

University of Dundee

An Anti-Pattern for Misuse Cases

Dashti, Mohammad Torabi; Radomirovi, Saša

Published in:
Computer Security

DOI:
10.1007/978-3-319-72817-9_16

Publication date:
2018

Document Version
Peer reviewed version

Link to publication in Discovery Research Portal

Citation for published version (APA):
Dashti, M. T., & Radomirovi, S. (2018). An Anti-Pattern for Misuse Cases. In S. K. Katsikas, F. Cuppens, N.
Cuppens, C. Lambrinodakis, C. Kalloniatis, J. Mylopoulos, A. Anton, ... S. Gritzalis (Eds.), Computer Security:
ESORICS 2017 International Workshops, CyberICPS 2017 and SECPRE 2017, Oslo, Norway, September 14-
15, 2017, Revised Selected Papers (Vol. 10683, pp. 250-261). (Lecture Notes in Computer Science; Vol.
10683). Switzerland: Springer . DOI: 10.1007/978-3-319-72817-9_16

General rights
Copyright and moral rights for the publications made accessible in Discovery Research Portal are retained by the authors and/or other
copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with
these rights.

 • Users may download and print one copy of any publication from Discovery Research Portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain.
 • You may freely distribute the URL identifying the publication in the public portal.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 20. Mar. 2018

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Dundee Online Publications

https://core.ac.uk/display/146459146?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1007/978-3-319-72817-9_16
http://discovery.dundee.ac.uk/portal/en/research/an-antipattern-for-misuse-cases(59e42dd6-fe46-43b4-9f95-9573f1b92338).html

An Anti-Pattern for Misuse Cases

Mohammad Torabi Dashti1 and Saša Radomirović2

1 Department of Computer Science
ETH Zurich

mohammad.torabi@inf.ethz.ch
2 School of Science and Engineering

University of Dundee
s.radomirovic@dundee.ac.uk

Abstract. Misuse case analysis is a method for the elicitation, docu-
mentation, and communication of security requirements. It builds upon
the well-established use case analysis method and is one of the few
existing techniques dedicated to security requirements engineering. We
present an anti-pattern for applying misuse cases, dubbed “orphan mis-
uses.” Orphan misuse cases by and large ignore the system at hand,
thus providing little insight into its security. Common symptoms include
implementation-dependent threats and overly general, vacuous mitiga-
tions. We illustrate orphan misuse cases through examples, explain their
negative consequences in detail, and give guidelines for avoiding them.

1 Introduction

Misuse case analysis is a method for helping requirements engineers with the
notorious task of eliciting security requirements. The elicited requirements are
documented textually, or as UML-inspired diagrams, to facilitate communica-
tion among business analysts, developers, project managers, and other stake-
holders. Similarly to use cases, misuse cases can also form a basis for estimating
project cost and efforts. Other applications of misuse cases include documenting
the provenance of security functionalities and enabling security testing and risk
analysis; see, for example, [16, 17].

To carry out misuse case analysis, first, a system’s functional requirements
are elicited as a set of use cases. This step follows the well-established use case
analysis method, extensively studied and applied in software engineering. Then,
engineers consider each elicited functional use case, and investigate how an adver-
sary might “misuse” it. What constitutes a misuse is determined by the security
objectives that are, implicitly or explicitly, available to the engineers.

Finally, to mitigate the misuse cases obtained in the second step, new func-
tional use cases are elicited. These are called security use cases. Optionally, the
analysis loops back to the second step for considering threats against the newly
added (security) use cases. Functional use cases, security and otherwise, are re-
fined and implemented, whereas misuse cases are fictitious. We assume that the
reader has a rudimentary understanding of use cases and misuse cases. For a
detailed introduction to these methods see, for example, [1, 16].

The final publication is available at Springer via http://dx.doi.org/[insert DOI]

Given a problem, an anti-pattern illustrates a recurring solution that has un-
desired consequences [7]. We present the orphan misuses anti-pattern, an anti-
pattern for applying misuse case analysis. Intuitively, orphan misuse cases are
“orphans” as they ignore the use cases elicited for the system at hand. Conse-
quently, they provide little insight into the system’s security: either the analysis
prematurely ends with high-level objectives, or a number of well-known, code-
level attacks are selected and listed. In both cases, the system at hand remains
by and large unanalyzed. Common symptoms of orphan misuse cases include
implementation-dependent threats, such as “buffer overflow,” and mitigations,
such as “prevent fraud,” that pertain to (almost) any system and are hence vac-
uous.

Contributions. We define orphan misuse cases and explain their negative con-
sequences in detail (§2). Afterward, we present the orphan misuses anti-pattern
(§3) and illustrate it through examples (§4). We discuss how to avoid orphan
misuse cases and give recommendations for writing effective misuse cases (§5).

2 Orphan Misuse Cases

Any attack can be trivially represented as a misuse case: draw a circle, write
the name of the attack inside it, and call it a misuse case. Any preventive or
prohibitive mitigation mechanism can similarly be represented as a security use
case. This trivial expressiveness comes at a cost: requirements engineers, en-
gaged in misuse case analysis, are left with no guidelines. They are supposed to
imagine all possible attacks. Consequently, analysis paralysis may ensue: when
imagination is set loose, the outcome is paralyzed because of the undue amount
of time and energy that is spent on analysis.

Eliciting security requirements needs a cognitive catalyst: a starting point
for thinking about possible attacks. In misuse case analysis, the starting point is
a (functional) use case that is already elicited through use case analysis. Focus-
ing on elicited use cases guides the thoughts and limits the search space hence
discouraging analysis paralysis. We illustrate this point with a simple example.

Example 1. A “register new clients” use case has been elicited for a web site,
associated to a political party, see Figure 1. The use case includes a mechanism
for preventing two clients from having the same email address: trying to register
using an email address that exists in the system leads to an an error, signaling
that the address cannot be reused.

Any number of attacks are imaginable on this system, ranging from com-
mand injection to kidnapping system administrators and coercing them into
collaboration. The details are also as varied as the imagination permits.

But, focusing only on the logic of this use case brings to light the fact that
an adversary can find out, within a margin of error, whether a certain person
has an account on the system. Suppose the adversary tries to register using an
email address that belongs to X, a public figure, and receives an error message,

2

Visitor Adversary

Register Reveal Membership

Read Manifesto

«threaten»

Fig. 1. Analysis for Example 1, drawn with SeaMonster Security Modeling Software

indicating that the address cannot be reused. Then, the adversary can infer that
X has an account on the system and is likely sympathetic to the party. This
violates the (implicit) security objective that a person’s membership in the web
site, which betrays a certain political inclination, must not be revealed through
the system. This misuse case is denoted “reveal membership” in Figure 1. 4

There is a difference between sabotaging a use case and misusing it. For ex-
ample, command injection attacks hardly constitute a misuse case in the above
scenario, because of two reasons. First, a large number of use cases can be at-
tacked through command injection, if their implementation is not based on safe
languages. In this sense, command injection has little to do with the specific use
case of registering new clients. Therefore, if command injection attacks are to
be considered as misuse cases, a myriad of other code-level attacks, including
more exotic ones like “row hammering,” [6] should also be included, making the
elicitation process practically intractable. We return to code-level threats and
their mitigation techniques in §5.

The second reason is that command injection is not inherently part of, say, a
pen-and-paper procedure. A stored procedure on a SQL database might however
suffer from it. While the requirements should not assume a particular implemen-
tation, command injection presumes a fixed (sort of) implementation. A similar
argument shows that kidnapping system administrators is also hardly a misuse
of the “register new clients” use case. Considering this type of attack does not
provide insight into a problem that the application’s architecture suffers from.
In contrast, the “reveal membership” misuse case is inherent to the registration
use case with the duplicate detection mechanism described in Example 1. It is a
problem that demonstrates how the elicited functionalities can be misused and
thus provides insight into a problem that exists at this level of abstraction.

In UML nomenclature, a misuse case amounts to an undesirable use case
that “includes” a desired use case, where to include a use case roughly means
using it as a subroutine; see [9]. This conforms to the original rationale of Sindre
and Opdahl: “many threats to a system can largely be achieved by using that
system’s normal functionality” [15]. We call a misuse case that does not “include”
one or more functional use cases an orphan misuse case. Command injection
and kidnapping system administrators in the above scenario are examples of
orphan misuse cases.

3

We conclude this section with a side note. Security objectives are not elicited
through misuse cases. They must be present, implicitly or explicitly, to determine
what a misuse is. Therefore, they are not the (main) outcome of a misuse case
analysis. What is elicited through misuse cases is the security functions a system
must have; see, e.g., [2]. These functions, i.e. security use cases, in effect constrain
the system’s other use cases. Referring to these as “security requirements” might
be slightly misleading, but it is well-accepted in the literature. For example,
Haley, Laney, Moffett, and Nuseibeh define a security requirement as a constraint
on system functions [5].

3 Orphan Misuses Anti-Pattern

We argue against writing orphan misuse cases.
Orphan misuse cases are not tied to the functional use cases that have been

elicited for the system at hand. Therefore, they tend to be either overly specific,
pertaining to a fixed implementation technology, or overly general, bordering on
high-level objectives rather than functions. We illustrate these points through
examples from the literature.

Implementation-dependent orphan misuse cases. Sindre and Opdahl give “get
privileges” as a misuse case for “register customer” use case [16]. Peterson and
Steven give “inject commands” as a misuse case for “review account” in a banking
system [12]. Rostad gives “overflow attack” as a misuse for “enter user name” use
case, which is mitigated by “input validation” [14].

These examples mix up the abstraction levels: a particular implementation
technology is presumed at the requirements elicitation phase. Moreover, “elicit-
ing” code-level orphan misuse cases is a rather futile exercise: they appear to
be recalled from a list of generic attacks, e.g. OWASP’s top ten or CWE’s top
twenty five, rather than being actually elicited for the system at hand. This is
not unexpected: in the requirements elicitation phase, often no implementation is
available. Therefore, the attacks cannot be about an implementation’s peculiari-
ties. This signals the occurrence of analysis paralysis: the engineers, not knowing
what to think of, fall back on the well-known attacks, ignoring the elicited use
cases.

Note that we do not argue against considering wide-spread, code-level at-
tacks. Rather, the point is that when misuse cases for a given system are elicited,
there is hardly any value in thinking about generic well-known attacks. By def-
inition, they are all known, and listed elsewhere. We argue that by shifting the
focus towards the use cases at hand, genuine misuse cases can be elicited and
specific mitigation mechanisms can be devised and documented as security use
cases; see §4. Moreover, these steps are guided by elicited use cases, which help
with analysis paralysis.

Overly general orphan misuse cases. Regev, Alexander, and Wegmann give
“launder money” as a misuse case for “establish reputation,” which is mitigated

4

Table 1. Orphan Misuses Anti-Pattern

Problem. Elicitation of security requirements through misuse case analysis.
Recurrent Solution. Orphan misuse cases which do not include any use case.
The Solution’s Negative Consequences. Orphan misuse cases likely ignore the use
cases elicited for the system at hand. They often hide the underlying trade-offs
between security and cost, efficiency, usability, and so forth, and provide little
insight: either the analysis ends prematurely at the objectives level, or a number
of well-known code-level attacks are selected and listed. In both cases, the system
at hand is by and large ignored.
Common Symptoms. Implementation-dependent misuse cases, such as “buffer
overflow.” Misuse cases that categorically threaten (almost) any use case. Mit-
igations amounting to vacuous objectives, of the form “secure it!”
How to Avoid It. Follow the logic of use cases and think about how they, as given,
can be misused. Let security objectives inform the elicitation process.

by “check money laundering,” in banking [13]. Pauli and Xu give “impersonate
user” as a misuse case for “enter appointment,” which is mitigated by “recognize
user,” in a health-care system [11]. Lehtonen, Michahelles, Fleisch give “theft
from internal IT” as a misuse case for “tag authentication,” which is mitigated
by “secure internal IT system,” in the RFID context [8].

In the examples above, the analysis has terminated prematurely. For instance,
“check money laundering” is a high-level objective, as opposed to a functional
(security) use case. Overly general orphan misuse cases, and their mitigation, by
and large ignore the specific use case under study. We of course do not dismiss
the value of high-level objectives. The problem lies with premature termination
of analysis: these objectives need further refinements through settling a range
of issues regarding adversarial capabilities and the value of the protected assets.
We return to this point in §4.

We define the orphan misuses anti-pattern in Table 1. Next, we illustrate
how orphan misuse cases can be avoided.

4 Analysis without Orphan Misuse Cases

Below, we start with an elicited use case and work out how it can be mis-
used. Mitigating the elicited threats tends to be more complex than recalling
well-known security solutions. It often raises fundamental questions about the
presumed adversarial capabilities, the expected level of security and its cost.
These issues are inherent to security engineering, and in practice they cannot be
resolved by requirements engineers alone. Communication among engineers and
other stake-holders is necessary. Compromises are often inevitable, but informed
discussions shed light on what is lost for which gain.

5

Example 2. A news service has two types of users: reporters and visitors. Visi-
tors may read the news, post comments on the news, and read the comments.
Reporters inherit visitors’ rights and may also post news items. Obviously, to
mitigate fake news, the “post news” use case must include an authentication
(security) use case, see Figure 2.

Rather than thinking about arbitrary attacks that might threaten the system,
we focus on the logic of the elicited use cases. We identify “troll” as a misuse of
the “post comments” use case. Trolling violates the (implicit security) objective
stating that the service’s users must be able to share their opinions safely.

Suppose we identify two possible mitigations: (1) users must authenticate
to post a comment. (2) Comments are moderated by reporters before becoming
public. The first mitigation is prohibitive: a troll can eventually be identified and
banned. Of course, it is possible that trolls create new accounts to escape the
ban, and also it is not clear how a set of comments is decided to be inappropriate.

The second mitigation, which is preventive, may unduly increase the re-
porters’ work load. Moreover, it enables censorship: rogue reporters can misuse
the “moderate comments” use case to silence the commentators who challenge
their views. This violates the security objective above. To mitigate the “cen-
sor” misuse case, a separation of powers mechanism can prevent reporters from
moderating comments on their own posts. A preliminary analysis, omitting the
censor misuse case, is shown in Figure 2.

Which mitigation should be adopted? This question cannot be answered
by requirements engineers alone. The options, including the cost of enforcing
separation of powers, must be communicated to the stake-holders. This facilitates
informed discussions for deciding a specific mitigation. 4

Misuse case elicitation in Example 2 is focused on the news service, but it
is not about well-known, implementation-dependent attacks. These attacks are
important issues in practice, but not in the requirements elicitation phase. More-
over, until we get the requirements right, and architect the system accordingly,
there is little hope for securing the system even if all code-level attacks are
accounted for.

Example 3. In a perimeter control system, the “unlock all doors” use case has
been elicited following fire safety regulations: in case of fire all doors must be
unlocked. Obviously, this use case should not be publicly accessible. An authen-
tication and authorization (security) use case is due: to activate the use case,
one must have a certain role in the organization. This step is rather obvious. The
interesting question is what to do about sensitive areas that are left unprotected
in case of fire.

Suppose there is a safe in the building. An arsonist adversary might start a
fire to ease his/her access to the safe. Suppose we identify two mitigations: (1)
a surveillance system, resilient to fire, monitors the safe and the paths that lead
to it. (2) In case of fire, aqueous foam is dispensed, which quickly expands and
fills the area around the safe, hence delaying the adversary’s access [4].

The first mitigation is prohibitive and the second one preventive, but it comes
with high maintenance costs. Which one should we choose? Again, the decision

6

Reporter

Visitor

Attacker

Post News

Read News & Comments

Post Comments

Fake News

Troll

Authentication & Authorization

Moderate Comments

«threaten»

«threaten»

«mitigate»

«include»

«mitigate»
«extend»

«include»

Fig. 2. Analysis for Example 2

is not for requirements engineers to make. The presumed capabilities of the
adversary against whom the perimeter is protected, the value of the asset, i.e.
the safe, and technological constraints, e.g. the availability and dependability of
foam dispensing equipments and their suppliers, are among the questions that
must be answered before choosing a concrete mitigation.

Continuing with the misuse case analysis reveals that the first mitigation is
privacy-intrusive, e.g. surveillance cameras can be misused by an insider to track
a person’s movements. These findings help the stake-holders to make informed
decisions. 4

In Example 3, it is necessary to make risks observable through, e.g., clarifying
adversarial capabilities, and evaluating the worth of protected assets. This is
because the focus is on a concrete system. In contrast, an orphan misuse case,
which is divorced from the system, does not raise these issues naturally. Writing
high-level objectives such as “mitigate arson” is trivial, but without addressing

7

the above issues regarding adversaries, assets, and so forth, this mitigation is
vacuous, hence of little use to the developers and other stake-holders.

Example 1’s misuse case can be subjected to a similar analysis for finding
suitable mitigations. For instance, strengthening the error handling mechanism
might appear promising. We do this next.

Example 4 (Continuing Example 1). Consider the register new clients use case.
We need a mechanism that prevents two clients from registering the same email
address. As discussed, if the mechanism displays an error message on the same
channel used to enter email addresses, then an adversary can infer that the
owner of an email address has an account on the system. Suppose we change the
mechanism to include a confirmation loop, as explained below.

1. When an email address is provided in the registration step, a message is sent
to that email address, its contents determined as follows.

2a. If the email address is already registered in the system the recipient is in-
formed that someone tried to register with this address. The recipient is thus
reminded that they do have an account.

2b. If the email address is not registered, a link is provided to continue with the
registration.

This prevents the “reveal membership” misuse case as the adversary cannot dif-
ferentiate between the two types of email that are sent to an address that he
does not own.

Further extending the analysis can now produce a new misuse case where an
attacker is able to misuse the confirmation loop to send unsolicited emails (spam)
to arbitrary email addresses. To combat spamming, the number of emails sent
to any given email address must be controlled. Clearly, this mitigation comes at
the cost of a more complex, stateful error handling mechanism. The resulting
diagram is shown in Figure 3. 4

We conclude this section by remarking that examples where the elicitation
of misuse cases follows the available use cases as a guideline are also found in
the literature. The information misuse case given in Example 1 is based on an
example of Sindre and Opdahl [16]. OWASP’s Testing Guide gives “brute force,”
i.e. repetitive password guessing, as a misuse of the “authentication” use case,
which is mitigated by various checks added to the use case [10]. This too follows
the guideline.

5 How To Avoid Orphan Misuse Cases

Writing orphan misuse cases is trivial. High-level misuse cases always amount to
the same thing: “sabotage it!” Code-level misuse cases are also not hard to come
by. Looking up any of the existing top ten or top twenty five vulnerability lists
is a good start. We dismiss such misuse cases as products of an anti-pattern.
Since they imitate the elicitation process but do not contribute to it, the system
at hand remains unanalyzed.

8

Visitor

Adversary

Register Reveal Membership

Spam

Confirmation Email Counter

Confirmation Loop

Email Communication

Read Manifesto

«mitigate»

«threaten»

«include»

«include» «threaten»

«mitigate»

«extend»

Fig. 3. Analysis for Example 4

We advocate writing misuse cases that are specific to the system under study.
This is hard: it demands new thinking and fresh perspectives for each case study.
The result is however of higher quality as it is coupled with the system at hand,
and moreover the process encourages thinking about fundamental issues, such
as the presumed adversarial capabilities and cost-benefit analysis.

Clearly avoiding orphan misuse cases means that not all attacks can be ac-
counted for in misuse case analyses. This is a limitation, but, we argue, a desirable
one:

The point of misuse cases is to elicit the security functions that a system
must have. Therefore, a successful analysis, no matter how unattainable, is one
that covers all necessary security functions for a given system, in light of the
adversarial capabilities, cost-benefit analysis, and other forms of compromise
inherent to usable, practical security. These security functions, similarly to other
functional use cases, are likely to be flawed when implemented. But, there is
little we can do about it at the requirements elicitation phase: it is unreasonable
to expect misuse cases to account for all security issues. Combating code-level
vulnerabilities that could lead, for instance, to malicious code-injection has its
own dedicated techniques, such as testing and code inspection, which fall outside
the domain of requirements engineering per se.

Pushing every concern to the requirements elicitation phase is impractical
for at least two reasons. First, analysis paralysis is real: the list of attacks is
virtually inexhaustible. A comparison to chess is instructive here. Once in a while
a grand master comes up with a brilliant new attack (or defense) strategy that
has eluded thousands of people who played and studied chess for centuries. Then,
it should not be surprising that we cannot foresee all attacks against industrial-
scale computer systems: these systems are substantially more complex and more
opaque than chess.

9

Second, and more importantly for our argument, genuine security issues, with
architectural implications, can be discovered and mitigated at the requirements
level, only if we shift the focus towards them. We claim that such issues can be
discovered more effectively, and with less cluttering, when orphan misuse cases
are avoided. We briefly illustrate this on the application programming interfaces
(APIs) that a mobile operating system exposes to application developers. Each
API corresponds to a functionality. For example, the API for microphone access
enables an application to record sound. This functionality can be misused to
undermine privacy objectives and this misuse case can be mitigated by a func-
tionality for the user to disable an application’s access to microphone. The sheer
number of APIs that an operating system exposes makes the security analysis
at this level alone very complex. Security issues due to API misuse, uncovered
for example in [3], support this claim.

We now summarize our discussions with five simple, rule-of-thumb guidelines
for avoiding orphan misuse cases.

Think of include A misuse case “threatens” a use case, in the same way one
use case “includes” another one. Revise the misuse cases that do not include
any use cases and those that categorically “threaten” (almost) any use case.

Go bottom-up Start with a use case and work out its misuses. Do not start
with an adversary with the intention of brainstorming the ways it can attack
the system. There are too many ways, hence leading to analysis paralysis.

Respect the abstraction level If functional use cases are at the requirements
level, misuse cases should not belong to the objectives level, nor should they
encroach on implementation details.

Make risks observable If issues such as adversarial capabilities, value of the
protected assets, and cost-benefit compromises do not cross your mind, you
are likely ignoring the system at hand. Similarly, decisions that can be made
without consulting stake-holders are likely the trivial ones. Make risks ob-
servable by explicating underlying assumptions and trade-offs.

Dismiss trivial expressiveness Anything can be written as a misuse case.
However, requirements representation is not the same as requirements elici-
tation. As a representation tool, misuse cases can document any requirement.
But, as an elicitation tool, misuse case analysis must be guided by use cases.

We conclude the paper with a note on empirical validation. To empirically
study the value of the rule-of-thumb guidelines and the orphan misuses anti-
pattern, one must raise one’s sights to look beyond symptoms and target root
causes as well. Namely, for each flaw found in a system, one must look beyond its
immediate source, and identify the reason, i.e. deficiencies in the requirements
engineering phase (and other system development phases) that have led to the
flaw. The value of this form of root-cause analysis is well-known; see, for example,
Van Vleck’s three questions [18].

An industrial-scale root-cause analysis, for the purpose of evaluating our re-
quirements elicitation approach and the misuse case analysis method in general,
demands substantial efforts and is left for future work. An observation we have
made in our lectures is nonetheless illustrative: students stop throwing arbitrary

10

attack names, after we present them with the constraint that a misuse case
must include a functional use case as given. Reciting the latest hacker news item
becomes irrelevant. Creative thinking, guided by use cases, takes its place.

References

1. Alistair Cockburn. Writing Effective Use Cases. Addison-Wesley, 2001.
2. Donald Firesmith. Security use cases. Journal of Object Technology, 2(3):53–64,

May-June 2003.
3. Yanick Fratantonio, Chenxiong Qian, Simon P. Chung, and Wenke Lee. Cloak and

dagger: From two permissions to complete control of the UI feedback loop. In 2017
IEEE Symposium on Security and Privacy, SP 2017, San Jose, CA, USA, May
22-26, 2017, pages 1041–1057. IEEE Computer Society, 2017.

4. Mary Lynn Garcia. The Design and Evaluation of Physical Protection Systems.
Elsevier Science, 2001.

5. C. Haley, R. Laney, J. Moffett, and B. Nuseibeh. Security requirements engineering:
A framework for representation and analysis. IEEE Transactions on Software
Engineering, 34(1):133–153, Jan 2008.

6. Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji-Hye Lee, Donghyuk Lee,
Chris Wilkerson, Konrad Lai, and Onur Mutlu. Flipping bits in memory with-
out accessing them: An experimental study of DRAM disturbance errors. In
ACM/IEEE 41st International Symposium on Computer Architecture, ISCA, pages
361–372. IEEE Computer Society, 2014.

7. Andrew Koenig. Patterns and antipatterns. JOOP, 8(1):46–48, 1995.
8. M. O. Lehtonen, F. Michahelles, and E. Fleisch. Trust and security in RFID-based

product authentication systems. IEEE Systems Journal, 1(2):129–144, Dec 2007.
9. Object Management Group. Unified modeling language (OMG UML), version 2.5,

2015.
10. OWASP. Testing guide v. 4, Accessed April 2016. https://www.owasp.org.
11. Joshua J. Pauli and Dianxiang Xu. Misuse case-based design and analysis of

secure software architecture. In Proceedings of the International Conference on
Information Technology: Coding and Computing (ITCC’05) - Volume II - Volume
02, ITCC ’05, pages 398–403. IEEE Computer Society, 2005.

12. Gunnar Peterson and John Steven. Defining misuse within the development pro-
cess. IEEE Security and Privacy, 4(6):81–84, November 2006.

13. Gil Regev, Ian F. Alexander, and Alain Wegmann. Modelling the regulative role
of business processes with use and misuse cases. Business Process Management
Journal, 11(6):695–708, 2005.

14. L. Rostad. An extended misuse case notation: Including vulnerabilities and the
insider threat. In Working Conf. Requirements Eng.: Foundation for Software
Quality (RREFSQ), pages 33–34. Essener Informatik Beitrage, 2006.

15. G. Sindre and A. L. Opdahl. Eliciting security requirements by misuse cases.
In Proceedings 37th International Conference on Technology of Object-Oriented
Languages and Systems. TOOLS-Pacific 2000, pages 120–131, 2000.

16. Guttorm Sindre and Andreas L. Opdahl. Eliciting security requirements with
misuse cases. Requirements Engineering, 10(1):34–44, 2005.

17. K. R. van Wyk and G. McGraw. Bridging the gap between software development
and information security. IEEE Security Privacy, 3(5):75–79, Sept 2005.

18. Tom Van Vleck. Three questions about each bug you find. ACM SIGSOFT Soft-
ware Engineering Notes, 14(5):62–63, July 1989.

11

