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Abstract

A novel unified particle–based method is proposed for real-time dissolution simulation which is
fast, predictable, independent of sampling resolution and visually plausible. The dissolution model is
derived from Collision Theory and integrated into a Smoothed Particle Hydrodynamics (SPH) fluid
solver. Dissolution occurs when a solute is submerged in solvent. Physical laws govern the local
excitation of solute particles based on kinetic energy: when the local excitation energy exceeds a
user specified threshold (activation energy), the particle will be dislodged from the solid. Solute
separation during dissolution is handled using a new GPU–based region growing method. The
use of SPH sampling for both solute and solvent guarantees a predictable and smooth dissolution
process and provides user control of the volume change during the phase transition. A mathematical
relationship between the activation energy and dissolution time allows for intuitive artistic control
over the global dissolution rate. We demonstrate this method using a number of practical examples,
including antacid pills dissolving in water, hydraulic erosion of non-homogeneous terrains and melting.
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1 Introduction

The reliance of films and games on realistic fluid simulations has led to the popularity of this research
topic. Most related work has focused on the behaviour of fluid itself, such as spray, waves and bubbles
[1, 2, 3] or the interaction with solids [4, 5, 6, 7]. Comparatively few researchers have tackled the
challenging problem of the chemical reaction between fluid and solids, which, under the right conditions,
can lead to the solid mixing with the liquid: a natural process known as dissolution. The solid in this
case is called the solute and the liquid is the solvent. We can observe this process when an antacid
tablet is dropped into water — bubbles are generated by a chemical reaction and the tablet shrinks
due to mass transfer. However due to the complex physical and chemical behaviours of dissolution few
publications have explored this problem.

In this paper we propose an energy–based dissolution model based on chemical Collision Theory for
applications in visual effects and game production. A kinetic energy function is introduced to measure
the particle excitation of the solute. The concept of volume mass for the energy calculation is proposed
to ensure the consistent dissolution results even when the object sampling resolutions are different. This
property of sampling resolution independence is advantageous when performing pre–visualization of the
dissolution process, allowing animators to quickly preview the dissolution behaviour with a low resolution
sampled solute.

To guarantee that the dissolution process is predictable and avoid the problem of the fluid penetrat-
ing the boundary of the solute, an even distribution of the solute particle is essential. We use the SPH
sampling method [8] to compute the solute particle distribution. We demonstrate experimentally that
the SPH sampling method achieves better visual effects than random sampling or simple grid sampling
and also gives more control over volume change during phase transition than other blue noise sampling
methods.

A solute particle will dislodge from the solid if the local energy exceeds a user specified activation
energy. While physically justified, this threshold does not provide a user with an intuition of the total
dissolution time. We find that the activation energy can be approximated as a function of the inter–
facial surface area of the solvent/solute and the total dissolution time, providing animators with a tool
to more accurately predict the total dissolution rate.

Our energy–based dissolution simulation coupled with an SPH sampled solute and solvent ensures
that the dissolution behaviour is physically and chemically plausible, while supporting features such as
object separation and sharp feature rounding. We demonstrate this using examples such as rotating
and translating solids in fluids and pouring fluids onto dissolving objects. Due to the similarity between
dissolution and hydraulic erosion, we are able to simulate erosion without any additional computational
overhead. Our model can also approximate melting behaviour with the introduction of temperature.
Our particle–based method exhibits real–time performance using a parallel implementation.

This work expands on our original paper [9] in the following ways:

• we provide a considerably more detailed and intuitive derivation of dissolution model based on
Chemical Collision Theory;

• we investigate the effect of the solute sampling method on the quality of the result;

• we demonstrate qualitatively the effect of different sampling methods on the fluid–solid interface
in particle–based fluid;

• we introduce a new parallel region growing algorithm which greatly accelerates the segmentation
of particle–based object representations and has a wide variety of applications in graphics, and

• we extend the dissolution model to incorporate temperature and approximate melting behaviour.
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2 Related Work

In most observable systems, the most frequent solvent is fluid and solute is solid. There have been
many studies on the physical interactions between fluids and solids. Génevaux et al. [10] study the
fluid–solid interaction by representing solid with linked point masses. Batty et al. [4] apply a pressure
projection method with kinetic energy minimization to incorporate irregular boundary geometry into
standard grid–based fluid simulations. However these methods are difficult to be integrated into a
dissolution simulation.

Both [11] and [12] treat objects as if they are made of fluid. To maintain the object rigidity, Carlson
et al. [11] identify the object by velocity field, and Amada [12] apply a corrective step to bring back the
rigidity of the solid. Harada et al. [13] simulate the interaction using collision detection. To prevent
fluid particles intersecting the solid boundary, both Amada [12] and Harada et al. [13] use penalty force
methods which takes several frames to push the particles out. Becker et al. [14] use a predictor–corrector
scheme with direct force to deal with the boundary conditions which ensures no–penetration, but this
method requires two additional neighbour queries for collision detection which is expensive to compute.

Schechter and Bridson [6] achieve the no–separation and no–slip boundary condition by sampling
the air and solid surface as ghost particles. Akinci et al. [15] use corrected density to compute the
pressure and viscosity force to avoid the sticking artefacts. Both solve the boundary problem, making
an extension to support dissolution simulation.

While these methods tackle the problem of physical interaction between the fluid and solid, they
do not consider the chemical interaction between them. Relatively few attempts have been made to
simulate the complex chemical reaction between fluid and solid.

Solenthaler et al. [16] use an elasticity model for particle–based objects and model temperature
for phase changes, allowing them to simulate objects melting in hot liquid. Stomakhin et al. [17]
introduce an augmented Material Point Method for phase change and simulated butter melting in pan.
Melting offers a similar visual result to dissolution, but their underlying function is a heat model which
differs from the chemical process presented in this paper. We extend our dissolution model to mimic a
simplified melting effect in Sec. 8.3.

Kim et al. [18] simulate bubbles around dissolving objects, focusing on simulating the dispersed
bubble flow. Their dissolution model is approximated by generating offsets of a level–set representation of
the solute, which has little relationship with actual dissolution behaviors. Shin et al. [19] simulate solids
dissolving in liquids by modelling solid mass transfer. They treat the solvent and solute as different
fluids, and use multiple level–sets to track mixing surfaces which need to be updated whenever the
reactions and interactions occurred — an expensive but necessary step. They also do not consider the
object breaking into separate pieces during dissolution, a problem later solved by Wojtan and co–workers
[20]. Both methods use a level–set representation to guide the object surface, making the dissolution
result largely dependant on the level–set grid resolution. Furthermore these previous approaches did not
consider the relationship between the dissolution time and the mass transfer of the solute, meaning that
predicting the overall dissolution time was an exercise in trial and error. In this paper we propose an
experimental model for predicting dissolution rate by activation energy, and the dissolution process is
independent of solute sampling resolutions.

Dissolution also shares many properties with hydraulic erosion. Beneš et al. [21] propose a solution
for erosion simulation by using Navier–Stokes equations, while Wojtan et al. [20] animate corrosion and
erosion by driving the fluids with a finite difference simulation and presenting the solid by advecting the
level sets inward. Krǐstof et al. [22] use an SPH–based method to simulate erosion, where the erosion
model was adapted from an Eulerian approach. In this paper we demonstrate two practical erosion
examples, including one which shows the specification of non–homogeneous solutes forming a natural
layering stratum.
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In previous work the erosion rate is derived from the power law [22, 20] which unfortunately requires
a large number of parameters to control, making it impractical for use by an animator. Instead, our
method requires only one single parameter which globally controls the rate of dissolution.

The basic dissolution model presented in this paper has been previously published in [9]. In this work
we investigate the effect of the solute sampling, demonstrating qualitatively the properties of Blue Noise
sampling which has broad reaching applications in any method utilising particle–based representations
of solids. We introduce a new parallel region growing algorithm which greatly accelerates the segmen-
tation of particle–based object representations. We also extend the dissolution model to incorporate
temperature and melting behaviour.

3 Dissolution Model

In our dissolution model, the physical and chemical reactions between the solute and solvent are elegantly
simulated within a single SPH solver. We derive a kinetic energy function to calculate the local excitation
of the solute particle. The use of volume mass guarantees the dissolution independent of the sampling
resolution. Solid solutes are distributed using SPH sampling method [8]. GPU–based region growing
method is used for detecting the occurrence of separation during dissolution. We also experimentally
deduce the relationship between the dissolution configuration and the dissolution time. The framework
of our dissolution model is shown in Fig. 1. A list of symbols used in this paper is included in Table 1.

Symbol Description Defined Symbol Description Defined

A any scalar quantity pg 6 x particle position pg 6
W kernel function pg 6 h smoothing length pg 6
vr relative velocity pg 6 mvs volume mass pg 22
ρ density pg 7 V volume pg 9
N number of points pg 9 θ temperature pg 19
ǫ random thermal motion pg 7 vl linear velocity pg 7
vw angular velocity pg 7 E kinetic energy pg 9
Es excitation energy pg 9 E0 activation energy pg 9
T total dissolution time pg 19 S inter–facial surface area pg 19

Table 1: A list of symbols in this paper, with pages where they are first defined.

3.1 Chemical Collision Theory

Dissolution is a kinetic process, and in chemical engineering the dissolution of different solid substances
is quantified by its dissolution rate [23]. In Computer Graphics, to mimic the dissolution process we need
to consider two different aspects of this problem: which part of the solute has the highest probability of
being dissolved first, and the speed of dissolution, or dissolution rate, represented by the mass transfer
rate of the solute.

To solve these problems, we have to understand how chemical reactions take place and why chemical
reaction rates differ [24], which are fortunately described by Collision Theory, firstly proposed by Trautz
[25]. Collision theory is closely related to the kinetic–molecular theory: molecules are in constant motion,
occasionally colliding as they move. For a chemical reaction to occur, molecules need to collide in the
right orientation and with sufficient energy [26]. The relationship between energy and collision orientation
is shown in Fig. 2. The energy required for the reaction to occur is referred to as the activation energy
— necessary to break the existing chemical bonds between substrate molecules. If the energy produced
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Figure 1: Framework of our dissolution model.

by the collision is less than the activation energy, the chemical reaction will not proceed.

(a) Low energy (b) High energy

Figure 2: An intuitive depiction of the principle of particle Collision Theory.

Our dissolution model follows the Collision Theory maintaining the chemical plausibility of the
simulation. We volumetrically sample both the solute and the solvent with particles, with each particle
becoming a representative component of the corresponding substance. It is tempting to think of a
particle as representing a molecule in collision theory, but in this case one particle might represent
hundreds or thousands of molecules. The particle nature also makes the tracking of object separation
possible.

We introduce a kinetic energy to describe the particle excitation of solute which governs the
dissolving process (i.e. if the particle needs to be dissolved or not). When solute particles collide
with the solvent particles, energy is accumulated with the solute particle. Each solute particle carries
the energy information which is summed over all the collisions that have occurred. When the energy
is larger than a threshold — the activation energy — the particle detaches from the object. This
activation energy becomes an important factor in determining the dissolution rate. By detecting the
relationship between the local particle excitation and the global dissolution time, we are able to control
the dissolution rate during the process. The simulation continues until all the solid particles are dissolved
into solvent. The position of the solute is updated using rigid body dynamics. This method allows us
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to model the dissolution process in a physically and chemically correct manner.

3.2 SPH Interpolation

Most fluid simulation methods are governed by the Navier–Stokes equations [27]. From the viewpoints
of the Lagrangian (particle–based) and Eulerian (grid–based) methods, particle–based methods seem
to be a natural choice for dissolution because it is easy to implement with arbitrary boundaries and
applied forces, while supporting fluid mixing and interaction with arbitrary rigid bodies. Smoothed
Particle Hydrodynamics (SPH) was first introduced as a mesh–free Lagrangian method independently
by both Gingold and Monaghan [28] and Lucy [29], and has since been established as one of the principle
methods for fluid animation in computer graphics.

We use the standard SPH [30] for fluid simulation to demonstrate the dissolution framework, since
the focus of this paper is on the chemical interaction between fluids and solids rather than fluid itself,
but our method is compatible with other SPH models [31], such as PCISPH [16], and can be extended
with other particle–based representations, such as Position Based Dynamics [32] or the Material Point
Method [17].

We demonstrate the basic SPH method with a short introduction which is required to understand
our dissolution method. In SPH, a scalar quantity A at location x is computed by

A(x) =
∑

j

mj

Aj

ρj
W (x− xj , h), (1)

where W (x, h) is a smoothing kernel with smooth core radius h which also decides the neighbourhood
size. The kernel satisfies

∫
W (x, h)dx = 1 and W (x, h) = 0 when ‖x‖ > h. Particle j is the neighbour

of the particle at x. mj is the particle mass and Aj is the field quantity at xj .
Each individual fluid particle carries its own attribute values such as density and pressure, which are

deduced from the neighbourhood of the fluid and solid particles. These values are calculated based on
[30] and then used to calculate the physical motion and chemical behaviour happened to fluid. Neighbour
searching of the solvent simulation is efficiently implemented using the framework of Hoetzlein [33].

To ensure the correctness of fluid-solid boundary interaction without causing any penetration or
sticking artefacts, we use the corrected density computation of [15] to handle the boundary problem,
except we sample the entire object rather than just the surface since the boundary and shape change
as the solute dissolves.

3.3 Kinetic Energy

Based on Sec. 3.1, local collision energy of solute particle measures the particle excitation. Since the
collision itself is a kinetic process, we derive our particle excitation equation from the kinetic energy
1

2
mv

2
r , where vr is the relative velocity. It is incorporated into Eq. 1 to derive the expression for the

particle excitation. Thanks to the use of relative velocity, the formulation yields asymmetric rules.

Es =
∑

f

mf

ρf
EfW (xs − xf , h),

=
∑

f

mf

ρf
(
1

2
mv

2

r)W (xs − xf , h),

=
1

2
m

∑

f

mf

ρf
[||vl||+ ||vw||+ ǫ]2W (xs − xf , h) (2)
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where m is the volume mass of solute particle (introduced later in Eq. 4); f is the solvent particle
within the neighbourhood of solute particle s; mf and ρf are the mass and density of solvent particle;
W (xs−xf , h) is a poly6 kernel [30], which smooths out the energy according to distance; other kernels
may apply, such as cubic spline [31]. The relative velocity vr is split into three items vl, vw and ǫ.

vl is the relative linear velocity of solid and fluid particles. According to the Collision Theory,
the dissolution only occurs when particles collide with a direct angle and at sufficient speed. In SPH,
however, particles cannot collide as they will be repelled by the pressure between particles. Instead,
we consider collision to have occurred once one SPH particle has entered the neighbourhood of the
other, as they are representative thousands of molecules of solvent and solute. Particles outside of the
neighbourhood are not computed. The magnitude of the velocity is affected by the angle of the collision,
calculated as:

||vl|| = max((vf − vs) · (xs − xf ), 0), (3)

where vs,f represent the velocity of solid and fluid particles respectively. The direction of vl is xs−xf .
This is illustrated in Fig. 3, where only f2 and f3 contribute to the collision.

Figure 3: The collision domain. s represents a solid particle and f1,2,3,4 are fluid particles, where f4 is
outside the neighborhood. The blue arrows indicate the actual relative velocity, while yellow ones are
the calculated linear relative velocity vl. [9].

vw represents the angular velocity which contributes to the kinetic energy. vw is calculated by
w × r, where w is the angular velocity and r is the vector from the particle position to the centre of
the object. This is only needed when there is obvious relative rotational motion between the object
and fluid. Fig. 4 shows the different dissolution behaviours of the spinning bunny with and without
angular velocity. It is easily noticed that the bunny with angular velocity is dissolving faster than the
one without.

With the basic model described above no dissolution would occur if the solvent was at rest but in
contact with the solute, for example if a puddle formed on the surface of the object. A small ǫ is added
to demonstrate the random thermal motion among molecules which gives the possibility of dissolution
when there is no macroscopic relative motion between the fluid and solid. In principle, this parameter
can be defined according to the solubility of the solute in the solvent, but for simplicity ǫ = 0.00001
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(a) Dissolving without vw

(b) Dissolving with vw

Figure 4: A spinning bunny dissolving in water. Note that (b) demonstrates separation behaviour (will
discuss in Sec. 6.1). The fluid is not rendered in these examples for better visualization of the solute.
[9].
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in our model. Note that even small values of ǫ will affect dissolution behaviour as Es accumulates by
time: when it is larger than a user specified activation energy E0, the particle dissolves into the solvent.

4 Sampling Resolution Independent Dissolution

Our method ensures the consistent dissolution result (within error tolerance) even when the sampling
resolutions of the solute are different. This property has important applications in computer graphics:
for the purposes of pre–visualisation, a solute with low sampling resolution or an adaptively sampled
solute can be used to predict the dissolution behaviour of a very densely sampled solute, which improves
the performance of real–time applications.

In previous methods [19, 20], shape alteration of a dissolving solute was achieved using mass
transfer. Both methods used level–sets to represent the solute, causing the dissolution results to be
largely affected by the grid resolution. We introduce the concept of volume mass which takes the
volume and density of particle into consideration. It removes the assumption of the same mass for each
particle, and calculates the mass of each particle according to its own representative volume and density.
We use volume mass instead of mass in the energy calculation for each solute particle to ensure that our
result is independent with the sampling resolution. The volume mass of each solid particle is calculated
as:

mvs = vs · ρs =
V

N

∑

b

msW (xs − xb, h), (4)

where vs and ρs are respectively the volume and the representative density of each solid particle. V
is the volume of the entire object and ms is the mass of each particle: both of which are constant
once the object is initialised. N is the number of particles used to sample the object. It is easy to tell
that ρs =

∑
bmsW (xs − xb, h) originates from the basic SPH density calculation in Eq. 1. b is the

object particle within the solute neighbourhood h. Once the solute is sampled, the volume mass of each
solute particle is set which does not change during the interactions. The volume mass of the boundary
particles is set to the volume mass of the nearest interior particle to guarantee the consistency.

Fig. 5 demonstrates the property of sampling resolution independence by using different sampling
resolutions, as well as non–homogeneous sampling resolutions, and compare these against previous
dissolution methods [19, 20]. If we directly use the same mass for each solute, each collision will
result in roughly the same energy, and the solute particle at overly sampled regions will have the same
possibility to be dissolved with the solute particle at sparse sampled regions, causing discontinuities like
Fig. 5(d). Instead, with our volume mass, as in Fig. 5(c), the solute particles in highly sampled area
have larger volume mass (due to larger density) which means higher energy with each collision, thus
will be easier to be dissolved according to Eq. 2.

To further demonstrate independence of sampling resolution, in Fig. 6 we pour liquid over a sphere,
demonstrating the effect of pouring fluid at a targeted area. One of the spheres is sampled with 8538
particles while the other with 22274 particles. We calculate the percentage of the volume difference
at each frame of these two spheres: with our method, the difference reaches a maximum of 3.4% of
the entire sphere volume, while with the method of [20] and [19] the low sampled sphere dissolves
completely before the high sampled sphere halves in size. To ensure that the fluid realistically adheres
to the sides of the sphere, we use the surface tension model of [7] in this example.

Fig. 6(a) runs at 148 frames per second (FPS) in average while Fig. 6(b) runs at 48 FPS, both
with 100k solvent particles. The performance is significantly improved with less solute particles, which
demonstrates that our sampling independent dissolution model allows animators to preview the dissolu-
tion behaviour with a lower computational cost and is therefore useful for pre-visualization.
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(a) solute – 6811 particles (b) solute – 2106 particles

(c) solute – 4085 particles (d) solute – 4085 particles

Figure 5: Bunny shaped solutes which are sampled with different resolutions dissolve in fluid. Using
our method (in (a), (b) and (c)) the sampling resolution does not affect the dissolution process, even
when the sampling is non-homogeneous. In (d) we demonstrate the result when using previous methods
[19, 20]. All the images are taken from the same frame with the same initial conditions. The solute
particles with high energy are coloured in red. [9].
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(a) Sphere sampled with 8538 particles

(b) Sphere sampled with 22274 particles

Figure 6: Fluid is poured over spheres with different sampling resolutions, with almost identical results,
except that the solute appears smoother with a higher sampling resolution [9].
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5 Solute Sampling

Though our dissolution model is independent of the sampling resolution of the solutes, the distribution
of the solute particles still affects the plausibility of the dissolution simulation. In the following section
we investigate experimentally the influence of the sampling of the solute on the quality of the resulting
simulation.

5.1 Random, Grid and Blue Noise Solute Sampling

During dissolution, solid particles will gradually transfer into the solution. Boundary particles are im-
plicitly the first to be affected as they interact more frequently with the solvent, exposing inner particles
that become the new boundary particles.

A completely random sampling of the solute offers no guarantees of the density of the distribution
of boundary particles, which can cause fluid particles to compromise and penetrate the solute boundary.
It follows that a homogeneous solute favours evenly distributed samples with equal density. We will also
demonstrate that this improves the smoothness of the solute shape change, benefits the the control of
the dissolving process and ensures that our dissolution process is stable and predictable.

While simple grid sampling of solute distribution plausibly mimics the mass transfer of the solute,
it introduces serrated artefacts on the solute surface, affecting the rendered results in high resolution,
shown in Fig. 7. It also causes popping artefacts due to the lack of randomness during the particle
phase transition, shown in Fig. 18.

A blue noise distribution of solute particles will generate points that are evenly yet stochastic
dispersed. In this paper we use SPH sampling method with a Capacity Constrained Voronoi Tesselation
(CCVT) profile [8] for solute particle distribution. This approach avoids boundary penetration thanks to
the even density distribution, eliminates serrated artefacts arising from regular grid sampling, and also
improves the rendering appearance, as shown in Fig. 7.

The comparison between SPH sampling and simple grid sampling can be demonstrated using Fourier
frequency transform, shown in Fig. 8. Grid sampling has a considerable high oscillation which means high
structured aliasing due to the excessive regularity. The anisotropy of grid sampling is also significantly
high while the SPH sampling is almost perfectly isotropic.

The importance of the isotropic property can be easily explained using an example: a fluid particle
moves along the boundary of a solute (Fig. 9), and the density contribution from the solute particles
within the neighbourhood of the fluid particle is calculated. With grid sampling, the density is oscillating
while the particle is rounding the spherical solute, shown as the red curve in the right image of Fig. 9. In
contrast, while the fluid particle is rounding the SPH sampled solute, the density difference varies gently,
shown as the blue curve in the right image of Fig. 9. The difference enlarges when the smooth radius
is smaller. The error of density estimation will increase the inaccuracy of the energy calculation during
dissolution, leading to discontinuous behaviour. Therefore, an isotropic sampling method is required
which tightly fits a given solute boundary. SPH sampling maintains the density stability even when the
smoothing length is reasonably small which allows us to improve simulation performance by stabilising
the density calculation.

Fig. 7 compares three different sampling methods — random, grid and SPH sampling for solute
particle distribution in dissolution simulation. It is easily noticed that random sampling results in a faster
dissolution process because the irregular sampling cannot guarantee the boundary condition, leading to
more particles colliding with the boundary particles. Thanks to our sampling independent dissolution
model, the simple grid sampling and SPH sampling roughly have the same dissolution rate in this
experiment.

It should be noted that the SPH sampling method produces rougher surfaces during the dissolution
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Figure 7: Comparison of different sampling methods for a solute in dissolution simulation at frame 100,
1000 and 10000 (top 3 rows). The bottom row shows a zoom in to the solute sampling. The left images
are random sampling; the middle images are simple grid sampling; and the right images are the SPH
sampling with CCVT profile. The solute spheres are all initially sampled with 8000 particles.
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Figure 8: Fourier spectrum analysis of uniform grid sampling (top row) and SPH sampling (bottom row).
The images from left to right are respectively sample points, spectrum, radial mean and anisotropy.

Figure 9: A fluid particle (blue) moves along the boundary of a solid solute (red). The graph shows the
density changes while the fluid particle is moving along the spherical solute using uniform sampling and
SPH sampling.
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process — this mimics the behaviour in nature as molecular collision is a random process (as described
in Sec. 3.1). This roughness is considerably more noticeable when rendered at high resolution.

5.2 A Comparison of Blue Noise Solute Sampling

We have experimented with alternative isotropic sampling techniques. Compared with the Poisson
sampling, used in [6], SPH sampling minimizes the internal pressure of the solid solute and achieves a
more even distribution (Fig. 10). [6] sampled the surface and enclosed volume separately using Poisson
disk patterns similar to [34]. In contrast, the SPH sampling method in [8] samples both the surface and
the volume simultaneously and in parallel, reducing computational cost.

(a) (b) (c)

Figure 10: A comparison of solute sampling methods using (a) Poisson disk sampling, (b) Poisson disk
sampling with relaxation [6] and (c) SPH sampling sampling. 30 iterations for all the methods. The
colour represents the density of each particle varying from green (high density) to blue (low density).

Compared with other blue noise sampling methods, the use of SPH sampling in our SPH dissolution
model gives precise density control of the undissolved and dissolved solute particles. Take ice melting
to water as an example: we can control the density of the undissolved solute by setting a corresponding
sampling number to produce ice density (0.9340g/cm); and we can choose the density for the dissolved
solute to match water density (1, 000kg/m). Fig. 11 displays comparison examples of dissolving bunny
at the same frame with different solute densities before or after dissolving. Users can choose the specific
density ratio to control the volume change of the solute before and after dissolving, thus achieving
desired visual effects.

5.3 Particle Distribution within a Boundary

To ensure the particles are sampled within the solute object, Signed Distance Fields (SDF) [35] are used.
SDF calculates the distance from a given point to the closet point on the object surface within a metric
field [36] and the sign is used to indicate whether a particle is inside or outside the object. The particles
inside the object will be kept and particles outside will be rejected until the desired sampling number
of particles has been reached. We compute the sign using Angle Weighted Pseudo Normals [37], which
requires the closest feature. There are numerous methods to find the closest feature on a mesh from a
particle [36]. In this paper, we use AABB trees [38] for acceleration.

Once the solute particle distribution is initialized, there is no relative movement between these
particles. Therefore, the sampling of the solute can be achieved off-line before the simulation.
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Figure 11: We demonstrate the user control of the volume change between the undissolved solute and
dissolved solute by varying the density ratio between them.
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6 Solute Update

During dissolution, parts of the object may break off and form separate shapes. Each disconnected
component is treated as a rigid body. In this section the method to identify and simulate object
separation is described.

6.1 Object Segmentation

In order to track the topology changes of the shape, we use the region growing algorithm to detect
the object separation during dissolution, a method commonly used in image segmentation [39, 40].
We apply the technique to identify connected regions amongst the volumetric particles. Particles close
enough are grouped into clusters, each representing a separate rigid body.

The most costly component of this algorithm is testing the proximity of particles, but as we already
have neighbourhood information as part of the fluid simulation, this becomes trivial. We update the
neighbourhood information before evaluating the region growing algorithm.

Sequential region growing quickly becomes the bottleneck in our implementation (time complexity
O(N)) as the remainder of the algorithm is implemented in parallel. We propose a new parallel region
growing algorithm on the GPU which integrates effectively into our dissolution framework. It is derived
from [41] and improves the time complexity to an average of O(log(N)).

Initially, all the particles are considered as seeds and are labelled with the particle index representing
a class, shown in Fig. 12. Each parallel thread assigned to individual particle merges adjacent particles
iteratively to minimize the number of distinct classes. To avoid race conditions, every time–step we
update the particle’s class as the lowest label of the neighbouring particles (including itself). The
algorithm stops when there is no change in the classes (labels).

In our implementation, our parallel region growing method avoids the data transfer between CPU
and GPU during the separation check every frame. Compared with CPU region growing, the performance
on the GPU improves with the number of the separate parts. The best case scenario is if each particle
represents an isolated object, in which case the time complexity reaches O(1). The performance is also
improved if each separated part consists of fewer particles. The overall computational cost is constrained
by the largest separated part.

We compare the performance of the sequential and parallel region growing methods, implemented
on the CPU and GPU respectively, using a simple test in which there are two objects, each with
70000 particles. Given the same neighbouring information, sequential region growing costs 31ms to
converge while parallel region growing takes 15ms, demonstrating a 2X speed-up. In a test with four
separate parts, each with 35000 particles, our parallel algorithm maintains the speed with 16ms while
the sequential implementation takes 53ms. Further discussion and performance improvement of the
algorithm is an interesting area of future research.

6.2 Rigid Body Dynamics

As each object represented by particles is assumed not to be deforming, no relative motion is expected
among the particles in one rigid body. To maintain the rigidity of the solute, it is helpful to think that
all the forces are exerted on the mass centre of the rigid bodies, which simplifies the motion of solute
particles. For the acceleration we consider gravity, forces applied by the fluid, and the supportive force
when the object hits the boundary. The forces from fluid such as pressure are equal to the opposite of
the corresponding forces from the object to fluid. We assume that the viscosity is not large enough to
affect the movement of the solids. The rules updating the solid obey the standard rigid body dynamics
[42].
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Figure 12: Parallel region growing process. Each particle is initially labelled with one class. Afterwards,
they gradually merge class with their neighbours and are assigned the lowest label value. The results
show that there are two isolated objects with label 1 and 5.
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7 Activation Energy

Based on collision theory, the dissolution rate of individual particle can be controlled by the activation
energy. However, this offers no control over the time taken for the object to be completely or partially
dissolved: a property that is particularly important to animators seeking to control the simulation without
having to resort to trial and error.

We provide the bridge to connect the global dissolution time with the local particle excitation.
Dissolution depends on the nature of the solvent and solute, the temperature of both, the inter–facial
surface area between them, and the presence of mixing [24]. In our method the presence of mixing is
implicitly solved by the particle excitation (e.g., Fig 4). For simplicity, we assume temperature to be a
constant parameter θ (although this could be varied within more complex simulations).

We determine the relationship between the total dissolution time T , activation energy E0 and the
inter–facial surface area S based on our simulation experiments. Fig. 13 shows the results of dissolving
objects with different inter–facial surface areas and different activation energies. The three objects
(sphere, cube, spiky cube) have the same volume of unit 1. The surface areas are respectively 4.83, 6.0,
and 8.20.

Each curve describes the dissolution times of certain object with different activation energies. The
shape of the curve can be best approximated with a general exponential function (α = 0.25 in our
examples): T ∝ exp(αE0).

By observing the dissolution time of the different objects with the same activation energy, the
relationship between dissolution time T and surface area S matches: T ∝ 1

S
. This agrees with common

sense: a larger surface area results in shorter dissolution time.
Thus the relationship between the total dissolution time, activation energy and the inter-facial

surface area can be described as:

T =
exp(αE0)

θS
, (5)

Using this experimental methodology, artists are able to better estimate the total dissolution time
for objects based on the surface area and the activation energy. An interactive tool could be developed
which uses preceding simulation results of a particular fluid configuration to calculate the coefficients
for better estimation. Once the coefficients are determined, the inverse of this function can be used
to determine the activation energy for an artist specified target dissolution time. More complicated
dissolution processes, such as a period of fast dissolution followed by a period of slow dissolution is also
achievable by tuning the activation energy at the user specified time frame.

8 Applications and Results

Our simulations are implemented in CUDA. Real–time results are rendered in OpenGL and simulation
results are rendered using Houdini. These results can be viewed in the accompanying video.

8.1 Solute Dissolves in Fluid

Antacid pills in water are a classic example of dissolution behaviour. Fig. 14 demonstrates the dissolution
effect of two antacid pills dropped into a glass of water. Bubbles caused by the release of trapped air
and chemical processes are recognisable clues that dissolution is taking place. We add bubbles at the
dissolution site to increase the authenticity of the simulation. The bubble motion is modelled using
basic Brownian motion [18].
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Figure 13: The relationship between the total dissolution time and activation energy for different solute
shapes. Shapes with more surface area in contact with the solvent naturally dissolve faster. The observed
dissolution rates lead us to use the exponential function to model the total dissolution time as a function
of activation energy [9].
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Figure 14: Two antacid pills dissolving in water. The bubbles are generated at dissolution sites and
animated using basic Brownian motion. The buoyancy of the objects is not considered in the examples
[9].

8.2 Erosion

Our dissolution method can also be applied to simulate hydraulic erosion phenomena. While we do not
use the actual physical properties of different terrain types, these examples demonstrate the viability of
using our model for practical simulations. Fig. 15 shows the hydraulic erosion acting on the floor of a
river bed. As the fluid runs over the terrain, certain soil particles become dissolved in the water. Note
that more complex properties of erosion, such as fluid carrying and relocating sediment, are ignored in
this simulation.

One advantage of our energy–based model is that we can simulate different terrain types by simply
modifying the activation energy of individual layers of particles. This allows us to simulate erosion
of rocks consisting of different layers each with different material properties, giving rise to natural
formations similar to those which can be found in mountainous or coastal regions.

This simulation is demonstrated in Fig. 16, where a three layered terrain is immersed in turbulent
fluid to simulate coastal erosion. Different activation energies are assigned to particles in each layer,
with the lowest activation energy assigned to the middle layer — leading to a natural arch formation.

8.3 Melting

Our dissolution model can be easily transformed to mimic a simple melting effect. Fig. 17 shows a bunny
melting with different temperatures. The model is simplified by only considering the heat transfer from
the circular pan to the bunny and ignoring the heat transfer elsewhere. We transformed the energy
calculation of Eq. 2 by replacing the kinetic energy with temperature θ as below:

Es = mvs

∑

h

θW (xs − xh, h), (6)
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(a) Fluid simulation (b) Resulting erosion

Figure 15: Hydraulic erosion using our dissolution model. In (a) we show the dissolution process, while
in (b) the removed soil particles are shown in red [9].

where mvs is the volume mass, xs and xh are the position of the solute particle and the heated particle
respectively, which are the particles representing the pan. When the heat energy of the solid particle
exceeds a user defined threshold, the particle will detach from the solid object and become fluid particle.
The solute particles are distributed using SPH sampling.

We also test this example using simple grid sampling. Fig. 18 shows a bunny with grid sampling
melting in a heated pan. Since one layer of particles will have the same energy (no randomness), they
will gain the same heat and melt at the same time, leading to obvious popping artefacts during the
melting process as all the particles in each layer melts simultaneously.

9 Conclusion and Future work

In this paper we introduce a novel energy–based dissolution model based on the Collision Theory. Both
solute and solvent are simulated using Smoothed Particle Hydrodynamics. We demonstrate by way of
examples that this method achieves physically and chemically plausible dissolution, erosion and melting
behaviours.

The key to this model is a new expression for particle excitation based on kinetic energy. By using
the volume mass instead of mass to update local particle energy, we are able to ensure the consistent
dissolution results independent of the sampling density, which is beneficial for pre-visualization.

We also establish a mathematical relationship between the activation energy and the total disso-
lution time, allowing animators to easily adjust the global properties of the dissolution simulation by
modifying a single parameter.

The particle representation naturally lends itself to a parallel implementation. We introduce a
parallel region growing method which integrates into our dissolution framework and greatly improves
performance.

During fluid–solid interaction the representation of the solute becomes vital particularly when the
solid shape is changing. The choice of the sampling methods not only affects the rendering results,
but also influences the correctness of the simulation. By using SPH sampling for the solute particle
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Figure 16: A simulation of layered terrain erosion using our dissolution model. The solute consists of
three different material layers, each with a different activation energy. The green layer has the lowest
activation energy which leading to a faster dissolving. Forces are added to the fluid to keep the fluid
active. The rendered results are shown in the right corresponding to the particle representations [9].
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Figure 17: The left column shows a bunny melting in a high temperature pan, while the middle one
melts in a low temperature pan, and the right one melts in a pan whose temperature varies from one
side to the other. Purple particles have high temperature and green ones have low temperature.
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(a) (b)

(c) (d)

Figure 18: In (a), (b), (c) and (d) heat is applied to the base of the bunny causing it to melt over time.
Due to the regularity of the grid sampling particles on each layer accumulate enough energy to melt
at the same time. This causes the object melts layer by layer over a constant time interval instead of
melting gradually and smoothly, resulting in obvious popping artefacts during simulation.
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distribution we avoid artefects and create better visual results on the surface compared with simple grid
sampling. Compared with other blue noise sampling methods, SPH sampling allows users to control the
volume change of the dissolved and undissolved solute and achieve the desired visual effects.

There are several directions for future work. The interaction of our particle–based model with a
gas model for wet and dry foam could potentially enhance realism. More significantly, this and recent
published works hint at the development of a unifying particle–based representation for interacting
media — allowing gas, solids and fluids to be simulated within a single framework, and leading to the
development and simulation of other complex natural phenomena such as evaporation and boiling.
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