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A Distributed Locality-Sensitive Hashing-based
Approach for Cloud Service Recommendation from

Multi-Source Data
Lianyong Qi∗, Xuyun Zhang, Wanchun Dou∗ and Qiang Ni

Abstract—To maximize the economic benefits, a cloud service
provider needs to recommend its services to as many users
as possible based on the historical user-service quality data.
However, when a cloud platform (e.g., Amazon) intends to make
a service recommendation decision, considering only its own
user-service quality data is insufficient because a cloud user
may invoke services from multiple distributed cloud platforms
(e.g., Amazon and IBM). In this situation, it is promising for
Amazon to collaborate with other cloud platforms (e.g., IBM)
to utilize the integrated data for the service recommendation to
improve the recommendation accuracy. However, two challenges
are present in the above collaboration process, where we attempt
to use multi-source data for the service recommendation. First,
protecting users’ privacy is challenging when IBM releases its
own data to Amazon. Second, the recommendation efficiency
and scalability are often low when the user-service quality data
of Amazon and IBM update frequently. Considering these chal-
lenges, a privacy-preserving and scalable service recommendation
approach based on distributed locality-sensitive hashing (LSH),
i.e., SerRecdistri-LSH, is proposed in this paper to handle the service
recommendation in a distributed cloud environment. Extensive
experiments on the WS-DREAM dataset validate the feasibility
of our approach in terms of service recommendation accuracy,
scalability and privacy preservation.

Index Terms—Distributed service recommendation, cloud plat-
form, collaboration, privacy, scalability.

I. INTRODUCTION

THE increasing number of cloud users and their activities
in cloud platforms have produced a vast amount of

precious historical data. Cloud service providers often hope
to exploit the accumulated user-service quality data (i.e.,
users’ experienced service quality) to assist in the decision
of cloud service recommendation to provide better services or
to maximize revenue. Specifically, a recommendation method,
e.g., the seminal collaborative filtering (CF) [1], can be used
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directly on the data to find a target user’s similar users (i.e.,
neighbors) based on historical user-service quality data.

The “pay-as-you-go” feature and dynamics of resource
provision in cloud computing [2] enable a cloud user to
employ multiple cloud services from different cloud providers
to seek a more economical combination of cloud services,
thereby resulting in multi-source user-service quality data of
cloud users. Consequently, each cloud provider only has part
of the entire data about cloud users, and if a cloud service
provider makes recommendation decisions based on such an
incomplete view of the data, the recommendation accuracy can
be considerably compromised.

A possible approach is to integrate the data from each cloud
platform together and execute the recommendation algorithms
on the complete data. However, this approach is often infeasi-
ble in practical collaborations between companies even if they
understand that the collaboration can lead to higher profits (for
example, honest collaboration between the tourism-planning
service of TripAdvisor and the flight-reservation service of
United Airlines can benefit both companies). One fundamen-
tal reason is that companies seldom share the original data
with each other due to conflicts of economic interests or
user privacy concerns. Another reason is that the volumes
of the original datasets often become increasingly massive
with updates over time, and sharing of such large volumes
of data with others is often impractical due to inefficiency.
Considering these issues, a promising approach is to run the
recommendation methods in a distributed manner on these
multi-source big data. The entire data can be regarded as the
union of a set of vertically partitioned sub datasets owned
by each party. However, existing service recommendation
methods fail to effectively and efficiently handle the problem
of service recommendation from multi-source data.

In light of these challenges, we develop a new distributed
locality-sensitive hashing (LSH) mechanism for service rec-
ommendation from multi-source data, and we propose a novel
privacy-preserving and scalable service recommendation ap-
proach based on distributed LSH named SerRecdistri-LSH. Our
SerRecdistri-LSH can achieve a good tradeoff among service
recommendation accuracy, scalability and privacy preservation
in a distributed cloud environment.

In general, our contributions in this paper are three-fold.
(1) To the best of our knowledge, existing work has

rarely considered the problem of service recommendation from
multi-source data across different cloud platforms. In this
paper, we formulate this important recommendation problem
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and highlight its efficiency issues and privacy concerns, which
are different from those in existing works.

(2) We propose a distributed LSH mechanism for the ser-
vice recommendation problem from multi-source user-service
quality data in the cloud environment to protect user privacy
and improve the recommendation scalability in the cross-cloud
collaboration process.

(3) We conduct a wide range of experiments on the
WS-DREAM [3] dataset (a multi-source user-service qual-
ity dataset) to validate the feasibility of our approach. The
experimental results show that our approach can achieve
high improvements in service recommendation accuracy and
efficiency while guaranteeing privacy preservation.

The remainder of this paper is organized as follows. Re-
lated work is briefly surveyed in Section II. In Section III,
we formulate the cloud service recommendation problem
from multi-source data and present our research motivation.
In Section IV, we propose a distributed LSH-based service
recommendation approach to achieve privacy-preserving and
scalable service recommendation from multi-source data. In
Section V, extensive experiments are conducted on the WS-
DREAM dataset to validate the feasibility of our approach
in terms of service recommendation accuracy, scalability and
privacy preservation. Finally, in Section VI, we conclude the
paper and indicate some directions for future work.

II. RELATED WORK

Due to its domain-independent and easy-to-explain charac-
teristics, collaborative filtering (CF) has become one of the
most effective techniques in various service recommendation
systems [4]–[16]. We briefly review the CF-based service
recommendation approaches from three perspectives: recom-
mendation accuracy, capability of privacy preservation and
scalability.

A. Recommendation Accuracy

User-based CF and item-based CF are recruited for high-
quality service recommendation in [4] and [5], respectively. To
combine their advantages, a hybrid CF recommendation ap-
proach is proposed in [6]. The experimental results show that
the hybrid approach significantly improves the recommenda-
tion performance. Because the quality of a service often varies
with the service invocation context (e.g., time and location),
time-aware CF and location-aware CF are proposed in [7]
and [8], respectively, to improve the recommendation accuracy.
However, the above approaches only recruit objective service
quality for recommendation and therefore fail to consider
users’ subjective preference, which also plays a crucial role
in users’ final service selection decisions. In light of this
shortcoming, a preference-aware recommendation approach is
proposed to satisfy the personalized service recommendation
requirements from various users [9].

However, all the above CF approaches assume that the
recommendation bases, i.e., user-service quality data, are
centralized without considering the situations where quality
data are from multiple sources in a distributed environment.
Therefore, these approaches fail in handling the important

problems of service recommendation from multi-source data
produced by different cloud platforms.

B. Privacy Preservation

Protecting users’ privacy is often regarded as a precondi-
tion of a successful service recommendation. An encryption
technique is often used to protect user privacy in the domain
of information retrieval, e.g., encryption-based multi-keyword
search scheme for personalized user preferences in [17], key-
word vector encryption scheme for privacy-preserving infor-
mation search over cloud data in [18], and encrypted semantic
search based on conceptual graphs in clouding computing
in [19]. However, encryption often introduces considerable
computation cost and is hence not suitable for light-weight
service recommendation. To achieve light-weight privacy-
preservation solutions, in [10], the authors suggest that a
user should release only a small portion of user-service
quality data to the public so that the remaining majority of
the data are secure. However, the released small portion of
data can still reveal part of a user’s private information. To
completely protect user privacy, the data obfuscation technique
is employed in [11] to hide the real user-service quality data.
However, as the data used to make service recommendations
have been obfuscated, the recommendation accuracy often
decreases accordingly. Similarly, a segment-based data hiding
approach is developed in [12], where each piece of user-service
quality data is divided into several data segments, and then
the data segments are employed to calculate user similarity
approximately and make further service recommendations.
However, the work in [12] fails to protect some important
privacy information appropriately, e.g., the information of
the service intersection commonly invoked by two users. A
privacy-preserving recommendation approach is proposed in
our previous work [16]; however, this approach cannot handle
the service recommendation scenario where the service quality
data observed by a user are distributed in multiple platforms.

C. Scalability

Traditional CF approaches (e.g., user-based, item-based and
hybrid CF) are designed based on the in-memory computing
scheme, resulting in poor efficiency and scalability. Therefore,
to improve the recommendation efficiency and scalability, a
variety of model-based CF approaches have been proposed,
such as matrix factorization-based CF [13], LDA-based ap-
proaches [14] and clustering-based approaches [15]. In these
approaches, the recommendation process is divided into two
phases: model training and recommendation. Because the first
phase (i.e., model training) can be executed offline, the overall
recommendation efficiency can be considerably improved.
However, when the user-service quality data in each cloud
platform update over time, the models need to be re-trained
and updated frequently. Consequently, these approaches also
fail to satisfy the users’ quick response requirements due to
their poor efficiency and scalability.

From the above analyses, we conclude that the existing
research work falls short in handling the problems of privacy-
preserving and scalable cloud service recommendation from
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Fig. 1. Cloud service recommendation from multi-source data: an example

multi-sourced data. Considering these drawbacks, we propose
a novel service recommendation approach based on distributed
LSH, as elaborated in the next section.

III. PROBLEM FORMULATION AND MOTIVATION

In this section, we first formulate the problem of cloud ser-
vice recommendation from multi-source user-service quality
data. Then, an intuitive example is presented to motivate our
research. Table I recapitulates the symbols used in this paper.

A. Problem Formulation

Concretely, the problem of cloud service recommendation
from multi-source data can be formulated as a five-tuple
Distri Ser Rec(CP,WS, U, utarget, q), where

(1) CP = {cp1, . . . , cpz}: cpk(1 ≤ k ≤ z) denotes the k-th
cloud platform, which provides the k-th part of the user-service
quality data of cloud users.

(2) WS = {WS1, . . . ,WSz}: WSk(1 ≤ k ≤ z) denotes the
web service set in cloud platform cpk. To ease the discussion,
we assume that each platform owns m services, i.e., WSk =
{wsk,1, . . . ,wsk,m}, where wsk,i(1 ≤ i ≤ m) denotes the i-th
web service in cloud platform cpk.

(3) U = {u1, . . . , un}: uj(1 ≤ j ≤ n) denotes the j-th
cloud user. Here, for user uj , his/her user-service quality data
are recorded by multiple cloud platforms in set CP and are
hence multi-sourced.

(4) utarget: a target user to whom a cloud platform intends
to recommend services. Here, utarget ∈ U holds.

(5) q is a quality dimension of web services, e.g., response
time and throughput. For simplicity, we subsequently only
consider one quality dimension.

B. Research Motivation

We employ the example in Fig. 1 to demonstrate the
motivation for our research herein. Assume that there are
two cloud platforms, Amazon (denoted as cp1) and IBM
(denoted as cp2), in Fig. 1. Two web services ws1,1 and ws1,2
are in Amazon, and another two services ws2,1 and ws2,2
are in IBM. Two cloud users u1 and u2 invoked services
{ws1,1,ws1,2,ws2,1} and {ws1,2,ws2,1,ws2,2}, respectively.
Now, inspired by economic interests, Amazon and IBM agree
to share their respective data with each other to attract more
service users.

According to the traditional user-based CF recommendation
approach, if Amazon intends to recommend its own services to

u2, the first step is to calculate the similarity between u1 and
u2, i.e., sim(u1, u2), based on the quality data of their invoked
services (including ws1,1 and ws1,2 in Amazon and ws2,1 and
ws2,2 in IBM). However, two challenges arise in the above
collaboration process between Amazon and IBM. (1) Due to
user privacy concerns, IBM cannot reveal its own user-service
quality data to Amazon, which makes the collaboration process
infeasible and renders the recommended results inaccurate. (2)
For both Amazon and IBM, the volumes of their user-service
quality data have become increasingly massive with updates
over time. In this situation, the collaboration efficiency and
scalability between Amazon and IBM are significantly reduced
and cannot satisfy cloud users’ quick response requirements.

Considering these challenges, we propose a privacy-
preserving and scalable recommendation approach based on
distributed LSH, named SerRecdistri-LSH, to handle the problem
of cloud service recommendation from multi-source data, as
elaborated in the following section.

IV. A DISTRIBUTED SERVICE RECOMMENDATION
APPROACH FROM MULTI-SOURCE DATA: SerRecdistri-LSH

Our proposed cloud service recommendation approach
SerRecdistri-LSH is a new distributed LSH approach. In subsec-
tion IV.A, we first briefly introduce the LSH technique. Then,
in subsection IV.B, we introduce the details of our proposal.

A. Locality-Sensitive Hashing

Locality-sensitive hashing (LSH) was introduced by Aris-
tides Gionis in 1999 [20] and has been proven to be an
effective approach for approximate nearest neighbor (ANN)
search, such as the LSH-based privacy-preserving image con-
tent and feature protection approach in [21] and the LSH-
based multi-keyword fuzzy search approach over encrypted
outsourced data in [22]. The main idea of LSH is as follows:
select a hashing function (or a hashing function family) such
that (1) two neighboring points in the original data space are
still neighbors after hashing with high probability and (2) two
non-neighboring points in the original data space are still not
neighbors after hashing with high probability.

If a hashing function satisfies the above two conditions,
then it is called a LSH function. Formally, function h(·) is a
LSH function iff both conditions in (1) and (2) hold. Here,
x and y are two points in the original data space, d(x, y)
denotes the distance between x and y, h(x) represents the
hashing value (or index) of x, P (X) denotes the probability
that event X holds, and {d1, d2, p1, p2} are a set of thresholds.
If the conditions in (1) and (2) hold simultaneously, then LSH
function h(·) is called (d1, d2, p1, p2)-sensitive.

If d(x, y) ≤ d1, then P (h(x) = h(y)) ≥ p1 (1)
If d(x, y) ≥ d2, then P (h(x) = h(y)) ≤ p2 (2)

We utilize the example in Fig. 2 to illustrate the basic
process of LSH-based ANN search. Assume that there are n
points {o1, . . . , on} in the original data space. Then, through
a LSH function h(·) (or a LSH function family), {o1, . . . , on}
are projected into corresponding buckets b1, . . . , bt, where
each bucket bi(1 ≤ i ≤ t) contains ni(ni � n and

∑
ni = n)
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neighboring data points. Thus, if a target user (denoted by
data point X) intends to find his/her similar neighbors from
{o1, . . . , on}, we can first calculate the hashing value (or
index) h(X) based on pre-selected hashing function h(·) and
then determine the bucket (assume bi) corresponding to index
h(X). Finally, according to the nature of LSH, all the ni data
points in bucket bi could be regarded as similar neighbors of
X (with high probability). Thus, the LSH-based ANN search
process ends successfully.
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…
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X

h(X)

target user
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Fig. 2. LSH-based ANN search process

From the above example, we have observed three advan-
tages of LSH. First, through LSH, distributed data points
{o1, . . . , on} could be integrated into a single hashing table,
which enables the subsequent uniform computation. Second,
original data oi are transparent to the target user as he/she
can only know the hashing value h(oi) with little (or null)
privacy; therefore, user privacy is protected by LSH. Third,
the hashing table can be constructed offline, through which
the ANN search efficiency and scalability are significantly
improved. Therefore, the LSH technique is extended in this
paper to realize the privacy-preserving and scalable service
recommendation from multi-source data in a distributed cloud
environment.

B. SerRecdistri-LSH: Service Recommendation based on Dis-
tributed LSH

In this subsection, we propose a distributed LSH-based
service recommendation approach called SerRecdistri-LSH. Gen-
erally, our proposal mainly consists of the four steps shown
in Fig. 3. Here, utarget is the target user to whom a cloud
platform intends to recommend services. Other symbols and
their meanings can be found in Table 1.

Step 1: Building user sub-indices offline.
Using an index is an effective approach for boosting the

search speed in the information retrieval domain, e.g., tree-
based keyword index for efficient information search over
cloud data in [23]. Likewise, we build a user index for efficient
service recommendation in this paper. Concretely, in this step,
for each cloud platform cpk(1 ≤ k ≤ z), a LSH function
family Hk(·) is chosen to build a sub-index for each user
u ∈ U offline based on u’s experienced quality of services in
cpk (we assume that each cloud platform releases its data to
other platforms honestly). Here, the selection of LSH function
family Hk(·) depends on the “distance” type in the LSH
definition (see subsection IV.A), while Pearson correlation

Step 1: Building user sub-indices offline. For a cloud platform
cpk(1 ≤ k ≤ z), a LSH function family Hk() is chosen
to hash each user u(∈ U) to be Hk(u) offline based
on u’s user-service quality data in cpk. Then, Hk(u) is
regarded as the k-th sub-index of u.

Step 2: Building user index by merging sub-indices offline.
User u’s sub-indices Hk(u)(1 ≤ k ≤ z) derived in
Step 1 are merged into a complete index H(u) =
(H1(u), . . . , Hz(u)) offline. A hash table is created for
users based on index H(u).

Step 3: Online neighbor search for utarget. Calculate utarget’s in-
dex H(utarget) online based on Step 1 and Step 2. Then,
find the bucket whose number is equal to H(utarget), and
take the users in the bucket as utarget’s similar neighbors.

Step 4: Top-K service recommendation. According to utarget’s
neighbors derived in Step 3, predict the quality of
services never invoked by utarget and return the top-K
services to utarget.

Fig. 3. Four steps of service recommendation approach SerRecdistri-LSH

TABLE I
SPECIFICATIONS OF SYMBOLS USED IN THIS PAPER

symbol specification
z number of cloud platforms
m number of web services in each cloud platform
n number of cloud users (or original data points)
q a quality dimension of web services
d(, ) distance between two original data points (or users)
P (.) probability value

d1, d2, p1, p2 thresholds recruited in LSH definition
h(.) a LSH function
H(.) a LSH function family
T number of LSH tables
rk number of LSH functions chosen by cloud platform cpk

b1, . . . , bt buckets in a hashing table
ni number of data points (or cloud users) in bucket bi
X profile that depicts a target user
β density of user-service quality matrix

coefficient (PCC) [24] is often used as the “distance” mea-
surement in CF-based recommendation. Therefore, we need
to determine the LSH functions Hk(·) corresponding to PCC,
which mainly consists of the following three substeps (more
intuitive specifications of these three substeps are presented in
Fig. 4).

First, for a user u, his/her experienced quality over m
services {wsk,1, . . . ,wsk,m} in platform cpk is transformed
into an m-dimensional vector −−→u(k) = (wsk,1.q, . . . ,wsk,m.q),
where q is a quality dimension of web services and ws.q = 0
if user u has never invoked service ws before.

Second, according to [25], the hash value of vector −−→u(k), i.e.,
hk(u) is calculated based on the LSH function in (3). Here, ~v is
an m-dimensional vector (v1, . . . , vm), where vi(1 ≤ i ≤ m)
is a random value in range [−1, 1]; symbol “◦” represents the
dot product between two vectors. To ease the understanding
for readers, we explain the physical meaning of (3) as follows:
vector ~v is considered as a hyperplane for space partition; if
two vectors ~x and ~y are located on the same side of ~v (i.e.,
both ~x ◦ ~v > 0 and ~y ◦ ~v > 0 hold, or both ~x ◦ ~v ≤ 0 and
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Fig. 4. Index building process for user u (i.e., Step 1 and Step 2)

~y ◦ ~v ≤ 0 hold), then ~x and ~y could be regarded as similar
(with high probability).

hk(u) =

{
1 if −−→u(k) ◦ ~v > 0

0 if −−→u(k) ◦ ~v ≤ 0
(3)

Third, repeat the above hash process rk times based on
different vectors ~v (generated randomly), and then the sub-
index for user u, i.e., Hk(u) = (h1k(u), . . . , h

rk
k (u)), could be

obtained, where hgk(u)(1 ≤ g ≤ rk) is calculated by (3). Here,
sub-index Hk(u) is actually an rk-dimensional 0-1 vector,
and the value of rk should be “the larger the better” (LSH
is essentially a probability-based search approach; therefore,
more hash functions often mean higher search accuracy).

Step 2: Building user index by merging sub-indices offline.
In Step 1, we have derived z sub-indices H1(u), . . . ,Hz(u)

of user u based on u’s user-service quality data in cloud
platforms cp1, . . . , cpz , respectively. Next, we merge the z
sub-indices into a complete index for u offline, i.e., H(u) =
(H1(u), . . . ,Hz(u)), which has (r1+r2+. . .+rz) dimensions.
Next, for each u ∈ U , we repeat the above process to build
his/her index H(u). Subsequently, the mapping relationships
of “u→ H(u)” are recorded in a hash table H Table.

Step 3: Online neighbor search for utarget.
According to the hash function family Hk(.)(1 ≤ k ≤ z)

chosen in Step 1 and the merging operation in Step 2, we
calculate target user utarget’s index H(utarget) online. Then, we
search for the bucket whose number is equal to H(utarget)
from the hash table H Table derived in Step 2. If a qualified
bucket is found, then all the users in the bucket are considered
as utarget’s similar neighbors and placed in the neighbor set
NB Set.

Otherwise, qualified buckets are not present; however, in
this situation, we cannot simply conclude that utarget has no
similar neighbors because LSH is actually a probability-based

search approach and may overlook partial similar neighbors
of utarget. Thus, we adopt the “OR” operation to relax the
conditions for neighbor search to overlook as few neighbors
as possible. Concretely, rather than creating only a hash
table H Table in Step 2, we repeat Step 1 and Step 2 to
create T hash tables: H Table1, . . . ,H TableT . Then, if the
condition in (4) holds, we can conclude that utarget has similar
neighbors, and the users in the bucket whose number is equal
to H(utarget)x are neighbors of utarget and placed in set NB Set.

∃u(∈ U) and x(∈ {1, . . . , T}),
satisfy H(u)x = H(utarget)x in H Tablex (4)

Step 4: Top-K service recommendation.
In Step 3, we have obtained the similar neighbor set of target

user utarget, i.e., NB Set. Next, we utilize NB Set to make
service recommendations to utarget. Concretely, we predict
service ws’s quality over dimension q by utarget, i.e., ws.qtarget

based on (5). Here, ws is a service in cp (here, cp denotes the
cloud platform that intends to recommend its own services to
utarget) but never invoked by utarget before, and ws.qj denotes
ws’ quality over dimension q observed by user uj . Finally, we
rank all the candidate services in cloud platform cp by their
predicted quality in (5) and return the optimal top-K services
as the final recommendation results.

ws.qtarget =
1

|NB Set|
∗

∑
uj∈NB Set

ws.qj (5)

Through the above four steps of SerRecdistri-LSH, a cloud
platform can recommend its optimal K (at most) services to a
target user in a privacy-preserving and scalable manner. For-
mally, our proposal is specified by the following pseudocode.

Algorithm: SerRecdistri-LSH

Inputs: CP = {cp1, . . . , cpz}: cloud platform set
WS={WS1, . . . ,WSz}: service set in cloud platforms
U = {u1, . . . , un}: user set
q: a quality dimension of web services
utarget: a target user
cp: a cloud platform that intends to recommend
services to utarget

Outputs: Result Set: recommended results to utarget

/* Step 1: Building user sub-indices offline*/
1 for k = 1 to z do
3 for g = 1 to rk do
4 for i = 1 to m do
5 hkgi = random [−1, 1]
6 end for
7 −→vg = (hkg1, . . . , hkgm)
8 for j = 1 to n do
9 −−→uj(k) = (wsk,1.qj , . . . ,wsk,m.qj)
10 if −−→uj(k) ◦ −→vg > 0
11 then hgk(uj) = 1
12 else hgk(uj) = 0
13 end if
14 end for
15 end for
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16 for j = 1 to n do
17 Hk(uj) = (h1k(u), . . . , h

rk
k (u))

18 end for
19 end for
/*Step 2: Building user index by merging sub-indices offline*/
20 for j = 1 to n do
21 H(uj) = (H1(uj), . . . ,Hz(uj))
22 end for
23 create hash table H Table based on H(u1) . . . H(un)
/*Step 3: Online neighbor search for utarget */
24 NB Set = Φ
25 for x = 1 to T do
26 repeat Step 1 and Step 2 to create H Tablex
27 find bucket b corresponding to H(utarget)x
28 if b 6= Null
29 then place users in b into NB Set
30 end if
31 end for
/*Step 4: Top-K service recommendation */
32 Result Set = Φ
33 for each service ws in cp do
34 if ws.qtarget = 0
35 then count = 0
36 for uj ∈ NB Set do
37 if ws.qj 6= 0
38 then count++
39 ws.qtarget = ws.qtarget + ws.qj
40 end if
41 end for
42 ws.qtarget = ws.qtarget /count
43 end if
44 end for
45 place Top-K services with highest ws.qtarget into Result Set
46 return Result Set to utarget

V. EXPERIMENTS

In this section, a set of experiments are conducted based
on the distributed dataset WS-DREAM [3] to validate the
feasibility of our proposed service recommendation approach
SerRecdistri-LSH. WS-DREAM is a real-world service quality set
(e.g., response time values) obtained from 339 users on 5825
web services from different countries. In our experiments,
the two countries that own the most services, i.e., USA and
Canada, are used to simulate two geographically distributed
cloud platforms, while the services hosted in other countries
are eliminated (actually, the number of cloud platforms herein
does not substantially affect the final service recommendation
result because the user-service quality data in each cloud
platform are hashed independently offline). Moreover, only
one quality dimension of services, i.e., response time, is
considered, and the top-3 (at most) services are recommended
to each randomly selected target user.

To demonstrate the advantages of our proposal, we com-
pare SerRecdistri-LSH with four state-of-the-art approaches:
UPCC [26], IPCC [27], P-UIPCC [11] and PPICF [12]. Fur-
thermore, the following two evaluation measures are examined
and compared (because user privacy can be protected well by

the intrinsic nature of LSH, we will not evaluate the privacy-
preservation capability of our proposal here).

(1) Time cost: time consumed for generating service recom-
mendation results, through which we can test the recommen-
dation efficiency and scalability.

(2) MAE (mean absolute error) [28]: average difference
between predicted quality and real quality of recommended
services, through which we can test the recommendation
accuracy.

The experiments are conducted on a Lenovo laptop with
2.40 GHz processors and 12.0 GB of RAM. The machine
runs Windows 10, JAVA 8 and MySQL 5.7. Each experiment
was performed 10 times, and the average experimental results
are reported.

A. Experimental Results and Analyses

Concretely, five profiles are tested and compared in our
experiments. Here, as specified in Table 1, r1 and r2 denote
the number of LSH functions chosen by cloud platforms
cp1 (USA) and cp2 (Canada), respectively; T represents the
number of hash tables created in Step 3; and β denotes the
density of the user-service quality matrix.

Profile 1: accuracy comparison of the five approaches
In this profile, the recommendation accuracy values of the

five approaches are tested and compared. The experimental
parameters are set as follows: T = 10, r1 = 8, r2 = 6, and
β is varied from 5% to 25%. The experimental results are
presented in Fig. 5.
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Fig. 5. Recommendation accuracy comparison

As shown in Fig. 5, the recommendation accuracy values of
the five approaches all increase (i.e., MAE values all decrease)
with increasing β (i.e., density of the user-service quality
matrix). This result occurs because more useful recommenda-
tion information is available when the matrix becomes denser.
Moreover, the recommended results in both the P-UIPCC and
PPICF approaches are not sufficiently accurate because many
approximate operations are recruited in these two approaches
to protect user privacy. Our proposed SerRecdistri-LSH approach
outperforms the other four approaches in terms of recom-
mendation accuracy because only the most similar neighbors
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of a target user could be found and utilized for service
recommendation based on the nature of LSH.

Profile 2: efficiency comparison of the five approaches
In this profile, we compare the efficiencies of the five

recommendation approaches. The experimental parameters are
set as follows: T = 10, r1 = 8, r2 = 6, and β is varied from
5% to 25%. The concrete experiment results are presented in
Fig. 6.
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Fig. 6. Recommendation efficiency comparison

As shown in Fig. 6, the time cost of the PPICF approach
is the highest in most cases (except when β = 5%) because
the data segment division and merging operations in PPICF
require substantial computational time. Because there are a
total of 339 users and 5825 web services in WS-DREAM,
the number of services increases faster than the number of
users when the user-service quality matrix becomes denser
(i.e., when β increases). Therefore, the time cost of IPCC
(actually a type of item-based CF approach) increases faster
than those of the other two user-based CF approaches, i.e.,
UPCC and P-UIPCC. Our proposed SerRecdistri-LSH approach
outperforms the other four approaches in terms of computa-
tional time because most of the jobs (e.g., hash table creation)
in SerRecdistri-LSH could be finished offline, while the time
complexity of the remaining job (i.e., online neighbor search)
is almost O(1) [29].

Profile 3: recommendation accuracy of SerRecdistri-LSH
w.r.t. r

In our SerRecdistri-LSH approach, the number of hash func-
tions in each hash table, i.e., r, plays an important role in
service recommendation accuracy because more hash func-
tions often mean stricter conditions for finding the similar
neighbors of a target user. Thus, in this profile, we test the
recommendation accuracy of our proposal with respect to r.
The experimental parameters are set as follows: T is varied
from 6 to 14, r1 = r2 = r while r is varied from 4 to 7 (as
larger r may induce recommendation failures), and β = 25%.
The experimental results are presented in Fig. 7.

As shown in Fig. 7, the MAE values of our proposal remain
increasingly stable with increasing r (e.g., when r = 7).
This result occurs because a larger r value often means a
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stricter condition for neighbor search; consequently, only a
few fixed and “really similar” neighbors of a target user could
be found and utilized for subsequent service recommendation,
and therefore, the recommendation accuracy (i.e., MAE) does
not fluctuate much. For the same reason, the recommendation
accuracy increases (i.e., MAE decreases) when r increases,
which can also be observed from the “average” columns in
Fig. 7.

Profile 4: recommendation efficiency of SerRecdistri-LSH
w.r.t. r

In this profile, we test the recommendation efficiency of our
SerRecdistri-LSH approach with respect to r. The experimental
parameters are set as follows: T is varied from 6 to 14, r1 =
r2 = r while r is varied from 4 to 7, and β = 25%. The
experimental results are presented in Fig. 8.
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As shown in Fig. 8, the time costs of our proposal are small
and remain approximately stable when r is small (e.g., when
r = 4, 5, and 6). This result occurs because most jobs (e.g.,
hash table creation) can be finished offline, while the time
complexity of remaining jobs (i.e., online neighbor search)
is almost O(1). However, as shown in Fig. 8, the time cost
significantly increases when r is varied from 6 to 7. This is
because when r is larger (e.g., when r = 7), the condition
for neighbor search becomes stricter, and hence, it is probable
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that no similar neighbors could be found through one iteration
process in our approach. In this situation, multiple iterations
are needed to find at least one qualified neighbor, and hence,
more computational time is consumed.

Profile 5: number of outputted similar neighbors in Ser-
Recdistri-LSH w.r.t. T and r

In Step 3 of our proposed SerRecdistri-LSH approach, we have
derived the similar neighbors of the target user and placed
them in set NB Set. In this profile, we test the relationship
between the size of set NB Set and parameters T and r
(here, T and r represent the number of hash tables and the
number of hash functions in each hash table, respectively).
The experimental parameters are set as follows: T is varied
from 6 to 14, r is varied from 4 to 7, and β = 25%. The
concrete experimental results are shown in Fig. 9.
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As shown in Fig. 9, the number of outputted neighbors
quickly decreases with increasing r; this is because a larger
r value often means a stricter filtering condition for neighbor
search, and consequently, only fewer qualified neighbors are
finally obtained. Moreover, the number of outputted neighbors
increases approximately when parameter T is varied from 6 to
14; this is because a larger T value means a looser condition
for neighbor search (see the “OR” operation in condition
(4)) under which more candidate users become “qualified”
neighbors of the target user.

B. Time Complexity Analyses

In this subsection, we analyze the time complexity of
our proposed cloud service recommendation approach Ser-
Recdistri-LSH. Suppose that there are n users and z cloud
platforms, each platform contains m services, and T and r
represent the number of hash tables and number of hash
functions in each hash table, respectively. Next, we discuss
the time costs of the four steps in SerRecdistri-LSH.

In Step 1 and Step 2, the user index (including user sub-
indices) building process can be completed offline; therefore,
the time costs of these two steps are not considered in the
complexity analyses.

In Step 3, we first build the z sub-indices for the target
user, whose time complexity is O(m ∗ r) as the z sub-indices
can be built by z cloud platforms in parallel; subsequently,
the obtained z sub-indices are merged to be a complete

index, whose time complexity is O(1). Therefore, the time
complexity of building an index for the target user is O(m∗r).
Furthermore, because a total of T indices are necessary for a
target user, the time complexity of Step 3 is O(m ∗ r ∗ T ).

In Step 4, we evaluate the quality of each candidate service
(at most m candidates) based on the service quality data
observed by similar neighbors (at most n − 1 neighbors) in
Step 3. Therefore, the time complexity of Step 4 is O(m ∗n).

With the above analyses, we can conclude that the time
complexity of our proposed SerRecdistri-LSH approach is O(m∗
(r ∗ T + n)). The polynomial time complexity means that
the recommendation efficiency and scalability of our proposal
are often high, which has already been validated by the
experimental results in subsection V.A.

VI. CONCLUSIONS

The pay-as-you-go feature of cloud platforms has enabled
cloud users to employ multiple cloud services from different
service providers to reduce costs for their business. This
leads to the problem of cloud service recommendation from
the users’ behavioral data distributed across multiple cloud
platforms. This problem is of both practical and theoretical
importance as it is promising to use the multi-source data to
improve the service recommendation performance in a dis-
tributed environment, while we need to protect user privacy to
encourage data sharing between cloud providers. In this paper,
we have proposed a novel service recommendation approach
named SerRecdistri-LSH by developing a new distributed LSH
scheme to handle the cloud service recommendation problems
from multi-source data. With the use of LSH, user privacy has
been protected in cross-cloud collaboration due to the inherent
nature of hashing techniques. Furthermore, recommendation
efficiency and scalability have been significantly improved
as most computation in the recommendation process (e.g.,
hash table creation) can be finished offline. Finally, extensive
experiments conducted on the multi-source service quality
dataset WS-DREAM have validated the feasibility of our
proposal in terms of recommendation accuracy, scalability and
the capability of privacy preservation.
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