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Bootstrap Averaging for Model-Based Source
Separation in Reverberant Conditions
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Abstract—Recently proposed model-based methods use time-
frequency (T-F) masking for source separation, where the T-F
masks are derived from various cues described by a frequency
domain Gaussian Mixture Model (GMM). These methods work
well for separating mixtures recorded in low-to-medium level of
reverberation, however, their performance degrades as the level
of reverberation is increased. We note that the relatively poor
performance of these methods under reverberant conditions can
be attributed to the high variance of the frequency-dependent
GMM parameter estimates. To address this limitation, a novel
bootstrap-based approach is proposed to improve the accuracy
of expectation maximization (EM) estimates of a frequency-
dependent GMM based on an a priori chosen initialization
scheme. It is shown how the proposed technique allows us
to construct time-frequency masks which lead to improved
model-based source separation for reverberant speech mixtures.
Experiments and analysis are performed on speech mixtures
formed using real room-recorded impulse responses.

Index Terms—Gaussian mixture model, EM algorithm, boot-
strap averaging, model-based source separation, time-frequency
masking, reverberant speech mixtures, audio signal processing,
spectral histogram

I. INTRODUCTION

SOurce separation is defined as the problem of separating
multiple sources mixed through an unknown mixing sys-

tem (channel), using only the system outputs (e.g. observed
mixtures of speech). Let I denote the number of sources and
M denote the number of channels. At discrete time point
n ∈ {1, . . . , N}, the system output xm(n) at the mth channel
is a convolutive mixture of the form

xm(n) =
I∑

i=1

si(n) ∗ him(n) ∗ em(n), (1)

where ∗ denotes convolution, si(n) is the ith source, him(n)
for m = 1, . . . ,M , is the room impulse response from
source i to channel m, and em(n) denotes convolutive noise.
The choice of a convolutive noise is made for analytical
convenience as it leads to an additive term in the log-
magnitude and phase domains, [1]. For each i = 1, . . . , I ,
let si = [si(1), . . . , si(N)]T denote the source observed
at N time points, and similarly, for each m = 1, . . . ,M ,
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let xm = [xm(1), . . . , xm(N)]T denote the corresponding
mixture vector. Then the problem of source separation deals
with the estimation of the source vectors s1, . . . , sI , given the
mixture vectors x1, . . . ,xM . This problem is termed underde-
termined when the number of observed mixtures, M , is less
than the number of sources, I , that comprise the mixture.

In many real-world applications, the population may consist
of several sub-populations and a standard distribution is not
able to capture the variation over these sub-populations effec-
tively. Finite mixture1 models, as the name suggests, are exten-
sively used to model such data with a finite mixture of standard
distributions. Mixture distributions are extremely popular in
areas such as audio-signal processing, image analysis, and
geology, where they are used to model spectrograms in the
time-frequency domain. Here, the time-frequency analysis of
piecewise stationary signals allows the use of GMMs over time
frames at each frequency. We shall refer to such frequency-
specific GMMs as frequency domain GMMs. Some examples
of applications employing GMMs in the frequency domain
are [2], [3], [4] in speech signal analysis; [5], [6] in image
analysis.

Model-based blind source separation for exactly determined
and underdetermined speech mixtures such as [1], [7], [8],
[9], are more recent examples of applications in speech
analysis involving frequency-specific GMMs. These methods
have gained significant popularity due to their simple model-
based approach for integration of cues. In these methods, a by-
product of the EM algorithm, used to estimate parameters of
the frequency domain GMM, is a time-frequency (T-F) mask
that allows separation of the target source of interest from
the source of interference. These methods perform extremely
well for mixtures recorded under low-to-medium levels of
reverberation, however, their performance degrades as the
reverberation level is increased. The poor performance of such
algorithms for reverberant mixtures is attributed to inaccurate
EM estimation of the frequency-dependent GMM parameters.
More generally, this is due to the absence of an explicit
model for reverberation. In addition to this, the frequency
domain GMM in these algorithms, [1], [7], [8], relies on the
assumption of the cues being independent. As noted in [8,
sec. III.A], this assumption of the cues being independent
does not hold in practice and is used as a convenient way
to make the problem of source separation tractable. Overall,
this results in a misspecified mixture model, leading to EM
estimates with a very high variance. We show how better EM
estimates of the target source parameters can be obtained using

1Note that the term ‘mixture’ here refers to a mixture of distributions and
not a mixture of sources.
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the proposed bootstrap-based procedure to improve model-
based source separation from reverberant speech mixtures. Our
method is described for a univariate GMM in the frequency
domain. Note that this does not require the observed time
domain sample to be univariate, for example, as in the source
separation algorithm of [1], where a univariate frequency do-
main GMM is constructed by transforming a two-dimensional
vector observation of speech mixtures.

Bootstrap methods are commonly used to draw inference on
statistics of interest when no theoretical results are available, or
when inference based on theoretical results is computationally
intractable, such as to obtain standard errors and confidence
intervals, [10]. Non-traditional applications of bootstrap which
show how it can also facilitate a more robust statistical analysis
are found, e.g., in machine learning to improve the forecast
accuracy of models selected by unstable decision rules, [11], as
well as in the area of pattern analysis where it is applied to the
problem of fitting ellipse segments to noisy data to eliminate
bias in the ellipse estimates [12]. The use of bootstrap for
EM estimates of a frequency-dependent GMM, or to improve
source separation performance as shown in our work, to the
best of our knowledge, has never been mentioned in the
literature and is the contribution of this paper. We would like to
point out that the proposed idea of bootstrap averaging is very
well-suited to the above mentioned source separation problem
since the GMM appears in the frequency domain, and hence
can be bootstrapped indirectly using the sample in the time
domain, details of which are provided in this paper. Results
from a set of preliminary experiments using this approach were
presented in [13].

More recently, there has been a growing interest in tech-
niques employing non-negative matrix factorization (NMF)
and deep neural networks (DNN) to the problem of source
separation. The idea with NMF for multichannel source sep-
aration, e.g. [14], is to model the power spectrogram of each
source in the T-F domain as a product of two non-negative
matrices. Then modeling the short-time-Fourier transform
(STFT) of each source as the sum of a finite number of
latent Gaussian components, an EM implementation and a
multiplicative update (MU) approach have been proposed to
estimate the matrix factors (determining the variance of the
Gaussian components) as well as the unknown convolutive
mixing matrix. An NMF and spatial covariance model has
also been studied for underdetermined source separation under
reverberant conditions [15]. This is based on the EM algorithm
for estimation of the model parameters and the authors note the
sensitivity of their estimates to parameter initialization as well
as degrading performance with increasing reverberation times.
Another formulation for multichannel NMF described in [16],
clusters the NMF bases according to their spatial properties.
DNNs have been used to separate sources from binaural
mixtures under reverberation via a binary classification, e.g.
[17] and related work by [18], or using a probabilistic time-
frequency mask, e.g. [19]. The latter approach integrates
binaural cues following the model-based method of [8]. A
multichannel source separation method is described in [20].

DNN based approaches are supervised methods that need
training data sets, which may not always be available. Model-

based approaches such as [1], [9], [8] considered in this paper
as well as NMF methods for source separation allow the
inclusion of spatial and spectral cues; do not require training
data and are easier to deploy in unfamiliar environments.
Noting these points, it is of interest to study improvements
that can be achieved with such model-based methods and are
the subject of this paper. Our approach is illustrated using
the method of [8] and can also be adapted, for example, to
improve the NMF-based multichannel source separation of
[14], as discussed in section VIII.

A. Contributions and organization

Following some background and notation on GMMs and
their EM estimation, the contributions of this paper are pre-
sented as follows:

1) The proposed idea of bootstrap averaging is described in
section III. A simulation example to illustrate the case
of sub-optimal EM estimates and the use of averaging to
reduce the mean-squared-error is discussed. This experi-
ment shows the benchmark improvement (measured via
MSE) that may be achieved via the proposed method in
an ideal set-up (without bootstrapping).

2) Model-based source separation focusing on the forms of
frequency domain GMMs that appear in such applications
is described in section IV.

3) Bootstrap averaging for the source separation algorithm
of [8] is presented in section V. Simulation experiments
using speech mixtures formed with real room-recorded
impulse responses are included in section VI.

4) A further in-depth analysis to understand overall improve-
ments in model-based source separation via the proposed
methodology is provided in section VII.

II. BACKGROUND AND NOTATION

Let G ≡ {gY |j(y|λj), j = 1, . . . , d} denote a set of
d probability density functions, each with parameter vector
λ1, . . . ,λd, respectively. Let y1, . . . , yK denote a length-K
sample from a scalar-valued random process Y , such that each
observation of the length-K sample arises from one of the d
density functions in G. For j = 1, . . . , d, let Zj(y) denote an
indicator variable which takes the value one if observation y
comes from the jth component density gY |j(y|λj). Consider
the case where Zj(y) is not observed for y ≡ y1, . . . , yK ,
i.e., the membership of yi for i = 1, . . . ,K in one of the d
components is unknown. Then, the probability density function
of Y , denoted as gY (.) is obtained by marginalizing the joint
density of Y and Zj over the latent variable Zj , as

gY (y|Λ,w) =

d∑
j=1

gY |Zj
(y|zj)gZj (zj) =

d∑
j=1

gY |j(y|λj)wj ,

(2)
where gZj (zj) = wj is the probability of the observed y
arising from the jth component density with parameter λj .
Thus, the weights are non-negative and satisfy the condi-
tion w1 + . . . + wd = 1. On the left hand side of (2),
w denotes the vector of weights w ≡ [w1, . . . , wd]

T and
Λ ≡ [λT

1 , . . . ,λ
T
d ]

T is the vector of density parameters. So for
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a mixture of d Gaussian distributions with mean and variance
parameters denoted using µ, σ2, we have λj = [µj , σ

2
j ]

T and
Λ = [µ1, σ

2
1 , . . . , µd, σ

2
d]

T . Equation (2) denotes a weighted
mixture of component densities gY |j(y,λj), j = 1, . . . , d
with weights w1, . . . , wd, respectively [21]. If the component
densities gY (y|λj) are Gaussian, then (2) takes the form

gY (y|Λ,w) =
d∑

j=1

gY |j(y|µj , σ
2
j )wj , (3)

where gY |j(y|µj , σ
2
j ) denotes the Gaussian probability density

function with mean µj and variance σ2
j .

A. EM estimation

Let Ψ denote the vector of all unknown parameters of
the GMM, i.e. Ψ = [w1, . . . , wd−1, µ1, . . . , µd, σ

2
1 , . . . , σ

2
d]

T ,
and let Ω denote the parameter space for Ψ. The problem
of maximum likelihood estimation of the parameters in Ψ is
formulated as an incomplete data problem, where the observed
vector y = [y1, . . . , yK ]T ∈ RK is viewed to be incomplete
since the corresponding component labels are not available.

For each i = 1, . . . ,K, let zi = [z1(yi), . . . , zd(yi)]
T

denote the length-d vector of indicator variables where the
index of its non-zero entry indicates the component to which
the ith observation yi belongs. Let yC = [y,Z], with Z =
[zT1 , . . . , z

T
K ]T ∈ {0, 1}K×d, denote the complete-data matrix.

The EM algorithm forms the log-likelihood function LC(Ψ)
based on the complete-data yC as,

logLC(Ψ) =
K∑
i=1

d∑
j=1

zij{log g(yi|µj , σ
2
j ) + logwj}, (4)

where zij = (zi)j , and circumvents the problem of unobserved
component-labels by working iteratively with the conditional
expectation of the complete-data log-likelihood given the
observed sample vector y. More specifically, the E-step com-
putes: Q(Ψ|Ψ̂

(m)
) = E(LC(Ψ)|y, Ψ̂

(m)
), using the fit Ψ̂

(m)

at the mth iteration. The M-step on the (m + 1)th iteration
involves computing the global maxima of Q(Ψ|Ψ̂

(m)
) w.r.t

Ψ over the parameter space Ω to get the updated estimate
Ψ̂

(m+1)
, [22]. The EM algorithm is initialized with parameter

values in Ψ(0) and subsequently the iterative E- and M-
steps are alternated repeatedly until the difference between
the observed data log-likelihood function L(Ψ) computed at
Ψ(m+1) and Ψ(m) changes by a small amount, i.e. stop at
stage m when ∣∣∣∣∣L(Ψ(m+1))

L(Ψ(m))
− 1

∣∣∣∣∣ < ϵ, (5)

where ϵ denotes the desired tolerance, [22]. The EM algorithm
is sensitive to the choice of starting values or initialization, and
therefore it is important to use robust initialization schemes,
[23], [22]. For our experiments in the next section, we use the
search/run/select (S/R/S) initialization scheme of [23] which
is known to perform well in practice. The three step strategy is
to first (i) search for p initial positions, for example based on
random starts using an EM run; next, (ii) run the EM algorithm

at each initial position for a fixed number of times, say L; and
finally (iii) select the solution that provides the best likelihood
among all the L× p trials.

III. THE PROPOSED METHOD

We propose a bootstrap averaging approach where for
each GMM parameter, the EM estimates (based on the a
priori chosen initialization scheme) computed from bootstrap
replicates of the observed sample are averaged to reduce the
variance, while leaving their bias unchanged.

Let y = [y1, . . . , yK ]T denote a length-K sample obtained
by independently drawing samples from the probability dis-
tribution FY . Let θ̂(y) ≡ θ̂ denote a scalar-valued statistic of
interest derived from y. Consider the averaged estimator

θ̂A(B) =
θ̂1 + . . .+ θ̂B

B
, (6)

based on B samples y1, . . . ,yB from Fy, with the bth
estimate θ̂b derived from the bth length-K sample yb =
[yb,1, . . . , yb,K ]T . Then the bias and variance of θ̂A, are given
by

BIAS(θ̂A) = E(θ̂A)− θ

=
1

B
[BIAS(θ̂1) + . . .+ BIAS(θ̂B)]

= BIAS(θ̂); (7a)

VAR(θ̂A) =
1

B2

 B∑
j=1

VAR(θ̂j) +
B∑

j,k=1
j ̸=k

Correlation(θ̂j , θ̂k)

 .
(7b)

Then if θ̂1, . . . , θ̂B are pairwise uncorrelated, we get

VAR(θ̂A) =
VAR(θ̂)
B

. (8)

Thus, on averaging, under the pairwise uncorrelated assump-
tion, the bias remains unchanged whereas the variance is re-
duced. Since MSE(θ̂A) = {BIAS(θ̂A)}2+VAR(θ̂A), it follows
that MSE(θ̂A) ≤ MSE(θ̂). This provides motivation for the
averaged estimator θ̂A, when θ̂ is known to have a small bias
but high variance.

In practice, the underlying distribution of the observed
sample is unknown. We propose the idea of constructing
the averaged estimator by bootstrapping the given sample
y to obtain bootstrap samples y∗

1, . . . ,y
∗
B , from which the

corresponding bootstrap estimates θ̂∗1 , . . . , θ̂
∗
B can be derived.

Then, we define the bootstrap sample version of (6) as

θ̂∗A(B) =
θ̂∗1 + . . .+ θ̂∗B

B
. (9)

The bootstrap samples are easily generated to be indepen-
dent of each other, however, the corresponding estimates
θ̂∗1 , . . . , θ̂

∗
B , may be correlated. Since the correlation term in

(7b) is weighted by a factor of 1/B2, choosing a bootstrap
size B such that the sum of pairwise correlations is negligible
in comparison to B, is sufficient for a reduction in the variance
of the estimate. This leads to

BIAS(θ̂∗A) =
1

B
[BIAS(θ̂∗1) + . . .+ BIAS(θ̂∗B)], (10a)
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VAR(θ̂∗A) =
1

B2
[VAR(θ̂∗1) + . . .+ VAR(θ̂∗B)]. (10b)

Note that BIAS(θ̂∗j ) = E(θ̂∗j ) − θ for any j = 1, . . . , B,
approximates BIAS(θ̂) = E(θ̂)−θ, with the expectation taken
over the bootstrap distribution of θ̂ rather than its theoretical
distribution. Thus, under an appropriately chosen bootstrap
method for θ̂ [10], (10a) and (10b) imply that

BIAS(θ̂∗A) ≈ BIAS(θ̂), (11a)

and similarly,

VAR(θ̂∗A) ≈
1

B
[VAR(θ̂)], (11b)

so that MSE(θ̂∗A) ≤MSE(θ̂). This shows that assuming an
appropriate bootstrap method based on a sufficiently large
number of bootstrap samples B, a smaller mean squared error
estimate can be achieved by using the bootstrap averaged
estimator θ̂∗A(B) given by (9). Note that the main motivation
for proposing the bootstrap averaged EM estimator is the sub-
optimal nature of EM estimates of GMMs used to approximate
structure in the frequency domain, providing scope for further
improvement.

Since our interest in this paper lies in frequency do-
main GMMs, we prescribe a fast circulant embedding based
procedure [24, Chapter 7], [25], which has the ability to
correctly mimic the underlying dependence structure in the
frequency domain. Details of the bootstrap procedure for use
with frequency domain GMMs arising in model-based source
separation are provided in section VI.

A. A Simulation Example

To get an indication of the scope of improvement via
the averaging approach, we consider the averaged estimate
θ̂A(B) given by (6), computed from B randomly generated
realizations, without bootstrapping. We illustrate the case of
high variance EM estimates using a misspecified GMM and
show how the averaged estimator provides a smaller MSE.
For simplicity, we work with EM estimates of realizations
generated from a GMM in the time domain– a term used in
the rest of the paper to refer to any GMM not in the frequency
domain.

We consider a mixture of two Gaussian distributed random
variables where each component is generated from an autore-
gressive process of order one, denoted AR(1), i.e.

yt = ϕjyt−1 + ϵj,t, j = 1, 2, (12)

where ϵj,t ∼ N (0, σ2
ϵ,j) is the error term and ϕj denotes the

AR coefficient, corresponding to the jth component of the
Gaussian mixture. Then, clearly for each j = 1, 2, the true
component means µj = E(ϵj) = 0 and the true component
variances σ2

j = σ2
ϵ,j/(1 − ϕj

2). Now from eqn. (12), it
follows that (yt − ϕjyt−1)/σϵ,j is distributed as a standard
normal random variable. Thus, conditional on the history of
the process till time t − 1, denoted as Ft−1, the cumulative
distribution function (cdf) of yt is given by

F (yt|Ft−1) =
d∑

j=1

Φ

(
yt − ϕjyt−1

σϵ,j

)
wj , (13)

where Φ(.) denotes the cdf of the standard normal distribution.
Following the notation in section II-A, let y = [y1, . . . , yK ]T

denote a length-K GMM sample obtained using (12) with
Z = [zT1 , . . . , z

T
K ]T ∈ {0, 1}K×d as the indicator variable

denoting the mixture component to which each yi belongs,
and Ψ = [w1, ϕ1, ϕ2, σϵ,1, σϵ,2]

T as the vector of all unknown
parameters. We write the log-likelihood function LC(Ψ) based
on the complete data yC = [y,Z] as

logLC(Ψ) =

K∑
i=2

{ d∑
j=1

zij log(wj)−
d∑

j=1

zij log(σϵ,j)−

d∑
j=1

zij
(yt − ϕjyt−1)

2

2σ2
ϵ,j

)

}
, (14)

where zij = (zi)j is the jth entry of zi. Again, the EM algo-
rithm can be used to obtain the unknown parameters. Note that
the formulation described above appropriately standardizes the
AR component to take the dependence across time points into
account. This is in contrast to a standard GMM where sam-
ples for each mixture component are independently Gaussian
distributed. To understand the improvement via averaging, a
simple simulation study is performed as described below. The
main steps of our simulation study are as follows:

(i) We first simulate (e.g. [22]) a length-K realization
y = [y1, . . . , yK ]T from a d = 2-component GMM
with w = [1/2, 1/2], where each component follows an
AR(1) model with coefficients ϕ1 = 0.3, ϕ2 = 0.8, and
noise variances σ2

ϵ,1 = 2.25, σ2
ϵ,2 = 7.84.

(ii) Given y and the number of components d = 2, the
EM algorithm is used to estimate parameters of the
GMM. We used Biernacki’s search/run/select initializa-
tion strategy, first searching for p = 5 initial positions
using a short EM run with tolerance in eqn. (5) fixed
at ϵ = 10−2, each based on random starts initialized
using the sample mean and variance of y, see e.g. [22,
p. 55]. Next, starting at each of these p initial positions,
we ran short EM runs repeatedly for L = 20 times with
tolerance ϵ = 10−5. Of all the p×L = 100 solutions, the
one corresponding to the highest likelihood was chosen
as the starting point for the final long EM run for which
we fixed ϵ = 10−10.

(iii) Next, we repeat steps (i) and (ii) above, for a fixed
number of times say B, to generate time series sam-
ples y1, . . . ,yB and the corresponding EM estimates
θ1, . . . , θB , for each GMM parameter θ ∈ Ψ. A conse-
quence of the non-identifiability of GMMs is the permu-
tation of component labels of the estimated parameters
[22]. Consequently, for each parameter, the set of d
component parameter estimates are sorted consistently
across all B replications, before averaging. In our exam-
ple, estimated means of the two components are very
close to each other (due to the true means fixed to
zero), however there is a large difference between the
estimated variances (due to σ2

1 << σ2
2), which gives us

the permutation that allows us to consistently order the
estimated means and weights for each replication, before
averaging to construct θ̂A(B).
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(iv) The MSEs of these estimates are computed over R Monte
Carlo iterations, i.e. steps (i)-(iii) are repeated R times,
subsequently we compute

MSE(θ̂) =
1

R

R∑
r=1

(θ̂(r)−θ)2;MSE(θ̂A) =
1

R

R∑
r=1

(θ̂
(r)
A −θ)2,

where the superscript .(r) denotes the estimate at the rth,
r = 1, . . . , R, Monte Carlo iteration, and dependence of
θ̂A on B (fixed) is suppressed.

Our study is based on R = 500 Monte Carlo iterations.
Before a MSE comparison, we draw attention to Fig. 1 which
displays the true component variances σ2

j (solid line) and a
subset of the corresponding EM estimates σ̂2(r)

j (dotted) and
averaged estimates σ̂2(r)

A,j (B) (dashed) for a subset of Monte
Carlo iterations with lengths K = 600 ((a) and (b)) and
K = 1200 ((c) and (d)), respectively. The high variation in EM
estimates of component variances, particularly for σ̂2

2 (note
the difference in scale on the y-axis) is clearly visible. This
is due to our simulation design where components of each
Monte Carlo realization are generated from an AR model,
imposing dependence structure in time which is completely
ignored when fitting a standard GMM to these realizations.
As expected, the averaged estimates σ̂2(r)

A,j (B) have little or
no variation and are very closely aligned with the true values
in each case. This is reflected in a comparison of the MSE of
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2
(r
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2
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Fig. 1. The true GMM variance parameter values (solid) in comparison with
the EM estimates (dotted) and averaged estimates (dashed) using B = 200.
The subplots display component variance estimates of the form σ̂

2(r)
j across

a subset of Monte Carlo iterations indexed using r (as in the text) for (a)
j = 1, K = 600, (b) j = 2, K = 600 , (c) j = 1, K = 1200, and (d)
j = 2, K = 1200.

the EM estimates θ̂ with the MSE of the averaged estimates
θ̂A(B), for example, as shown for the component variances
in Table I. This table displays the ratios of MSE, precisely:
{MSE of σ̂2

A,j} /{MSE of σ̂2
j }, for j = 1, 2. We see that as

the sample size is increased from K = 600 to K = 1200,
the reduction in MSE of the EM estimate of σ2

1 via averaging
approaches 0.0055. This follows from eqns. (7a) and (8) which
imply that

MSE(θ̂A)

MSE(θ̂)
=

{BIAS(θ̂A)}2 + 1
B VAR(θ̂)

{BIAS(θ̂)}2 + VAR(θ̂)
≈ 1/B = 0.0050,

with B = 200, when the bias in θ̂ is close to zero and as
BIAS(θ̂A) = BIAS(θ̂). On the other hand, when the bias is
away from zero, the ratio will contain contribution from both
the bias and the variance terms and we shall not expect the
ratio to be around 0.0050. This is what we observe for σ2

1 when
K is small, and for all K’s in the case of σ2

2 . This is because of
the small bias in the parameter estimates of the first component
in comparison to the second component. This is exactly what
we expect as the first component is generated using an AR(1)
model with AR coefficient ϕ1 = 0.3 imposing significantly
weaker dependence in comparison to the relatively stronger
dependence due to ϕ2 = 0.8 used to generate the second
component of the GMM. Of course, in practice when the
true model is unknown, bootstrap will be used and relatively
larger MSE ratios will be observed. The results in Table I
show the benchmark improvement that may be achieved over
EM estimates via averaging.

TABLE I
RATIO OF THE MSE OF θ̂A TO THE MSE OF θ̂ (EM), FOR θ ∈ {σ2

1 , σ
2
2}.

K MSE(θ̂A)/MSE(θ̂)
σ2
1 σ2

2
600 0.0061 0.0181
800 0.0065 0.0160
1000 0.0063 0.0137
1200 0.0055 0.0116

Our experiments show that in the case of a misspecified
GMM, EM estimates based on a robust initialization strategy
can still be very unstable leading to estimates with high
variance. We see that in such cases, the averaging approach can
lead to estimates with relatively smaller MSE. For simplicity
and convenience, we have simulated this scenario in the time
domain. In practice, it shall find applications in the frequency
domain, as illustrated via the source separation application in
the remaining part of the paper. Our simulation experiments
in section VI show that the proposed methodology works for
EM estimates of the frequency domain GMM.

IV. SOURCE SEPARATION

Our focus is on exactly determined and underdetermined
source separation for speech mixtures using the model-based
approaches involving frequency domain GMMs. Model-based
methods often achieve underdetermined source separation by
relying on the assumption that any two distinct speech sources
are disjoint in the T-F domain, formally, known as the W-
disjoint orthogonality (WDO) condition [26]. This assumption
reduces the source separation problem to identifying the domi-
nant source at each T-F point. Since the WDO condition is only
approximately true in a reverberant environment, probabilistic
methods using statistical models for a chosen set of cues, [1],
[8], [9], are considered more suitable than the binary approach
[27].

A common feature of the probabilistic methods is that given
an observed speech mixture, the overall likelihood for cue
model parameters takes the form of a partially observed fre-
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quency domain GMM, which must be estimated. We provide
the exact forms of such frequency domain GMMs below.

A. Model-Based EM Separation

Let x(n) = [x1(n), x2(n)]
T denote a two-channel mixture

vector, where components x1(n) and x2(n) are formed by
convolutions of the form (1). Here we focus on the two-
channel or the binaural case (M = 2) as in [1] and [8], and
use their notation with l(n) ≡ x1(n) and r(n) ≡ x2(n), so
that x(n) = [l(n), r(n)]T . Suppose that the speech mixture is
observed at N time points, then let l = [l(1), . . . , l(N)]T , and
r = [r(1), . . . , r(N)]T denote components of the observed
binaural mixture with L = [L(ω, t)] ∈ CW×T and R =
[R(ω, t)] ∈ CW×T denoting their STFT matrices, respectively.
Here ω and t denote the frequency bin and time frame indices,
respectively; W denotes the number of frequency bins and T
denotes the number of time frames.

The method proposed in [9] (not limited to two-channels)
performs classification of the T-F points into one of the I
classes (or I sources) based on the mixing vector (cue) in
the T-F domain, i.e. X(ω, t) = [L(ω, t), R(ω, t)]T for each
(ω, t) pair in a frequency bin-wise manner. This is done by
employing a complex Gaussian density function for X(ω, t)
for each ω, i.e. p(X(ω, t)|ai(ω), σ2

i (ω)) ∼ NC(ai(ω), σ
2
i (ω))

where ai(ω) is the mean vector (of the left and right speech
mixture components) with ||ai(ω)|| = 1 and σ2

i (ω) denotes
the common variance. Then the density of X(ω, t) ≡ X(t) (ω
fixed) is given by

p(X(t)|θ) =
I∑

i=1

βi(ω)p(X(ω, t)|ai(ω), σ2
i (ω)), (15)

where θ ≡ (a1(ω), σ1(ω), β1(ω), . . . ,aI(ω), σI(ω), βI(ω)) is
the parameter set and βi(ω) is the fraction of T-F points that
belong to class i ∈ {1, . . . , I}, so that 0 < βi(ω) < 1,
and

∑I
i=1 βi(ω) = 1. Clearly, the above equation represents

a complex-valued, I-component GMM with weights βi(ω),
M = 2 dimensional mean vector ai(ω) and variance σ2

i (ω).
The E-step computes p(Ci|X(ω, t),θ) where Ci denotes the
ith class, for each i = 1, . . . , I and ω. Then a binary T-F
mask is derived by identifying the dominant source based on
a comparison of probabilities p(Ci|X(ω, t),θ) for source i
with probabilities p(Cj |X(ω, t),θ) for source j, i ̸= j, at
each (ω, t).

The method proposed in [1] works with the interaural
spectrogram which is given by the ratio of L(ω, t) to R(ω, t),
and can be expressed as

L(ω, t)

R(ω, t)
= 10α(ω,t)/20eiϕ(ω,t), (16)

in terms of the interaural level difference (ILD) denoted by
α(ω, t), and the interaural phase difference (IPD) ϕ(ω, t)
and where i denotes the unit imaginary number. Gaussian
distributions are found appropriate for both α(ω, t) and ϕ(ω, t)
and the corresponding densities are chosen to be of the
form p(α(ω, t)|µi(ω), η

2
i (ω)) ∼ N (α(ω, t)|µi(ω), η

2
i (ω)) and

p(ϕ(ω, t)|ξiτ (ω), γ2iτ (ω)) ∼ N (ϕ(ω, t)|ξiτ (ω), γ2iτ (ω)). Then,
assuming that T-F points from the same source and at the

same delay τ are independently distributed, the joint density
function of α(ω, t) and ϕ(ω, t) is expressed as

p(ϕ(ω, t), α(ω, t)|Θiτ ) = p(ϕ(ω, t)|ξiτ (ω), γ2iτ (ω))
.p(α(ω, t)|µi(ω), η

2
i (ω))

.p(i, τ), (17)

where p(i, τ) ≡ ψiτ is the joint probability of any T-F point
being in source i at delay τ ∈ T , where T denotes the set of
admissible values for delay τ . Let Θ = [Θiτ ; i = 1, . . . , I; τ ∈
T ] where Θiτ = {ξiτ (ω), γiτ (ω), µi(ω), ηi(ω), ψiτ} denote
the complete parameter set. Then, the total probability density
is given by

p(ϕ(ω, t), α(ω, t)|Θ) =
∑
i,τ

p(ϕ(ω, t), α(ω, t)|Θiτ )

=
∑
i,τ

ψiτ{p(α(ω, t)|µi(ω), η
2
i (ω))

.p(ϕ(ω, t)|ξiτ (ω), γ2iτ (ω))}, (18)

which clearly represents a real-valued GMM with one Gaus-
sian per (i, τ) combination and mixing weights ψiτ , given the
assumed Gaussian distributions for the ILD and IPD. Again,
the EM algorithm is implemented to estimate the unknown
parameters in Θ. Here initializations for parameter estimation
via the EM algorithm are chosen informatively as discussed
in [1], with the main objective of achieving the best possible
local maximizer and in order to avoid spurious estimates.

The iterative E-step computes the conditional probability of
the spectrogram point (ω, t) coming from source i and delay
τ , given the observed interaural cues ϕ(ω, t) and α(ω, t) and
the current Θ, i.e.,

p((ω, t) ∈ (i, τ)|ϕ(ω, t), α(ω, t),Θ) ≡ νiτ (ω, t), (19)

using which MLEs of the unknown parameters are calculated
in the M-step, [1, eqn. (18)]. Repeated iterations of the E-
and M-steps are performed to obtain final estimates of the
parameters, and subsequently νiτ (ω, t) in the final E-step
is computed using (19). Clearly, summing νiτ (ω, t) over all
possible delays τ gives the probability of the ith source being
dominant at the time-frequency point (ω, t). Therefore, for
each source i, a probabilistic T-F mask denoted as Mi =
[Mi(ω, t)] ∈ [0, 1]W×T is computed as,

Mi(ω, t) =
∑
τ

νiτ (ω, t), (20)

which allows estimation of the I source vectors of interest
from the observed binaural mixtures.

Recently, [7], [8] combined the mixing vector model
of [9] with the ILD and IPD models of [1] to per-
form source separation based on the combined set of pa-
rameters denoted as Γ = [Γiτ , i = 1, . . . , I; τ ∈ T ]
with Γiτ = {ai(ω), σi(ω), ξiτ (ω), γiτ (ω), µi(ω), ηi(ω), ψiτ}.
Here the total probability density for a given (ω, t) i.e.∑

i,τ p(ϕ(ω, t), α(ω, t),X(ω, t)|Γiτ ) is a GMM of the form∑
i,τ

ψiτ{p(α(ω, t)|µi(ω), η
2
i (ω)).p(ϕ(ω, t)|ξiτ (ω), γ2iτ (ω))

.p(X(ω, t)|ai(ω), σ2
i (ω))}. (21)
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The initialization strategy from [1] is easily adapted to deal
with the additional mixing vector cue as discussed in [8,
sec. V]. Subsequently, the EM algorithm is used to derive a
probabilistic T-F mask. It is shown that the probabilistic mask
obtained as a result of this joint model leads to improvements
in separation performance measured by SDR over the methods
of [1] and [9]. We use this joint model of [8] to study improve-
ment via the proposed bootstrap averaging approach. Here,
our main objective is to show how the proposed bootstrap
averaging technique can be implemented to improve the EM
estimates of frequency domain GMM appearing in [8], and
to improve the source separation performance for reverberant
mixtures.

V. BOOTSTRAP AVERAGING FOR SOURCE SEPARATION

To immediately illustrate the need for improvement in EM
estimates of the frequency domain GMM arising in the source
separation algorithms described above, a comparison of the
EM estimates of the ILD mean parameter µ̂(ω) computed
using the algorithm of [8] with the ground-truth values µ(ω)
is provided in Fig. 2. It displays the ground-truth ILD mean
(black) and its EM estimate (grey) for two-source binaural
mixtures formed by convolving two randomly chosen speech
signals from the TIMIT data set with impulse responses
measured by Hummersone [28] under anechoic (Room A) and
reverberant conditions (Room D with RT60 = 0.89s), with the
two sources placed at 0◦ and 30◦ (further details are provided
in section VI). The top row of the plot corresponds to (a)
µ1(ω) – the ILD mean for s1, and (b) µ2(ω) – the ILD
mean for s2, for the anechoic mixture; subplots (c) and (d)
similarly correspond to the ILD mean for s1 and s2 in the
reverberant room. Clearly, the estimated ILD mean follows the
ground truth ILD very closely for the anechoic case, especially
for source 2 (Fig. 2(b)). On the other hand, we see large
variation in the EM estimates of the ILD mean parameter,
[8] in the reverberant case. In this section, we describe the
bootstrap averaging algorithm to yield improved estimates of
the frequency domain GMM parameters (in Γ) employed in
the framework of [8].

A convenient way to bootstrap the frequency-dependent
GMM parameter estimates is to bootstrap the observed mixture
vector

x =
[
x(1) . . . x(N)

]
=

[
l(1) . . . l(N)
r(1) . . . r(N)

]
to obtain time domain bootstrap samples, denoted as
x∗
1, . . . ,x

∗
B from which bootstrap estimates of the cue model

parameters can be obtained directly using the algorithm of [8].
Since model-based source separation relies on the interaural
spectrogram derived from the speech mixture vector, it is
important to use a bootstrap procedure that appropriately
mimics the frequency domain dependence in the given sample.
Bootstrap samples of the mixture vector are obtained using the
circulant embedding based approach of [25]. The basic idea in
[25] is to generate portions of realizations with spectral density
given by an estimated spectral density derived from the ob-
served vector-valued time series via circulant embedding. The
procedure of [25] is easily implemented using a FFT which
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Fig. 2. The mean ILD estimates µ̂i(ω) (solid grey) from the joint model of
[8] vs. frequency (kHz) in an anechoic environment for (a) i = 1 and (b)
i = 2; and a reverberant (Room D, RT60 = 0.89s – see sec. VI for further
details) room environment for (c) i = 1 and (d) i = 2. The solid black line in
each subplot shows the ground-truth ILD mean (dB) µi(ω). Sources s1 and
s2 chosen from the TIMIT data set were placed at φ = 0◦, and φ = 30◦,
respectively.

makes it computationally efficient and hence very attractive
for our application where the length-N of the observed speech
mixtures is usually very large.

Consider a bivariate discrete time second-order stationary
process Vt = [Xt, Yt]

T , where t ∈ Z denotes the time
index. Without loss of generality, assume that each component
process has a mean of zero. Given a length-N realization
V1, . . . ,VN from the vector process Vt, the following boot-
strap algorithm [25], allows us to generate bootstrap time
series samples.

Bootstrap algorithm:

1) Choose the embedding size m1 > 2(N − 1) such that
m1 = 2g for some g ∈ Z+. Estimate the spectral
matrix ŜV(fl), fl = l/(m1∆) , l = 0, 1, . . . ,m1 − 1,
with ∆ denoting the sampling interval, using one of
the recommended spectral estimation methods [25], such
as multitaper, Welch’s Overlapped Segment Averaging
(WOSA) etc.

2) Set λl = ŜT
V(fl)/∆, l = 0, . . . ,m1 − 1. For each l =

0, . . . ,m1−1, determine the 2×2 unitary matrix Ul and
the diagonal matrix Dl such that λl = UlDlU

H
l , where

.H denotes conjugate transpose.
3) Simulate two real bivariate independent standard normal

vectors Z(α)
l ∼ N(0, I2);α = 1, 2, and set Cl =

UlD
1/2
l (Z(1)

l + iZ(2)
l ).

4) Define Ṽj = m
−1/2
1

∑m1−1
l=0 Cle

−i2πlj/m1 , j =
0, . . . ,m1 − 1, which can be computed easily via an
FFT. Then for each j, Ṽj is a complex-valued bivariate
vector. Re{Ṽn}, n = 0, 1, . . . , N − 1 and Im{Ṽn}, n =
0, 1, . . . , N − 1 are two independent length-N bootstrap
replications.

Remark: The consistency of the spectral estimators allowed for
this algorithm [29, p. 785] guarantees that asymptotically these
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bootstrap samples have the specified second-order structure.
This has also been verified empirically, [24].

Note that most of the existing bootstrap procedures are
only applicable to second-order stationary data. Since short
segments of speech (30− 50ms) are considered to be second-
order stationary [30], we shall apply the bootstrap procedure to
short segments of the observed speech mixture. The algorithm
for bootstrap-based source separation under the model-based
framework of [8] is outlined below.

(i) Divide x ≡ [x(1), . . . ,x(N)] into adjacent pseudo
second-order stationary blocks of length-Ñ . The jth
block is given by

zj = x(2− j + (j − 1)Ñ : 1 + j(Ñ − 1));

j = 1, . . . , Nb, where Nb denotes the number of blocks
required to cover the full length-N of x. For each j, zj
is a matrix of size 2× Ñ .

(ii) For each block zj , implement the bootstrap algorithm
of [25] (given above), to generate B bootstrap samples,
each of length Ñ − 1 (to avoid generating the end point
twice due to adjacent blocks). So for the jth block,
j = 1, . . . , Nb, obtain z∗j,b, b = 1, . . . , B. For each block,
the algorithm of [25] is implemented with the multitaper
spectral estimation technique, which for a given length-
Ñ bivariate time series z is a 2× 2 matrix given by:

Ŝz(ω) =
∆

P

P∑
p=1


∣∣∣∣∣∣

Ñ∑
n=1

un,pz(n)e
−i2πωn∆

∣∣∣∣∣∣
2
 , (22)

where |ω| ≤ 1/(2∆), and {un,p}Ñn=1 is the pth data
taper. Tapering prevents the spectra from the problem of
leakage and the application of P orthogonal data tapers
as in the multitaper approach leads to a consistent spec-
tral estimate [31]. Then the bth full length-N bootstrap
sample for x is given by

x∗
b =

[
z∗1,b . . . z∗Nb,b

]
2×N

,

and x∗
1, . . . ,x

∗
B are the B bootstrap samples.

(iii) The source separation algorithm of [8] is applied
to each of the B bootstrap samples x∗

1, . . . ,x
∗
B , in-

dividually. This leads to B bootstrap estimates for
each parameter in Γiτ . For each i and τ , let
Γ∗
iτ,1, . . . ,Γ

∗
iτ,B denote the bootstrap parameter set

where Γ∗
iτ,b = {a∗i,b(ω), σ∗

i,b(ω), ξ
∗
iτ,b(ω), γ

∗
iτ,b(ω),

µ∗
i,b(ω), η

∗
i,b(ω), ψ

∗
iτ,b} contains model parameter esti-

mates derived from the bth bootstrap sample x∗
b . This

is used to construct the bootstrap averaged estimates for
each frequency dependent parameter.

(iv) The algorithm of [8] allows us to compute bootstrap T-F
masks M∗

i,b = [M∗
i,b(ω, t)] ∈ [0, 1]W×T corresponding

to the bootstrap estimates of GMM parameters in Γ∗
iτ,b

using each of the b = 1, . . . , B bootstrap replications.
The averaged bootstrap T-F mask given by M∗

i,A =
[M∗

i,A(ω, t)] where

M∗
i,A(ω, t) =

M∗
i,1(ω, t) + . . .+M∗

i,B(ω, t)

B
, (23)

is used for recovering the source vectors s1, . . . , sI from
the observed speech mixture vectors in x.

Note that the time-frequency mask given by (20) is a by-
product of the EM algorithm, computed using the output of
the E-step (19) which gives the probability of a spectrogram
point (ω, t) coming from source i and delay τ , conditional
on the interaural cues α(ω, t) and ϕ(ω, t) (estimated using
the spectrogram of the observed speech mixture), in addition
to the parameter estimates from the final M-step of the EM
algorithm. For each bootstrap replication, the E-step allows us
to compute this probability or T-F masks, conditional on the
interaural cues α∗(ω, t) and ϕ∗(ω, t), estimated from the spec-
trogram of the bootstrap speech mixture. From [24, Chapter 7],
we know that the bootstrap procedure leads to samples which
replicate the true frequency domain statistics, i.e. the spectra of
bootstrap samples, on average, mimics the theoretical spectra
of the process generating the observed sample. Thus, if the
bootstrap averaged GMM parameter estimates lead to a smaller
MSE in comparison with the original EM estimates, each
bootstrap T-F mask is a reasonable estimate (of the true T-
F mask). The average of the bootstrap T-F masks provides
a simple way to construct an overall T-F mask based on the
bootstrap data. We verify the performance of the bootstrap
averaged estimates and the bootstrap averaged T-F mask for
the task of source separation in our experiments below.

VI. EXPERIMENTS AND RESULTS

A. Set-up

We present the experimental set-up used to test the pro-
posed bootstrap averaging technique for source separation as
described above using speech mixtures formed with real room-
recorded impulse responses. We use the TIMIT data set from
which 15 utterances are randomly selected to form convolutive
mixtures using binaural room impulse responses (BRIRs), [8].
The BRIRs were captured by Hummersone [28] using a Head
and Torso Simulator (HATS). The HATS and the sources were
placed at a height of 2.8m in the room and were separated by a
distance of 1.5m. The target source is placed exactly in front
of HATS, i.e. at zero degree relative to HATS and the two
interfering sources are positioned symmetrically on the left
and right hand side of the target source in an arc at azimuth
denoted by φ (in degrees). The BRIRs were measured in 5
different rooms corresponding to five different reverberation
levels given by RT60 and azimuths ranging from −90◦ to 90◦

at 5◦ intervals. The sampling frequency denoted as fs is 16
kHz and the sampling interval is ∆ = 1s. From the chosen
set of 15 utterances, we combined two (three) speech signals
(about 3s, shortened to 2.5s for consistency) with BRIRs from
Room D which corresponds to the highest reverberation time
of 0.89s within the recorded data set to construct two sets of
mixtures: (i) 15 two-source mixtures, and (ii) 15 three-source
mixtures, for each azimuth φ = 15◦, 30◦, 45◦, 60◦, 75◦.

To implement the algorithm described in section V, we
divide x into pseudo stationary blocks of length 30ms which
correspond to Ñ = fs×0.003 = 16000×0.003 = 480 samples
and Nb = 84 adjacent blocks. Multitaper spectral estimates for
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the bivariate time series in each block are computed as given
in (22). We employ P = 8 sine tapers {un,p}, where

un,p =
2

(Ñ + 1)1/2
sin

(p+ 1)πn

Ñ + 1
, n = 1, . . . , Ñ , (24)

leading to a bandwidth of WÑ = (P + 1)/2(Ñ + 1) =
0.0094 [31]. Then following the steps in section V, the
simulation procedure of [25] is applied to the time series in
each block with B = 500 to obtain B bootstrap samples
x∗
1, . . . ,x

∗
B of the full length-N speech mixture. Next, param-

eter sets Γ∗
iτ,1, . . . ,Γ

∗
iτ,B containing bootstrap estimates and

time-frequency masks M∗
i,1, . . . ,M

∗
i,B for each source index

i = 1, . . . , I , and admissible τ are derived using the source
separation algorithm of [8]. We conduct all our experiments
with the additional garbage source which aims to account for
spectrogram points where reverberation (rather than one of the
I sources) dominates, [1].

B. Comparison of Cue Parameter Estimates

Here we focus on estimates of the frequency domain GMM
parameters, i.e. elements of Γ. We compare estimates obtained
using the algorithm of [8], and the bootstrap averaged esti-
mates, with their ground-truth values. Here ground-truth refers
to the parameter values that would be obtained if each source
was observed in isolation. We focus on the ILD, IPD, and
the mixing vector cue mean parameters. The ground-truth for
these parameters is obtained as described below. The ground-
truth ILD mean is computed from the isolated one-source
direct-path mixture, i.e. µi is obtained by convolving only
the ith source with the direct-path impulse response denoted
as [h̃il(n), h̃ir(n)]

T to form the convolutive mixture vector
x̃(i)(n) = [l̃i(n), r̃i(n)]T , where .̃ denotes direct-path and
superscript .(i) indicates that the mixture only involves the
ith source. Then from the definition of ILD, it follows that

µi(ω) =
1

T

T∑
t=1

20 log10
|L̃(i)(ω, t)|
|R̃(i)(ω, t)|

, (25)

where [L̃(i)(ω, t)]W×T , and [R̃(i)(ω, t)]W×T denote the
STFTs of direct path mixture vectors [l̃i(1), . . . , l̃i(N)] and
[r̃i(1), . . . , r̃i(N)], respectively. Alternatively, from [1], the
ground-truth ILD mean may be computed directly from the
direct-path impulse response as

µi(ω) = 20 log10

(
|H̃il(ω)|
|H̃ir(ω)|

)
, (26)

where H̃il = F{h̃il}, and similarly, H̃ir = F{h̃ir}, F{.}
denoting the Fourier transform.

Similarly, the ground-truth IPD residual mean for the ith
source is given by, [1]:

ξiτ (ω) = arg
(
e−iϕ̃(ω,t)e−iωτ(ω)

)
, (27)

where ϕ̃(ω, t) = arg(H̃il(ω)/H̃ir(ω)), and τ(ω) = τl − τr +
arg(H̄il(ω)/H̄ir(ω)), with H̄il(ω) = F{h̄il(n)}, H̄ir(ω) =
F{h̄ir(n)} and h̄il(n), h̄ir(n) denoting the impulse response
truncated at the length of the analysis window. Also arg(.)
denotes the argument, taking values in the interval (−π, π].

Since ai(ω) denotes the mean of the reverberant mixture
vector in the T-F domain, the ground-truth mixing vector
mean ai(ω) is computed as described in [9] from the isolated
mixture x̌(i)(n) = [ľi(n), ři(n)]T , where .̌ indicates that the
ith source is convolved with the full impulse response. The
corresponding EM estimates and bootstrap averaged estimates
for each GMM parameter are computed using the algorithm of
[8] and bootstrap as described above in section V and VI-A.

Due to the non-identifiability of GMMs, it is important
to learn the permutation that allows consistent averaging
across bootstrap estimates for each parameter. We described
in section III-A, how this may be achieved using the fact that
the component variances are well-separated. Different ways
to solve the permutation problem due to EM estimation have
been studied in the blind source separation literature. In the
case of a frequency specific GMM, as in the algorithms of
[9], [1], and [8], dealing with the permutation problem is
crucial to be able to group together components corresponding
to the same source estimated at each frequency. Traditionally,
correlation coefficients of amplitude envelopes which represent
sound source activity, are used to identify the permutation,
for example, [32], [33], however, more recently efficient
approaches as in [9], have been discussed and are commonly
employed. Other techniques solving the permutation problem
for frequency domain source separation are discussed in [34]
and [35]. Thus, applications employing the EM algorithm for
frequency domain source separation commonly have a built-in
strategy to deal with the permutation problem, allowing us to
average the component parameter estimates consistently across
bootstrap replications.

Consider the set of two-source mixtures with the target
source s1 at φ = 0◦ and the interference source s2 at φ = 30◦.
For convenience, we label the 15 two-source mixtures as
k′ = 1, . . . , 15. Fig. 3 shows a comparison of the ILD mean
estimates µ̂i(ω) obtained from the model-based method of
[8] (solid grey), and the bootstrap-based estimates µ̂i,A(ω)
(solid black), with the ground-truth estimates µi(ω) (dashed
black) over the frequency range (kHz) [0, fs/2∆] = [0, 8].
The dotted black lines show the ground-truth ILD mean of
each source convolved with impulse response truncated to
the length of our analysis window. Note that it follows the
direct path ILD mean (dashed black) very closely but has
a relatively higher variation. This is due to the early echoes
in the impulse response truncated at the window length. The
subplots in the left column of Fig. 3 correspond to µ1(ω), i.e.
the ILD mean parameter for the target source with subplots
in consecutive rows corresponding to the first four mixtures,
i.e. k′ = 1, 2, 3, 4, respectively; similarly, the subplots in the
right column correspond to µ2(ω), the ILD mean parameter
for the interference source for k′ = 1, 2, 3, 4, respectively.
From the figure we see that the bootstrap averaged ILD mean
estimates µ̂∗

i,A(ω) (solid black) follow the ground-truth µi(ω)
(dashed black) very closely; ILD mean estimates µ̂i(ω) (solid
grey) obtained from the joint method of [8] evidently show
large deviations from the ground-truth at each frequency. For
a clearer comparison, we compare the absolute error in µ̂i(ω)
i.e. |µ̂i(ω) − µi(ω)| with the absolute error in µ̂∗

i,A(ω),
i.e. |µ̂∗

i,A(ω)−µi(ω)|. Fig. 4 displays absolute error in µ̂i(ω)
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Fig. 3. A comparison of the ground-truth ILD mean (dB) µi(ω) (dashed
black) with the estimate µ̂i(ω) (solid grey) obtained from [8], and the
bootstrap averaged estimate µ̂∗

i,A(ω) (solid black) vs. frequency (kHz) for
(a) i = 1, k′ = 1, (b) i = 2, k′ = 1, (c) i = 1, k′ = 2, (d) i = 2, k′ = 2,
(e) i = 1, k′ = 3, (f) i = 2, k′ = 3, (g) i = 1, k′ = 4, and (h) i = 2, k′ = 4
with s1 placed at φ = 0◦, and s2 placed at φ = 30◦. The ground-truth ILD
mean of each source convolved with impulse response truncated to the window
length are shown in dotted black.
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Fig. 4. A comparison of the absolute errors in the ILD mean (dB) estimate
µ̂i(ω) from [8] (solid grey), and the bootstrap averaged estimate µ̂∗

i,A(ω)
(dashed black) vs. frequency (kHz), for (a) i = 1, k′ = 1, (b) i = 1, k′ = 2,
(c) i = 2, k′ = 1, and (d) i = 2, k′ = 2. The asterisk ∗ denotes the frequency
of interest in each case.

(solid grey) and µ̂∗
i,A(ω) (dashed black) for source and mixture

combinations corresponding to the two sources and the first
two mixtures, i.e. (a) i = 1, k′ = 1, (b) i = 1, k′ = 2, (c)
i = 2, k′ = 1 and (d) i = 2, k′ = 2. For clarity, we have only
plotted absolute errors for a set of equally spaced frequencies.
From Fig. 4(a)-(b) it is clear that µ̂∗

1,A(ω) outperforms µ̂1(ω)
at all frequencies, however, for i = 2, we observe frequencies
where µ̂2(ω) has a smaller error as compared to µ̂∗

2,A(ω). The
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Fig. 5. A comparison of the absolute errors in the IPD mean estimate ξ̂iτ (ω)
from [8] (solid grey), and the bootstrap averaged estimate ξ̂∗A,iτ (ω) (dashed
black) vs. frequency (kHz) for (a) i = 1, k′ = 1, (b) i = 1, k′ = 3, (c)
i = 2, k′ = 1,, (d) i = 2, k′ = 3 at the ground truth delay τ = 4.

frequencies marked with ∗ depict four different scenarios and
are discussed in the next subsection. Similarly, Fig. 5 displays
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Fig. 6. A comparison of the absolute error in the mixing vector mean estimate
â1(ω) (solid grey) from [8], and the bootstrap averaged estimate â∗

1,A(ω)
(dashed black) vs. frequency (kHz) for the left component al1(ω) of mixtures
(a) k′ = 2, (b) k′ = 4, and for the right component ar1(ω) of mixtures (c)
k′ = 2, and (d) k′ = 4.

absolute error in the IPD mean estimates ξ̂iτ (ω) (solid grey)
and ξ̂∗iτ,A(ω) (dashed black) for (a) i = 1, k′ = 1, (b) i = 1,
k′ = 3, and (c) i = 2, k′ = 1, and (d) i = 2, k′ = 3, at the
ground truth delay for a set of equally spaced frequencies. For
the target source, the bootstrap averaged IPD mean estimates,
seem to have a relatively smaller error. On the other hand,
absolute errors for the interference source corresponding to
the two set of estimates follow each other very closely. Recall
that the mixing vector means are complex-valued. Absolute
errors in the components of the mixing vector mean estimates
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âi(ω) and â∗1,A(ω) for the left components of mixtures (a)
k′ = 2, (b) k′ = 4; and the right components of mixtures (c)
k′ = 2, and (d) k′ = 4 are shown in Fig. 6. Overall, we see
relatively smaller errors using the bootstrap based approach.
A further analysis is provided in section VII.

Remark: Note that firstly, (i) the bootstrap procedure of [25]
allows us to replicate the frequency domain structure of the
underlying process generating the observed speech mixture,
and secondly, (ii) EM estimates of model parameters from
these bootstrap samples are based on informative initializations
(using the ILD prior for the ILD parameters and the PHAT
histogram for the component weights, [8]), hence, ensuring
that EM estimates of parameters using the bootstrapped mix-
tures are consistent with the true parameter values. This is
also evident from Fig. 3 displaying the bootstrap averaged ILD
mean estimate which is clearly consistent with the ground truth
ILD mean over the entire frequency range.

VII. FURTHER ANALYSIS AND RESULTS

To see what exactly differentiates a substantial improve-
ment to none, we consider four possible scenarios using the
ILD mean parameter µi(ω): (i) when the bootstrap averaged
estimate µ̂∗

i,A(ω) significantly outperforms the estimate µ̂i(ω)
from [8], (ii) when both the bootstrap averaged estimate as
well as the estimate from [8] have zero absolute error, (iii)
when both the estimates have a significant error, and (iv) when
the bootstrap averaged estimate has a larger absolute error. The
frequencies marked with an asterisk ∗ in Fig. 4 (a)-(d) exactly
depict these four scenarios (in order). Let ωa, ωb, ωc, and ωd
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Fig. 7. Bootstrap histograms for the ILD mean estimate (dB) µ̂i(ω) for (a)
ωa, i = 1, k′ = 1, (b) ωb, i = 1, k′ = 2, (c) ωc, i = 2, k′ = 1, and
(d) ωd, i = 2, k′ = 2. The corresponding ground-truth ILD mean µi(ω)
(red diamond), and estimates µ̂i(ω) from [8] (blue square) and the bootstrap
averaged estimate µ̂∗

i,A(ω) (green circle) are marked to indicate their position
relative to the histogram.

denote the frequencies marked in Fig. 4(a)-(d), respectively.
We study bootstrap histograms for the ILD mean estimate for
each of the four chosen frequencies, for example, bootstrap
ILD mean estimates µ̂∗

1,1(ωa), . . . , µ̂
∗
1,B(ωa) (with i = 1)

derived from mixture k′ = 1 are used to obtain the bootstrap
histogram corresponding to frequency ωa marked in Fig. 4(a),
and so on. These histograms are shown in Fig. 7. From
Fig. 7(a) we observe that the EM estimate from [8] (square)
is at the right extreme of the distribution, with the ground-
truth (diamond) very close to the mean of the histogram
or the bootstrap averaged estimate (circle). Fig. 7(b) shows
that for ωb, the original estimate as well as the bootstrap-
averaged estimate coincide with the ground-truth. Obviously,
in this case the estimate from [8] has zero error and bootstrap
averaging is not required. However, the fact that the bootstrap
estimate also coincides with the ground-truth indicates that
the bootstrap methodology has performed impressively well
for this frequency. Clearly, the bootstrap histograms of the
ILD mean estimate for ωc and ωd in Fig. 7(c) and (d), unlike
histograms in (a) and (b) do not appear to be normal with the
ground-truth located at an extreme of the histogram in each
case. Now from (11a) we know that under a suitable bootstrap
technique (for θ̂), if the EM estimator θ̂ is unbiased, then the
mean of the bootstrap estimates (circle) should also coincide
with the true value of θ (diamond). Therefore, for frequencies
ωc and ωd either the EM estimator µ̂2(ω) has a significant non-
zero bias or the bootstrap for x does not lead to ILD mean
estimates which accurately represent their underlying second-
order statistics. The significant bias in the ILD mean estimates
towards 0dB at some frequencies has been independently
noted in the literature, e.g., [36] and [37], suggesting that our
methodology does not lead to any surprising results.

From a practical point of view, since each parameter is
frequency dependent, one would consider using bootstrap
averaged estimate for a given parameter if it leads to a smaller
error over the frequency range. Thus, for a given frequency
dependent parameter θ(ω) with estimate θ̂(ω), it is natural to
define a frequency averaged squared error (FASE), as

FASE(θ̂) =
1

W

W∑
ω=1

|θ̂(ω)− θ(ω)|2, (28)

which quantifies the overall error in a parameter estimate by
averaging the squared errors for each frequency over the set
of chosen frequencies. Here |.| denotes the absolute value of
a real or a complex-valued quantity. A comparison of the
FASE of EM estimate of each parameter with FASE of the
bootstrap averaged estimate shall allow us to see if an overall
improvement is achieved. The ratios of FASE for estimates of
the ILD, IPD and the mixing vector mean by the bootstrap
averaged technique to the corresponding EM estimates from
[8] for two-source mixtures with indices k′ = 1, 2, 3, 4 are
reported in Table II. Now, the ILD parameters are only fre-
quency dependent, however, IPD parameters are frequency and
lag dependent; mean of the mixing vector, on the other hand, is
a frequency dependent bivariate complex-valued quantity. For
the IPD mean parameter ξiτ , we compare FASE at the ground
truth delay. With the target source at 0◦ and the interference
source placed at 30◦, and a sampling frequency of 16000Hz.,
this is calculated to be 0.00027s, equivalent to 4 samples. For
the mixing vector mean ai, the error in each component (l
and r) is compared separately. From the ratio comparison for
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Fig. 8. A comparison of the average SDR over a set of (a) 15 two-source
mixtures, and (b) 15 three-source mixtures, for separation performed using
the proposed technique (square), the integrated method of [8] (asterisk), the
interaural cue-based technique of [1] (circle), and the mixing vector model
based method of [9] (dot) for φ = 15◦, 30◦, 45◦, 60◦, and 75◦. Error bars
show standard error.

the target source parameters (s1) in Table II, we immediately
see that the ratios for the ILD, IPD and mixing vector mean
parameters are all less than 1 (with the exception of a1r where
it is ≈ 1), indicating that the bootstrap averaged estimates
lead to an overall smaller error in comparison to the directly
obtained EM estimates. We observe a significant improvement
via our method for the ILD mean parameters as indicated
by the extremely small FASE values for µ1 across the four
mixtures. Relatively higher FASE ratios are observed for the
IPD and mixing vector mean parameter estimates. Due to the
complex source and lag-dependent structure as well as the
number of parameters, it is practically not feasible to perform a
FASE comparison for the entire parameter set for all mixtures.
The results in Table II, however, assure us of the improvement
in the EM estimates via the proposed method. We would like
to point out that in general, following [8], unequal weights
may be assigned to the three cues in order to optimize the
gain from the improved bootstrap averaged estimates.

Subsequently, we proceed with the final step of performing
source separation. With the target source placed at 0 degree
and the interference source(s) placed at azimuth φ (and −φ),
we perform source separation for a set of 15 two-source and 15
three-source binaural mixtures, i.e. for a total of 15× 5 = 75
two-source mixtures and 75 three-source mixtures. For each
mixture, the bootstrap averaged T-F mask M∗

i,A is computed
as in (23), using which the target and the interference source(s)
are separated. A comparison of the average SDR for the
estimated target sources (over 15 mixtures) with the average
SDR obtained from [8], [1], and [9] for each azimuth φ = 15◦,
30◦, 45◦, 60◦, and 75◦ with (a) two-source and (b) three-
source mixtures is displayed in Fig. 8. The improvement in the
SDR of the sources separated using our bootstrap averaged T-F
mask (squares) and [8] (asterisks) is clearly visible. Comparing
the SDR (average) levels obtained using the joint method
of [8] in Fig. 8(b), we note that relatively smaller SDRs

0 2 4 6 8

Frequency (kHz)
(a)

-20

-15

-10

-5

0

5

IL
D

 (
d
B

)

0 2 4 6 8

Frequency (kHz)
(b)

-20

-15

-10

-5

0

5

IL
D

 (
d
B

)

Fig. 9. A comparison of the ground-truth ILD mean (dB) µi(ω) (dashed
black) with the estimate µ̂i(ω) (solid grey) obtained from [8], and the
bootstrap averaged estimate µ̂∗

i,A(ω) (solid black) vs. frequency (kHz) for
(a) i = 1, k′ = 1 and (b) i = 1, k′ = 2, with s1 placed at φ = 15◦, and
s2 placed at φ = 30◦. The ground-truth ILD mean of each source convolved
with impulse response truncated to the window length are shown in dotted
black.

are obtained either when the two interference sources s2
and s3 are placed too close with φ = 15◦ or too far with
φ = 75◦ from the target source s1. It is interesting to note
that the bootstrap averaging approach leads to a significantly
greater improvement for φ = 75◦ in the case of the three-
source mixtures. The difference between the average SDR
from the bootstrap average approach and the approach of
[8] is calculated to be (in dB): 0.59, 0.31, 0.28, 0.57, 0.25
for φ = 15◦, 30◦, 45◦, 60◦, 75◦, respectively. A t-test (5%
significance level) confirms that the average gain (in SDR) of
0.4 dB over 75 mixtures (15 mixtures for each φ) is significant.
Similarly, the gain in the three-source case is calculated to
be 0.60, 0.31, 0.23, 0.18, 1.19 for φ = 15◦, 30◦, 45◦, 60◦, 75◦,
respectively, and a t-test (5% significance level) confirms that
the average gain (in SDR) of 0.5 dB is significant.

The existing model-based source separation methods [8],
[1], [9], have focused on the separation of the target source
placed at 0◦ (exactly in front of the head). It is of interest to
understand how these methods perform when the target source
is positioned laterally at an angle greater than 0◦. With the
target source placed at 15◦, and the interference source placed
at azimuth φ = 30◦, we constructed a set of 15 two source
mixtures using the binuaral room impulse responses exactly as
described above. To understand the gain in performance via the
bootstrap approach, a comparison of the ILD mean parameter
estimates using the joint model-based method of [8] with the
bootstrap averaged estimates is shown in Fig. 9. From the
subplots in Fig. 9, we observe a notable improvement in the
bootstrap averaged estimate (solid black) at higher frequencies
in comparison to the estimate of [8] (solid grey), but only for
the second mixture. This is confirmed by the corresponding
FASE ratios, with an FASE of 1.19 for k′ = 1 in comparison
to an FASE of 0.70 for k′ = 2. The relatively larger bias
in the bootstrap averaged estimates for the first mixture is
a consequence of the inherent bias in the estimates obtained
directly from the speech mixture via [8] (solid grey) in this
case. A comparison of the directly obtained estimates of [8]
(solid grey) when the target source is placed at 0◦ (as shown
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TABLE II
RATIOS OF THE FASE OF θ̂∗A TO THE FASE OF θ̂ (EM), FOR θ ∈ {µi, ξiτ ,ai; i = 1, 2, τ = 4}

FASE(θ̂∗A)/FASE(θ̂)
k′ µ1 µ2 ξ1,τ ξ2,τ a1 a2

l r l r
1 0.1121 0.6786 0.8893 0.9826 0.6162 1.0481 0.7277 0.7844
2 0.1723 0.9879 0.9811 0.9940 0.6936 0.7232 0.7117 0.8742
3 0.2244 1.1773 0.6664 0.9943 0.7155 0.7809 0.8544 0.9079
4 0.1630 0.9733 0.9901 0.9903 0.7269 0.7577 0.8801 0.8610

in Fig. 3) with the estimates when the target source is placed
laterally at 15◦ (shown in Fig. 9), makes this bias apparent.
The SDR for the target source at 15◦ using the method of
[8] is calculated to be 2.22 dB for k′ = 1 and -1.60 dB for
k′ = 2, in comparison to 2.94 dB for k′ = 1 and 1.57 dB
for k′ = 2 via bootstrap averaging. The average SDR over
15 mixtures calculated to be 1.49 dB from [8] in comparison
to the average SDR of 2.60 dB via the bootstrap averaging
approach, confirms improvement via the proposed procedure.

VIII. CONCLUSION

We draw attention to the problem of sub-optimal EM esti-
mates of frequency-dependent GMMs and propose a bootstrap-
based method to obtain estimates with smaller MSE. We
identify the problem of model misspecification in the area
of source separation where the absence of a precise model
for reverberation leads to poor separation performance for
reverberant speech mixtures. Our simulation experiments with
speech mixtures show a clear improvement in estimates of
the frequency domain GMM parameters via the proposed
bootstrap averaging algorithm. An overall improvement is in-
dicated by the FASE comparison. The averaged T-F mask leads
to a higher SDR implying improved source separation. Further
improvements in separation performance can be achieved by
assigning frequency-specific weights to cues in order to max-
imize the gain from the bootstrap averaged estimates of cue
model parameters. This will be investigated in our future work.
Following the recent work by [38], another possible direction
is to suitably combine T-F masks estimated from different
model-based methods using appropriately bootstrapped speech
mixtures to maximize improvement in source separation for
reverberant mixtures.

Our bootstrap averaging approach applies to any frequency-
specific GMM and hence its use is not limited to model-based
source separation. In the multichannel NMF-based method
[14], the authors note the poor performance of the EM esti-
mates when assumptions on their model are not satisfied, e.g.
due to nonlinear sound effects, longer reverberation times, and
non-point sources. This corresponds to a misspecified mixture
model in the T-F domain and hence the proposed bootstrap-
based method finds application. The alternative MU algorithm
for estimation, also discussed in [14], which does not exploit
these assumptions is seen to be more robust to such model
discrepancies. This issue with the EM implementation (e.g.
[14], [15]) is also noted in [16], where only a MU algorithm
is studied. An interesting direction for future work would be

to understand if the EM implementation of [14] combined
with our bootstrap approach can outperform the MU algorithm
when assumptions on the mixing model are known to be
violated, for example as in the case of professionally produced
music recordings, [14].

ACKNOWLEDGEMENT

This work was supported by the Engineering and Phys-
ical Sciences Research Council (EPSRC) Grant number
EP/K014307 and the MOD University Defence Research
Collaboration in Signal Processing.

REFERENCES

[1] M. I. Mandel, R. J. Weiss, and D. Ellis, “Model-based expectation-
maximization source separation and localization,” IEEE Transactions on
Audio, Speech, and Language Processing, vol. 18, pp. 382–394, 2010.

[2] M. N. Stuttle, “A gaussian mixture model spectral representation for
speech recognition,” Ph.D. dissertation, University of Cambridge, 2003.

[3] P. Zolfaghari and T. Robinson, “Formant analysis using mixtures of
gaussians,” in Proceedings of the Fourth International Conference on
Spoken Language, 1996. ICSLP 96., vol. 2. IEEE, 1996, pp. 1229–
1232.

[4] M. Nilsson, H. Gustaftson, S. V. Andersen, and W. B. Kleijn, “Gaussian
mixture model based mutual information estimation between frequency
bands in speech,” in IEEE International Conference on Acoustics,
Speech, and Signal Processing (ICASSP), 2002, vol. 1. IEEE, 2002,
pp. I–525.

[5] Z. K. Huang and K. W. Chau, “A new image thresholding method based
on gaussian mixture model,” Applied Mathematics and Computation,
vol. 205, no. 2, pp. 899–907, 2008.

[6] A. Deleforge, F. Forbes, S. Ba, and R. Horaud, “Hyper-spectral image
analysis with partially latent regression and spatial markov dependen-
cies,” IEEE Journal of Selected Topics in Signal Processing, vol. 9,
no. 6, pp. 1037–1048, 2015.

[7] A. Alinaghi, W. Wang, and P. J. B. Jackson, “Integrating binaural cues
and blind source separation method for separating reverberant speech
mixtures,” in Proceedings of the IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), 2011, pp. 209–212.

[8] A. Alinaghi, P. Jackson, Q. Liu, and W. Wang, “Joint mixing vector and
binaural model based stereo source separation,” IEEE Transactions on
Audio Speech and Language Processing, vol. 22, no. 9, pp. 1434–1448,
2014.

[9] H. Sawada, S. Araki, and S. Makino, “A two-stage frequency-domain
blind source separation method for underdetermined convolutive mix-
tures,” in Proceedings of the IEEE Workshop on Applications of Signal
Processing to Audio and Acoustics, 2007, pp. 139–142.

[10] A. C. Davison and D. V. Hinkley, Bootstrap Methods and their Appli-
cation. Cambridge University Press, 2007.

[11] L. Breiman, “Bagging predictors,” Machine Learning, vol. 24, no. 2, pp.
123–140, 1996.

[12] J. Cabrera and P. Meer, “Unbiased estimation of ellipses by bootstrap-
ping,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 18, no. 7, pp. 752–756, 1996.

[13] S. Chandna and W. Wang, “Improving model-based convolutive blind
source separation techniques via bootstrap,” in Proceedings of the IEEE
Workshop on Statistical Signal Processing (SSP), 2014, pp. 424–427.



14

[14] A. Ozerov and C. Févotte, “Multichannel nonnegative matrix factor-
ization in convolutive mixtures for audio source separation,” IEEE
Transactions on Audio, Speech, and Language Processing, vol. 18, no. 3,
pp. 550–563, 2010.

[15] S. Arberet, A. Ozerov, N. Duong, E. Vincent, R. Gribonval, F. Bimbot,
and P. Vandergheynst, “Nonnegative matrix factorization and spatial
covariance model for under-determined reverberant audio source sep-
aration,” in Proceedings of the 10th International Conference on In-
formation Sciences Signal Processing and their Applications (ISSPA).
IEEE, 2010, pp. 1–4.

[16] H. Sawada, H. Kameoka, S. Araki, and N. Ueda, “Multichannel exten-
sions of non-negative matrix factorization with complex-valued data,”
IEEE Transactions on Audio, Speech, and Language Processing, vol. 21,
no. 5, pp. 971–982, 2013.

[17] Y. Jiang, D. Wang, R. Liu, and Z. Feng, “Binaural classification for
reverberant speech segregation using deep neural networks,” IEEE/ACM
Transactions on Audio, Speech and Language Processing (TASLP),
vol. 22, no. 12, pp. 2112–2121, 2014.

[18] X. Zhang and D. Wang, “Deep learning based binaural speech separa-
tion in reverberant environments,” IEEE/ACM Transactions on Audio,
Speech, and Language Processing, vol. 25, no. 5, pp. 1075–1084, 2017.

[19] Y. Yu, W. Wang, and P. Han, “Localization based stereo speech source
separation using probabilistic time-frequency masking and deep neural
networks,” EURASIP Journal on Audio, Speech, and Music Processing,
vol. 2016, no. 1, p. 7, 2016.

[20] A. Nugraha, A. Liutkus, and E. Vincent, “Multichannel audio source
separation with deep neural networks,” IEEE/ACM Transactions on
Audio, Speech, and Language Processing, vol. 24, no. 9, pp. 1652–1664,
2016.

[21] D. Böhning and W. Seidel, “Editorial: recent developments in mixture
models,” Computational Statistics & Data Analysis, vol. 41, no. 3, pp.
349–357, 2003.

[22] G. McLachlan and D. Peel, Finite Mixture Models. John Wiley & Sons,
2004.

[23] C. Biernacki, G. Celeux, and G. Govaert, “Choosing starting values
for the EM algorithm for getting the highest likelihood in multivariate
Gaussian mixture models,” Computational Statistics & Data Analysis,
vol. 41, no. 3, pp. 561–575, 2003.

[24] S. Chandna, “Frequency domain analysis and simulation of multi-
channel complex-valued time series,” Ph.D. dissertation, Imperial Col-
lege London, 2013.

[25] S. Chandna and A. Walden, “Simulation methodology for inference on
physical parameters of complex vector-valued signals,” IEEE Transac-
tions on Signal Processing, vol. 61, pp. 5260–5269, 2013.

[26] S. Rickard and O. Yilmaz, “On the approximate W-disjoint orthogonality
of speech,” in IEEE International Conference on Acoustics, Speech, and
Signal Processing (ICASSP), 2002.

[27] O. Yilmaz and S. Rickard, “Blind separation of speech mixtures via
time-frequency masking,” IEEE transactions on Signal Processing,
vol. 52, pp. 1830–1847, 2004.

[28] C. Hummersone, “A psychoacoustic engineering approach to machine
sound source separation in reverberant environments,” Ph.D. dissertation,
University of Surrey, UK, 2011.

[29] A. T. Walden, “A unified view of multitaper multivariate spectral
estimation,” Biometrika, vol. 87, pp. 767–788, 2000.

[30] L. Rabiner and R. Schafer, Digital Processing of Speech Signals.
Prentice-hall Englewood Cliffs, 1978.

[31] D. B. Percival and A. T. Walden, Spectral Analysis for Physical
Applications. Cambridge University Press, 1993.

[32] J. Anemüller and B. Kollmeier, “Amplitude modulation decorrelation for
convolutive blind source separation,” in Proc. ICA, 2000, pp. 215–220.

[33] S. Winter, W. Kellermann, H. Sawada, and S. Makino, “Map-based
underdetermined blind source separation of convolutive mixtures by
hierarchical clustering and l 1-norm minimization,” EURASIP Journal
on Applied Signal Processing, vol. 2007, no. 1, pp. 81–81, 2007.

[34] H. Sawada, R. Mukai, S. Araki, and S. Makino, “A robust and precise
method for solving the permutation problem of frequency-domain blind
source separation,” IEEE Transactions on Speech and Audio Processing,
vol. 12, no. 5, pp. 530–538, 2004.

[35] A. Hiroe, “Solution of permutation problem in frequency domain
ica, using multivariate probability density functions,” in International
Conference on Independent Component Analysis and Signal Separation.
Springer, 2006, pp. 601–608.

[36] A. Ihlefeld and B. G. Shinn-Cunningham, “Effect of source spectrum
on sound localization in an everyday reverberant room,” The Journal of
the Acoustical Society of America, vol. 130, no. 1, pp. 324–333, 2011.

[37] B. Shinn-Cunningham, N. Kopco, and T. Martin, “Localizing nearby
sound sources in a classroom: Binaural room impulse responses,” The
Journal of the Acoustical Society of America, vol. 117, p. 3100, 2005.

[38] X. Jaureguiberry, E. Vincent, and R. Gaël, “Fusion methods for speech
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