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Abstract: 

Many statistical tests rely on the assumption that the residuals of a model are 

normally distributed. Rank-based inverse normal transformation (INT) of the 

dependent variable is one of the most popular approaches to satisfy the normality 

assumption. When covariates are included in the analysis, a common approach is to 

first adjust for the covariates and then normalize the residuals. This study investigated 

the effect of regressing covariates against the dependent variable and then applying 

rank-based INT to the residuals. The correlation between the dependent variable and 

covariates at each stage of processing was assessed. An alternative approach was 

tested in which rank-based INT was applied to the dependent variable before 

regressing covariates. Analyses based on both simulated and real data examples 

demonstrated that applying rank-based INT to the dependent variable residuals after 

regressing out covariates re-introduces a linear correlation between the dependent 

variable and covariates, increasing type-1 errors and reducing power. On the other 

hand, when rank-based INT was applied prior to controlling for covariate effects, 

residuals were normally distributed and linearly uncorrelated with covariates. This 

latter approach is therefore recommended in situations were normality of the 

dependent variable is required. 

 

Keywords: Rank-based inverse normal transformation, normalization, covariates, 

confounding, residuals. 
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Introduction: 

Many statistical tests rely on the assumption that the residuals of a model are 

normally distributed 
1
. In genetic analyses of complex traits, the normality of 

residuals is largely determined by the normality of the dependent variable (phenotype) 

due to the very small effect size of individual genetic variants 
2
. However, many traits 

do not follow a normal distribution. In behavioral research in particular, questionnaire 

data often exhibit marked skew as well as a large number of ties between individuals.  

The non-normality of residuals can lead to heteroskedasticity (comparison of 

variables with unequal variance) potentially resulting in increased type I error rates 

and reduced power 
3
. However, most genome-wide analysis software currently 

implements only linear and logistic models, precluding the use of more general 

parametric or non-parametric analyses.  

There are several approaches to either satisfy the normality assumption or control for 

violations of it. One of the most popular is the transformation of the dependent 

variable to follow a normal distribution, i.e. normalization. There are several 

transformations that can be used for this purpose, the most popular being log, power 

or Box-Cox transformations, and rank-based inverse normal transformations (INTs), 

also referred to as quantile normalizations, such as the Van de Waerden 

transformation 
4
. In many cases the use of log transformation has been shown to be 

insufficient for normalizing data. Conversely, rank-based INTs always create a 

perfect normal distribution when there are no tied observations. Previous studies have 

reported that although rank-based INTs can lead to loss of information, this approach 

controls power and type-I error rate 
5,6

. However, a comprehensive review of rank-

based INTs demonstrated that in certain scenarios, rank-based INTs do not control 

type-I error, although they remain useful in large samples where alternative methods, 
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such as resampling, are less practical 
4
.  Furthermore, normalization provides other 

practical advantages when pooling data from different sources in which the residual 

distributions may also vary. 

It is often desirable to adjust for covariates in analysis.  In genetic studies, principal 

components of ancestry are commonly included to reduce confounding by population 

structure.  When a transformation to normality is used, the covariates may be included 

in the analysis model after transformation, or alternatively they may be regressed 

against the response prior to the residuals being transformed to normality. The latter 

approach has been used in a number of recent high profile studies 
7–9

 and is also 

automated in the ‘rntransform’ function within GenABEL, a popular R package 
10

.  

One reason is that confounders may be considered to have their effects on the 

untransformed, rather than the normalized, variable.  Another reason is that pre-

adjustment for covariates will break many of the ties that are present in data derived 

from questionnaires or other rating scales that are usually represented by a small 

number of discrete values. 

This study investigates the effect of first regressing out covariate effects from 

quantitative dependent variables, before applying rank-based INTs to the resulting 

residuals. We use simulations to study the consequences of this procedure, varying 

the degree of skew in the dependent variable, proportion of tied observations in the 

dependent variable, and the original correlation between the dependent variable and 

covariate. We then explore an alternative approach whereby rank-based INT is first 

applied to the dependent variable (randomly splitting tied observations) before 

regressing out covariate effects. We demonstrate that regressing covariate effects 

from the dependent variable creates a covariate-based rank, which is subsequently 

distorted by rank-based INT, leading to increased type-1 errors and reduced power. 
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Our results suggest that the practice of regressing out covariate effects prior to 

transformation should be discouraged. As an alternative we suggest that when strict 

normality of the dependent variable is required, rank-based INT should be performed 

before controlling for covariates, with random ranking of tied observations. 

 

Materials and Methods: 

Simulation of phenotypic data 

Two types of phenotypic data were simulated: quantitative variables containing no 

tied observations (herein referred to as continuous variables) and quantitative 

variables containing tied observations (herein referred to as questionnaire-type 

variables). These variables were simulated to exhibit different degrees of skew 

ranging from -2 to 2. Skewed variables were created using the R ‘rbeta’ function, 

which randomly generates numbers following a beta distribution with two shape 

parameters to control the degree of skew. 10 000 observations were simulated for 

each variable. To create tied observations in the questionnaire-type variables, the 

initially continuous data were collapsed into evenly distributed and discrete response 

bins. The number of response bins, determining the proportion of tied observations, 

was varied between 5 and 160. 

The R functions used to create continuous and questionnaire-type variables, called 

‘SimCont’ and ‘SimQuest’ respectively, are available in Supplementary Text 1 and 2. 

A normal distribution is defined by skew = 0 but also kurtosis = 0. Given that the 

simulated variables were generated to follow a beta distribution, variables with a skew 

equal to zero may not have a kurtosis equal to zero. To ensure that the correction of 
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kurtosis was not driving effects seen when skew is equal to zero, continuous and 

questionnaire-type variables were also generated using the ‘rnorm’ function in R to 

exhibit both a skew and kurtosis of zero. The functions used to create continuous and 

questionnaire-type with skew and kurtosis fixed to zero, called ‘SimContNorm’ and 

‘SimQuestNorm’ respectively, are available in Supplementary Text 3 and 4. 

Skew and kurtosis were measured using the ‘skewness’ and ‘kurtosis’ functions from 

the R package ‘e1071’ 
11

. 

Simulation of covariate data 

To create correlated covariate data, noise was added to each simulated phenotypic 

variable until the desired phenotype-covariate correlation was achieved. Phenotype-

covariate correlations (Pearson’s) were varied between -0.5 and 0.5. Noise was added 

to the questionnaire variables using the ‘jitter’ function in R. 

The R function used to create covariates for each phenotypic variable, called 

‘CovarCreator’, is available in Supplementary Text 5. 

Normalization after adjusting for covariates 

Linear regression of each covariate against the corresponding phenotypic variable was 

used to calculate phenotypic residuals, which are linearly uncorrelated with the 

covariates. The Spearman’s rank correlation between the residuals and covariates was 

measured. The residuals were then normalized using the ‘rntransform’ from the 

GenABEL package in R, which applies a rank-based INT similar to van de Waerden 

transformation. To determine whether the transformed residuals were still linearly 

uncorrelated with covariates, the Pearson correlation between the transformed 

residuals and covariates was calculated.  
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Normalization before adjusting for covariates 

This was carried out using the same simulated questionnaire-type and continuous 

variables and covariates. The raw questionnaire-type and continuous variables 

underwent rank-based INT using a modified version of the ‘rntransform’ function 

from GENABEL that randomly ranks any tied observations. The modified version of 

‘rntransform’, called ‘rntransform_random’, is available in Supplementary Text 6. 

Linear regression of each covariate against the corresponding normalized variables 

was used to calculate phenotypic residuals, which are linearly uncorrelated with the 

covariates.  

One concern with rank-based INT, particularly when randomly splitting ties, is that 

the linear relationship between the phenotypic variable and independent variables 

(including covariates) may be severely distorted. To determine the extent to which 

rank-based INT when randomly splitting ties distorts phenotypic variables, the 

Pearson correlations between the untransformed and transformed phenotypic 

variables were calculated. To determine the extent to which rank-based INT when 

randomly splitting ties distorts the relationship between the phenotypic variables and 

covariates, the Pearson correlation between the transformed phenotypic variables and 

covariates was calculated. 

Another concern with normalizing the phenotypic variable before regressing out 

covariates is that the process of regressing out covariates may re-introduce skew in 

the residuals. We therefore calculated the skew of the residuals after regressing out 

covariates.   

Demonstration using real data 
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To determine whether the predicted effects (when using simulated data) of performing 

rank-based INT before or after regressing out covariate effects are seen in practice, 

the same procedures were applied to real questionnaire data provided by the Twins 

Early Development Study (TEDS)
12

. Data from two questionnaires were used 

measuring Paranoia and Anhedonia. Both of these measures are part of the SPEQ 

(Specific Psychotic Experiences Questionnaire)
13

. Individuals with missing 

phenotypic data were excluded from all analyses. Sum scores of unrelated individuals 

were calculated by summing the response of each item. Each item of both the 

Paranoia and Anhedonia scales were coded as values from 0-5, with the total ranges 

of the Paranoia and Anhedonia scales being 0-75 and 0-50 respectively. Sum scores 

were calculated using different numbers of items (1, 2, 4, 8) to create different 

numbers of response bins (5, 10, 20, 40) and as in the simulation study. The 

covariates used were age (continuous variable skew of -0.32) and sex (binary variable 

with skew of 0.22). Table I shows the skew, number of response bins (proportion of 

ties) and correlation with covariates for each of dependent variable. The TEDS data 

were analyzed using the same procedure as the simulated data.  

 

Results: 

Normalization after adjusting for covariates 

As expected, regressing covariates against phenotypic variables created phenotypic 

residuals that were linearly uncorrelated with covariates.  Although there was no 

linear correlation, in almost all simulations a rank-based correlation remained 

between the residuals and covariates (Supplementary Figure 1-7). As a consequence, 

rank-based INT of residuals re-introduced a linear correlation between the phenotypic 
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variables and covariates (Supplementary Figure 8-14). Three factors predicted to 

affect the re-introduction of correlation between the phenotypic variables and 

covariates were tested. These factors were the original skew of the phenotypic 

variable, the original correlation between the phenotypic variable and covariate, and 

the proportion of tied observations in the original phenotypic data. 

First, in terms of skew, greater skew of the phenotypic variable was associated with a 

higher correlation between the normalized phenotypic residuals and the covariate data 

(Figure 1, Supplementary Figure 8-14). The direction of skew had no effect on the 

correlation between the normalized residuals and the covariate data. The effect of 

normalizing residuals when skew was equal to zero remained when kurtosis was also 

fixed to zero (Supplementary Figure 15). 

Second, the direction of the original correlation between the original phenotypic 

variable and the covariates was reversed after rank-based INT of residuals. The 

magnitude of correlation between the original dependent variable and covariates 

showed different effects according to the proportion of ties. In questionnaire-type data, 

when the proportion of tied observations was high, the magnitude of correlation 

between the original questionnaire data and covariates had a negative relationship 

with the degree to which normalization re-introduced the correlation with covariates 

(Supplementary Figure 8). However, this negative relationship reversed as the 

proportion of ties decreased (Supplementary Figure 16). This means that when the 

proportion of tied observations was low (or in continuous data), the magnitude of 

correlation between the original questionnaire data and covariates had a positive 

relationship with the degree to which normalization re-introduced the correlation with 

covariates.   
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Third, independent of the original correlation between the dependent variable and 

covariates, the proportion of ties in the phenotypic variable influenced the extent to 

which normalization of residuals reintroduced a correlation with covariates. A 

decreased number of response bins in the questionnaire-type data (i.e. smaller range 

and more tied observations) resulted in an increased correlation between covariates 

and normalized residuals (Figure 1). However, even when there were 160 response 

bins, or the data were continuous, rank-based INT still re-introduced a correlation 

with covariates when the data had an original skew >0.5 (Supplementary Figure 13 

and 14). 

As previously mentioned, although there is no linear correlation between phenotypic 

residuals and covariates, a rank-based correlation between the phenotypic residuals 

and covariates remained in almost all simulations. The factors affecting the magnitude 

of rank-based correlation between phenotypic residuals and covariates are the same as 

those influencing the effect of rank-based INT of residuals (Supplementary Figure 17-

18). 

Normalization before adjusting for covariates 

Rank-based INT of phenotypic variables, randomly splitting ties, before subsequent 

regression of covariates against the normalized phenotypic data, always resulted in 

phenotypic residuals with no linear correlation with covariates, and in the majority of 

simulations, skew less than 0.05.  

The correlations between the phenotypic variables and the covariates decreased a 

small amount (median 5%) after rank-based INT of the phenotypic variables, 

compared to their original correlations (Supplementary Table 1). The extent to which 

the correlation decreased was dependent on the original correlation, the skew of the 



 11 

dependent variable, and the proportion of tied responses in the dependent variable 

(Supplementary Figures 19-24). 

Comparing the original values of the dependent variables to their values after rank-

based INT (randomly splitting tied observations) yielded correlations between 0.77 

and 1.00. An increased proportion of tied observations and increased skew led to a 

decreased correlation after rank-based INT (Supplementary Figure 25). 

Regressing covariates after normalizing the dependent variables introduced a smaller 

degree of skew when covariates had either a low skew themselves or a low correlation 

with the dependent variable. The degree to which regressing covariate effects 

introduced skew was not dependent on the proportion of tied observations. Overall, 

regressing covariates introduced a small amount of skew to the dependent variable 

(0.00 – 0.11) unless the covariate had a correlation with the dependent variable over 

0.25 and a skew greater than 0.05 (Supplementary Figure 26). However, highly 

skewed covariates may introduce larger amounts of skew even when exhibiting a low 

correlation with the dependent variable. 

Real data analysis 

The effect of applying INTs to residuals in simulated questionnaire-type data was 

then observed in real questionnaire data from TEDS. When using the age covariate 

(continuous) the magnitude and direction of effect of applying INT to residuals were 

similar to those of simulated questionnaire-type data (Supplementary Table 2-3). The 

effect of INT on residuals when using real questionnaire data was slightly reduced in 

comparison to effects observed when using simulated questionnaire-type data. 
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When the sex covariate (binary) was used, the magnitude, and in some cases the 

direction, of the effect of rank-based procedures varied from effects observed in 

simulated data. Although regressing the effect of a binary covariate altered the 

outcome of rank-based procedures, application of rank-based procedures to residuals 

still re-introduced a correlation with covariates (Supplementary Table 4-5). 

Importantly, when a dichotomous variable was used, a large number of ties in the data 

still existed reducing the efficacy of rank-based INT. 

We then applied rank-based INT (randomly splitting tied observations) before 

regressing out covariate effects. The results in real questionnaire data were 

comparable to the effects observed when using simulated data. Rank-based INT, 

randomly splitting ties, and subsequent regression of covariates created residuals that 

were linearly uncorrelated with covariates and normally distributed (Supplementary 

Table 6-7). The correlation between the dependent variable and covariate did vary 

slightly before and after rank-based INT (Supplementary Table 6-7). Contrary to the 

observed effects when using simulated data, the correlation between the dependent 

variable and the covariate did not always decrease. The Pearson correlation between 

raw and normalized questionnaire data varied between 0.83 and 0.99 dependent on 

the skew of the raw data and the number of response bins (Supplementary Table 8). 

Similar to the results of our simulations, the effect of regressing covariates out of the 

normalized variables did not re-introduce skew greater than 0.02 in any situations 

(Supplementary Table 6-7). 

 

Discussion: 
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This study has demonstrated that regressing covariates against the dependent 

(phenotypic) variable and then using rank-based INT to transform the residuals to 

normality re-introduces a correlation between the covariates and the normalized 

dependent variable. This effect occurs because the process of regressing covariates 

against the response variable leads to a covariate-based rank in the residuals, which is 

then used to redistribute the data (Figure 2). This effect of regressing covariates 

against response variables occurs when the response variable is continuous (contains 

no tied observations) or questionnaire-type (contains tied observations), however the 

effect increases as the proportion of tied observations increases. The degree to which 

the covariate correlation is re-introduced during rank-based INT is dependent on the 

original skew of the response variable, although when the data contain a large 

proportion of tied observations, a correlation with covariates is re-introduced even 

when there is no skew.  

This study has also evaluated an alternative procedure for preparing data for 

parametric analyses, whereby the response variable undergoes rank-based INT, 

randomly separating ties, before regressing out covariate effects. Our findings 

demonstrate that this alternative approach is preferable as it creates a normally 

distributed response variable with no correlation with covariates (Figure 3). The 

notion of normalizing the response variables before estimating its relationship with 

covariates may seem counterintuitive as the process of normalization may disrupt the 

true relationship between variables. Although this may be true in some scenarios, 

when the variables are skewed and/or contain tied observations, the change in 

relationship between variables due to normalization (Supplementary Table 6-7) is 

small relative to the change in relationship when normalizing residuals 

(Supplementary Table 2 and 4). In contrast, regressing covariates after normalization 
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will leave no correlation between the variables, meaning that any confounding by 

those covariates will be eliminated. A limitation of applying rank-based INT before 

controlling for covariates is the requirement of randomly splitting ties. This process 

will introduce random variation in the data, subsequently reducing statistical power. 

However, the alternative approach of normalizing after controlling for covariates 

introduces non-random variation, leading to a reduction in power and confounding. 

Given the importance of phenotypic transformations, authors must describe the details 

of this process. Many studies do not clearly describe the details in which the data are 

processed, but there are some major studies that have clearly applied rank-based INT 

to residuals 
7–9

. We do not believe that the results of these studies are seriously in 

error as they have either dealt with traits that have a very low skew and/or are 

continuous, or they have replicated their findings using binary outcomes based on 

untransformed data. However, we do believe that the potential problems with rank 

based INT of residuals are not well known, and that researchers should be aware of 

these issues before applying such a procedure. There are, of course, many parametric 

and non-parametric methods that do not require normality in residuals, and in an ideal 

world one would identify and apply a model that accurately describes the data at hand.  

However, this is not always practical in large genetic studies with many contributing 

datasets, and rank based INTs remain a pragmatic approach of choice in spite of its 

well-known limitations 
4
. We suggest that, if rank based INTs must be used, 

researchers should adjust for covariates after rather than before applying the 

normalizing transformation. 

These findings are not just relevant to rank-based INT of residuals but highlight the 

importance of procedures that introduce or alter the rank of observations. Another 

procedure that will alter the rank-based relationship between variables is the 
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calculation of factor scores via principal components analysis (PCA). PCA is a 

method that applies orthogonal transformation to identify linearly uncorrelated axes 

of variation among observations. Although the derived factors are linearly 

uncorrelated, they may have a rank-based correlation. Therefore, if the factors are 

skewed, subsequent rank-based INT will introduce a linear correlation between 

factors. Similar to the example of normalizing residuals, if the original correlation 

between the latent variables is positive, rank-based INT will lead to a negative 

correlation between derived factors. 

Although we conclude that normalization of the dependent variable should be 

performed prior to adjusting for covariates, regressing out covariates that are either 

highly skewed or highly correlated with the dependent variable may introduce 

substantial skew to the residuals. However, this scenario may be unlikely. 

In conclusion, this study has demonstrated that rank-based INT of phenotypic 

residuals after adjusting for covariates can lead to an overcorrection of covariate 

effects leading to a correlation in the opposite direction between the normalized 

phenotypic residuals and covariates, and in questionnaire-type data, often of a greater 

magnitude. This finding has implications for all rank-based procedures and highlights 

the importance of clearly documenting how the raw data are handled. Normalization 

of phenotypic data before regressing out covariates has been shown to produce 

normally distributed phenotypic residuals that are uncorrelated with covariates, and is 

therefore recommended in situations when rank-based INT is the pragmatic choice. 
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Figure Legends: 

Figure 1. The relationship between the number of available responses (x-axis) and 

correlation between normalized residuals and covariate (y-axis) for different values of 

the skew in the raw phenotypic data. Within this figure, the correlation between the 

untransformed phenotypic data and covariate data is at 0.06. 

Figure 2. The effect of applying a rank-based INT to residuals of questionnaire-type 

data, i.e. after regressing out covariates. All correlations referred to in this figure are 

Pearson (linear) correlations. A) Untransformed questionnaire-type variable and its 

relationship with a continuous covariate. The questionnaire-type variable has a range 

of 5. A weak linear relationship exists between the questionnaire-type variable and 

covariate. B) Questionnaire-type variable residuals after regressing out the 

relationship with the covariate. No linear relationship exists between the 

questionnaire-type residuals and covariate. Regressing out covariate effects has led to 

the separation of many tied observations, creating a covariate-based rank within the 

questionnaire-type variable residuals. C) After the rank-based INT of questionnaire-

type variable residuals, the transformed questionnaire-type variable residuals show a 

strong linear correlation with the covariate. This correlation is stronger and in the 

opposite direction to the original correlation between the untransformed 

questionnaire-type variable and the covariate.  

Figure 3. The effect of applying a rank-based INT to questionnaire-type data before 

regressing out covariates. All correlations referred to in this figure are Pearson (linear) 

correlations. A) Untransformed questionnaire-type variable and its relationship with a 

continuous covariate. The questionnaire-type variable has a range of 5. A weak linear 

relationship exists between the questionnaire-type variable and covariate. B) 
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Questionnaire-type variable after rank-based INT, randomly splitting tied 

observations. Relationship between the questionnaire-type variable remains intact. C) 

Covariate effects have been regressed from the normalized questionnaire-type 

variable. There is no linear relationship between the residuals and the covariate, and 

the skew is close to zero. 


