
An Actor Model of Concurrency for the Swift
Programming Language

Kwabena Aning
Department of Computer Science and

Information Systems
Birkbeck, University of London

London, WC1E 7HX, UK
Email: k.aning@dcs.bbk.ac.uk

Keith Leonard Mannock
Department of Computer Science and

Information Systems
Birkbeck, University of London

London, WC1E 7HX, UK
Email: keith@dcs.bbk.ac.uk

Keywords—Software Architectures, Distributed and Parallel
Systems, Agent Architectures, Programming languages, Concur-
rent computing.

Abstract—The Swift programming language is rapidly rising
in popularity but it lacks the facilities for true concurrent
programming. In this paper we describe an extension to the
language which enables access to said concurrent capabilities and
provides an api for supporting such interactions. We adopt the
ACTOR model of concurrent computation and show how it can
be successfully incorporated into the language. We discuss early
findings on our prototype implementation and show its usage
via an appropriate example. This work also suggests a general
design pattern for the implementation of the ACTOR model in
the Swift programming language.

I. INTRODUCTION

Modern day computing has transitioned to multicore pro-
cessing as the standard. Most devices have processors with
several cores, or multiple processors for that matter and to
this end, there are more options for increased efficiency in
computational processes. This increased advantage however
comes with a challenge - building software that can harness
this added computational power for better efficiency without
further exacerbating the existing challenges with multi-core
computing is difficult.

The shared resource problem is ubiquitous in environments
where concurrent processing is required. As more than one
process requires access to a singular resource, decisions have
to be made on how that resource is made available to said pro-
cesses. Programming languages have taken on the challenge
either natively, or through toolkits or libraries, by providing
mechanisms for developers to create concurrently running
software. Newer programming like Pony [1], Go [2], Scala
[3] ,and Clojure [4] languages focus on this challenge from
the outset.

We decided to adopt the ACTOR model of concurrency [5] to
address these problems and to enhance the Swift programming
language with an appropriate API and framework. Why Swift?
Swift is growing in popularity and since being open-sourced,
it can now be run as a general programming language on a
variety of platforms. The success of ACTOR frameworks such
as Akka for Scala and Java suggests a way forward for Swift

that would enhance the functionality of the language while
addressing concurrent processing issues.

In the Section II, we will make a distinction between
concurrency and parallelism. In Section III of this paper
we describe our architecture that addresses the problems
with concurrency, problems arising from non-determinism,
deadlocking, and divergence, which leads to a more general
problem of shared data in a concurrent environment. In Section
IV we outline our implementation, and our message passing
strategy as a possible solution to the shared data problem.
In Section V we describe a brief example to show the usage
of our system API. In Section VI we briefly discuss related
concurrency models pertinent to the development of our work.
We conclude the paper with a discussion of future work.

II. CONCURRENCY AND PARALLELISM

To provide a context to the sections that follow, a distinc-
tion needs to be made between concurrency and parallelism.
Concurrent programs are best described as an interleaving
of sequential programmes[6]. A concurrent program has
multiple logical threads of control. These threads may or may
not run in parallel [7]. Tony Hoare expresses this concept of
concurrency as follows:

α(P ‖ Q) = αP ∪ αQ (1)

Assuming that P is a process that involves writing logs to
a given file from a given input. Q is a process that also
involves reading that given file and displaying its contents to
a given output. α(P ‖ Q) is therefore all the behaviours that
are involved with writing logs to a file, reading logs from a
file, and displaying those logs to some output. If our given
environment allows for it, any these behaviours can occur
at any time, in any sequence. The above equation describes
a coming together of these processes where any of these
behaviours can be called upon with no contingency.

”A process is defined by describing the whole range of its
potential behaviour.“ [8]. In other words, to define a process
completely one has to enumerate all the potential behaviours or
properties of that process. These properties or behaviours can
be referred to in CSP as alphabets. Alphabets usually denoted

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Birkbeck Institutional Research Online

https://core.ac.uk/display/146458522?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


in the calculus of Communicating Sequential Program (CSP)
by α can be described as all the set of names, behaviours,
and/or actions that are considered relevant for a particular
description of an object or in this case a process.

Given the events in the alphabets of processes αP and αQ
respectively, which requires simultaneous execution, P can
participate in any or all of its alphabets without affecting
or concerning Q and vice-versa, and as such all events are
logically possible for this system - a union of all alphabets[8].

It is also important to stress that there is an order element to
the definition of concurrency. In that tasks can be performed
in any order, and this allows for parallelism as the tasks can
then be shared between several processes if the order that they
are performed does not matter.

Parallelism may be seen as an latent benefit of concurrently
written programs. A parallel program is one whose tasks can
be distributed across more that one processor. This does not
imply that the program is working on different tasks at once.
It simply implies that the program is written in such a way
so that different parts of it, or its computations can be run
or can be performed on different processors simultaneously.
Using the illustration above, writing the logs to the file could
be executed on one processor, while reading the file could be
done on another. In all cases, this is possible because process
P and process Q can run independently of each other.

As a more tangible example we consider the Gregory-
Leibniz series [9]. The infinite series for calculating π. This
series of arithmetic computations can be distributed across
different processes and then brought together when they are
complete.

π =
4

1
− 4

3
+

4

5
− 4

7
+

4

9
− 4

11
+

4

13
− . . . (2)

the fraction being subtracted can be computed separately and
because of the associative nature of addition the results can
then be summed in any order as the computations complete.
We will elaborate on this further when we discuss an example
of the usage of our enhancements to Swift.

III. ARCHITECTURE

The architecture for our implementation follows a basic
architectural pattern that directly corresponds to the axioms
of the actor model.

An actor based model should exhibit the following proper-
ties:
Encapsulation This can be described in terms of modularity.

Where the actor encompasses all the aspects of the work
it needs to do without the dependency on any other actors
or processes.

Internal state Only the actor has access to its internal state.
It alone can mutate its state. Although it may do so as
a result of receiving a message from an external entity,
the decision is taken unilaterally to alter variables within
itself.

Messaging Actors communicate with each other using mes-
sages across a predetermined protocol, and depending on

the protocol these messages can sometimes be serialised.
Actors can also only send messages to other actors that
they know of. The asynchronous nature of the messages
sent means that actors need to be designed to continue
working even when they have not received responses to
messages sent to other actors.

Indeterminacy and quasi-commutativity An order to mes-
sages received is not guaranteed. Messages may arrive
in any order, and it is the responsibility of the actor to
process those messages in a consistent manner.

Mobility and location transparency An obvious benefit of
a modular system. A node should be capable of running
in a different computational environment (given that the
variables for its successfully running are present). An
actor should be able to communicate with other actors
across different geographical spaces.

The following figure illustrates actors interacting with each
other — each of which autonomously runs in it’s own process
signified by the circular arrow. Each actor has their own
attached mailbox, to which each of the actors can send
messages.

Basic actors

Each individual actor has:
• An internal state, which is only mutable by itself.
• A mailbox into which it receives messages.
• An internally accessible method for interacting with those

messages.
• An implementation of a protocol that allows it to com-

municate with other actors.
There are several components to our architectural model which
we will now (briefly) describe.

A. The Actor System

This is the logical domain for the creating and running of
actors. The system defines a namespace for actors, allowing
actors within that same system to communicate with each



other. The system is also responsible for creating the actors as
they cannot be and should not be instantiated in isolation.

B. The Actor

This is the main unit of computation. The actor defines
the means to process messages it receives, and any other
business logic associated with the work that it does. The actor
is attached to, but does not own a mailbox from which it
receives its messages. It is to be noted that it is within the
actor that the a different thread is spawned for the work to
take place. It also worthy of note that the process of spawning
new threads should be independent of the actor and as such
interchangeable, this should eventually be determined through
configuration. The actor implementation within swift will be
done in a type safe manner so that message types are defined.
This has the added advantage of predictable message handling
on the side of the Actor.

C. Mailbox

The Mailbox may also be referred to as a message queue
or a buffer attached to at least a single actor - this is
where messages are sent to, so that the actors never directly
receive messages. The Actor System is responsible for routing
messages to the given actors mailbox and the actor then picks
up the message from its attached mailbox. This is to ensure
that should an actor stop working for any reason such as
entering into an exceptional state and receiving a termination
message from its supervisor, messages that are sent to that
actor while it is shutting down are not lost and as such buffered
in the mailbox, waiting for the next actor to take control.

These architectural components are shown in the following
figure:

Basic architecture

Our general architecture owes much to the Akka Actor
implementation and affords us additional capabilities:

Actor System is the logical domain for managing actors.
The system encapsulates the addressing, routing, and any
defined protocols for actors to communicate. Two or more
actors cannot communicate with each other if they did not
belong to the same actor system. Actor systems also pro-
vide the logical scaffolding for hierarchical supervision.

Supervision Multiple supervision strategies are provided de-
scribing what actions to take to bring a system back to
operational integrity in the event of an actor failing. Often
described as an extraneous component to the model itself
- it is an integral part of modelling robustness in the
model, that we believe it should be implemented as part
of the basic platform.

Messaging The messaging stack includes dispatching, rout-
ing, mailbox management, and message recovery. It pro-
vides a dead letter box for actors that crashed or exited
with an exceptional state. The dead letter box receives
messages in escrow until another actor can be spawned
to take the place of the dead one.

Routing Provides a means to define a routing strategy. So
that given a number of actors performing the same task,
which messages should go to which actor and at what
frequency.

IV. IMPLEMENTATION

The components defined above interact with each other in
very discrete manner so that Mailboxes, Actors, and Actor
Systems can be created with significant independence. An
actor should only be created within a systems context and as
such the actor should not be constructed outside of its system.
This restriction is to ensure that the actor has all the necessary
properties to be able to communicate with other actors within
the given system.

As this work is built upon the Swift programming language,
the Grand Central Dispatch library [10] is utilised for the
MacOS implementation. An alternative implementation is pro-
vided for the open source (and platform general) version of the
language. We will concentrate on the MacOS implementation
for the description included in this paper.

The implementation consists of the following constructs
which map directly onto the features mentioned in the previous
section. As can be seen we make use of the feature of the
language to fully describe these aspects of the model.

A. ActorSystem

An extract from the interface is shown below. As can be
deduced from the protocol defined above the system protocol
is responsible for keeping track of all actors created within it,
it also keeps track of the mailboxes assigned to actors. once
actors have been removed from that system, the system also
keeps track of mailboxes that can be reassigned to actors that
are created to replace removed ones.

B. Actor

The actor has methods for “telling”, or sending messages to
other actors. The method takes a message and returns nothing.



This is the component of the actor that does the work. The
processor is invoked on a separate thread using the Dispatch
Framework [10]. The actor will continuously poll the mailbox
attached to it to ascertain whether it has messages or not. If
it does it invokes the defined processor on a separate thread
with the message it has just received from its mailbox.

C. Mailbox

This component is implemented as a simple typed queue.
A collection that accepts and provides an API for storing and
retrieving homogenous messages.

V. EXAMPLE USAGE (PI)

We revisit the Gregory-Leibniz series [9] mentioned earlier,
where the result of a series of fractions are alternatively
summed up to obtain the final result. This work can be broken
down into smaller pieces so that the combining operator is
the addition. And as addition is associative, it lends itself to
a possibility of the work being completed at different times
and returned as and when values become available. To this
end the different parts can be distributed among concurrently
running processes and finally aggregated for the final result, as
illustrated in the code below Above is a sequential calculation
of pi using the Gregory-Liebniz series; our actor based version
is the same but distributed across a number of threads. The
result is code that is easily read and understood but has the
efficiency and flexibility of a concurrent program.

VI. RELATED WORK

While our work draws principally on the ACTOR model
there are also other programming approaches we draw upon
to formulate our architecture. We will briefly describe those
in this section.

A. Concurrent ML

Is an extension, which adds concurrency capabilities to
Standard ML of New Jersey - a statically typed programming
language with an extensible type system, which supports both
imperative and functional styles of programming. CML is de-
scribed as a higher-order (sometimes referred to as functional)
concurrent language [11] designed for high performance and
concurrent programming. It extends Standard ML with syn-
chronous message passing, and similarly to CSP described
above, over typed channels [12].

B. Occam 2

Occam is an imperative procedural language, implemented
as the native programming language from the Occam model.
This model also formed the bases for the hardware chip — the
INMOS transputer microprocessor [13]. It is one of several
parallel programming language developed based on Hoare’s
CSP[8]. Although the language is a high level one, it can
be viewed as an assembly language for the transputer [13].
The transputer was built with 4 serial bi-directional links
to other transputers to provide message passing capabilities
among other transputers. Concurrency in Occam is achieved
by message passing along point-to-point channels, that is, the

source and destination of a channel must be on the same
concurrent process. This notation takes its exact meaning from
Hoare’s CSP [8]. The “?” is requesting an input from the
channel to be stored in the VARIABLE whereas “!” is sending
a message over the channel and the message is the value
stored in VARIABLE. Occam is strongly typed and as such
the channels over which messages are passed need to be typed
as well, although the type can be ANY, meaning that the
channel can allow any type of data to be transmitted over
it. An inherent limitation in Occam’s data structures is that
the only complex data type available is ARRAY.

C. Erlang

The Erlang Virtual Machine provides concurrency for the
language in a portable manner and as such it does not rely to
any extent on threading provided by the operating system nor
any external libraries. This self contained nature of the virtual
machine ensures that any concurrent programmes written
in Erlang run consistently across all operating systems and
environments.

The simplest unit is a lightweight virtual machine called a
process [14]. Processes communicate with each other through
message passing so that a simple process written to communi-
cate will look like the following start() spawns the process for
the current module with any parameters that are required. A
loop is then defined which contains directives to execute when
it receives messages of the enumerated patterns that follow.
loop() is then called so that the process can once again wait
to receive another message for processing.

D. Pony

Pony is an object-oriented, actor-model, capabilities-secure
programming language [1]. In object oriented fashion, an actor
designated with the keyword actor is similar to a class except
that it has what it defines as behaviours. Behaviours are
defined as asynchronous methods defined in a class. Using
the be keyword, a behaviour is defined to be executed at
an indeterminate time in the future[1]. Pony runs its own
scheduler using all the cores present on the host computer
for threads, and several behaviours can be executed at the
same time on any of the threads/cores at any given time,
giving it concurrent capabilities. It can also be viewed within a
sequential context also as the actors themselves are sequential.
Each actor executes one behaviour at a given time.

E. The Akka Library

Earlier versions of Scala had natively implemented actors.
Actors were part of the Scala library and could be defined
without any additional libraries. Newer versions (2.9 and
above) have removed the built in Actor and now there is the
Akka Library.

Akka is developed and maintained by Typesafe [15] and
when included in an application, concurrency can be achieved.
Actors are defined as classes that include or extend the Actor
trait. This trait enforces the definition of at least a receive



function. In the trait receive is defined as a partial function
with takes another function and returns a unit.

The function it expects is the behaviour that the developer
needs to program into the actor. This is a essentially defined
as a pattern matching sequence of actions to be taken when a
message is received that matches a given pattern.

At the heart of the Akka Actor implementation is the
Java concurrency library java.util.concurrent [16]. This library
provides the (multi)threading that Akka Actors use for con-
currency. Users of the library do not need to worry about
scheduling, forking and/or joining. This is dealt with by the
library’s interaction with the executor service and context.

F. Kotlin coroutines

Kotlin coroutines can be described as suspendable opera-
tions that can be resumed at a later time and potentially on a
different thread of execution. We believe that this model can
similarly be implemented in this language perhaps leveraging
coroutines.

VII. CONCLUSIONS AND FUTURE WORK

In this article we have briefly described the architecture and
implementation of a prototype ACTOR model implementation
for the Swift programming language. The prototype can run
actor based programs and is performant with manually writ-
ten concurrent code. We intend to enhance our system by
incorporating configuration mechanisms into the architecture
to allow for different actor systems to interoperate. We also
plan to add a remoting feature to allow actors to communicate
across platforms and virtual environments. This will enhance
the flexibility and performance of our actors.

We also plan to add an event bus, further scheduling
facilities, logging, and more monitoring capabilities. From a
professional usage viewpoint we need to determine a Quality
of Service guarantee strategy, but we intend that this process
can be determined after more extensive testing.

REFERENCES

[1] S. Clebsch. (2015, 01) The pony programming language. The Pony
Developers. [Online]. Available: http://www.ponylang.org/

[2] R. Pike, “Go at google,” in Proceedings of the 3rd Annual Conference
on Systems, Programming, and Applications: Software for Humanity,
ser. SPLASH ’12. New York, NY, USA: ACM, 2012, pp. 5–6.
[Online]. Available: http://doi.acm.org/10.1145/2384716.2384720

[3] M. Odersky, L. Spoon, and B. Venners, Programming in Scala, 2nd ed.
Artima Inc, 2011.

[4] R. Hickey, “The clojure programming language,” in Proceedings of
the 2008 Symposium on Dynamic Languages, ser. DLS ’08. New
York, NY, USA: ACM, 2008, pp. 1:1–1:1. [Online]. Available:
http://doi.acm.org/10.1145/1408681.1408682

[5] C. Hewitt, P. Bishop, and R. Steiger, “A universal modular
actor formalism for artificial intelligence,” in Proceedings of
the 3rd International Joint Conference on Artificial Intelligence,
ser. IJCAI’73. San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc., 1973, pp. 235–245. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1624775.1624804

[6] J. Reppy, Concurrent Programming in ML. Cam-
bridge University Press, 2007. [Online]. Available:
https://books.google.co.uk/books?id=V 0CCK8wcJUC

[7] P. Butcher, Seven Concurrency Models in Seven Weeks: When Threads
Unravel, 1st ed. Pragmatic Bookshelf, 2014.

[8] C. A. R. Hoare, Communicating Sequential Processes. Upper Saddle
River, NJ, USA: Prentice-Hall, Inc., 1985.

[9] J. Arndt and C. Haenel, Pi-unleashed. Springer Science & Business
Media, 2001.

[10] A. Inc. (2016) Dispatch - api reference. [Online]. Available:
https://developer.apple.com/reference/dispatch

[11] J. H. Reppy, “Cml: A higher concurrent language,” SIGPLAN
Not., vol. 26, no. 6, pp. 293–305, May 1991. [Online]. Available:
http://doi.acm.org/10.1145/113446.113470

[12] J. Reppy, C. V. Russo, and Y. Xiao, “Parallel concurrent ml,” SIGPLAN
Not., vol. 44, no. 9, pp. 257–268, Aug. 2009. [Online]. Available:
http://doi.acm.org/10.1145/1631687.1596588

[13] D. C. Hyde, “Introduction to the programming language occam,” 1995.
[14] J. Armstrong, Programming Erlang. Pragmatic Bookshelf, 2007.
[15] Typesafe. (2014, Feb.) Build powerful concurrent & distributed

applications more easily. [Online; accessed 05 Feb, 2014]. [Online].
Available: http://www.akka.io/

[16] D. Wyatt, Akka concurrency. Artima Incorporation, 2013.


