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Abstract

We consider tunneling of spinless electrons from a single-channel emitter into an empty collector

through an interacting resonant level of the quantum dot. When all Coulomb screening of sudden

charge variations of the dot during the tunneling is realized by the emitter channel, the system is

described with an exactly solvable model of a dissipative qubit. To study manifestations of the

coherent qubit dynamics in the collector a.c.ac response we derive a solution to the corresponding

Bloch equation for the model quantum evolution in the presence of the oscillating voltage of

frequency ω and calculate perturbatively the a.c.ac response in the voltage amplitude. We have

shown that in a wide range of the model parameters the coherent qubit dynamics results in the

non-nonzero frequencies resonances in the amplitudes dependence of the a.c.ac harmonics and in

the jumps of the harmonics phase shifts across the resonances. In the first order the a.c.ac response

is directly related to the spectral decomposition of the corresponding transient current and contains

only the first ω harmonic, whose amplitude exhibits resonance at ω = ωI , where ωI is the qubit

oscillation frequency. In the second order we have obtained the 2ω harmonic of the ac response

with resonances in the frequency dependence of its amplitude at ωI , ωI/2 and zero frequency and

also have found the frequency dependent shift of the average steady current.
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I. INTRODUCTION

The generic response of conduction electrons in a metal to the sudden appearance of a

local perturbation results in the Fermi-edge singularity (FES) initially predicted in Refs.

[1, 2] and also studied at finite temperature [3] and more recently in the non-nonequilibrium

Fermi systems [4, 5]. It was observed experimentally as a power-law singularity in Xx-ray

absorption spectra [6, 7]. Later, a possible occurrence of the FES in transport of spinless

electrons through a quantum dot (QD) was considered [8] in the regime when a localized

QD level is above the Fermi level of the collector in its proximity and the emitter is filled

up to the high energies. In the equivalent through the particle-hole symmetry formulation

realized in some experiments [9–11], which we follow in this work, the collector is effectively

empty and the localized QD level is close to the Fermi level of the emitter. The Coulomb

interaction with the charge of the local level acts as a one-body scattering potential for the

electrons in the emitter. Then, in the perturbative approach assuming a sufficiently small

tunneling rate of the emitter, the separate electron tunnelings from the emitter change the

level occupation and generate sudden changes of the scattering potential leading to the

FES in the I-V curves at the voltage threshold corresponding to the resonance. Direct

observation of these perturbative results in experiments, however, is difficult because of the

finite life time of electrons in the localized state of the QD, and in many experiments [9–

12] the FES’s have been identified simply by the appearance of the threshold peaks in the

I-V dependence. According to the FES theory [1, 2] such a peak could occur when the

exchange effect of the Coulomb interaction in the tunneling channel exceeds the Anderson

orthogonality catastrophe effects in the screening channels and, therefore, it signals the

formation of an exciton electron-hole pair in the tunneling channel at the QD. This pair

can be considered as a two-level system or qubit which undergoes dissipative dynamics.

In the absence of the collector tunneling and, if the Ohmic dissipation produced by the

emitter is weak enough, its dynamics are characterized [13, 14] by the oscillating behavior

of the level occupation as a consequence of the qubit coherent dynamics, which is beyond

the perturbative description. The recent shot noise measurements [15, 16] at the FES have

raised a new interest [17] toin the qubit dynamics, though direct realization of its coherency

in the shot noise should be further clarified.

Therefore, in this work we study the qubit dynamics and manifestation of its coherency
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in the collector a.c.ac response to a periodic time dependent voltage. We consider this in

the same simplified, but still realistic system we used earlier [18] to examine the transient

tunneling current behavior. In this system all sudden variations in charge of the QD are

effectively screened by a single tunneling channel of the emitter. It can be realized, in

particular, if the emitter is represented by a single edge- state in the integer quantum Hall

effect. This system is described by a model permitting an exact solution in the absence of

the time dependent voltage. Making use of this solution it has been demonstrated [18] that

the FES in the tunneling current vs. the constant bias voltage should be accompanied by

oscillations of the time-dependent transient tunneling current in a wide range of the model

parameters. Although the predicted oscillations could be the most direct evidence of the

qubit coherent dynamics, their experimental observation involves measurement of the time

dependent transient current averaged over its quantum fluctuations, which is a challenging

experimental task. Therefore in this work we consider a more practical way for experimental

observation of the coherent qubit dynamics through the measurement of the a.c.ac tunneling

into the collector. In order to explore this approach we derive the general solution to this

model in the form which distinguishes the transient qubit dynamics dependent on the initial

condition for the qubit evolution from its steady behavior in the long time limit in the

presence of a periodic time dependent voltage. From this solution we find the qubit Bloch

vector time dependence in the steady regime as a perturbative series in the a.c.ac voltage

amplitude and further use this expression to demonstrate how the oscillatory behavior of the

transient tunneling current emerges in the frequency dependence of the parameters of the

steady a.c.ac response. In particular, we find that the oscillatory behavior of the transient

current results in the non-nonzero frequency resonances in the amplitudes dependence of

the a.c.ac harmonics including the frequency dependent shift of the average current and

in the jumps of the a.c.ac harmonics phase shifts across the resonances. This confirms

that the observation of the a.c.ac tunneling into the collector opens a realistic way for the

experimental demonstration of the coherent qubit dynamics and should be useful for further

identification of the FES in tunneling experiments. Note, that by being controlled by the

tunneling into the empty collector, the a.c.ac response in this model remains independent

of temperature.

The paper is organized as follows. In Sec. II we introduce the model and formulate those

conditions, which make it solvable through a standard mapping onto the dissipative two-
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level system or qubit. In Sec. III we apply the non-nonequilibrium Keldysh technique to

derive Bloch equations describing the dissipative evolution of the Bloch vector of the qubit

density matrix in the presence of a time-dependent voltage.

In Sec. IV their general solution is found, which in the case of a periodic time dependent

voltage permits us to describe the steady dynamics of the qubit in the limit of the long time

evolution and in the case of a constant voltage reduces to the earlier developed description

[18] of its transient dynamics. Making use of this solution we introduce the main charac-

teristics of the transient dynamics including the Bloch vectors of the qubit stationary states

and their dependence on the experimentally adjustable parameters of the setup, the de-

caying modes of the transient qubit evolution, and connection between their corresponding

amplitudes and the qubit initial condition. The found expressions for these characteristics

are further used to establish the direct relation of the qubit transient dynamics to its steady

behavior.

In Sec. V we specify the steady behavior of the Bloch vector and the a.c.ac tunneling

response in the presence of a weakly oscillating voltage of frequency ω perturbatively with

respect to the voltage oscillation amplitude and calculate the general term of the perturbative

series. Next, we analyze analytically and numerically the two lowest orders of this expansion

in details. In the first order of the perturbation expansion we have only the first ω harmonic

of the a.c.ac response. Its amplitude exhibits resonant behavior at ω = ωI for a wide range

of the model parameters, where ωI is the frequency of the oscillating transient current.

In this order the a.c.ac response is directly related to the spectral decomposition of the

transient current produced by the specific initial disturbance of the qubit stationary state

by the applied voltage. This particular choice of the disturbance of the stationary qubit state

results in the suppression of the non-nonzero frequency resonances of the a.c.ac amplitude

at the resonant QD level position.

In the second order of the Bloch vector expansion with respect to the voltage amplitude

we obtain its 2ω harmonic. It shows resonances in the frequency dependence of the a.c.ac

amplitude at ωI , ωI/2 and zero frequency. We also find that in this expansion order the

frequency dependent shift of the average steady current exhibits resonance at ωI as a con-

sequence of the transient current oscillations. The results of the work are summarized in

Cthe conclusion, where we also compare parameters of the system we consider with those

realized in the recent experiments.
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II. MODEL

In the system we consider below, the tunneling occurs from a single-channel emitter into

an empty collector through a single interacting resonant level of the QD located between

them. It is described with the Hamiltonian H = Hres + HC consisting of the one-particle

Hamiltonian of resonant tunneling of spinless electrons and the Coulomb interaction between

instant charge variations of the dot and electrons in the emitter. The resonant tunneling

Hamiltonian takes the following form

Hres = ε0d
+d +

∑

a=e,c

H0[ψa] + wa(d
+ψa(0) + H.c.) , (1)

where the first term represents the resonant level of the dot, whose energy is εd. Electrons

in the emitter (collector) are described with the chiral Fermi fields ψa(x), a = e(c), whose

dynamics is governed by the Hamiltonian H0[ψ] = −i
∫

dxψ+(x)∂xψ(x) (~ = 1) with the

Fermi level equal to zero or drawn to −∞, respectively, and wa are the corresponding

tunneling amplitudes. The further application of the additional ac voltage −δV to the

emitter can be accounted for in the Hamiltonian (1) with the time dependent bias of the

resonant level energy εD(t) = εd + δV (t) in the case of the empty collector.

The Coulomb interaction in the Hamiltonian H is introduced as

HC = UCψ+
e (0)ψe(0)(d+d − 1/2) . (2)

Its strength parameter UC defines the scattering phase variation δ for the emitter electrons

passing by the dot and therefore the screening charge in the emitter produced by a sudden

electron tunneling into the dot is equal to Δn = δ/π (e = 1) according to Friedel’s sum

rule. Below we assume that the dot charge variations are completely screened by the emitter

tunneling channel and δ = −π.

Next we implement bosonization and represent the emitter Fermi field as ψe(x) =
√

D
2π

ηeiφ(x), where η denotes an auxiliary Majorana fermion and D is the large Fermi energy

of the emitter. The chiral Bose field φ(x) satisfies [∂xφ(x), φ(y)] = i2πδ(x − y) and permits

us to express

H0[ψe] =

∫
dx

4π
(∂xφ)2, ψ+

e (0)ψe(0) =
1

2π
∂xφ(0) . (3)

Substituting these expressions into Eqs. (1,) and (2) we find the alternative form for the

Hamiltonian H. By applying the unitary transformation U = exp[iφ(0)(d+d − 1/2)] to this
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form we come to the Hamiltonian of the dissipative two-level system or qubit:

HQ(t) = εD(t)d+d + H0 + wc(ψ
+
c (0)eiφ(0)d + H.c.)

+Δη(d − d+) + (
UC

2π
− 1)∂xφ(0)(d+d −

1

2
) , (4)

H0 = H0[φ] + H0[ψc] ,

where Δ =
√

D
2π

we. This Hamiltonian is further simplified. Since in the bosonization

technique the relation [19] between the scattering phase and the Coulomb strength parameter

is linear δ = −UC/2, the last term of the Hamiltonian on the right-hand side of Eq. (4)

vanishes and also the bosonic exponents in the third term can be removed because the time

dependent correlator of the collector electrons is 〈ψc(t)ψ
+
c (0)〉 = δ(t).

III. BLOCH EQUATIONS FOR THE QUBIT EVOLUTION

We use this Hamiltonian to describe the dissipative evolution of the qubit density matrix

ρa,b(t), where a, b = 0, 1 denote the empty and filled levels, respectively. In the absence of the

tunneling into the collector at wc = 0, HQ in Eq. (4) transforms through the substitutions

of η(d− d+) = σ1 and d+d = (σ3 +1)/2 ( σ1,3 are the corresponding Pauli matrices) into the

Hamiltonian HS of a spin 1/2 rotating in the magnetic field h(t) = (2Δ, 0, εD(t))T . Then

the evolution equation follows from

∂tρ(t) = −i[ρ(t),HS(t)] . (5)

To incorporate in it the dissipation effect due to tunneling into the empty collector , we apply

the diagrammatic perturbative expansion of the S- matrix defined by the Hamiltonian (4)

in the tunneling amplitudes we,c in the Keldysh technique. This permits us to integrate out

the collector Fermi field in the following way. At an arbitrary time t each diagram ascribes

indexes a(t+) and b(t−) of the qubit states to the upper and lower branches of the time-loop

Keldysh contour. This corresponds to the qubit state characterized by the ρa,b(t) element of

the density matrix. The expansion in we produces two-leg vertices in each line, which change

the line index into the opposite one. Their effect on the density matrix evolution has been

already included in Eq. (5). In addition, each line with index 1 acquires two-leg diagonal

vertices produced by the electronic correlators 〈ψc(tα)ψ+
c (t′α)〉, α = ±. They result in the

additional contribution to the density matrix variation: Δ∂tρ10(t) = −Γρ10(t), Δ∂tρ01(t) =
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−Γρ01(t), Δ∂tρ11(t) = −2Γρ11(t), Γ = w2
c/2. Then there are also vertical fermion lines from

the upper branch to the lower one due to the non-nonvanishing correlator 〈ψc(t−)ψ+
c (t′+)〉,

which lead to the variation Δ∂tρ00(t) = 2Γρ11(t). Incorporating these additional terms into

Eq. (5) and making use of the density matrix representation ρ(t) = [1 +
∑

l al(t)σl]/2, we

find the evolution equation for the Bloch vector a(t) as

∂ta(t) = M(t) ∙ a(t) + b , b = [0, 0, 2Γ]T , (6)

where M(t) stands for the matrix:

M(t) =








−Γ −εD(t) 0

εD(t) −Γ −2Δ

0 2Δ −2Γ








. (7)

It is divided into its stationary and time dependent parts: M(t) = M0 + ΔM(t), ΔM(t) =

δV (t)Λ, where the only non-nonzero matrix elements of the Λ matrix are Λ1,2 = −Λ2,1 = −1.

IV. SOLUTION OF THE BLOCH EQUATIONS

We find the general solution to Eq. (6) describing the evolution of the Bloch vector

starting from its value a(0) at zero time in the following form

a(t) = S(t, 0)[a(0) + M−1
0 b] − M−1

0 b

−
∫ t

0

dt′S(t, t′)ΔM(t′)M−1
0 b . (8)

Here the evolution operator S(t, t′) = Tt exp{
∫ t

t′
dτM(τ)}, where Tt stands for the time-

ordering, generalizes the one S0(t) = exp{M0t} for the time independent evolution. It can

be calculated perturbatively in ΔM in the interaction representation, where

S(t, t0) = S0(t)Tt

{
e
∫ t

t′ dτΔMi(τ)
}

S0(−t0) (9)

and ΔMi(t) = S0(−t0)ΔM(t)S0(t).

The time independent evolution operator takes the following form through a Laplace

transformation:

S0(t) =

∫

C

dz ezt

2πi
[z − M0]

−1 , (10)
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where the integration contour C coincides with the imaginary axis shifting to the right far

enough to have all poles of the integral on its left side. These poles are defined by inversion

of the matrix [z − M0] and are equal to three roots of its determinant det [z − M0] ≡ P (z),

which is

P (z) = x3 + Γx2 + (4Δ2 + ε2
d)x + Γε2

d , x = z + Γ . (11)

From their explicit expressions below we conclude that all roots zl, l = {0, 1, 2} have their

real parts negative and, in the absence of the ac voltage, the evolution of the Bloch vector

converges to the second term on the right-hand side of Eq. (8).

A. Stationary state of the qubit

Therefore, in the absence of the ac voltage the stationary state of the qubit is character-

ized by the Bloch vector:

a(∞) = −M−1
0 b =

[2εdΔ,−2ΔΓ, (ε2
d + Γ2)]T

(ε2
d + Γ2 + 2Δ2)

. (12)

In general, an instant tunneling current I(t) into the empty collector directly measures the

diagonal matrix element of the qubit density matrix [20] through their relation

I(t) = 2Γρ11(t) = Γ[1 − a3(t)]. (13)

It gives us the stationary tunneling current as I0 = 2ΓΔ2/(2Δ2 + Γ2 + ε2
d). At Γ � Δ

this expression coincides with the perturbative results of Refs. [8, 21]. Another important

characteristic is the qubit entanglement entropy Se = −tr{ρ ln ρ}, which is just a function

of the Bloch vector length:

Se = ln 2 − ln(1 − a2)/2 −
a

2
ln

[
1 + a

1 − a

]

, (14)

where a = |a|. The length of the stationary Bloch vector in Eq. ( 12) is a(∞) =
√

1 − (I0/Γ)2. Therefore, measurement of the tunneling current gives us also the entropy of

the stationary state of the qubit. This entropy changes from zero for the qubit pure state

of empty QD with a = 1 far from the resonance to its entanglement maximum approaching

ln 2 at the resonance with a ≈ 0, if Γ � Δ.
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FIG. 1: Contour plot of the positive imaginary part of the dimensionless root Im[y1]/Γ =
√

3
2Γ (S−T ).

The black area corresponds to the region where all three roots are real. The red (light gray) line

corresponds to R = 0 and the gray line to Q = 0. The black dashed curve shows Im[z1] = −Re[z1].

B. Qubit transient dynamics

The first term on the right-hand side of Eq. (8) describes the transient evolution of the

Bloch vector, which is caused by the deviation of the initial vector a(0) at zero time from

its stationary state. In the absence of the a.c.ac voltage we find this vector a(t) at positive

time through substitution of S0 from Eq. (10) into Eq. ( 8) and closing the contour C in

the left half-plane as follows

a(t) = a(∞) +
2∑

l=0

rl ∙ exp[zlt], (15)

where the residues rl,α = lR,α(lL|a(0) − a(∞)) are expressed in terms of the right and left

normalized eigenvectors, lR and lL, corresponding to the zl eigenvalue of M0. The three

roots zl of P (z) in Eq. (11) are defined by its coefficients through the two parameters:

Q = 12Δ2 − Γ2 + 3ε2
d, R =

(
18Δ2 − 9ε2

d − Γ2
)
Γ, (16)

in the following way

z0 = −G0 = γ1 −
4

3
Γ, γ1 =

1

3
(S + T ) (17)

z1,2 = −G1 ± iωI , ωI =

√
3

6
(S − T ), G1 =

4

3
Γ +

γ1

2
,

where

S =
(
R +

√
Q3 + R2

)1/3

and T = −
Q

S
. (18)

Here the function Z1/3 of the complex variable Z is determined in the conventional way

with the cut Z ∈ {−∞, 0}. At the resonance position of the level energy (εd = 0) these

eigenvectors and the eigenvalues take particular simple form, since the evolution of the first

component of the Bloch vector in Eq. (6) becomes independent of the two other components.

If the discriminant is positive: Q3 + R2 > 0, S and T are real positive and negative,

respectively. Therefore, the root z0 is real and the two others z1,2 are complex conjugates

of each other. In the case of Q3 + R2 < 0, S and T are also complex conjugate. Hence,
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all three roots are real negative. In this case the oscillatory behavior of the Bloch vector

in Eq. (15) does not occur. This parametric area of triangular form is depicted as black in

Fig.Fig. 1. Its three vertices have coordinates (0,0), (1/4,0) and (
√

2/27,
√

1/27). In the

parametric area above the red line R = 0 in Fig.Fig. 1 both R and γ1 are negative. The z0

non-nonoscillating mode of the Bloch vector in Eq. (15) decays quicker than the oscillating

modes and the transient current is an infinitely oscillating function of time. Below this line

γ1 is positive, the amplitude of the oscillations vanishes more quickly than the first term,

and the additional condition [18] on the initial state of the QD should be fulfilled to observe

oscillations of the transient current. Below we consider manifestations of these oscillations in

the frequency dependent current response to the applied a.c.ac voltage of a small amplitude.

V. CURRENT RESPONSE TO THE TIME DEPENDENT VOLTAGE

The change in the Bloch vector evolution by the applied a.c.ac voltage is described in Eq.

(8) by the first and third term on its right-hand side with the evolution operator defined by

Eq.Eq. (9) with ΔM(t′) = v cos(ωt′)Λ. Below we will be interested in the steady regime

of the evolution, when Γt � 1 and the starting time of the evolution can be drawn in Eq.

(8) from zero to −∞. Then, contrary to the transient qubit dynamics, only the third term

contributes. The evolution operator in this term can be calculated through expansion of

the time-ordered exponent in Eq. (9) with respect to ΔMi, and we find the Bloch vector

variation by the ac voltage application as a perturbative series in v: Δa(t) =
∑

n=1 Δna(t).

The general term of this series Δna(t) contains multiple mω frequency components, where

m is of the same parity as n and runs from zero to n. Below we calculate explicitly the first

two terms Δ1a(t) and Δ2a(t) of this series.

FIG. 2: Normalized amplitude (upper panel) and phase shift (lower panel) of the first harmonic of

the acac current δI(1)/v defined by Eqs. 20, and 21 when Γ = 1, Δ = 4. The black lines correspond

to the resonant level energy εd = −10, the gray lines to εd = −6, and the black dashed lines to

εd = −1.
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A. Linear current response

In the first order of the perturbation expansion in v we substitute the S0 operator from

Eq. (10) for the evolution operator in the last term on the right-hand side of Eq. (8).

Choosing the contour C in Eq. (10) to go from (−0 − i∞) to (−0 + i∞) and performing

integration over t′ in the last term, we further close the contour in the right half-plane and

express the result through the poles contributions as

Δ1a(t)

v
= Re

eiωt

iω − M0

Λa(∞) (19)

= Re

2∑

l=0

lR
eiωt

iω − zl

(lL|Λa(∞)) .

From comparison of the last part of Eq. (19) with Eq. (15) we conclude that in the v linear

response of the a.c.ac Bloch vector response Δ1a(t) coincides at times t = integer×2π/ω and

t = (integer − 1/4)× 2π/ω with the real and imaginary parts of the spectral decomposition

of the transient Bloch vector, originating from its initial state a(0) − a(∞) = Λa(∞). The

spectral decomposition of the corresponding transient current Itr(t) can be found from the

oscillating current Δ1I(t) = −ΓΔ1a3(t) = δI(1) cos(ωt − ϕ) in the following way

∫ ∞

0

dte−iωt[Itr(t) − I0] = δ1I ∙ e−iϕ , (20)

where δI(1) and ϕ are the amplitude and the phase shift of Δ1I(t)). The oscillating behavior

of the transient current defined by Eq. ( 15) emerges as a resonance in the frequency

dependence of the amplitude δI (1) and as an abrupt change of the phase ϕ of the first ω

harmonic of the oscillating current at ω = ωI if the coefficient r1,3 at the resonant term in

Eq. (19) is non zero.

By inversion of the matrix denominator in the first part of Eq. (19 ) we find the oscillating

current as follows

Δ1I(t) = −2I0vRe[εd(iω + 2Γ)eiωt/P (iω)]. (21)

The amplitude of its oscillations δI(1)(ω, εd) and the phase shift ϕ(ω, εd) are depicted in Fig.

2 for the several choices of the parameters. Here we have defined ϕ so that it is positive at

εd < 0 and ω > 0 and zero at ω = 0. Then it expands as ϕ(ω, εd) = −ϕ(−ω, εd) to negative

ω and through ϕ(ω, εd) = −π sgn(ω) + ϕ(ω,−εd) for εd > 0. The amplitude δ1I(ω, εd) is

an even function of both ω and εd, namely, δ1I(ω, εd) = δ1I(±ω,−εd). The coefficient r1,3
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FIG. 3: Normalized amplitude of the second harmonic of the ac current δI(2)/v2 from Eq. (24)

when Γ = 1, Δ = 4. The black line corresponds to the resonant level energy εd = 10, the gray line

to εd = 6, and the black dashed line to εd = 2, and the gray dashed line to εd = 0.

characterizing the strength of the δI (1) resonance follows from Eq. (21) as

r1,3 = −
vI0

Γ2

εd(2Γ/3 + γ1/2 + iωI)

ωI(3γ1 − 2iωI)
. (22)

It vanishes at the resonance εd = 0, where the deviation of the Bloch vector initial condition

from its stationary value vΛa(∞) = vI0/(ΓΔ)[−Γ, εd, 0]T does not produce the transient

current.

At small Γ �
√

ε2
d + 4Δ2 the δI(1) resonance in Fig. 2 has Lorentzian shape centered at

ωI ≈
√

ε2
d + 4Δ2 with the width G1 ≈ Γ(1 + 2Δ2/ω2

I ). Since the poles z1,2 are close to the

imaginary axis, if Re[z1,2] � ωI , the phase shift at ω = ωI is ϕ ≈ ∓π/2.

B. Second-order current response

Substitution of the first ΔMI order expansion of the expression for the evolution operator

S(t, t0) in Eq. (9) into the last term on the right-hand side of Eq. (8) gives us

Δ2a(t) (23)

=

∫ t

−∞
dτ

∫ τ

−∞
dt′S0(t − τ) Δ M(τ)S0(τ − t′)ΔM(t′)a(∞) .

Making use of the representation of S0 in Eq. (10) and performing successive integration

over t′ and τ we find Δ2a(t) in Eq. (23) after closing both contours C of the Laplace

transformation in the right half- plane as follows

Δ2a(t) =
v2

2
Re

{
ei2ωt

i2ω − M0

Λ
1

iω − M0

Λa(∞)

}

−
v2

2M0

ΛRe

{
1

iω − M0

Λa(∞)

}

. (24)

FIG. 4: The frequency dependent variation of the average current ΔI0/v2 from Eq. (26) when

Γ = 1, Δ = 4. The black line corresponds to the resonant level energy εd = 10, the gray line to

εd = 6, and the black dashed line to εd = 2, and the gray dashed line to εd = 0.
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The first term here describes the Bloch vector variation resulting in the second ω harmonic

of the oscillating current Δ2I(t), whose amplitude δI(2)(ω) as depicted in Fig. 3 exhibits two

resonances at ω = ωI/2 and ω = ωI if Γ is small enough. The second term contributes to

the frequency dependent deviation ΔI0 due the a.c.ac voltage of the average steady current

from the stationary current I0. From comparison of this term with the right side of Eq. (19)

we express this current shift through the first order variation of the Bloch vector:

ΔI0 = −
vI0

2ΓΔ
(x|Δ1a(0)), (25)

where x = [Γ, εd, 0]T . Therefore, it combines the spectral decompositions of the transient

dynamics of the first two components of the Bloch vector. We use its explicit form:

ΔI0 = −
v2I2

0

2ΓΔ2
Re

[
P1(iω)

P (iω)

]

, (26)

where

P1(z) =
(
Γ2 − ε2

d

)
x2 +

(
Γ3 − 3Γε2

d

)
x + 2Γ2

(
2Δ2 − ε2

d

)

x = z + Γ (27)

to demonstrate in Fig. 4 that at finite εd 6= 0 it exhibits a single resonance at ω = ωI

with the width G1 ≈ Γ(1 + 2Δ2/ω2
I ). It transforms into the negative Lorentz function

ΔI0/v
2 = −I2

0Γ/(ω2 +Γ2)/(2Δ2) at the resonant level position as a consequence of the pure

exponential decay dynamics of the first Bloch vector component [22][AU: Ref. 22 was not

cited anywhere in the paper, so we have added a citation here. Please check.].

VI. CONCLUSION

The tunneling of spinless electrons through an interacting resonant level of a QD into an

empty collector has been studied in the especially simple, but realistic system, in which all

sudden variations in charge of the QD are effectively screened by a single tunneling channel

of the emitter. As a result the time evolution of the system in question has been reduced to

the dynamics of a dissipative two-level model. Its off-diagonal coupling parameter Δ is equal

to the bare emitter tunneling rate Γe renormalized by the large factor
√

D/(πΓe), whereas

the dumping parameter Γ coincides with the tunneling rate of the collector. For a constant

bias voltage the short time transient behavior of this model was studied in Ref. [18] and it
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has been shown that the FES in the tunneling current dependence on the voltage should be

accompanied by oscillations of the time-dependent transient tunneling current in the wide

range of the model parameters. In particular, they occur if the emitter tunneling coupling

Δ or the absolute value of the resonant level energy |εd| are large enough in comparison with

the collector tunneling rate Γ and either Δ > Γ/4 or ε2
d > Γ2/27 holds.

Although these oscillations should confirm the emergence of the qubit composed of an

electron-hole pair at the QD and its coherent dynamics in agreement with the FES theory ,

it could be difficult to observe them directly, since this involves measurement of the time

dependent transient current averaged over its quantum fluctuations. Therefore, in this

work we have studied manifestations of the coherent qubit dynamics in the collector a.c.ac

response to a periodic time dependent voltage of the frequency ω.

We have calculated the steady long time dependence of the qubit Bloch vector and the

tunneling current perturbatively in any order in the a.c.ac voltage amplitude and further

have used this expansion to describe the frequency dependence of the parameters of the

steady a.c.ac response. In particular, we have found that the oscillatory behavior of the

transient current results in the non-nonzero frequency resonances in the amplitudes depen-

dence of the a.c.ac harmonics and in the jumps of the a.c.ac harmonics phase shifts across

the resonances. In the first order of this expansion only the first ω harmonic arises in the

a.c.ac response. Its amplitude exhibits resonant behavior at ω = ωI for a wide range of the

model parameters, where ωI is the frequency of the oscillating transient current. In this

order the a.c.ac response is directly related to the spectral decomposition of the transient

current produced by the specific initial disturbance of the qubit stationary state by the ap-

plied voltage. In the higher orders of the a.c.ac expansion also the higher harmonics emerge

and the corresponding resonances occur at the fractions of ωI . The found results confirm

that the observation of the a.c.ac tunneling into the collector opens a realistic way for the

experimental demonstration of the coherent qubit dynamics and should be useful for further

identification of the FES in tunneling experiments.

We have performed our calculations in dimensionless units with ~ = 1 and e = 1, there-

fore, the unit of the a.c.ac admittance in Fig. 2 is e2/~ ≈ 2.43 × 10−4 S. In the exper-

iments [21, 23] the collector tunneling rate is Γ ≈ 0.1 meV and the coupling parameter

Δ ≈ 0.016 meV. This corresponds to the stationary current equal to I0 ≈ 1.2 nA at εd = 0.

To observe the regime of the induced oscillations shown in Fig. 2 one can increase the col-
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lector barrier width to obtain the heterostructure with Δ = 4Γ. Then, with Δ = 0.016 meV

and Γ ≈ 4 μeV, the stationary current at the resonant level position is I0 = 0.94 nA. The

unit of frequency ω in Figs. 2–4 for this value of Γ is 6.08× 109 s−1. With the amplitude of

the oscillating voltage equal to v = 1 μV we find that the peak of the a.c.ac amplitude of its

first harmonic is δI
(1)
mx = 53 pA. It occurs at νI = ωI/(2π) = 9.6 GHz for εd = −0.024 meV

(gray curves in Fig. 2). At the same parameters v and εd the resonance of the a.c. ac

second harmonic (gray curve in Fig. 3) takes place at νI/2 = 4.8 GHz and its amplitude is

δI
(2)
mx = 1.4 pA.
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