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ABSTRACT   

As the ambition behind THz quantum cascade laser based applications continues to grow, abandoning free-space optics 
in favor of waveguided systems promises major improvements in targeted, easy to align, and robust radiation delivery. 
This is especially true in cryogenic environments, where illumination is traditionally challenging. Although the field of 
THz waveguides is rapidly developing, most designs have limitations in terms of mechanical stability at low 
temperatures, and are costly and complicated to fabricate to lengths > 1 m. In this work, we investigate readily available 
cylindrical metal waveguides which are suitable for effective power delivery in cryogenic environments, and explore the 
optimal dimensions and materials available. The materials chosen were extruded un-annealed and annealed copper, as 
well as stainless steel, with bore diameters of 1.75, 2.5, and 4.6 mm. Measurements were performed at three different 
frequencies, 2.0, 2.85 and 3.2 THz, with optimal transmission losses < 3 dB/m demonstrated at 2.0 THz. Additionally, 
novel optical couplers are also presented and characterised, with the ability to change the beam path by 90o with a 
coupling loss of just 2.2 dB whilst maintaining mode quality, or thermally isolate sections of waveguide with a coupling 
loss as low as 0.5 dB. The work presented here builds on previous work1, and forms a comprehensive investigation of 
cryogenically compatible THz waveguides and optical couplers, paving the way for a new generation of systems to 
utilize THz QCLs for a host of low-temperature investigations. 
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1. INTRODUCTION  
The field of terahertz (THz) waveguides has recently seen significant progress, both in improving key performance 
characteristics, such as fabrication techniques, transmission losses, and dispersion2, whilst also integrating components 
into THz applications that previously utilized free space optics3,4. Multiple benefits follow from this, for instance the 
ability to achieve purgeable, targeted power delivery, which can be easily aligned over long distances (>100 mm)5. There 
currently exists a considerable range of waveguide designs, including hollow6 and solid7 core dielectric designs, photonic 
crystal8, wire9, coplanar10, hollow core metallic11,12, and dielectric lined metallic13,14. Relatively little attention however 
has been placed on THz waveguides capable of operating in cryogenic environments (< 4 K). In this area, there exists the 
potential for the study of numerous quantum systems15,16 operating with transitions on the THz scale (1.0 – 5.0 THz ≈ 4 – 
20 meV). However, the energy of 1 THz radiation corresponds to ~50 K, necessitating the use of liquid helium cooling 
in order to avoid thermal smearing of the transitions of interest.  
In this work, attention is directed towards developing waveguides and optical hardware suitable for such environments. 
Delivery of THz radiation in cryogenic environments has been challenging to date, as operation below 4 K is usually 
hindered by multiple cryogenic vacuum chambers, which each require the use of an absorbing optical window. To 
circumvent this challenge, a waveguide based delivery system presents itself as a promising solution. In these 
environments, the transmission loss becomes crucial, to compensate for the often significant physical distance between 
source and sample. For illuminating the sample, a Gaussian-like beam is desirable, and in addition, the temperature  
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variations involved in thermal cycling makes mechanical stability another central consideration. From a thermal point of 
view, it is also crucial to limit the additional heat load introduced into the sample space by the introduction of the 
waveguide. As a result, the thermal conductivity of the material chosen is key. This issue can also be addressed by the 
inclusion of suitable connecting structures if necessary, which are specifically designed for thermal isolation. One design 
which appears to encompass these factors is the cylindrical hollow metallic waveguide (HMWG), the study of which has 
previously been limited to diameters <1 mm11,17, rendering the losses too high for the distances involved in cryogenic 
applications. Designs for flexible HMWGs also exist, by coating a dielectric tube with an inner metallic layer18. 
However, the dielectric materials used makes them potentially mechanically unstable at cryogenic temperatures. In this 
work, the focus is on demonstrating the applicability of extruded hollow metal waveguides for cryogenic THz 
applications. This is followed by the demonstration of two types of optical couplers designed to efficiently manipulate 
the beam direction, as well as reduce the thermal conduction of the optical system, thus enabling the construction of 
waveguided THz delivery systems in cryogenic environments with limited heat load on the sample space.  

2. HOLLOW METAL WAVEGUIDES 
2.1 Experimental setup 

The HMWGs chosen for investigation were made of un-annealed copper (UnCu) and annealed copper (AnCu), and 
stainless steel (SS). Copper was chosen due to its high electrical conductivity, and resulting low skin depth, which gives 
a minimal optical penetration and thus ohmic losses. Other strengths include being both readily malleable, and available 
in a variety of dimensions to suit the application. Stainless steel was also included, as its low thermal conductivity 
renders it useful in many component designs at cryogenic temperatures. All the waveguides were extruded cylinders, 
with three different inner diameters, 1.75, 2.5, and 4.6 mm, and wall thicknesses of 0.71, 1.13, and 0.87 mm, 
respectively. These were chosen to balance the trade-off between single mode transmission, at the expense of increasing 
losses with reducing diameter18. A set of three HMWGs of a particular material and diameter were prepared into lengths 
between 50 and 150 mm, and cleaned with subsequent submersions in acetone, IPA, HCl and HNO3 solutions to remove 
any surface oxides, residual annealing scale, and tarnish19.  

 
Figure 1. a)  Schematic of the setup used to characterize the HMWGs. A QCL was placed within the cryostat, and coupled 
into the external PS-MWG through a cylindrical HDPE window of 1.35 mm wall thickness. Initial and final powers were 
measured from the end of the PS-MWG (P0) and from the end of the HMWG (P1) respectively using a Golay cell detector. 
Inset – Representative beam profile from the PS-MWG when excited using the 2.0 THz QCL, showing the Gaussian-like 
HE11 mode used as a launch beam. b) Frequency spectra for the three QCL devices used to characterize the HMWGs, 
showing quasi-single mode operation at 2.0 THz (green), and 2.85 THz (pink), and multimode emission between 3.2 and 3.4 
THz (orange).  

The THz quantum cascade laser (QCL)20 was chosen as a radiation source due to its high output power21, compactness, 
and frequency selectivity22. To bring the radiation from the QCL to the waveguide under test, whilst cleaning and 
normalizing the beam, a 333 mm long, 1 mm diameter flexible polystyrene-lined hollow metallic waveguide (PS-
MWG)23 was used, as has been previously reported5,24. The full set up is shown in Fig. 1 a). The QCLs were pulsed 
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between 10 and 100 kHz, with 2% duty cycle. Radiation was coupled into the external PS-MWG, followed by the 
HMWG under test. Initial and final intensities were recorded from the end of the PS-MWG (P0) and HMWG (P1) 
respectively, via the use of a Golay cell detector and lock-in detection at 24 Hz.  QCLs emitting at 2.0. 2.85 and ~3.2 – 
3.4 THz were used, in order to investigate the HMWG performance over a range of frequencies (see Fig. 1 b)). Before 
coupling into a test waveguide, the beam profile from the PS-MWG was examined for each device. A representative 
profile is shown in the inset of Fig. 1 a) for the 2.0 THz QCL, exhibiting the fundamental Gaussian-like HE11 mode of 
the structure. This presented an excellent initial beam with which to couple effectively into the HMWGs. Three lengths 
of each waveguide were measured for a given frequency, bore diameter, and material type, with lengths of 50, 100, and 
150 mm forming a set, to distinguish the coupling losses from the transmission losses.  
 
2.2 Results 

The initial and final powers were recorded for each of the three lengths of waveguide in a given set, allowing the loss to 
be determined as a function of length. A linear fit then provided both the coupling loss from the intercept, and the 
transmission loss from the gradient. An exemplary graph of the transmission loss as a function of length measured for the 
4.6 mm diameter UnCu waveguide is shown in Fig. 2, using the 2.0 THz QCL. To control for atmospheric absorption, 
measurements were taken with the waveguides purged with nitrogen gas. The transmission losses in dB/m for all the 
waveguide testing are shown in Table 1. These varied considerably, from up to ~30 dB/m for a 1.75 mm UnCu 
waveguide, down to < 3 dB/m for the 4.6 mm AnCu waveguide set. This value is comparable to previously reported, but 
more structurally complex designs20, and is sufficiently low to allow such a waveguide to be effectively implemented 
into waveguide based cryogenic delivery systems with path lengths in excess of 1 meter, whilst retaining enough signal 
for measurements. From Table 1, there are three main trends to be observed. 

 
Figure 2. Exemplary plot of the waveguide loss as a function of length for the 4.6 mm diameter UnCu waveguide, measured 
at 2.0 THz. A linear fit provides the coupling loss from the intercept, and the transmission losses from the gradient. All 
measurements were taken whilst nitrogen purging. 
 
Table 1.  Summary of transmission losses in dB/m for various materials, diameters, and frequencies. All measurements were 

taken whilst nitrogen purging. 

 1.75 mm 2.5 mm 4.6 mm 

 2.0 THz 2.85 THz 3.2 THz 2.0 THz 2.85 THz 3.2 THz 2.0 THz 2.85 THz 3.2 THz 

UnCu 15.7 ± 1.1 23.0 ± 2.5 30.2 ± 2.7 9.2 ± 1.7 10.0 ± 2.0 17.0 ± 1.7 10.2 ± 1.6 10.0 ± 4.0 20.4 ± 1.8 

AnCu 1.6 ± 2.0 7.0 ± 1.2 20.9 ± 1.9 
 

0.5 ± 1.6 2.0 ± 1.3 3.7 ± 1.0 

SS 10.2 ± 1.8 15 ± 2.2 23.0 ± 2.6  

 
For an increase in bore diameter, the transmission loss reduces, for a fixed frequency and material. This is typically 
ascribed to a larger fraction of the mode propagating inside the hollow core of the waveguide for larger bore 
diameters18,20. The second is a consistent increase in losses for a given bore diameter and material, as the frequency is 
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increased. The third is that the AnCu waveguides appears to possess a reliably lower loss than the equivalent un-
annealed version. For example, for a 1.75 mm diameter at 2.0 THz, the loss is reduced by ~10 dB/m by moving to the 
AnCu waveguide. This knowledge is extremely useful when considering the construction of any future cryogenic 
delivery system.   

3. WAVEGUIDE COUPLERS 
Having investigated THz waveguides that are mechanically suitable for cryogenic applications, the focus now turns to 
developing waveguide couplers to facilitate the construction of a full cryogenic delivery system. Optical couplers are 
desirable for a number of reasons. Often, separate sections of waveguide are required to be incorporated together in 
specific orientations, depending on the geometry of the particular setup considered. To do this, couplers are required to 
connect the separate sections, doing so in an efficient and simple manner. Additionally, it is necessary to retain the 
thermal isolation of various sections of the cryostat assembly, as far as possible, which necessitates isolating breaks in 
the metal waveguide delivery system, whilst also minimizing optical losses. Such components would allow a 
continuation of the drive towards fully waveguided, ‘plug and play’ optical setups in the THz, doing away with the need 
for free space components, which are often time consuming to align, possess a considerable footprint on the optical table, 
and have the potential to introduce considerable losses if not correctly aligned. 
In the work presented here, we choose to focus on two efficient coupling components, which are highly likely to be 
required for any practical cryogenic application. These are a 90° coupler, which allows waveguides orientated 
perpendicular to each other to be efficiently coupled together with minimal loss, as well as a thermal isolating straight 
coupler, allowing the splicing together of multiple HMWGs efficiently, whilst simultaneously minimizing thermal 
conduction between the individual sections. This latter consideration is of primary importance when cryogenic 
applications are considered, due to the high thermal conductivity of the copper used to construct the waveguides. This 
has the potential to introduce non-trivial thermal loads into the cryogenic sample chamber, with the associated reduction 
in the operating performance of the cryostat in question, if not addressed effectively. 
 
3.1 Modelling and design 

The design and theoretical modelling of the 90° coupler will be considered first. An optimal design needs to encompass a 
number of considerations. It should possess dimensions which are suitable for the environment in which it will be used, 
and constructed from materials which will not be detrimentally affected mechanically by any potentially low-temperature 
environments it is placed in. An effective component should also have the ability to be ‘plug and play’, such that there is 
a minimum time cost associated with setting up and aligning the waveguides under consideration, and additionally, 
would allow some degree of interchangeability between different waveguide types and outer diameters. Over multiple 
use cycles, any critical parts would also ideally be replaceable, without the requirement to replace the entire component. 

 
Figure 3. a) Schematic of the 90° coupling component, shown here with a 1.7 mm outer diameter PS-MWG delivering the 
incoming THz beam, and a 3.17 mm outer diameter Cu HMWG collecting the beam, after reflection from the polished 
aluminium block. b) Optical photograph of the coupler.  

Proc. of SPIE Vol. 10103  1010307-4

Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 9/12/2017 Terms of Use: https://spiedigitallibrary.spie.org/ss/TermsOfUse.aspx



r
r

Intensity / a.u.

I I&

 

 

 
The overall device is shown in Fig. 3 a), with a total footprint of 50 mm². The body was fabricated from copper, with 
3.17 mm outer diameter cylindrical perpendicular cavities to accommodate the two waveguides to be coupled. As a 
reflecting element to guide the light between waveguides, a polished aluminium block was placed at 45° to the incoming 
beam axis. The final effective 6 mm of each waveguide is made from the copper of the component body, the final 100 
µm of the outer diameter of which was reamed, to give as smooth an inner surface as possible. Additionally, in order to 
allow the component to be used in conjunction with both a 3.17 mm outer diameter Cu HMWG, and a 1.7 mm outer 
diameter PS-MWG, a pair of PTFE collets were fabricated, to allow matching of the outer diameters of the waveguides 
with the fabricated bore of the component, as necessary. An optical photograph of the coupler is shown in Fig. 3 b). 
The component performance from an optical perspective was also modelled using finite element analysis software, in 
order to check the expected nature of the transfer of optical power between waveguides (see Fig. 4). A 10 x 10 mm area 
was defined, encompassing the entry and exit waveguides, which were defined as air under ambient conditions, as well 
as the reflecting aluminium surface, positioned at 45° to the incoming beam. Everything else was defined as the copper 
of the component body. The width of the waveguides was defined as 2.3 mm. In order to simulate the THz radiation, a 
pulse was defined with a Gaussian envelope in both the travelling and lateral directions, acting as a good approximation 
to the modes supported in these types of waveguide (see Fig. 1 a)), with full width half maximum of 2 ps, and 2 mm 
respectively. Fig. 4 shows six separate frames, captured at 5, 20, 25, 30, 35, and 44 ps, showing how the pulse propagates 
through the system. At 5 ps, the pulse enters the initial waveguide from the left of the frame, and starts to be reflected by 
the polished aluminium surface by 25 ps. At 30 ps, the pulse starts to be collected by the exit waveguide at 90°, and by 
44 ps, it can be observed that the pulse has been effectively transferred to the exit waveguide, with the lateral Gaussian-
like power distribution preserved. This suggests that the fundamental TE11 mode of the HMWGs can be preserved using 
such a component to modify the beam by 90°.  
 

 
Figure 4. Finite element analysis simulations used to model the 90° coupler. A 10 x 10 mm area was defined to represent the 
area of the coupler where the reflection of the beam occurs. The diameter of the input and exit waveguides is 2.3 mm, and 
the aluminium reflector is placed at an angle of 45°. The THz pulse can be seen entering the structure at 5 ps, with reflection 
off the aluminium interface occurring at 25 ps. By 44 ps, the pulse has successfully entered the exit waveguide, with the 
lateral power distribution maintained. 

The second coupler considered was a thermally isolating straight coupler, allowing two sections of HMWG to be secured 
together, maintaining the efficient transfer of the THz beam whilst simultaneously minimizing the thermal contact 
between the two sections. This was achieved using a single part component, as shown in Fig. 5. The two 6.35 mm outer 
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diameter Cu HMWGs insert into either end of the coupler, which has a total length of 32 mm. A spacer layer, fabricated 
with the same 4.6 mm inner diameter as the HMWGs is incorporated at the point where the waveguides would meet, 
with a thickness of 2 mm, in order to avoid contact between the highly conductive waveguides, and provide thermal 
isolation to any heat flux flowing down the waveguides induced by potential thermal gradients within the cryogenic 
system. 

 
Figure 5. Cut-through schematic of the straight thermal isolating coupler design. Two 6.35 mm outer diameter HMWGs 
insert into the coupler, and are separated by a 2 mm thick spacer layer, with matching inner diameter, which acts to increase 
the thermal isolation of the waveguides.  

The material chosen for the thermal isolating coupler was HYSOL®, a commercially available material designed for 
cryogenic applications where thermal isolation is required. The material has a number of favourable properties. These 
include a low thermal conductivity (< 3 W/mK), high mechanical stability over a full range of cryogenic temperatures (< 
1 K to > 300 K), and over successive thermal cycles. It is also easily machinable, allowing ease of fabrication of the 
requisite parts, as well as mechanically rigid, enabling the two waveguides sections to remain optically aligned at all 
temperatures. 

3.2 Results 

Once fabricated, these two coupler designs were characterized at room temperature in order to assess their performance 
in comparison to the desired optical and mechanical specifications outlined above. In order to test the THz properties of 
the 90° coupler, a setup similar to that shown in Fig. 1 was adopted. A QCL emitting at 2.85 THz was coupled into a 333 
mm long PS-MWG in order to clean the beam and provide an input waveguide for characterization. First, the coupling 
efficiency of the 90° coupler was established. This was achieved by measuring the initial power, exiting the PS-MWG, 
using a Golay cell and lock-in detection at 24 Hz. The 90° coupler was then introduced onto the end of the PS-MWG, 
and a 100 mm length of 1.75 mm inner diameter AnCu HMWG with known loss was introduced into the exit aperture of 
the coupler. The final power was then recorded in a similar manner. Accounting for the losses in the HMWG, a coupling 
efficiency of 50 ± 5% was measured, suggesting that a considerable degree of the optical power can be transferred 
between two perpendicular waveguides using such an optical coupler. It was estimated that the primary loss mechanisms 
contributing to this value included the free carrier losses from the copper body, as well as scattering losses from the inner 
waveguide surfaces, Additionally, some imperfections in the polished aluminium reflecting face may play a role, as well 
as some degree of radiation loss due to the divergence of the temporarily unconstrained beam in the reflection area. This 
value was compared to an alternative method of deflecting the beam by 90° - that of bending a HMWG. This was 
achieved by bending a 15 mm length of 1.75 mm inner diameter AnCu with a bend radius of 15.9 mm, using a standard 
tube bender to deform the waveguide in a ductile fashion. The loss introduced by such a bend was measured in a similar 
manner, yielding a transmission of 60 ± 5%. Such a value suggests that the amount of power transferred is comparable to 
using the 90° coupler. However, such a simple bend technique possesses a number of drawbacks in comparison. These 
include the requirement to individually bend each piece of waveguide as required, introducing a degree of non-reversible 
human error into the system assembly for each bend, as well as losing the ability to use two separate types and diameters 
of waveguide to create the desired beam deflection. Another advantage of the coupler is the ‘plug and play’ nature of the 
design, such that both ends of the two waveguides used are automatically aligned and mechanically secured within any 
larger setup.  
Another key consideration for such a coupler is the beam profile resulting from the 90° change in direction. In order to 
characterize this, as well as compare to a standard 90° bend in the waveguide, far fields were acquired at a distance of 
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4.5 mm, using a Golay cell with 1 mm aperture, scanned in the plane perpendicular to the beam. The results are shown in 
Fig. 6. 

 

Figure 6. a) Beam profile acquired using the 90° coupler, showing a Gaussian-like distribution of the optical power b) Beam 
profile acquired using a 1.75 mm inner diameter AnCu HMWG bent to 90° with a bend radius of 15.9 mm. Both were 
acquired using a Golay cell with 1 mm aperture, at a distance of 4.5 mm. c) Line-cuts of the 90° coupler (blue dashed line) 
and bent AnCu waveguide (pink dashed line) profiles, showing a lower divergence beam for the 90° coupler. 

Fig. 6 a) displays the beam profile acquired using the 90° coupler, showing a Gaussian-like distribution of the optical 
power. Fig. 6 b) shows the beam profile acquired using a 1.75 mm inner diameter AnCu HMWG bent to 90°, with a 
bend radius of 15.9 mm. As can be seen, the beam profile is again Gaussian-like, however with a slightly increased 
spatial extent in both horizontal and vertical directions (Fig. 6 c)). From a cryogenic systems standpoint, the two beam 
profiles are effectively equivalent, both being of sufficient quality to be incorporated efficiently into any larger system as 
required. 
Additionally, the coupling efficiency of the straight thermal isolating waveguide coupler was measured. A QCL emitting 
at 2.85 THz was coupled into a 333 mm long PS-MWG in order to clean the beam. This was then directly coupled into a 
50 mm long, 4.6 mm diameter AnCu HMWG, whose entrance was placed in the same plane as the exit aperture of the 
PS-MWG. The power emitted from the end of this HMWG was then recorded using a Golay cell and lock-in detection at 
24 Hz, which formed the initial power for the coupling measurement. The thermal isolating spacer was then placed onto 
the end of the first HMWG, and another 50 mm long, 4.6 mm diameter AnCu HMWG inserted into the exit end, with the 
final power being recorded. Accounting for the losses of the two HMWGs, a coupling efficiency > 90% was recorded, 
suggesting that such a coupler can be implemented in future systems with minimal loss introduced to the THz beam path. 

4. CONCLUSION 
In this work, the performance of potential THz cryogenic system components have been investigated. These include 
cylindrical hollow copper waveguides with inner diameters between 1.75 and 4.6 mm, as well as optical couplers to both 
redirect the beam path by 90°, and to thermally isolate and connect successive waveguide sections. For the waveguides, 
transmission losses < 3 dB/m at 2.0 THz have been observed for a N2 purged 4.6 mm bore diameter annealed Cu 
waveguide, and for the couplers, it has been shown that the beam direction can be modified by 90°, with a coupling 
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efficiency of 50%, whilst still maintaining mode quality, and waveguides can be spliced together with efficiencies > 
90%, whilst simultaneously introducing a thermal isolation effect. The results presented here pave the way for a new 
generation of cryogenic applications requiring efficient and targeted power delivery in the THz regime. 
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