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The DCDC2 deletion is not a risk factor for dyslexia
TS Scerri1, E Macpherson2, A Martinelli2, WC Wa3, AP Monaco4, J Stein5, M Zheng6, C Suk-Han Ho6, C McBride7, M Snowling8, C Hulme9,
ME Hayiou-Thomas10, MMY Waye3,11, JB Talcott12 and S Paracchini2

Dyslexia is a specific impairment in learning to read and has strong heritability. An intronic deletion within the DCDC2 gene, with
~ 8% frequency in European populations, is increasingly used as a marker for dyslexia in neuroimaging and behavioral studies. At a
mechanistic level, this deletion has been proposed to influence sensory processing capacity, and in particular sensitivity to visual
coherent motion. Our re-assessment of the literature, however, did not reveal strong support for a role of this specific deletion in
dyslexia. We also analyzed data from five distinct cohorts, enriched for individuals with dyslexia, and did not identify any signal
indicative of associations for the DCDC2 deletion with reading-related measures, including in a combined sample analysis (N= 526).
We believe we conducted the first replication analysis for a proposed deletion effect on visual motion perception and found no
association (N= 445 siblings). We also report that the DCDC2 deletion has a frequency of 37.6% in a cohort representative of the
general population recruited in Hong Kong (N= 220). This figure, together with a lack of association between the deletion and
reading abilities in this cohort, indicates the low likelihood of a direct deletion effect on reading skills. Therefore, on the basis of
multiple strands of evidence, we conclude that the DCDC2 deletion is not a strong risk factor for dyslexia. Our analyses and
literature re-evaluation are important for interpreting current developments within multidisciplinary studies of dyslexia and, more
generally, contribute to current discussions about the importance of reproducibility in science.
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INTRODUCTION
Dyslexia, or reading disability (RD), is a common neurodevelop-
mental disorder, with prevalence estimates ranging between 5–
10% among school-age children in most countries.1,2 While a
significant genetic component has been firmly established for this
condition, only a small number of specific genetic factors have
been identified to date.3 These include variants within the DCDC2
gene, located on chromosome 6 (at 6p22.3). Single-nucleotide
polymorphisms (SNPs) within DCDC2 showed association with
both dyslexia and reading abilities in independent studies,4–10 but
the functional mechanisms underlying these associations remain
unclear. Attention has increasingly focussed on an intronic
deletion of 2,445 bp within DCDC2 as a potential functional
element (Table 1).
The original study describing the DCDC2 deletion reported

associations between this locus and quantitative measures.4

However, such associations were detected only when the deletion
was analyzed in combination with a pool of 10 rare alleles of a
short tandem repeat (STR; BV677278) marker at the same locus.4

Analyses of the deletion combined with the STR alleles, failed to
replicate the association with dyslexia as a binary category.13,14 A
separate study reported an association with a composite memory
score, but the association appeared to be driven by one particular
STR allele (allele 10 with frequency of 5%) rather than the deletion
itself.15 This STR has been suggested to be a regulatory
element.11,16 Powers et al. (2013)11 reported that two 6-SNP
haplotypes (allele frequencyo5%)) were associated with reading

and language phenotypes in a large epidemiological sample (the
Avon Longitudinal Study of Parents and Children (ALSPAC))
stratified for a severe phenotype (⩾2 s.d. below the mean on a
phoneme-deletion task). This stratification resulted in the compar-
ison of 89 cases with the remaining 5,225 individuals who scored
above the − 2 s.d. diagnostic threshold. These two rare haplotypes
were in linkage disequilibrium (LD) with alleles 5 and 6 of the STR.
In a follow up study, allele 5 (3.6% frequency) and 6 (4.7%
frequency), but not the deletion, showed association with reading
and language measures.12 Meng et al. (2011)16 showed that STR
alleles 3, 4 and 5 have differential effects on gene expression
regulation. In summary, there is no clear consensus as to which
STR alleles are associated with dyslexia and regulate gene
expression. Rare alleles, such as the STR variants, can increase
the likelihood of false positives because their analysis is typically
conducted in very small samples.17 Up to 40 alleles have been
described for the STR,11,13 and therefore it is expected that some
alleles would lead to significant P-values purely by chance.
The deletion has also been analyzed without the inclusion of

the STR marker. Weak associations have been reported for various
reading-related traits with significance values in the range of
0.02oPo0.0514,15,18 (Table 1; Supplementary Table 1). Lack of
replication has also been reported.12,14 Wilcke et al. (2009)
reported the most compelling association to date (Po0.01) in a
case/control study of a German cohort (Table 1). In this sample,
the deletion had a frequency of 10% in cases (8% in severe cases)
and 4% in controls. This lower frequency in the controls, however,
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is not consistent with what is observed in other studies of
European samples. In fact, the deletion had a frequency of 8.6%
among the parents of probands with dyslexia in a different
German sample.13 A frequency of 9% was reported for both cases
with dyslexia and controls in a UK cohort,14 similar to the 8.3%
frequency reported in a UK epidemiological sample.12

Taken together, these studies do not support a role of the
DCDC2 deletion as a specific risk factor for dyslexia. Nevertheless,
the DCDC2 deletion is becoming increasingly used in research
aimed at identifying the neuronal correlates of dyslexia. For
example, the deletion has been suggested to directly affect the
development of brain structures relevant to language and reading,
through quantitative imaging studies of anatomical variability in
healthy individuals.19,20 The deletion has also been linked to
functional mechanisms, such as reduced sensitivity to visual
coherent motion.21,22 Perception of motion is an important
component of visual development, for which impairment has
been demonstrated to occur in several developmental disorders,23

including dyslexia.24 Observed associations between visual motion
sensitivity and reading skills contributed to the development of
the magnocellular hypothesis for dyslexia.25 However, motion
perception deficits may be restricted to subgroups of individuals
with dyslexia, and typically those with the most severe
phenotypes who might also present comorbidities with other
developmental disorders.26 Cicchini et al.22 reported that a
decreased ability to detect and discriminate visual motion
correlated with the presence of the DCDC2 deletion and
suggested that motion sensitivity was more strongly associated
with the presence of the deletion than with the presence of
dyslexia. A major limitation of these imaging and behavioral
studies, however, is the very small sample size, which suffers from
both low power of detecting real effects as well as the increased
chance of generating false positives.17

The aim of the present study was to provide additional data to
evaluate the role of the DCDC2 deletion as a contributor to risk for
dyslexia and impairment on related measures. In addition to a re-
evaluation of the published literature (Table 1), we report new
association analyses for the deletion in four distinct cohorts

characterized for reading measures, including, for the first time, to
our knowledge, a cohort of Asian origin. We also present a
replication analysis for association between the DCDC2 deletion
and a measure of visual motion sensitivity. The evidence we have
gathered does not support an association between the DCDC2
deletion and dyslexia or quantitative measures of reading abilities.
This work is important for the interpretation of a developing body
of literature and for framing the direction of future research
studies of dyslexia. Moreover, our results are relevant to the
current discussion about the importance of reproducibility in
science,27 including the observation that it may be very easy to
canonize weak findings as scientific facts unless a substantial
number of negative findings are published.28

MATERIALS AND METHODS
Study participants
Our analysis included four distinct UK cohorts, referred to here as the
Oxford Family Dyslexia cohort, Oxford Cases Dyslexia Cohort, Aston
Dyslexia cohort, York cohort, and a fifth cohort, the Hong Kong cohort from
the Chinese-English Twin Study of Biliteracy (Table 2).
The Oxford Family Dyslexia cohort was recruited by research clinics in

Oxford and Reading. Genotype and phenotype data were available for 219
families (445 siblings, age range 6–27 years). Parental genotypes were also
available. The same research clinics recruited the Oxford Cases Dyslexia
Cohort, a collection of 272 unrelated individuals (age range 8–18 years).
The psychometric measures used to assess these cohorts included the
British Ability Scales (BAS) single-word reading (READ) and spelling (SPELL)
tests,29 irregular word reading (OC-irreg)30 and phonological decoding
(PD).30 An orthography measure using the forced choice task (OC-choice)31

and phoneme awareness (PA)32 scores were available for the Family
cohort. Both cohorts have been described before33 and the Family cohort
was also previously analyzed for association between the DCDC2 deletion
and reading abilities.14 Here, we analyzed the Oxford Family cohort for
association with a visual motion (VMOT) measure described previously34

(See also Supplementary Materials for details) and as part of a combined
sample (see below).
The Aston Dyslexia cohort includes 105 unrelated individuals, recruited

through the Aston Dyslexia and Developmental Assessment Unit in
Birmingham, UK (age range 7–16 years). Children attending this

Table 2. Frequency of the DCDC2 deletion reported in this study

Cohort Structure Recruitment DCDC2 deletion frequency

Oxford Family Dyslexia 219 families Clinical—children with reading difficulties 8.9% parents (N= 414)

9.8% probands (N= 153)a

Oxford Cases Dyslexia 272 singletons Clinical—children with reading difficulties 6.1%

Aston Dyslexia 105 singletons Clinical—children with reading difficulties 7.6%

York 103 families Longitudinal—children with language difficulties, family history of
dyslexia and typically developing

7.4% parents (N= 174)

7.7% all probands
(N= 103)

5.5% RD group (N= 18)

10.7% TD group (N= 72)

Combined 203 singletons Individuals scoring READo -1.5s.d. in the above cohorts 9.6%

Hong Kong 220 singletons/twins Typically developing 37.6%

1000 Genomes 503 singletons

504 singletons

General population 8.05% Europe

33.5% East Asia

Abbreviations: RD, reading difficulties; TD, typically developing. aThe number of probands is lower than the number of families because of missing data.
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educational clinic have been referred for assessments of reading difficulties
by local schools. On the basis of their educational assessments, children
are invited back to participate in research studies. The phenotypes
obtained for this cohort included single-word reading (READ) and single-
word spelling (SPELL), measured by standardised assessments including
using the Wechsler Individual Achievement Test,35 the British Abilities
Scales, and the Test of Word Reading Efficiency (TOWRE).36 Sub-scales of
TOWRE were used to measure pseudo-word reading (or phonological
decoding, TOWRE_PD) and sight word efficiency (TOWRE-SWE).
The York cohort is a longitudinal cohort designed to study language and

literacy development37 and has been analyzed previously for genetic
studies.38 DNA was available for 103 families and a total of 318 individuals.
Of these, phenotype data were available for N= 103 probands and N=41
siblings. Phenotypes were available from the same children at different
time points. Reading abilities were measured at the ages of 4½, 5½, 6 and 8
years, representing the years when reading skills are in ascendancy. At age
5½ years, the measure was word reading from the York Assessment of
Reading Comprehension (READ);39 at age 6 years, the measures were word
reading efficiency from the Test of Word Reading Efficiency Word
(TOWRE_READ) and Pseudoword (TOWRE_PD) tests36 and spelling from
the Wechsler Individual Achievement Test (WIAT-SPELL);35 at age 8 years
the measures were irregular word reading (IWR) from the Diagnostic Test
of Word Reading Processes (DTWRP),40 phonological awareness measured
by a phoneme-deletion task (PA) and rapid automatic naming (RAN).41 The
factor scores were latent variables derived following confirmatory factor
analysis: a phonology factor score (PHON_FS) was derived from word recall
and phoneme awareness tasks at 4½ years and from phoneme awareness
(deletion) at ages 5½, 6 and 8 years; a literacy factor score (LIT_FS) was
derived from measures of single-word reading, reading accuracy, word and
non-word reading fluency and spelling at age 8 years. At age 8 years,
children were assigned to a formal diagnosis of dyslexia when they scored
41.5 s.d. below the control group mean on the literacy composite
measure. This approach identified N= 18 children with dyslexia, including
N=9 who also had language impairment (LI). Another N=11 had LI only
and N=72 children were classified as typical developing (TD).
Exclusion criteria for the UK cohorts were non-European ethnicity, signs

of other neurological conditions in the probands or performance IQo80.
The Hong Kong cohort included 220 unrelated individuals who were not

selected for reading difficulties (age range 6–10.5 years old).42 Study
participants were recruited either as singletons (N= 104) or as twin pairs
with only one twin per pair retained for the study (N= 116). All participants
speak Cantonese as their first language and have not been diagnosed with
either intellectual disabilities or neurological conditions. Three reading-
related phenotypes were available from a standardized test battery
described previously: Chinese Word Reading (CWR), Chinese one-minute
(COM) word reading and Chinese Digit Rapid Automatized Naming
(CDRAN).43 Mean scores are shown in Supplementary Table 2.
DNA was extracted from blood or buccal swabs using standard

procedures, and from saliva using Oragene kit (prepITL2P) (DNA Genotek,
Ottawa, Canada). Ethical approval was obtained from the local ethical
research committees, including the Oxfordshire Psychiatric Research Ethics
Committee, the NHS Research Ethics (Yorkshire & The Humber – Humber
Bridge), the University of York Department of Psychology Ethics
Committee and the Aston University Ethics Committee, and the Joint
Chinese University of Hong Kong-New Territories East Cluster Clinical
Research Ethics Committee. Written informed consent was obtained from
all participants and/or their caregivers.

Genotype and statistical analysis
Genotype data were generated using a previously described protocol4 and
checked for Mendelian errors and deviation from Hardy-Weinberg
equilibrium using PEDSTATS.44 Family-based cohorts were tested using
the Quantitative Transmission Disequilibrium Test (QTDT) under the total
association model45 after estimating the identical-by-descent (IBD) sharing
with MERLIN.46 No population stratification was observed for the UK
cohorts following analysis of genome-wide genotype data.47,48 Singletons
analysis was conducted with PLINK (Purcell et al., 2007) under an allelic
model in each cohort as well as in combined samples including the Oxford
Cases cohort, the Aston cohort and the probands of the Oxford Family
cohort. Analysis was also conducted in a subgroup derived from this
combined sample for meeting a stringent criteria of dyslexia defined by a
score below − 1.5 s.d. from the normative population mean for a single-
word reading test. Power calculations were conducted with the genetic
Power Calculator49 (Supplementary Material).

RESULTS
The DCDC2 deletion and reading abilities
The frequency of the deletion ranged 6.1–9.8% in the UK cohorts
(Table 2), which is consistent with the range reported previously,
including that for UK controls (9%; Table 1). Differences in
frequency across the cohorts and in specific subgroups likely
resulted from sampling bias and illustrates how small samples can
potentially affect this type of analysis. For example, the long-
itudinal design of the York cohort enabled the identification of
children with dyslexia on the basis of very detailed assessments.
The overall frequency of the deletion, across the 103 probands
was 7.7%, similar to that observed in the parents (7.4%, N= 174).
On the basis of the final diagnosis, the deletion had a frequency of
10.7% (N= 72) in the TD group compared to 5.5% in the RD
(N= 18) group (Table 2). The deletion frequency in a combined
group of individuals (N= 203) from the UK cohorts meeting a
stringent definition of dyslexia (READo − 1.5 s.d. from the
standardised population mean) was 9.6%. Strikingly, the deletion
had a frequency of 37.6% (N= 220; Table 2) in the Hong Kong
cohort which was sampled from a population with typical literacy
achievement (Supplementary Table 2). Given the substantial
difference in allele frequency between the UK and Hong Kong
population we queried the data from the 1000 Genomes project.50

The deletion (ID = Esv3608367) presents a global frequency of
11.5% across 2504 individuals, and consistently with our data,
shows a frequency of 8.05% and 33.53% in the European and East
Asian populations (Table 2; Supplementary Table 3). The
frequency observed in the European population is important in
interpreting the results by Wilcke et al. (2009) that were based on
comparisons with a control cohort of German origin that
presented a deletion frequency of 4% (Table 1).
The DCDC2 deletion was tested for association with quantitative

reading-related measures in the Oxford Cases, Aston, York and
Hong Kong cohorts. The DCDC2 deletion was tested for
association with reading measures in the Oxford Family Dyslexia
cohort previously;14 no associations were detected in the entire
cohort, and only marginally significant associations were observed
in the subgroup of 126 families selected for severity of the
phenotype (Supplementary Methods and Supplementary Table 1).
We then conducted quantitative association analyses in the
combined sample including individuals with directly comparable
phenotypes. We used a combined sample including probands
from the Oxford Family cohorts and the Oxford Cases (N= 425)
which had four comparable phenotypes. We then analyzed this
sample with the addition of the Aston cohort (N= 526) which was
characterised with the same READ and SPELL phenotypes. In both
combined samples we analyzed subgroups of individuals who met
a stringent definition of dyslexia defined by a score below -1.5 s.d.
from the standardised mean for READ of the population. No
association was detected with any of the phenotypes tested
(Supplementary Table 4).

The DCDC2 deletion and visual motion
The distribution of VMOT thresholds (threshold = 1/sensitivity)
approximated normality across N= 701 individuals (including
individuals for whom genotype data were not available) with a
mean of 18.1 (s.d. = 12.2) in the Oxford Dyslexia cohort. VMOT
thresholds showed a small, but statistically significant correlation
with READ (r=− 0.16; one-tailed P= 1.0 × 10− 5), indicating that
lowered motion sensitivity is associated with poorer reading
scores.
We did not identify patterns of association between the DCDC2

deletion and VMOT thresholds, either in the whole cohort or in the
same subset of 126 families selected for severity as described
previously14 (Supplementary Table 1 and Supplementary Material).
The subgroup analysis has the limitation of reducing the power of
the analysis by decreasing the sample size, but was aimed at
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addressing the alternative hypothesis that the effect of the
deletion on visual motion abilities is restricted to individuals
within the lower tail of the normal distribution of reading ability.26

We stratified the READ and VMOT scores for the DCDC2 deletion
genotypes across all siblings and for the probands only (Table 3).
As expected, the mean scores for the probands showed lower
performance for both READ and VMOT compared to the whole
data set, but their raw scores were similarly distributed across the
three genotype groups (Supplementary Figure 1). Accordingly,
genetic association analysis run under different linear models
(dominant, recessive and genotypic conducted using PLINK) did
not show any trends of association (data not shown).

DISCUSSION
With this study, we aimed to investigate the role of the DCDC2
deletion in contributing to dyslexia or measures of reading and
component skills. Our work was prompted by recent studies that
based their hypotheses and research designs on the assumption
that the DCDC2 deletion is an established susceptibility factor for
dyslexia. However, as our re-evaluation of the literature shows, the
accumulated evidence in support of this assumption is statistically
weak (Table 1). Most prior studies either did not show association
with the deletion4,12–14 or showed only moderate signals of
association (0.01oP-valueso0.5)15,18,51 (Table 1). This latter
group included also our previous study that reported a weak
association signal (P= 0.04) with one phenotype (IWR) in a
subgroup of families (Supplementary Table 1). Only one study
reported a significantly higher frequency of the deletion in cases
with dyslexia (10%) compared to controls (4%).7 However, through
comparisons with other studies12–14 and with the data derived
from the 1000 Genome project for European reference popula-
tions (Supplementary Table 3), we suggest that the low frequency
reported in the control cohort analyzed by Wilcke et al.7 most
likely resulted from an artifact. Stronger association signals were
observed only when the deletion was combined with different
rare STR alleles.4,12,15 We did not test the STR in this study because
our focus was to address the role of the DCDC2 deletion
specifically as a reliable marker for dyslexia. Our goal was to
verify the theoretical foundation of the design of imaging19,20 and
behavioral21,22 studies for which the deletion alone, and not in
combination with STR alleles, has been used as a dyslexia marker.
These studies suggested that the deletion is directly associated
with structural brain changes and sensory deficits regardless of
the presence of dyslexia, implying a causative effect for this
genetic marker. Furthermore, the STR harbors at least 40 (mostly
extremely rare) alleles, making it challenging to distinguish
genuine signals from noise and to test specific hypotheses. In
fact, associations so far have been reported for different STR
alleles (i.e. deletion+pool of rare alleles, allele 10, allele 5 and
allele 6; Table 1).
We tested the deletion for association with reading abilities in

four cohorts from the UK analysed both separately and as

combined samples, including analysis in a subgroup meeting
stringent criteria for dyslexia. The Oxford Family Dyslexia cohort,
analyzed previously,14 was re-analyzed here as part of this
approach and for association with a visual motion test.
Furthermore, we tested a cohort recruited in Hong Kong, which
represents the first cohort of non-European ancestry to be
analyzed for this marker in the context of reading abilities. None
of our analyses showed any statistically (or nominally) significant
associations between the deletion and reading measures. Power
calculations indicate that our largest sample used for genetic
analysis (N= 526) has the power to detect only relatively large
effects (41.5% of the phenotypic variance; Supplementary
Material). Although this is larger than what would generally be
predicted for common genetic factors contributing to complex
traits, our data are important for the interpretation of the current
literature. The analysis in the Hong Kong cohort revealed a
frequency of 37.6% which is consistent with frequency data
reported for the 1000 Genomes Project Asian populations. The
Hong Kong cohort is representative of the general Hong Kong
population of Chinese origin and is not enriched for individuals
presenting reading difficulties, as demonstrated by the distribu-
tion of their language and reading abilities scores (Supplementary
Table 2). It is debated whether dyslexia in Chinese is the
manifestation of a different deficit compared to European
populations as a result of culture.52 However both behavioral53

and neuroimaging54 studies predict commonalities in the
neuronal markers for dyslexia that can be dissociated from
language-specific effects in both English and Chinese individuals.
The incidence of dyslexia in Hong Kong, similar to the UK
populations, is about 10%.2 However, visual processing may be
more relevant for decoding Chinese compared to alphabetic
scripts because of the complex visual composition of Chinese
characters.55 The role of the visual magnocellular pathway in
reading has been suggested to be particularly relevant for
decoding Chinese scripts.56 The visual motion perception tests
that compared groups on the basis of the DCDC2 deletion
genotypes were designed to assess the role of this pathway in
dyslexia.21,22 Genetic association analysis for VMOT measures in
the Hong Kong cohort, or other Chinese speaking groups, would
allow direct comparisons with these studies.
We tested for effects of the deletion on a visual motion task

(Table 3; Supplementary Table 1) in the Oxford Dyslexia cohort
and found no associations, thereby failing to replicate the findings
by Cicchini et al (2015),22 albeit we used a different version of the
VMOT test (see Supplementary Material for details). Cicchini and
colleagues used a contrast sensitivity paradigm with a very short
presentation time that varied the contrast of a moving stimulus to
the detection threshold. Our VMOT task involved much longer
presentation times for random dot kinematograms (RDK) in which
the signal to noise ratio was manipulated to the detection
threshold. Although we cannot directly compare the two tasks,
the observation that the probands in our sample have lower
sensitivity to motion compared to the entire sample (Table 3)

Table 3. Mean score of READ and VMOT stratified by the DCDC2 deletion genotype in the Oxford dyslexia cohort

Number of deletion alleles READ (s.d.;N) VMOT % (s.d.;N)

All Probands All Probands

0 46.2 (9.7; 417) 38.6 (6.8; 126) 18.8 (12.0; 374) 20.7 (13.5; 112)
1 45.0 (10.8; 73) 36.6 (7.6; 24) 17.5 (9.8; 66) 21.3 (14.2; 22)
2 46.4 (14.5; 7) 36.7 (8.7; 3) 16.7 (6.9; 6) 19.2 (5.8; 3)

Abbreviations: READ, single-word reading; VMOT, visual motion. The READ scores are standardized with a population mean of 50 and s.d.= 10. VMOT scores
are in % coherent motion at detection threshold. Poorer reading is represented by lower standard scores; reduced sensitivity to VMOT is indicated by higher
scores. See Supplementary Figure 1 for the distribution of the raw scores.
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provides cross-validation of previous work with this task in
dyslexia57 and as a correlate with reading skills in the normal
population.34 The sample we used for the VMOT analysis was
substantially larger (N= 374 non-carriers, N= 66 heterozygotes;
N= 6 deletion homozygotes; Table 3) compared to the analysis
reported by Cicchini and colleagues in 11 deletion carriers and 10
non-carriers. Therefore, while we cannot exclude an effect
dependent on specific phenotypes or of smaller size, our study
provides a new data set for the interpretation of previously
reported results. Regardless of the differences in the tests used,
our genetic analysis does not support the design of behavioral
studies based on the stratification for DCDC2 deletion genotypes.
While the DCDC2 deletion is interesting for the potential

regulatory effect, other DCDC2 markers, mainly SNPs, showed
more consistent associations across independent studies.4–10 Our
current study, therefore, does not undermine the overall evidence
in support of DCDC2 as a candidate gene for dyslexia or reading
abilities.
Replication studies are essential but present particular chal-

lenges. The acquisition of cognitive measures is only possible
through expensive and time consuming one-on-one sessions,
making it extremely difficult to obtain large sample sizes.
Heterogeneity of phenotypic and behavioral measures makes
direct comparison across studies very difficult. Overall, these
observations reinforce the importance of collecting high quality
cognitive data in general population samples to enable follow up
studies of genetic associations reported for neurodevelopmental
disorders.58

In summary, through both a re-evaluation of the published
literature and new genetic association analyses, our results show
that there is no strong evidence in support of the DCDC2 deletion
as a risk factor for dyslexia. These data are important for guiding
the future direction of dyslexia research and more generally
highlight the caveats associated with over-generalizing from
analyses conducted in small sample sizes and from misinterpreta-
tions of the literature. Most importantly, we provide a useful
example of the importance of publishing null results toward
avoiding the potential of canonizing weak evidence as fact.
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