelled as evCTB, evCTB1, 

evCTB3, evCTB9W, evCTB10W, evCTB11W and evCTB10 5/7. All the samples were 

analysed using the same method described in section 2.2. High quality MALDI data were 

obtained for the N-glycans of evCTB. The MALDI-TOF MS spectrum of N-glycans of one 

representative sample, evCTB10 5/7 is shown in Figure 5.9. The spectrum shows that high 

mannose and complex glycans are present in evCTB. Common characteristics of mammalian 

cell N-glycomes and potentially more interesting structures were observed in Figure 5.9 (see 

section 5.3.1.1 for detailed description). The sialylated N-glycans accounted for 

approximately 65%, 68%, 40%, 48%, 14%, 12% and 72% of the complex glycans in evCTB, 

evCTB1, evCTB3, evCTB9W, evCTB10W, evCTB11W and evCTB10 5/7 respectively.  
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Figure 5.9 Annotated MALDI-TOF MS spectrum of permethylated N-glycans from evCTB10 
5/7 

Profiles were obtained from the 50% acetonitrile fraction from a C18 Sep-Pak column. All ions are 
[M+Na]+. See legend to Figure 3.2 for explanation of structure assignments.  GlcNAc,  Man,  
Gal,  Glc,  Fuc,  NeuAc. 

 

There was no significant alteration when comparing the fucosylation in evCTB (Table 5.5) to 

that in CTB and STB (Table 5.3). 

Table 5.5 Comparisons of N-glycan fucosylation 

See legend to Table 5.3 for explanation of the comparison. NA, not available, which is due to the fact 
that the RI of the glycan is too low to be used in the calculation.   

Modification RI comparison 
evCTB evCTB1 evCTB3 

evCTB
9W 

evCTB
10W 

evCTB
11W 

evCTB
10 5/7 

 
Fucosylation 

RI(2779)/RI(2605

) 1.10 0.57 0.45 0.25 0.68 0.56 0.82 
RI(3025)/RI(2850

) 0.28 0.14 0.38 0.49 NA NA 0.06 
 

5.3.2.2. MALDI-TOF/TOF MS/MS analysis of the N-glycan at m/z 3143 

 

In evCTB the isotope peaks of the glycan at m/z 3143 also span a wider than expected, which 

is the same as the observation in section 3.3.1.2, therefore MS/MS analysis was carried out. 

The MS/MS spectrum shown in Figure 5.10 is similar to that in Figure 3.5 (top), see section 

3.3.1.2 for detailed explanation. The following figure provides evidence for the presence of 

potential sialyl-Lewis X. Following the calculation method described in section 5.3.1.3, the 

potential sialyl-Lewis X containing glycan accounts for approximately 15% of the glycan 
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mixture, the poly-LacNAc containing glycan also accounts for approximately 15%. 

Compared to Figure 5.4 (CTB and STB), the relative abundance of sialyl-Lewis X to 

polylacNAc is decreased in evCTB (approximately 9.22 in CTB, 8.33 in STB, 1.00 in 

evCTB).  

 

Figure 5.10 Annotated MALDI-TOF/TOF MS/MS spectrum of permethylated N-glycan peak 
centred at m/z 3142 in the evCTB10 5/7 

Data were acquired in the form of [M+Na]+ ions. See legend to Figure 3.5 for explanation of structure 
assignments.  GlcNAc,  Man,  Gal,  Fuc,  NeuAc. 

 

5.3.2.3. Sialidase S digestion of the N-glycans of evCTB 

 

The MALDI spectrum of sialidase S digested evCTB N-glycans is shown in Figure 5.11. 

Comparison of this figure with Figure 5.9 indicated that the all NeuAcs in N-glycans of 

evCTB were α2,3 linked as a complete loss of NeuAc was observed. Unlike the spectra in 

Figure 5.5 (sialidase S digested N-glycans of CTB and STB) which are dominated by high 

mannose and biantennary glycans, the following spectrum is dominated by glycans at m/z 

2693 and 3143.  

As observed in CTB and STB (section 5.3.1.4), the high mass glycans, such as m/z 4041, 

4490 and 4939, were not detected previously (in Figure 5.5) but observed after the enzymatic 

digestion in evCTB. This suggests the existence of polyLacNAc, which was checked by 

MS/MS analyses. 
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Figure 5.11 Annotated MALDI-TOF MS spectrum of permethylated sialidase S treated N-
glycans from evCTB10 5/7 

Profiles were obtained from the 50% acetonitrile fraction from a C18 Sep-Pak column. All ions are 
[M+Na]+. See legend to Figure 3.2 for explanation of structure assignments.  GlcNAc,  Man,  
Gal,  Fuc. 

 

5.3.2.4. MALDI-TOF/TOF MS/MS analysis of the N-glycan at m/z 3143 after sialidase S 

digestion 

 

After the digestion, the isotope peak cluster around m/z 3142 in evCTB was consistent with a 

single composition, and this was consistent with the description in section 3.3.1.4 in HeLa 

cells. The MS/MS spectrum shown in Figure 5.12 is similar to that in Figure 3.8, see section 

3.3.1.4 for detailed explanation. 

 

Figure 5.12 Annotated MALDI-TOF/TOF MS/MS spectrum of permethylated sialidase S 
treated N-glycan at m/z 3143 in evCTB10 5/7 

Data were acquired in the form of [M+Na]+ ions. See legend to Figure 3.5 for explanation of structure 
assignments.  GlcNAc,  Man,  Gal,  Fuc. 
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5.3.2.5. MALDI-TOF/TOF MS/MS analysis of the N-glycan at m/z 4041 after sialidase S 

digestion 

 

The MS/MS spectrum shown in Figure 5.13 is similar to that in Figure 5.7; detailed 

explanation could be found in section 5.3.1.6. This figure clearly provides evidence for the 

presence of polyLacNAc in evCTB N-glycans. The maximum number of the LacNAc unit in 

a polyLacNAc observed here is four. 

 

Figure 5.13 Annotated MALDI-TOF MS spectrum of permethylated sialidase S digested N-
glycan at 4041 in evCTB 10 5/7 

Data were acquired in the form of [M+Na]+ ions. See legend to Figure 3.5 for explanation of 
assignments.  GlcNAc,  Man,  Gal,  Fuc. 

 

5.3.2.6. The N-glycans of evCTB and STB treated by endo-β-galactosidase 

 

Whether polyLacNAc is present in the evCTB can also be verified using endo-β-

galactosidase which is an enzyme hydrolysing internal β1,4 galactosidic linkage in this 

favored repeating unit [GlcNAcβ1,3Galβ1,4]n (Scudder et al., 1983). In addition, digestion of 

glycans with this enzyme can reveal the relative abundances of the non-reducing terminal 

structures to the core structures. N-glycans from sample evCTB11W were treated with this 

enzyme; some of the small resulting glycans were washed out by 35% acetonitrile, the MS 
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spectrum of which is shown in Figure 5.15 (top). A comparison of Figure 5.14 with Figure 

5.15 shows that endo-β-galactosidase treatment gives rise to signals at m/z 518, 722, 896 and 

1084. These structures could be the middle part of an antenna (m/z 518) Gal-terminated 

terminal (m/z 722), sialylated terminal (m/z 1084) or fucosylated terminal (m/z 896). These 

data provided firm evidence for the presence of polyLacNAc capped with NeuAc or Fuc, 

however, the terminal structure sialyl-Lewis X was not detected.  

 

 

Figure 5.14 Annotated MALDI-TOF MS spectra of permethylated N-glycans from evCTB11W 

Profiles were obtained from the 50% acetonitrile fraction from a C18 Sep-Pak column. All ions are 
[M+Na]+. See legend to Figure 3.2 for explanation of structure assignments.  GlcNAc,  Man,  
Gal,  Fuc,  NeuAc. 
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Figure 5.15 Annotated MALDI-TOF MS spectra of permethylated endo-β-galactosidase treated 
N-glycans from evCTB11W 

Glycan profile shown in the top panel was obtained from the 35% acetonitrile fraction from a C18 
Sep-Pak column, profiles shown in middle and bottom panels were obtained from the 50% acetonitrile 
fraction from a C18 Sep-Pak column,  All ions are [M+Na]+. See legend to Figure 3.2 for explanation 
of structure assignments.  GlcNAc,  Man,  Gal,  Fuc,  NeuAc. 

 

5.3.2.7. MALDI-TOF/TOF MS/MS analysis of the N-glycan at m/z 896 after endo-β-

galactosidase digestion 

 

The signal of the glycan at m/z 896 in Figure 5.15 (middle) was very weak and it was only 

observed in Figure 5.15 (middle), so it was necessary to check whether it was a glycan. 
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Therefore MS/MS analysis was carried out. As shown in Figure 5.16, the fragment ion at m/z 

660 corresponds to loss of a Gal, and its concurrent ion at m/z 259 was observed. The ion at 

m/z 660 corresponds to the B ion of Lewis structure. In addition, the signal at m/z 690 

corresponds to the loss of a Fuc via elimination. All these provide evidence for the existence 

of the Lewis X structure. 

 

Figure 5.16 Annotated MALDI-TOF/TOF MS/MS spectrum of permethylated N-glycan at m/z 
896 from evCTB11W 

Data were acquired in the form of [M+Na]+ ions. Peaks were annotated with putative fragment ions 
according to the molecular weight.  GlcNAc,  Gal,  Fuc. 

 

5.3.3. CTB, STB and evCTB 

 

The following table summarizes the difference between CTB, STB and evCTB. 

Table 5.6 A summary of the difference between CTB, STB and evCTB 

Cell type CTB STB evCTB 
Locus Foetal part Foetal part Maternal part 
Sialic acid linkage  Mainly α2,3 linked Mainly α2,3 linked all α2,3 linked 

Ratio of sialylated N-glycans in 

complex glycans 

 
51% 

 
65% 

 
59% 

Relative abundance of sialyl-Lewis 
X to polyLacNAc 

 
Higher than evCTB 

 
Higher than evCTB 

Lower than CTB 
and STB 

Ratio of glycans with at least three 
LacNAc units (could be potential 
polyLacNAc) 

 
Lower than evCTB 

 
Lower than evCTB 

Higher than CTB 
and STB 

Ratio of bisecting GlcNAc-
containing N-glycans 

 
39% 

 
32% 

 
19% 
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5.4. Discussion 
 

The human placenta is an interface between mother and foetus. It is responsible for not only 

nutrient exchange but also protecting the foetus from being injured by maternal immune cells. 

However, the mechanism underlying the protection is still not clear. Knowing the glycans 

expressed by the CTB, STB and evCTB could help us to better understand how glycans 

might be involved in this protection. 

Useful information was obtained from MALDI-TOF, MALDI-TOF/TOF, GC-MS linkage 

analysis, sialidase S digestion, endo-β-galactosidase digestion, β1,4-galactosyltransferase 

incubation experiments and the knowledge of N-glycan biosynthesis pathway. Although 

sample quantity limitations prevented the observation of very high mass glycans, an 

abundance of good quality data were still obtained. These data provide evidence for the 

presence of α2,3-linked NeuAc, Lewis X, sialyl-Lewis X, polyLacNAc and bisecting 

GlcNAc in CTB, STB and evCTB.  

CTB and STB were obtained from normal term placenta (approximately 39-40 weeks) and 

evCTB were isolated from 10-12 weeks old placenta. 

In CTB, STB and evCTB, the NeuAcs in N-glycans are mainly α2,3 linked (Figure 5.1, 

Figure 5.5, Figure 5.9 and Figure 5.11). The sialylated N-glycans accounted for 

approximately 51% (mean value of four samples) of the complex glycans in CTB and 

approximately 65% (mean value of four samples) in STB. It has been observed that two of 

the evCTB samples have virtually no sialic acid (evCTB10W and 11W), and this could be 

caused by the loss of NeuAc during sample handling prior to sending to our laboratory. 

Excluding these two samples, the sialylated N-glycans accounted for approximately 59% 

(mean value of five samples) of the complex glycans in evCTB. This shows that the 

sialylation has not significantly changed among these three types of trophoblasts. More than 

half of the N-glycans in these trophoblasts are sialylated indicates the important role of 

sialylation. 

Lewis structures (Lewis and sialyl-Lewis) were present in CTB, STB and evCTB, and this is 

supported by Figure 5.2, Figure 5.4, Figure 5.6 from CTB and STB and Figure 5.10, Figure 

5.12, Figure 5.16 from evCTB. A comparsion of Figure 5.4 and Figure 5.10 showed that the 

relative abundance of sialyl-Lewis X (from the glycan at m/z 3141) to polyLacNAc (from the 
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glycan at m/z 3143) was higher in CTB and STB; this implied that both of sialyl-Lewis X and 

polyLacNAc were essential for these trophoblasts. The relative abundance variation in CTB, 

STB and evCTB suggested their different glycan-related functions. 

PolyLacNAc antennae were observed in CTB, STB (Figure 5.7) and evCTB (Figure 5.13). A 

comparison of MALDI MS spectra of sialidase S digested N-glycans of CTB and STB 

(Figure 5.5) to that of evCTB (Figure 5.11) showed that evCTB possessed higher levels of 

multiantennary and/or polyLacNAc N-glycans.  

In CTB and STB, the results of linkage analysis (Table 5.4) and β1,4-galactosyltransferase 

incubation (Figure 5.8) have confirmed that some glycans, such as m/z 2489, 2850 and 3212, 

possess bisecting GlcNAc. N-glycans with the same m/z value were observed in evCTB 

(Figure 5.9). There is no obvious evidence for the existence of truncated GlcNAc, for 

instance, the loss of two separate HexNAcs or two HexNAcs lost as a whole in the MS/MS 

analysis of the glycan in evCTB. In addition, it has been reported that evCTB expresses 

integrins (Tarrade et al., 2001; Orozco and Lewis, 2010), and integrins possess bisected N-

glycans (Isaji et al., 2010; Zhang et al., 2015). All these imply that bisecting GlcNAc is also 

present in evCTB. Therefore I can reasonably conclude that bisecting GlcNAc is present in 

CTB, STB and evCTB. The bisecting GlcNAc-containing N-glycans accounted for 

approximately 39% (mean value of four samples) of the complex glycans in CTB and 

approximately 32% (mean value of four samples) of the complex glycans in STB. The 

bisecting GlcNAc-containing N-glycans accounted for approximately 19% (mean value of 

seven samples) of the complex glycans in evCTB. This shows that there are relative more 

abundant bisecting GlcNAc-containing N-glycans in CTB and STB. 

Fucosylation was also compared among these trophoblasts, and no variation was observed 

(Table 5.3 and Table 5.5). 

 

5.4.1. The potential function of NeuAc  

 

The α2,3-linked NeuAc is formed between the C2 position of NeuAc and C3 position of Gal 

under the catalysis of α2,3-sialyltransferase. As shown in all the MS spectra, NeuAc is 

typically found to be the terminal residue. Its exposed terminal position in the carbohydrate 

chains make it function as a protective shield for the penultimate galactose residue. In 
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addition to protecting the monosaccharide, sialic acid can protect cells. For instance, 

erythrocytes are masked by a layer of sialic acid molecules which can prevent erythrocytes 

from being degraded by macrophages via phagocytosis. Sialic acids will be gradually 

removed from the surface by serum sialidase and spontaneous chemical hydrolysis during the 

cell life span which is usually 120-day. Finally, erythrocytes without sialic acid layer will be 

degraded as the surface uncapped galactose residues present signals for the degradation 

(Bratosin et al., 1995). In CTB, STB and evCTB, more than 50% of the complex N-glycans 

are sialylated (see section 5.3.1.1 and 5.3.2.1), it is therefore possible that NeuAcs in CTB, 

STB and evCTB may function in the same way to protect the trophoblasts against 

macrophages, especially when evCTB invades the maternal decidua and myometrium as 

macrophages represent approximately 20% of the decidual leukocytes at the maternal-foetal 

interface (Lessin et al., 1988; Houser et al., 2011). 

It is reported that STB and CTB do not express HLA class I and II antigens (Murphy et al., 

2004; Clark and Schust, 2013; Hunt et al., 1987; Hunt et al., 2005; Apps et al., 2009). The 

absence of HLA antigens would make these trophoblasts potential targets for NK cells. 

However, CTB and STB are resistant to NK cells due to the presence bisecting GlcNAc on 

their cell surfaces. Moreover, researchers found that NeuAc also contributes to this resistance: 

the siglec-7 (sialic acid-binding Ig-like lectin-7) is expressed predominantly on NK cells 

(Nicoll et al., 1999). It functions as an inhibitory receptor on human NK cells (Crocker and 

Varki, 2001), therefore interactions between siglec-7 and its ligands, sialic acid, can influence 

NK cell activity. This implies that the α2,3-linked NeuAc in CTB and STB is the potential 

ligand for this siglec. Siglec-7 shows similar binding affinity towards terminal α2,3-linked 

and α2,6-linked NeuAc (Yamaji et al., 2002).  

In addition, due to the negative charge of NeuAc, it is involved in the repulsion phenomena 

between cells. For instance, the negative charge repulsion is a possible explanation for tumor 

cell detachment from the tumour mass and entering the blood stream (Fuster and Esko, 2005). 

This also provides possible explanation for evCTB movement from foetal part into the 

maternal decidua. 
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5.4.2. The potential biological roles of Lewis structures 

 

Lewis, the term, derives from a family, the members of which suffered from an erythrocyte 

incompatibility that helped in the discovery of blood group substances. The blood group 

antigens are composed of a related series of glycans possessing α1,3-linked or α1,4-linked 

Fuc residues. 

Although it had been reported that Lewis B structure is present on human eggs (Lucas et al., 

1994), it could not be confirmed physicochemically as the structure was not observed in the 

MALDI-MS spectra of human zona pellucida (Pang et al., 2011). However, it has been 

physicochemically confirmed that Lewis X/Lewis Y terminated N-glycans are expressed on 

human sperm (Pang et al., 2007).  

The Lewis X/Lewis Y terminated N-glycans that are expressed on human sperm are thought 

to suppress immune responses directed against the gamete (Pang et al., 2007; Clark, 2014). 

This proposal was made based on a study of phase variation of Helicobacter pylori which is a 

human gastric pathogen. Variants of H. pylori that express Lewis X and Lewis Y structures 

on their lipopolysaccharides can regulate antigen related responses. This regulation is 

achieved via the interaction between these lipopolysaccharides and DC-SIGN (dendritic cell-

specific intercellular adhesion molecule-3-grabbing non-integrin) on dendritic cells; this 

regulation has an influence on T helper cell 1/ T helper cell 2 balance (Bergman et al., 2004).  

However, variants of H. pylori that do not express Lewis structures cause strong T helper cell 

1 response, as a result of which peptic ulcer may occur (Bergman et al., 2004; Bergman et al., 

2006). These suggest that the presence of Lewis structure on lipopolysaccharides play an 

essential role in triggering the immune tolerance. This triggering of immune tolerance may 

not be limited in H. pylori. Indeed, schistosomes, a type of helminthic parasites, express both 

Lewis X and a pseudo-Lewis Y that can also interact with DC-SIGN (Meyer et al., 2005). 

Thus, it is possible that human sperm could follow the same pathway that H. pylori employs 

to trigger immune tolerance as the sperm also expresses Lewis structures. Similarly, this 

pathway may be passed on to CTB, STB and evCTB with the expression of Lewis structures.   

The oligosaccharide sialyl-Lewis X can function as a ligand for L-, E- and P-selectin which 

are important cell adhesion molecules (Phillips et al., 1990; Polley et al., 1991; Foxall et al., 

1992; Julien et al., 2011). The interactions between the adhesive molecules from foetus and 

mother are essential for the successful implantation. It is reported that sialyl-Lewis X/L-
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selectin adhesion system mediates adhesion in implantation model (Liu et al., 2011). This 

implies that the importance of sialyl-Lewis X on CTB and STB. It is known that leukocyte 

tethering and rolling is related to the interaction between the selectins and sialyl-Lewis X: 

selectins promote the tethering and subsequent rolling of leukocytes along the vessel wall via 

the sialyl-Lewis X, and this is a prelude to the extravasation into the underlying tissue 

(Somers et al., 2000). Since evCTB expresses sialyl-Lewis X, it is possible that sialyl-Lewis 

X could play an important role when evCTB are extravasated and spread out in the maternal 

part.  

 

5.4.3. The potential function of polyLacNAc 

 

The signals of the polyLacNAc containing glycans become more obvious after sialidase S 

digestion, which implies that the real amount of these glycans is substantial.  

It is probably easier for polyLacNAc to be involved in galectin binding as single LacNAc 

may be limited by its length.   Galectins are a subfamily of glycan-binding proteins that 

possess carbohydrate recognition domain (CRD) with specific affinity for β-galactoside 

(Barondes et al., 1994). Galectins are able to act both extracellularly and intracellularly to 

control cell fate: extracellularly, they cross link glycan ligands to transmit signals that result 

in death or affect other signals influencing cell fate; intracellularly, they direct regulate 

signals controlling cell fate (Hernandez and Baum, 2002; Yang et al., 2008).  

Galectins was not identified in the eutherian uterus until 1999. From then on galectins started 

to attract a lot of attention due to the fact that human placental protein (PP13) is a galectin 

(Than et al., 1999). It has been confirmed that PP13 is expressed on STB (Than et al., 2004). 

Therefore, CTB probably also expresses PP13 as STB is originally differentiated from CTB. 

PP13 can induce apoptosis of T cells in vitro and kill macrophages in the maternal decidua in 

situ (Than et al., 2014). However, the underlying mechanism is still not clear. It is possible 

that CTB and STB could kill the immune cells via the expressed PP13 and thus suppress 

immune responses. In addition, it is reported that in humans 16 different galectin genes are 

expressed at the maternal-foetal interface (Than et al., 2009). These suggest important 

immune functions of galectins. Indeed, in mice galectin-3 has been reported to form lattices 

on cell surfaces by cross-linking glycoproteins on T cells that possess polyLacNAc moiety in 
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their tri- and tetraantennary N-glycans and thus blocking immune responses (Demetriou et al., 

2001). Therefore, in humans the blocking is probably achieved via erecting a “galectin shield” 

around CTB and STB. 

In addition, overexpression of polyLacNAc is one of the most common types of aberrant 

glycosylation observed in human cancers (Hakomori, 1996). The reason why cancer cells can 

evade human immune system might be related to the polyLacNAc overexpression.  

Compared to CTB and STB, polyLacNAc in evCTB is overexpressed (Figure 5.5 and Figure 

5.11), and this could enable evCTB to evade the maternal immune system. 

 

5.4.4. The potential function of bisecting GlcNAc 

 

Bisecting GlcNAc is a structure that is also expressed on sperm (see section 1.8.3). Sperm 

expresses bisected N-glycans to inhibit NK cell cytotoxicity (see section 1.8.3). As explained 

in section 5.4.1 CTB and STB are the targets for NK cells due to the absence of HLA 

antigens on their surface, and CTB and STB also express bisected N-glycans (see sections 

5.3.1.7 and 5.3.1.8). It is possible that these bisected N-glycans are expressed for the same 

purpose to inhibit NK cell cytotoxicity. However, the mechanism underlying the inhibition is 

not clear.  

 

All these results provide more support for the human fetoembryonic defense system 

hypothesis which links the expression of functional glycan groups to the protection of 

gametes and foetus in utero. 
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6. Concluding remarks 
 

This thesis documents three separate but similar research projects. The first project (Chapter 

3) used a glycomic strategy to show differences in glycan profiles between HeLa cells and 

NHDF. The second project (Chapter 4) employed the same strategy to identify difference in 

glycosylation among two healthy controls, three CMS patients caused by GFPT1 mutations, 

one CMS patient caused by DOK 7 mutation, one myopathy patient caused by MTND5 

mutation, one LGMD2A patient and one Pompe disease patient, though the quality of the 

results are good no significant link was found. The third project (Chapter 5) employed highly 

sensitive mass spectrometry and various enzymatic digestions to demonstrate the presence of 

α2,3-linked NeuAc, Lewis structures, sialyl-Lewis X, polyLacNAc and bisecting GlcNAc in 

CTB, STB and evCTB. These three projects are all about investigating glycosylation using 

MS, especially the first two projects which are focusing on glycosylation investigation 

between normal cells and abnormal cells.  

Several contributions to the field of glycobiology have been made during the research:  

1. It reports, for the first time, the glycolipid glycan profile of in vitro cultured normal human 

dermal fibroblasts (NHDF). Dermal fibroblasts are usually used in wound healing studies 

(Sorrell and Caplan, 2004; Froget et al., 2003). In addition, they are also important models for 

tissue regeneration and engineering studies and cancer research (Wong et al., 2007; Kalluri 

and Zeisberg, 2006). Glycolipid glycosylation has attracted a lot of attention due to its 

importance in wound healing and developing cancer therapeutic approaches (Wang et al., 

2014; Daniotti et al., 2013). Therefore, knowing the glycolipid glycan profile of the 

fibroblasts might shed light on these research areas.  

 2. It also for the first time reports the N-glycan profile of in vitro cultured human myoblasts 

and myotubes differentiating from in vitro cultured myoblasts, the O-glycan profile of in vitro 

cultured human myotubes. Myoblasts and myotubes are precursors of mature muscle cells, so 

glycan profile of myoblasts and myotubes would be similar to that of muscle cells. Muscle 

cells are essential in musculoskeletal system (locomotor system) as they receive signals from 

motorneurons and then execute contraction (Bentzinger et al., 2012; Abmayr and Pavlath, 

2012; Senderek et al., 2011). To achieve receiving signal, muscle cell surface receptors, such 

as acetylcholine receptors, are required. Acetylcholine receptors are glycoproteins and are 
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concentrated at neuromuscular synapses. In addition, many vital neuromuscular proteins, 

such as agrin and dystroglycan, are also glycosylated (Sanes and Cheney, 1982; Conti-

Tronconi and Raftery, 1982; Senderek et al., 2011; Martin, 2002). However, the structures of 

the glycans on these glycoproteins are not clear. Therefore, knowing the glycan profile of 

myoblasts and myotubes could provide possible structures for those glycans, and thus explain 

how these glycans function. 

3. It is the first report of  N-glycan profile of in vitro cultured human CTB, STB and more 

authentic evCTB. N-glycan structures that expressed on human gametes could be found in the 

N-glycan profile of the three types of trophoblasts, which supports the human fetoembryonic 

defense system hypothesis. The preeclampsia that arises in the placenta is hypothesized to 

have an immune etiology (Laresgoiti-Servitje et al., 2010). Comparing the N-glycan profile 

of trophoblasts from normal pregnant woman with preeclampsia patient may provide an 

explanation for the etiology. 

 

Chapter 3 describes the comparative glycomic analysis of HeLa cells and NHDF cells. The 

aim of the project was to find whether the cytotoxicity difference was caused by the 

difference in the glycan patterns of the cell surface. Not only were the glycans from 

glycoproteins of HeLa cells and NHDF analysed, but also the glycolipid glycans. The 

glycomic results showed a clear correlation with the results from Van Damme and Shang, 

which indicates the importance of protein-carbohydrate interactions for the proteins entering 

the cells. It might provide valuable insights into delivering drugs into cancer cells. For 

instance, the glycomic results show that HeLa cells express sialyl Lewis X structure while 

NHDF cells do not, therefore the sialyl Lewis X structure could be a potential target for the 

anticancer drug and thus enhance the deliver efficiency of the drug and avoid normal cells 

being killed by the drug. Simultaneously, this project provides the reader with a general 

understanding of currently commonly used glycomic methodology handling glycans derived 

from both glycoproteins and glycolipids and how mass spectrometry data are analysed and 

annotated. However, there are still some unsolved problems which are associated with this 

research project; for instance, the mechanism of the cytotoxicity of the proteins under study 

still needs to be uncovered. In addition, if there were sulphated glycans in HeLa and NHDF 

cells, their information was missing due to the permethylation strategy employed. The 

permethylation of sulphated glycans needs to be carried at 4 °C due to the thermal instability 



205 
 

of the bond(s) formed between the sulphate group(s) and the glycan, and the reaction time 

will be approximately 3 hours (Khoo and Yu, 2010). Following the permethylation strategy 

employed (see section 2.2.8), sulphated glycans will probably not be permethylated, and thus 

their information was lost.     

  

Chapter 4 describes the comparative glycomic analyses of in vitro cultured myoblasts and 

myotubes from healthy controls, CMS patients caused by GFPT1 mutations and other 

muscular disease patients. GFPT1 is the first enzyme of the hexosamine biosynthesis 

pathway (see section 1.7.1) and it catalyses the reaction providing the precursor for UDP-

GlcNAc synthesis. In humans, it has a redundancy, GFPT2 which is proposed to have the 

same function as GFPT1 due to the fact that their amino acid sequences share approximately 

75% identity (Oki et al., 1999; Nakaishi et al., 2009). However, it is reported that GFPT2 is 

mainly expressed in the central nervous system (Oki et al., 1999). Therefore, it is not 

necessary to consider GFPT2 here. Mutations in GFPT1 were expected to cause N-glycan 

branching variations and have an influence on protein glycosylation. However, the results 

showed that there was little difference among the glycan profile of healthy controls, GFPT1 

mutations caused CMS patients and other patients. This does not rule out the possibility that 

individual glycoproteins have altered glycosylation. The only way to look for this possibility 

is to target candidates and purify them. Current glycoprotein isolation and purification 

techniques cannot provide enough material for the glycomic analysis of glycoproteins of 

interest, which means that glycoprotein sample quantity limitations remain a challenge for 

glycomic studies. Therefore, these techniques still need to be further improved or developed. 

Future experiments aimed at the investigation of O-GlcNAcylation in the cells may enable 

the discovery of alternations in the glycosylation.  

 

Chapter 5 identifies the presence of several functionally important glycan structures (Lewis X, 

Lewis Y, sialyl-Lewis X, polyLacNAc and bisecting GlcNAc) in CTB, STB and evCTB. 

This chapter is a test of the human fetoembryonic defense system hypothesis (hu-FEDS). The 

results support the concept that the glycosylation patterns in these three types of trophoblasts 

could play a role in the suppression of immune responses at the pregnant uterus, and thus 

supports the hypothesis. The limitations of sample quantity remain a challenge in this project 

as usually multiple experiments are required on the same sample to provide full structural 
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information. In addition, more research is required to determine the function of these glycan 

structures. 

The NeuAc on trophoblasts (CTB, STB and evCTB) is proposed to contribute to NK cell 

resistance (see section 5.4.1), this could be tested by removing all NeuAc on CTB, STB and 

evCTB using sialidase A and then checking their NK cell resistance.  

A mouse model could be set up to test the potential function of Lewis structures mentioned in 

section 5.4.2. Since Lewis structures have a common point: they all have an extra fucose 

which is either α1,3-linked or α1,4-linked. These linkages are different from the core fucose 

linkage which is α1,6-linked. Therefore, it is possible to knock down the expression of α1,3 

and α1,4-fucosyltransferases (Gallego et al., 2003; Prohaska et al., 1978; Witte et al., 1997) 

and then compare the embryo development in the knock down mouse and normal mouse. It is 

expected that the knock down mouse would suffer abortion which could be caused by 

immune responses.  

PolyLacNAc is proposed to be easier than LacNAc to be involved in galectin binding (see 

section 5.4.3), this can be tested via a control experiment: two batches of CTB (or STB) cells 

need to be prepared, one batch will be treated with endo-β-galactosidase which is an enzyme 

hydrolysing internal β1,4 galactosidic linkage in this favoured repeating unit 

[GlcNAcβ1,3Galβ1,4]n (Scudder et al., 1983) (see section 2.2.7.4 for details), then the cells 

were extracted, washed and treated with UDP-Gal and β1,4-galactosyltransferase (see section 

2.2.7.3 for details); the other will not be treated. After that, same amount of fluorescence 

labelled galectin (e.g. galectin-3) will be added to the cells. The cells and labelled galectin 

will be incubated. After incubation iced cold PBS will be used to wash away the isolated 

galectin. The cells will be checked using fluorescence microscope. It is expected to see that 

the non-treated cells have stronger fluorescent signals than the cells treated with endo-β-

galactosidase and β1,4-galactosyltransferase as the N-glycans in the untreated cells have 

polyLacNAc while the N-glycans in the treated cells only have LacNAc. 

An experiment can be set up to test the potential function of bisecting GlcNAc in the 

trophoblasts mentioned in section 5.4.4.. Before the experiment, it is necessary to know that 

erythroagglutinating phytohemagglutinin (E-PHA) lectin preferentially binds to bisecting 

G1cNAc in N-glycans (Cummings and Kornfeld, 1982; Yoshimura et al., 1996). Firstly, CTB 

cells will be cultured with E-PHA (group 1) or cultured without E-PHA (group 2). In group 1, 

E-PHA will bind to CTB cells due to the fact that the cells express bisecting GlcNAc 
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containing N-glycans. Then cells from group 1 and group 2 will be resuspended and mixed 

with NK cells. Since the bisecting GlcNAc in group 1 is cryptic due to the presence of E-

PHA, CTB cells should be killed by NK cells. While in group 2 the bisecting GlcNAc will 

probably prevent CTB cells being killed. 

Although the three projects documented are separate, they all demonstrate the biomedical 

importance or potential biomedical importance of glycosylation.  

It is hoped that information obtained from the first project will be helpful for seeking cervical 

cancer treatment. Over the last thirty years, RIPs have been applied in the construction of 

targeted drugs against cancer cells. These drugs are usually designed to possess two portions, 

one portion (lectin portion) is used for binding to cancer cells and the other (toxin portion) is 

used for killing them (Tejero et al., 2015; Kreitman, 2006). If the drug can bind to HeLa cells 

specifically, then only HeLa cells will be killed. To achieve the specific binding, it is 

necessary to know surface glycan structures of HeLa cells and then design the corresponding 

lectin portion for the drug. The glycan profiles of HeLa cells in Chapter 3 can provide clues 

for the lectin design. Similarly, when design lectin portion for targeted drugs against other 

cancers, it would be better to perform glycomic analyses of the corresponding cancer cells as 

the glycan profiles would be useful for the lectin design. Information obtained from the 

second project has ruled out the possibility that GFPT1 mutations would cause global glycan 

alterations in in vitro cultured myoblasts and myotubes. This provides further impetus to 

elucidate the underlying mechanism of how GFPT1 mutations cause CMS as future 

researchers will only need to focus on some particular glycoproteins, such as acetylcholine 

receptor and agrin. In this situation, other techniques, such lectin binding and immunoblot, 

could be used to investigate the glycosylation variation of those proteins of interest. For 

instance, RL2 antibody which binds to single GlcNAc at serine or threonine residues can be 

applied to check the variation of O-GlcNAcylation in glycoproteins (Tashima and Stanley, 

2014). 

Results obtained from the third project provide support for the human fetoembryonic defense 

system hypothesis which links the expression of functional glycan groups to the protection of 

gametes and foetus in utero. It is possible that when implantation occurs, the same protection 

system that was used to protect sperm and eggs are incorporated into trophoblasts. Therefore, 

this may provide a possible explanation for some of those couples who cannot make babies: 

their gametes may have deficient glycosylation, and thus the trophoblasts also have deficient 
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glycosylation, which could not induce immune tolerance. This can be checked via comparing 

the N-glycan profiles of their gametes to the normal couples.   
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