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ABSTRACT. We prove that the bidual of a Beurling algebra on Z, con-
sidered as a Banach algebra with the first Arens product, can never be
semisimple. We then show that rad (£'(©$2,7)") contains nilpotent el-
ements of every index. Each of these results settles a question of Dales
and Lau. Finally we show that there exists a weight w on Z such that
the bidual of £'(Z,w) contains a radical element which is not nilpotent.

1. INTRODUCTION

Let G be a discrete group, and let w be a weight on G. Let £!(G,w)” denote
the bidual of £1(G,w), considered as a Banach algebra with the first Arens
product ‘0. We shall study the Jacobson radical rad (¢1(G,w)”,0) in this
article. The focus will be on the cases where either w = 1, in which case
we are in fact studying the bidual of the group algebra £1(G), or where the
weight is non-trivial but G = Z. Our main results will be solutions to two
questions posed by Dales and Lau in [5].

The study of the radicals of the biduals of Banach algebras goes back at
least to Civin and Yood’s paper [3|, where it was shown that if G is either a
locally compact, non-discrete, abelian group, or a discrete, soluble, infinite
group, then rad (L1(G)") # {0}. Civin and Yood’s results have since been
extended to show that rad (L*(G)") is not only non-zero, but non-separable,
whenever G is discrete and amenable ([10], [12, 7.31(iii)|) or non-discrete [11].
The study has not been restricted to those Banach algebras coming from
abstract harmonic analysis. One particularly striking result is a theorem of
Daws and Read [6] which states that, for 1 < p < oo, the algebra B(£P)" is
semisimple if and only if p = 2.

A study of rad (£1(G,w)"”) for G a discrete group and w a weight on G was
undertaken by Dales and Lau in [5]. In the list of open problems at the end
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of their memoir the authors ask whether £!(Z,w)” can ever be semisimple

[5, Chapter 14, Question 6]. In Section 3 we shall prove that the answer to
this question is negative:

Theorem 1.1. Let w be a weight on Z. Then rad (¢1(Z,w)") # {0}.

A key observation of Civin and Yood (see |3, Theorem 3.1|) is that, for
an amenable group G, the difference of any two invariant means on £*°(G)
always belongs to the radical of £!(G)”, and this idea is what lies behind
many of the subsequent results mentioned above. Dales and Lau developed a
weighted version of this argument in [5, Theorem 8.27|, and invariant means
are also at the centre of our proof of Theorem 1.1.

In each of the works [3], [10] and [11], whenever an element of the radical
of the bidual of some group algebra is constructed it is nilpotent of index 2.
This is an artifact of the method of invariant means. Moreover, it follows
from [5, Proposition 2.16] and [5, Theorem 8.11| that, for a discrete group G,
if w is a weight on G such that ¢! (G, w) is semisimple and Arens regular, then
rad (£1(G,w)")"? = {0}. To see that this is a large class of examples consider
[5, Theorem 7.13] and [5, Theorem 8.11|. In |5, Chapter 14, Question 3],
Dales and Lau ask, amongst other things, whether or not we always have
rad (L(G)")"? = {0}, for G alocally compact group. It also seems that until
now it was not known whether or not rad (L*(G,w)”) is always nilpotent,
for G a locally compact group and w a weight on G, although there is an
example of a weight on Z in [5, Example 9.15| for which this radical cubes
to zero, but has non-zero square. In Section 4 we shall answer both of these
questions in the negative by proving the following:

Theorem 1.2. Let G = ®°,Z. Then rad ((1(G)") contains nilpotent ele-
ments of every index.

Here we understand ®:°,7Z to consist of integer sequences which are eventu-
ally zero, so that our example is a countable abelian group.

We note that by a theorem of Grabiner [9], Theorem 1.2 implies that
rad (£1(922,Z)") contains non-nilpotent elements. In Section 5, we obtain a
similar result on Z, but this time involving a weight.

Theorem 1.3. There exists a weight w on Z such that rad ({1(Z,w)") con-
tains non-nilpotent elements.

However, we do not know whether or not this example has nilpotent elements

of arbitrarily high index.

2. BACKGROUND AND NOTATION

For us N = {1,2,...} and Z* = {0,1,2,...}. The group of integers is
denoted by Z and

®,7Z = {(n;) € Z" : n; = 0 for all but finitely many 7}.
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Let G be a discrete group with neutral element e. We say that a function
w: G — [1,00) is a weight if w(st) < w(s)w(t) (s,t € G) and w(e) = 1.
Given a weight w on a group G, we define

(NG, w) = {f: G—=C:|fllw ::Z|f(s)\w(s) <oo}.

seG

This is a unital Banach algebra with the norm given by || - ||.,, multiplication
given by convolution, and the vector space operations given pointwise. By
a Beurling algebra we mean a Banach algebra of the form ¢!(G,w.) (More
generally, authors refer to algebras of the form L'(G,w), where G is a locally
compact group, and w is a continuous weight on GG, as Beurling algebras, but
we shall not consider this setting here.) The dual space of £!(G,w) may be
identified with

(=G, 1w) = {f: G = C: | flloow = sup |£8’ < oo}

(f,9) =Y f(s)g(s) (f € L'(G,w),g € L>(G,1/w)).

seG

Given a group element s € G, we denote the point mass at s by 65 € £1(G, w).

Given a weight w on Z and n € 7Z, we sometimes write w, in place of
w(n). We define p,, = inf, ey w(n)'/™; by [4, Proposition A.1.26 (iii)], in fact
P = limy, o w(n) /™.

Let A be an algebra, and take n € N. We say that a € A is nilpotent of
index n if a® = 0, but a”~! # 0. Given a left ideal I of A and n € N, we
write I" = {ajaz---a, : a1,...,a, € I}, and we say that I is nilpotent of
index n if I" = {0} but 1"~ # {0}.

Now let A be a unital Banach algebra. We say that a € A is quasi-
nilpotent if its spectrum is zero, or, equivalently, if lim,, . Ha"Hl/ " =0, and
we denote the set of quasi-nilpotent elements of A by Q(A). Every nilpotent
element is also quasi-nilpotent. We define the Jacobson radical of A, denoted
by rad (A), to be the largest left ideal of A contained in Q(A), and it can be
shown that

rad (A) ={a€ A:bac Q(A) (be A)}.
In fact, rad (A4) is a closed, two-sided ideal of A, and
rad (A) ={a€ A:abe Q(A) (be A)}.

Many equivalent characterizations of rad (A) are available (for details see [4,
Section 1.5]).

Denote the dual space of A by A" and its bidual by A”. Arens ([1], [2])
introduced two products on A”, denoted by O and <, rendering it a Banach
algebra, both of which have the property that they agree with the original
multiplication on A, when A is identified with its image under the canonical
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embedding into A”. These are called, respectively, the first and second Arens
product, and are defined by

(OB, \) = (0,3 - \), (TOD, \) = (B, \- D),
(PN a)=(P,\-aq), ANV, a) = (V,a- ),
(A-a, by = (X, ab), (a- A b) = (X ba),

for @, 0 € A" A€ A’ a,b € A (for more details see [4, Section 2.6]). In this
article, unless we specify otherwise, whenever we talk about the bidual of a
Banach algebra we are implicitly considering it as an algebra with the first
Arens product. The first Arens product has the property that multiplication
on the right is weak-* continuous, whereas the second Arens product has
this property on the left. In particular the following formulae hold, for &, ¥
elements of A”, and (aq), (bg) C A nets converging in the weak-* topology
to ® and W respectively:

¢OV = liorén li}}n angbg, POV = lién lién aqbg.

In these formulae the limits are again taken in the weak-* topology. If O = O,
we say that A is Arens reqular, and if the other extreme occurs, namely that

{PecA: 200 =00¥ (¥ ed")}=
(@A V00 =00 (Ve A} =A4,

we say that A is strongly Arens irreqular. Both of these extremes may occur
for Banach algebras of the form ¢1(Z,w), as may intermediate cases (see [5,
Theorem 8.11| and |5, Example 9.7]).

We fix some notation relating to repeated limits. Let X and Y be topo-
logical spaces, I a directed set, and U a filter on I. Let (z4)aer be a net in
X,let r € N,and let f: X" — Y be a function. Then we define

lim ™ f(zay, ... 2a,) = lm - - Im f(za,,...,Ta,),
a—U a1 —U ar—U

whenever the repeated limit exists. We define

lim sup (T)f(xap s Tay)
a—U
analogously. Suppose now that we have two directed sets I and J and two
filters: U on I and V on J. Let (zo)aer and (yg)ges be two nets in X, let
reN, and let f: X% — Y. Then we define

1j (r) . =
g_ﬂ,knél—ﬂ} f(xal y Y6y s Lo yﬂr)

i lim --- 1i i .
oy e PR ﬁ,.lglv F@arsYprs oo o Y5, ),

whenever the limit exists. It is important to note that the choice of di-
rected set in the above repeated limit alternates. In expressions of the form
limg w00 M f(Zay, - - -, Ta,) the symbol ‘oo’ is understood to represent the
Fréchet filter on the directed set.
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3. SEMISIMPLICITY OF £1(Z,w)"

In this section, we shall prove Theorem 1.1. Throughout w will be a weight
on Z, and we shall write A, = ¢!(Z,w). In an abuse of notation, we shall
write 1 € £°°(Z) for the sequence which is constantly 1. Note that this
is a character, known as the augmentation character, when regarded as an
element of A/,. We define

I,={A € Al :6,0A=A (neZ), (A1)=0}.
By [5, Proposition 8.23] I, is an ideal of A”, satisfying I5? = {0}, so that

w?

I, C rad (A4”). Our strategy will be to reduce to a setting in which we can
show that I, # {0}. Our argument is an adaptation of [5, Theorem 8.27|.

Let A € £°(Z,1/w)’. We say that A is positive, written A > 0, if (A, f) >

0 whenever f >0 (f € £*°(Z,1/w)), and we say that A is a mean if A >0

and ||A| = 1. We say that a mean A € £°°(Z,1/w)’ is an invariant mean if

5,0A = A (n € 7).

Lemma 3.1. Let w be a weight on Z and let A € £>°(Z,1/w)’ be positive.
Then ||A]] = (A, w).

Proof. This follows by considering the positive isometric Banach space iso-
morphism T': £°(Z,1/w) — £*°(Z) given by T(f) = f/w (f € £>°(Z,1/w)),
and then using the facts that the formula holds in the C*-algebra ¢*°(Z) and
that T'(w) = 1. O

In what follows, given £ C N we denote the complement of ¥ by E°.

Lemma 3.2. Let w be a weight on Z, and suppose that p, = 1. Then there
exist at least two distinct invariant means A and M on £°°(Z,1/w) such that

(A1) = (M,1).

Proof. By an easy calculation, using the fact that inf,cy w}/ " =1 (see [13,
Lemma 5.3]), there exists a strictly increasing sequence (ny) of integers such
that ng = 0,n1 = 1 and such that

(3.1) lim wy, /(wo + -+ +wy,) = 0.
k—o0
By passing to a subsequence if necessary we may suppose that

lim (g + 1)/ 0 + -+ + )
k—o0
exists.

Set Cp = wo + -+ + wy,,, and define Ay, = Cik((so + -+ 0p, ); we regard

each Ay as an element of A”. Notice that, for each fixed i € N, we have
k—o0

We shall first show that the sequence (Ax) does not converge when considered
as a sequence in A with the weak-* topology. This will then allow us to use
two different ultrafilters in such a way as to obtain distinct limits of (Ag),
and these limits will turn out to be our invariant means. To achieve this,
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we shall inductively construct a function ¢: Z — C and choose non-negative
integers
$1 <t <8<t < - <8 <t <---

such that

(33) Bap) <3 A, 9l >2 GEN)
and

(3.4) 0<9(i) <wi+1 (i€ 7).

Since (3.4) ensures that ¢ € £*°(Z,1/w), this will indeed show that (Ay) is
weak-* divergent. We set s1 = 0 and ¢; = 1, and define ¢(i) = 0 (i < 0)
and ¢ (1) = C1, and observe that this ensures that (3.3) holds for j = 1, and
that (3.4) holds for all ¢ < 1.

Now assume inductively that we have found s1 < 1 < -+ < s < tg, and
defined v up to ny, in such a way that (3.3) holds for j =1,...,k, and such
that (3.4) holds for i < ny,. By (3.2), we may choose si11 >t such that

C, 1 _
i < Z’<Atk7¢>‘ 1;

Csk+1
we then define ¥(i) = 0 (ny, <14 < ng,,,), and note that (3.4) holds trivially
for these values of i. Then

as required.
Again using (3.2), we may choose t1 > sp41 such that Cs, /Cy,, <
1/8, so that
w(n5k+1 + 1) et w(ntk.H) 7
> —.
Clin 8
Set (i) = w; (ng,, < i < ng ), and note that (3.4) continues to hold.
Then

wWng, +1)+--+wlng,,) Cs,

A ) = + As ;
’< tr4+1 1/}>‘ Ctk_H Ctk+1< k+1 ¢>
ST L3
8 8 4 4

The induction continues.

Let F denote the Fréchet filter on N. Let U be a free ultrafilter on N, and
set A = limy_,;¢ A, (the limit being taken in the weak-* topology on A”)). We
have shown that the sequence (Ay) is not convergent in the weak-* topology
on A/, and so it follows that there exists a weak-* open neighbourhood O of
A such that E:={k e N: A, € O} ¢ F. As E ¢ F, the set E° is infinite,
so that E°N A # 0 (A € F). Hence there exists a free ultrafilter V on N
containing E¢ and F. Let M = limy_,y Ag. Since E€ € V, we have E ¢ V,
so that A # M.
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Next we show that A and M are invariant means on £*°(Z,1/w). Let
fel>®(Z,1/w). Then

[(610A) — Ay, f)] () +--+ flng +1) = (f(0) + -+ f(ng))]

B 1
_Fk’
- karf<nk+1>—f<o>r

< C{knfn(w(l)w(nk) +w(0)),

which, by (3.1), tends to zero as k — co. Hence
S10A — A = lim (510A), — Ay) =0,
k—U

and a similar calculation shows that 6_10A = A as well. It follows that A is
invariant. That A > 0 is clear, and hence, by Lemma 3.1,
A0 = (&) = Jim (A, )

Hence A is an invariant mean, as claimed. The same argument shows that
M is also an invariant mean.

Finally, we calculate that
(A1) = lim (Ag, 1) = lim (ng + 1)/C) = lim (Ag, 1) = (M, 1),

k—U k—o00 k—V
as required. O

We now prove the main result of this section.

Proof of Theorem 1.1. Let p = p,,, and let v, = w,/p" (n € Z). Then v is a
weight on Z, and T: (f(n)) — (p"f(n)) defines an (isometric) isomorphism
of Banach algebras A, — A,. The weight 7 satisfies the hypothesis of
Lemma 3.2, so that there exist distinct invariant means A and M on Ag as
in that lemma. Then (A — M,1) =0, so that A — M € I, \ {0}. Hence, by
[5, Proposition 8.23], rad (A7) # {0}, so that rad (A) # {0}. O

Remark. A trivial modification of the proof of Theorem 1.1 shows that in
fact we also have rad (¢1(Z*,w)") # {0} for every weight w on Z7.

Remark. Since A, is commutative, (A7, <O) = (A2, 0)°P, and it follows
that rad (A, ©) = rad (A, 0), so that (A, <) is never semisimple either.

4. THE RADICAL OF ¢1(2,Z)"

In this section we prove Theorem 1.2. In addition we observe in Corollary
4.5 that there are many non-amenable groups G for which rad (¢}(G)") #
{0}. Ideals of the following form will be central to both of these arguments.

Definition 4.1. Let G be a group, let 0: £1(G) — ¢1(G) be a bounded
algebra homomorphism, and let J C £1(G)" be an ideal. We define

10, ) = {® € t1(G)" : 6,00 = 0(6,)0P (s € G), 0" () € J}.
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Proposition 4.2. Let G,0 and J be as in Definition 4.1. Then 1(0,J) is
an ideal in £1(G)".

Proof. Let ® € I(0,J), and let s,t € G. Then
0s0(0,0P) = 05,0P = () OP = 0(65)T0(6,)OP = 0(65)T(6,0P).
By taking linear combinations and weak-* limits, we may conclude that
I,0000 = 0(5,)0VOP

for every U € (1(G)” and every s € G. It is clear that §s00P0O0 =
0(85)0®0V for every ¥ € (1(G)”. Since J is an ideal and 6" (®) € J,
we have 6”(V0O®) = §"(V)00"(®) € J and 0" (PO¥) = §"(P)00" (V) € J
for every ¥ € £1(G)". Finally, we note that I(6,.J) is clearly a linear space.
We have shown that I(6,J) is an ideal in £1(G)". O

Lemma 4.3. Let G,0 and J be as in Definition 4.1. Then:
(i) if ® € I1(0,J) and ¥ € L1(Q)", then YO = ¢"(V)Dd;
(ii) of J is nilpotent of index n, then 1(0,J) is nilpotent of index at most
n+1.

Proof. (i) This follows from the identity ;00 = 6”(d5)0®, and the fact that
0" is linear and weak-* continuous.
(ii) Given ®q,..., P,y € I(0,J), we have

®0---08,,1 =60"(¢,0-.-08,)0d,,4
=6¢"(®)0---00"(®,)0dP, 1 =0

because 0" (®q),...,0"(®,) € J. As ®q,...,P, 41 were arbitrary, this shows
that I(6,J)?+1) = {0}. O

The key idea in the proof of Theorem 1.2 is to use invariant means coming
from each of the copies of Z in the direct sum to build more complicated
radical elements in ¢1(®52,7Z)”. We shall use the following lemma. Recall
that, for a group G with subgroups N and H, where N is normal in G, we
say that N is complemented by H if HNN = {e} and G = HN. In this case
every element of G may be written uniquely as hn, for some h € H and some
n € N, and the map G — G defined by hn +— h is a group homomorphism.

Lemma 4.4. Let G be a group with a normal, amenable subgroup N which
is complemented by a subgroup H. Let w: £1(G) — £1(G) be the bounded
algebra homomorphism defined by w(0py) = 0 (b € H,n € N) and let
t: L1(N) — (1(G) denote the inclusion map. Let M be an invariant mean
on L°(N), and write M = " (M). Then M satisfies:

(4.1) §,0M = n(6,)0M (s € G);

(4.2) 7' (M) = 6.
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Proof. For every n € N and every f € £1(N), we have 0, * t(f) = (5, * f),
and so, by taking weak-* limits, we see that 4,0/ (®) = .”(5,0P) for all
® € /1 (N)". An arbitrary element s € G may be written as s = hn for some
h € H and n € N, and so

§,0M = §,06,0." (M) = 6,0 (6,0M)
= 5,0 (M) = 7(8,)0M.
Hence (4.1) holds.
Define @pg: £1(N) — £Y(N) by po: f + (f,1)6c (f € L1(N)). It is easily
verified that m ot = 10 g, and so 1" o /" =" o pff. We also have p((®) =
(®,1)8. (® € L1(N)"). Hence

m'(M) = (7" 0 ") (M) = (" 0 () (M) = " ((M,1)dc) = O,
establishing (4.2). O
We have not seen in the literature any instance of a discrete, non-amenable

group G for which it is known that rad (¢}(G)”) # {0}. However the next
corollary gives a large class of easy examples of such groups.

Corollary 4.5. Let G be a group with an infinite, amenable, complemented,
normal subgroup N. Then |rad (£1(G)")| > 22,

Proof. Let My, My be two invariant means in £*(N)”, and let ¢ and 7 be
as in Lemma 4.4 . Then by that lemma //(M; — My) € I(m,0), which is a
nilpotent ideal by Lemma 4.3(ii). The result now follows from the injectivity
of /" and [12, Theorem 7.26. O

We now prove our main theorem.

Proof of Theorem 1.2. Let G = ®22,7Z, and, given i € N, write G; for the it
copy of Z appearing in this direct sum. Let 7;: G — G be the homomorphism
which ‘deletes’ the i*" coordinate, that is

T . (nl,ng, .. ) — (nl, ey N1, 0,ni+1, .. )

Each map 7; gives rise to a bounded homomorphism £!(G) — £1(G), which
we also denote by 7;, given by

i [ Y F($8)0n  (FELHG)).
seG
Similarly, we write ¢;: G — G for the inclusion map of groups, and ¢;: £1(G;) —
¢1(@) for the inclusion of algebras which it induces.
Define a sequence of ideals I; in £1(G)” by I = I(m,0) and
I = I(mj, 1) (= 2).
By Lemma 4.3(ii), each I; is nilpotent of index at most j+1 and the strategy

of the proof is to show that the index is exactly j + 1.
Fix a free ultrafilter & on N. Given ¢ € N and n € Z we write

57(11) = 5(0,...,0,71,0,.‘.)7
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where n appears in the " place. Given j € N we define elements oj, Mj €
EI(G)" to be the weak-* limits 05 = hmk*)u Ojk and Mj = limkﬁu Mj,k7
where
1<
M =787 (j.keN),

k =1

and
k
o= > (59 -59) (ke
=1

We claim that, for each j € N, M; and o, satisfy:

(4.3) 60 M; = 7;(05)0M; (s € G);

(4.4) W}’(Mj) = 5(0,0,...);

(4.5) i (0;) = 0j and 7} (M;) = M; (i # j);
(4.6) oj € I(m;,0).

Since 7' (M) = M, and 7} (o) = 0% (k € N,i # j), (4.5) follows from
the weak-* continuity of 773-’ . We observe that M is the image of an invariant
mean on Z under L}’ , so that we may apply Lemma 4.4 to obtain (4.3) and
(4.4). Similarly, o; is the image of the difference of two invariant means on
Z under ¢;, so that Lemma 4.4 implies that §;00; = 7;(d5)0o; (s € G) and

7 (o) = 0, so that (4.6) holds.

We demonstrate that
(4.7) 010020---00; #0 (j € N).
To see this, define h € £°°(G) by

1 ifn; >0forallieN
h(nl,ng,...) = .

0 otherwise.
Clearly, we have

(4.8) (Oiph) =1 (i,k €N),

It is easily checked that (m;(ds) * ¢;(d¢), h) = (mi(ds), h){ti(6¢), h) for every
s € G and t € GG;, and it follows from this that

(4.9)  (m(f) * uilg), h) = (mi(f), h)(ilg), by (f € £1(G), g € L1(Gy)).

Given 7, k € N, the element o; ;. belongs to the image of ¢;, and, together with
(4.5), (4.9) and (4.8), this allows us to conclude that, for all ky,...,k; € N,
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we have
(O1 kg * 02y %+ % Ok, h)
=T (01 * o * Otk ) ¥ Tk, D)
i1y %+ % ik 1), ROk )
Tj1(O1ky %o % ok o) * Tj—1k;_1, W) (0jk; h) =
O1kys ) {0205, ) - (O ks h) = 1.

o~ o~~~

Therefore
(010020 -0, h) = ]31_135{ () <01,k1 * Oy ¥ oo K O'j’kj7h> =1.
Equation (4.7) follows.

We now come to the main argument of the proof. We recursively define
A]‘ S EI(G)H by A1 =07 and

Aj = M;BAj 1+ 05 (5 22).
We shall show inductively that each A; satisfies:

(4.10) A€ I;
(4.11) Aij = 010020 ---Ooj;
(112) ") = Ay (> J).

Since by Lemma 4.3(ii) 1,V = {0}, and by (4.7) 010020+ Oo; # 0, this
will give the result. The base case of the induction holds by (4.6) and (4.5).

Now assume that the hypothesis holds up to j — 1. It follows from (4.6)
and (4.3) that 0,0A; = m;(d5)0A; (s € G). Moreover, by (4.4), (4.6), and
(4.12) applied to A;_;, we have

(4.13) ™ (Aj) = mj (M;)0m5 (Aj—1) + 75 (o) = Aj,

so that, by the induction hypothesis, 77 (A;) € I;—1. Hence (4.10) holds. We
see that (4.12) holds for a given ¢ > j because it holds for each of Mj, o; and
Aj_1 by (4.5) and the induction hypothesis. Finally, we verify (4.11):

AJD] _ ﬂ;-,(Aj)D(j_l) DA] _ A?i]i—l) DAJ

= APV VoM;0M - + AT V00 = 010030 - 001 Oo;,
where we have used Lemma 4.3(i) and (4.13) in the first line, and the fact
that Ifﬁl = {0} in the second line to get A?Ejl_l)DMjDAj_l =0.

This completes the proof. O

Remark. A simpler version of the above argument shows that ¢!(Z2)”

contains a radical element which is nilpotent of index 3, which is enough to
resolve Dales and Lau’s question of whether the radical of L(G)", for G a
locally compact group, always has zero square |5, Chapter 14, Question 3.
Specifically, this may be achieved by terminating the induction at j = 2, and
otherwise making trivial alterations.
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Corollary 4.6. The radical of ¢1(®2,7Z)" contains non-nilpotent elements.

Proof. By a theorem of Grabiner [9], if every element of rad (¢(952,Z)")
were nilpotent, then there would be a uniform bound on the index of nilpo-
tency. Hence, by Theorem 1.2, rad (£1(5°,7Z)") must contain non-nilpotent
elements. O

5. A WEIGHT w FOR WHICH rad (£1(Z,w)"”) 18 NOT NILPOTENT
In this section we shall prove Theorem 1.3. Given a weight w on Z and
r € N, we define oz (0, 1] by

Q(,,.) i :w(n1+n2+---+nr)
w (nla ,’I’L) w(nl)w(ng)---w(m)

(n1,...,n, €Z)

(compare with [5, Equation 8.7]). Often we simply write Q") when the
weight w is clear. As in Section 3 we write A, = £1(Z,w).

Our main tool will be Proposition 5.1. In what follows, the unit ball of a
Banach space F is denoted by Bg.

Proposition 5.1. Let w be a weight on Z and suppose that there is some
sequence (ny) C Z such that

1/r

(5.1) liminf limsup ™ [Q ) (g, ... ng,) =0.

T koo "
Let & be a weak-* accumulation point of {6, /w(nk) : k € N}. Then ® €
rad (A7) \ {0}.
Proof. There exists some free filter & on N such that
® = lim L(Snk,
k—U w(nk)

where the limit is taken in the weak-* topology. Let ¥ € B4s. Then there
exists a net (aq) in B4, such that, in the weak-* topology, lim, a, = V. Let
A € By, Then, for each r € N, we have

Qo * Opy %+ % Qg ¥ Oy 3 A
(OB = iy )| Skl
a—00, k—U w(r, ) -+ w(ng, )
_ ) |$Gert % e, X0y, %o %0, A)

a—o0, k—U

w(ng,) -+ w(ng,)

6nk1 +o g,

<1 (r)
= fisup ‘wmm o)

k—o0

= limsup WQ M (ng,, ... ng,).
k—o0

Hence

[(PO®) V" = sup |((LOD)7", A)MT" < limsup ) [Q(T)(nkl,...,nk)

T
EBAL, k—oo

]w
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and 50 lim, o0 || (WO®)°7||1/7 = 0 by (5.1). Therefore ¥Ob € Q(A”). As ¥
was arbitrary, it follows that ® € rad (A/). Moreover, ® # 0 because

(P,w) = lim <5n’“,w> = 1.
k—U w(nk)
This completes the proof. O

Remark. In [5, Example 9.17] Dales and Lau put forward a candidate
for a weight w such that A is semisimple. They attribute this weight to
Feinstein. In the light of Theorem 1.1 this cannot be the case, but in fact
this can also be shown directly using Proposition 5.1, by taking the sequence
(nk) to be the one, also called (ny), appearing in [5, Example 9.17].

Given a (possibly infinite) subset S C Z which generates Z as a group, we
define the word-length with respect to S of an integer n to be

T

In|s = min{r in = Z€i5i7 for some s1,...,8, € S,61,...,& € {il}} .
i=1

This is exactly the usual notion of word-length from group theory. Notice

that, for any generating set S, the function n — e/”ls defines a weight on Z.
The weight in Theorem 1.3 will be defined as follows. We let

So={2" kezty,

set n(n) = |n|s,, and define our weight by w(n) = "™ (n € Z). We also
define a sequence of integers (ng) by

np =2 420" L 41 (keN).
Lemma 5.2. We have n(ny) =k +1 (k € N).

Proof. We proceed by induction on k € N, the base case being trivial. Take
k > 1, and assume that the lemma holds for £ — 1. That n(ng) < k +1
is clear from the definitions, and so it remains to show that n(ng) > k + 1.
Observe that, for all k € N, we have

2 k

k-1 k2 k2
(5.2) k2 >_2%42 < 2k,

Assume towards a contradiction that n(ng) < k + 1. Then we can write
nE =y 297, for some p€Ney,...,cp € Z\{0}, and ay,...,a, € Z*
such that > °¥_, |¢;| < k + 1. We may suppose that a; > ag > -+ > a,. We
first show that a1 = k. If a1 < k — 1, we find that

p p
Zcﬂa? < (Z |cl|> o(k=1) < kotk=1% < ny
i=1

i=1
by (5.2), a contradiction. Similarly, if a; > k + 1, we have

ne =
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P

Z ;2%

=1

ne =

p
> |cl|2a12 . <Z ’Cz|> 2(&1*1)2 > 2a12 . (]{J _ 1)2(a171)2
=2

> 2D — () — 1)2(a
= (a1 +1— k2@ >2. 98 5
where we have used (5.2) to obtain the second line. Hence in either case we

get a contradiction, so we must have a1 = k, as claimed.
Observe that ¢; > 0, since otherwise

P P
S a2t < 2K 13 g2 < 28 4 (k- 12007 <o,
i=1 i=2
Hence we have deduced that
P
2 o =g =25 4 (o - 12 ) 2,

i=2
which implies that

p
Ne—1 = (Cl — 1)2k2 + ZCZQCL%,
=2

and this contradicts the induction hypothesis, since c; —14+> F_, |e;| < k. O
Lemma 5.3. Let j € N, and set r = r(j) = 2% FL. Then, for all k1, ..., k, >

7, we have

< e 7.

T

[Q (T)(nkl, R )} v

Proof. First of all, we compute

r(j)nj — 92j+1 ZJ: 2(3‘4)2 _ ZJ: 22j+1+j272ij+i2
i=0 i=0
J J
_ Z 22i2—2i+2j—2ij+j2+1+i2 _ Z 92i 2(j+1—i)2‘
i=0 i=0
This implies that

J
A
wrnp <32 = L _y <
=0

so that, for all k1,..., k. > j, we have
n(ng, + -+ +nk,) = nl(nk, —ng) + - + (nk, —n ) +rng)
< n(ng, —ng) + -+ nlng, —nj) +n(rng)
S(kr—g) -+ (ke —34)+r
=ki+-+k—(G-1Dr
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Hence, by Lemma 5.2, we have

. 1/r
e [kbibethee (-
[Q(T) (n’%n s )nkl)i| < [

RS R |
_ [e—(j—l)r—r]l/r — e,
as required. O
Lemma 5.4. Fiz j € N, and set r = 22+ Let J € N satisfy J > j and
2% s rk 4 2r (k> J).
Then, for all k1 > ko > --- > k. > J, we have
(g, +--+ng) > ki +ka+- -+ k. — 1l

Proof. Note that, by our hypothesis on J, whenever k > J we have ok?—(k=1)?
rk + 2r, which implies that

(5.3) 28 > pk2k-1? 4 pok=1PH1 (> ).

We proceed by induction on k; > J, with the base case corresponding to the
case where k1 = J, and hence also ko = --- = k. = J. Therefore the base
hypothesis merely states that n(rns) > 0, which is true.

Suppose that k1 > J, and assume that the lemma holds for all smaller val-
ues of k1 > J. Assume towards a contradiction that there exist ks, ..., k. € Z
such that k1 > ko > --- > k. > J, and such that

nlng, +-+ng) <k +-+k—rld.

Then we may write
P 2
Mgy + -+ N, :ZCiQai
i=1

for some p € N, some ay,...,a, € Z", and some c¢1,...,¢, € Z\ {0},
satisfying a1 > ag > --- > ap and > b, |¢;| < k1 + -+ + k, — rJ. Note that
we have

2

(5.4) < (ki A+ -+ ky — 1 J)2% < (@D

P 2
E Ci2ai
=2

We claim that a; = ki. Assume instead that a; > k1 + 1. Then, using
(5.3) and (5.4), we have

p

Z CZQG?

i=1

p

Z Ci2a’2

i=2
> 9ai _ 7“/{:12(“1_1)2 > po(ai—1)?+1

> ey |29 —

2
> r 2 > g g,
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a contradiction. If, on the other hand, we assume that a; < k; — 1, then
(5.3) implies that

P 2
E Ci2ai
=1

a contradiction. Hence a; = kq, as claimed.
Let d € N be maximal such that k; = k1. We claim that ¢; > d. Firstly,
if ¢; were negative, we would have

p p
32 < —2M 4 |3 g2

=1 1=2

< (ky e+ k)20 < 2B o

< 2K 4 pky2-1? <,

by (5.3), a contradiction. Hence ¢; must be positive. Suppose that ¢; < d—1.
Then, using (5.3) to obtain the second line, we would have

P 2
E CiQai
=2

<Ny + o TNy S Mgy e N

p
329 < (d—-1)2M + < (d—1)25 4 rky2i—1?
=1

again a contradiction. Hence we must have ¢; > d, as claimed.
We now complete the proof. We have

p
128 + Z:cﬂal2 =ng, + -+ nk,
1=2
= dnkl + Nkgyq +oe g,
= ko% + Mgy 1 A gy Ny, g,
which implies that

p
(c1 — d)2¥t + ZCz’QG’z =Npy—1 Nyt + Ny N,
i=2
But

p
(Cl—d)+Z|Ci|<(ki1—1)+---+(k‘d—1)+k‘d+1+---+k‘r—<]7°,
=2

which contradicts the induction hypothesis applied to k; — 1. O

Corollary 5.5. Fiz j € N, set r = 2241 and let U be an ultrafilter on N.
Then limy,_y0 Q) (K1, ..., k) > 0.

Proof. Let J be as in Lemma 5.4. Then, for all kq,...,k. > J, we have
Ny 4 +np) > ki 4+ ke — 1,

which, when combined with Lemma 5.2, implies that

(r) ek1+“'+kr*7ﬂ] (J4+1)
T AT
Q (nkl,...,nkT)ZW—e > 0.

This implies the result. O
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We can now prove Theorem 1.3.

Proof of Theorem 1.3. Let ® be a weak-* accumulation point of
{0n, /w(ng) : k € N}.

Then, by Proposition 5.1 and Lemma 5.3, ® € rad (A7).
Take j € N and set r = 221, Let U be a filter on N such that ® is equal
to the weak-* limit limy_s 9y, /w(ng). Then, by Corollary 5.5,

1
®°" ) = lim ™) e et
(@, w) freey <W(”k1)“~w(nk,«)5 kr kr’w>

= Eh_r)rzl/{ (T)Q(T)(nkl, ce ,nkr) > 0.

Hence ®°" # 0. Since r — 0o as j — oo, it follows that ® is not nilpotent.
O

6. OPEN PROBLEMS

There are many natural problems that come to mind related to the topic of
this paper to which we do not know the answers. In the light of Theorem
1.2, it would be interesting to ask whether or not there exists any locally
compact group G for which rad (L(G)")"? = {0}. We do not know of such
a group, and we are unable to say whether or not this happens for G = Z.

The question of whether the second dual of a Beurling algebra can ever
be semisimple remains open. Moreover, even when the weight is trivial, the
fact that this cannot occur has only been established for non-discrete groups,
and discrete amenable groups. It would seem that determining whether or
not, for example, rad (¢1(F2)") # {0}, where F, denotes the free group on
two generators, requires some totally new ideas.

Another natural setting for this type of question is the Fourier algebra of
a locally compact group A(G), and one could ask whether we always have
rad (A(G)") # {0}. Questions about Arens multiplication in A(G)” are
actively studied: see, for example, [7, 8]. When G is abelian A(G) = L 1(@),
so that in this case rad (A(G)") # {0} by the known results mentioned above.
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