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Abstract 
 

 

 
One of the major challenges of biology is to understand how entire cells or organisms 

behave in homeostasis and in response to perturbations. Whole-cell modeling 

promotes this understanding by integrating different cellular processes in a single 

model that is able to predict emergent cellular behaviors. In this thesis, we have 

developed the first whole-cell model of the genome-reduced bacterium Mycoplasma 

pneumoniae, which encodes for less than 700 protein-coding genes. This model 

follows the structure of the previously described model in Mycoplasma genitalium. 

However, the lack of comprehensive knowledge of even these simple organisms limits 

the predictive power of these models. To address this problem and improve the model, 

we have focused in the process of transcription regulation, and we have studied the 

major determinants of transcript abundance in this bacterium. Therefore, we have 

characterized promoters and the role of small RNAs. We have also reconstructed the 

gene regulatory network, revealing that non-transcription factor regulation may have a 

large impact in coordinating RNA levels in M. pneumoniae. Furthermore, by analyzing 

the ‘omics’ data used to investigate the process of transcription and to fit the whole-cell 

model, we have found different biases of high-throughput profiling experiments, and we 

have described that chimeric RNAs identified in these datasets may be artifacts 

generated in RNA-sequencing experiments. 
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Resumen  
 
 
 
Uno de los mayores retos de la biología es entender cómo células u organismos 

completos se comportan tanto en homeostasis como en respuesta a perturbaciones. El 

campo del modelado de células completas pretende comprender esto integrando 

diferentes procesos celulares en un único modelo capaz de predecir comportamientos 

celulares emergentes. En esta tesis, hemos desarrollado el primer modelo de célula 

completa de la bacteria de genoma reducido Mycoplasma pneumoniae, que codifica 

para menos de 700 proteínas. Este modelo sigue la estructura del descrito 

previamente en Mycoplasma genitalium. Sin embargo, la falta de conocimientos 

exhaustivos incluso para estos organismos simples limita el poder predictivo de estos 

modelos. Para hacer frente a este problema y mejorar el modelo, nos hemos centrado 

en el proceso de regulación de la transcripción, y hemos estudiando los principales 

factores que determinan la abundancia de tránscritos en esta bacteria. Así, hemos 

caracterizado los promotores y el papel de ARNs pequeños. También hemos 

reconstruido la red de regulación génica, observando que la regulación no debida a 

factores de transcripción puede tener un gran impacto en la coordinación de los 

niveles de ARN en M. pneumoniae. Además, analizando los datos procedentes de 

experimentos ómicos usados para investigar el proceso de la transcripción y ajustar el 

modelo, hemos encontrado diferentes sesgos en estos experimentos a gran escala u 

‘ómicos’, y hemos descrito que ARNs quiméricos que se identifican en estos datos 

pueden ser artefactos generados en experimentos de secuenciación de ARN. 
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1 

1. Introduction 

1.1. Prokaryotic transcription 

Transcription is the process by which a fragment of DNA is used as a template to be 

copied into a molecule of RNA. According to the Central Dogma of molecular biology, 

enunciated by Francis Crick for the first time in 1958 (1), transcription is the first step in 

the process of gene expression, by which the genetic information stored in the DNA is 

executed by proteins. The Central Dogma establishes a series of causal relationships 

among DNA, RNA and proteins (Figure 1.1). DNA can be replicated in a process that 

involves the action of different proteins, but not RNA. Also, DNA can serve as a 

template for the transcription of RNA molecules. These RNA molecules themselves will 

act as templates for the production of proteins, the final step of gene expression. The 

Central Dogma also establishes that RNA can self-replicate and that can be 

transcribed back to DNA. Both mechanisms have been shown to occur in different 

viruses (2–5). However, the direct production of proteins from DNA, also proposed by 

this model, has not been shown in any living organism. The Central Dogma also 

defines the transitions that can never happen within cells: from protein to either DNA or 

RNA, and from protein to protein.  

 

 

Figure 1.1. Excerpt of Francis Crick's paper 'On protein synthesis', describing the 
Central Dogma of Molecular Biology 
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With the exception of the direct transfer of information from DNA to proteins, the 

Central Dogma has remained unchanged over the years. However, new discoveries 

have recently posed some challenges to the absoluteness of this model. Some argue 

that prions, proteins in a misfolded conformation capable of misfolding other proteins 

present in a soluble conformation (6–8), would be transferring the information from 

protein to protein in a non-conventional manner (9), thus breaking one of the 

statements of the Dogma (Figure 1.1). Furthermore, there are bacterial proteins 

capable of synthesizing small peptides (10). This synthesis occurs in a ribosome-

independent manner. Although not considered proteins, these peptides are biologically 

active; some of them are toxins, antibiotics, or surfactants, for instance (11). Despite 

these debates regarding the Central Dogma, the process of transcription from DNA to 

RNA is considered to be universal. 

Being the first step of gene expression, transcription is a key cellular process in all 

kingdoms of life. However, there are differences in how it is performed in prokaryotes 

and in eukaryotes. In bacteria, transcription occurs in the cytoplasm, due to the 

absence of a membrane-delimited nucleus, and it is coupled to the process of 

translation into proteins (12). The transcription process in bacteria can be subdivided in 

three different events: initiation, elongation and termination. During initiation, the 

protein complex that synthesizes the RNA from the DNA template, the RNA 

polymerase, binds a sigma factor to form the RNA polymerase holoenzyme (see 

Chapter 1.1.2) and recognizes a region in the DNA, called the promoter. The RNA 

polymerase is formed by 4 polypeptides, named α (2 copies), β and β’ (13, 14). The 

structure formed by the RNA polymerase holoenzyme and the double stranded DNA is 

called the closed complex. After the binding event, the holoenzyme unwinds the double 

helix of the DNA to form the open complex (15). The polymerase starts synthesizing 

the RNA, but at this point the enzyme is not processive, as the sigma factor blocks the 

elongation. Eventually, the sigma factor dissociates from the complex and transcription 

elongation can occur. In transcription termination, RNA polymerase stops the 

elongation of the nascent transcript, which is released by various mechanisms (see 

Chapter 1.1.6).  

Such a crucial process must be tightly regulated at different points, to guarantee that 

RNA levels are maintained in homeostasis and that cells are able to respond correctly 

and accurately to external perturbations. In the following subsections, different factors 

governing transcriptional regulation in bacteria are reviewed. 
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1.1.1.  Gene organization in operons. 

In bacteria, genes are not presented as isolated units of information. Instead, they are 

organized in blocks of related functions, termed operons. The name ‘operon’ and the 

first description of these blocks should be attributed to François Jacob and Jacques 

Monod (16, 17). The operon is the “genetic unit of co-ordinate expression”, and can be 

defined as a set of genes of related function, located in the genome in a consecutive 

manner. These genes are transcribed together in the same RNA molecule, and are 

under the control of the same regulatory sequences (Figure 1.2).  

 

Figure 1.2. Scheme depicting the prototypical structure of a bacterial operon. 
Delimited by the transcription start site (TSS) and the transcription termination site 
(TTS), this operon contains four genes. 

This organization in blocks implies a first level of gene regulation in bacteria. Genes of 

related function have been kept close during evolution, and many operons are 

conserved across different bacteria (18). This simplifies the need of specific regulation 

for each individual gene. However, expression of genes in the same operon is not 

always equitative. It has been shown that positional effects exist, and in operons with 

several genes, expression levels of the individual proteins are proportional to the 

distance to the transcription initiation site. That is, genes that are closer to the end of 

the operon show lower protein levels (19). This can be explained by the fact that 

transcription and translation occur simultaneously in bacteria (12). Translation of the 

first genes of the operon can occur while the last genes have not been transcribed yet, 

generating the differences in protein expression. This implies that the organization in 

blocks not only simplifies global regulation, but it also fine-tune controls the levels of 

the different proteins encoded in the same operon (19). 

For many years, operons have been treated as static entities. However, recent 

research has shown that these structures are highly dynamic, being able to adapt in 

response to changing conditions. Accordingly, many operons in different bacteria have 

been divided in sub-operons, smaller groups within operons, whose genes are always 
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expressed as a single unit (under the set of conditions tested) (20, 21). The increased 

complexity and operon plasticity observed in the study of several conditions has led to 

the usage of the term ‘transcription units’ (22). Transcription units are RNAs containing 

one or more genes under the control of the same regulators, and they are usually 

condition-dependent. In some conditions they coincide with the classical ‘operon’ 

definition, but in others they differ. Plasticity of transcription units arises from the 

multiple transcription start sites and termination sites that exist within operons (23), but 

how are these entry and exit points of transcription regulated remains unknown in most 

conditions. 

 

1.1.2.  Bacterial promoters and transcription initiation. 

Entry points of transcription are called ‘transcriptional start sites’, or TSS. These points 

are preceded by a short genomic region called ‘promoter’. The RNA polymerase 

complex, the protein complex that transcribes a region of the genomic DNA into an 

RNA molecule, has to recognize and bind the promoter region prior to starting the 

transcription process. Promoter regions require certain features that make them 

recognizable by the RNA polymerase and other proteins (transcription factors) that may 

control the expression of the following transcription units. 

One of the features that defines promoters is the exact sequence of nucleotides 

located upstream the TSS. This sequence is specific for a class of proteins, sigma 

factors (σ), that bind both this region and the RNA polymerase. There is a 

housekeeping sigma factor, that binds and controls the expression of the majority of 

exponential growth-related genes, and there are several alternative sigma factors that 

control the transcription of stress-related genes (24).  According to the sequence of 

nucleotides upstream the TSS, a specific sigma factor will bind a given promoter. The 

housekeeping sigma factor (called σ70 in the model bacterium Escherichia coli) binds 

two regions: one located 10 bases upstream the TSS termed the -10 box or the 

Pribnow motif, and one located 35 bases before the TSS called the -35 box. The 

Pribnow motif has the consensus sequence TANAAT (where N is any base) (25), whilst 

the -35 box has the consensus motif TTGACA (26). Other sigma factors recognize 

different motifs. Furthermore, there are other sequences that, although non-essential 

for protein recognition, affect the binding of the RNA polymerase complex. These 

include the extended Pribnow motif (27, 28) and the -45 region or UP element (29). 

The location of these motifs is represented in Figure 1.3, together with the regions of 



 

5 

the RNA polymerase holoenzyme that recognize them. Besides these sequences, 

there are other motifs that are unique for different transcription factors, that regulate 

specific sets of genes. These additional sequences can be located upstream or 

downstream the TSS. 

 

 

Figure 1.3. Schematic structure of the RNA polymerase holoenzyme, formed by 
the RNA polymerase complex (2αββ’) and the sigma factor (σ). The alpha subunits 
bind the UP element, whilst the sigma factor recognizes the -35 and the (extended) -10 
boxes 

In addition to the specific motifs defining promoters, the structure of these regions is 

also important to trigger transcription. For example, the spacing between the -35 and 

the -10 motifs affects the expression levels of the downstream genes, and the optimal 

spacer length differs among bacteria (30–32). Furthermore, the double-stranded DNA 

needs to unwind specifically at the promoter region to accommodate the RNA 

polymerase complex prior to initiating transcription. Thus, the double helix should be 

less stable at this point, and the melting energy of the DNA at this point should be low 

(33, 34).  

Finally, promoter accessibility also influences transcript expression. This accessibility is 

controlled by the supercoiling and bending of the DNA at the promoter region, which is 

ultimately governed by the activity of various proteins: DNA gyrases and 

topoisomerases. Certain promoters require a specific degree of negative or positive 

supercoiling to be able to form a pre-initiation complex with the transcriptional 

machinery (35, 36), and mutations in these promoters deactivate this requirement. 

Mutations and changes in the the regions recognized by the RNA polymerase complex 

or transcription factors can affect the efficiency of the transcription process and alter 

the expression of the corresponding genes (37–39) (Yang et al, in preparation). In 
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addition to mutations in the DNA sequence, epigenetic marks such as methylation of 

DNA could influence how the transcriptional machinery interprets promoter information. 

Little is known about the specific effects of DNA methylation, but it has been associated 

to stress response and virulence in many bacterial species (40). Indeed, an enrichment 

in methylation points has been observed in virulence-related genes in various bacterial 

species (41).  

 

1.1.3.  Transcription factors. 

Transcription factors (TFs) are (DNABPs) that bind to a specific sequence of DNA, and 

upon that binding they regulate the expression of one or more genes, either activating 

or repressing their transcription. In bacteria, TFs bind to the promoter regions of 

transcription units, whilst in eukaryotes, they can also bind enhancers, regions located 

far from the genes they regulate. To describe the dual relationship between TFs and 

the regulatory sequences they bind, the former are also called trans-acting regulators, 

whilst the latters are named cis-acting regulators. 

One important class of bacterial transcription factors corresponds to the 

aforementioned sigma factors, proteins needed to initiate the process of transcription 

(24, 42). In E. coli, part from the housekeeping σ70, other proteins of this class regulate 

genes that respond to heat stress (σ32 or σ24) (43-44) or starvation (σ38 or σ54) (45, 46), 

or that control the expression of flagellar genes (σ28) (47) or genes involved in iron 

transport (σ19) (48). A single sigma factor binds the RNA polymerase complex to form 

the RNA polymerase holoenzyme and initiate transcription, so alternative sigma factors 

have to compete with the housekeeping σ70 for the binding (49). A peculiarity of sigma 

factors is that, although they bind the polymerase, once transcription is initiated and the 

first bases of the RNA have been polymerized, they dissociate from the transcription 

complex (50). 

Apart from sigma factors, other TFs regulate the expression of specific subsets of 

genes. These proteins may activate or repress the transcription of the genes they 

regulate, and the regulatory sequences they bind can be either upstream or 

downstream the TSS (51). Some TFs of them form a complex with the RNA 

polymerase, whilst others do not. There are TFs that regulate the expression of other 

TFs. Altogether, they form a transcriptional regulatory network (Figure 1.4). 

 



 

7 

 

Figure 1.4. Schematic representation of the gene regulatory network of E. coli. 
Blue nodes represent global regulators, green nodes represent transcription factors, 
and yellow nodes represent target genes. Edges between the nodes represent the 
hierarchical relationships in the network. Figure extracted from Martínez-Antonio and 
Collado-Vives (2003) 

Transcriptional regulatory networks (also called gene regulatory networks) are not 

random. Instead, they exhibit a notable hierarchy. Within these networks, it is possible 

to distinguish a small subset of TFs that are global regulators. These global regulators 

not only modulate the expression of a number of transcription units, but also control the 

transcription of other TFs and sigma factors, being on top of the hierarchy. For 

instance, in E. coli only 7 global regulators have a direct control over the transcription 

of 51% of the genes in this bacterium (52). This underscores the importance of TFs 

and the networks they form in regulating transcript expression.   

Having such a large impact in transcriptional control, studying how these networks are 

wired not only provides a fundamental knowledge of how the transcript expression 

landscape is shaped, but also sets the basis for modification and engineering of the 

system.  
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1.1.4.  The regulatory role of small RNAs. 

The transcripts synthesized in bacterial cells not only encode for genes (mRNAs), 

tRNAs, rRNAs or other functional RNAs such as the 4.5S or 6S RNAs (53, 54). There 

are RNAs that do not encode for any of these functions, and have been named ‘small 

RNAs’ (sRNAs). This term was initially limited to RNA molecules of ~50-200 

nucleotides (55), but more recently this definition has expanded, including transcripts of 

thousands of nucleotides (56).  

Initial studies reported the existence of a few dozens of sRNAs in different bacteria (55, 

57), but recent advances in computational prediction and especially in transcriptome 

profiling (see Chapter 1.2) have outnumbered initial estimations. Indeed, several 

authors suggest now that this non-protein-coding transcription is pervasive throughout 

the genome (58, 59).  

Two major categories of sRNAs have been described. Cis-encoded sRNAs are found 

overlapping functionally defined genes (that is, protein-coding genes, tRNAs or rRNAs). 

They can be found in the coding strand (sense sRNAs) or in the opposite strand, thus 

named antisense RNAs or asRNAs. The other major class corresponds to trans-

encoded sRNAs, which are located in intergenic regions and do not overlap any gene.  

Since their discovery, deciphering the function of these RNA molecules has become a 

major field of study, yet only a handful of sRNAs has been functionally characterized to 

date. Some participate in bacterial defense mechanisms against phage infections, such 

as the sRNAs of the CRISPR systems (60). In this setup, a non-protein-coding RNA 

molecule (termed crRNA), can target a specific sequence of the DNA/RNA of the 

phage, and direct an enzyme (Cas) to cleave this sequence. However, these RNAs are 

not naturally encoded in the bacterial genome, but acquired upon previous infections of 

the phage. Thus, the system works as a bacterial adaptive immunity (61).  

Apart from this exception, the majority of sRNAs in bacteria is thought to have a 

regulatory function, acting at a transcriptional or post-transcriptional level and 

controlling RNA and protein levels of target genes. Thus, they could be key players in 

the gene regulatory networks shaping the transcriptional landscape (62). The majority 

of sRNAs act via complementary base-pairing with their mRNA targets. This binding is 

in some cases autonomous, nor requiring the participation of other elements than the 

RNAs involved, or dependent on the action of RNA chaperones, such as the Hfq 

protein (63, 64).   
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Upon binding of the sRNA with its mRNA counterpart, multiple effects can be triggered. 

Some sRNAs affect the stability of their mRNA targets, either by favoring their 

degradation (65) or by preventing it (66). Sometimes, the sRNA binds the mRNA at the 

ribosome binding site (RBS), thus preventing its recognition and translation by the 

ribosome (67). There are other examples in which the binding of the sRNA induces a 

conformational change that exposes a previously hidden RBS, therefore facilitating 

translation (68). Some asRNAs regulate expression via transcription attenuation (69), 

by inducing a premature termination of transcription of the mRNA. 

Another possible action mechanism does not involve the formation of the duplex 

mRNA-sRNA, but the sole act of transcribing the sRNAs. This is the case of 

transcriptional interference: here, two polymerases transcribing in opposite directions 

from convergent promoters may collide, resulting in one of them (or both) being 

released of the chromosome, generating a truncated transcript (70). 

Despite the variety of mechanisms of action described, only a minority of the 

discovered sRNAs has been characterized, most of which correspond to the trans-

encoded sRNAs. One of the challenges found in the characterization of sRNAs is that 

the many of them are present in very low copy numbers (71, 72). They are usually 

overexpressed for their functional characterization, but this may give rise to artifactual 

responses, not seen at physiological sRNA levels where stochastic effects may 

predominate. Furthermore, it has recently been shown that some of these sRNAs are 

actually coding for small peptides (73). Further studies will be necessary to uncover the 

regulatory potential of these molecules and the role they play in modulating the gene 

regulatory networks of bacteria. 

 

1.1.5.  Regulation by metabolites. 

In addition to transcription factors and sRNAs, metabolism also has an impact on 

transcription. The building blocks of RNA are nucleosides tri-phosphate, or nucleotides 

(NTPs), and their levels can determine the outcome of the process of RNA synthesis, 

thus establishing a link between metabolism and transcriptional regulation. This link is 

mediated by the promoter sequence and the stability of the complex formed between 

the promoter and the RNA polymerase. Unstable complexes require high 

concentrations of NTPs so that RNA synthesis can be launched immediately. 

Otherwise, the complex rapidly dissociates and the transcription event is not produced. 
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In contrast, very stable complexes require smaller concentrations of NTPs, as they will 

not easily dissociate (74).  

More specifically, it is not the global NTP concentration the responsible for this 

regulation, but the NTP concentration of the initiating nucleotide in the RNA. The 

inclusion of this +1 nucleotide stabilizes the open complex and prevents the 

dissociation of the polymerase, allowing for transcription to continue (74). Later, it has 

been shown that also the +2 nucleotide participates in the sensing of NTP 

concentration (75). Concrete examples of this nucleotide-based regulation include the 

response to amino acid starvation (stringent response) in Bacillus subtilis. In this 

scenario, concentration of ATP increases whilst GTP decreases. Upregulated genes in 

this condition usually have adenosine in the +1 position, whilst downregulated 

promoters have guanosine. Mutations in the +1 base change the behavior of these 

genes, suggesting that the regulation of this condition relies on the NTP sensing (76). 

In E. coli, the rRNA operons (rrn) initiate with ATP or GTP, whose concentrations are 

dependent on the growth rate of the bacterium (74, 77) 

Besides NTPs, other metabolites can exert a regulatory effect on transcription. Some 

act as signalling molecules produced in certain stress conditions, called alarmones. 

The most common alarmone is guanosine tetraphosphate or pentaphosphate 

((p)ppGpp). This molecule is involved in stringent response in bacteria. When a lack of 

aminoacyl-tRNAs causes the translating ribosome to stall, (p)ppGpp is synthesized 

(78). This molecule inhibits the transcription of a number of genes, and activates the 

synthesis of many others, changing the transcriptional program of the cell. In E. coli, 

(p)ppGpp is synthesized by the RelA protein in response to amino acid starvation, and 

degraded via the action of the protein SpoT. SpoT also has minor synthase activity 

(79). (p)ppGpp binds to the RNA polymerase (80) and inhibits the transcription of rRNA 

by competing with the GTP at position +1 of this RNA, thus preventing the open 

complex from stabilizing and preventing transcription initiation (81). Sometimes, the 

effect of (p)ppGpp can be mediated by other proteins, such as DksA in E. coli (82). 

Also, it has been shown that (p)ppGpp is involved in the synthesis and usage of 

alternative sigma factors other than the housekeeping σ70 (83, 84). The mechanism in 

Gram positive bacteria presents some major differences. Firstly, there is only one 

RelA/SpoT protein homolog, that performs both the synthetase and hydrolase activities 

(85), although more recently, additional small genes with synthetase activity only have 

been reported in B. subtilis (86). Secondly, in Gram positive bacteria, the effect of 

(p)ppGpp seems to be mediated by a decrease in the precursors used for the alarmone 
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synthesis, rather than an direct effect of the alarmone binding the RNA polymerase. 

For instance, in B. subtilis, the activation of sporulation genes caused by starvation, 

occurs as a consequence of the decrease of GTP or GDP, used to synthesize the 

molecule (87). The decrease of GTP also results in the inhibition of the rRNA synthesis 

(88). This highlights again the importance of nucleotide abundances in regulating 

transcription. 

Finally, a third class of regulatory metabolites binds nascent RNA molecules, in 

untranslated regions termed riboswitches. This binding induces a conformational 

change in the RNA that can trigger different effects, such as induced/avoided 

premature termination (transcriptional attenuation) or altered translation (89, 90). 

Transcription attenuation is caused by the formation of a termination hairpin, which 

releases the RNA polymerase. Usually, this is not an absolute mechanism, but there is 

some read-through of the RNA polymerase that continues transcribing. Thus, this 

mechanism generates both long, ‘normal’ transcripts and short, prematurely terminated 

RNAs (89). Translation initiation is regulated by exposing or hiding the RBS as a 

consequence of the riboswitch refolding (91). In some cases, the riboswitch exposes 

regions of the RNA recognized by RNAses, regulating degradation of the RNA 

molecule (92). 

 

1.1.6.  Transcriptional termination. 

Transcriptional bacterial termination can occur in two different forms, termed intrinsic 

(or Rho-independent) and Rho-dependent and termination. Intrinsic termination occurs 

when the nascent RNA forms a GC-rich hairpin structure, followed by a poly-uridine 

tract. This structure makes the elongating polymerase to pause, and eventually to 

release the transcript (93). Rho-dependent termination relies on a DNA/RNA helicase, 

the protein Rho (94). This hexameric protein binds RNA and has ATPase activity (95, 

96). The hexamer binds to nascent RNA with unstructured regions, with little or no 

defined secondary structure (97). Once bound, Rho uses its ATPase activity to produce 

the energy necessary to move along the RNA molecule and reach the region of the 

transcribing RNA polymerase, where nascent RNA and DNA form a duplex. There, the 

helicase activity of Rho unwinds the RNA-DNA duplex and releases the RNA (98). 

RNA polymerase is more processive than Rho. Thus, in order for Rho to reach the 

position of the polymerase, the latter needs to pause. Secondary structure of the 

nascent RNA generates this pausing (97).  



 

12 

The process of transcriptional termination can be modulated in different forms. 

Mutations in the DNA can alter the binding of Rho or disrupt the secondary structures 

needed for termination (99). Other mutations in the RNA polymerase affecting its 

processivity can have similar effects (100). In addition, there are antitermination factors 

that make the polymerase override the termination signals, both in Rho-dependent and 

in intrinsic termination. Some RNA chaperones, such as the cold-shock protein CspA 

from E. coli and its homologues in B. subtilis, prevent the formation of RNA hairpins in 

low-temperature conditions, thus avoiding the formation of premature termination sites 

(101, 102). As discussed above, termination can also be mediated by small metabolites 

in riboswitches, via exposing or hiding termination sites. Finally, some proteins interfere 

with Rho function, such as the Psu protein from the bacteriophage 𝜆 (103). Psu binds 

to Rho and prevents its translocation along the RNA molecule (103, 104). There are 

other termination modulators, such as the proteins from the Nus family of 

termination/anti-termination factors, that bind the elongating RNA polymerase altering 

its processivity, changing therefore its sensitivity to terminators. Nus proteins, such as 

NusA, can have opposite effects: on the one side, NusA can also recognize hairpins 

and increase the sensibility to termination (105). On the other side, NusA is also part of 

a transcription antitermination complex acting in rRNA transcription. This complex 

recognizes sequences located in the 5’ end of the nascent rRNA transcript (nus boxes), 

and binds to the transcribing polymerase at these sites, increasing the elongation rate 

and yielding the RNA polymerase insensitive to termination signals occurring 

throughout the rRNA (106–108).   

 

1.1.7.  RNA processing and degradation control. 

So far, the regulating mechanisms for RNA production have been reviewed. But RNA 

degradation is as important as production, as ultimately RNA levels in bacterial cells 

will be determined by the equilibrium between production and decay. RNA degradation 

is not an arbitrary process, but it is orchestrated by multiple ribonucleases (or RNases). 

Two groups of RNases can be distinguished: exoribonucleases, which degrade RNA 

from one of its extremes (either in direction 5’ → 3’ or 3’ → 5’); and endoribonucleases, 

which cleave RNA internally. There are different exo- and endoribonucleases with 

different specificities. 

Among all RNases, it is of interest to describe the RNA degradosome complex. This is 

a multimeric protein complex involved in the degradation of mRNA. This complex is 
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formed by the exoribonuclease polynucleotide phosphorylase PnpA, the 

endoribonuclease RNase E (109, 110), the helicase RhlB (111), and the glycolytic 

enzyme enolase (112). RNase E performs the rate-limiting step of degradation, the 

mRNA cleavage. This enzyme cleaves the RNA at specific sites to prevent further 

binding of ribosomes. As the mRNA-bound ribosomes finish translating the genes in 

the mRNA, RNase E further cleaves the mRNA, generating small fragments. PnpA 

degrades these mRNA fragments in direction 3’ → 5’ (113). The role of RhlB is to 

unwind secondary structures in the mRNA, facilitating the action of the PNPase (111). 

The function of the enolase in the complex is less clear, although it has been shown 

that it can be part of a regulatory feedback loop, controlling the degradation of the 

glucose transporter mRNA ptsG. When glycolysis is blocked, enolase is responsible for 

the rapid degradation of this specific mRNA (114).  

In B. subtilis and other Gram positive bacteria, there are remarkable differences 

regarding the degradosome complex. RNase E has been replaced by the complex 

formed by RNases J1 and J2. These enzymes have both 5’ → 3’ exonuclease and 

endonuclease activities (115), and have been reported to contribute to rRNA 

maturation (116). There is an extra endonuclease, RNase Y, involved in the 

degradation of mRNAs and riboswitches (117). There is also a different RNA helicase 

in the B. subtilis degradosome, CshA (118). PnpA is also present, and besides 

enolase, there is another glycolytic enzyme forming part of this complex: 

phosphofructokinase (119). 

Besides these central components of the degradosome, other proteins have been co-

purified with this complex in minor proportions. These can act as modulators of the 

function of the RNA degradosome (120). Some proteins, such as RraA and RraB, are 

capable to bind the RNase E and remodel the degradosome complex, for example by 

releasing some of its components. This remodeling of the degradosome results in the 

specific stabilization of some transcripts and the selective degradation of others (121).  

RNase E has another crucial role, which involves the degradation of mRNAs targeted 

by a sRNA (see Chapter 1.1.4 above) and bound by the RNA chaperone Hfq (67). In 

addition to the aforementioned ribonucleases, involved in the decay of mRNAs, there 

are other RNases specialized in the maturation and degradation of tRNAs (such as 

ribonuclease P (122)) or rRNAs (RNase III (123)). Also, ribonuclease HI is involved in 

cleaving the RNA primer that is used to initiate DNA replication (124), and RNase HII in 

degrading the Okazaki fragment primers resulting from the replication of the lagging 

strand (125).  
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1.2. Profiling bacterial transcriptomes with ‘-omics’ 
technologies 

The majority of the studies on transcriptional regulation described in the previous 

section were performed using classical molecular biology and biochemistry techniques. 

However, the sequencing of bacterial genomes has allowed for a change of paradigm 

in the way experiments are performed. The sequencing of the first bacterial genomes, 

around 20 years ago (126–128), led to the development of a set of techniques that 

allowed the profiling of full genomes and transcriptomes faster than ever imagined. In 

parallel, techniques were also developed to identify and quantify proteins in biological 

samples.  

In this Chapter, these techniques, grouped under the name of ‘-omics’, are described 

together with their contributions to the study of transcription and its regulation in 

bacteria. 

 

1.2.1. Microarrays and tiling arrays. 

Microarrays are lab-chips that use the same principle of nucleic acids hybridization that 

Northern (129) or Southern (130) blots. These blots allow for the detection and 

(relative) quantification of specific sequences of RNA or DNA, respectively. Northern 

blots were widely used to quantify the expression of mRNA transcripts in different 

biological samples. The protocol involves the extraction of the RNA fraction from the 

biological sample, the separation of the RNA molecules by size in a denaturing 

agarose gel and the transfer of the separated fragments from the gel to a nitrocellulose 

membrane (131). The blotted RNA will be the substrate for the hybridization. 

Afterwards, probes that are complementary to the sequence of the RNA of interest, 

labelled with radioactive isotopes or chemiluminescence, are added to the membrane 

containing the transferred RNAs. These probes can be either RNA, DNA or cDNA 

fragments, or synthetic oligos. Probes are added in conditions that favor the 

hybridization of them with the complementary RNA, and not with others. After 

hybridizing and washing to remove the excess of labelled probe, the membrane can be 

developed to identify and quantify the RNA of interest (131).  
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Microarrays use the same hybridization principle, but in a reversed setup. In 

microarrays, thousands of DNA fragments -the probes-, are attached to a solid surface, 

arranged in microscopic spots (the chip; Figure 1.5). These fragments contain 

sequences of the genes whose expression needs to be profiled. In this case, the target 

is the RNA fraction of the sample (usually converted to cDNA), which has been 

previously labelled. The sample is hybridized with the probes in the array, and thus the 

expression of hundreds to thousands of genes can be measured in a single 

experiment.  

There are two major types of microarrays used to profile transcriptomes, called one-

channel and two-channel detection arrays. In one-channel arrays (Figure 1.5), one 

labelled sample is hybridized against the chip, and the readout is the intensity of the 

spots, each corresponding to a hybridization reaction with a specific RNA. Knowing the 

unique sequence of each of the spots allows to map the intensity of a signal to a given 

gene, and thus to determine its expression. This expression is relative, and it always 

needs to be compared to a control in a separate array. In two-channel detection arrays, 

sample and control are labelled with different fluorescent markers, and are hybridized 

simultaneously with the same microarray. Relative expression of the sample and 

control will be given by the ratio in the fluorescence intensity of the two markers. In 

both cases, proper bioinformatics and statistical analyses of the results is required to 

extract valuable information on which genes change their expression patterns in certain 

conditions.  

 

Figure 1.5. GeneChip microarray by Affymetrix, used to profile the human 
transcriptome. Source: Togo Picture Gallery. Togo Picture Gallery by DCBLS is 
licensed under a CC-BY 4.0 License 

Microarrays became quite popular in the late 90s, after first genome sequences 

became available. In bacteria, they have been widely used to study changes in 
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transcript abundances under a variety of conditions, in order to identify which genes 

regulate the responses to these conditions, and which are their targets (132–134). In 

contrast to their wide usage in identifying transcription factors and their targets, and 

under which conditions they are active, microarrays have had little or no application in 

the study of promoter strengths or transcription termination. However, they have been 

used to report RNA degradation in E. coli, measuring decay rates and RNA half-lives at 

a gene resolution (135), and to assess the effect of changes in the RNA degradosome 

in the decay of the different RNAs in the cell (136).  

One particular inconvenient of microarrays is that they do not survey the entire 

genome, but instead the oligos arrayed in the chips only map to specific regions of 

protein-coding genes, or functional RNAs such as rRNAs or tRNAs. Therefore, small 

RNAs are not surveyed using this technology, and regulatory regions of the transcripts 

such as riboswitches are ignored. Also, probes have to be designed for each coding 

region, and this process may generate different biases. Factors such as probe length, 

hybridization temperature, and especially the avoidance of cross-hybridization need to 

be carefully considered in order to prevent problems derived from the probe design 

(137). 

Tiling arrays appeared as an evolution of microarrays that solved some of these issues. 

Tiling arrays are also known as ‘high density oligonucleotide arrays’ (138). These 

arrays contain oligonucleotide probes mapping every few nucleotides in the genome, 

overlapping with each other (‘tiled’, hence their name). In these arrays, there is no 

distinction between coding and non-coding regions of the genome, allowing the 

identification and study of sRNAs and the characterization of untranslated regions 

(UTRs) of mRNAs (139). Bacterial genomes, smaller than eukaryotic genomes, are 

particularly well suited to these type of arrays, as one chip allows for the analysis of the 

entire genome. Some studies have surveyed large number of conditions and 

perturbations using tiling arrays in different bacteria. In B. subtilis, tiling arrays were 

used to characterize the transcriptional response in 269 conditions (140). This allowed 

to reconstruct the transcription unit architecture in this bacterium, as well as to identify 

condition-dependent sigma factors and their targets, leading to the reconstruction of 

part of the B. subtilis gene regulatory network. This work also identified large numbers 

of sRNAs, such as antisense RNAs responding to different perturbations. In M. 

pneumoniae, tiling arrays were used to characterize the transcriptome of this bacterium 

under a variety of conditions (72). One of the advantages of tiling arrays, compared to 

conventional arrays, is that with an appropriate experimental setup, they allow for 
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absolute quantification of transcript levels (141). However, the challenges posed by the 

probe design remain unresolved in this technology.  

One of the general principles of bacterial transcription uncovered thanks to tiling arrays 

is that the majority of the transcripts found in the cell are present in amounts slightly 

above the background noise levels (142). Thereby, the signal-to-noise ratio in these 

experiments is limited, hampering the quantification of lowly expressed transcripts in 

bacterial cells. Furthermore, their limit of detection is given by the amount of probe 

present in each spot. This quantity determines the maximum amount of cDNA that can 

hybridize. Over this point, saturation is reached and no more sample can be detected 

(143), thus limiting the dynamic range of arrays. 

 

1.2.2.  RNA-seq. 

RNA sequencing (RNA-seq) was described for the first time in 2008 (144). It was 

derived from the whole genome shotgun DNA sequencing, the technique that was used 

to determine the sequence of the first bacterial genome, that of Haemophilus 

influenzae (126). In this approach, genomic DNA is sheared and a specific size of 

fragment is selected. Fragments selected are amplified (originally this was done by 

cloning them into a vector) to obtain a large number of copies, and both ends of the 

fragments are sequenced. A bioinformatics analysis is then required to align the 

individual sequences generated, termed ‘reads’, and yield the assembled sequences. 

Currently, in the so-called next generation sequencing (NGS) protocols, fragments are 

not amplified in a vector, but in cell-free systems such as emulsion amplification (145), 

or solid-phase amplification (146). Also, the sequencing has changed. The original 

Sanger sequencing (147) was replaced by the newer pyrosequencing (148), 

sequencing-by-synthesis (149, 150) or sequencing-by-ligation (151). The most 

extended technology today combines solid-phase amplification with sequencing-by-

synthesis (Figure 1.6). Newer methods eliminate the amplification step to remove 

biases that may appear at this point, however they are not of general application yet 

(152, 153).  
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Figure 1.6. Illumina HiSeq sequencer. Illumina technology combines solid-phase 
amplification with sequencing by synthesis. Source: Togo Picture Gallery. Togo Picture 
Gallery by DCBLS is licensed under a CC-BY 4.0 License 

RNA-seq imitates the next generation techniques for sequencing DNA, but introducing 

a step of reverse transcription from RNA to cDNA. Once the cDNA is obtained from the 

sample, the rest of the protocol is similar. As with the DNA sequencing, the most used 

technology uses the solid-phase amplification and sequencing-by-synthesis. Originally, 

it was not possible to identify whether a read mapped to the plus or the minus strand of 

the genome, hampering the identification and quantification of antisense transcripts. 

Later, different modifications of the protocol allowed to identify and quantify transcripts 

in a strand-specific manner, allowing to decipher the polarity of each RNA  (Figure 1.7) 

(154–157).  
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Figure 1.7. Schematic view of different RNA-seq protocols. (A) Classical Illumina 
protocol, which does not hold the information of the polarity of the transcript. (B) 
Strand-specific protocol in which one strand is chemically modified with dUDP to retain 
the polarity of the transcript. (C) Strand-specific protocol in which the polarity of the 
transcript is kept by ligating different adapters in the 5' and 3' ends of the transcript. A 
key difference between B and C is the order in which reverse transcription and adapter 
ligation occurs; in B, reverse transcription happens first, whilst in C, adapters are 
ligated prior to reverse transcription. Image from van Dijk et al (2014).  

 

Currently, RNA-seq has replaced arrays for transcriptome profiling, as it overcomes 

some of the disadvantages of these techniques. Firstly, it provides a single-base 

resolution, whilst resolution was limited to the spacing between probes in the tiling 

arrays. In addition, the amplification step yields a much larger dynamic range than in 

tiling arrays, permitting a more accurate quantification of transcripts (158). Also, the 

price of next generation sequencing has dropped dramatically, expanding the range of 

applications of these technologies (159).  
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RNA-seq has been used to study bacterial transcriptomes, with a variety of 

applications. As microarrays and tiling arrays, it has been used to reveal expression 

changes under varied conditions and perturbations (160), to study the process of RNA 

degradation (161) and to identify new sRNA species (162, 163). However, the 

increased resolution of RNA-seq has allowed for its use in other applications, for 

example for the identification of transcriptional start sites or TSS (157, 164). The 

mapping of these points in the genome has been used to define the transcription unit 

architecture in different bacteria, such as E. coli (22), Helicobacter pylori (164) or 

Mycoplasma pneumoniae (20). In these works, the identification of alternative TSS 

within operons led to the description of condition-dependent transcription units. These 

transcription units provide the basis for the reconstruction of regulatory networks.  

The accurate identification of TSS in bacterial genomes has also contributed to the 

study of naturally-occurring promoters, located upstream these points (165). In this 

study in Sinorhizobium meliloti, all TSS were identified and the sequences of their 

promoters were analyzed. In a different study, thousands of synthetic promoters were 

simultaneously screened using RNA-seq to evaluate the transcript levels yielded by 

each promoter (166), and assess the predictability of these levels based on sequence 

features of these promoters. In contrast to the study of TSS, little has been done for the 

high-resolution mapping of transcription termination sites in bacteria. Only very 

recently, a method has been described that allows the sequencing of the 3’ ends of 

bacterial transcripts (167). One possible explanation is that termination, in contrast to 

initiation, does not occur at a single, defined point, but the mechanisms governing 

termination lead to individual transcripts terminating at different points located close 

after the termination signal (168). Finally, RNA-seq has also been used to describe 

regulation by riboswitches. In Listeria monocytogenes, the behavior of a riboswitch 

controlled by the abundance of vitamin B12 was described using RNA-seq (169). The 

activation of this riboswitch by vitamin B12 produces a shorter isoform of a sRNA, that 

ultimately regulates the expression of a set of proteins that use vitamin B12 as a 

cofactor.  

Although RNA-seq has been widely used in studying transcription and the regulatory 

mechanisms that modulate this process, the fast and continuous development of the 

technique poses some challenges to researchers, especially related to the analysis of 

the data generated. The evolution of the sequencing technologies and protocols is 

usually faster than that of the analysis pipelines, which can lead to the obtention of 

artifactual results that are hard to identify. Bacterial genomes, smaller than eukaryotic 
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ones, facilitate an increase in the sequencing coverage, but such an increase is 

accompanied by a risk of identifying artifactual transcripts or genomic DNA 

contaminants (170). Additionally, cDNA library preparation includes steps that may 

alter the sequencing output. For instance, biases in the amplification can generate 

large variability of RNA abundances across samples. This is especially notable in low-

expressed transcripts (171). Also, the processes of RNA fragmentation and size 

selection, in which cDNA is selected according to its length in nucleotides, may cause 

the loss of sRNAs and other small transcripts such as tRNAs (172, 173). Altogether, 

these challenges demand that computational analysis pipelines are designed as 

carefully as experimental and sequencing protocols.   

 

1.2.3. ChIP 

ChIP stands for ‘chromatin immunoprecipitation’. This technique is used to isolate 

fragments of DNA that are bound by a specific protein (174, 175). In more detail, DNA 

and its associated proteins are crosslinked by means of a crosslinking agent, for 

example formaldehyde. Then, chromatin is extracted from the biological sample and 

sheared by sonication or nuclease digestion, to obtain equally sized fragments of DNA. 

Some of these fragments are protein-free, whilst others are bound by a protein. An 

antibody specific to the protein of interest is then used to selectively bind and isolate it, 

together with the DNA fragments this protein is bound to (immunoprecipitation). 

Crosslinks are finally reversed to isolate the DNA fragment of interest. To characterize 

this fragment, the process of chromatin immunoprecipitation can then be coupled to 

sequence determination by means of arrays (ChIP-chip) (176, 177) or, more commonly 

now, DNA-sequencing (ChIP-seq) (178). The distribution of signal/reads after ChIP-

chip/seq experiments results in a pattern of peaks, each corresponding to a binding 

region. The binding can be direct, if the protein of interest interacts with the DNA, or 

indirect, if this interaction is mediated by other proteins. Different ‘peak-calling’ 

algorithms are used to identify and map the peaks resulting from the experiment (179, 

180). 

ChIP-based techniques have been widely used to understand how proteins modulate 

the transcriptional function. In E. coli, ChIP coupled to tiling arrays was used to study 

the transition from transcription initiation to elongation in σ70 promoters at the genome 

scale (181). In this study, the authors identified a large variability in this transition, 

finding that in some cases this transition occurred rapidly, with a fast release of the σ70 



 

22 

factor, whilst in others the polymerase was found stalled at the promoters. They 

suggested that the behavior of this transition was sequence-dependent. In many 

studies, ChIP-seq has been combined with RNA-seq or arrays to study both physical 

and regulatory interactions between transcription factors and their targets. In 

Salmonella enterica, ChIP-seq and RNA-seq were combined to uncover the targets of 

the regulator OmpR, involved in the virulence of this pathogen (182). In a broader 

study, ChIP-seq and tiling arrays were used to characterize the binding sites and the 

regulatory effect of 154 TFs in Mycobacterium tuberculosis (183).  

As the rest of high-throughput techniques, ChIP-based omics pose some challenges 

that need to be addressed. Firstly, there are some problems intrinsic to the chromatin 

immunoprecipitation. For instance, the availability of antibodies against the protein of 

interest can be a limiting factor. If an antibody is not available, ChIP can be performed 

expressing the protein of interest fused to a tag. This brings some issues related to the 

over-expression of the protein of interest: the effect of the tag on the binding and 

functionality of the protein is unknown a priori, and over-expression of the protein can 

cause off-target binding, leading to artifacts in the result. ChIP-chip resolution is limited 

by the array resolution, as occurred with arrays. Also, the hybridization step required in 

arrays may produce some bias in the results. Finally, arrays have a lower dynamic 

range that limits their use for quantification (184, 185). These problems are overcome 

in ChIP-seq. However, sequencing protocols also suffer from biases in the amplification 

step that may produce artifacts, hard to distinguish by the peak-calling algorithms 

(186). More specifically, it has recently been described that active promoters produce 

artifactual ChIP-seq peaks in an unspecific manner, called ‘phantom peaks’ (187). 

These peaks are present even in conditions when the protein bound by the specific 

antibody is not present in the samples. Again, a careful statistical analysis is required to 

identify and address these possible biases and artifacts.  

 

1.2.4.  Proteomics and mass-spectrometry. 

Proteomics refers to the study (i.e. identification, quantification and characterization) of 

all the proteins present in a biological sample. The term was chosen to parallel with the 

study of the genome (genomics) and that of the transcriptome (transcriptomics), being 

developed at the same time. Genome-scale proteomics has benefited enormously from 

mass-spectrometry (MS), an analytical technique. The basic principle underlying MS is 
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the unequivocal identification and quantification of ionized molecules by their mass-to-

charge ratio.  

In a typical proteomics MS experiment, proteins from a biological sample are trypsin-

digested in order to obtain smaller peptides. Trypsin is a protease that cleaves proteins 

after lysine or arginine residues. Alternatively, other proteases can be used, such as 

chymotrypsin, which cleaves peptides after tyrosine, phenylalanine or tryptophan 

residues. The peptides obtained are fractionated using high-performance liquid 

chromatography (HPLC). Fractionated samples are then ionized. Once ionized, 

peptides pass on to the mass analyzer. In the mass analyzer, the mass-to-charge ratio 

of each of the molecules entering is determined. From this, the exact masses of the 

different peptides are obtained and compared to a database using computational 

algorithms (188). Databases are generated by an in silico translation and 

trypsin/chymotrypsin-digestion of all the open reading frames (ORFs) in the genome, 

derived from the NCBI annotations. The masses of the in silico peptides are calculated 

and compared to the output of the mass-analyzer to identify those matching, 

corresponding to the proteins present in the sample. This protocol is known as protein 

fingerprinting or peptide mass fingerprinting (189–191). As the databases are derived 

from NCBI annotations, if some ORFs are not annotated in these databases, the 

corresponding peptides in the sample will not be assigned. If a peptide in the sample is 

not present in a database, it can be de novo sequenced to determine its amino acid 

composition. In such case, the selected peptide is fragmented in smaller units. These 

units are analyzed again by mass spectrometry (MS/MS) and the collection of 

subsequent masses can be compared to a database of predicted masses of peptides 

(192). If not present in the database, there are algorithms that match the mass 

differences among the individual fragments to the mass of single amino acids, to 

determine the exact sequence of the initial peptide (193).  

For protein quantification, isotopic labelling is often used. A sample is labelled with 

heavy isotopes (usually 13C and 15N), whilst the other sample is labelled with the 

corresponding light isotopes (12C and 14N). They are mixed and analyzed together, as 

the isotopic mass difference allows to distinguish between the samples and permits a 

relative quantification (194). Label-free methods also exist, that avoid the treatment 

with heavy isotopes. In these methods, the relative signal of a peptide is compared 

across samples for relative quantification. The area of this peptide in the mass 

spectrum is calculated and used for the comparison. Currently, the relative areas of at 

least the three top peptides (the most abundant) identified in each protein are used for 
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comparison (195). Using the three top peptides of each protein avoids biases in the 

quantification.  

Although not related to the transcription process in a straightforward manner, 

identification and quantification of protein levels is also relevant to the understanding of 

transcriptional regulation. Protein levels of different transcription factors in changing 

conditions can reveal how transcriptional responses to different perturbations are 

orchestrated. In E. coli, this approach has been used to identify proteins changing their 

expression profile in osmotic stress, both in aerobic and anaerobic conditions (196). 

Also, proteomics can provide an insight into the effects of post-transcriptional 

regulation, for example by sRNAs. In E. coli, mass-spectrometry was used to confirm 

the effect of an sRNA on the OmpA gene, decreasing the stability of mRNA and thus 

limiting translation to protein (197). In M. pneumoniae, a strain lacking the protein 

phosphatase PrpC was shown to have decreased levels of proteins from the cell-cycle 

operon, quantified by MS and confirmed by a decrease in the mRNA levels, and a 

strain lacking the protein kinase PknB had decreased levels of adhesion proteins (198). 

Furthermore, changes in protein levels can be used to confirm changes in the 

transcriptome upon certain perturbations (199). Finally, proteomics is not only used to 

quantify native proteins, but also to determine and quantify the prevalence of post-

translational modifications (198, 200, 201) or to identify protein complexes that co-

purify together (202, 203).  

Despite its numerous applications and a longer development than sequencing-based 

technologies, mass-spectrometry has some weaknesses that should be addressed 

here. The most notable one relates to a lack of robustness. The spectra obtained are 

dependent on the ionization properties of the peptides, which behave differently in the 

mass analyzer (204). Also, lack of reproducibility is an important issue, especially in 

low-expressed proteins in complex samples, and numerous replicates are required to 

address under-sampling (205). Finally, for a unequivocal identification of proteins, only 

unique peptides should be used (206). This hampers the identification of proteins with 

paralogs present in the genome, as their sequences tend to be highly similar and the 

number of unique peptides decreases. If no unique peptides are found, the 

identification and quantification can only be performed at the protein family level (207). 

Also, small proteins have less probability to be found in MS experiments, as at least 

three unique peptides should be considered for identification and quantification. These 

proteins, because of their size, have less tryptic peptides, which results in less chances 

to be identified.  
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1.3. Systems biology and the integrative study of 
transcription 

In the last section, the applications of different ‘omics’ technologies in the study of 

transcription have been reviewed. In many of the aforementioned articles, different 

omics were combined to gain knowledge on a specific element of transcriptional 

regulation. For instance, transcriptomics has been combined with ChIP-seq (182, 183), 

or with proteomics (208), mostly to reveal the function and targets of transcription 

factors. However, although important, transcription factors only represent one of the 

determinants of the RNA levels in the cell. As described above, there are other 

processes and factors intervening, such as the transcription unit structure, the promoter 

strength and its accessibility, determined by epigenetic modifications and supercoiling, 

the action of riboswitches or the effects of sRNAs, and the effect of RNA degradation. 

Little work has been done towards the integration of some or all of these elements. 

Indeed, there are only few examples concerning small systems (209). In order to gain a 

better knowledge of how all these elements interact or interfere with each other to give 

rise to determined levels of transcripts in a global manner, integrative approaches need 

to be considered.  

In this section, the discipline of systems biology, and how it is the responsible of a 

change of paradigm in biological studies, is described. The applications of systems 

biology to the integrative study of transcription are reviewed, as well as the challenges 

and perspectives that this discipline poses.  

 

1.3.1.  Systems biology: the whole is greater than the sum of the 

parts. 

“Systems biology” refers to the study of different biological systems, whose 

components may be molecules, cells, organisms or populations. This discipline not 

only describes each of the individual components of the system, but also the 

interactions among them. Biological systems are inherently complex, and their behavior 

cannot be explained or predicted only from the properties of the single components: 

“the whole is greater than the sum of parts”. This intrinsic complexity causes that, in 

this field, a number of disciplines converge, such as biology, chemistry, computer 



 

26 

science, math, engineering and physics. The goal of this interdisciplinarity is to develop 

accurate models that allow to understand, describe and predict the behavior of the 

given biological system. Ultimately, the goal of systems biology is to understand how 

life is organized. 

Originally, two broad directions emerged under the name of systems biology: 

‘mechanistic’ and ‘statistical’ systems biology (210, 211). Mechanistic systems biology 

focuses in understanding the dynamics of a certain system, and how the state of the 

system changes in time (211). This involves some sort of mathematical modeling to 

represent the evolution of the system over time. Different modeling formalisms can be 

chosen, depending on how much information is available on the system of study. One 

of the preferred choices when modeling transcriptional networks is the use of systems 

of differential equations. For instance, ordinary differential equations (ODEs) have been 

used to model feedback loops that generate oscillatory behaviors (212, 213). Partial 

differential equations were used to account for diffusion in the cell to model the gap 

gene network of Drosophila melanogaster, which controls key steps of its embrionary 

development (214). In many cases, the stochastic nature of living systems requires 

different modeling formalisms to be able to capture their behavior. In transcription, it 

has to be considered that the number of regulators, RNAs, promoters, or any other 

molecules involved, might be low. In such cases, deterministic methods such as ODEs 

are unable to reproduce the behavior of the system and stochastic methods should be 

used (215). Spatial stochastic modeling can be chosen to address the movement of 

particles from different compartments within the cells (216). The challenges of this kind 

of models involve mainly unraveling which is the network and the parameters 

underlying the specific behavior, in other words, reverse engineering the network. 

Reverse engineering is feasible for small networks involving few components, but as 

the number of components grows up to hundreds or thousands, the large number of 

parameters to determine yields these models unscalable (210).  

Statistical systems biology has arisen as a consequence of the development of omics 

technologies. The vast data generation from the past few years has led to the 

description of  practically all the molecules present in a cell: RNAs, proteins, 

metabolites, and their concentrations. It has also allowed to map the interactions 

occurring within proteins or DNA (217), as well as between proteins and DNA (183) or 

proteins and RNA (218) among others. The application of thorough statistical analyses 

to these datasets has allowed to discern between real interactions and spurious or 

artifactual ones, and most importantly, it has allowed to describe important 
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organizational principles of biological systems. For instance, the study of protein-

protein interactions led to the observation that these follow the organization of scale-

free networks, in which there is a small number of hubs and a large number of proteins 

with very few connections (219). Later, it has been proved that the connectivity of the 

proteins in the network is important to define their role in physiology and disease (220, 

221). Nevertheless, this description of the components of the cell and their interactions 

has little predictive power of the state of the system. Often, the context of the 

interactions is ignored, and it is crucial to consider it, as interacting proteins should be 

simultaneously present in the same tissue (222). Also, the networks are usually biased 

towards more studied proteins, leading sometimes that these appear as artificial hubs 

in the networks (223). Some perturbations in the network can be done, mimicking gene 

mutations and deletions, to test how the global structure of the network is affected, but 

this does not describe how the system can evolve in time. In words of Hiroaki Kitano, 

the description of the components and their association in networks is equivalent to 

listing all the parts of an airplane and drawing a diagram showing how they are 

assembled: it is insufficient to understand how the airplane works (224). What is 

missing is the information flow, this is, the dynamics of the system.       

 

1.3.2.  Bringing together the two views of systems biology. Genome-

scale modeling. 

The two different views of systems biology described above seemed initially 

irreconcilable. Nevertheless, over time there have been many efforts to reconcile these 

views. Currently, there is a continuum of modeling formalisms that goes from large 

qualitative models, with little or no kinetic parameters, to smaller fully-detailed kinetic 

models of differential equations (225) (Figure 1.8). 
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Figure 1.8. Different modeling formalisms used in metabolic modeling, showing 
the size of the systems studied and the level of detail of each formalism. Image from 
Steuer, R. (2007) 

Apart from this continuum of modeling formalisms, the rapid development of omics 

technologies and the increasing amount of data available has allowed for the 

construction of larger kinetic models. Many of these efforts have been focused on 

modeling metabolic networks. For example, the entire central carbon metabolism of E. 

coli has been modeled using ODEs (226). However, kinetic models are still difficult to 

scale up, and for larger models such as entire metabolic reconstructions, constraint-

based formalisms are the preferred choice (227). These models convert the metabolic 

network into a stoichiometric matrix that includes all reactions with their corresponding 

stoichiometric indices. This matrix has an associated solution space, that includes all 

the possible solutions of the system given a set of constraints. Known constraints (such 

as maximum fluxes, a steady state assumption, or network topologies) are included to 

limit this solution space and find values for the fluxes of the different reactions in the 

network (228). These models have been used to reconstruct the metabolic networks of 

different model organisms such as E. coli (229, 230) and B. subtilis (231), as well as 

other bacteria (232, 233). Although mainly used in the context of metabolism, 

constraint-based models have also been used to model transcriptional regulation (234).  

These models pose the challenge of integrating information from different data 

sources, such as transcriptomics, proteomics, metabolomics or phenomics (235). This 

integration is not straightforward and it has been estimated that currently, a large 

proportion of resources is dedicated to data processing and integration (236). Also, 

these are not fully dynamic models, as they include the constraint of the steady state 
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assumption. Some modifications exist that allow for the inclusion of dynamic behavior 

(237).  

 

1.3.3.   Going even further: multi-scale modeling and whole-cell 

modeling. 

After the development of the aforementioned genome-scale models, that focus on a 

single biological process, the interest of the field is moving towards the integration of 

different cellular processes in single, multi-scale models. Different cellular processes 

occur at very different spatial and temporal scales (238), and their integration under a 

single modeling formalism is truly challenging.  

Only focusing in the process of transcription and its regulation, the different time scales 

are evident. As an example, protein complexes such as those formed by the RNA 

polymerase holoenzyme, or by transcription factors, can form at the sub-second scale, 

while transcription elongation or translation into proteins may take minutes (239). In 

bacteria, spatial restrictions are not so evident, as transcription and translation occur 

simultaneously due to the lack of the physical barrier imposed by the nucleus. 

However, there are studies showing that transcription and translation occur in separate 

domains of the cell in some bacteria (240). Also, some authors claim that genes with 

related function are closely localized in the 3D conformation of the chromosome, to be 

co-transcribed in the so-called transcription factories (241). The different temporal and 

spatial scales are multiplied when integrating different biological processes, which 

hampers the development of suitable multiscale modeling formalisms.  

Despite these challenges, some approaches have led to the obtention of models 

integrating different biological functions, mainly using constraint-based approaches that 

assume steady state. In E. coli, an integrated model of metabolism and transcriptional 

regulation was obtained (242). In this model, regulatory genes control the expression of 

metabolic enzymes, thus altering the fluxes of the metabolic model. In a different study 

also on E. coli, a model of transcription and translation was obtained (243). This model 

accounts for RNA synthesis, regulation by transcription factors or degradation, but 

misses other key determinants such as regulation by metabolites, sRNAs or the effect 

of promoters.  
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Most of these studies have used E. coli as a model system, due to the large availability 

of the data in this organism. However, the elevate complexity of this bacterium, with 

more than 4000 protein-coding genes, hampers the development of more detailed, 

integrative models. Indeed, the first ‘whole-cell’ computational model, that reproduces 

all processes occurring inside the cell, simulates the cell cycle of Mycoplasma 

genitalium (244), a human pathogen whose genome encodes for only 525 genes (127). 

The consecution of this model has only been possible after the advancement of omics 

technologies, that has led to the obtention of vast amounts of quantitative data in non-

model bacterial species; and the development of a mathematical framework that allows 

for the integration of processes occurring in a variety of time scales and in different 

compartments inside the cell. This mathematical framework consists in choosing an 

appropriate time step for the entire simulation; the different biological processes in the 

cell are then modeled and parameterized separately, in different ‘modules’, and 

simulated over this particular time step. Each of the modules uses the most appropriate 

modeling formalism for the specific process. After all the processes have been 

simulated, the output of each module is used to update the state of the cell. The input 

for the different modules for the next time step-long simulation will be extracted from 

the recently updated state, repeating the same process until the cell has divided 

(Figure 1.9). In the M. genitalium model, that includes 28 modules simulating different 

cellular processes, the chosen time step is 1 second (244). Additional considerations 

have to be taken to provide an equitative allocation of the cellular resources among the 

28 processes. 
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Figure 1.9. Structure of the whole-cell model of M. genitalium. In the left column, 
the state of the cell, representing the variables grouped in 16 categories, is listed. In 
the right column, the 28 cellular processes are listed. The different colors represent 
which categories of the state variables are updated after the simulation. Links between 
variables and submodels represent the input variables for each submodel. Image from 
Karr, J. et al (2002). 

 

Two main criticisms to this model should be noted. Firstly, the data used to fit the 

model of M. genitalium was mostly coming from other bacterial species, sometimes 

closely related such as M. pneumoniae, sometimes very distant such as E. coli (244). 

This may cause that inconsistencies between the predicted and the experimental data 

appear. Secondly, the selection of the time step is rather arbitrary and it has not been 

tested whether smaller time steps result in a different outcome. This would imply that 

some processes interact with each other at time scales shorter than the 1s time step, 

and thus some modules should be integrated together, or the chosen time step should 

be shorter. Apart from these general caveats, regarding the transcription process, the 

model of M. genitalium ignores the reported existence of sRNAs (245), and also it does 
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not consider the possibility of regulation via riboswitches, supercoiling, or other factors 

described above. Furthermore, it does not provide mechanistic insights regarding 

promoter strength, which limits its predictive capacity on mutated or synthetic strains 

carrying non wild-type promoters. Also, it only accounts for 5 transcription factors and 

their binding sites are assigned based on homology with other species and not on 

experimental evidence in this bacterium. DNA-binding proteins other than transcription 

factors are not considered for alternative regulatory mechanisms.  

Despite these caveats, the model represents a breakthrough in computational and 

systems biology. The development of omics and the generation of a vast amount of 

genome-scale datasets open the door to the expansion of the model to more complex 

species. 

 

1.4. M. pneumoniae as a model organism in Systems 
Biology 

As mentioned above, E. coli is a very complex bacterium encoding for more than 4000 

genes in its genome (246). Therefore, although the majority of studies on bacterial 

transcription (and in many other processes) have utilized E. coli as a model organism, 

using this bacterium as a model for integrative models renders complicated. Simpler 

organisms with a smaller set of genes should be used, at least in this initial phase of 

integrative Systems Biology, where large scale dynamic models are still developing.   

M. pneumoniae is a Gram positive bacterium, member of the Mollicutes class (247). 

This bacterial class is characterized by the lack of a cell wall, low GC content genomes 

and a small size. Mollicutes are parasites of plants (phytoplasmas) and animals 

(mycoplasmas), sometimes causing diseases to their hosts. Their parasitic lifestyle has 

led to their genome reduction (248), eliminating biosynthetic pathways and using 

nutrients taken from their hosts. Indeed, they are the smallest self-replicating 

organisms known to date. This feature makes them valuable model organisms for 

Systems Biology studies, an example of this is the use of M. genitalium, to develop the 

first computational model of an entire bacterial cell (244). Mollicutes, and in particular 

mycoplasmas, are interesting also from a Synthetic Biology point of view, as bacteria 

with reduced genomes are easier to manipulate and engineer. In fact, mycoplasmas 

tend to have linear metabolic pathways, with few crosstalks among them (249). This 

facilitates engineering, avoiding unwanted interferences with different natural pathways 
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of the bacterium. Indeed, several laboratories are trying to eliminate non-essential 

genes in various mycoplasmas, such as Mycoplasma mycoides, M. pneumoniae or M. 

genitalium, in order to obtain a minimal chassis from to which add new functionalities 

(250). 

M. pneumoniae is a human parasite that colonizes the respiratory tract, causing 

atypical pneumonia in immunocompromised patients (251). Therefore, it is interesting 

not only as a Systems Biology model organism but also to understand its role in 

disease. It is the closest relative of M. genitalium, and its genome encodes for 737 

proteins and 311 sRNAs (252). It can be cultured in laboratory conditions, and a 

defined medium for growth of this bacterium has been proposed (249). In the last few 

years, a consortium of european laboratories has joined efforts to characterize this 

bacterium at the molecular level, taking advantage of the omics technologies being 

developed. They characterized the transcriptome (72), the proteome (203) and the 

metabolome (249) of M. pneumoniae. The characterization of the metabolome led to 

the posterior development of a flux balance analysis (FBA) model of its metabolism 

(233). The post-translational modifications of the proteins in this bacterium have been 

described (198), showing that there are functional relationships among them. Also, 

essentiality of all the components of the M. pneumoniae genome has been described 

(73). Finally, another study highlights the importance of assessing how transcriptional 

and post-transcriptional events are orchestrated in this bacterium. Understanding them 

is central to the study of the entire process of gene expression (this is, from DNA to 

RNA to protein), as it has been shown that majorly post-transcriptional, rather than 

post-translational mechanisms control the protein/mRNA ratios in this bacterium (141). 

The aforementioned studies have generated a vast amount of information of M. 

pneumoniae at different levels, unique in a non-model system. All this information, 

together with the apparent simplicity of this bacterium, due to its reduced genome size, 

render M. pneumoniae as an ideal model organism for the construction of genome-

scale models of different cellular processes, and also for the adaptation of the original 

whole-cell model of the close relative M. genitalium. 

 

1.4.1. Transcription in M. pneumoniae. 

Transcription in M. pneumoniae has been studied mainly using a combination of 

microarrays, tiling arrays and RNA-seq (20), in addition to previous studies that made 
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use of classical molecular biology approaches. The latest genome annotation available 

indicates that its genome is organized in 1305 operons (252), although recent research 

establishes that transcription units in M. pneumoniae are highly plastic and can vary in 

a condition-dependent manner (23). 

Promoters in M. pneumoniae have been accurately mapped by identifying the TSS 

throughout its chromosome (157). In this study, short RNAs, termed ‘transcription start 

site-associated RNAs’ or tssRNAs, were discovered. These short RNAs, of around 45 

nucleotides, correspond to abortive transcripts, but whether they play a regulatory role 

in transcription remains unknown. The main features of promoters in this bacterium are 

the presence of a canonical Pribnow box, corresponding to the housekeeping σ70 

factor, with the sequence 5’-TANAAT-3’, where N stands for any nucleotide; and a 

degenerate -35 box (72, 253, 254). DNA methylation in M. pneumoniae has been 

associated to promoters, especially those of genes related to defense mechanisms and 

virulence (41), but a more specific role of methylation in regulating transcript 

expression could not be associated. Other promoter features have not been 

characterized in this bacterium. 

Regarding transcription factors in M. pneumoniae, eight putative TFs were identified by 

sequence analysis and/or copurification with the RNA polymerase complex (203, 249). 

These include the housekeeping σ70 factor and other two putative sigma factors: SigD 

and YlxM. The former has been recently validated as a true sigma factor in the close 

relative M. genitalium (255). Despite this low number of regulators, M. pneumoniae 

displays complex and specific responses to a variety of perturbations, which suggests 

that there may be agents other than TFs playing a crucial role in regulating 

transcription in this bacterium. Metabolites and sRNAs may be responsible for this 

regulation, but there are no studies performed in M. pneumoniae to assess which is 

their regulatory role. Only the essentiality of sRNAs has been established in this 

bacterium, pointing that the majority of them are non-essential (73). 

Concerning the transcription termination, the most notable feature of M. pneumoniae is 

the lack of a Rho termination factor, which causes that termination can only be Rho-

independent. Therefore, termination is mediated by the presence of GC-rich hairpins 

followed by a poly-uridine tract. Although there is only intrinsic termination in this 

bacterium, three proteins from the Nus family of termination/antitermination factors are 

present in the genome of M. pneumoniae: NusA, NusB and NusG (128). The binding of 

these factors to the elongating RNA polymerase complex could alter its processivity 

mediating termination. A recent study in M. gallisepticum, closely related to M. 
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pneumoniae, describes the existence of two different kinds of transcription terminators: 

strong, hairpin-containing terminator sequences and weak terminators regulated by 

heat-shock stress (256).   

Finally, there are no studies regarding RNA degradation in M. pneumoniae, but several 

components of the RNA degradosome have been identified, such as the J1 nuclease 

(Mpn280) as well as the RNase Y (Mpn269). PnpA and the helicase CshA have not 

been identified, although several RNA helicases are present in this bacterium that 

could replace the helicase from B. subtilis. Enolase (Mpn606) and phosphofructokinase 

(Mpn302) are also encoded in the M. pneumoniae genome. Other RNases identified 

are the RNase III (Mpn545), RNase R (Mpn243) and RNase P (Mpn681), involved in 

ribosomal and/or transfer RNA processing. Further ribonucleases in M. pneumoniae 

are involved in DNA replication or recombination. Although no studies focus directly on 

transcript degradation in M. pneumoniae, some have estimated an RNA half-life of 3 

minutes (141). 

Despite the already existing information on the process of transcription in M. 

pneumoniae, research is still needed to fill the knowledge gaps, in order to be able to 

compile a genome-scale model of transcription that can be part of a whole-cell model 

of this bacterium. 
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2. Objectives 

 

 

The objectives of this PhD thesis are: 1) To adapt the whole-cell model of M. genitalium 

to obtain a first version of the whole-cell model of M. pneumoniae. 2) To critically 

assess the high-throughput profiling or ‘omics’ technologies, used to generate the data 

to fit the model, and the computational pipelines that accompany them. 3) To improve 

our knowledge of the process of transcription and what the determinants of 

transcriptional regulation are, taking advantage of all the ‘omics’ datasets regarding 

transcription that have been and are being generated in our laboratory. This objective 

corresponds to the central part of the thesis.  

In Chapter 3, we detail the process of the whole-cell model adaptation. This involves 

the compilation of all the available data on M. pneumoniae in a knowledge base, from 

which the computational model will extract the model parameters, the adaptation of the 

code to the new data, and to be implemented in the computing facilities of the Centre 

for Genomic Regulation, and the process of parameter fitting to reproduce in silico the 

behavior of this bacterium. The future work towards the improvement of this model, and 

prospective applications are also described. 

To build this model, we rely mostly on ‘omics’ datasets, generated usually in 

microarrays, deep sequencing or mass spectrometry experiments. In Chapter 4, we 

describe the case of an artifact occurring in RNA-sequencing experiments. This artifact 

led to the observation of chimeric RNAs in bacterial transcriptomes, and was 

dependent on the library preparation protocol. Furthermore, we describe how widely-

used chimera detection algorithms fail to detect these artifacts. This raises a discussion 

on the pace at which these new technologies applied to molecular biology appear and 

evolve, and how we should be aware of their artifacts and biases. 

Chapters 5, 6 and 7 are focused in the main objective of this thesis, the study of the 

key determinants of RNA abundance in M. pneumoniae. In Chapter 5, we characterize 

qualitatively the promoters of this bacterium, obtaining a classifier to distinguish among 

true promoters, non-productive promoters and non-promoter sequences. Future work 

in this field points to quantitative prediction of RNA levels based on the promoter 
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sequences. In Chapter 6, we assess the function of small RNAs in bacteria in general 

and in M. pneumoniae in particular, focusing on antisense RNAs, to find that their low 

copy number in cells renders any functional effect (not due to enzymatic activity) as 

highly improbable. Finally, in Chapter 7, we describe the gene regulatory network of M. 

pneumoniae, describing its transcription factors and regulators, as well as their targets. 

Furthermore, we explore other mechanisms of transcriptional regulation, such as 

riboswitches, metabolites, supercoiling and RNA degradation, to conclude that these 

can be at least as important as transcription factors to regulate RNA levels in such a 

minimal bacterium. 
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3. Towards a whole-cell model of 
Mycoplasma pneumoniae 

 

 

 

 

     "With four parameters I can fit an elephant, and 

with five I can make him wiggle his trunk."  

John von Neumann 

 

 

 

3.1. Abstract 

To understand how living organisms function, we should be capable of describing all 

their individual components, but also the interactions occurring among them, and their 

dynamics. The use of models has proven central to this understanding of all sorts of 

biological processes. In particular, multi-scale models address the problem of dealing 

with multiple spatial and temporal scales, naturally occurring in biology. However, the 

generation of such models poses a number of challenges, due to their high 

dimensionality, their high computational costs, and the lack of knowledge about some 

parts of the physiology of the modeled organisms. Here, we describe the construction 

of the first version of a computational whole-cell (WC) model of M. pneumoniae. This 

model is based on a previous WC model of M. genitalium (244). We also describe our 

plans for increasing the accuracy of the model and the scientific questions that we 

intend to explore with the model. We anticipate that WC models will be valuable tools 

for guiding genome engineering. 
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3.2. Introduction 

The ultimate goal of biology is to understand how living organisms function. This 

knowledge can then lead to the rational modification of these organisms for different 

purposes. To understand a living organism, it is necessary to know all of its 

components, how they interact, and the dynamics of their interactions with each other 

and with the environment (257).  

Mathematical models are needed to make sense of the large lists of components, 

interactions and dynamic rules. These allow a representation of the events occurring at 

different levels. Also, mathematical models allow to reproduce the dynamic behavior of 

the studied systems by simulating their evolution in time. Additionally, these 

simulations, can be used to predict the result of different perturbations in the system, 

thus saving experimental time and resources to.  

However, several considerations need to be taken into account when utilizing these 

mathematical models. The first one arises from the intrinsic modeling procedure: 

models are abstractions of the reality, and therefore simplifications. When constructing 

a mathematical model, it is the responsibility of the modeler to decide which 

assumptions and simplifications are acceptable in the context of the studied system. 

Secondly, deriving the mathematical models is not trivial. Our knowledge of biological 

systems, although profound, is usually insufficient to derive the mathematical equations 

that represent the dynamics of the reactions of the system (258). The modeler has to 

decide how to represent the system and what parameters to include in the model. This 

is not trivial and needs careful experimentation, as different models can yield the same 

output when tuned with the appropriate parameters (259). Conversely, it is possible 

that a given model can produce different outcomes depending on the set of parameters 

used. Besides considering these features of models, we have to consider that a 

common property of biological systems is robustness (260), and this property should 

be captured in mathematical models. For many biochemical reactions, changes of the 

parameters within reasonable limits should not produce significant effects. However, for 

some others, small changes in a parameter lead to dramatic physiological changes 

(261). A final consideration is that in many occasions, biological systems behave in a 

stochastic rather than in a deterministic manner. This stochasticity is intrinsic to the low 

copy numbers of some of their components, causing fluctuations that biological 
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systems have evolved to overcome (262) or to take advantage of (263). This 

randomness needs to be correctly handled in the mathematical models.  

Despite these considerations, mathematical models have long been used in biology to 

study systems at different scales. From ecosystems, such as the Lotka-Volterra model 

for the evolution of predators and preys (264, 265), to the biomolecular level, with 

models of protein folding (266). There are also models of entire organs such as the 

heart (267), groups of cells such as neurons (268), and biomolecular pathways (269). 

However, to the aforementioned considerations, we need to add the difficulties of 

devising models that are able to cope with different scales of complexity. One of these 

challenges consists of the reconstruction of models using heterogeneous data. The 

data used to build these models usually come from a number of different laboratories, 

and in a variety of sources (omics datasets, microscopy, low throughput experiments, 

computational predictions, etc.). This causes that sometimes, the identifiers used for 

the same gene, protein or metabolite may be quite different. Also, the data are usually 

incomplete and/or biased towards some parts of the physiology that are well 

understood. Additionally, currently there is no single mathematical framework that 

allows to model the multiple temporal and spatial scales of biological processes. 

Different formalisms adapt better to certain cellular processes, but no one fits all. Thus, 

multi-algorithm modeling is the only way to approach this problem. 

These challenges hamper the development of comprehensive models of entire 

organisms, that span all the scales below this level. Indeed, the aforementioned 

models tend to focus in one or few scales and make different simplifications regarding 

the lower ones. To address this problem, the scientific community has set the focus on 

modelling entire bacterial cells. Bacteria offer various advantages for this purpose, 

compared to eukaryotic organisms. As unicellular systems, the number of scales to 

integrate for an entire organism is smaller than in multicellular eukaryotes. Also, the 

lack of internal compartmentalization of the cells with organelles reduces the multi-

scale complexity, but we should not forget that in bacteria, different functions can occur 

in separate subcellular locations (240). Within bacteria, especial attention has been 

given to genome-reduced species such as Mycoplasmas. With a close-to-minimal set 

of genes to sustain life, their simplicity compared to other organisms has attracted 

efforts to construct these multi-scale, integrative models. Indeed, the first attempts of 

performing WC simulations were performed using M. genitalium as a model system 

(270). These first attempts involved the creation of a software platform for WC 

simulations, E-CELL, and the development of a model of a hypothetical cell containing 
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127 genes of M. genitalium, necessary for the basic functions of transcription, 

translation and metabolism (270). This in silico cell was, however, unable to replicate 

its DNA or divide, due to the exclusion of the genes responsible for this functions in the 

reduced set of 127 genes. The E-CELL software helps researchers build and simulate 

systems models composed of multiple species which interact via reactions. E-CELL 

supports both deterministic and stochastic simulations (271).  

This first platform, however, did not account for diffusion or localization processes, 

which can be central to the outcome of the simulations. For instance, M. genitalium and 

its close relative Mycoplasma pneumoniae have a terminal organelle involved in cell 

adherence, virulence, motility and cell division (272, 273). This organelle is located in 

one pole of the cell, rendering important to delimit subcellular locations even in 

bacterial models. To address these problems, there are now software platforms that 

account for subcellular localization, such as SmartCell (274). This kind of software 

allows to consider different cell shapes and geometries, and approximates particle 

diffusion within the cell and transitions between the different subcellular compartments. 

This platform uses stochastic methods to simulate the models, and recreates the cell 

geometry by dividing the entire cell into multiple sub-volumes. Within these smaller 

volumes, particles are considered to be perfectly mixed, and there can be diffusion by 

translocating particles from some volumes to the adjacent ones. 

The aforementioned platforms and the early models of M. genitalium have certain 

limitations. They are restricted to a few cellular functions, such as transcription, 

translation, and metabolism. Other relevant functions to the cell physiology are also not 

included, such as cell division, chromosome replication, regulation or response to 

external perturbations. To formulate a model of the entire cell physiology, a completely 

new approach is needed that is able to deal with different temporal scales as well as 

with the various subcellular locations. To deal with these circumstances, the idea of 

adopting a modular approach was proposed a decade ago (275). This approach 

consisted in dividing the whole set of reactions occurring inside the cell in smaller 

subsets, and model these subsets independently, but linking them in a way that the 

dynamic behavior of the entire system is preserved. As an example, the authors link 

three different models covering different parts of the yeast metabolic network (276–

278).  

Although in this work the idea of using a modular approach to large-scale modeling 

was restricted to metabolism, this concept was later used to generate the first 

comprehensive computational model of an entire organism, M. genitalium (244).This 
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has been the first model aiming at modeling the complete physiology of a bacterium, 

considering all cellular processes and the function of each of its genes. In order to build 

such a model and deal with the complexity of the bacterium, the authors classified all 

cellular processes into 28 modules. Each of these modules is modeled independently, 

using the mathematical formalism that best suits our knowledge of the specific process 

and the data available. For instance, metabolism is modeled using flux balance 

analysis (FBA), while transcription initiation is modeled as a stochastic process. These 

independent modules are simulated separately for a timestep of one second. After this 

short timestep, the different modules interact among them by updating the state of the 

cell. They write the output of their simulations to different variables that account for the 

amount of DNA, RNAs, proteins, metabolites, etc. Prior to beginning the next round, 

the different modules read from these variables the input data for the next simulation.  

The model was implemented in MATLAB, and it was accompanied by a knowledge 

base which compiled all the data used to train the model and fit each of the 1836 

parameters that it uses (279). This knowledge base is available online. The majority of 

the data used in the model was extracted from diverse databases or from previous 

literature. In some cases, this data referred to M. genitalium, but in many others, it was 

measured in other organisms. This point has been the focus of different criticisms 

(280), and authors suggest that in the future, better characterized organisms should be 

used as models for these WC simulations. Another point which has been a focus of 

debate is the selection of a timestep of one second in order to integrate the different 

modules of the entire model. The assumption of module independence over such a 

timestep may not hold true for every single sub-model. Alternatively, using smaller 

timesteps poses a different problem: the computational cost in time and resources 

would increase dramatically. Given that the current simulations take around 20 hours to 

be completed, the selection of such a time interval represents a compromise between 

accuracy and efficiency of the model. However, further studies are needed to verify that 

the predictions of the model are not affected by the choice of a timestep, ensuring thus 

the independency of the different modules during these short periods. 

Here, we present the work towards the generation of a WC model of the minimal 

bacterium M. pneumoniae. During the past decade, a consortium led by our lab has 

worked towards the detailed molecular characterization of this organism. To date, the 

transcriptome (72), proteome (203) and metabolome (249) of this bacterium have been 

described. Also, the essentiality of all the genomic features of this bacterium has been 

recently characterized (73). These initial studies have been later complemented with 
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other works focusing on more specific aspects of the biology this bacterium. At the 

level of transcription, transcription start site associated RNAs (157) have been 

identified, and we have characterized promoters in M. pneumoniae ((281), Chapter 5). 

The regulation of transcription has been studied in depth (see Chapter 7), and we have 

recently described regulation at the level of RNA polymerase trafficking (23). At the 

level of translation, the major post-translational modifications have been determined 

(198), and a model integrating transcription and translation of all genes in this 

bacterium has been constructed (141). Regarding metabolism, a flux-balance analysis 

model of the entire metabolism of this bacterium has been generated (233) and several 

metabolites quantified (282). Furthermore, the DNA methylome of M. pneumoniae was 

also characterized (41). These studies, together with some others currently in 

preparation, account for the largest accumulation of information and data for a 

bacterium generated by a single consortium.  

Therefore, M. pneumoniae constitutes the ideal organism to build a WC model of. Most 

of the data necessary to construct it s already available, and the fact that these data 

have been generated by a single consortium of laboratories reduces their variability. In 

the following, we detail the process of generating a knowledge base for M. pneumoniae 

that integrates all the information related to this bacterium, and the work towards 

constructing and improving the WC model of M. pneumoniae, using the original M. 

genitalium model as a platform. 

 

3.3. Data curation and assembly in a knowledge-base 

The first step towards the generation of a WC model of any organism consists of the 

compilation of all the available data from such organism in a dedicated knowledge 

base. The model will read the information from this database, which will include the 

information regarding model species, reactions and parameter values. For this 

purpose, WholeCellKB was created as a platform to create these knowledge bases for 

different model organisms (279). For the case of M. pneumoniae, this task was 

facilitated by the fact that most of the information was obtained via high-throughput 

experiments, covering the entire genome. Therefore, a few publications account for a 

large percentage of the data needed. Also, as these studies have been performed by a 

single consortium of laboratories, the same naming conventions for genes, proteins, 

metabolites, etc., were used throughout all datasets, facilitating the compilation and 

integration of the information. 
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Table 3-1. New experimental data from M. pneumoniae compiled in the 

WholeCellKB-MPN. 

Data Type Source 

DNA methylation sites Experimental (41)  

DNA structural regions Experimental (73)  

DNA DnaA boxes Experimental (41)  

Gene annotation Re-annotation (252) Wodke et al, in preparation 

Metabolites and 
reactions 

Experimental (233, 249, 282) and collaboration with 
U. Sauer’s group at ETH, in preparation 

Protein abundances Experimental (141, 283)  

Protein complexes Experimental (203)  

Protein half-lives Experimental (141)  

Post-translational 
modifications 

Experimental (198, 203)  

Secreted proteins Experimental Paetzold et al, in preparation 

Transcription start 
sites 

Experimental (157)  

Transcription 
termination sites 

Manual curation from 
experimental data 

(252)  

RNA abundances Experimental (72)  

RNA half-lives Experimental (23); Yus et al, in preparation (see 
Chapter 7) 

Transcription units Manual curation from 
experimental data 

(252)  

Transcriptional 
regulation 

Experimental Yus et al, in preparation (see Chapter 7) 

 

Table 3-1 summarizes the new experimental data for M. pneumoniae compiled in the 

WholeCellKB. The majority of this information came from automated analysis of raw 

experimental data, except for some cases in which lack of automated procedures 

required manual curation of the data. Such was the case for the determination of the 

transcription unit structure and the definition of transcription termination sites. Most of 

this data was ready to introduce into the database, or required minor modifications 



 

46 

such as conversion from concentrations to copy numbers. However, complex 

transformations were required for some features. This was the case of the RNA 

abundances. In the previous model of M. genitalium, RNA expression was estimated 

on a gene-per-gene basis, as no information on transcription units was available. In 

contrast, transcription units (i.e. the operon and sub-operon structure) have been 

described in M. pneumoniae and thus RNA expression should be provided per 

transcription unit. Nevertheless, to facilitate the interpretation of transcriptomics 

experiments, this information had been always calculated and provided on a gene 

basis.  

The problem of transforming expression data from genes to transcription units is not 

trivial. Operons are highly dynamic structures with different transcription start and 

termination sites, usually comprising various sub-operons that overlap partly or entirely 

with each other (Figure 3.1A). Therefore, it is complex to deconvolve the expression of 

a single gene in the different RNAs that include it. In order to solve this problem, we 

used an approach that is widely extended in determining eukaryotic RNA expression 

levels. For each operon, we considered each of the overlapping sub-operons as a 

different ‘isoform’. We then considered the genes of each operon as different ‘exons’. 

Thus, each sub-operon consists of an isoform containing some of the genes, or exons, 

of the entire operon (Figure 3.1B). Some exons are shared among different isoforms, 

but some are unique for given sub-operons. After this conversion, this problem is 

analogous to the problem of differential isoform expression from eukaryotic 

transcriptomics. We therefore used Cufflinks (284), a widely-used software platform to 

determine isoform abundance in eukaryotes, to estimate the expression levels of each 

sub-operon. To verify the correct assignation of RNA abundances, we computed the 

expression of each gene by adding up the expressions of all sub-operons containing 

them, calculated with Cufflinks. The correlation between the original gene values and 

the newly computed ones is of 0.914.  
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Figure 3.1. Transcript abundance determination. Scheme of the identification of 
overlapping regions between suboperons and exon mapping. (A) Transcripts (operons 
and suboperons) are annotated and the overlapping regions are identified. (B) Blocks 
of constant expression are identified as the regions between each TSS and TTS of the 
operon, and are categorizes as exons (1, 2, 3...). Each suboperon is then catalogued 
as an isoform including and excluding the corresponding exons. In the example, 
isoform A includes exons 1 and 2 and isoform B includes exons 2 and 3.  

 

Besides the data obtained from prior publications or articles in preparation, the model 

also requires other types of information for which we do not have experimental values. 

For instance, the metal ions and other necessary co-factors of different enzymes in M. 

pneumoniae are, in the majority of cases, unknown. In this case, we extracted the 

information from the enzyme database BRENDA (285). In some cases, data for M. 

pneumoniae or other Mycoplasmas was available in this database. In others, we had to 

retrieve data from other bacteria, with preference to closely related species. For other 

types of information, we needed to use bioinformatics predictions from different 

servers. For example, the signal peptides of all the proteins in M. pneumoniae were 

predicted using SignalP (286), and the binding partners of protein chaperones such as 

the protein DnaK were predicted using Limbo (287). The binding partners from the 

GroEL/GroES complex were inferred by homology with the binding partners in E. coli 

(288). 

All the data obtained either experimentally, through databases or prior publications, or 

from in silico predictions, was organized in a knowledge base, following the format of 

the M. genitalium WholeCellKB (279). Figure 3.2 shows a summary of the data 

included in the knowledge base. It accounts for over 4400 quantitative parameters, 

compared to the 1836 included in the original M. genitalium model.  
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Figure 3.2. Snapshot of the private website containing the M. pneumoniae 
knowledge base. The tables show a summary of all the data and parameters 
incorporated to the WholeCellKB-MPN 
 

This difference arises mainly from the increased number of genes in M. pneumoniae, 

as well as the inclusion of the small RNAs (sRNAs), protein copy numbers, and protein 

half-lives. sRNAs were not accounted for in the original M. genitalium model. Another 

remarkable difference between both knowledge bases is related to the origin of the 

data used in the model (Figure 3.3). For M. pneumoniae, a large percentage of the 

information included was derived from studies in this bacterium, whilst in M. genitalium, 

lack of experimental data required the usage of data from other bacterial species. 
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Figure 3.3. Sources of information for both the M. genitalium (left) and M. 
pneumoniae (right) models and knowledge bases. In M. pneumoniae, more than 
90% the data used to train the model is extracted from studies on this bacterium. In M. 
genitalium, other bacteria were used, such as M. pneumoniae or E. coli. 

 

3.4. Construction of the first version of the M. 
pneumoniae WC model 

To generate the WC model of M. pneumoniae, we used the M. genitalium model as a 

starting point, given the similarity between these two closely related bacteria. The first 

step of this process consisted of replacing all the gene references of M. genitalium for 

their corresponding orthologs in M. pneumoniae. Then, we added all the remaining 

genes in M. pneumoniae without an ortholog in M. genitalium, and explicitly modeled 

their functions. The majority of the genes in this group correspond to hypothetical 

proteins or adhesins, proteins located in the membrane responsible for adhesion to the 

host cells and for generating antigenic variation. This simplified the modeling process, 

as few additional functions needed to be added. Only a minority of genes in this group 

has functions to be explicitly added to the WC model. One example is the gene 

mpn372, encoding for the CARDS (community-acquired respiratory distress syndrome) 

toxin, a unique pathogenicity determinant of M. pneumoniae. The protein encoded by 

this gene is thought to reach the host cells via endocytosis, and has an ADP-ribosyl 

transferase (ART) activity, catalyzing the addition of an ADP-ribose group to arginines 

in different proteins from the host. This modification causes protein inactivation, and 
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this activity leads to vacuolation, disruption of cell homeostasis and eventually cell 

death. The function of this protein was included in the submodel dedicated to the host 

interaction. However, this module is rather simplified and it only considers that an 

inflammatory response is triggered if the CARDS toxin is expressed in the course of an 

infection.  

Besides adding novel functions not described for the M. genitalium model, we also 

corrected genes that had been misannotated in the original model such as the 

alternative sigma factor MPN626, which was originally annotated as LuxR, a different 

transcriptional regulator.  

Regarding metabolism, there are almost no differences between both species. 

However, in M. pneumoniae it has been reported that glycerol metabolism is another 

virulence determinant (289). This is caused by the cytotoxicity of hydrogen peroxide 

(H2O2), a by-product of glycerol metabolism in M. pneumoniae, generated in the 

reaction that catalyzes the conversion of glycerol-3-phosphate to dihydroxyacetone-

phosphate. The enzymes of glycerol metabolism are also present in M. genitalium, but 

this cytotoxic mechanism had not been reported. Therefore, a link between glycerol 

metabolism and virulence needed to be included. This was done by modifying the host 

interaction submodel. Thus, an inflammatory response is triggered in the model also 

when H2O2 is produced.  

After modeling the function of new genes and establishing new links between different 

modules, the model had to be retrained in order to obtain the right parameters to 

simulate the cell cycle of M. pneumoniae. This is necessary as some of the parameters 

obtained from sources other than experimental data on this bacterium yielded 

simulation results that were incompatible with the observed growth of M. pneumoniae. 

Also, parameters obtained experimentally are measured by averaging over large 

populations of cells, and they are affected by both biological and experimental noise; 

so these also need to be optimized. Optimization of the model posed a number of 

challenges. Firstly, parameters of the different submodels need to be consistent with 

each other, so tuning the individual submodels separately is not appropriate. Secondly, 

using numerical optimization techniques in such a large model is also not feasible, as 

the problem becomes computationally intractable. Thus, a strategy similar to that used 

to train the M. genitalium model was used (244, 290). This consisted in combining 

numerical optimization with model reduction. A reduced version of the WC model was 

created. This reduced model does not account for single-cell variation or temporal 

dynamics, but maintains all the parameters of the original model. Thus, it is much less 
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expensive computationally, and numerical optimization can be applied to estimate the 

parameter values. In the reduced model, constraints were identified to determine upper 

and lower bounds for different parameters. These constraints were determined by 

studying the requirements of the different submodels, and considering that all cellular 

components must double in the course of a cell cycle. After setting upper and lower 

bounds, numerical optimization was used to estimate the values of the parameters that 

satisfied the constraints applied and deviated minimally from the experimentally 

determined values. This parameter set was then tested in the full WC model, and finally 

some of the parameters were manually tuned to improve the similarity of the 

predictions to the experimental data.  

This first WC model of M. pneumoniae has been implemented in the cluster facilities of 

the Centre for Genomic Regulation (CRG). In this computing cluster, that consists of 

160 computing nodes with 2620 cores, simulation of the cell cycle of a single bacterium 

lasts around 12 hours. Analysis of the output of the simulation can be automatized to 

facilitate interpretation. Figure 3.4 shows an example of the information that can be 

obtained from the simulations of M. pneumoniae.  

 

Figure 3.4. Example of the whole-cell model output. The panels show different 
aspects of the growth of a single wild-type M. pneumoniae cell over the duration of a 
cell cycle, 8 hours. (A) Cell composition, including the total mass, the number of RNAs 
proteins, nucleotides and amino acids. (B) Growth including mass growth rate, and the 
dynamics of the ack gene, as an example (DNA copies, mRNA copies, monomers, 
complexes and reaction fluxes) 

 

3.5. Current development of the WC model of M. 
pneumoniae 
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One of the main applications of WC models is the discovery of ‘knowledge gaps’ in the 

biology of the simulated organisms. Comparison of the simulation results with 

experimental data can be used to highlight discrepancies between the model and the 

biology of the bacterium. These discrepancies may arise from inaccuracies in the 

parameters (291) or from mechanisms that are incorrectly described in the model. The 

chart depicted in Figure 3.5 illustrates the process of iteratively using the WC model of 

M. pneumoniae to discover these inconsistencies, improving our knowledge on a 

specific part of the physiology and updating the model.  

 

Figure 3.5. Gap filling and whole-cell modeling for new discovery. Flow chart 
illustrating the iterative process that involves finding parts of the model that do not 
agree with the experimental data obtained in M. pneumoniae, performing new 
experiments to better understand these specific traits of the physiology of the 
bacterium, and then refining and improving the model using these new discoveries. 

 

We compared the results of the simulations of wild-type M. pneumoniae with our 

experimental data and found a series of inconsistencies that are currently being 

addressed to obtain an improved second version of the M. pneumoniae model. The 
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first one relates to the structure of the model and the selection of the timestep of 1 

second. The problem arises when two of the submodels need to interact faster than 

what this one-second timestep allows. This occurred with the submodels of translation 

and tRNA aminoacylation. Translation occurs in bacterial cells at an average rate of 

~12-21 amino acids per ribosome per second (292). In M. pneumoniae there are 

around 140 ribosomes per cell (203), which means that, if all ribosomes were active in 

the cell, the bacterium would need to have ~1500-3000 aminoacylated tRNAs per 

second to be able to translate proteins. Additionally, the simulated cells would need a 

similar number of uncharged tRNAs per second, to be charged in the tRNA 

aminoacylation process. These numbers predicted are much higher than the numbers 

of tRNAs observed in our RNA-sequencing experiments (600-700 tRNA copies). This 

discrepancy could be caused by multiple factors. It could be possible that only a 

minority of ribosomes are active at any moment during the growth of M. pneumoniae. 

This could be related to the fact that low translation efficiencies are required to 

compensate for the noise in RNA levels, to maintain stable protein levels (293). This 

should be assessed in the WC model, as currently our simulations show that the 

majority of ribosomes are active throughout the entire cell cycle of the bacterium. It is 

also possible that in our RNA-sequencing experiments, we are underestimating the 

actual numbers of tRNAs. Due to their small size, they show a large variability across 

different experiments, and their actual copy numbers are difficult to estimate. The 

reason of this is that in the RNA-sequencing library preparation protocol, there is a step 

of RNA fragment size selection. Depending on the size selected, tRNAs might be 

depleted from the library pool and thus underestimated. Nevertheless, even the largest 

numbers observed in any of our experiments are far below those estimated by the 

model. A third possibility is that tRNA aminoacylation is a very fast process, occurring 

simultaneously with translation. In such case, with a fast recycling of tRNAs, the 

numbers of tRNAs needed would be much lower than those predicted by the model, 

and would become more similar to those observed in our experiments. We focused in 

this last possibility. Thus, the two processes, translation and tRNA aminoacylation, 

need to interact faster than the one second timestep. However, shortening this 

timestep in the WC model would increase a lot the computational cost of the 

simulations, which is already quite demanding. Therefore, we decided to fuse both 

processes in a single module of the WC model. To do so, all the reactions involved in 

each of the two processes were merged and implemented in the same module. In this 

way, the effect on the performance of the entire model is minimal, and the 

simultaneous translation and tRNA recycling can approximate better the observed 

tRNA numbers in our experiments. 
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The first version of the WC model found a large amount of unaccounted energy (ATP 

and GTP) produced by  the cell, that was not used in any of the processes described. 

Similar predictions were made in the original model of M. genitalium (244). In a 

previous study in our lab, the function of the ATPase in maintaining the intracellular pH 

and membrane potential, and keeping an optimal proton gradient for nutrient import, 

was identified as the most important energy sink (233), confirming what had been 

previously observed in gram positive bacteria (294, 295). This energy sink was not 

explicitly included in the first version of the WC, and is being currently parameterized 

and implemented in the model.  

Other changes in the model that are currently being implemented relate to metabolic 

and transcriptional regulation. One example refers to the regulation of glucose import. 

We have observed experimentally that stress caused by low pH generates a phenotype 

similar to that of glucose starvation (Yus et al, in preparation; see Chapter 7). Further 

exploration revealed that glucose import stops at low pH, and can be restored upon re-

buffering the pH of the culture medium (233). Such a mechanism was not described in 

the model, but is needed to understand how the cell responds to external perturbations. 

We reviewed the literature on the topic, to find that the key to this regulation could lie in 

the phosphotransferase system of M. pneumoniae. A scheme of this system, centered 

in the HPr protein, is presented in Figure 3.6. It has been described that the histidine 

residue whose phosphorylation is needed for sugar import (His-15) can change its 

conformation according to its protonation state (296). This histidine can be present in 

open and closed forms. The closed conformation predominates at pH 7, whilst at a 

lower pH the protonated, open form is prevalent. It was also observed that only the 

closed form can be phosphorylated. This histidine has a pKa value that is close to 

neutrality, meaning that small intracellular changes in the pH, due to acidification of the 

medium by lactate and acetate secretion, can change its protonation state and prevent 

phosphorylation. This suggests a possible mechanism of blocking the first step 

required for sugar import.  
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Figure 3.6. Phosphotransferase system of M. pneumoniae. Sugar transport is 
regulated via the HPr protein. This protein can be phosphorylated at two positions 
His15 and Ser46. Phosphorylation of His15 is mediated by the Enzyme I of the sugar 
transport system (E I), and it is favoured by high concentrations of phosphoenol-
pyruvate (PEP). Enzyme II (E II) then catalyzes the transfer of the phosphate group 
from His15 to the imported sugar. Phosphorylation of Ser46 occurs via the HPrK/P 
protein and it is dependent on high concentrations of glycerol. Image adapted from 
Stülke and Halbedel (2005). 

Regarding transcriptional regulation, the first version of the WC model included little 

information on transcription factors or specific promoter strengths. Instead, the 

differential transcription was modeled by explicitly taking RNA levels of the different 

transcripts, and converting these levels into binding probabilities for the RNA 

polymerase complex, and only a few transcription factors were included in the model, 

some of them with the wrong target specificity. We now know the targets of virtually all 

TFs in this bacterium (see Chapter 7) and we will include them in the modified model. 

However, these regulatory mechanisms included in the model could not reproduce 

specific transcriptional changes observed when the cells enter the stationary growth 

phase, as these could not be related to known transcription factor regulation (see 

Chapter 7). Therefore, we investigated alternative regulatory mechanisms, and found 

that the switch regulating the major transcriptional changes occurring between 

exponential and stationary phase could be based in nucleotide abundances (see 

Chapter 7). ATP and GTP concentrations can act as regulators of transcription 

initiation, by stabilizing the open complex of the RNA polymerase with the promoter. 

Unstable open complexes are sensitive to the concentrations of these nucleotides. If 

they are present in high concentrations, they can rapidly incorporate at the +1 position 

of the RNA stabilizing the open complex and preventing dissociation of the polymerase 

(74). In contrast, if concentrations are low, the complex with the RNA polymerase is 
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quickly dissociated and transcription is prevented. This mechanism has been 

demonstrated to regulate transcription in response to amino acid starvation in Bacillus 

subtilis. In this bacterium, the response to amino acid starvation is mediated by the 

production of (p)ppGpp by the RelA protein. The production of this signalling metabolite 

uses GTP, decreasing its availability inside the cell. The reduced levels of GTP causes 

a downregulation of RNAs whose first nucleotide is guanosine. This mechanism is 

accompanied by an increase in ATP and an upregulation of RNAs having adenine in 

the +1 position (76). A similar mechanism has been experimentally characterized in M. 

pneumoniae (see Chapter 7) and will be implemented in a new version of the model. 

Future improvements of the model will also include novel features, such as the 

structure of the chromosome of M. pneumoniae. A recent study in our lab has resolved 

the 3D structure of the chromosome (Trussart et al, under review). The structure of the 

chromatin can play a crucial role in various processes, such as replication, cell division 

and transcription (297). More specifically, our study revealed that the chromosome of 

M. pneumoniae can be divided in regions, termed ‘chromosome interacting domains’ or 

CIDs. Genes located within the same CID tend to be more co-expressed than genes 

located in different CIDs (Trussart et al, under review). This could be implemented in 

the WC model by biasing the RNA polymerase binding. Concretely, after transcribing a 

certain gene, the binding affinities of the RNA polymerase to promoters located in the 

same CID could be increased, to increase the probability of moving to a promoter in the 

same region versus promoters located farther in the 3D structure of the chromosome. 

Additionally, we will explicitly model the error rates in transcription and translation. For 

translation, these error rates have been recently characterized, and were found to be 

much higher than in other bacteria (283). Translation errors have been shown to have 

an impact on growth rate and fitness in bacteria (298). The inclusion of these error 

rates poses the need to include protein structural information in the model, as it is 

strictly necessary to determine which errors will result in functional or nonfunctional 

proteins. 

 

3.6. Potential applications of the WC model of M. 
pneumoniae 

The applications of WC modeling are numerous. Besides pointing to gaps in our 

knowledge of the physiology of the modeled bacterium, they can be used as a tool to 
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guide genome engineering. As an example of this, the WC model of M. genitalium was 

used to predict the effect of introducing exogenous genes in the cell (299). Other 

possible applications of WC models include the prediction of the combinations of genes 

that can be eliminated in order to obtain a true minimal genome. Such a minimal 

genome could be then tested experimentally, and used as a chassis to add new 

biosynthetic pathways of interest. Also, in order to convert M. pneumoniae into a 

valuable model system for synthetic biology, we could use the WC model to predict 

which genes affect growth of this bacterium. M. pneumoniae is a slow-growing 

bacterium, with a doubling rate of 8 hours. This hampers its usage as a model 

organism for industrial applications, despite the advantages of such a reduced 

genome. Therefore, using the model to predict ways to boost growth of this bacterium 

could be largely beneficial to the synthetic biology community.  

In order to develop these applications, we need to obtain highly accurate models. With 

the current models of M. genitalium or M. pneumoniae, we can make such predictions 

but we are still limited by the lack of knowledge in some of the areas of the physiology 

of these bacteria. In many cases, these predictions are qualitative, but not accurate 

quantitatively. We therefore anticipate that with few iterative rounds of ‘knowledge gap 

filling’, together with the mechanisms that we are currently incorporating in the model, 

this one can be used to make accurate and reliable predictions that can have an impact 

in the field of synthetic biology. 

 

3.7. Author contributions 

The M. pneumoniae WC model was developed in collaboration with Jonathan R. Karr 

(Icahn School of Medicine at Mount Sinai) and Markus W. Covert (Stanford University). 

VLR, JRK, MLS and LS compiled the experimental data and reconstructed the 

modeled species, reactions, and parameters. JRK constructed the model. VLR 

simulated the model at the CRG cluster facility. A second version of the model is 

currently under development. 
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    "We now possess enough reliable data to conclude that 

the world is certainly much stranger than expected" 

Joseph Rain 

 

 

7.1. Abstract 

Determining the gene regulatory network is basic to have a global understanding of cell 

behavior. In general, studies of transcriptional regulation are limited to the annotated 

transcription factors (TFs), obviating other non-canonical regulators, or even unknown 

key players. Here, we describe the first systematic analysis of the protein-DNA 

interactome in a minimal bacterium, Mycoplasma pneumoniae. We have identified all 

potential DNA-binding proteins (DNABPs, 105 out of 689 annotated proteins) by DNA 

affinity chromatography, DNA pull-downs, and intact chromatin isolation. For each of 

them, together with some others added from the literature, we have determined their 

binding sites by ChIP-seq or biochemical assays. Also, we have studied the effect of 

overexpression and depletion of these putative DNA binding proteins by characterizing 

different M. pneumoniae strains using different ‘omics’ approaches. Strikingly, we found 
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new moonlighting functions for highly conserved proteins, that show DNA binding 

properties as well as other activities, like proteases and metabolic enzymes. 

Interestingly, for the majority of the proteins analyzed, we found no transcriptome or 

growth phenotype upon overexpression (64.8%, 81 out of 125 proteins with both 

experiments). This is indicative of the robustness of the system, despite its simplicity. 

This integrative approach revealed that metabolic control is a key regulatory element, 

highlighting a non-TF factor layer of regulation in bacteria. This layer would include, but 

is not limited to, the role of supercoiling and the genomic context, the RNA structure, 

forming riboswitches or condition-dependent terminators, the RNA regulated decay, 

and the abundances of certain metabolites.  

 

7.2. Introduction 

Unveiling the gene regulatory network (GRN) of an organism is the first and most 

important step to understand its physiology. Current studies focus on the search of 

protein-based regulatory factors. Such studies rely on genome annotation and 

comparative sequence analysis (421, 422). The individual or systematic analysis of the 

genes targeted by these proteins, the so-called regulons, can be done using bottom-up 

approaches (183, 423). This approximation has a strong limitation, due to the fact that 

many transcriptional regulators might not have been described/annotated yet, and 

there are many non-canonical regulators, such as metabolic enzymes (424, 425) or 

even structural proteins (Nucleoid Associated Proteins, NAPs; (426)) with dual roles 

that are usually not included in such studies. 

Moreover, it is not clear if all transcriptional regulation in a bacterium is dependent only 

on classical TFs. Even in the case of well-studied bacterial models, such as 

Escherichia coli or Bacillus subtilis, less that 40 and 25% of the genes, respectively, 

are regulated by TFs (427–429). This is even more remarkable in streamlined 

genomes such as endosymbionts (430). Another player in transcriptional regulation are 

small RNAs, although their role in transcriptional regulation is still controversial (400, 

401). Indeed, a systematic study by our group has strengthened the hypothesis that 

many antisense RNAs detected by RNA sequencing are the result of spurious 

transcription (see Chapter 6; (431)), and lack a regulatory function. Nevertheless, even 

if some of them have regulatory roles, their expression must be also tightly regulated. 
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As bacteria rely on metabolism to adapt to many environmental stimuli, cell signalling is 

related in many cases to small metabolites and second messengers (432). Therefore, 

the overall physiology, growth rate or metabolic status of the cell can also be major 

contributors to transcriptional regulation (433, 434). Some of these regulatory 

mechanisms occur at the level of the RNA polymerase, such as the regulation by the 

alarmone (p)ppGpp (435), or the regulation of the transition from closed to open 

transcription complex by the concentration of certain NTPs (436, 437). 

Genome organization also plays a role in gene regulation. Recently, our group has 

inquired the role of genomic organization in gene co-expression (23). We found that the 

degree of transcriptional co-expression between co-directional adjacent genes is tightly 

related to their capacity to be transcribed en bloc, into the same mRNA via RNA 

polymerase read-through, requiring a revision of the operon concept. Additionally, a 

report considering evolutionary conservation or synteny also challenges this concept 

and suggests that local domains can share a TF regulation even if not all the genetic 

components bear a binding site (438). Besides the linear organization of genes along 

bacterial chromosomes, the three dimensional structure of the chromosome may play a 

regulatory role. The chromosome structure of various bacteria has been elucidated, 

and the presence of ‘chromosome interacting domains’ or CIDs, with a role in 

transcriptional coordination has been pointed out ((439), Trussart et al, under review). 

Factors such as structural proteins and NAPs provide an additional regulatory level by 

influencing DNA topology (440, 441). DNA supercoiling also plays an important role in 

transcriptional regulation (442).  

Besides, transcription termination attenuation by riboswitches and rho-independent 

terminators plays also an important regulatory role in many bacteria (89, 90). Finally, 

regulation of RNA half-life by bacterial RNAses could alter RNA levels without 

interfering in the transcription process. The RNA degradosome complex may contain 

different subunits depending on the metabolic status of the cell, changing the specificity 

for certain transcripts (120, 121).  

With so many regulatory levels, the exact contribution of TFs to gene regulation has 

still to be clarified. Importantly, although many of these factors contributing to 

transcriptional regulation have been individually analyzed, the quantitative contribution 

of all these factors to the global transcriptional control and their hierarchy has not been 

addressed in bacteria yet. 
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M. pneumoniae has become a model organism in the study of minimal cells. This 

bacterium has undergone massive genome reduction due to its parasitic lifestyle, and it 

is thought to have maintained only the basic machinery to sustain autonomous life (73). 

Regarding transcription, it was long believed to have little regulation. It was even 

postulated that transcription would happen in an autonomous non-regulated manner, 

due to their low GC content (443). This was supported by the first genome annotation, 

that showed a lack of alternative sigma factors, low conservation of promoter regulatory 

regions and the presence of only a handful of canonical TFs. This was also consistent 

with the observation that cells living in an uniform environment have simpler and less 

hierarchical GRNs (444–446). Nevertheless, recent studies have suggested 

transcriptional responses equivalent to those of more complex microbes, even in the 

absence of the cognate regulator, such as the SOS response (72). Moreover, the 

variety of phenotypes observed cannot be explained only with the annotated TFs (72, 

249), and suggests hidden layers of regulation, and/or a limited knowledge of the real 

effectors. In this respect two recent works have shown the presence of an alternative 

sigma factor in M. genitalium (MG_428) that activates the recombination machinery 

(255, 447), and is similar to MPN626 in M. pneumoniae. 

Here, we have analyzed the transcriptional regulation of M. pneumoniae in a global, 

comprehensive manner to define the extent to which all the factors enumerated above 

determine transcription regulation. We have used classic methodologies such as DNA 

affinity chromatography and chromatin isolation to determine the entire protein-DNA 

interactome in an unbiased manner. With these approaches, we have identified 105 

putative DNA binding proteins, and we have also considered the regulators annotated 

in the genome or described in other studies. We have characterized their function by 

overexpressing each of these proteins, and also in some cases by generating dominant 

negative mutants or using transposon insertion mutant strains. For those that exhibited 

DNA-binding properties or were annotated as DNA-binding proteins, we have identified 

their binding sites by chromatin immunoprecipitation and sequencing (ChIP-seq). 

Besides the ChIP-seq experiments, we performed a protein occupancy display (POD) 

experiment, and observed that, of all binding sites observed in our experiments, only 

22% were covered only in the POD and not by any protein in our study. This 

demonstrates a large coverage of all the DNA-binding proteins in this bacterium. 

Furthermore, we have analyzed the changes in RNA and/or protein expression, as well 

as phenotypic changes in the growth rate.  
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Using this approach, we have identified 9 canonical TFs, and we have annotated their 

targets and their binding sites. We have also defined the targets for 30 regulators (that 

do not bind DNA directly). Moreover, we have combined the regulon information of TFs 

and regulators with the stress responses of M. pneumoniae to 111 different 

perturbations. We can thereby hypothesize on the involvement of the TFs in a 

particular response. Furthermore, we have discovered or validated 8 structural 

proteins, some of them involved in cell division (NAPs, (448)). Importantly, the majority 

of candidates validated by transcriptomics and growth rate measurements (55.88%; 76 

out of 136) do not present any phenotype, indicating the robustness of the cell to such 

changes.  

Overall, we can only associate a maximum of 50% of the expression variability in 

perturbation experiments to bona fide TFs and regulators, yet we have observed that 

experimental noise causes an underestimation of this value. The remaining variance 

may be related to the genome and chromosome organization, supercoiling, 

riboswitches, rho-independent terminators and specific NTP concentrations that are 

determined by the metabolic and growth status of the cell. This indicates that ancient, 

basal mechanisms of regulation exist and are revealed by the relative low complexity of 

this gene regulatory network. 

 

7.3. Results 

DNA-protein interactome comprises 105 preliminar candidates 

M. pneumoniae has a reduced set of transcriptional regulators when compared with 

other species, even in percentage to the genome size (449). We had previously 

reported an initial characterization of some of the bona fide annotated regulators, but 

found few targets regulated by them (72). However, that same study indicated the 

existence of a variety of regulatory responses, exemplified in various gene expression 

clusters that could barely be explained by a handful of TFs (249). This prompted us to 

expand our view and undertake non-biased approaches. We re-examined the genome 

annotation seeking for all TF candidate proteins (see Table S1 and Figure 7.1). We 

were able to identify possible candidates, including new putative TFs, structural 

DNABPs or moonlighting proteins such as metabolic enzymes or even proteases. 
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Figure 7.1.  Scheme depicting the identification, validation and characterization 
of the candidate DNABPs. To reconstruct the DNA-protein interactome and the gene 
regulatory network of M. pneumoniae, first all candidate DNABPs were identified using 
a variety of mechods, including DNA affinity chromatography, chromatin isolation and 
protein-DNA cross-linking. Candidates reported in the scientific literature or given by 
the genome annotation were also included in the study. Candidates were either 
overexpressed or knocked-out by transposon insertion, and sometimes, dominant 
negatives were also overexpressed in M. pneumoniae. The strains generated were 
characterized by different omics to assess the function of each DNABP. 
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To confirm these candidates and find novel ones, we performed DNA affinity 

chromatography followed by mass spectrometry. As expected, with this technique we 

recovered all known TFs, the basic DNA replication and repair machinery, as well as 

the whole RNA polymerase (RNAP) complex, validating this methodology to identify 

DNABPs. However, RNA binding proteins were also detected, indicating that our 

approach cannot well distinguish between RNA- and DNA-binding proteins, or that 

some RNA-binding proteins have true moonlighting functions. Similar results were 

found after protein crosslinking and pull-down using selected DNA sequences from M. 

pneumoniae (Table S2), and by means of a biochemical fractionation using a sucrose 

gradient to isolate chromatin with all bound interactors. 

We then calculated ROC curves using a predefined gold set of DNA- and RNA-binding 

proteins (Table S3), to set a threshold for each experiment that allowed identification of 

true DNABPs. With the results of this analysis, we established a consensus of putative 

DNABPs (Table S4), which includes all known TFs, DNA structural and replication-

associated proteins, the RNAP complex, as well as previously described moonlighting 

proteins like the Leu and Lon proteases (450, 451), metabolic enzymes (452), and new 

putative DNA binding proteins. In total, this consensus of DNABPs is composed of 105 

possible candidates. From this list, we removed DNA replication proteins, and 

additionally, for those cases in which several members of the same protein family were 

identified, we kept only one of them. We also added other proteins not passing our 

filters but reported as DNABPs in previous studies in M. pneumoniae or other bacteria, 

as some transcription factors are expressed in a transitory manner (i.e. MPN626, an 

alternative sigma factor) and they would not be identified in our previous experiments 

(447). Table 7-1 shows the final list of all proteins included in the screening 

 

Table 7-1. Final list of candidates characterized in our study 

Candidate Growth curve Transcriptomics ChIP-seq Candidate Growth curve Transcriptomics ChIP-seq 

MPN002 Yes Yes Yes MPN329 Yes Yes Yes 

MPN004 Yes Yes Yes MPN330 Yes Yes Yes 

MPN015 Yes No Yes MPN332 Yes Yes Yes 

MPN020 Yes Yes Yes MPN348 Yes Yes Yes 

MPN024 Yes Yes Yes MPN349 Yes Yes Yes 

MPN027 Yes Yes No MPN352 Yes Yes Yes 

MPN030 Yes Yes Yes MPN368 Yes Yes Yes 

MPN032 Yes Yes Yes MPN372 Yes Yes No 

MPN038 Yes Yes Yes MPN397 Yes Yes Yes 
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MPN051 Yes Yes Yes MPN400 Yes Yes Yes 

MPN055 Yes Yes Yes MPN401 Yes Yes Yes 

MPN063 Yes Yes Yes MPN420 Yes Yes Yes 

MPN064 Yes Yes Yes MPN421 Yes Yes No 

MPN067 Yes Yes Yes MPN424 Yes Yes Yes 

MPN069 Yes Yes Yes MPN426 Yes Yes Yes 

MPN076 Yes Yes No MPN428 Yes Yes Yes 

MPN077 Yes Yes No MPN430 Yes Yes Yes 

MPN081 Yes Yes Yes MPN440 Yes Yes Yes 

MPN082 Yes Yes Yes MPN443 Yes Yes Yes 

MPN106 Yes Yes Yes MPN446 Yes Yes Yes 

MPN114 Yes Yes No MPN473 Yes Yes Yes 

MPN122 Yes Yes Yes MPN475 Yes Yes Yes 

MPN124 Yes Yes Yes MPN478 Yes Yes Yes 

MPN127 Yes Yes Yes MPN481 Yes Yes Yes 

MPN133 Yes Yes No MPN482 Yes Yes Yes 

MPN140 Yes Yes Yes MPN484 Yes Yes No 

MPN148 Yes Yes Yes MPN485 Yes Yes Yes 

MPN154 Yes Yes Yes MPN487 Yes Yes Yes 

MPN159 Yes Yes Yes MPN490 Yes Yes Yes 

MPN164 Yes Yes Yes MPN499 Yes Yes Yes 

MPN165 Yes Yes Yes MPN507 Yes Yes Yes 

MPN166 Yes Yes Yes MPN516 Yes Yes Yes 

MPN168 Yes Yes Yes MPN518 Yes Yes Yes 

MPN173 Yes Yes Yes MPN525 Yes Yes Yes 

MPN178 Yes Yes Yes MPN526 Yes Yes Yes 

MPN191 Yes Yes Yes MPN529 Yes Yes Yes 

MPN192 Yes Yes Yes MPN545 Yes Yes No 

MPN194 Yes Yes Yes MPN547 Yes Yes Yes 

MPN197 Yes Yes Yes MPN549 Yes Yes Yes 

MPN208 Yes Yes Yes MPN554 Yes Yes Yes 

MPN222 Yes Yes Yes MPN555 Yes Yes Yes 

MPN223 Yes Yes Yes MPN559 Yes Yes Yes 

MPN229 Yes Yes Yes MPN563 Yes Yes Yes 

MPN239 Yes Yes Yes MPN566 Yes Yes Yes 

MPN241 Yes Yes Yes MPN568 Yes Yes Yes 

MPN243 Yes Yes No MPN569 Yes Yes Yes 

MPN244 Yes Yes Yes MPN572 Yes Yes Yes 

MPN246 Yes Yes No MPN574 Yes Yes Yes 

MPN247 Yes Yes Yes MPN576 Yes Yes Yes 

MPN248 Yes Yes Yes MPN590 Yes Yes No 

MPN250 Yes Yes Yes MPN606 Yes Yes Yes 

MPN252 Yes Yes Yes MPN608 Yes Yes Yes 

MPN255 Yes Yes Yes MPN615 Yes Yes Yes 

MPN265 Yes Yes Yes MPN617 Yes Yes Yes 
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MPN266 Yes Yes Yes MPN621 Yes Yes Yes 

MPN269 Yes Yes No MPN626 Yes Yes Yes 

MPN273 Yes Yes Yes MPN627 Yes Yes Yes 

MPN275 Yes Yes Yes MPN633 Yes Yes Yes 

MPN280 Yes Yes Yes MPN634 Yes Yes Yes 

MPN284 Yes Yes No MPN635 Yes Yes Yes 

MPN287 Yes Yes Yes MPN638 Yes No Yes 

MPN294 Yes Yes Yes MPN663 Yes Yes Yes 

MPN295 Yes Yes Yes MPN667 Yes Yes Yes 

MPN300 Yes Yes Yes MPN673 Yes Yes Yes 

MPN301 Yes Yes Yes MPN674 Yes Yes Yes 

MPN303 Yes Yes Yes MPN677 Yes Yes Yes 

MPN314 Yes Yes Yes MPN683 Yes Yes Yes 

MPN315 Yes Yes Yes MPN686 Yes Yes Yes 

MPN316 Yes Yes Yes 
    

 

Physical genomic interactions by ChIP-Seq 

To characterize the DNA-binding properties of the identified putative DNABPs (Table 

7-1), the genomic regions recognized by them were identified by ChIP-Seq. To discard 

tag-artifacts, N- and/or C-terminal tagged forms of some of our protein candidates were 

expressed in M. pneumoniae. As positive control, ChIP-seq analysis was performed 

from four M. pneumoniae strains expressing RNAP subunits (RpoA and RpoB), as well 

as of the σ70 and the RNAP associated transcriptional regulator Spx (MPN266; (453)). 

As expected, these proteins were mainly bound to promoter regions. To assess the 

technique reproducibility, the ChIP-seq experiments were duplicated for a number of 

known DNABPs (MPN352, σ70; MPN686, DnaA; MPN266, Spx) revealing quasi 

identical ChIP-seq profiles in both replicates, with correlations up to R=0.9 between 

replicates (Figure S1). 

To assess our coverage of the protein-DNA interactome, we performed protein 

occupancy display (POD) experiments at 6 and 96h (exponential and stationary growth 

phases). In these experiments we identify all the chromosome regions bound by any 

protein, regardless of which. We compared the DNA regions bound in these 

experiments with the peaks from all our ChIP-seq experiments, and observed that 78% 

of the total protein-bound regions was covered by ChIP-seq and POD simultaneously, 

or by ChIP-seq only. This demonstrates a high coverage of all the DNA-binding 

proteins in M. pneumoniae. The regions not covered in our ChIP-seq analysis could 

correspond to DNA protected sites only at specific growth phases (not all experiments 
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were performed at both 6h and 96h), to proteins forming part of complexes that bind 

DNA indirectly, or more interestingly, to DNA binding sites of small proteins (smORFs). 

These proteins, recently described in M. pneumoniae, were not included in our study. It 

has been shown that some of these smORFs can bind DNA (73). Also, we may have 

missed binding sites of structural proteins like the ones forming the attachment 

organelle of M. pneumoniae or its cytoskeleton, as we did not explore all of these 

proteins systematically. 

Also, to study possible DNA binding changes during the growth phase, different time 

points (exponential growth (6h) and stationary phases (96h)) were studied for some of 

the candidate TFs. We could detect a redistribution of the RNAP and RNAP associated 

proteins  between 6h and 96h, with significant changes in the relative peak sizes 

(Figure 7.2). For instance, promoters with higher binding affinity for the RNAP at 6h, 

have higher RNA expression levels at 6h than at 96h (paired t-test, p-value=0.024). 

Similarly, promoters with higher binding affinity for the RNAP at 96h show higher 

expression levels at 96h (paired t-test, p-value=0.022) and they show a functional 

enrichment in COG category O, related to post-translational modification, protein 

turnover and chaperone functions (Fisher’s enrichment test, p-value=0.017). Similar 

results were found analyzing other RNAP associated proteins such as σ70 and Spx. 
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Figure 7.2. Changes in ChIP-seq of the RNA polymerase. Relative changes of 
promoter occupation of the alpha subunit of the RNA polymerase between 6h and 96h. 
For three consecutive genes, MPN331, MPN332 and MPN333, we can see 
polymerase occupationat their promoters at 6h. However, at 96h the promoter of 
MPN331 is no longer occupied by this protein, and the relative affinity for the promoters 
of MPN332 and MPN333 has changed, resulting in changes in the relative heights of 
the peaks. 

Out of 194 ChIP-seq experiments of 123 candidates in different conditions (Table S5), 

we could detect binding for 83 experiments (42.78%)., as well as for the sigma factor 

and the RNAP polymerase. Out of these, 51 candidates did not show apparent specific 

binding with unique peaks (Table S6). The remaining 32 show at least some unique 

peaks, either associated to the RNA polymerase (putative TFs) or not (putative 

structural). For 9 experiments, the pattern was unclear between structural or TF-like. 

Regarding the structural proteins, in some cases, we detected few peaks and a rather 

specific binding to a broad region. An example of this is the Smc (Structural 

Maintenance of Chromosomes) protein which binds to the origin of replication, together 

with the complex formed by ScpA and ScpB ((454) and Figure 7.3).  
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For some proteins shown to bind DNA in other organisms and appearing as DNA-

binding in our screening, like the leucine aminopeptidase (Leu, MPN572), we could not 

identify any specific chromosomal binding site, probably because they do not have a 

high sequence specificity (though we cannot exclude that the added tag is somehow 

affecting DNA binding, or that they bind DNA only under specific conditions). Other 

reasons why we could not find any DNA binding target for the remaining proteins are 

that either they may be false positives, they bind RNA or they need to form a complex 

to bind DNA. 

 

Figure 7.3. ChIP profile of different structural proteins from M. pneumoniae. 
Circos plot showing the ChIP-seq profile of 4 structural proteins. Smc, ScpA and ScpB 
have been shown to bind the Ori in other bacteria, something that is also observed in 
M. pneumoniae. Furthermore, we have found an enrichment for PhoU binding in the 
Ter region of the chromosome. 
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Regulatory roles of putative DNABPs 

To study if physical interactions play a role in the regulation of gene expression, we 

analyzed the effect of the over-expression of these genes on transcription, and growth 

phenotype (Table S7), by means of microarrays and/or RNA-seq, and growth kinetics. 

In some cases, mass spectrometry was performed to study changes in the proteome to 

corroborate the results from transcriptomics at the protein level. It is important to note 

that in the overexpression experiments we are studying pools of transposon mutants to 

avoid the effect of the transposon insertion site. No preferential insertion sites were 

detected for any of the studied genes, and thus we do not expect any bias or artifact 

regarding the experimental setup. We confirmed the exogenous expression of the 

proteins by Western Blot, mass spectrometry and deep sequencing and/or microarrays. 

In most cases, we could see a good correlation between changes in RNA expression 

and protein levels of the candidate gene (Figure S2). However, there were some 

notable exceptions to this: for instance, for the gene encoding for the alternative sigma 

factor, MPN626 (255, 447), the amount of protein was much smaller than the increase 

in RNA levels, corroborating its predicted toxicity. In total, we performed 196 gene 

expression experiments covering 136 genes, and we profiled their transcriptomes by 

microarrays or RNA-seq. The majority of these experiments focus in the 

overexpression of putative TFs. However, for some non-essential DNA-binding proteins 

(73), transposon insertion mutants disrupting the gene of interest were isolated from 

the pools. Finally, for some essential putative TFs that did not show a transcription 

phenotype under the conditions tested, we introduced point mutations to create 

dominant negatives, or to constitutively activate their functionality. These mutations 

were designed using information from the literature, or by structural analysis of 

orthologs in other organisms (Figures S3-S9). For some predicted TFs, we could not 

detect specific ChIP-seq peaks or changes in the transcriptome when expressing N- 

and C-terminal flagged proteins. In those cases, we expressed the proteins without an 

epitope, which prevented doing ChIP-seq but could reveal their targets in 

transcriptomics experiments. This is the case for the known transcription factors GntR 

and the alternative sigma factor MPN626.  

Out of the 196 experiments performed (Table S8), only 71 showed significant changes 

(36.22%). For some putative TFs for which we had several experiments run at the 

same time point, we calculated a consensus among all the available experiments, to 

obtain a unique result for each candidate at each growth stage (see Methods). In 
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exponential growth (6h), we could detect significant expression changes in 51 

experiments (out of 175), corresponding to the genetic perturbations of 37 candidates 

(Table 7-2). Of these, 25 experiments affected a reduced number of genes, which in 

some cases were also found as targets of the putative TF by ChIP-seq analysis. The 

remaining 26 experiments showed major perturbations (>20 genes significantly 

changing expression). For the remaining experiments we could not detect significant 

transcriptional changes in the conditions tested.  

 

Table 7-2.  Summary of the results of all transcriptomics experiments 

Experiments Growth phase Changes 

196 experiments 

Exponential: 175 experiments (133 candidates) 

25 changes 

26 major changes 

124 no changes 

Stationary: 21 experiments (13 candidates) 

4 changes 

16 major changes 

1 no changes 

 

Interestingly, we observed changes in 20 out of 21 experiments performed at stationary 

phase. In 7 of these experiments, we could see significant alterations at 24, 48 or 96h 

of growth but not in exponential growth (6h). However, in these cases it is difficult to 

determine which changes are specific and which ones are due to changes in growth 

rate with respect to the control. We assessed the phenotypic effects in growth rate by 

determining growth curves of the different strains and measuring their growth rates. In 

total, 220 growth curve experiments were performed, corresponding to genetic 

perturbations of 139 genes. 46 of them (20.9%) showed a differential growth 

phenotype, whilst the remaining 174 did not show changes respect to the controls. 

These percentages are similar to those found in the gene expression experiments (see 

above). This suggests that, despite its apparent simplicity, M. pneumoniae is a rather 

robust biological system. Indeed, it seems that overexpressing a variety of genes does 

not produce a detrimental metabolic load (455), this only occurring in a minority of 

cases. 
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From data integration to network reconstruction 

To reconstruct the gene regulatory network of M. pneumoniae, we combined our 

results from the ChIP-seq and the transcriptomics experiments. According to the 

results of these, we classified all the studied proteins in four different groups: TFs, 

those that show specific changes in both ChIP-seq and transcriptomics experiments, 

with common targets in both; regulators, those proteins that show specific changes in 

their transcription phenotype but no specific target in ChIP-seq; structural proteins, 

those proteins with specific peaks with a common motif in ChIP-seq, but no changes in 

transcription; and non-specific proteins, that do not show specific targets in any of the 

experiments. This classification was refined manually, and we added the category 

RNAP-like, to include those proteins forming part of the RNAP complex. The full 

classification can be found in Table S9.  

By combining the information of the transcriptomics and the ChIP-seq experiments, we 

extracted motifs for each of the proteins classified as TFs. The motifs were used to 

curate the results, by discarding false positive targets without the motif, or adding new 

targets with the motif that did not pass the different filtering thresholds applied in the 

global analyses (see Methods). For the TFs DnaA (MPN686), Fur (MPN329) and HrcA 

(MPN686), we could extract a motif from the ChIP-seq data. The binding motifs for 

GntR (MPN239) and the alternative sigma factor (MPN626) were determined using 

their targets from the transcriptomics experiments. Finally, WhiA (MPN241) and 

MPN424 only have one target, corresponding to a distinct ribosomal operon regulated 

by each of them. Thus, we extracted a motif with a comparative analysis of the 

promoter region of the target operon of each TF in several bacterial species, using 

MEME (381). For the transcriptional regulator Spx (MPN266), no motif was found in 

this analysis, as the ChIP-seq results showed that this regulator appears to bind the 

RNAP complex, as described in other bacteria (456), and differential regulation may 

only occur with a change in conformation or oxidation state. Figure 7.4 shows the 

targets regulated by the different ‘bona fide’ TFs after the analysis, and the motifs 

found for each of them.  



 

136 

 

Figure 7.4.  Targets and DNA-binding motifs for 7 out of the 9 proteins classified 
as transcription factors. Other known TFs, such as SigA as Spx, were classified also 
as RNAP-like as they bind the RNA polymerase complex and appear in the majority of 
promoters of M. pneumoniae. Arrows indicate activation, whilst T-shaped symbols 
indicate repression. Motifs were identified for all 7 TFs using the ChIP-seq and/or the 
transcriptomics targets and, in some cases, by comparative analysis with other 
bacterial species. 

 

Regulators are an interesting group of proteins. For these, no specific DNA binding 

sites or motifs have been found by ChIP-seq, yet their overexpression or disruption by 

transposon insertion produces a clear phenotype in transcription. These proteins may 

act in signaling or metabolic pathways, and they should be linked either to a TF or to a 

different transcriptional regulatory mechanism, such as a riboswitch or the differential 

concentration of a metabolite. They could also function by binding TFs and 

sequestering them, preventing their binding to their target regions. We classified 30 

proteins as regulators in M. pneumoniae. 

Finally, among the structural proteins we found some that bind to a specific sequence 

motif rather than a broad genomic region. These proteins are DnaA (MPN686, also a 

TF in our analysis), MraZ (MPN314, which can also act as a TF; (457)) and a putative 

single strand binding protein (SSB, MPN554). For each of these, we identified their 

corresponding binding motif in our ChIP-seq analyses (Figure 7.5). Interestingly, for the 

DnaA protein we found peaks located in methylation-enriched regions in the 

chromosome of M. pneumoniae. We had previously hypothesized that these regions 

could act as checkpoints for DNA replication (41). In our analysis we found other 

structural proteins, such as the condensin complex formed by the proteins Smc, ScpA 
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and ScpB. For these we did not identify a specific binding motif, but rather found 

binding to broader regions of the chromosome, specifically the origin of replication. 

Another protein, PhoU (MPN608), showed preferential binding for the Ter region of the 

chromosome of M. pneumoniae (Figure 7.3). The histone-like protein Ihf (Integration 

host factor, MPN529) did not show many specific peaks but rather a non-uniform 

binding in broad regions of the chromosome of M. pneumoniae, as described in other 

bacteria. The only conserved peaks across the replicates of this TF showed a common 

TG-rich motif (Figure 7.5). 

 

Figure 7.5. Structural DNABPs in M. pneumoniae with a defined ChIP-seq binding 
motif. A motif could be assigned to 4 out of the 8 structural proteins classified as such 
in M. pneumoniae: DnaA, MraZ, SSB and Ihf.  

 

Taken altogether, the gene regulatory network formed by 7 TFs (excluding the two 

RNAP-like transcription factors SigA and Spx) is rather small and encompasses only 

54 genes, which represent the 7.83% of the genome of M. pneumoniae. The targets of 

the TF Spx, which could be a major transcriptional regulator that binds the RNAP 

complex, have not been identified yet. Even so, the numbers contrast with those of 

other model organisms such as E. coli, with 208 TFs and over 3000 regulatory 

interactions (458). To further investigate if other layers of transcriptional regulation 
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exist, we performed a global correlation analysis of all the operons in M. pneumoniae, 

using 218 experiments of microarrays and RNA-seq (see Methods). Then, we 

constructed a network of operons, considering an edge in between any two operons 

with a global correlation higher than 0.5. We then clustered the network using the 

Girvan-Newman algorithm (459), that identifies groups of nodes that are highly 

interconnected and is included in the GLay plugin for Cytoscape (460). We identified 

meaningful clusters, as shown by the enrichment in different COG categories for many 

of them (Figure 7.6A). Interestingly, we could also identify correlations and 

anticorrelations between different clusters of the network. We find anticorrelations 

between clusters related to growth and those related to stress responses (for example, 

the cluster related to cell motility and that of amino acid metabolism have a negative 

correlation of -0.27). However, when superimposing the TFs to this network, the genes 

regulated are not always included in the same clusters (Figure 7.6B). This implies that 

there exists an underlying regulation layer in M. pneumoniae, not controlled by TFs, 

and that transcription factors (and regulators) act on top of this basal layers to regulate 

specific responses to certain stresses. Furthermore, not all operons are included in the 

network; there are operons that do not correlate with any of the clusters shown. This 

also points to the additional basal layers of regulation (23).  



 

139 

 



 

140 

Figure 7.6. Network of operon-operon correlations. (A) Network of correlations 
across 218 transcriptomics experiments. Edges indicate correlations above 0.5. 
Clusters of highly interconnected operons are depicted with different node colors. Black 
edges indicate intra-cluster connections, whilst grey edges indicate inter-cluster 
connections. Significant enrichment for COG categories has been annotated for 
different clusters. (B) Overlay of TFs and their targets in the network. 7 TFs (all 
identified in this study except for the RNAP-like factors SigA and Spx) have been 
added with links to their targets. Targets for these TFs tend to be spread in different 
clusters. 

 

Association of regulation to conditions: study of transcriptome changes in 

different perturbations  

To gain more insight into the upstream effectors regulating TFs and regulators, we 

performed a number of perturbation experiments in M. pneumoniae cultures. These 

perturbations span a range of conditions that this bacterium can find in its natural 

niche, the respiratory tract epithelium, but also others that can happen in in vitro 

conditions, as well as various drugs affecting biological functions. In total, 111 

experiments were performed that group into 42 different types of perturbations (Table 

S10). Some of these were performed both in wild-type M. pneumoniae and in strains 

with genetic perturbations (either overexpressing or having gene mutations). The 

results of the differential expression analysis of all these experiments can be found in 

Table S11.  

Our first interest was to know how perturbations are related to each other, to assess if 

the response of M. pneumoniae to conditions not encountered in nature is similar to 

that of natural perturbations, and to “decompose” complex phenotypes like the one 

observed at the stationary growth phase. To do so, we created a bipartite graph of 

perturbations and operons, with edges connecting each perturbation and its regulated 

operons. Then we computed the perturbation-projection of the graph, to find the links 

between perturbations that share one or more co-regulated operons. We only 

considered operons changing in the same direction (either up- or down-regulated) to 

compute this graph. To further constrain the network, we applied two different filters: 

first, we removed those edges between perturbations with a correlation smaller than 

0.3. Second, we applied an additional filter to remove those edges likely to be 

connected by chance (see Methods). Figure 7.7 shows the resulting perturbation 

network. 
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Figure 7.7. Network of perturbations. Edges are drawn between two perturbations if 
they share at least one gene in common, if the number of genes in common is hardly 
expected by chance (Probability<0.05) and if the expression changes between them 
are correlated (R>0.3).  

 

As expected, different perturbations related to glycerol metabolism appear together in 

the network, as well as heat-shock perturbations, or conditions related to starvation and 

DNA damage. Interestingly, we found that experiments on infection of different types of 

cell cultures showed different behaviors. For instance, infection of HeLa cells results in 

a transcription phenotype that resembles that of amino acid starvation and stringent 

response. However, infection of erythrocytes presents a different phenotype, that does 

not correlate with any of the other conditions tested. This methodology can be 

generalized and used to incorporate new experiments and identify easily their 

transcription signatures.  

Aside from identifying perturbations that are related to each other, we created a 

network of co-regulated operons in this set of experiments, and we assessed its 

similarity to the network created using only the genetic perturbations (putative TF 

overexpression and/or transposon insertions). To do so, we used the 111 initial 

experiments, and we discarded those experiments leading to global RNA degradation, 
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such as glucose starvation and supercoiling inhibition by novobiocin. These 

experiments result in a general decrease of the total RNA and this effect may mask the 

underlying regulation. Indeed, a Principal Component Analysis (PCA) showed that the 

first principal component is dominated by experiments in which RNA degradation is 

involved, explaining 21.82% of the variance in the samples. After discarding these, we 

obtained a dataset of 98 experiments. Again, we found meaningful clusters, as 

represented by the enrichment for different COG categories, and the superimposition of 

the TFs does not explain the groups encountered. 

We calculated the overlap of the two networks generated. Interestingly, they only share 

132 nodes (out of 221 nodes in the overexpression and/or loss of function network and 

231 nodes in the perturbation network). This suggests that, for a number of 

perturbations, the response observed is not mediated by transcription factors but by 

other mechanisms such as metabolite-based signalling, supercoiling, RNA 

degradation, and/or riboswitches. To further investigate this hypothesis, we combined 

the data from the different condition experiments with the data of genetic perturbations. 

To do so, we considered the 42 grouped conditions and the genetic perturbation 

experiments of the proteins classified as TFs or regulators (40 experiments, see Table 

S12). For each condition, we performed a regression analysis using random forests. 

We used the data on genetic perturbations to predict the expression levels of all the 

genes in that specific condition (see Methods). After running the random forest 

algorithm, we could estimate the percentage of the variance of the each condition that 

can be explained by TFs or regulators. Also, we can calculate the importance of each 

of these proteins for the prediction. Those proteins with higher importance will be 

directly linked to the transcription phenotype of that condition.  

The variance explained by TFs and regulators in any of the conditions tested is rather 

limited. This may be caused by the large experimental noise observed in our 

transcriptomics datasets, but undoubtedly indicates that some determinants of 

transcription are missing in this analysis. To prove that experimental noise is partly 

responsible for these low percentages of variance explained, we simulated an 

experiment overexpressing the Fur transcription factor. This was done by using the 

results of a real experiment and adding experimental noise to each gene. Noise was 

generated by sampling a normal distribution with mean equal to zero and a standard 

deviation equal to that of each gene, for all the genetic perturbation experiments. 100 

replicates were generated, which correlated well with the real experiment 

(R=0.754±0.018). Each of these replicates was merged with the entire genetic 
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perturbations dataset, and we then used the random forest algorithm to predict the 

values of the real Fur experiment using the rest of the experiments (including the 

simulated one) as variables. We expected that a large percentage of the variance of 

the real Fur experiment could be explained, mostly by the simulated dataset. However, 

we found that although the simulated experiment holds the largest importance values, 

the variance explained is of 58.66±1.436%. In the dataset without the simulated 

experiment, this value is equal to 42.53%. This means that the addition of the 

simulated experiment helps explain the transcription phenotype of the Fur experiment, 

but noise still is responsible for an important percentage of the unexplained variance. 

Considering that the experimental noise accounts for an important fraction of the 

variance, the largest percentage that could be explained corresponds to the growth 

condition, which compares wild type cells entering stationary growth phase (at 48h) 

with cells growing exponentially (6h). In this case, we could explain 49.89% of the 

variance only using the data from TFs and regulators. Interestingly, there are two 

experiments that have significantly higher importance in explaining this phenotype: the 

transposon insertion mutant of the lactate dehydrogenase (ldh, MPN674) gene, a 

regulator; and the overexpression of the GntR transcription factor (MPN239). It is 

known that during the transition from exponential to stationary phase in cultures of M. 

pneumoniae, the metabolism of this bacterium changes, transitioning from production 

of acetate to that of lactate. Thus, it is expected that the ldh gene plays a role in this 

transition. The TF GntR regulates genes related to lipid metabolism and lipoproteins, 

and could also be related to this phenotype.  

An interesting example is that of M. pneumoniae cells growing on glycerol. In nature, 

M. pneumoniae cells live on the respiratory tract epithelium and rely on lipids such as 

phosphatidylcholine to sustain growth (461), as M. pneumoniae has lost the metabolic 

pathways on lipids biosynthesis. Glycerol is essential for growth of M. pneumoniae in 

vitro, but in minimal concentrations (249). An increase in the concentration of glycerol 

produces large transcriptional adjustments and deficiencies in growth (Figure S10). To 

study these changes, we exposed M. pneumoniae cells to concentrations of 0.1% and 

1% of glycerol. We used both wild-type cells and strains deficient in genes known to be 

involved in glycerol metabolism: Tn:mpn051 (GlpD, converts glycerol-3-P in DHAP and 

produces H2O2), Tn:mpn223 (HprK, phosphorylates the protein Hpr at Ser-46, blocking 

glucose import) and Tn:mpn420 (GlpQ, converts glycerophosphocholine into glycerol-

3-phosphate and choline, (461)). Wild type cells incubated with glycerol showed the 

same behavior as two of the deletion strains, Tn:mpn051 and Tn:mpn223. This 
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indicates that the response to glycerol cannot be mediated by these proteins, or the 

metabolites they produce. However, the Tn:mpn420 strain growing on high glycerol 

concentrations showed significant differences with respect to the wild-type. The 

random forest analysis showed that in this case, the most relevant TF whose 

overexpression partly reproduces the effect of glycerol is a mutant of the transcription 

factor Spx (MPN266). Spx can sense redox stress via two cysteines that, when 

oxidized, form a disulfide bond (462). It binds the RNAP, and depending on the redox 

state of the cell, can change affinity for specific promoters (456). The mutant of this 

experiment lacks one of these cysteines (C21S, equivalent to C10S in B. subtilis; 

(456)) and thus cannot form this disulfide bridge, preventing activation. Our findings 

suggest that in this case, glycerol metabolism, probably via the GlpQ protein 

(MPN420), would change the redox balance of the cell, affecting Spx and therefore 

transcription. In the Tn:mpn420 strain, the redox balance is less affected and the 

phenotype resembles that of the Spx mutant. In fact, an analysis of the metabolic 

changes in cells exposed to glycerol showed similarities with the metabolome of cells 

exposed to oxidative stress. Nevertheless, in this case we can only explain 23.48% of 

the variance using the data on TFs and regulators, which suggest that other additional 

mechanisms participate in the glycerol response.  

Taken altogether, these results suggest that the global regulation of gene expression in 

the minimal bacterium M. pneumoniae is not only controlled by transcription factors but 

other mechanisms largely contribute to gene expression coordination. Some TFs, such 

as Spx, have essential roles in the response to oxidative stress and could be the major 

regulators in M. pneumoniae, but the effect of other TFs would be added on top of 

other basal mechanisms to control the response of specific sets of genes under certain 

conditions. 

 

Other factors that regulate transcription 

Our data showed clearly that the sole contribution of transcription factors and other 

protein-based regulators is insufficient to explain the responses of M. pneumoniae 

observed in different conditions. Therefore, we studied the putative contribution to 

transcriptional regulation of mechanisms other than TFs.  

Supercoiling: supercoiling may influence the accessibility of different promoters and 

thus modulate gene expression. Some promoters require a certain degree of 

supercoiling to be able to trigger transcription. To test the effect of supercoiling in 
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regulating gene expression, we treated cultures of M. pneumoniae with increasing 

concentrations of the antibiotic novobiocin (see Methods). Novobiocin is an inhibitor of 

the DNA gyrase, and thus causes an imbalance between the DNA gyrases and 

topoisomerases present in the cells, which ultimately alters the chromosome 

supercoiling (463). Upon this treatment, we observed that at high novobiocin 

concentrations, all RNAs present in M. pneumoniae decrease their concentration. This 

could be caused by an extreme change in the chromosome supercoiling, that provokes 

the release of the RNA polymerase, and prevents the formation of new initiation 

complexes, and arrests transcription, as occurring in eukaryotes (464). This was 

confirmed by performing ChIP-seq of the RNAP in cells treated with the drug, as no 

ChIP-seq peaks were observed in this experiment (Figure S11).  

At lower novobiocin concentrations, different behaviors coexist. The majority of the 

genes seem to be sensitive to the antibiotic, showing RNA decay at low concentrations, 

whilst others remain constant, or are upregulated at low novobiocin concentrations. A 

correlation analysis showed that we could distinguish up to 5 different global behaviors 

of genes in response to novobiocin (Figure 7.8A). By k-means clustering, we identified 

these 5 different behaviors and which genes are associated to each (Figure 7.8B-F). 

Interestingly, there is a group of genes that is upregulated at medium concentrations of 

novobiocin (Cluster 3). This cluster consists of 21 genes, and includes the operon of 

the DNA gyrase (MPN003-MPN004), confirming what has already been observed in 

other bacteria, that the gyrase operon is regulated by supercoiling (465). The majority 

of these genes are located in the region proximal to the origin of replication. 

Interestingly, this cluster is also enriched in genes of the COG category L, implied in 

replication and repair (Fisher’s enrichment test, p-value=9.47e-5). Supercoiling in this 

region is key to control the initiation of DNA replication in different bacteria, and this 

could therefore indicate a coupling between transcription and translation in M. 

pneumoniae (466). Besides, Cluster 1, which shows a decay even at low 

concentrations is enriched in genes related to three COG categories (M, N and V) 

related to membrane proteins and virulence (Fisher’s enrichment test, p-value < 0.05). 

In contrast, Cluster 4, which shows higher resistance to decay upon Novobiocin 

treatment, is enriched in genes related to the COG categories G and J, related to 

carbohydrate metabolism and translation (Fisher’s enrichment test, p-value < 0.05). 

This points to supercoiling as a key regulator of transcription, that could be playing a 

role in the transition of gene expression from growth- to stress-related genes. The 

classification of all the genes in M. pneumoniae in the 5 clusters can be found in Table 

S13. 
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Figure 7.8. Novobiocin titration reveals different patterns of responses to 
supercoiling. (A) A correlation analysis revealed the existence of different groups of 
genes with distinct behaviors in response to increasing Novobiocin concentrations. (B-
F) Behaviors of the 5 different clusters. 

 

Riboswitches: riboswitches are untranslated regions of a nascent transcript that can 

fold differentially upon certain conditions, such as the binding of a metabolite (89, 90). 

This differential folding can hide or expose transcription termination sites, or translation 

initiation regions, and thus affect those processes. Here, we focused on riboswitches 

regulating premature termination of transcription. To identify these riboswitches, we 

studied the profiles of RNA-seq experiments of M. pneumoniae in different conditions. 
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In total, 206 RNA-seq experiments on genetic or environmental perturbations were 

analyzed. For these experiments, we studied the region surrounding the annotated 

transcription start sites (TSS). We defined the region for the putative riboswitch as the 

first 150 bases after the TSS, coinciding with the average size of riboswitches 

described in bacteria (467). For each TSS in each experiment, we compared the 

expression levels of the candidate riboswitch region with the expression of the following 

300 bases (or with the rest of the gene in case it is shorter). We identified those cases 

in which the expression ratio riboswitch/gene was significantly higher than the average. 

Furthermore, we applied additional filters: first, the expression of the gene should be 

above a certain threshold, to avoid false positives due to the noise of the RNA-seq 

profiles. Second, the TSS should be active in the condition studied (i.e. the expression 

after the TSS should be significantly higher than the expression before). Third, each 

experiment was compared against its corresponding control. The ratio of expression 

riboswitch/gene should be different in the sample than in the control, to determine that 

in that specific condition the riboswitch was active.  

With this analysis, we identified 36 TSSs with a putative riboswitch that was 

differentially expressed in at least one of the 206 conditions tested. Table S14 shows a 

list of all the riboswitches found in these analyses, and the conditions in which they are 

active. Figure 7.9A shows an example of a riboswitch that spans the 5’UTR of the oppB 

gene (MPN215), and changes upon overexpression of the spoT gene (MPN397), in 

glucose starvation. The SpoT protein produces and degrades ppGpp in M. 

pneumoniae, the metabolite responsible for the stringent response to amino acid 

starvation in different bacteria (81, 87). The oppBCDF operon is involved in peptide 

import, deeming it reasonable to be regulated by a riboswitch in this condition. Indeed, 

this riboswitch shows a similar behavior in response to serine hydroxamate (Shx), a 

seryl-tRNA synthetase inhibitor, that causes stringent response (468). 

Other riboswitches are changing upon certain environmental perturbations. For 

example, a riboswitch located upstream the atpB gene, that encodes for a subunit of 

the F0F1 ATPase, changes its expression at high salt concentrations (Figure 7.9B). We 

used the Vienna RNAfold web server (469) to determine the secondary structures for 

these two riboswitches (Figure 7.9C-D) and their folding energies. 
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Figure 7.9. Riboswitches in M. pneumoniae. (A-B) RNA-seq profiles of two 
riboswitches in M. pneumoniae. Dashed lines indicate the transcription start site of the 
genes, whilst the green shaded area highlights the region of the riboswitch. Red lines 
represent the profile of the samples and blue lines represent the profiles of the controls 
(2 replicates each). (A) Riboswitch located upstream the oppBCDF operon. (B) 
Riboswitch located upstream the atpB gene. (B-C) Secondary structures of these two 
riboswitches in M. pneumoniae. Colors represent the probabilities of base pairing, from 
0 to 1. These secondary structures were computed using the RNAfold web server. (C) 
Secondary structure of the riboswitch found upstream the oppBCDF operon, ΔG=-42.4 
kcal/mol. (D) Secondary structure of the riboswitch located upstream the atpB gene, 
ΔG=-29.85 kcal/mol.  

 

Transcriptional read-through: we have recently described that there exists a basal level 

of transcription coordination, that is mostly determined by structural properties of the 

genome organization, such as intergenic distances or presence of strong terminators 

(23). We found that pairs of consecutive genes with an intergenic region smaller than 
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100 bps tend to have operon-like behaviors, co-transcribed in the same mRNA, and 

thus highly correlated. If the intergenic region is larger, the behavior of this pair of 

genes will depend on the structural properties of this region, and the trafficking of 

proteins (such as the RNAP) associated to it. According to this, we were able to 

classify pairs of genes in three groups: those with large probabilities of being co-

transcribed (with an operon-like behavior), those that can be co-transcribed only in 

some conditions, and those that will never be transcribed in the same mRNA. Overall, 

there is an intrinsic stochasticity in transcription initiation, with the the RNAP able to 

initiate transcription at multiple entry points of an operon and to override termination 

signals with different probabilities. These observations support the idea that the 

traditional operon concept should be revisited, as transcription units are far more 

dynamical entities than it was thought before.  

We became interested in the middle group, with pairs of genes co-transcribed only in 

certain conditions, as it represents a rather unexplored mechanism of gene expression 

regulation. We studied the transcriptional read-through (TRT), and in which conditions 

some termination signals could be overridden (23). Interestingly, we found that during 

cold shock, global TRT is enhanced in M. pneumoniae. In other bacteria, this has also 

been described as a consequence of the anti-terminator function of cold shock-

regulated proteins (102, 470).  

Regulation by metabolites and nucleotide concentrations: transcription regulation by 

different metabolites has been described in other bacteria. A classical example is that 

of (p)ppGpp, that is produced in response to amino acid starvation in bacteria (78). 

However, the response to this metabolite is mediated by a different mechanism in 

Gram negative and Gram positive bacteria. In E. coli, (p)ppGpp binds to the RNAP and 

competes directly with GTP to occupy the +1 position of different RNAs, such as the 

rRNA (80). In B. subtilis, however, (p)ppGpp does not compete for this position with the 

GTP. Instead, the production of (p)ppGpp uses GTP, decreasing its intracellular 

concentration. Thus, transcription initiation is stalled in those RNAs starting with this 

nucleotide (88). Therefore, nucleotide abundances can also regulate RNA production. 

In M. pneumoniae, as in B. subtilis, nucleotide abundances change depending on the 

growth phase. In exponential growth, GTP is more abundant, whilst in stationary 

phase, levels of GTP decrease. A comparative analysis of the rRNA promoters in B. 

subtilis, M. pneumoniae and its close relative M. genitalium revealed that the +1 

position is conserved among three species. Also, the +2 position is conserved between 

M. pneumoniae and M. genitalium. To investigate whether the concentration of GTP 
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may affect RNA levels, we analyzed the first 2 positions of all the RNAs in M. 

pneumoniae. We did not find any functional enrichment considering only the first base, 

but when considering the +1 and +2 positions, we found interesting results. For the 

initial dinucleotide “GC” we found an enrichment in the COG category J, related to 

translation (Fisher’s enrichment test, p-value=0.001). This finding fits with previous 

observations in other species such as B. subtilis, related to the response to amino acid 

starvation, affecting genes involved in the translation machinery (88). 

RNA degradation: finally, RNA homeostasis in the cell does not only depend on the 

regulation of transcript production, but also on the control of degradation. Indeed, we 

found that the first principal component of a PCA of the perturbation experiments was 

determined by degradation of RNA (see above). This is a highly regulated process, 

with a dedicated protein complex, the degradosome, whose composition may vary, 

changing its specificity for different transcripts (114). To study half lives of RNAs in M. 

pneumoniae, we used the antibiotic novobiocin, as we observed that at high 

concentrations, it produces a change in the supercoiling that releases the RNAP from 

the chromosome and therefore stops transcription. We treated M. pneumoniae cells 

with novobiocin, using the highest concentration from our previous titration 

experiments. At different time points (0, control; 2; 4; 6; 8; 10; and 15 minutes) of 

treatment, we extracted total RNA from these samples and performed RNA-seq. After 

calculating gene expression in each of the samples, we determined the concentration 

of RNA for each gene and fitted the RNA degradation to an exponential decay curve 

(see Methods). With this, we could determine the half life for the majority of RNAs in M. 

pneumoniae, after discarding the cases with a suboptimal fit (adjusted R-squared < 

0.6). The median half life of mRNAs in M. pneumoniae is around 5-6 minutes. We 

determined the RNA half lives in two growth stages: exponential and stationary phase. 

There was a general agreement in between both growth phases, but there were some 

notable differences: we identified a group of 25 genes with significantly larger half lives 

in exponential growth (5+ minutes longer in exponential than in stationary phase). 

Among these, we find 3 glycolytic enzymes (transketolase, MPN082; 

phosphofructokinase, MPN302; and pyruvate kinase, MPN303), and 6 genes related to 

translation (ribosomal proteins, tRNA synthases, etc.). Noteworthy, the 

phosphofructokinase (PFK) has been identified as one of the components of the 

degradosome in Gram positive bacteria, such as B. subtilis (119). Therefore, it could be 

involved in a regulatory feedback loop, controlling the degradation of its own mRNA 

and the mRNA of other glycolytic enzymes, as previously described for the enolase 

(114). 
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7.4. Discussion 

Transcription, as the first step involved in gene expression, is a highly regulated 

process. RNA levels must be tightly controlled and maintained in homeostasis, and 

should be able to respond rapidly to external perturbations.  

In model bacteria such as E. coli, more than 200 TFs have been described, together 

with 1999 regulatory interactions with strong evidence (from a total of 3231 total 

regulatory interactions) (458). Indeed, it has been stated that only 7 global regulators in 

E. coli account for the expression control of 51% of the genes in its genome (52). With 

such a large complexity in this layer, this has been the focus of numerous studies on 

transcription (471, 472), with less attention being paid to other regulatory layers. 

However, other mechanisms have been described that can regulate RNA levels in 

specific situations. For instance, riboswitches can act as sensors of different 

metabolites, regulating translation from specific RNAs or premature termination of 

transcription (89). Also, moderate changes in the supercoiling may expose or mask 

promoters, altering gene expression. This has been shown to depend on the spacing 

between the -35 and -10 promoter motifs in bacteria such as E. coli (465). Furthermore, 

recent studies have shed light on the importance of the dynamics of transcription units 

(473) and also on the role of small RNAs (sRNAs) in regulating RNA levels (393). 

Besides, regulation of transcript levels is not only determined by differential production, 

but also by their degradation rates, which are also regulated. The RNA degradosome 

composition can change depending on the growth phase or the external conditions, 

and thus it can change the specificity of the mRNAs being degraded to optimize 

translational resources (119).   

Here, we have studied several mechanisms involved in the regulation of this process in 

the minimal bacterium M. pneumoniae. For this bacterium, only 8 proteins had been 

previously annotated as putative transcription factors (72, 249), yet it displays complex 

transcriptional phenotypes in response to different perturbations. To study all the 

possible gene expression regulators in an unbiased manner, we used different 

methods to capture all the DNABPs in M. pneumoniae. We recovered 105 proteins as 

DNA-binding candidates, and we curated this list manually by discarding some proteins 

involved in DNA replication and adding others reported in previous studies of 

transcription regulation. To characterize all these candidates, we overexpressed each 

of them in M. pneumoniae cells. Some of them were also knocked-out via transposon 
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insertion, and for others, we overexpressed mutants acting as dominant negatives to 

study their function. The strains generated were characterized by assessing their 

growth phenotype and their transcriptome. Additionally, for the overexpressed 

candidates, we determined the DNA binding targets by ChIP-seq. 

After generating all the different M. pneumoniae strains, we observed that most of them 

did not show a growth or transcription phenotype, rendering this organism very robust 

to genetic perturbations. A reduced gene regulatory network, with 9 TFs and 30 

regulators identified in this study, and a streamlined metabolism, with few branching 

points, could be the reason of this robustness. These factors would limit the unwanted 

cross-talks occurring when overexpressing different genes. Also, the fact that the 

relative overexpression achieved is never very high, suggests that the small metabolic 

load imposed by these genetic perturbations is not detrimental to the cell. 

Regarding ChIP-seq, one of the most striking results was that many of the candidates 

did not present specific ChIP-seq peaks, or did not present peaks at all (110 out of 194 

experiments, 56.70%), whilst others present only a few of them with no common motif 

or apparent relationship. There is a variety of reasons why this can happen. First, it is 

possible that in our candidate identification we recovered some false positives, proteins 

that actually do not bind DNA. Also, some of these proteins may bind DNA but only in 

an indirect manner, through a protein complex. The addition of the tag in the 

overexpression of the protein may affect the formation of these complexes or even the 

direct binding of the candidate. Furthermore, proteins with disordered regions tend to 

be more sticky and bind other proteins in a non-specific manner. Overexpressing these 

proteins may lead to the formation of complexes with DNA-binding proteins and the 

recovery of false positive peaks. Indeed, we have observed the presence of ‘Phantom 

Peaks’ (187) in our experiments, coinciding with promoters of highly expressed genes. 

These phantom peaks can be the result of the overexpression of these disordered 

proteins binding the RNAP or the consequence of a low specificity of the antibodies 

used for the immunoprecipitation. All these effects, alone or combined, can mask the 

potential DNA-protein interactions, and require a custom-designed analysis to identify 

them.  

In this work, we identified 8 potential structural DNABPs, some of them binding to 

specific motifs, others to broader regions of the chromosome. We also identified 

several potential transcription factors, which were later corroborated or discarded using 

the information from the transcriptomics experiments. 196 genetic perturbation 

experiments were used to identify transcription factors and regulators. In combination 
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with the ChIP-seq experiments, we identified 9 TFs and 30 regulators. TFs were, in the 

majority of cases, validated by the ChIP-seq data. Among the TFs, we can distinguish 

at least one master regulator, Spx (MPN266). This master regulator would be implied in 

the response to glycerol, and linked to one of the regulators, GlpQ (MPN420). This 

regulator would be causing changes in the intracellular redox balance, which would be 

sensed by Spx via the formation of a disulfide bond. This conformational change in Spx 

would trigger its function as an activator, and would be regulating a large number of 

genes in M. pneumoniae. To verify our results about this TF, which are still preliminary, 

further data is required, including transcriptomics of cells expressing the dominant 

negative mutant of Spx in presence of glycerol. If our hypothesis holds true, we expect 

a phenotype similar to that of the tn:mpn420 in presence of glycerol. Other interesting 

TFs are WhiA (MPN241) and MPN424. We have only found one target for each of 

them. These two targets correspond to different ribosomal operons in the genome of M. 

pneumoniae. It is interesting that a bacterium with such a reduced genome and a 

simplified regulation maintains two different TFs to regulate two different ribosomal 

operons. 

Regulators are an interesting group of proteins. They exert an effect in the RNA levels 

of many genes, but in an indirect manner, as they do not bind DNA directly. Different 

mechanisms of action can be considered for these regulators. First, they can regulate 

gene expression via post-translational modifications. In M. pneumoniae, we have 

observed several transcriptional changes upon overexpression and/or knock-out of the 

protein kinase PrkC (MPN248) and the phosphatase PrpC (MPN247). These proteins 

control the balance of phosphorylation in the proteome of this bacterium, which has 

been shown to be key for the stability of these proteins (198). Altering the abundances 

and stability of proteins can affect the effectors of transcriptional regulatory circuits and 

ultimately affect RNA levels too. Second, they can affect RNA stability and structure 

rather than RNA production. In M. pneumoniae, we have observed drastic changes of 

RNA levels in the knock-out of the gene mpn545, which encodes for an RNase III. This 

RNase is involved in the processing of ribosomal RNA and some mRNAs. Third, they 

can exert their effect by changing the metabolic state of the cell. For instance, we have 

observed that the activity of the protein GlpQ (MPN420) in presence of glycerol may 

induce some oxidative stress, inducing a conformational change in the TF Spx 

(MPN266), ultimately regulating the expression of a number of genes. Also, the SpoT 

(MPN397) protein acts as a regulator, as the production of ppGpp in M. pneumoniae 

decreases the GTP concentration, affecting the transcription initiation rates of many 
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genes. Finally, regulators may form complexes with TFs that remain elusive because of 

experimental constraints such as the usage of a tag.  

After defining the role of our candidate DNABPs as TFs, regulators or structural 

proteins, we drafted the gene regulatory network of M. pneumoniae. To date, this 

network comprises 7 TFs and 54 genes in total (7.83% of the genome of this 

bacterium). This is opposed to the GRN of other model organisms such as E. coli, 

which accounts for the majority of genes in this bacterium (458). This observation 

suggests that some TFs may have been overlooked, or that other mechanisms 

controlling transcription may have a role that is more important than previously thought. 

Furthermore, after analyzing the transcriptome of M. pneumoniae cells under 111 

different environmental perturbations, we could not explain more than 50% of the 

variance of any of these experiments by using only TFs and regulators. It is possible 

that this percentage has been underestimated because of the large experimental noise, 

and the actual variance explained is expected to be higher. Nevertheless, these results 

point to additional systems governing control of RNA abundances in M. pneumoniae.  

Part of this non-assigned variance could be explained by other mechanisms as 

metabolites and riboswitches, supercoiling, and RNA degradation. We have described 

specific examples of each of these mechanisms in M. pneumoniae. However, further 

research is needed to understand to which extent is their contribution central to 

transcriptional regulation. One of the challenges to solve corresponds to the problem of 

parameterization of these variables. Experiments of transcriptomics with an expression 

value for each gene can be incorporated to our predictors in a straightforward manner. 

However, it is complicated to parameterize other factors involved in transcription such 

as riboswitches, which can be present or absent, and their behavior, which can be 

active or inactive in specific conditions. The same problem applies for the condition-

dependent RNA degradation, transcriptional read-through or supercoiling. 

Nevertheless, our preliminary results show that supercoiling could be one of the major 

regulators of transcription, with genes from different categories and functions showing 

distinct behaviors in response to various degrees of supercoiling. In contrast, 

riboswitches would have a smaller role, as they would be delimited to specific 

conditions, and RNA degradation would be dependent on the degradosome 

composition, changing according to the growth phase or in some perturbations. Other 

studies within our group have also assessed the role of genome organization in 

operons, and how they are affected by transcriptional read through (23) and the role of 

small RNAs ((431), see Chapter 6). 
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Here, we have shown that the control of RNA abundances in M. pneumoniae is not 

determined by a single regulatory layer, but that multiple processes in the cell intervene 

and there is feedback occurring among them. This suggests that genome-scale or 

whole-cell models will be required to integrate all these layers to fully understand 

transcription and to make reliable predictions of RNA levels upon different conditions. 

 

7.5. Materials and Methods 

Bacterial strains and cell cultures 

M. pneumoniae M129 strain (passage 33-34) was grown in modified Hayflick medium 

and transformed by electroporation with pMT85 transposon as previously described 

(249). The cell lines used in this study are detailed in Table S15. In general, proteins 

were flag-tagged (DYKDDDKG) in their N- or C-terminus, and expression was 

confirmed by Western Blot with M2 monoclonal anti-flag (Sigma). In some cases, when 

the tag was foreseen to interfere with the protein function, they were expressed 

without. In general, promoter from the tuf gene (MPN665) was used for 

overexpression, unless otherwise indicated (in the cases in which the protein was toxic, 

the endogenous promoter was used instead). Dominant negative mutants or deletions 

were done in some cases, as detailed in Table S15. In few cases, TAP-tagged clones 

from Anne-Claude Gavin’s collection (EMBL) were used (203). Transposon insertion 

mutants were obtained by haystack mutagenesis (474). 

 

DNA affinity column 

M. pneumoniae cells were diluted 1:10 in Hayflick and grown for 3 days at 37ºC in a 

300 cm2 flask. Cells were washed twice with ice-cold phosphate buffer saline (PBS), 

collected in 5 ml of lysis buffer (50 mM Tris·HCl, 1 M NaCl, 1 mM CaCl2, 1 mM EDTA, 

0.1% Triton X-100, 1 mM DTT, pH 8), and supplemented with a protease inhibitors 

cocktail (Roche). High salt was used to release the proteins from the DNA. Cell 

extracts were centrifuged during 30 min at 100.000xg and 4ºC (Beckman 

ultracentrifuge) and the soluble fraction was diluted 10 times with 50 mM Tris·HCl, 1 

mM CaCl2, 1 mM EDTA, pH 8 (to dilute out salt and detergent). A DNA-Cellulose 

column was compacted and assembled (2 g, Sigma) and run in Äkta Xpress (GE 

Healthcare) in equilibration buffer (50 mM Tris·HCl, 0.1 M NaCl, 1 mM CaCl2, 1 mM 
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EDTA, pH 8), before binding of the cleared cell lysate. After washing thoroughly with 

equilibration buffer, and was buffer (equilibration buffer plus 200 mM NaCl) nucleic acid 

binding proteins were eluted with 1 M NaCl in equilibration buffer, or 5 mg/ml yeast 

ribonucleic acid in TE (in order to elute proteins with affinity for RNA), and concentrated 

by TCA precipitation before submission for mass-spec identification (see below). A 

cellulose resin was used as a negative control for unspecific binding. 

 

Chromatin isolation  

We assessed DNA binding properties by ultracentrifugation employing a sucrose 

cushion following a previously described method (475) with modifications. Briefly, a 300 

cm2 flask was grow for 3 days and washed with PBS and lysis was performed using 2 

ml of lysis buffer (10 mM Tris·HCl, 1 mM EDTA, 1% Nonidet P-40, pH 8 plus protease 

inhibitor cocktail from Roche). In order to follow the chromatin, 0.2 µl of Sybersafe 

(Invitrogen) was added and 1 ml of lysate was loaded on top of a of 20%-40% sucrose 

cushion (in TE: 10 mM Tris·HCl, 1 mM EDTA). Chromatin was fractionated by 

ultracentrifugation in a Ti45 rotor (Beckman) at 30000 rpm and 4ºC for 18 hours and 

collected from the interphase with the help of a UV light. After pelleting it by 

centrifugation at 100000g for 1h, supernatant was discarded and the pellet was 

resuspended in digestion buffer (50 mM Tris·HCl, 0.3 M NaCl, 1 mM MgCl2, pH 7.5) 

plus 8U DNAse I (Ambion), for 1 hour at room temperature to release the DNABPs. 

After spinning down for 30 minutes at 14000 rpm at 4ºC in a table-top centrifuge, 

supernatant and pellet were analysed by SDS-electrophoresis. 

 

Chromatin immunoprecipitation 

Adapted from Buratowski’s lab (476). From a pre-culture, M. pneumoniae cells were 

split 1:10 in a 300 cm2-flask and grown for 4 days at 37ºC. When indicated (Table S7) 

cells were collected at this point (stationary phase), or they were scrapped and seed in 

40 ml fresh Hayflick in a 150 cm2 flask and incubated 6 hours more at 37ºC 

(exponential phase). Formaldehyde was added to 1% final (16% stock, Pierce) 

incubated for 10 min at room temperature and quenched by adding glycine to 100 mM, 

for 5 min at RT. Cells were washed twice with ice-cold PBS, scraped in 5 ml PBS and 

spun 5 min at 4ºC at 8000 rpm in a table-top centrifuge. The pellet was lysed by adding 

1 ml of FA lysis buffer (50 mM Hepes·KOH, 150 mM NaCl, 1 mM EDTA, 1% Triton X-

100, 0.1% sodium deoxycholate, 0.1% SDS, pH 7.5) plus a protease inhibitor cocktail 
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(Pierce) at 4ºC for 5 min. Chromatin was sheared by ultrasonication with Covaris 

(settings: Duty Cycle: 20%, Intensity: 5, Cycles/Burst: 200, Time: 15 min, Water level: 

15) to ~200 base pair fragments and cell debris were removed by centrifugation at 

16000g 10 min at 4ºC. Supernatant NaCl concentration was adjusted to 275 mM. 50 µl 

beads were preblocked with 0.5% bovine serum albumin (BSA) in PBS for 15 min at 

room temperature. Sepharose-protein-G was bound to either 10 µl of 1 mg/ml mouse 

IgG (control, Sigma), or 10 µl anti-Flag (M2 monoclonal) for Flag-tagged proteins. In 

the case of TAP-tagged proteins, 50 µl sepharose-IgG were used, and no control was 

included. Circa 0.5-1 mg chromatin per reaction was added and incubated over night at 

4 ºC. The following washes were done: 1x of FA wash buffer 1 (FA lysis buffer with 275 

mM NaCl), 1x with FA wash buffer 2 (FA lysis buffer with 500 mM NaCl), FA wash 

buffer 3 (10 mM Tris·HCl, 250 mM LiCl, 1 mM EDTA, 0.5% Nonidet P-40, 0.5% sodium 

deoxycholate, pH 8) and finally TE. Then, elute IPed material was extracted with 250 µl 

of FA elution buffer (50 mM Tris·HCl, 1% SDS, 10 mM EDTA, pH 7.5) and incubated 

10 min at 65ºC. The beads were added to a micro-spin column (Bio-Rad) in order to 

collect the beads death volume by centrifugation. Then, 5 µl of 20 mg/ml proteinase K 

was added to elute the samples, tubes were incubated 15 min at 55 ºC and 10 min at 

95 ºC before cooling at room temperature. To purify and extract the DNA, 

phenol/chloroform extraction protocol and ethanol precipitation was performed. 

Precipitated IPed DNA was resuspended in 10 mM Tris·HCl, pH 8 and measured in 

Qubit (High sensitivity kit, Invitrogen). At least 8 ng material was submitted for DNA 

ultra sequencing and a standard Illumina ChIP Sample Preparation protocol was used. 

 

ChIP-seq analysis 

Two curves were obtained for each ChIP-seq experiment, corresponding to the reads 

mapped to the plus and minus strand of the M. pneumoniae chromosome. Additionally, 

each experiment (IP) is accompanied by a control experiment (IgG), in which only the 

secondary antibody was used for the immunoprecipitation. For each of the 

experimental curves, we normalized the profile of the IP using the signal from the 

corresponding IgG to equate their baseline levels. After normalization, the control 

signal was subtracted from the experiment profile. With the resulting profile, noise was 

modeled to fit a Gaussian distribution centered on zero and with a standard deviation 

varying across experiments. To determine whether the experimental noise actually fits 

a Gaussian distribution, we obtained the ChIP-seq profiles of the wild-type M. 

pneumoniae strain, without the overexpression of any protein. After normalizing and 
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subtracting the control signal, a Kolmogorov-Smirnov test for normality yielded a p-

value of 0.5865. Therefore, with this data we fail to reject the null hypothesis of noise 

following a Gaussian distribution in our ChIP-seq data. According to this distribution, a 

threshold was set to reject all values with a probability larger than 1e-6 being noise.  

The peak calling was done separately in each of the profiles for the plus and the minus 

strand, and was performed with the Matlab ‘findpeaks’ function. A custom R 

implementation of this function was used for our analyses. The parameters used in the 

peak calling were the following: slope threshold=0.0001 (minimum peak slope); 

amplitude threshold=5 (minimum peak width); smoothing width=15 (number of points to 

consider when smoothing the curve); and peak group=15 (number of points used to fit 

the peak). Additional filters were used to discard false positive peaks. We discarded 

those peaks that were detected in the IP-IgG curve, but were not found in the IP curve. 

Furthermore, we discarded those peaks in which the ratio between the IP-IgG peak 

and the IgG peak was smaller than 2, as those were likely to arise from experimental 

noise.  

After the peak calling in each of the strands, the data from both of them was merged. 

With ChIP-seq, it is expected to find the same peaks in both strands. However, their 

positions tend to be displaced one from another and usually do not overlap. This is due 

to the fact that the DNA fragments whose ends are sequenced are usually larger than 

the sequencing read length. Thus, we associated each peak from the plus strand to a 

peak in the minus strand, provided that the distance between them was smaller than 

300 bps. The actual peak position was inputted to the mid-point between the two 

partner peaks. The average distance between these partner peaks was calculated for 

each experiment. Single peaks with no partners in the opposite strand were discarded. 

Finally, a score was assigned to each of the peaks, describing how well the pair 

matches this average distance.  

To analyze and classify the candidates according to their ChIP-seq profiles, the 

samples comprising the different subunits of RNA polymerase, sigA and mpn266 were 

selected as references for studying peaks that could be associated with RNA 

polymerase and thus to transcription factors. 

Peaks located closer than 200bps of a RNAP-associated peak (encountered in one of 

the reference samples) were considered peaks associated to the RNA polymerase. 

The remaining peaks were considered as not associated to RNA polymerase 

transcribing events. Unique peaks were those only present in a given sample, without 
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any peak located in the same region in the remaining experiments. We classified both 

RNAP and non-RNAP peaks as unique or non-unique. The numbers of total and 

unique peaks were estimated. 

To classify the different experiments, the percentages of peaks from each category 

(RNAP, non-RNAP, unique and non-unique) were calculated for each sample. We also 

determined the specificity of the binding according to the percentage of unique peaks 

found in each sample (> 50%, HS=high specificity; <50% LS=low specific). 

To classify eachprotein, we used the percentages of unique RNAP and unique non-

RNAP peaks. In proteins regarded as transcription factors (TF) the percentage of 

unique RNAP peaks is equal to 100. If the percentage of non-unique RNAP peaks is 

100 then the categrory assigned is structural (S). In between these two possibilities, 

proteins were classified as both putative structural and TF, indicating the category with 

the highest percentage of peaks (Table S6) 

 

Gene expression analysis 

M. pneumoniae cells on various stages of growth, overexpressing different regulators 

or being exposed to various perturbations (see Table S7 and Table S10) were washed 

with PBS and collected immediately in lysis buffer. In the case of cell lines, the 

antibiotic was omitted before the last inoculation to avoid unwanted phenotypes. 

In the case of microarray analysis, cells were collected in RTL buffer + 143 mM beta-

mercaptoethanol and RNA extraction, cDNA synthesis and labelling were performed as 

previously described (72). 

In the case of RNAseq, Qiazol was used to lyse the cells. RNA isolation was performed 

following the manufacturer’s instructions (miRNeasy kit from Qiagen), and an in-column 

DNase treatment was included. RNA concentration was measured using a Nanodrop 

(Thermo) and its integrity was confirmed in a Bioanalyzer (Agilent). A paired-end 

directional strand–specific RNAseq protocol (Illumina) was applied for the library 

preparation at the CRG genomics facility. Briefly, 1 µg of total RNA was fragmented to 

~100-150 nt using NEB Next Magnesium RNA Fragmentation Module (EB). 

Treatments with Antarctic and PNK (both from NEB) were performed in order to make 

the 5’ and 3’ ends of the RNA available for adapter ligation. Samples were further 

processed using the TruSeq small RNA Sample Prep Kit (ref. RS-200-0012, Illumina) 

according to the manufacturer's protocol. In summary, 3’ adapters and subsequently 5’ 
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adapters were ligated to the RNA. cDNA was synthesized using reverse transcriptase 

(SuperScript II, Invitrogen) and a specific primer (RNA RT Primer) complementary to 

the 3’ RNA adapter. cDNA was further amplified by PCR using indexed adapters 

supplied in the kit. Finally, size selection of the libraries pas performed using 6% Novex 

TBE Gels (Life Technologies). Fragments with insert sizes of 100 to 130 bp were cut 

from the gel, and cDNA was precipitated and eluted in 10 µl of elution buffer. dsDNA 

samples samples were cluster amplified and sequenced in the Hi-Seq 2000 platform 

(Illumina).  

Resulting raw reads were mapped to the M. pneumoniae reference genome 

(NC_000912, NCBI) using MAQ (default parameters, and 1 mismatch allowed) (415). 

Only reads mapping to a unique position of the genome were considered. Counts per 

gene were extracted from the pileups using our genome annotation and normalized 

with gene length. To compare the expression levels of each sample with its respective 

control, quantile normalization was used in the majority of cases, except of those in 

which we observed a global decay in RNA amounts. In this case, the assumptions of 

quantile normalization do not hold, and we normalized our data considering that the 

rRNA is stable and does not decay, compared to mRNAs.  

The comparison of gene expression between each sample and its control led to the 

observation that even significant changes in expression, reproducible across several 

experiments, were small in magnitude. Thus, we used genes within the same 

transcription unit as biological replicates for the comparison, to gain statistical power. 

We did this under the assumption that genes in the same suboperon should be co-

regulated across all conditions. To test whether this assumption held, we compared 

correlation of expression changes in 200 randomized pairs of genes within the same 

operon and 200 randomized pairs of genes in different operons. This correlation was 

calculated using 259 experiments of genetic perturbations, and revealed that genes in 

the same suboperon show much higher correlations (R=0.564) than genes in different 

operons (R=0.003), and this difference was statistically significant (Student’s t-test, p-

value<2.2e-16).  

To consider a change in gene expression as significant, we filtered by both the 

absolute value of the log2 fold change and the p-value from a Student’s t-test between 

the sample and the control. The threshold of the fold change was set empirically, and it 

varies depending on the number of genes in the operon. We observed that operons 

with one or few genes have higher variation than operons with more genes. We 

calculated the standard deviation for operons having 1, 2, …, up to N genes, and 
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defined the threshold as twice the value of the standard deviation. We considered as 

significant those changes with a p-value smaller than 0.05 and an absolute fold-change 

larger than the corresponding threshold. 

When there was more than one experiment for a gene (for instance, microarrays and 

RNA-sequencing of the same protein overexpression), we merged the experiments to 

generate a unique consensus for each putative transcription factor. Experiments were 

merged after the fold changes and p-values for each individual case were calculated. 

When merging experiments, we considered significant those results in which the p-

value was smaller than 0.05 for any of the datasets, and the average of the fold 

changes was larger than the threshold determined for that operon. 

 

Network reconstruction and data integration 

To identify sets of genes that are tightly co-regulated under a broad set of conditions, 

we performed correlation analyses of the fold-changes observed in the set of genetic or 

environmental perturbations.  

We reconstructed the network of co-regulated genes in genetic perturbations by 

establishing an edge between any two operons showing a correlation higher than 0.5 

across this set comprising 218 experiments (RNA-seq and microarrays). The threshold 

was chosen as the value of 3 times the standard deviation of the all-versus-all 

correlations. Also, upon the observation that the correlation in randomized pairs of 

genes within the same operon was 0.562 (see above). Using this approach, we 

obtained a network comprising 221 nodes and 422 edges. To facilitate visualization 

and interpretation of this network, we clustered it to find groups of nodes highly 

interconnected. To do so, we used the Girvan-Newman algorithm, as implemented in 

the GLay plugin for Cytoscape (459, 460, 477). This algorithm finds communities of 

nodes that are highly interconnected, and removes the edges between different 

communities. This is done by computing the betweenness centrality of all the edges in 

the network, and removing the edges with the largest values. We identified 24 clusters, 

ranging from 2 to 46 operons each. We performed Fisher’s tests to determine if there 

were significant enrichments in any COG category in each cluster. 

We followed a similar procedure to reconstruct the network based on environmental 

perturbations. In this case, we determined correlations across a set of 98 perturbations, 

after removing those experiments showing a general RNA decay. In this case, the 

standard deviation of the all-versus-all correlations was slightly larger (σ=0.2) than in 
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the genetic perturbations. Thus, we set the threshold to establish an edge between two 

nodes as 0.6. With this threshold, we obtained a network of 231 nodes and 293 edges, 

in which we identified 37 clusters, ranging from 2 to 47 operons each. Again, we 

identified enrichments in COG categories by means of Fisher tests. 

We also reconstructed a network of environmental perturbations, to identify similarities 

in the transcriptome responses to different stresses. To do so, first we grouped the 

original 111 perturbations in 41 groups, each containing different experiments with the 

same type of condition. In this case, to reconstruct the network of environmental 

perturbations, we first created a bipartite graph of conditions and operons. We 

established edges between each of the 41 conditions and the operons that change 

their expression in them. Afterwards, we extracted the condition-projection of this 

graph. In this projection, conditions that share one or more operons regulated in the 

same direction are linked. To further constrain this network, we imposed two 

conditions. First, for every two perturbations sharing an edge, we determined the 

number of common regulated operons c. Then, we determined the sets of regulated 

operons in each condition (of sizes X and Y respectively). With this, we computed the 

probability of finding an intersection of size c between the two sets by chance. This 

probability is calculated as:  

 

Where T is the total possible number of changes, calculated as twice the number of 

operons. We calculated the probability of finding c or more common regulated operons 

by chance, and chose only those pairs of conditions with values smaller than 0.05. This 

calculation is an approximation, as it assumes that all the changes are independent. 

Also, an operon cannot change in opposite directions in the same experiment. We also 

filtered the network using correlation coefficients, keeping pairs of experiments with a 

correlation coefficient higher than 0.3.  

To combine the data from the different condition experiments with the data of genetic 

perturbations, we used the information from the 41 grouped conditions and the 

experiments regarding proteins classified as TFs or regulators, and only in exponential 

growth phase (40 experiments). For each condition, we performed a regression 

analysis using random forests. The data on genetic perturbations was used to predict 

the expression levels of all the genes in each specific condition. Each random forest 
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was reconstructed with 500 trees, and randomly choosing 15 variables (i.e. genetic 

perturbation experiments) at each split. After running the random forest algorithm, we 

could estimate the percentage of the variance of the each condition that can be 

explained by TFs or regulators, and the importance of each putative TF or regulator in 

explaining the phenotype of the condition.  

 

Growth curves 

Cells were pre-cultured for 60-70 hours to achieve late exponential growth phase. 

Afterwards, cells were scraped and collected in 1 mL of Hayflick culture medium. Cell 

suspension was pipetted up and down five times to separate aggregated cells. From 

the cell suspension, 900 µL were aliquoted and stored at -80 ºC to use as inoculum for 

the growth curves and 100 µL were collected in a 1.5 mL microcentrifuge tube to 

measure protein concentration. Cells from the collected 100 µL were pelleted by 

centrifugation at 14100 xg for 10 minutes. Supernatant was discarded and the pellet 

was washed with 200 µL of PBS. This procedure was repeated twice more. In the last 

washing step, cells were lysed with 100 µL of lysis buffer (10 mM Tris·HCl, 6 mM 

MgCl2, 1 mM EDTA, 100 mM NaCl, 0.1% Tx-100, pH 8, and protease inhibitors), 

pipetting up and down to complete lysis. 

Protein lysates were then quantified by Pierce BCA Protein Assay Kit (Prod # 23225, 

Thermo Scientific), following manufacturer’s instructions. Briefly, 25 µL of protein lysate 

was added to a well of a 96-well plate, by duplicate. The standards for reference were 

prepared with BSA at different concentrations, following manufacturer’s instructions, 

and lysis buffer. Then, 200 µL of BCA working reagent were added to each well and 

mixed in a Tecan Infinite M200 plate reader for 30 seconds. Samples were incubated 

at 37ºC for 30 minutes, and after cooling down to room temperature, absorbance at 

562 nm was measured using a Tecan Infinite M200 plate reader to determine protein 

concentrations. Concentrations from the standards were used to make the standard 

curve and extrapolate protein concentration from each sample. 

After calculating the sample concentrations, 1 µg of protein, from the quantified pre-

cultured aliquots, were used as inoculum to start the growth curves for all the mutants 

in a final volume of 200 µL of Hayflick culture medium in 96-well plates. Growth curves 

were determined in duplicate by using pH measurements, following the protocol 

previously described in (249). Absorbance at 430 nm and 560 nm were taken once 

every 20 minutes in a Tecan Infinite M200 plate reader at 37 ºC for 5 days. 
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Motif pull down 

Protocol was adapted from (478). First, from a 3 days 300 cm2 culture flask, cells were 

washed with ice-cold PBS, scrapped in PBS plus 0.1% glucose at 4ºC, and spun 10 

min on a tabletop centrifuge. Pellet was resuspended in 2 ml lysis buffer (1 M NaCl, 50 

mM Hepes·NaOH, 0.1% NP 40, 6 mM MgCl2, 1 mM EGTA, 1 mM EDTA, pH 7.5) plus 

a protease inhibitor Cocktail (Roche) and passed through a syringe G25 needle 10 

times prior to clearance by spinning 30 min in a benchtop centrifuge at maximum 

speed and 4ºC. Supernatant was diluted 1:10 in dilution buffer (50 mM Hepes·NaOH, 1 

mM EGTA, 6 mM MgCl2 pH 7.5) and 4.4 ml were used per assay. Sepharose-

streptavidin beads (M-280 from Invitrogen) were bound to biotinylated oligos as follows. 

First forward and reverse oligos at 50 µM were annealed in Annealing buffer (10 mM 

Tris·HCl, 50 mM NaCl, 1 mM EDTA, pH 8.0) in a PCR machine: 95ºC 2 min, 52ºC 10 

min, 4ºC. Then 20 µl annealed oligos were mixed and incubated with equilibrated (TE) 

beads for 30 min at 4C in a roller. Beads were washed with binding buffer (50 mM 

Hepes·NaOH, 1 mM EGTA, 0.1 M NaCl, pH 7.5) and incubated with lysate 1h or O/N 

at 4C. Formaldehyde was added to 1% and proteins and DNA were fixed for 10 

minutes at RT. Crosslinking was stopped with glycine (100 mM final) 5 minutes at RT. 

Beads with 1 ml of binding buffer, 3X with 1 ml wash buffer 1 (50 mM Hepes·NaOH, 1 

mM EGTA, 0.2 M NaCl, 6 M Urea, 0.2% SDS, pH 7.5) and 3X with 1 ml wash buffer 2 

(50 mM Hepes·NaOH, 1mM EGTA, 0.2 M NaCl, pH 7.5). Material was eluted/de-

crosskinked with 50 µl of elution buffer (1% SDS, 10 mM Tris·HCl, 1 mM EDTA pH 8.0) 

at 65ºC 15 min and 95ºC 5 min and visualized on a SDS electrophoresis gel after 

staining with Instant Blue Coomassie (Expedeon). Optimal pull-downs were submitted 

to proteomics (see below). 

 

Proteomics 

Some gain or loss of function phenotypes were determined by subjecting the cell lines 

to protein quantification. Briefly M. pneumoniae cell lines overexpressing various 

putative regulators or bearing transposon insertions, were grown for 6 h and collected 

after washing twice with PBS with FASP buffer (100 mM Hepes·NaOH, 4% SDS pH 

8.0). After total protein was determined by a BCA assay (Pierce), DTT was added to 

100 mM. In some cases a sonication step was needed to disaggregate the lysate. 

After[EY3] trypsin digestion of 200 µl of each sample (amounts ranging from 20 to 486 

µg) samples were desalted and dissolved in 300 µl and the 2.5 µl of each fraction was 

injected in an LTQ Velos Pro in the order of the chromatographic elution using a 
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MEDI_CID method. BSA controls were injected after each sample. 20 µg of the total 

extract was also digested and 1 µg injected in an LTQ Velos Pro using a LONG_CID 

method. The data has been searched using an internal version of the search algorithm 

Mascot against a database that contains all the putative proteins larger than19 amino 

acid (MPNHomoContTrans19). The data has been filtered using 5% FDR (False 

Discovery Rate). Protein grouping was not applied in the results and we have 

quantified the proteins using the following parameters: i) only peptides without miss 

cleavage; ii) only peptides with “Protein Group=1”; Top3 algorithm (it considers three 

best peptides of each protein); Top3 method (average of area of the three best 

peptides). Only peptides corresponding to ORFs for which we could identify an RNA 

transcript were considered. 

 

Real time PCR 

In order to monitor promoter regulation, reporter quimeras with YFP-Venus were built. 

As YFP seems to be a very stable protein in M. pneumoniae, gene expression was 

followed by real time PCR. Briefly, RNA was purified as above, and 1 µg was 

hybridized to 2 µg random hexamers (Invtrogen) by heating to 65 ºC for 5 min and 

quick chilling on ice in a 11 µl total volume. Retrotranscription was performed by adding 

4 µl 5X first-strand buffer, 2 µl 0.1 M DTT, 1 µl RNase OUT (40 units/µl, Promega), 1 µl 

10 mM dNTP mix, and 1 µl SuperScript II RT (200 units, Invitrogen) and incubating for 

50 min at 42C before inactivation at 70C for 15 min. A 2x GoTaq qPCR mastermix was 

used (Promega) with 0.5 ng cDNA per 10 µl reaction and 0.5 µM oligos and run on a 

Lightcycler 480 (Roche). Venus oligos: F_qVen: ACGTAAACGGCCACAAGTTC, 

R_qVen: GGTCTTGTAGTTGCCGTCGT. Ribosomal RNA was used as reference, 

F_q16S: GCAGGTAATGGCTAGAGTTTGACT, R_q16S: 

GCCTTTAACACCAGACTTTTCAAT. 

 

Novobiocin titration 

We treated M. pneumoniae cells with increasing concentrations of novobiocin (0, 

control; 1; 5; 10; 50 and 100 µg/mL) for 30 minutes. Two replicates were used for each 

timepoint. After the treatment, total RNA was extracted and we performed 

transcriptome sequencing as detailed above. After read mapping and gene expression 

calculation, we normalized the data considering the rRNA does not change its 

expression in these experiments due to its high stability. We scaled the expression 



 

166 

values of each gene by subtracting the mean value of the 5 experiments and dividing 

by their standard deviation. With the scaled values, we computed the correlation matrix 

for all the genes of M. pneumoniae. A heatmap of this correlation matrix (Figure 7.8A) 

showed a plaid pattern with 5 major groups of genes having differential behaviors. 

Therefore, we performed k-means clustering in our data with 5 centers to find the 

patterns corresponding to the different groups of genes.  

 

RNA half-life determination 

RNA half-lives were determined as previously described (23). Briefly, we considered a 

simple scenario in which transcription is modeled as the continuous balance between 

RNA production and degradation, according to the following equation: d[RNA]dt=-

k[RNA], where α and k are the production and degradation rates, respectively.  

To determine the degradation rate k, the term of production (α) should be cancelled. 

Then, the differential equation can be solved to obtain that [RNA]=[RNA]0·e-kt.  

To experimentally make the transcription rate α equal to zero, we used novobiocin, a 

DNA gyrase inhibitor, that causes the release of the RNAP complex of the 

chromosome of M. pneumoniae. We treated cells in exponential and stationary growth 

phases with 100 µg/mL of novobiocin and extracted total RNA at different timepoints 

after the addition: 0 (as a control), 2, 4, 6, 8, 10 and 15 minutes, with two biological 

replicates for each timepoint. We performed RNA-sequencing and transcript levels 

were calculated for each of the samples as detailed above. Normalization was 

performed assuming no degradation of the rRNA. Transcript levels were transformed to 

copy numbers per cell using an experimentally determined adjust function (141) and 

then to RNA concentrations, considering an approximate volume of 0.055µm3 for M. 

pneumoniae (479). We used these concentrations to fit an exponential decay curve, 

and determined the degradation rates (k) for each gene. Given the degradation rates, 

we determined the half-live of all genes in M. pneumoniae as t1/2=log(2)/k. 

 

Riboswitch scan 

To find potential riboswitches in the genome of M. pneumoniae, we analyzed 206 

experiments of genetic and environmental perturbations, with two replicates each. For 

each experiment, we identified the annotated TSSs and defined 3 different regions 

around each of them: the previous region, covering 100 bps upstream the TSS; the 
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riboswitch region, spanning the first 150 bps of the transcript; and the gene region, 

including 300 bps starting at the end of the riboswitch region. If the transcript 

terminates before the end of the gene region, this was shortened to match the length of 

the transcript. We calculated the expression values for each of these regions in the 206 

experiments and in their corresponding control samples (see above).  

To annotate a putative riboswitch that regulates premature termination of transcription, 

we expect to find differential expression when comparing the riboswitch and the gene 

regions. Indeed, we expect that the riboswitch region has higher RNA levels than the 

gene region. Therefore, we calculated the ratio riboswitch/gene for all the annotated 

TSSs in all conditions. We removed the data points in which the expression of the 

riboswitch or the gene was smaller than 5 log2 CPKM, as in these, small fluctuations 

due to experimental noise lead to large changes in the ratios. We then scaled the ratios 

of each TSS, by subtracting the mean of all the experiments for that TSS.  

After scaling, we selected as putative riboswitches those cases in which the scaled 

riboswitch/gene ratio was larger than 3 standard deviations of the whole distribution 

(considering all the experiments). We applied two further filters to increase the 

specificity of our search. First, the TSS should be active in the condition where the 

riboswitch is found. Therefore, we compared the riboswitch region with the previous 

region, and only kept those cases in which the riboswitch expression was significantly 

larger than the one of the previous region (using a t-test and filtering by fold-change 

and p-value). Second, the riboswitch should behave differently between the condition 

where it is identified and its corresponding control experiment. We applied a t-test to 

compare the riboswitch/gene ratio of the sample and the control, and only kept those 

cases in which the difference was significant. 

After this filtering, we identified a set of riboswitches regulated in specific conditions. 

We then plotted the RNA-sequencing profiles of each of these riboswitches in all the 

conditions tested, to manually curate and validate our results, and to identify further 

conditions that did not pass our initial filtering criteria.  

 

7.6. Author contributions 

SM performed the identification of protein candidates by the different isolation 

techniques, and isolated the metabolomics samples. EY expressed each of the 
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candidates in M. pneumoniae and perfomed the DNA extraction and ChIP sample 

preparation, the RNA extraction for the transcriptomics and the protein extraction for 

the proteomics experiments. D. Sevin performed the metabolomics experiments used 

for validation. EY and CG ran the growth curves of M. pneumoniae. VLR analyzed the 

ChIP-seq, transcriptomics and proteomics datasets and designed the pipeline for the 

custom analyses, integrated these data and reconstructed the gene regulatory network. 

EY performed the novobiocin experiment and VLR determined RNA half-lives and 

decay rates. VLR performed the riboswitch analysis. MLS performed the ChIP-seq 

classification analysis. EY, LS and US designed and supervised the full study. EY and 

VLR wrote the manuscript. 

 

7.7. Supplementary data 

Supplementary Material (Tables S1-S15, figures S1-S11 and their corresponding 

legends, as well as Figures 7.1-7.9 in high-resolution, are available at the following link: 

https://www.dropbox.com/sh/vi1a3545rx5rv5u/AAAQMRNFuks-

WmUfMMeGKZyVa?dl=0).
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8.  Discussion 

 

 

One of the challenges of current biology is to understand how entire cells or 

organisms function in homeostasis and under perturbations, and then develop 

computer models that will allow researchers to rationally engineer them. However, 

our limited knowledge of the mechanisms underlying many biological processes 

hampers the development of detailed predictive models at large scales. Even for the 

simplest self-replicating organisms, Mycoplasmas, with a reduced set of protein-

coding genes, many of the functions encoded by these genes are still unknown. A 

striking example of our limited knowledge is that of the recent creation of a synthetic 

minimal Mycoplasma cell (480). In this work, a first approach was taken in which all 

the biological knowledge on the bacterium M. mycoides was used to decide on a set 

of genes to remove. However, this rational design approach failed, and authors 

recurred to an approach that tested individual regions of the genome separately in an 

iterative manner, until the obtention of the minimal cell (480). The genome of this cell 

contains 149 genes (out of 473) with an unknown function, many of which are 

conserved across several bacterial species.  

This ‘missing knowledge’ clearly supposes a challenge for the emergent field of 

whole-cell (WC) modeling. The basis of this new discipline relies on explicitly 

modeling the function of every gene, to be able to reproduce and predict emergent 

behaviors, responses to perturbations, or the effect of introduction of novel functions 

for synthetic biology applications. This had been previously done for the smallest, 

naturally-occurring, self-replicating organism, M. genitalium (244). With only 525 

protein-coding genes, this represents an ideal example for a proof-of-concept study 

for whole-cell models. The authors of this model proved that it was possible to 

integrate several cellular processes occurring at different time scales. However, the 

lack of biological knowledge in this bacterium resulted in the majority of predictions 

being only qualitative and not quantitative (244, 291).  

To test if an accurate knowledge of the biology of the bacterium could improve the 

predictions of these models, we have developed a whole-cell model of M. 

pneumoniae (Chapter 3). We took advantage of the structure of the original model, 
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and of the phylogenetic proximity between M. pneumoniae and M. genitalium. 

Furthermore, M. pneumoniae is currently one of most characterized bacteria to date, 

with a large consortium led by this lab, devoted to its molecular characterization (72, 

73, 157, 203, 233, 249). 

 

8.1. A critical view on ‘omics’ technologies 

The vast majority of the biological knowledge in M. pneumoniae generated by this 

consortium has been obtained via high throughput or ‘omics’ experiments. In this 

thesis, we have included a paper (Chapter 4) that refers to the problems associated 

to the fast development of these ‘omics’ technologies. Concretely, in this work we 

present a problem related to the process of library preparation for RNA-seq 

experiments. The observation of large percentages of non-mapped reads in RNA 

sequencing experiments, together with the excitement over the existence of chimeric 

RNAs in eukaryotic genomes, brought by the success of large consortiums such as 

ENCODE, led to the question of whether these chimeric RNAs could exist in 

bacteria. If so, their existence would introduce a new paradigm in microbiology and 

explain part of the non-mapped reads present in these datasets.  

To address this issue, an experiment was designed to assess whether chimeric 

reads exist, and if so, whether they were natural or artifactual, produced in the RNA 

extraction phase or in the library preparation prior to the sequencing. In this 

experiment we obtained RNA from two bacterial species independently, we mixed 

them and then extracted the RNA or we mixed the RNA after extraction.   

We used the sequencing data to test three widely used pipelines to detect chimeric 

RNAs, and all of them yielded inter-species chimeric RNAs. Therefore, we designed 

a more stringent custom pipeline, that applied to our data resulted only in a small 

number of intra-species chimeras. All of these had in common that the two chimeric 

RNA fragments were derived from highly expressed transcripts, and that they formed 

very stable secondary structures. This led to the investigation of an alternative library 

preparation protocol, in which chimeric RNAs were not detected by any of the 

computational pipelines tested. The difference between protocols relies in the step of 

reverse transcription. In the original protocol, reverse transcription occurred after 

ligation of adapters, whilst in the second protocol studied, it occurred before adapter 

ligation. If the ligation step occurs before reverse transcription, some RNAs such as 
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tRNAs and rRNAs might retain their secondary structure, and RNA fragments that 

are close in the space due to these structures may ligate together rather than with 

the adapters, giving rise to artifactual chimeric RNAs. The step of reverse 

transcription necessarily dissociates all secondary structures in the RNA, as the 

reverse transcriptase is a processive enzyme, thus eliminating these artifacts.  

These findings are representative of the number of biases and challenges found in 

high-throughput profiling techniques, and they are not unique. Frequently, these 

problems are found long after the technologies, protocols and computational 

pipelines are developed, revealing that it is difficult to cope with the rapid evolution of 

these techniques. Another study focused in RNA-seq in prokaryotes also reports a 

high number of non-mapped transcripts that correspond to technical artifacts, and 

that contribute to the ‘RNA-seq trash bin’ (327). Some of the artifacts they report 

arise from the reverse transcription process (481), and these were accounted for in 

our analysis. Other steps of RNA-seq library preparation can also lead to biases in 

the results, such as rRNA depletion, fragmentation and fragment selection, as well as 

the PCR amplification (172).  

Besides these artifacts, we have detected that, in all our transcriptomics 

experiments, noise levels are extremely large. By performing numerous replicates of 

the same experiment, we have been able to identify true differentially expressed 

genes. However, the fold changes observed are rarely larger than 1.5 (in log2), and 

are usually in the range of 0.7-1.2, which largely overlaps with the experimental 

noise. This hampers the application of standard statistical analyses and filtering 

thresholds in differential gene expression studies. Instead, custom pipelines need to 

be designed. Furthermore, the size selection steps usually performed in library 

preparation prior to RNA sequencing are very sensitive to small transcripts. These 

RNAs can be lost easily in this step, which results in an increase in the variability of 

small RNAs. We have observed that in some experiments, there are many less reads 

mapping to the 5S rRNA than mapping to the 23S or 16S rRNAs, whilst we expect 

similar numbers as these rRNAs are transcribed in a single operon. Sometimes, the 

observed difference between the levels of these rRNAs is up to 5-fold. Besides the 

possibility of a differential processing, the short length of the 5S rRNA in M. 

pneumoniae (108 bases) suggests that a large proportion of these molecules could 

be lost in the library preparation process. Improvements in library preparation 

protocols and in single cell sequencing techniques will be required to address these 

problems.   
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Aside from RNA-seq, other -omics suffer from similar biases. In chromatin 

immunoprecipitation, different steps can be sources of biases altering the 

experimental results. Fragmentation of DNA by sonication is a crucial step of this 

protocol, and it is not recommended to use controls that have not been sonicated 

together with the ChIP samples (482). Differences in sonication can lead to the 

observation of peaks with shifted position or different amplitudes, hindering 

normalization of the data. The step of immunoprecipitation can also be a source of 

biases. Frequently, antibodies targeting the protein of interest are used for this 

purpose. When an antibody is not available, the protein needs to be expressed 

exogenously, fused to a protein tag. This allows the usage of an antibody targeting 

this tag. However, the exogenous expression is associated to other problems. The 

protein needs to be expressed at levels sufficient to displace the endogenous protein 

from the target sites, but an excess of protein may bind DNA in a non-specific 

manner. Also, the addition of the tag may alter the binding of the protein or its 

functionality. Furthermore, it has recently been show that even with specific 

antibodies that do not require the addition of a tag to the protein of interest, some off-

targets may appear in the analysis. Some DNA proteins such as the RNA 

polymerase have a disordered structure that is prone to interact with the antibodies in 

a non-specific manner. These proteins are the reason why some peaks appear even 

when the protein of interest is not expressed, the ‘phantom peaks’ (483). We have 

identified the presence of these peaks in our ChIP-seq experiments (Chapter 7), 

associated to promoters of highly-expressed genes. 

 

 

Despite these challenges, high throughput profiling technologies have helped to get a 

global view of biological processes that was not possible previously. They also 

present a series of advantages, such as the usage of consensus naming conventions 

for all genes or proteins, and normalized values that can be used to compare among 

different features. Indeed, the whole-cell model of M. pneumoniae relies on a 

knowledge base that is built mostly upon omics datasets. Other data, generated via 

computational predictions or from global databases, was also included to complete 

this database. 
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8.2. Transcription in M. pneumoniae 

The first version of the M. pneumoniae model was obtained using the model of M. 

genitalium as a starting point. Several unique aspects of the biology of M. 

pneumoniae were also included, and gene miss-annotations were corrected. 

However, after the first simulation runs of this model were completed, we identified a 

number of ‘knowledge gaps’. These are inconsistencies between the model 

predictions and our validation data, and demonstrate that despite our broad 

knowledge of the biology of this bacterium, more experimentation is needed to learn 

about the aspects of the biology that remain unknown. 

One of these aspects is related to transcriptional regulation, which is also one of the 

challenges of current molecular biology: to understand how transcription is 

orchestrated. There are many components contributing to promote or prevent 

transcription, and the interplay among them results in specific levels of RNAs for a 

certain condition. Although transcription is a universal process occurring in all forms 

of life, there are several differences between prokaryotic and eukaryotic transcription. 

Even within prokaryotes, differences arise between Gram positive and Gram 

negative bacteria, reviewed in the introduction of this thesis. Despite these 

differences, understanding the interplay of the different components of transcription 

in a minimal bacterium such as M. pneumoniae can provide the basis for 

comprehending how this process is orchestrated in more complex organisms.  To 

contribute to this objective, and to improve our current whole-cell model of this 

bacterium, we have chosen to study in depth the process of transcription in M. 

pneumoniae. This organism, with a limited number of sigma and other transcription 

factors, facilitates the study of the core transcription determinants.  

The main objective of this thesis is to assess how different determinants of 

transcription contribute to the different transcript abundances observed in the cells, 

both in physiological conditions and under several perturbations. Three articles are 

included in this thesis that respond to this objective. The first of them corresponds to 

the characterization of promoter sequences in M. pneumoniae, and the distinction 

between real promoter sequences and other non-promoter elements, either giving 

rise to abortive transcripts or not associated to any transcriptional event (Chapter 5). 

The second corresponds to the study of the functionality of sRNAs in M. pneumoniae 

that can be extended to other bacteria (Chapter 6). The third study refers to the 
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transcription factors and the reconstruction of the gene regulatory network in this 

bacterium, and how elements other than transcription factors may be essential to 

control the transcriptional program of the cells (Chapter 7).  

 

8.2.1. Getting quantitative predictions of RNA expression from 

promoter characterization 

In this study, we presented a method to characterize and describe bacterial 

promoters. This method is based in six promoter features that had been previously 

reported to be important for promoter function. We integrated this six features in a 

random forest classifier, a machine learning algorithm that, properly trained, allows to 

distinguish among different classes of sequences. The random forest was trained 

with both promoter and non-promoter sequences of M. pneumoniae, and provided a 

useful distinction among the three classes of sequences found in the genome of this 

bacterium: actual promoters, unproductive promoters associated to tssRNAs, and 

sequences not related to any transcriptional event. This study also provided insights 

in which are the most important features for promoter definition in M. pneumoniae. In 

this case, the Pribnow motif is the most relevant factor, followed by the stacking 

energy of the nucleotides of the promoter region. The other sequence motifs have 

smaller contributions. Similar studies in other mycoplasmas also highlight the 

importance of the Pribnow motif in promoter determination (256).  

A surprising finding in our work is that unproductive promoters are more similar to 

non-promoter sequences than to actual promoters, yet they are capable of producing 

short RNAs of around 50 nucleotides, the so-called tssRNAs (157). These 

unproductive promoters were not used in the training of the random forest not to bias 

its outcome. This finding implies that these sequences are capable of binding the 

RNA polymerase complex and induce transcription initiation, but there must be a 

physical impediment for transcription elongation to proceed, an impediment that does 

not exist in true promoter sequences. It is possible that the RNA polymerase complex 

fails to capture some necessary elongation factors (484). 

A question arising from this study is whether it is possible to use this computational 

algorithm to obtain quantitative predictions of the RNA levels of a transcript, given its 

promoter sequence. Using the set of RNAs from M. pneumoniae for this purpose is 

not possible, as the RNA levels observed are the consequence of the interplay of 
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different factors, one of which is the promoter strength and the other RNA 

degradation. This highlights the need of in vivo or in vitro systems that minimize the 

effect of the other elements involved. One such system that is being currently 

developed is ‘Prot-seq’ (Yang et al, in preparation). In Prot-seq, the bacterial DNA 

methylase Dam is expressed under the control of randomized promoter and/or 5’-

UTR sequences. Assuming that no transcription factors other than the housekeeping 

sigma 70 bind these regions, and that accessibility of the polymerase and ribosome 

to their binding sequences is independent of the genomic location of the construct, it 

is possible to study the influence of the randomized sequences in the expression of 

the reporter gene. The readout of this methodology consists of the Dam methylase 

activity, proportional to the Dam concentration in the cell. This activity is measured by 

sequencing the GATC sites methylated by this protein, using DamID-sequencing 

(485).  

We used Prot-seq to test thousands of randomized promoters controlling the 

transcription of the Dam methylase, in constructs randomly inserted in the 

chromosome of M. pneumoniae. All randomized promoters contained at least the 

canonical Pribnow motif 5’-TATAAT-3’, and the 5’-UTR used was the same in all 

constructs. All these promoters were sequenced and evaluated using the random 

forest classifier described above. The results were compared to the Dam methylase 

activity, used as a proxy for the RNA expression. We found a positive correlation 

among the random forest score and the Dam activity. 

Despite this correlation, there is a large variability in the promoter scores obtained. 

One possible explanation for this is that all randomized sequences contain a 

canonical Pribnow box. This is the major determinant of our promoter score, and it 

remains fixed in all the sequences, which causes an important loss of information for 

the classifier. To address this problem, we took 14000 randomized promoter 

sequences to re-train and test a new classifier, based on the same promoter 

features, except for the Pribnow score. 10000 sequences were used to train this 

classifier, and the remaining 4000 were used for testing its performance. Their 

expression was binned in three levels: high expression, medium expression and low 

expression. Only those with high and low expression were used for the training of 

this new classifier.  

This new random forest was used to classify the remaining sequences from the test 

set. A significant separation between high and low expression promoters was 

accomplished. We built a ROC curve, and the area under it is 0.84, with precision of 
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0.71. We then decided to apply this classifier to all 4000 sequences in the test set 

(including those with medium expression levels) and find differences in their random 

forest scores. We found significant differences among the three groups of sequences 

(Mann-Whitney U test, p-value < 2.2 e-16 for all comparisons).  

These results imply that this classifier can be used for a semi-quantitative prediction 

of transcript expression, given the promoter sequence. It is possible that including 

modifications of the canonical Pribnow motif in the sequences studied and in the 

classifier helps improving the resolution of the predictions obtained. The results also 

suggest that the features used for promoter classification and identification, can also 

be used to predict gene expression, and that promoters of different strengths lead to 

different transcript levels, regardless the rest of elements intervening in transcription. 

Intriguingly, we observed that natural promoters of M. pneumoniae have intermediate 

scores rather than high scores. This is interesting as it can provide room for both 

positive and negative regulation by different transcription factors.  

These methods can be extended to other bacteria, as it has been a long standing 

question whether it is possible to predict gene expression from sequence features 

(486–488). This can have numerous applications in synthetic promoter design for 

genetic engineering purposes (489). 

 

8.2.2. Most bacterial antisense RNAs are the product of 

transcriptional noise. 

In this chapter, we present a striking correlation between the number of sRNAs and 

the genomic A+T content across 20 bacterial species, including also the chloroplast 

of A. thaliana. This correlation arises despite the fact that the sequencing and data 

analysis leading to the annotation of sRNAs in these organisms was done by 

different research teams. The correlation is maintained by antisense RNAs (asRNAs) 

but not by trans-encoded sRNAs or for protein-coding RNAs. This observation, 

together with the fact that the most important promoter determinant in bacteria is the 

Pribnow motif, an AT-rich element, led to the hypothesis of spurious promoter 

sequences arising by random mutations. These spurious promoters would give rise 

to asRNAs that would therefore be in general non-functional. In the paper we present 

evidence supporting this hypothesis, based on the low expression levels of these 

RNAs, their limited essentiality and also on stochastic computer simulations. Similar 
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hypotheses have been presented by other authors, referring to the low expression 

levels and also to a limited conservation of asRNAs across species (59). 

It is important to note that action mechanisms other than the ones presented in this 

work should not be discarded and therefore that some asRNAs have functionality. 

There are cases in which the effect of the asRNA does not occur via duplex 

formation. An example of this is transcription interference. In this scenario, opposing 

convergent promoters can cause incompatibilities in the transcription of both sense 

and antisense transcripts (490). According to this, the strength of the antisense 

promoter should correlate with the repression of transcription in the sense strand. 

Indeed, it has been possible tune gene expression using antisense promoters of 

different strengths (491). Another possible mechanism is that of transcription 

attenuation, in which an antisense RNA causes the formation of a premature 

termination site, preventing transcription elongation and therefore regulating the 

levels of sense transcripts (69). 

Despite the existence of alternative mechanisms not considered in our work, it is 

necessary to consider the physiological copy numbers of asRNAs when considering 

any possible regulatory process. According to our simulations, none of the asRNAs 

detected in M. pneumoniae is present at levels high enough to trigger a non-

enzymatic (ie Dicer type in eukaryotes) regulatory response. To consider the 

possibility of transcriptional interference, we should also take into account the 

number of RNA polymerases present in the cell. For M. pneumoniae, this number is 

estimated in ~150 (203). Given that there are more than 800 promoters in the 

genome of this bacterium (see Chapter 5), the events in which two polymerases 

collide, transcribing simultaneously from converging promoters, are expected to be 

rare. In E. coli and Salmonella enterica, only 3% of the asRNAs are expressed at 

high levels (59). Nevertheless, it is this small percentage of molecules that has 

received most of the attention, and studies reporting regulatory functions for asRNAs 

refer to this small group of highly expressed transcripts (407, 408).  

Finally, trans-encoded sRNAs should not be ignored. The fact that they do not 

accumulate in bacterial genomes proportionally to the A+T genomic content, 

behaving more similarly to protein-coding genes, suggests that these transcripts 

could have different regulatory functions, controlling processes such as virulence or 

quorum sensing (492, 493). Indeed, many studies on sRNAs in bacteria focus on 

these intergenic transcripts. Furthermore, recent studies have found that some of 

these RNAs could actually be coding for small proteins (73). These varied functions 
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could possibly explain the differences in the distribution of these molecules with 

respect to asRNAs. 

 

8.2.3. The importance of non-TF regulation in M. pneumoniae 

Chapter 7 of this thesis refers to the reconstruction of the gene regulatory network 

(GRN) of this genome-reduced bacterium. To do so, we identified all putative DNA-

binding proteins (DNABPs) in M. pneumoniae. We overexpressed or knocked out 

each of them in M. pneumoniae, and tested their function by identifying their physical 

interactions with the chromosome (their binding sites) and also their genetic 

interactions (their targets in the GRN). We classified these proteins in TFs, 

regulators, structural, RNAP-like and non-specific. It is important to note that, unlike 

in similar studies performed in other bacteria such as Mycobacterium tuberculosis 

(183), we do not limit our search to annotated or predicted TFs. Instead, our work 

represents the first global unbiased study of all DNA-protein interactions performed in 

a bacterium. 

Surprisingly, the GRN reconstructed with both TFs and regulators only covers a 

small percentage of the genome of M. pneumoniae, and includes 9 TFs and 30 

regulators, yet we find several clusters of co-regulated operons across more than 

100 conditions that cannot be explained by these TFs alone. Indeed, when 

comparing our results with data on different environmental perturbations, we found 

that considering both TFs and regulators, we could not explain more than 50% of the 

variance in any of these experiments. Although we have evidence suggesting that 

this could be an underestimation of the real percentage explained, due to the elevate 

noise in experimental data, this percentage is lower than the one reported in other 

species such as B. subtilis (66%; (140)). Given that we reported a high coverage of 

the DNABPs, we hypothesize that other layers of regulation must exist and play a 

central role in determining RNA levels. Thus, we investigated the role of DNA 

supercoiling, the presence of riboswitches, the regulation via metabolites and 

nucleotide concentration, and the differences in RNA degradation at distinct points of 

the growth curve. Also, in a recent study from our lab (23), we described 

transcriptional read-through, as another possible mechanism for transcriptional 

regulation.  
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Our study revealed that each of these factors could have a different role in regulating 

RNA levels in M. pneumoniae. Regarding supercoiling, previous works have reported 

that supercoiling could be acting at the top of the transcriptional regulation hierarchy 

(426, 494). So far, we have discovered a group of genes that responds to 

supercoiling. Interestingly, the majority of these are located close to the origin of 

replication of the chromosome. However, besides this group of genes, we have not 

been able to unmask a global effect. Probably, this global effect could be explained 

in terms of the basal coordination of transcription observed in a recent work from our 

lab (23). Here, it has been observed that termination signals can be overridden in a 

condition-dependent manner, allowing for transcription en bloc to occur under certain 

circumstances. This could be a basal regulatory layer in bacteria, not unique to M. 

pneumoniae. 

Another basal mechanism of transcriptional regulation is that mediated by metabolite 

concentrations. It has been described in other bacteria such as B. subtilis that 

concentrations of GTP can alter transcription initiation rates of those RNAs having a 

GTP in the +1 position (88). We observed that a similar mechanism could operate in 

M. pneumoniae. Furthermore, an exploratory analysis of the first positions of all 

RNAs in this bacterium revealed that RNAs starting with a GC dinucleotide are 

enriched in growth-related functions. Therefore, this mechanism could be involved in 

the transition from exponential to stationary growth phase, in which the GTP levels 

decrease. Therefore, this transition would not require the direct action of a protein 

master regulator.  

Finally, other mechanisms could aid transcriptional regulation under specific 

circumstances. We described the existence of riboswitches that are activated under 

a limited number of conditions. However, unlike the aforementioned mechanisms, 

this would not represent a basal layer of regulation but an additional form acting on 

top of the elementary layers. Another specific form of regulating RNA levels is 

through degradation control. We have observed significant differences in transcript 

half-lives at various growth phases. However, we were not able to correlate this to 

the composition of the RNA degradosome. Further experimentation on this complex 

may reveal how the different components of the complex regulate the affinities for 

RNAs. 
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An example of how different layers of regulation interact to shape the transcriptional 

response is found in heat-shock and cold-shock perturbations. In gram-positive 

bacteria, there is a transcription factor, HrcA, responsible for the heat shock 

response. This is a repressor that controls the expression of chaperones and other 

response genes that have a common motif in their promoter, the CIRCE element 

(495). In M. pneumoniae, this protein is encoded by the mpn124 gene. However, 

only a fraction of all the genes whose expression is altered in heat shock is controlled 

by this mechanism. We found that a number of genes changing in heat shock and 

not under the control of the HrcA protein. Interestingly, these genes also change in 

the cold-shock perturbation, in the opposite direction. This points to a non-TF 

regulatory mechanism, involving probably the structure of the DNA. Changes in 

temperature may alter the properties of the DNA and make it more or less accessible 

at certain points, and thus regulating transcription initiation (496). This regulation may 

also be due to differential transcriptional read-through, as we have recently described 

(23). 

Besides this example, our analyses have been preliminary so far, and further 

research is required to understand to which extent these mechanisms contribute to 

global transcriptional regulation and how they interact. Supercoiling, transcriptional 

read-through and nucleotide concentrations, together with some of the studied TFs, 

seem to be at the top of the regulatory hierarchy, coordinating basal transcription, 

whilst other factors such as riboswitches and TFs would be acting on top of this basal 

layer, coordinating more specific responses to certain conditions. In other bacteria 

with larger numbers of TFs, the remaining regulatory mechanisms remain largely 

unexplored. Thus, M. pneumoniae represents an ideal model organism to 

disentangle and understand these ‘hidden’ regulatory layers. Also, the existence of a 

whole-cell model in this bacterium will allow for the integration of all these layers to 

gain a global view of transcription in this organism. 

 

8.3. Perspectives on the whole-cell model of M. 
pneumoniae 

Our work in characterizing the key determinants in RNA abundance in M. 

pneumoniae can be extremely valuable for the development of the WC model of this 

bacterium. Future efforts in this direction will imply the integration of the effects of 
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these determinants in a genome-scale model of transcription. This model should be 

able to reproduce the results observed in our transcriptomics experiments, and 

predict changes in different environmental conditions and growth phases.  

Furthermore, we should be able to integrate this model in the WC model of M. 

pneumoniae, by replacing the current modules on transcription and transcriptional 

regulation. To do so, technical improvements in the model should be implemented. 

Its architecture should be redesigned to allow for a modular structure, facilitating the 

addition of new modules or replacement of existing ones by third parties. Current 

work in Dr. Karr’s group points to this direction.  

To further improve these models in the future, additional spatial considerations need 

to be taken, such as molecular crowding. Cellular components are not point particles, 

but they occupy a certain volume inside the cell. The whole set of components of the 

cell, with their respective volumes, should be considered, and the limitations that this 

molecular crowding imposes in free diffusion should be accounted for. A recent work 

in M. genitalium (497) 

 shows indeed that the chromosome and the entire proteome of this bacterium 

account for a large percentage of its volume. This work also highlights that although 

the aforementioned models are claimed to be ‘whole-cell’, an important part of the 

physiology of these bacteria, related to the structure of their components, is missing. 

Indeed, bridging the existing gap between protein structure and function will allow 

researchers to make more accurate predictions when including this information in a 

model. For instance, effects of specific mutations in different proteins could be in 

silico tested.  

 

 

Altogether, the work in this thesis aims to provide the basis for future studies aiming 

at the improvement of WC models in general and the WC model of M. pneumoniae in 

particular, as well as to better understand the process of bacterial transcription. A 

first version of the WC model of this bacterium has been implemented, and work 

towards a second version including novel biological knowledge is currently ongoing. 

In parallel, we have taken advantage of all the transcriptomics datasets being 

generated in our lab to study in depth which are all the key components that shape 

the transcriptional landscape of this bacterium. We have found promoter features 
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that help distinguishing true from non-productive promoters. Furthermore, we have 

shown that copy numbers matter, and that the extremely low abundances of the 

majority of asRNAs deem very unlikely a regulatory function for them. Additionally, 

we suggest that non-TF factor regulation, mediated by metabolites, riboswitches, 

supercoiling or RNA degradation, can be as important as TF factor based 

transcriptional control. Altogether, our studies suggest that regulation of transcription 

is mediated by multiple layers with cross-talk and feedback among them. Future work 

in this direction will imply the integration of all these layers and components in a 

genome-scale model of transcription that is able to simulate the results observed in 

transcriptomics experiments. Furthermore, this model could be integrated as a part of 

the current WC model of M. pneumoniae. Besides, taking advantage of all the ‘omics’ 

experiments used to feed the model and to study the process of transcription, we 

have assessed some of the biases and challenges that high-throughput profiling 

techniques have in bacteria. These biases do not prevent the usage of these 

technologies, whose advantages overcome their limitations, but need to be carefully 

considered when analyzing these experiments. 
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