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Abstract

Glucagon-like peptide 1 (GLP-1) stimulated insulin secretion has a considerable heritable

component as estimated from twin studies, yet few genetic variants influencing this pheno-

type have been identified. We performed the first genome-wide association study (GWAS)

of GLP-1 stimulated insulin secretion in non-diabetic individuals from the Netherlands Twin

register (n = 126). This GWAS was enhanced using a tissue-specific protein-protein interac-

tion network approach. We identified a beta-cell protein-protein interaction module that was

significantly enriched for low gene scores based on the GWAS P-values and found support

at the network level in an independent cohort from Tübingen, Germany (n = 100). Addition-

ally, a polygenic risk score based on SNPs prioritized from the network was associated (P <
0.05) with glucose-stimulated insulin secretion phenotypes in up to 5,318 individuals in
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MAGIC cohorts. The network contains both known and novel genes in the context of insulin

secretion and is enriched for members of the focal adhesion, extracellular-matrix receptor

interaction, actin cytoskeleton regulation, Rap1 and PI3K-Akt signaling pathways. Adipose

tissue is, like the beta-cell, one of the target tissues of GLP-1 and we thus hypothesized that

similar networks might be functional in both tissues. In order to verify peripheral effects of

GLP-1 stimulation, we compared the transcriptome profiling of ob/ob mice treated with lira-

glutide, a clinically used GLP-1 receptor agonist, versus baseline controls. Some of the

upstream regulators of differentially expressed genes in the white adipose tissue of ob/ob

mice were also detected in the human beta-cell network of genes associated with GLP-1

stimulated insulin secretion. The findings provide biological insight into the mechanisms

through which the effects of GLP-1 may be modulated and highlight a potential role of the

beta-cell expressed genes RYR2, GDI2, KIAA0232, COL4A1 and COL4A2 in GLP-1 stimu-

lated insulin secretion.

Introduction

Glucagon-like petide-1 (GLP-1) receptor agonists and DPP4-inhibitors are increasingly used

therapeutic agents for type 2 diabetes, as they stimulate insulin secretion from the pancreatic

beta-cells by potentiating glucose-dependent insulin secretion. In addition to the effects on the

pancreas these drugs also operate via effects on other tissues. For instance, liraglutide, a clini-

cally used GLP-1 receptor agonist, was shown to have beneficial effects on cardiovascular out-

come and body weight loss [1]. However, the response to these drugs varies considerably

between individuals. A large part of this variability is expected to be explained by underlying

genetic differences as GLP-1 stimulated insulin secretion has an estimated heritability of 0.53

(95% CI, 0.33–0.70) [2]. Identification of these genetic determinants may aid patient stratifica-

tion with regard to treatment response and shed light on the differential properties of the com-

plex signaling networks controlling GLP-1 stimulated insulin secretion, which to date are not

well understood. Previous studies have used targeted genotyping approaches to identify vari-

ants associated with GLP-1 stimulated insulin secretion, which mostly focused on GWAS loci

for type 2 diabetes or related traits. Among the loci nominally associated with GLP-1 stimu-

lated insulin secretion are variants in the TCF7L2 [3], GLP1R [4], WFS1 [5] and CTRB1/2 loci

[6] (all P< 0.05), which highlights the potential of further genetic studies of GLP-1 stimulated

insulin secretion.

Genome-wide association studies (GWAS) have successfully been used to identify genetic

variants underlying complex phenotypes but for disease case-control status require large sam-

ple sizes to reveal variants with modest or small effect sizes. However, the use of more proximal

phenotypes may reduce sample size requirements and furthermore, such analyses can be

enhanced using integrative network approaches [7], by integrating genetic information with

complementary data types such as tissue-specific gene expression and protein-protein interac-

tion (PPI) data [8,9]. The aim of the current study was to provide insight into the biological

mechanisms underlying GLP-1 stimulated insulin secretion using an untargeted integrative

genomics approach. We performed a GWAS on 126 nondiabetic individuals from the Nether-

lands Twin Register (NTR) who underwent a hyperglycemic clamp [10], and the association

analysis was augmented with a beta-cell specific PPI network analysis. We identified a set of

genes that contained variants associated with GLP-1 stimulated insulin secretion, which at the
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same time have the potential to physically interact in the beta-cell and are enriched for path-

ways important for insulin secretion. We carried out validation studies to assess the impor-

tance of the prioritized GLP-1 response subnetwork through associations with: i) GLP-1

stimulated insulin secretion in an independent collection of 100 unrelated individuals from

Tübingen, Germany[10], ii) glucose stimulated insulin secretion phenotypes in up to 5,318

individuals from MAGIC [11] and iii) gene expression alterations in white adipose tissue as a

response to liraglutide (a GLP-1 receptor agonist) treatment in ob/ob mice (a mouse model of

obesity).

Results

GWAS and PPI network analysis

Clinical characteristics for the NTR cohort are shown in Table 1. No single nucleotide poly-

morphism (SNP) association reached genome-wide significance in the NTR cohort association

analysis adjusted for age, gender, BMI, glucose tolerance status and insulin sensitivity (S1 and

S2 Figs), while six independent signals were identified with P < 1.0 × 10−5 (S1 Table). Using

the integrative analysis workflow described in Fig 1, we next sought to identify significant sig-

nals at a cellular network-level. A more detailed analysis flowchart is shown in S3 Fig. As tis-

sue-specific PPI networks have previously been shown to perform better for gene

prioritization than global networks [12], we mapped gene significance values for GLP-1 stimu-

lated insulin secretion onto a PPI network containing 8,457 genes that are expressed in pancre-

atic beta-cells [13] (see Methods). We then identified modules in the network that were

enriched for genes with the strongest significance values using the jActiveModules algorithm

[14] (see Methods for details). The top ranked network module contained 179 genes and had a

z-score of 10.11, which was significantly higher than the z-scores of modules obtained by per-

muted gene scores (S4 Fig).

To focus on the most important part of this module, we reran the jActiveModules algo-

rithm and created a consensus network from genes occurring in more than one of the top 15

second order modules (see Methods). The resulting consensus network contained 53 genes,

whose significance was driven by 51 SNPs (Fig 2A, S2 Table). It contained genes already

known to be involved in GLP-1 stimulated insulin secretion (WFS1 [5], RYR2 [15], RAP1A
[16]), glucose stimulated insulin secretion (VAV2 [17]), mediating the effects of GLP-1 on

beta-cell mass (FOXO1 [18]) and genes implicated in type 2 diabetes through GWAS of Han

Chinese [19] and Mexican [20] populations (PTPRD), a gene expression-based genome-wide

association study [21] (CD44) and a linkage study in an African American population [22],

(MAGI2 and CTNNA2).

Table 1. Clinical characteristics of the study groups.

NTR cohort German cohort

n (NGT/IGT) 120/6 68/32

Age (years) 31.5 ± 6.3 39.7 ± 12.8

Gender (M/F, n) 60/66 44/56

BMI (kg/m2) 24.1 ± 3.5 25.8 ± 5.5

Fasting glucose (mmol/l) 4.6 ± 0.4 5.2 ± 0.7

2-hr glucose (mmol/l) 5.4 ± 1.2 6.6 ± 2.1

Fasting insulin (pmol/l) 35 (27–52) 47 (32–67)

Data are means ± SD; median (interquartile range) or number (n).

https://doi.org/10.1371/journal.pone.0189886.t001
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Functional investigation of the GLP-1 response consensus network

By definition, all of the genes in the consensus network are expressed in beta-cells, but four

(CTNNA2, RYR2, GRIN2A, NRG1) have additionally been described as particularly enriched

in beta-cells compared to non-beta-cell islet components [13]. The consensus network was sig-

nificantly enriched for gene ontology (GO) terms related to plasma membrane and signaling

transduction (S5 Fig) and enriched KEGG pathways included focal adhesion, extracellular

matrix-receptor interaction, the Rap1 and PI3K-Akt signaling pathways and regulation of

actin cytoskeleton (Fig 2B).

We investigated if the SNPs driving the significance of the network acted as expression

quantitative trait loci (eQTL) for their corresponding genes in the network. We found seven

potential eQTL pairs (unadjusted P< 0.01) in human islets (n = 118), involving the genes

CTR9, RYR2, PRKACB, DOCK1,APOL1, ITGB5 and MAP2 (S3 Table). In addition, we found

two potential eQTL pairs for F2R and CD5 in pancreas, and three eQTL pairs in blood samples

for KIAA0232, SPARC and RAP1A (S3 Table). We also investigated the overlap of network loci

with pancreatic islet regulatory elements and found 15 loci to overlap islet promoter or

enhancer regions [23] (S3 Table). Of those, nine loci overlapped clusters of active enhancers,

but such clusters are enriched for variants associated with type 2 diabetes and fasting glycemia

[23], This was a higher fraction than was observed for the top SNPs from a GWAS performed

by MAGIC investigators of corrected insulin response, but lower than for genome-wide signif-

icant SNPs for fasting glucose and type 2 diabetes (S6 Fig). Five of the consensus network

SNPs (mapping to APOL1, ITGB5, MAP2, CD5 and KIAA0232) reside in loci overlapping

active enhancers or clusters of active enhancers in islets and were a part of a potential eQTL

pair.

Fig 1. Integrative network analysis workflow overview. GLP-1 stimulated insulin secretion GWAS SNP P-values were converted to gene

significance scores, which were then mapped onto a beta-cell specific PPI network created by pruning the global network using beta-cell gene

expression data. The jActiveModules algorithm was used to identify network modules that were enriched for association signal. The top

scoring network modules were used to prioritize genetic variants and explore the biological context of the genetic associations.

https://doi.org/10.1371/journal.pone.0189886.g001
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Fig 2. Results from network analysis of GLP-1 stimulated insulin secretion GWAS. A) The beta-cell specific GLP-1 response consensus network, annotated

with the top enriched KEGG pathways: Focal adhesion (green), ECM-receptor interaction (blue) and Rap1 signaling (purple). Arrows indicate genes that were

Integrative network analysis of GLP-1 stimulated insulin secretion
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Validation of the GLP-1 response consensus network

In order to validate the genetic associations driving the network enrichment we calculated a

combined z-score for the consensus network SNPs in an independent dataset of 100 unrelated

individuals from Tübingen, Germany who underwent a hyperglycemic clamp procedure simi-

lar to the NTR cohort (clinical characteristics are shown in Table 1). We restricted all valida-

tion attempts to the 31 SNPs (28 of which passed quality control in the Tübingen data) with a

discovery GWAS P< 5.0 × 10−4. The combined z-score based on these 28 SNPs was signifi-

cantly higher (P = 0.01) than those obtained from 100,000 randomly selected sets of SNPs

from the beta-cell network (Fig 2C). However, this set of SNPs was not enriched for directional

consistency in the validation dataset (14/28 SNPs directionally consistent, P = 0.57).

Finally, we investigated if the network analysis prioritization of SNPs has an additional

value over the individual SNPs with the lowest P-values from the GWAS analysis. We therefore

calculated a similar combined z-score from the top 31 ranked independent GWAS SNPs in the

NTR discovery cohort but, in contrast to the network-based SNPs, this z-score was not higher

in the validation dataset than expected by chance (P = 0.95) (S7 Fig).

At the single SNP level, two (rs7669558 and rs72509) of the 31 consensus network SNPs

with a discovery GWAS P< 5.0 × 10−4 had a P-value < 0.05 in the validation dataset (S2

Table) but none were significant after Bonferroni correction for multiple testing. We per-

formed a meta-analysis of the discovery and validation dataset (S2 Table), where none of the

consensus network SNPs reached a genome-wide significance but four had a meta-analysis

P< 5.0 × 10−4 (KIAA0232 rs7669558: P = 5.9 × 10−5, COL4A1/COL4A2 rs72509:

P = 7.0 × 10−5, RYR2 rs6429033: P = 9.4 × 10−5 and GDI2 rs871748: P = 1.5 × 10−4).

Of the 31 consensus network SNPs, 18 (S3 Table) had available information on both insulin

secretion and action indices published by MAGIC (see Methods and S4 Table for detailed

overview of phenotypes). Rs871748 (GDI2) was nominally associated with four measures of

glucose stimulated insulin secretion in the MAGIC data, with a consistent direction of effect

compared to the GLP-1 stimulated insulin secretion in the NTR cohort (S5 Table). Further-

more, a weighted polygenic risk score (PRS) made from the 18 SNPs common between the

two datasets showed a nominally significant association (P< 0.05) with the oral glucose toler-

ance test derived variables area under the curve (AUC) for insulin, AUC for insulin/AUC for

glucose, insulin at 30 minutes and insulin sensitivity index (S6 Table). In contrast, no signifi-

cant associations were observed when the same number of SNPs was selected based on their

discovery GWAS P-value alone (S7 Table).

Finally, an independent gene set enrichment analysis was conducted from the transcrip-

tome profiling of white adipose tissue from mice treated with liraglutide (an analogue of GLP-

1) versus baseline controls (see S8 Fig and Methods for experimental details). Adipose tissue is,

like the beta-cell, one of the target tissues of GLP-1 [24] and we thus hypothesized that similar

networks might be functional in both tissues. We identified upstream regulators (see Methods)

for the differentially expressed genes (Fig 2D, S8 Table). Interestingly, five upstream regulators

predicted to regulate genes in the transcriptome dataset (CD44, FOXO1, ITGB1, CTNNB1, and

the PI3K complex—which PIK3CA is a member of) were also present in the human beta-cell

GLP-1 response consensus network (as highlighted in Fig 2A) and the PI3K signaling pathway

identified as upstream regulators of differentially expressed genes in the transcriptome analyses of the liraglutide treated mice versus baseline controls. B) The

KEGG pathways enriched (BH adjusted P-value< 1 × 10−3) within the GLP-1 response consensus network, compared to the whole beta-cell PPI network. C) The

red line denotes the combined z-score in the Tübingen validation cohort for 28 consensus network SNPs with discovery GWAS P< 5 × 10−4 compared to 100,000

z-scores obtained from randomly selected sets of SNPs from the beta-cell network (histogram), empirical P-value = 0.012. D) Top panel: Top regulators for

networks of differentially expressed genes in the liraglutide treated mice transcriptome experiment. Bottom panel: Prioritized network modules from human and

mouse experiments map to connective tissue and focal adhesion related pathways.

https://doi.org/10.1371/journal.pone.0189886.g002
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was furthermore among its top enriched pathways (Fig 2B). Additionally, a member of the col-

lagen Type IV family of genes (COL4A3, related to COL4A1 and COL4A2) ranked as a top

upstream regulator. COL4A3 interacts with both COL4A1 and COL4A2 and other genes

(ITGAV, FN1, ITGB1 and ITGB5) that appear in the human consensus network, and which

connect the collagen pathway to the GLP-1 receptor (S9). CD44 is predicted to be an upstream

regulator of collagen genes and CTNNB1, further illustrating how these genes are connected

(S9 Fig). Finally, the genes prioritized for GLP-1 response in the human and mouse study were

found to be highly connected in tissue-specific functional networks from GIANT [25] for both

pancreatic islet and adipose tissue (S10 Fig).

Discussion

In the present study we describe the first reported GWAS of GLP-1 stimulated insulin secre-

tion. As genetic variants underlying complex phenotypes and diseases are expected to collec-

tively perturb functional modules within the cellular machinery [26], we used the uniquely

phenotyped NTR cohort to explore the underlying mechanisms of GLP-1 stimulated insulin

secretion using a network analysis approach. While a previous study on the NTR cohort using

Metabochip genotyping identified three strong signals for GLP-1 stimulated insulin secretion

[6], illustrating the potential for the discovery in this limited sample size, our genome-wide

analysis did not reveal any additional loci associated at a genome-wide significance. Instead,

we identified a module within a beta-cell specific PPI network that was significantly enriched

for gene scores derived from the GWAS. We found support for the network level association

in an independent dataset from Germany and a PRS constructed from SNPs selected from the

network showed an association with glucose-stimulated insulin secretion phenotypes in the

MAGIC consortium. The same support was not observed for a matched number of SNPs

selected by the discovery GWAS P-value alone, suggesting that the network prioritization

approach to some extent enhanced the GWAS findings. While GLP-1 agonist expression

response could not be investigated in pancreatic islets, GLP-1 agonism is known to stimulate

brown adipose tissue thermogenesis and browning through hypothalamic AMPK [27].

Thereby, we hypothesized that components of the GLP-1 response beta-cell subnetwork might

be functional in both tissues. Our findings provide biological insight into the common mecha-

nisms through which the effects of GLP-1 may be modulated in these tissues.

A few genes from the consensus network were highlighted by additional support from the

meta-analysis of the discovery and validation dataset. The four SNPs with the lowest meta-

analysis P-values had been assigned to the genes GDI2, RYR2, KIAA0232, COL4A1 and

COL4A2. Of those, the rs871748 variant (GDI2) was in addition found to be nominally associ-

ated with four insulin secretion phenotypes in the MAGIC data. The gene product of GDI2 is a

GDP dissociation inhibitor, which is involved in vesicular trafficking between cellular organ-

elles by regulating GDP-GTP exchange reactions of Rab proteins. In the GLP-1 response con-

sensus network, GDI2 interacts with RAP1A, which encodes the Rap1 protein. Rap1 has been

shown to be essential for cAMP mediated potentiation of glucose stimulated insulin secretion,

such as the one stimulated by GLP-1, through its activation by Epac2[16]. The importance of

the Rap1 signaling pathway was further highlighted by it being among the top enriched path-

ways in the consensus network. Interestingly, the Ryr2 channel encoded by RYR2 is also acti-

vated by Epac2 and plays a role in GLP-1 stimulated insulin secretion by intracellular Ca2+

mobilization [15].

The uncharacterized protein KIAA0232 is another direct interaction partner of RYR2 in the

consensus network and is additionally supported as the causal gene for the associated

rs7669558 variant by its strong eQTL association in blood. The rs7669558 SNP is located in a

Integrative network analysis of GLP-1 stimulated insulin secretion
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cluster of active islet enhancers, making this protein an intriguing target for further

characterization.

The two collagen IV genes, COL4A1 and COL4A2, were supported by the meta-analysis P-

value for the rs72509 variant and their role in GLP-1 response was additionally supported by

evidence from the transcriptome experiment in mice treated with the GLP-1 receptor agonist

liraglutide. These two genes are part of the focal adhesion and extracellular matrix-receptor

interaction pathways, the two most strongly enriched pathways in the consensus network. The

integrin mediated ligation of pancreatic beta-cells to collagen IV is known to promote the

secretion of insulin [28] and focal adhesion is important for glucose stimulated insulin secre-

tion [29], which is here highlighted in the context of GLP-1 stimulation. Both of these path-

ways, in addition to the regulation of actin cytoskeleton pathway, have been implicated in type

2 diabetes, as they were found to be overrepresented among genes differentially methylated in

pancreatic islets of type 2 diabetes patients compared to non-diabetic controls [30]. Moreover,

the COL4A1 gene (along with two other consensus network members, VAV2 and ITGB5) was

found to be among the significantly hypomethylated genes. In addition, CD44, a widely

expressed cell surface glycoprotein known to induce integrin-mediated adhesion, was the

most significant up-regulator of the expression dataset for liraglutide response [31].

As liraglutide is a GLP-1 receptor agonist, liraglutide treatment-induced gene expression

alterations can highlight networks and pathways related to GLP-1 response. In our transcrip-

tomic experiment for liraglutide response in adipose tissue, we observed an overlap with the

pathways prioritized by the GLP-1 stimulated insulin secretion consensus network in the pan-

creatic beta-cell. This suggests that some additional effects of GLP-1 in peripheral tissue could

be mediated by genes that are not islet-specific, such as collagen type IV. Studies performed in

isolated adipocytes have demonstrated that GLP-1 has the ability to induce both lipogenic and

lipolytic mechanisms in white adipose tissue through activation of ERK, PKC and AKT signal-

ing pathways [32]. These are also active in the islets, as transgene expression of the GLP-1R in

the islets of Glp1r–/–mice restored GLP-1R dependent stimulation of cAMP and Akt phos-

phorylation and was sufficient for restoration of GLP-1 stimulated insulin secretion in per-

fused islets [33]. Thereby, the GLP-1 receptors in the islet have an essential physiological role

in the regulation of beta-cell function and glucose homeostasis through the Akt pathway,

which in parallel affects adipogenesis.

Remodeling in heart and vasculature is linked to alterations in extracellular matrix and

integrin expression [34]. This relates to a recently reported clinically relevant downstream

effect of GLP-1 stimulation, cardioprotection via the PI3K/Akt/Bad pathway [35], leading to

stabilization of atherosclerosis in increase of plaque collagen content in arteriosclerotic mice

[36]. Both human and animal model networks presented in the current study point to relevant

signals for the PI 3-kinase signaling pathway, which may be important for both insulin secre-

tion and diabetes comorbidities originating in other tissues, such as cardiovascular disease.

One of the main challenges in GWAS is to identify the causal genes mediating the effects of

associated variants. Here, each variant was assigned to nearby genes but in addition, the most

likely causal gene for each variant can be considered to be the one that also physically interacts

with other candidate genes at the protein level in the context of the beta-cell, based on the net-

work module prioritization. We found a number of the consensus network SNPs to either

have a direct potential eQTL association with the corresponding gene either in human islets,

pancreas or blood, or reside in loci overlapping clustered active islet enhancers that are known

to be enriched for type 2 diabetes and fasting glucose associated loci [23], suggesting that many

of the SNPs driving the consensus network significance have the potential to confer regulatory

effects on gene expression.
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A limitation of our study is clearly the limited sample size of the GWAS cohorts impacting

statistical power. Nevertheless, the modified hyperglycemic clamp procedure has benefits in

terms of producing a very detailed measure, which is more proximal to the phenotype com-

pared to those based on for instance OGTT and thus likely to reveal larger effect sizes, which is

a general observation for pharmacogenomic traits [37]. We employed the integrative network

analysis to reduce the number of false positives, by prioritizing signals in vicinity of genes that

have the potential to physically interact in the pancreatic beta-cell, and furthermore focused

our attention on the genetic variants from the network with the best meta-analysis P-values

from the two cohorts. The network and transcriptomic analyses provide biological hypotheses

in the form of prioritized genes and pathways for future functional studies that will be required

to confirm their role in GLP-1 stimulated insulin secretion and as such this study should be

seen as an exploratory study.

In conclusion, we have identified a beta-cell PPI network module enriched for nominal

associations with GLP-1 stimulated insulin secretion. This network module highlights genes

and pathways already known to be of importance for insulin secretion, and indicates new

potential target genes that operate in the same network context. The genetic variants priori-

tized through the network approach were collectively associated with insulin secretion capabil-

ity in the general population and many overlap with islet-active regulatory regions, suggesting

a possible influence on the gene expression of network members. Consistent with this hypoth-

esis, alterations in gene expression in response to liraglutide treatment in mice showed that

main network regulators are connected to genes nominally associated with the GLP-1 stimu-

lated insulin response. Furthermore, the results demonstrate how data integration can high-

light biological mechanisms underlying a phenotype where GWAS results on their own may

be insufficient.

Materials and methods

Hyperglycemic clamp cohorts

GLP-1 stimulated insulin secretion was measured with a modified hyperglycemic clamp in 126

twins and sibs from the Netherlands twin register (NTR), aged 20–51 years [2]. This cohort

consists of a mixed sample of twins and non-twin sibs recruited from 54 families (family size

2–9). In total, the NTR twin sample included 33 monozygotic twin pairs (n = 66), 14 same sex

dizygotic twin pairs (n = 28) and 32 single twins and same sex sibs of the twins. The validation

cohort consisted of 100 unrelated subjects, aged 18–68 years, from Tübingen, Germany [10]

(68 with NGT/32 with IGT) who were examined with an identical hyperglycemic clamp [38].

The human studies were conducted according to the principles expressed in the Declaration of

Helsinki. The medical ethics committee at VU University Amsterdam, the Netherlands,

approved the NTR study protocol. The study protocol was approved by the ethical committee

of the University of Tübingen, Germany. All participants gave written informed consent

before the study was started.

Hyperglycemic clamp procedure

Hyperglycemic clamp studies were performed in 2005–2007 and 1998–1999 for the NTR and

Tübingen cohort respectively. All participants underwent a modified hyperglycemic clamp at

10 mmol/l glucose for three hours with additional GLP-1 and arginine stimulation during the

last hour. After a priming infusion of glucose to acutely raise blood glucose levels, blood glu-

cose levels were measured with a glucose analyzer and kept constant at 10 mmol/l during the

whole clamp. Insulin levels were measured with immunoassays as previously described. Insu-

lin sensitivity index was calculated as described previously. GLP-1–stimulated insulin release
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was measured as the mean incremental area under the curve (160–180 min) following GLP-1

stimulation. Exact details of the modified hyperglycemic clamp procedure can be found in

Simonis-Bik et al. [2].

Genotyping and association analysis

Genotyping of the two cohorts (NTR and Tübingen) and subsequent data analysis was per-

formed between September 2013 and September 2016. Genotyping using the HumanCoreEx-

ome chip was performed according the manufacturers protocol (Illumina Inc. San Diego, CA,

USA). For quality control we used the following settings: a cut-off for the genotyping call rate

of 99%, Gentrain and clusters score < 0.6 and 0.4 respectively, and the P-value cut-off for

Hardy-Weinberg equilibrium was set at 10−4. In total 513,444 SNPs passed quality control.

Imputation up to the March 2012 1000 Genomes reference panel was done using SHAPEIT

(v2.r644) and IMPUTE (v2.3.0). SNPs with a low frequency (MAF < 5%) and or imputation

quality (RT
2< 0.4) were excluded, leaving 6.6 M SNPs for the analysis. The test statistics were

not adjusted for inflation (population stratification) because of the low genomic inflation fac-

tor (λ = 1.02). In order to account for the family relationships in the twin cohort we used

QTassoc [39], a software tool based on SNPtest that is capable of handling familial data (using

the kinship coefficients matrix) and genotype uncertainty. Data from both cohorts were ana-

lyzed using linear regression under an additive model and were adjusted for age, gender, glu-

cose tolerance status, insulin sensitivity index, and familiarity (NTR only) as potential

confounders. Fixed-effect meta-analysis (quantitative trait) of the two studies was performed

using GWAMA [40] with double genomic control, i.e. for the results from the individual stud-

ies (-gc) and from the meta-analysis (-gco).

Gene significance scoring

P-values from the discovery GWAS analysis on GLP-1 stimulated insulin secretion were used

to assign gene significance. Each gene was assigned the lowest P-value mapping to its bound-

aries, defined as 110kb upstream and 40kb downstream from transcription start/stop sites.

These boundaries represent the 99th percentile of cis-eQTLs from their associated genes [41].

All SNPs not mapping to any predefined gene-window were excluded from the analysis.

Construction of a beta-cell specific PPI network

A beta-cell specific PPI network was created by pruning the InWeb database [42] of high confi-

dence physical PPIs (154,168 interactions between 12,778 proteins) using published beta-cell

specific RNAseq data [13]. More specifically, genes with 25th percentile RPKM< 1 were con-

sidered less likely to be expressed in the beta-cell and thus removed from the pruned beta-cell

specific network. Special care was taken not to remove beta-cell or pancreatic transcription

factors (S9 Table) or other lowly expressed beta-cell specific genes, such as the ones defined as

beta-cell enriched in the study by Nica et al. [13].

Identifying hotspots in the PPI network

The Cytoscape plugin jActiveModules [14] was used to identify modules in the network that

were enriched for high scoring genes (that is with low SNP P-values). The jActiveModules

algorithm is described in detail in the original publication [14] but in brief, each node repre-

senting a gene i in the network is assigned a z-score zi = F−1(1 − pi), where F−1 is the inverse

normal cumulative distribution function and pi is the gene significance score. An aggregated

z-score is calculated for each module A with k nodes as the normalized sum of z-scores of all
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genes in the module:

zA ¼
X

i2A

Zi=
ffiffiffi
k
p

A module z-score > 3 is generally considered significant, according to the jActiveModules

authors. jActiveModules searches for top scoring modules within the full network, starting

from each of the (in our case top 100 highest scoring) nodes in the beta-cell network and add-

ing nodes to the network module using a greedy search algorithm.

The z-scores generated by jActiveModules are a measure of the enrichment significance of

the modules compared to 100,000 permutations of randomly selected genes from the whole

beta-cell PPI network. The z-scores were additionally compared to 10 sets of permuted gene

significance values. As the top scoring module was too large (n = 179 genes) for manual

inspection, the jActiveModules algorithm was rerun on the top scoring module and the conse-

quent submodules within it used to build a consensus network, where a node was included if it

appeared more than once in any of the top 15 second order modules. The enrichment of asso-

ciation signals in the consensus network was validated in the Tübingen cohort by comparing

the combined z-score for the network SNPs to those obtained from 100,000 randomly sampled

sets of SNPs that had previously been assigned to each of the genes in the beta-cell network

during the gene significance scoring step. For comparison we attempted the same validation

for a matched number of the top independent signals from the discovery GWAS.

Gene set enrichment of beta-cell specific PPI network module

Gene set enrichment analysis was performed using ConsensusPathDB [43], testing Gene

Ontology (GO) and KEGG pathway gene sets and using all 8,457 genes present in the beta-cell

PPI as background. Benjamini & Hochberg [44] adjusted P-values < 0.05 were considered sta-

tistically significant.

eQTL associations

We extracted eQTL associations for each of the SNP-gene pairs in the consensus network

from the GTEx portal [45] and from human pancreatic islets [46]. We searched for eQTL asso-

ciations in human islets (nsamples = 118), pancreatic tissue (nsamples = 58) and blood (nsamples =

168). Due to the predefined SNP-gene pairs tested and the small number of samples, we con-

sidered SNPs with P< 0.01 as potential eQTLs. In addition we looked up the network SNPs

amongst significant eQTLs in whole blood from 5,311 individuals [47].

Islet regulatory element overlap

Positions for six types of regulatory elements in pancreatic islets (promoters, inactive enhanc-

ers, active enhancers, clustered active enhancers, CTCF bound sites and other) were obtained

from a recent study [23]. All SNPs in the consensus network and SNPs in high LD (r2 > 0.8)

were tested for overlap with any of the regulatory regions.

Polygenic risk scores

Weighted PRS were tested for association with oral glucose tolerance test phenotypes (S4

Table) from MAGIC [11]. The association testing was performed with the “gtx” R package.

The analysis was limited to SNPs common to both datasets. The effect raising allele of the best

SNP for each gene (based on its discovery GWAS P-value) was chosen for the PRS, and
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weighted by the effect size in the discovery GWAS. For comparison, another PRS was created

from a matched number of the top discovery GWAS SNPs (LD-pruned at r2 < 0.8).

Liraglutide treatment in ob/ob mice

Twenty female B6.Cg-Lep ob/ob mice were obtained from Charles River (Sulzfeld, Germany)

in an age of 6–8 weeks. Upon receipt, animals were housed 5 per cage in an air-conditioned,

pathogen-free barrier facility maintained at 22±2˚C with an air humidity of 45–65% and a

12-h dark–light cycle (lights on at 06:00 am). The mice had ad libitum access to a standard

rodent diet from ssniff1 (R/M-H, V1534-0, 10 mm pellets, Soest, Germany) and tap water

during the entire experiment. The mice were surgically implanted in an age of 10–12 weeks

with Alzet osmotic mini pumps (model 1002, 0,25μl/h, Cupertino, CA, USA) under isoflurane

(2.5% using a flow of 0.6 L/min) inhalation anesthesia with peri-operative, subcutaneous, anal-

gesic Buprenorphine treatment (0.05 mg/kg Temgesic1). Due to wound healing problems

after the mini pump surgery three mice were sacrificed during the time course of the experi-

ment and therefore are not represented in the study data. The mice were split into two groups

to perform continuous subcutaneous infusions of Dulbecco’s phosphate buffered saline (vehi-

cle; n = 8) or GLP-1 (GLP-1; n = 9) agonist Liraglutide (Victoza1, batch# CS6C214, Novo

Nordisk A/S, Bagsvaerd, Denmark) to investigate the effects of the respective treatment on

peri-gonadal white adipose tissue gene expression. Vehicle or Liraglutide at a dose of 600 μg/

kg/d were continuously infused (at a dose of 600 μg/kg/d) over a 14 days period. On the morn-

ing after the osmotic mini pump reservoirs liquid content should have been consumed mice

were dissected to remove the peri-gonadal fat pad for white adipose tissue gene expression

analysis. To dissect the white adipose tissue, mice were anaesthetized under isoflurane (3.0%

using a flow of 0.6 L/min) inhalation anesthesia and finally sacrificed by cervical dislocation.

At least 220 mg of white adipose tissue was quickly removed, shock-frozen in liquid nitrogen

and thereafter stored at -80˚C for mRNA extraction. The animal study conformed to the Ger-

man law for the protection of animal guidelines and the guide for the care and use of labora-

tory animals published by the US National Institutes of Health (NIH Publications No 85–23,

revised 2011) as well as to Sanofi-Aventis Ethical Committee guidelines and were approved by

a local authority ethics review board (RP Darmstadt).

Transcriptome profiling of liraglutide treated mice and baseline controls

To perform RNA-Seq analysis, samples were single-end sequenced at a depth of 75 – 80M

reads per sample with a read-length of 51 bp using an Illumina Hiseq2500. Raw sequencing

files were quality controlled with FastQC [48]. Alignment and trimming of reads was per-

formed using the OSA [49] algorithm against the mouse reference genome b38.1 with RefSeq

as the gene model as implemented in OmicSoft1 ArraySuite1 software, version 8. RNA tran-

scripts were quantified using RSEM methods [50] as implemented in Arraystudio counting

count the read fragments mapping to each individual gene and quantify expression by the cor-

responding FPKM. In summary, expression was measured as FPKM for 25,054 unique genes.

Principal component analysis was then performed to check for possible batch effects and outli-

ers complemented by calculating the RNA-Seq 5’->3’ trend for each sample. One sample for

the vehicle control as well as for the Liraglutide group were identified as outliers and removed

from subsequent analysis, resulting in 7 and 8 samples remaining for each group respectively.

Abundance values (counts) were normalized and compared between liraglutide treated mice

versus baseline controls using DESeq2 [51]. All P-values were adjusted for multiple testing by

the Benjamini-Hochberg method [44].
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Gene set enrichment analysis of the transcriptome profiling of liraglutide

treated mice vs. baseline controls

Gene set enrichment analysis was performed using QIAGEN’s Ingenuity1 Pathway Analysis,

a web-based bioinformatics tool [Qiagen, Redwood City, CA, USA]. A given set of input genes

was associated with molecular networks based on their connectivity in the Ingenuity Pathways

Knowledge Base. Fisher’s exact test was used to determine the probability that each biological

function assigned to that data set was attributable to chance alone. The goal of the IPA

Upstream Regulator analytic is to identify the cascade of upstream transcriptional regulators

(any molecule that can affect the expression of other molecule) that can explain the observed

gene expression changes in a given dataset. For each potential transcriptional regulator two

statistical measures, an overlap P-value and an activation z-score are computed. The overlap

P-value calls likely upstream regulators based on significant overlap between dataset genes and

known targets regulated by a transcriptional regulator. The activation z-score is used to infer

likely activation states of upstream regulators based on comparison with a model that assigns

random regulation directions (S8 Table). Analyses included direct and indirect relationships

that have been experimentally observed in mice, rat or human studies. All differentially

expressed genes (n = 342 with a FDR < 0.05) were used for the analysis.

Tissue specific network analysis of genes identified in both human and

animal experiments

To verify if the genes identified in the independent human and mouse experiments had inter-

actions in specific interaction networks for the islet and adipose tissue, we used the Genome-

scale Integrated Analysis of gene Networks in Tissues–GIANT [25]. GIANT leverages a tissue-

specific gold standard to automatically up-weight datasets relevant to a tissue from a large data

compendium of diverse tissues and cell-types. The resulting functional networks accurately

capture tissue-specific functional interactions. We only included interactions with a relation-

ship confidence > 0.28 (within the range of 0 to 1).

Supporting information

S1 Fig. Q-Q plot of the GWAS on GLP-1 stimulated insulin secretion as measured with the

hyperglycemic clamp in the NTR cohort.

(TIF)

S2 Fig. Manhattan plot of the GWAS on GLP-1 stimulated insulin secretion as measured

with the hyperglycemic clamp in the NTR cohort.

(TIF)

S3 Fig. Flowchart illustrating the analysis workflow. A The discovery analysis consisted of

an integrative network analysis where GLP-1 stimulated insulin secretion GWAS P-values

were combined with a beta-cell specific PPI network to identify enriched network modules or

‘network hotspots’. The top scoring network module was distilled into a smaller consensus net-

work, by combining top selected nodes from a second network module search. B Functional

annotation of the consensus network genes and SNPs consisted of pathway overrepresentation

analysis, eQTL lookups in pancreatic islets and blood and overlaps with islet regulatory ele-

ments (promoters and enhancer clusters). C We attempted validation of the network by calcu-

lating a combined z-score for the top-scoring network SNPs in an independent cohort and

investigating polygenic risk scores from the same SNPs in OGTT data from MAGIC investiga-

tors. These results for the network SNPs were compared to those obtained by a matched
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number of top GWAS SNPs. Finally the results from a study of the effects of liraglutide (a

GLP-1 agonist) on mouse adipose tissue were compared to the findings from the network and

pathway analysis of human genomic data.

(TIF)

S4 Fig. Network module z-scores derived from real (red) and randomized (black) gene sig-

nificance scores. Network module z-scores based on randomized gene significance scores are

shown as the mean of 10 randomizations with 95% confidence intervals (SEM�1.96).

(TIF)

S5 Fig. The GO terms enriched (BH adjusted P-value < 1 × 10−3) within the GLP-1

response network, compared to the whole beta-cell PPI network. Level 2 GO terms are

shown for each of the categories; molecular function (red), cellular component (yellow) and

biological process (blue).

(TIF)

S6 Fig. The percentage of GLP-1 stimulated insulin secretion consensus network loci

(green) overlapping islet regulatory elements, shown in comparison to genome-wide sig-

nificant fasting glucose associated loci (blue), genome-wide significant T2D associated loci

(red) and loci with P< 1 × 10−4 in a GWAS of corrected insulin response adjusted for insu-

lin sensitivity index (orange).

(TIF)

S7 Fig. The combined z-score in the Tübingen validation cohort for the top 31 indepen-

dent GWAS SNPs (red line) compared to 100,000 z-scores obtained from randomly

selected sets of SNPs from the beta-cell network (histogram), empirical P-value = 0.95.

(TIF)

S8 Fig. Mouse experiment overview. B6.Cg-Lep ob/ob mice were treated with 600 μg/kg/d lir-

aglutide (n = 9) or vehicle (n = 8).

(TIF)

S9 Fig. Visualization of subnetworks prioritized from the mouse adipose tissue transcrip-

tome experiment. A) Collagen genes interact with genes that also appear in the human con-

sensus network, and which connect the collagen pathway to the GLP-1 receptor. Gene nodes

are colored by up- (red) and down- (green) regulation in the liraglutide treated animals versus

untreated controls. B) CD44 is an upstream regulator of collagen genes and CTNNB1. Interac-

tions are based on the Ingenuity Pathway Analyses library.

(TIF)

S10 Fig. Tissue-specific functional interaction networks from GIANT. Relevant genes (larg-

est nodes) overlapping in the human and mouse studies were used to query tissue-specific

interactions. The networks indicate that these genes have functional interactions in both pan-

creatic islet (A) and adipose tissue (B). Minimum relationship confidence is highlighted by the

colors from green (0) to dark red (1).

(TIF)

S1 Table. The six independent signals from the discovery GWAS on GLP-1 stimulated

insulin secretion with P< 1 × 10−5, well as the validation and meta-analysis statistics.

(XLSX)

S2 Table. An overview of the genes in the GLP-1 response consensus network. The SNP

with the minimum discovery GWAS P-value mapping to each gene is shown together with the
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discovery GWAS, validation and meta-analysis statistics.

(XLSX)

S3 Table. An overview of the eQTL and islet regulatory element overlap lookup for the

GLP-1 response consensus network SNPs.

(XLSX)

S4 Table. OGTT-derived phenotypes for which summary statistics from MAGIC were

used to investigate SNP and polygenic risk score associations. Table adapted from Proko-

penko et al. [11]

(XLSX)

S5 Table. Nominally significant (P< 0.05, highlighted in bold) associations between SNPs

from the GLP-1 response consensus network and quantitative metabolic traits from

MAGIC. The last column shows the effect (beta) of the effect allele used in MAGIC on GLP-1

stimulated insulin secretion in the NTR cohort.

(XLSX)

S6 Table. The association between weighted polygenic risk scores for SNPs in the GLP-1

response consensus network with discovery GWAS P< 5 × 10−4 and OGTT-derived phe-

notypes from MAGIC. P-values < 0.05 are highlighted in bold. The phenotypes are described

in more detail in S4 Table.

(XLSX)

S7 Table. The association between weighted polygenic risk scores for LD-pruned top

GWAS SNPs (matched number of SNPs compared to S6 Table) and OGTT-derived pheno-

types from MAGIC.

(XLSX)

S8 Table. Upstream regulators identified in the transcriptome experiment of differentially

expressed genes in liraglutide treated ob/ob mice versus baseline controls. The overlap P-

value calls likely upstream regulators based on significant overlap between dataset genes and

known targets regulated by a transcriptional regulator. The z-score algorithm is designed to

produce either a prediction of activation or inhibition (or no prediction). The analysis exam-

ines the known targets of each upstream regulator in the dataset, compares the targets’ actual

direction of change to expectations derived from the literature, then issues a prediction for

each upstream regulator. The direction of change is the gene expression in the experimental

samples relative to a control. If the direction of change is consistent with the literature across

most targets, IPA predicts that the upstream regulator is more active in the experimental sam-

ple than in the control. Mostly inconsistent with the literature (anti-correlated with the litera-

ture), IPA predicts that the upstream regulator is less active in the experimental sample than in

the control. If there is a random pattern relative to the literature, IPA does not make an activa-

tion or inhibition prediction for the upstream regulator. However, in these case, there may still

be a significant overlap (Fisher’s Exact P-value), just no clear pattern to predict a direction of

activation. Genes highlighted in yellow were also present in the human beta-cell GLP-1

response consensus network.

(XLSX)

S9 Table. Islet and pancreatic transcription factors that were specifically included in the

beta-cell PPI network.

(XLSX)
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Willemsen, Hans-Ulrich Häring, Eco J. C. de Geus, Dorret I. Boomsma, Elisabeth M. W.

Eekhoff.

Project administration: Valborg Gudmundsdottir, Caroline Brorsson, Ewan R. Pearson, Leen

M. ‘t Hart.

Resources: Nienke van Leeuwen, Harald Staiger, Mark H. H. Kramer, Gonneke Willemsen,
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Visualization: Valborg Gudmundsdottir, Helle Krogh Pedersen, Karla Viviani Allebrandt,

Leen M. ‘t Hart.

Writing – original draft: Valborg Gudmundsdottir, Helle Krogh Pedersen, Karla Viviani

Allebrandt, Caroline Brorsson, Søren Brunak, Leen M. ‘t Hart.

Writing – review & editing: Valborg Gudmundsdottir, Helle Krogh Pedersen, Karla Viviani

Allebrandt, Caroline Brorsson, Nienke van Leeuwen, Karina Banasik, Anubha Mahajan,

Christopher J. Groves, Martijn van de Bunt, Adem Y. Dawed, Andreas Fritsche, Harald

Staiger, Annemarie M. C. Simonis-Bik, Joris Deelen, Mark H. H. Kramer, Axel Dietrich,
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