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Abstract. We prove that the bidual of a Beurling algebra on Z, con-
sidered as a Banach algebra with the first Arens product, can never be
semisimple. We then show that rad (` 1(⊕∞i=1Z)′′) contains nilpotent el-
ements of every index. Each of these results settles a question of Dales
and Lau. Finally we show that there exists a weight ω on Z such that
the bidual of ` 1(Z, ω) contains a radical element which is not nilpotent.

1. Introduction

Let G be a discrete group, and let ω be a weight on G. Let ` 1(G,ω)′′ denote
the bidual of ` 1(G,ω), considered as a Banach algebra with the first Arens
product ‘2’. We shall study the Jacobson radical rad (` 1(G,ω)′′,2) in this
article. The focus will be on the cases where either ω = 1, in which case
we are in fact studying the bidual of the group algebra ` 1(G), or where the
weight is non-trivial but G = Z. Our main results will be solutions to two
questions posed by Dales and Lau in [5].

The study of the radicals of the biduals of Banach algebras goes back at
least to Civin and Yood’s paper [3], where it was shown that if G is either a
locally compact, non-discrete, abelian group, or a discrete, soluble, infinite
group, then rad (L 1(G)′′) 6= {0}. Civin and Yood’s results have since been
extended to show that rad (L 1(G)′′) is not only non-zero, but non-separable,
wheneverG is discrete and amenable ([10], [12, 7.31(iii)]) or non-discrete [11].
The study has not been restricted to those Banach algebras coming from
abstract harmonic analysis. One particularly striking result is a theorem of
Daws and Read [6] which states that, for 1 < p < ∞, the algebra B(` p)′′ is
semisimple if and only if p = 2.

A study of rad (` 1(G,ω)′′) for G a discrete group and ω a weight on G was
undertaken by Dales and Lau in [5]. In the list of open problems at the end
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of their memoir the authors ask whether ` 1(Z, ω)′′ can ever be semisimple
[5, Chapter 14, Question 6]. In Section 3 we shall prove that the answer to
this question is negative:

Theorem 1.1. Let ω be a weight on Z. Then rad (` 1(Z, ω)′′) 6= {0}.

A key observation of Civin and Yood (see [3, Theorem 3.1]) is that, for
an amenable group G, the difference of any two invariant means on `∞(G)
always belongs to the radical of ` 1(G)′′, and this idea is what lies behind
many of the subsequent results mentioned above. Dales and Lau developed a
weighted version of this argument in [5, Theorem 8.27], and invariant means
are also at the centre of our proof of Theorem 1.1.

In each of the works [3], [10] and [11], whenever an element of the radical
of the bidual of some group algebra is constructed it is nilpotent of index 2.
This is an artifact of the method of invariant means. Moreover, it follows
from [5, Proposition 2.16] and [5, Theorem 8.11] that, for a discrete group G,
if ω is a weight on G such that ` 1(G,ω) is semisimple and Arens regular, then
rad (` 1(G,ω)′′)22 = {0}. To see that this is a large class of examples consider
[5, Theorem 7.13] and [5, Theorem 8.11]. In [5, Chapter 14, Question 3],
Dales and Lau ask, amongst other things, whether or not we always have
rad (L 1(G)′′)22 = {0}, forG a locally compact group. It also seems that until
now it was not known whether or not rad (L 1(G,ω)′′) is always nilpotent,
for G a locally compact group and ω a weight on G, although there is an
example of a weight on Z in [5, Example 9.15] for which this radical cubes
to zero, but has non-zero square. In Section 4 we shall answer both of these
questions in the negative by proving the following:

Theorem 1.2. Let G = ⊕∞i=1Z. Then rad (` 1(G)′′) contains nilpotent ele-
ments of every index.

Here we understand ⊕∞i=1Z to consist of integer sequences which are eventu-
ally zero, so that our example is a countable abelian group.

We note that by a theorem of Grabiner [9], Theorem 1.2 implies that
rad (` 1(⊕∞i=1Z)′′) contains non-nilpotent elements. In Section 5, we obtain a
similar result on Z, but this time involving a weight.

Theorem 1.3. There exists a weight ω on Z such that rad (` 1(Z, ω)′′) con-
tains non-nilpotent elements.

However, we do not know whether or not this example has nilpotent elements
of arbitrarily high index.

2. Background and Notation

For us N = {1, 2, . . .} and Z+ = {0, 1, 2, . . .}. The group of integers is
denoted by Z and

⊕∞i=1Z = {(ni) ∈ ZN : ni = 0 for all but finitely many i}.
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Let G be a discrete group with neutral element e. We say that a function
ω : G → [1,∞) is a weight if ω(st) ≤ ω(s)ω(t) (s, t ∈ G) and ω(e) = 1.
Given a weight ω on a group G, we define

` 1(G,ω) =

{
f : G→ C : ‖f‖ω :=

∑
s∈G
|f(s)|ω(s) <∞

}
.

This is a unital Banach algebra with the norm given by ‖ · ‖ω, multiplication
given by convolution, and the vector space operations given pointwise. By
a Beurling algebra we mean a Banach algebra of the form ` 1(G,ω.) (More
generally, authors refer to algebras of the form L1(G,ω), where G is a locally
compact group, and ω is a continuous weight on G, as Beurling algebras, but
we shall not consider this setting here.) The dual space of ` 1(G,ω) may be
identified with

`∞(G, 1/ω) =

{
f : G→ C : ‖f‖∞,ω := sup

s∈G

|f(s)|
ω(s)

<∞
}

via
〈f, g〉 =

∑
s∈G

f(s)g(s) (f ∈ ` 1(G,ω), g ∈ `∞(G, 1/ω)).

Given a group element s ∈ G, we denote the point mass at s by δs ∈ ` 1(G,ω).
Given a weight ω on Z and n ∈ Z, we sometimes write ωn in place of

ω(n). We define ρω = infn∈N ω(n)1/n; by [4, Proposition A.1.26 (iii)], in fact
ρω = limn→∞ ω(n)1/n.

Let A be an algebra, and take n ∈ N. We say that a ∈ A is nilpotent of
index n if an = 0, but an−1 6= 0. Given a left ideal I of A and n ∈ N, we
write In = {a1a2 · · · an : a1, . . . , an ∈ I}, and we say that I is nilpotent of
index n if In = {0} but In−1 6= {0}.

Now let A be a unital Banach algebra. We say that a ∈ A is quasi-
nilpotent if its spectrum is zero, or, equivalently, if limn→∞ ‖an‖1/n = 0, and
we denote the set of quasi-nilpotent elements of A by Q(A). Every nilpotent
element is also quasi-nilpotent. We define the Jacobson radical of A, denoted
by rad (A), to be the largest left ideal of A contained in Q(A), and it can be
shown that

rad (A) = {a ∈ A : ba ∈ Q(A) (b ∈ A)}.
In fact, rad (A) is a closed, two-sided ideal of A, and

rad (A) = {a ∈ A : ab ∈ Q(A) (b ∈ A)}.

Many equivalent characterizations of rad (A) are available (for details see [4,
Section 1.5]).

Denote the dual space of A by A′ and its bidual by A′′. Arens ([1], [2])
introduced two products on A′′, denoted by 2 and 3, rendering it a Banach
algebra, both of which have the property that they agree with the original
multiplication on A, when A is identified with its image under the canonical
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embedding into A′′. These are called, respectively, the first and second Arens
product, and are defined by

〈Ψ2Φ, λ〉 = 〈Ψ,Φ · λ〉, 〈Ψ3Φ, λ〉 = 〈Φ, λ ·Ψ〉,
〈Φ · λ, a〉 = 〈Φ, λ · a〉, 〈λ ·Ψ, a〉 = 〈Ψ, a · λ〉,
〈λ · a, b〉 = 〈λ, ab〉, 〈a · λ, b〉 = 〈λ, ba〉,

for Φ,Ψ ∈ A′′, λ ∈ A′, a, b ∈ A (for more details see [4, Section 2.6]). In this
article, unless we specify otherwise, whenever we talk about the bidual of a
Banach algebra we are implicitly considering it as an algebra with the first
Arens product. The first Arens product has the property that multiplication
on the right is weak-* continuous, whereas the second Arens product has
this property on the left. In particular the following formulae hold, for Φ,Ψ
elements of A′′, and (aα), (bβ) ⊂ A nets converging in the weak-* topology
to Φ and Ψ respectively:

Φ2Ψ = lim
α

lim
β
aαbβ, Φ3Ψ = lim

β
lim
α
aαbβ.

In these formulae the limits are again taken in the weak-* topology. If 2 = 3,
we say that A is Arens regular, and if the other extreme occurs, namely that{

Φ ∈ A′′ : Φ2Ψ = Φ3Ψ (Ψ ∈ A′′)
}

={
Φ ∈ A′′ : Ψ2Φ = Ψ3Φ (Ψ ∈ A′′)

}
= A,

we say that A is strongly Arens irregular. Both of these extremes may occur
for Banach algebras of the form ` 1(Z, ω), as may intermediate cases (see [5,
Theorem 8.11] and [5, Example 9.7]).

We fix some notation relating to repeated limits. Let X and Y be topo-
logical spaces, I a directed set, and U a filter on I. Let (xα)α∈I be a net in
X, let r ∈ N, and let f : Xr → Y be a function. Then we define

lim
α→U

(r)f(xα1 , . . . , xαr) = lim
α1→U

· · · lim
αr→U

f(xα1 , . . . , xαr),

whenever the repeated limit exists. We define

lim sup
α→U

(r)f(xα1 , . . . , xαr)

analogously. Suppose now that we have two directed sets I and J and two
filters: U on I and V on J . Let (xα)α∈I and (yβ)β∈J be two nets in X, let
r ∈ N, and let f : X2r → Y . Then we define

lim
α→U , β→V

(r)f(xα1 , yβ1 , . . . , xαr , yβr) =

lim
α1→U

lim
β1→V

· · · lim
αr→U

lim
βr→V

f(xα1 , yβ1 , . . . , xαr , yβr),

whenever the limit exists. It is important to note that the choice of di-
rected set in the above repeated limit alternates. In expressions of the form
limα→∞

(r)f(xα1 , . . . , xαr) the symbol ‘∞’ is understood to represent the
Fréchet filter on the directed set.
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3. Semisimplicity of ` 1(Z, ω)′′

In this section, we shall prove Theorem 1.1. Throughout ω will be a weight
on Z, and we shall write Aω = ` 1(Z, ω). In an abuse of notation, we shall
write 1 ∈ `∞(Z) for the sequence which is constantly 1. Note that this
is a character, known as the augmentation character, when regarded as an
element of A′ω. We define

Iω =
{

Λ ∈ A′′ω : δn2Λ = Λ (n ∈ Z), 〈Λ, 1〉 = 0
}
.

By [5, Proposition 8.23] Iω is an ideal of A′′ω, satisfying I22
ω = {0}, so that

Iω ⊂ rad (A′′ω). Our strategy will be to reduce to a setting in which we can
show that Iω 6= {0}. Our argument is an adaptation of [5, Theorem 8.27].

Let Λ ∈ `∞(Z, 1/ω)′. We say that Λ is positive, written Λ ≥ 0, if 〈Λ, f〉 ≥
0 whenever f ≥ 0 (f ∈ `∞(Z, 1/ω)), and we say that Λ is a mean if Λ ≥ 0
and ‖Λ‖ = 1. We say that a mean Λ ∈ `∞(Z, 1/ω)′ is an invariant mean if
δn2Λ = Λ (n ∈ Z).

Lemma 3.1. Let ω be a weight on Z and let Λ ∈ `∞(Z, 1/ω)′ be positive.
Then ‖Λ‖ = 〈Λ, ω〉.

Proof. This follows by considering the positive isometric Banach space iso-
morphism T : `∞(Z, 1/ω)→ `∞(Z) given by T (f) = f/ω (f ∈ `∞(Z, 1/ω)),
and then using the facts that the formula holds in the C*-algebra `∞(Z) and
that T (ω) = 1. �

In what follows, given E ⊂ N we denote the complement of E by Ec.

Lemma 3.2. Let ω be a weight on Z, and suppose that ρω = 1. Then there
exist at least two distinct invariant means Λ and M on `∞(Z, 1/ω) such that
〈Λ, 1〉 = 〈M, 1〉.

Proof. By an easy calculation, using the fact that infn∈N ω
1/n
n = 1 (see [13,

Lemma 5.3]), there exists a strictly increasing sequence (nk) of integers such
that n0 = 0, n1 = 1 and such that

(3.1) lim
k→∞

ωnk
/(ω0 + · · ·+ ωnk

) = 0.

By passing to a subsequence if necessary we may suppose that

lim
k→∞

(nk + 1)/(ω0 + · · ·+ ωnk
)

exists.
Set Ck = ω0 + · · · + ωnk

, and define Λk = 1
Ck

(δ0 + · · · + δnk
); we regard

each Λk as an element of A′′ω. Notice that, for each fixed i ∈ N, we have

(3.2) lim
k→∞

Ci/Ck = 0.

We shall first show that the sequence (Λk) does not converge when considered
as a sequence in A′′ω with the weak-* topology. This will then allow us to use
two different ultrafilters in such a way as to obtain distinct limits of (Λk),
and these limits will turn out to be our invariant means. To achieve this,
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we shall inductively construct a function ψ : Z→ C and choose non-negative
integers

s1 < t1 < s2 < t2 < · · · < sk < tk < · · ·
such that

(3.3) |〈Λsj , ψ〉| <
1

4
, |〈Λtj , ψ〉| >

3

4
(j ∈ N)

and

(3.4) 0 ≤ ψ(i) ≤ ωi + 1 (i ∈ Z).

Since (3.4) ensures that ψ ∈ `∞(Z, 1/ω), this will indeed show that (Λk) is
weak-* divergent. We set s1 = 0 and t1 = 1, and define ψ(i) = 0 (i ≤ 0)
and ψ(1) = C1, and observe that this ensures that (3.3) holds for j = 1, and
that (3.4) holds for all i ≤ 1.

Now assume inductively that we have found s1 < t1 < · · · < sk < tk, and
defined ψ up to ntk in such a way that (3.3) holds for j = 1, . . . , k, and such
that (3.4) holds for i ≤ ntk . By (3.2), we may choose sk+1 > tk such that

Ctk
Csk+1

<
1

4
|〈Λtk , ψ〉|

−1;

we then define ψ(i) = 0 (ntk < i ≤ nsk+1
), and note that (3.4) holds trivially

for these values of i. Then

|〈Λsk+1
, ψ〉| = Ctk

Csk+1

|〈Λtk , ψ〉| <
1

4
,

as required.
Again using (3.2), we may choose tk+1 > sk+1 such that Csk+1

/Ctk+1
<

1/8, so that
ω(nsk+1

+ 1) + · · ·+ ω(ntk+1
)

Ctk+1

>
7

8
.

Set ψ(i) = ωi (nsk+1
< i ≤ ntk+1

), and note that (3.4) continues to hold.
Then

|〈Λtk+1
, ψ〉| =

∣∣∣∣ω(nsk+1
+ 1) + · · ·+ ω(ntk+1

)

Ctk+1

+
Csk+1

Ctk+1

〈Λsk+1
, ψ〉
∣∣∣∣

>
7

8
− 1

8
· 1

4
>

3

4
.

The induction continues.
Let F denote the Fréchet filter on N. Let U be a free ultrafilter on N, and

set Λ = limk→U Λk (the limit being taken in the weak-* topology on A′′ω). We
have shown that the sequence (Λk) is not convergent in the weak-* topology
on A′′ω, and so it follows that there exists a weak-* open neighbourhood O of
Λ such that E := {k ∈ N : Λk ∈ O} /∈ F . As E /∈ F , the set Ec is infinite,
so that Ec ∩ A 6= ∅ (A ∈ F). Hence there exists a free ultrafilter V on N
containing Ec and F . Let M = limk→V Λk. Since Ec ∈ V, we have E /∈ V,
so that Λ 6= M .
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Next we show that Λ and M are invariant means on `∞(Z, 1/ω). Let
f ∈ `∞(Z, 1/ω). Then

|〈δ12Λk − Λk, f〉| =
1

Ck
|(f(1) + · · ·+ f(nk + 1))− (f(0) + · · ·+ f(nk))|

=
1

Ck
|f(nk + 1)− f(0)|

≤ 1

Ck
‖f‖(ω(1)ω(nk) + ω(0)),

which, by (3.1), tends to zero as k →∞. Hence

δ12Λ− Λ = lim
k→U

(δ12Λk − Λk) = 0,

and a similar calculation shows that δ−12Λ = Λ as well. It follows that Λ is
invariant. That Λ ≥ 0 is clear, and hence, by Lemma 3.1,

‖Λ‖ = 〈Λ, ω〉 = lim
k→U
〈Λk, ω〉 = 1.

Hence Λ is an invariant mean, as claimed. The same argument shows that
M is also an invariant mean.

Finally, we calculate that

〈Λ, 1〉 = lim
k→U
〈Λk, 1〉 = lim

k→∞
(nk + 1)/Ck = lim

k→V
〈Λk, 1〉 = 〈M, 1〉,

as required. �

We now prove the main result of this section.

Proof of Theorem 1.1. Let ρ = ρω, and let γn = ωn/ρ
n (n ∈ Z). Then γ is a

weight on Z, and T : (f(n)) 7→ (ρnf(n)) defines an (isometric) isomorphism
of Banach algebras Aγ → Aω. The weight γ satisfies the hypothesis of
Lemma 3.2, so that there exist distinct invariant means Λ and M on A′′γ as
in that lemma. Then 〈Λ−M, 1〉 = 0, so that Λ−M ∈ Iγ \ {0}. Hence, by
[5, Proposition 8.23], rad (A′′γ) 6= {0}, so that rad (A′′ω) 6= {0}. �

Remark. A trivial modification of the proof of Theorem 1.1 shows that in
fact we also have rad (` 1(Z+, ω)′′) 6= {0} for every weight ω on Z+.

Remark. Since Aω is commutative, (A′′ω,3) = (A′′ω,2)op, and it follows
that rad (A′′ω,3) = rad (A′′ω,2), so that (A′′ω,3) is never semisimple either.

4. The Radical of ` 1(⊕∞i=1Z)′′

In this section we prove Theorem 1.2. In addition we observe in Corollary
4.5 that there are many non-amenable groups G for which rad (` 1(G)′′) 6=
{0}. Ideals of the following form will be central to both of these arguments.

Definition 4.1. Let G be a group, let θ : ` 1(G) → ` 1(G) be a bounded
algebra homomorphism, and let J ⊂ ` 1(G)′′ be an ideal. We define

I(θ, J) = {Φ ∈ ` 1(G)′′ : δs2Φ = θ(δs)2Φ (s ∈ G), θ′′(Φ) ∈ J}.
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Proposition 4.2. Let G, θ and J be as in Definition 4.1. Then I(θ, J) is
an ideal in ` 1(G)′′.

Proof. Let Φ ∈ I(θ, J), and let s, t ∈ G. Then

δs2(δt2Φ) = δst2Φ = θ(δst)2Φ = θ(δs)2θ(δt)2Φ = θ(δs)2(δt2Φ).

By taking linear combinations and weak-* limits, we may conclude that

δs2Ψ2Φ = θ(δs)2Ψ2Φ

for every Ψ ∈ ` 1(G)′′ and every s ∈ G. It is clear that δs2Φ2Ψ =
θ(δs)2Φ2Ψ for every Ψ ∈ ` 1(G)′′. Since J is an ideal and θ′′(Φ) ∈ J ,
we have θ′′(Ψ2Φ) = θ′′(Ψ)2θ′′(Φ) ∈ J and θ′′(Φ2Ψ) = θ′′(Φ)2θ′′(Ψ) ∈ J
for every Ψ ∈ ` 1(G)′′. Finally, we note that I(θ, J) is clearly a linear space.
We have shown that I(θ, J) is an ideal in ` 1(G)′′. �

Lemma 4.3. Let G, θ and J be as in Definition 4.1. Then:
(i) if Φ ∈ I(θ, J) and Ψ ∈ ` 1(G)′′, then Ψ2Φ = θ′′(Ψ)2Φ;
(ii) if J is nilpotent of index n, then I(θ, J) is nilpotent of index at most

n+ 1.

Proof. (i) This follows from the identity δs2Φ = θ′′(δs)2Φ, and the fact that
θ′′ is linear and weak-* continuous.

(ii) Given Φ1, . . . ,Φn+1 ∈ I(θ, J), we have

Φ12 · · ·2Φn+1 = θ′′(Φ12 · · ·2Φn)2Φn+1

= θ′′(Φ1)2 · · ·2θ′′(Φn)2Φn+1 = 0

because θ′′(Φ1), . . . , θ
′′(Φn) ∈ J . As Φ1, . . . ,Φn+1 were arbitrary, this shows

that I(θ, J)2(n+1) = {0}. �

The key idea in the proof of Theorem 1.2 is to use invariant means coming
from each of the copies of Z in the direct sum to build more complicated
radical elements in ` 1(⊕∞i=1Z)′′. We shall use the following lemma. Recall
that, for a group G with subgroups N and H, where N is normal in G, we
say that N is complemented by H if H ∩N = {e} and G = HN . In this case
every element of G may be written uniquely as hn, for some h ∈ H and some
n ∈ N , and the map G→ G defined by hn 7→ h is a group homomorphism.

Lemma 4.4. Let G be a group with a normal, amenable subgroup N which
is complemented by a subgroup H. Let π : ` 1(G) → ` 1(G) be the bounded
algebra homomorphism defined by π(δhn) = δh (h ∈ H,n ∈ N) and let
ι : ` 1(N) → ` 1(G) denote the inclusion map. Let M be an invariant mean
on `∞(N), and write M̃ = ι′′(M). Then M̃ satisfies:

δs2M̃ = π(δs)2M̃ (s ∈ G);(4.1)

π′′(M̃) = δe.(4.2)
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Proof. For every n ∈ N and every f ∈ ` 1(N), we have δn ∗ ι(f) = ι(δn ∗ f),
and so, by taking weak-* limits, we see that δn2ι′′(Φ) = ι′′(δn2Φ) for all
Φ ∈ ` 1(N)′′. An arbitrary element s ∈ G may be written as s = hn for some
h ∈ H and n ∈ N , and so

δs2M̃ = δh2δn2ι
′′(M) = δh2ι

′′(δn2M)

= δh2ι
′′(M) = π(δs)2M̃.

Hence (4.1) holds.
Define ϕ0 : ` 1(N) → ` 1(N) by ϕ0 : f 7→ 〈f, 1〉δe (f ∈ ` 1(N)). It is easily

verified that π ◦ ι = ι ◦ ϕ0, and so π′′ ◦ ι′′ = ι′′ ◦ ϕ′′0. We also have ϕ′′0(Φ) =
〈Φ, 1〉δe (Φ ∈ ` 1(N)′′). Hence

π′′(M̃) = (π′′ ◦ ι′′)(M) = (ι′′ ◦ ϕ′′0)(M) = ι′′(〈M, 1〉δe) = δe,

establishing (4.2). �

We have not seen in the literature any instance of a discrete, non-amenable
group G for which it is known that rad (` 1(G)′′) 6= {0}. However the next
corollary gives a large class of easy examples of such groups.

Corollary 4.5. Let G be a group with an infinite, amenable, complemented,
normal subgroup N . Then |rad (` 1(G)′′)| ≥ 22

|N|
.

Proof. Let M1,M2 be two invariant means in ` 1(N)′′, and let ι and π be
as in Lemma 4.4 . Then by that lemma ι′′(M1 −M2) ∈ I(π, 0), which is a
nilpotent ideal by Lemma 4.3(ii). The result now follows from the injectivity
of ι′′ and [12, Theorem 7.26]. �

We now prove our main theorem.

Proof of Theorem 1.2. Let G = ⊕∞i=1Z, and, given i ∈ N, write Gi for the ith
copy of Z appearing in this direct sum. Let πi : G→ G be the homomorphism
which ‘deletes’ the i th coordinate, that is

πi : (n1, n2, . . .) 7→ (n1, . . . , ni−1, 0, ni+1, . . .).

Each map πi gives rise to a bounded homomorphism ` 1(G)→ ` 1(G), which
we also denote by πi, given by

πi : f 7→
∑
s∈G

f(s)δπi(s) (f ∈ ` 1(G)).

Similarly, we write ιi : Gi → G for the inclusion map of groups, and ιi : ` 1(Gi)→
` 1(G) for the inclusion of algebras which it induces.

Define a sequence of ideals Ij in ` 1(G)′′ by I1 = I(π1, 0) and

Ij = I(πj , Ij−1) (j ≥ 2).

By Lemma 4.3(ii), each Ij is nilpotent of index at most j+1 and the strategy
of the proof is to show that the index is exactly j + 1.

Fix a free ultrafilter U on N. Given i ∈ N and n ∈ Z we write

δ(i)n = δ(0,...,0,n,0,...),
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where n appears in the i th place. Given j ∈ N we define elements σj ,Mj ∈
` 1(G)′′ to be the weak-* limits σj = limk→U σj,k and Mj = limk→UMj,k,
where

Mj,k =
1

k

k∑
i=1

δ
(j)
i (j, k ∈ N),

and

σj,k =
1

k

k∑
i=1

(
δ
(j)
i − δ

(j)
−i

)
(j, k ∈ N).

We claim that, for each j ∈ N, Mj and σj satisfy:

δs2Mj = πj(δs)2Mj (s ∈ G);(4.3)

π′′j (Mj) = δ(0,0,...);(4.4)

π′′i (σj) = σj and π′′i (Mj) = Mj (i 6= j);(4.5)
σj ∈ I(πj , 0).(4.6)

Since π′′i (Mj,k) = Mj,k and π′′i (σj,k) = σj,k (k ∈ N, i 6= j), (4.5) follows from
the weak-* continuity of π′′j . We observe thatMj is the image of an invariant
mean on Z under ι′′j , so that we may apply Lemma 4.4 to obtain (4.3) and
(4.4). Similarly, σj is the image of the difference of two invariant means on
Z under ιj , so that Lemma 4.4 implies that δs2σj = πj(δs)2σj (s ∈ G) and
π′′j (σj) = 0, so that (4.6) holds.

We demonstrate that

(4.7) σ12σ22 · · ·2σj 6= 0 (j ∈ N).

To see this, define h ∈ `∞(G) by

h(n1, n2, . . .) =

{
1 if ni ≥ 0 for all i ∈ N
0 otherwise.

Clearly, we have

(4.8) 〈σi,k, h〉 = 1 (i, k ∈ N).

It is easily checked that 〈πi(δs) ∗ ιi(δt), h〉 = 〈πi(δs), h〉〈ιi(δt), h〉 for every
s ∈ G and t ∈ Gi, and it follows from this that

(4.9) 〈πi(f) ∗ ιi(g), h〉 = 〈πi(f), h〉〈ιi(g), h〉 (f ∈ ` 1(G), g ∈ ` 1(Gi)).

Given i, k ∈ N, the element σi,k belongs to the image of ιi, and, together with
(4.5), (4.9) and (4.8), this allows us to conclude that, for all k1, . . . , kj ∈ N,
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we have

〈σ1,k1 ∗ σ2,k2 ∗ · · · ∗ σj,kj , h〉
= 〈πj(σ1,k1 ∗ · · · ∗ σj−1,kj−1

) ∗ σj,kj , h〉
= 〈πj(σ1,k1 ∗ · · · ∗ σj−1,kj−1

), h〉〈σj,kj , h〉
= 〈πj−1(σ1,k1 ∗ · · · ∗ σj−2,kj−2

) ∗ σj−1,kj−1
, h〉〈σj,kj , h〉 = · · ·

= 〈σ1,k1 , h〉〈σ2,k2 , h〉 · · · 〈σj,kj , h〉 = 1.

Therefore

〈σ12σ22 · · ·2σj , h〉 = lim
k→U

(j)
〈
σ1,k1 ∗ σ2,k2 ∗ · · · ∗ σj,kj , h

〉
= 1.

Equation (4.7) follows.
We now come to the main argument of the proof. We recursively define

Λj ∈ ` 1(G)′′ by Λ1 = σ1 and

Λj = Mj2Λj−1 + σj (j ≥ 2).

We shall show inductively that each Λj satisfies:

Λj ∈ Ij ;(4.10)

Λ2j
j = σ12σ22 · · ·2σj ;(4.11)

π′′i (Λj) = Λj (i > j).(4.12)

Since by Lemma 4.3(ii) I2(j+1)
j = {0}, and by (4.7) σ12σ22 · · ·2σj 6= 0, this

will give the result. The base case of the induction holds by (4.6) and (4.5).
Now assume that the hypothesis holds up to j − 1. It follows from (4.6)

and (4.3) that δs2Λj = πj(δs)2Λj (s ∈ G). Moreover, by (4.4), (4.6), and
(4.12) applied to Λj−1, we have

π′′j (Λj) = π′′j (Mj)2π
′′
j (Λj−1) + π′′j (σj) = Λj−1,(4.13)

so that, by the induction hypothesis, π′′j (Λj) ∈ Ij−1. Hence (4.10) holds. We
see that (4.12) holds for a given i > j because it holds for each ofMj , σj and
Λj−1 by (4.5) and the induction hypothesis. Finally, we verify (4.11):

Λ2j
j = π′′j (Λj)

2(j−1)2Λj = Λ
2(j−1)
j−1 2Λj

= Λ
2(j−1)
j−1 2Mj2Λj−1 + Λ

2(j−1)
j−1 2σj = σ12σ22 · · ·2σj−12σj ,

where we have used Lemma 4.3(i) and (4.13) in the first line, and the fact
that I2jj−1 = {0} in the second line to get Λ

2(j−1)
j−1 2Mj2Λj−1 = 0.

This completes the proof. �

Remark. A simpler version of the above argument shows that ` 1(Z2)′′

contains a radical element which is nilpotent of index 3, which is enough to
resolve Dales and Lau’s question of whether the radical of L 1(G)′′, for G a
locally compact group, always has zero square [5, Chapter 14, Question 3].
Specifically, this may be achieved by terminating the induction at j = 2, and
otherwise making trivial alterations.
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Corollary 4.6. The radical of ` 1(⊕∞i=1Z)′′ contains non-nilpotent elements.

Proof. By a theorem of Grabiner [9], if every element of rad (` 1(⊕∞i=1Z)′′)
were nilpotent, then there would be a uniform bound on the index of nilpo-
tency. Hence, by Theorem 1.2, rad (` 1(⊕∞i=1Z)′′) must contain non-nilpotent
elements. �

5. A Weight ω for Which rad (` 1(Z, ω)′′) is Not Nilpotent

In this section we shall prove Theorem 1.3. Given a weight ω on Z and
r ∈ N, we define Ω

(r)
ω : Zr → (0, 1] by

Ω (r)
ω (n1, . . . , nr) =

ω(n1 + n2 + · · ·+ nr)

ω(n1)ω(n2) · · ·ω(nr)
(n1, . . . , nr ∈ Z)

(compare with [5, Equation 8.7]). Often we simply write Ω (r) when the
weight ω is clear. As in Section 3 we write Aω = ` 1(Z, ω).

Our main tool will be Proposition 5.1. In what follows, the unit ball of a
Banach space E is denoted by BE .

Proposition 5.1. Let ω be a weight on Z and suppose that there is some
sequence (nk) ⊂ Z such that

(5.1) lim inf
r→∞

lim sup
k→∞

(r)
[
Ω (r)(nk1 , . . . , nkr)

]1/r
= 0.

Let Φ be a weak-* accumulation point of {δnk
/ω(nk) : k ∈ N}. Then Φ ∈

rad (A′′ω) \ {0}.

Proof. There exists some free filter U on N such that

Φ = lim
k→U

1

ω(nk)
δnk

,

where the limit is taken in the weak-* topology. Let Ψ ∈ BA′′ω . Then there
exists a net (aα) in BAω such that, in the weak-* topology, limα aα = Ψ. Let
λ ∈ BA′ω . Then, for each r ∈ N, we have

|〈(Ψ2Φ)2r, λ〉| = lim
α→∞, k→U

(r)

∣∣∣∣∣〈aα1 ∗ δnk1
∗ · · · ∗ aαr ∗ δnkr

, λ〉
ω(nk1) · · ·ω(nkr)

∣∣∣∣∣
= lim

α→∞, k→U
(r)

∣∣∣∣∣〈aα1 ∗ · · · ∗ aαr ∗ δnk1
∗ · · · ∗ δnkr

, λ〉
ω(nk1) · · ·ω(nkr)

∣∣∣∣∣
≤ lim sup

k→∞

(r)

∥∥∥∥ δnk1
+···+nkr

ω(nk1) · · ·ω(nkr)

∥∥∥∥
= lim sup

k→∞

(r)Ω (r)(nk1 , . . . , nkr).

Hence

‖(Ψ2Φ)2r‖1/r = sup
λ∈BA′ω

|〈(Ψ2Φ)2r, λ〉|1/r ≤ lim sup
k→∞

(r)
[
Ω (r)(nk1 , . . . , nkr)

]1/r
,
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and so limr→∞ ‖(Ψ2Φ)2r‖1/r = 0 by (5.1). Therefore Ψ2Φ ∈ Q(A′′ω). As Ψ
was arbitrary, it follows that Φ ∈ rad (A′′ω). Moreover, Φ 6= 0 because

〈Φ, ω〉 = lim
k→U

〈
δnk

ω(nk)
, ω

〉
= 1.

This completes the proof. �

Remark. In [5, Example 9.17] Dales and Lau put forward a candidate
for a weight ω such that A′′ω is semisimple. They attribute this weight to
Feinstein. In the light of Theorem 1.1 this cannot be the case, but in fact
this can also be shown directly using Proposition 5.1, by taking the sequence
(nk) to be the one, also called (nk), appearing in [5, Example 9.17].

Given a (possibly infinite) subset S ⊂ Z which generates Z as a group, we
define the word-length with respect to S of an integer n to be

|n|S = min

{
r : n =

r∑
i=1

εisi, for some s1, . . . , sr ∈ S, ε1, . . . , εr ∈ {±1}

}
.

This is exactly the usual notion of word-length from group theory. Notice
that, for any generating set S, the function n 7→ e|n|S defines a weight on Z.

The weight in Theorem 1.3 will be defined as follows. We let

S0 = {2k2 : k ∈ Z+},

set η(n) = |n|S0 , and define our weight by ω(n) = eη(n) (n ∈ Z). We also
define a sequence of integers (nk) by

nk = 2k
2

+ 2(k−1)
2

+ · · ·+ 1 (k ∈ N).

Lemma 5.2. We have η(nk) = k + 1 (k ∈ N).

Proof. We proceed by induction on k ∈ N, the base case being trivial. Take
k > 1, and assume that the lemma holds for k − 1. That η(nk) ≤ k + 1
is clear from the definitions, and so it remains to show that η(nk) ≥ k + 1.
Observe that, for all k ∈ N, we have

(5.2) k2(k−1)
2

=
k

22k−1
2k

2
< 2k

2
.

Assume towards a contradiction that η(nk) < k + 1. Then we can write
nk =

∑p
i=1 ci2

a2i , for some p ∈ N, c1, . . . , cp ∈ Z \ {0}, and a1, . . . , ap ∈ Z+

such that
∑p

i=1 |ci| < k + 1. We may suppose that a1 > a2 > · · · > ap. We
first show that a1 = k. If a1 ≤ k − 1, we find that

nk =

∣∣∣∣∣
p∑
i=1

ci2
a2i

∣∣∣∣∣ ≤
(

p∑
i=1

|ci|

)
2(k−1)

2 ≤ k2(k−1)
2
< nk

by (5.2), a contradiction. Similarly, if a1 ≥ k + 1, we have
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nk =

∣∣∣∣∣
p∑
i=1

ci2
a2i

∣∣∣∣∣ ≥ |c1|2a12 −
(

p∑
i=2

|ci|

)
2(a1−1)

2 ≥ 2a1
2 − (k − 1)2(a1−1)

2

> a12
(a1−1)2 − (k − 1)2(a1−1)

2

= (a1 + 1− k)2(a1−1)
2 ≥ 2 · 2k2 > nk,

where we have used (5.2) to obtain the second line. Hence in either case we
get a contradiction, so we must have a1 = k, as claimed.

Observe that c1 > 0, since otherwise
p∑
i=1

ci2
a2i ≤ −2k

2
+

p∑
i=2

|ci|2a
2
i ≤ −2k

2
+ (k − 1)2(k−1)

2
< 0.

Hence we have deduced that

2k
2

+ nk−1 = nk = 2k
2

+ (c1 − 1)2k
2

+

p∑
i=2

ci2
a2i ,

which implies that

nk−1 = (c1 − 1)2k
2

+

p∑
i=2

ci2
a2i ,

and this contradicts the induction hypothesis, since c1−1+
∑p

i=2 |ci| < k. �

Lemma 5.3. Let j ∈ N, and set r = r(j) = 22j+1. Then, for all k1, . . . , kr ≥
j, we have [

Ω (r)(nk1 , . . . , nkr)
]1/r
≤ e−j .

Proof. First of all, we compute

r(j)nj = 22j+1
j∑
i=0

2(j−i)
2

=

j∑
i=0

22j+1+j2−2ij+i2

=

j∑
i=0

22i2−2i+2j−2ij+j2+1+i2 =

j∑
i=0

22i · 2(j+1−i)2 .

This implies that

η(rnj) ≤
j∑
i=0

22i =
1

3
(22j − 1) ≤ r,

so that, for all k1, . . . , kr ≥ j, we have

η(nk1 + · · ·+ nkr) = η[(nk1 − nj) + · · ·+ (nkr − nj) + rnj ]

≤ η(nk1 − nj) + · · ·+ η(nkr − nj) + η(rnj)

≤ (k1 − j) + · · ·+ (kr − j) + r

= k1 + · · ·+ kr − (j − 1)r.
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Hence, by Lemma 5.2, we have[
Ω(r)(nkr , . . . , nk1)

]1/r
≤

[
ek1+···+kr−(j−1)r

ek1+1 · · · ekr+1

]1/r
= [e−(j−1)r−r]1/r = e−j ,

as required. �

Lemma 5.4. Fix j ∈ N, and set r = 22j+1. Let J ∈ N satisfy J ≥ j and

22k−1 > rk + 2r (k ≥ J).

Then, for all k1 ≥ k2 ≥ · · · ≥ kr ≥ J, we have

η(nk1 + · · ·+ nkr) ≥ k1 + k2 + · · ·+ kr − rJ.

Proof. Note that, by our hypothesis on J , whenever k ≥ J we have 2k
2−(k−1)2 >

rk + 2r, which implies that

(5.3) 2k
2
> rk2(k−1)

2
+ r2(k−1)

2+1 (k ≥ J).

We proceed by induction on k1 ≥ J , with the base case corresponding to the
case where k1 = J , and hence also k2 = · · · = kr = J . Therefore the base
hypothesis merely states that η(rnJ) ≥ 0, which is true.

Suppose that k1 > J, and assume that the lemma holds for all smaller val-
ues of k1 ≥ J . Assume towards a contradiction that there exist k2, . . . , kr ∈ Z
such that k1 ≥ k2 ≥ · · · ≥ kr ≥ J , and such that

η(nk1 + · · ·+ nkr) < k1 + · · ·+ kr − rJ.

Then we may write

nk1 + · · ·+ nkr =

p∑
i=1

ci2
a2i

for some p ∈ N, some a1, . . . , ap ∈ Z+, and some c1, . . . , cp ∈ Z \ {0},
satisfying a1 > a2 > · · · > ap and

∑p
i=1 |ci| < k1 + · · ·+ kr − rJ . Note that

we have

(5.4)

∣∣∣∣∣
p∑
i=2

ci2
a2i

∣∣∣∣∣ < (k1 + · · ·+ kr − rJ)2a
2
2 ≤ k1r2(a1−1)

2
.

We claim that a1 = k1. Assume instead that a1 ≥ k1 + 1. Then, using
(5.3) and (5.4), we have∣∣∣∣∣

p∑
i=1

ci2
a2i

∣∣∣∣∣ > |c1|2a21 −
∣∣∣∣∣
p∑
i=2

ci2
a2i

∣∣∣∣∣
≥ 2a

2
1 − rk12(a1−1)

2
> r2(a1−1)

2+1

≥ r2k21+1 ≥ nk1 + · · ·+ nkr ,
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a contradiction. If, on the other hand, we assume that a1 ≤ k1 − 1, then
(5.3) implies that∣∣∣∣∣

p∑
i=1

ci2
a2i

∣∣∣∣∣ ≤ (k1 + · · ·+ kr)2
(k1−1)2 ≤ rk12(k1−1)

2
< nk1 ,

a contradiction. Hence a1 = k1, as claimed.
Let d ∈ N be maximal such that kd = k1. We claim that c1 ≥ d. Firstly,

if c1 were negative, we would have
p∑
i=1

ci2
a2i ≤ −2k

2
1 +

∣∣∣∣∣
p∑
i=2

ci2
a2i

∣∣∣∣∣ ≤ −2k
2
1 + rk12

(k1−1)2 < 0,

by (5.3), a contradiction. Hence c1 must be positive. Suppose that c1 ≤ d−1.
Then, using (5.3) to obtain the second line, we would have

p∑
i=1

ci2
a2i ≤ (d− 1)2k

2
1 +

∣∣∣∣∣
p∑
i=2

ci2
a2i

∣∣∣∣∣ ≤ (d− 1)2k
2
1 + rk12

(k1−1)2

< nk1 + · · ·+ nkd ≤ nk1 + · · ·+ nkr ,

again a contradiction. Hence we must have c1 ≥ d, as claimed.
We now complete the proof. We have

c12
k21 +

p∑
i=2

ci2
a2i = nk1 + · · ·+ nkr

= dnk1 + nkd+1
+ · · ·+ nkr

= d2k
2
1 + nk1−1 + · · ·+ nkd−1 + nkd+1

+ · · ·+ nkr ,

which implies that

(c1 − d)2k
2
1 +

p∑
i=2

ci2
a2i = nk1−1 + · · ·+ nkd−1 + nkd+1

+ · · ·+ nkr .

But

(c1 − d) +

p∑
i=2

|ci| < (k1 − 1) + · · ·+ (kd − 1) + kd+1 + · · ·+ kr − Jr,

which contradicts the induction hypothesis applied to k1 − 1. �

Corollary 5.5. Fix j ∈ N, set r = 22j+1, and let U be an ultrafilter on N.
Then limk→U Ω(r)(k1, . . . , kr) > 0.

Proof. Let J be as in Lemma 5.4. Then, for all k1, . . . , kr ≥ J, we have

η(nk1 + · · ·+ nkr) ≥ k1 + · · ·+ kr − rJ,
which, when combined with Lemma 5.2, implies that

Ω(r)(nk1 , . . . , nkr) ≥ ek1+···+kr−rJ

ek1+1 · · · ekr+1
= e−r(J+1) > 0.

This implies the result. �
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We can now prove Theorem 1.3.

Proof of Theorem 1.3. Let Φ be a weak-* accumulation point of

{δnk
/ω(nk) : k ∈ N}.

Then, by Proposition 5.1 and Lemma 5.3, Φ ∈ rad (A′′ω).
Take j ∈ N and set r = 22j+1. Let U be a filter on N such that Φ is equal

to the weak-* limit limk→U δnk
/ω(nk). Then, by Corollary 5.5,

〈Φ2r, ω〉 = lim
k→U

(r)

〈
1

ω(nk1) · · ·ω(nkr)
δnk1

+···+nkr
, ω

〉
= lim

k→U
(r)Ω(r)(nk1 , . . . , nkr) > 0.

Hence Φ2r 6= 0. Since r → ∞ as j → ∞, it follows that Φ is not nilpotent.
�

6. Open Problems

There are many natural problems that come to mind related to the topic of
this paper to which we do not know the answers. In the light of Theorem
1.2, it would be interesting to ask whether or not there exists any locally
compact group G for which rad (L 1(G)′′)22 = {0}. We do not know of such
a group, and we are unable to say whether or not this happens for G = Z.

The question of whether the second dual of a Beurling algebra can ever
be semisimple remains open. Moreover, even when the weight is trivial, the
fact that this cannot occur has only been established for non-discrete groups,
and discrete amenable groups. It would seem that determining whether or
not, for example, rad (` 1(F2)

′′) 6= {0}, where F2 denotes the free group on
two generators, requires some totally new ideas.

Another natural setting for this type of question is the Fourier algebra of
a locally compact group A(G), and one could ask whether we always have
rad (A(G)′′) 6= {0}. Questions about Arens multiplication in A(G)′′ are
actively studied: see, for example, [7, 8]. When G is abelian A(G) ∼= L 1(Ĝ),
so that in this case rad (A(G)′′) 6= {0} by the known results mentioned above.
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