
Alejandro Torres-Sánchez

A THEORETICAL AND 
COMPUTATIONAL STUDY 
OF THE MECHANICS OF 
BIOMEMBRANES AT 
MULTIPLE SCALES

Doctoral Thesis
Barcelona, May 2017





Doctoral Thesis
Advisor: Marino Arroyo
Barcelona, May 2017

Alejandro Torres-Sánchez

Departament d’Enginyeria Civil i Ambiental
Programa de Doctorat de Matemàtica Aplicada

A THEORETICAL AND
COMPUTATIONAL STUDY
OF THE MECHANICS OF
BIOMEMBRANES AT
MULTIPLE SCALES





A Laura y mis padres





Abstract

A theoretical and computational study of the mechanics of
biomembranes at multiple scales

Alejandro Torres-Sánchez

Lipid membranes are thin objects that form the main separation structure
in cells. They have remarkable mechanical properties; while behaving as a
solid shell against bending, they exhibit in-plane fluidity. These two aspects
of their mechanics are not only interesting from a physical viewpoint, but
also fundamental for their biological function. Indeed, the equilibrium
shapes of different organelles in the cell rely on the bending elasticity of lipid
membranes. On the other hand, the in-plane fluidity of the membrane is
essential in functions such as cell motility, mechano-adaptation, or for the
lateral diffusion of proteins and other membrane inclusions. The bending
rigidity of membranes can be motivated frommicroscopic models that account
for the stress distribution across the membrane thickness. In particular,
the microscopic stress across the membrane is routinely computed from
molecular dynamics simulations to investigate how different microscopic
features, such as the addition of anesthetics or cholesterol, affect their effective
mechanical response. The microscopic stress bridges the gap between the
statistical mechanics of a set of point particles, the atoms in a molecular
dynamics simulation, and continuum mechanics models. However, we lack
an unambiguous definition of the microscopic stress, and different definitions
of the microscopic stress suggest different connections between molecular
and continuum models. In the first Part of this Thesis, we show that many
of the existing definitions of the microscopic stress do not satisfy the most
basic balance laws of continuum mechanics, and thus are not physically
meaningful. This striking issue has motivated us to propose a new definition
of the microscopic stress that complies with these fundamental balance
laws. Furthermore, we provide a freely available implementation of our
stress definition that can be computed from molecular dynamics simulations
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(mdstress.org). Our definition of the stress along with our implementation
provides a foundation for a meaningful analysis of molecular dynamics
simulations from a continuum viewpoint. In addition to lipid membranes, we
show the application of our methodology to other important systems, such
as defective crystals or fibrous proteins. In the second part of the Thesis,
we focus on the continuum modeling of lipid membranes. Because these
membranes are continuously brought out-of-equilibrium by biological activity,
it is important to go beyond curvature elasticity and describe the internal
mechanisms associated with bilayer fluidity. We develop a three-dimensional
and non-linear theory and a simulation methodology for the mechanics of
lipid membranes, which have been lacking in the field. We base our approach
on a general framework for the mechanics of dissipative systems, Onsager’s
variational principle, and on a careful formulation of the kinematics and
balance principles for fluid surfaces. For the simulation of our models, we
follow a finite element approach that, however, requires of unconventional
dicretization methods due to the non-linear coupling between shape changes
and tangent flows on fluid surfaces. Our formulation provides the basis for
further investigations of the out-of-equilibrium chemo-mechanics of lipid
membranes and other fluid surfaces, such as the cell cortex.
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Chapter 1

Introduction

1.1 Lipid bilayers

Biological membranes based on lipid bilayers are the most fundamental
structure compartmentalizing cells. They define the plasma membrane, which
encloses the cell itself, and also form the boundary of other organelles, such as
the nucleus, mitochondria, the Golgi apparatus or the endoplasmic reticulum
[6] (see Fig. 1.1). Lipid bilayers are mainly composed of lipid molecules. These
molecules are amphiphilic, containing a hydrophilic (“water-attracted”) head
and a hydrophobic (“water-repelled”) tail (see Fig. 1.2A). For that reason, lipids
self-assemble in aqueous solution to form lipid bilayers, in which lipid tails
face each other to avoid contact with water whereas lipid heads are exposed to
water (see Fig. 1.2B). Often, lipid bilayers form closed surfaces, topologically
equivalent to a sphere, called vesicles, although some organelles exhibit a
greater degree of topological complexity. The lipid bilayer structure has the
thickness of two lipids, usually ranging between 2 and 5 nm. On the other
hand, lipid bilayers form structures with sizes that range from the 100 nm of a
small vesicle to 100 µm of a large eukariotic cell. Due to this large difference
between thickness and size, lipid bilayers are often modeled as continuous
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1. Introduction

Figure 1.1: A schematic view of the cell and its different organelles (center) and
transmission electronmicrographs of some of them. Nucleus and Endoplasmic
Reticulum: The Cell, 2nd Edition by Don W. Fawcett. Plasma membrane and
Mithocondrion: Molecular biology of the cell, 6th edition by Bruce Alberts.
Golgi Apparatus: Velasko et al., J. Cell Biol 122, 41.

surfaces.

As other thin shells, lipid bilayers exhibit an elastic resistance to bending
[92]. However, opposite to solid shells, most lipid bilayers are fluid at
physiological temperatures. Lipids on the membrane behave as molecules
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1.1. Lipid bilayers

Figure 1.2: (A) Atomistic model of a lipid molecule formed by carbon (gray),
oxygen (red), phosphorus (yellow), nitrogen (blue) and hydrogen (white)
atoms (terminal hydrogens connected to the carbon atoms in the tail are not
shown for simplicity). The head of the lipid molecule is hydrophilic while the
tail is hydrophobic. (B) Side view of a lipid bilayer in water. Lipid heads face
water whereas lipid tails face each other to avoid contact with water.

in a two-dimensional viscous fluid. Thus, lipid bilayers are a special kind of
material, behaving as a solid shell against bending while presenting in-plane
fluidity. This dual behavior is not only interesting from a physical or an
engineering perspective, but is also essential for the biological function of
membranes. On the one hand, lipid bilayers need to adopt various geometries,
including vesicles, tubes, sheets or complex networks such as the endoplasmic
reticulum, whose shape is governed by curvature elasticity [162]. On the other
hand, these structures need to be dynamic to undergo different processes such
as lipid transport [168, 151], diffusion of proteins [19], or cell motility [12, 198].
Furthermore, lipid bilayers dynamically respond to transient stimuli. For
instance, they respond to chemical signals that alter their inner composition,
such as pH differences [39], or interact with scaffolding proteins that adsorb,
diffuse and curve the membrane [19].
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Figure 1.3: Comparison between microscopic images of vesicles [159] and
solutions to theminimization ofHelfrich energy for different values of enclosed
volume and total area.

1.2 The Helfrich model

The curvature elasticity of lipid bilayers can be described to a surprising degree
of accuracy by the Helfrich energy [70]

FH �

∫
Γ

[
κ
2 (H − H0)2

+ κ̄K
]

dS, (1.1)

where Γ represents the bilayer mid-surface, H and K are the mean and
Gaussian curvatures of Γ, H0 is the spontaneous curvature, and κ and κ̄ are
the bending and Gaussian bending moduli. The first term in the integrand
penalizes deviations of H from the spontaneous curvature H0. In general,
for up-down symmetric bilayers with the same composition in the upper
and lower monolayers and equal aqueous solution across the membrane,
H0 � 0. However, for asymmetric bilayers or bilayers containing scaffolding
proteins, H0 may be non-zero. Regarding the second term in the Helfrich
energy, for a uniform κ̄ and a closed vesicle,

∫
Γ
κ̄KdS is a topological invariant

independent of the membrane shape (as a result of the Gauss-Bonnet theorem
[40]). Reflecting the in-plane fluidity of the bilayer, the Helfrich energy is
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independent of in-plane deformations of the surface; it only depends on
the shape of Γ. Futhermore, this energy is scale-invariant. In general, it
is assumed that the bilayer is inextensible, so that the area of Γ is constant.
Furthermore, cells and vesicles usually have a nearly constant volume because
of the physiological osmotic strength; osmotic forces dominate all other forces.
By minimizing the Helfrich energy at fixed volume and area, one can obtain
different configurations thatmatch experimental observations (see Fig. 1.3) [49].
The interplay of Helfrich energy with adhesion, or with thermal fluctuations,
can explain a variety of experimental observations [70, 92, 80, 172].

1.3 Lateral stress profiles

In the Helfrich model, the lipid bilayer is seen as a surface with bending
elasticity. The bending response of lipid bilayers strongly depends on the
molecular structure of the bilayer. In fact, their bending elasticity can be
understood in terms of the internal stress distribution, σ(x), across the bilayer
thickness. To show it, let us consider a three-dimensional atomistic model of a
fluid lipid bilayer and, for simplicity, let us examine a planar bilayer parallel
to the x − y plane (see Fig. 1.4). Since the bilayer is isotropic in the x − y
plane, σ(x , y , z) � σ(z) and σxx � σy y . Furthermore, since the bilayer is fluid
σi j � 0 for i , j. Conservation of linear momentum in the z direction implies
that σzz is constant. Thus, the stress state of the bilayer in this configuration
is simply characterized by the function σxx (z) and the constant σzz , which is
equal to the negative of the pressure in the fluid. In this configuration, the
first two moments of the stress profile relate to the Helfrich model parameters
as [177, 101, 75]

− κH0 �

∫ t/2

−t/2
[σxx (z) − σzz] (z − z0)dz , (1.2)

and

κ̄ �

∫ t/2

−t/2
[σxx (z) − σzz] (z − z0)2dz , (1.3)
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Figure 1.4: Stress tensor in a molecular simulation of a fluid lipid bilayer
parallel to the x − y plane at equilibrium.

where z0 is the position of the neutral plane of the bilayer, t is the bilayer
thickness, and we have taken the mid-plane of the bilayer as z � 0. Unfortu-
nately, these stress profiles cannot be measured experimentally. A convenient
way to evaluate σxx (z) and σzz is through molecular simulations, where
atoms are considered as point particles that interact through an interatomic
potential and follow Newton’s laws. By simulating patches of lipid bilayers
with atomistic resolution, one can, for instance, evaluate κ̄ for lipid bilayers
with different chemical compositions. This is particularly useful, since κ̄ is
difficult to measure experimentally [75].

The applicability of the stress profiles computed from molecular simula-
tions of lipid bilayers is not restricted to the evaluation of Eqs. (1.2) and (1.3);
stress profiles are routinely used to evaluate the effect of electric fields [63, 28],
of chemical composition [59, 90, 48, 85], or to measure the interaction with
membrane inclusions such as proteins [188, 204, 14] or polymers [76].

To bridge the gap between molecular dynamics and a continuum stress
field, a map between the statistical mechanics of molecular trajectories and
the continuous stress field is required. This mapping, however, is not unique.
In practice, different definitions of the microscopic stress suggest different
continuum interpretations of the same system. Although this ambiguity is

6
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widely appreciated theoretically, its practical consequences have been largely
overlooked, partly because for systems with simple interactions the different
definitions of the microscopic stress coincide. Motivated by this issue, in the
first Part of this Thesis, we investigate the definition of the microscopic stress
from molecular dynamics simulations.

1.4 Continuum modeling of the dynamics of lipid
bilayers

While the Helfrich model allows us to predict the equilibrium shapes of
lipid bilayers, it cannot describe the dynamic processes that lipid bilayers
undergo, as they are continuously brought out of equilibrium by biological
activity. The interfacial hydrodynamics of lipid membranes is crucial in
processes such as vesicular trafficking [168, 151], cell motility and migration
[12, 198], or in the mechano-adaptation of cells to stress [84]. Furthermore,
membrane fluidity allows membrane proteins to diffuse [161]. Historically, the
interfacial hydrodynamics of bilayer membranes was examined assuming a
fixedmembrane shape, startingwith the seminalwork of SaffmanandDelbrück
on planar lipid bilayers [152]. However, there is a rich interplay between
the shape dynamics and the interfacial hydrodynamics of lipid membranes,
which becomes apparent in processes such as tubulation [150, 89, 172], phase
separation [15], budding and fission [171, 203], or pearling [54], to name a few.
In the second Part of this thesis, we focus on a theoretical and computational
framework for the elasto-hydrodynamics of lipid bilayers in a fully non-linear
and three-dimensional setting.

1.5 Structure of the thesis

The Thesis is structured as follows. In the first Part, we examine the definition
of the microscopic stress from molecular dynamics simulations. This work is
a review of our recent contributions

7
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• Importance of ForceDecomposition for Local Stress Calculations in Biomembrane
Molecular Simulations, J. M. Vanegas, A. Torres-Sánchez, and M. Arroyo,
J. Chem. Theory Comput., 2014, 10 (2), 691.

• Examining the Mechanical Equilibrium of Microscopic Stresses in Molec-
ular Simulations, A. Torres-Sánchez, J. M. Vanegas, and M. Arroyo,
Phys. Rev. Lett., 2015, 114, 258102.

• Geometric Derivation of the Microscopic Stress: A Covariant Central Force De-
composition, A. Torres-Sánchez, J.M.Vanegas, andM.Arroyo, J.Mech. Phys.
Solids, 2016, 93, 224.

We show that widely used implementations of the microscopic stress violate
the most basic balance laws of continuum mechanics and are not suitable
to interpret molecular dynamics simulations. To address this issue, we
propose a new definition of the microscopic stress that satisfies the balance
laws of continuum mechanics by construction, which leads to physically
meaningful stress fields for general multibody potentials. We exemplify this
stress definition in lipid bilayers, but also in fibrous proteins and crystalline
structures such as a graphene sheet. For that purpose, we developed a
freely-available library based on C++

• MDStress library, A. Torres-Sánchez, J. M. Vanegas and M. Arroyo,
mdstress.org.

which can be used either as a standalone library or embedded in theGROMACS
4.5.5 molecular dynamics package [74]. This library includes our definition of
the microscopic stress, along with previous definitions.

In the second part of this Thesis we focus on the continuum modeling
and simulation of the dynamics of lipid bilayers. We first present a general
framework for modeling dissipative systems, such as lipid bilayers, based on
Onsager’s variational principle. This theory was more extensively introduced
in our recent publication
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• Onsager’s Variational Principle in Soft Matter: Introduction and Application
to the Dynamics of Adsorption of Proteins onto Fluid Membranes, M. Arroyo,
N. Walani, A. Torres-Sánchez and D. Kaurin. Chapter in the book “The
role of mechanics in the study of lipid bilayers”, Edited by D. Steigmann
and published by CISM, 2017.

We then examine in detail the kinematics and transport theorems required to
describe deformable fluid surfaces, which necessarily involve the formalism
of differential geometry. Based on Onsager’s variational principle and the
differential geometry of fluid surfaces, we propose a three-dimensional and
fully non-linear model for lipid bilayers extending that of [160], which we
exercise numerically on different relevant examples to the mechanics of lipid
membranes. This numerical approach is based on a finite-element formu-
lation of the equations, which requires unconventional numerical methods.
Finally, we show the application of the previous theoretical and computational
framework to another important instance of fluid surface in the cell, the cell
cortex.

In summary, the work of this Thesis has two complementary objectives.
On the one hand, we have developed two general theoretical frameworks
(the definition of the microscopic stress and the formulation of the elasto-
hydrodynamics of fluid surfaces) and two computational tools (the MDStress
library and a finite-element library for the continuum mechanics of lipid
membranes). On the other hand, we have applied these theories and computer
codes to understand the mechanics of lipid membranes at different scales.
Apart from lipid membranes, we have also shown the potential of our theoret-
ical and computational frameworks to understand other important systems,
such as fibrous proteins, crystalline structures, or the cell cortex.
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Part I

Theory and computation of the
microscopic stress
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Chapter 2

Introduction and review of basic
concepts

2.1 Introduction and motivation

The increasing power of modern computers enables the atomistic simulation
of material systems of growing size and complexity. However, it is difficult
to interpret the physics of these systems from bare atomistic trajectories. In
particular, there is a pressing need for coarse-grained measures of the effective
mechanical behavior underlying molecular ensembles. Continuum mechanics
has been successfully applied to understand the mechanics of a variety of
systems at the nanoscale, such as carbon nanotubes [197, 8] or biomembranes
[75, 172], and therefore it provides a natural framework to interpret molecular
simulations of materials.

In particular, the stress σ(x) is a second-rank tensor field encoding the
internal force distribution in a continuum system; when multiplied by a unit
vector n, it provides the forces per unit area in the material across a surface
passing through x and perpendicular to n. The continuum stress field of a
system of point particles is defined through statistical mechanics in what is
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called themicroscopic stress. Today, themicroscopic stress is increasingly used
to recapitulate mechanical information contained in long molecular dynamics
(MD) trajectories of non-uniform systems, or to connect molecular details
with continuum physics at larger scales. Significant applications include
defective bulk [88, 127] and two-dimensional crystals [194, 166], biomolecular
assemblies such as lipid bilayers [91, 75, 191], membrane proteins [117, 188],
and even isolated molecules [68].

The average (or virial) stress of a system of point particles, typically the
average stress of a periodic simulation box, can be uniquely defined and
given a precise thermodynamic interpretation [185, 178]. There are, however,
multiple procedures to map a statistical mechanics ensemble of a molecular
system into a microscopic stress field providing the local stress map in a
heterogeneous system. The ambiguity in the microscopic stress is widely
appreciated theoretically, but its practical consequences have been largely
overlooked, partly because different definitions coincide for simple force-fields
[191]. As molecular simulations model increasingly complex systems, the
physical validity of the different definitions of the microscopic stress has not
been systematically examined.

For example, let us consider a simple definition of the microscopic stress,
the virial stress per atom (VSA) [179], reviewed in Section 2.5, which we
denote by σVSA. This stress measure has been widely employed to analyze
the mechanics of crystals from MD simulations, see [88, 127, 194, 166] for
a selection of relevant works, and it is provided as a utility to compute the
microscopic stress in the popular MD package LAMMPS [35]. To exercise
this definition of the microscopic stress, we consider a graphene sheet with a
Stone-Wales defect as a model of inhomogeneous two-dimensional crystal in
thermodynamic equilibrium at a given temperature and volume (see Appendix
B for details on simulation settings). The virial stress per atom assigns a stress
tensor to each atom of the structure, see Fig. 2.1A for the trace of the stress
at each atom in the vicinity of the defect. We can obtain a continuum stress
field (Fig. 2.1B), which could be compared with stress fields obtained from
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Figure 2.1: Virial stress per atom around a Stone-Wales defect in a graphene
sheet. (A) Average structure of the crystal around the defect. Each atom is
colored with the trace of the virial stress per atom. (B) Trace of σ̄VSA with a
Gaussian filter of standard deviation of 1.25Å. (C) Norm of the divergence
of the virial stress per atom with the same Gaussian filter. The virial stress
per atom is not self-equilibrated in the absence of forces and thus it violates
conservation of linear momentum.

defect mechanics theory, by spatial averaging the discrete field as explained in
Box 2.1. We denote the spatially-averaged stress by σ̄VSA. Since the graphene
sheet is at thermodynamic equilibrium, we expect the resulting stress to be at
mechanical equilibrium. In continuum mechanics, mechanical equilibrium
implies that, in the absence of external forces, the divergence of the stress
vanishes

divσ � 0. (2.1)

However, we find that the divergence of σ̄VSA is not zero in the vicinity of the
defect (Fig. 2.1C), indicating that the virial stress per atom is out of equilibrium
in that region. Let us note that, as explained in Box 2.1, the divergence of
a spatially averaged stress field σ̄ coincides with the spatial average of the
divergence of σ, and therefore if divσ̄ is not zero, both σ̄ and σ are not
self-equilibrated. Thus, we conclude that the virial stress per atom violates
conservation of linear momentum from a continuum mechanics viewpoint.

15



2. Introduction and review of basic concepts

Let us now consider a different tool to compute the microscopic stress
[97] based on GROMACS, another popular MD package [74], which has been
widely employed to analyze themicroscopic stress in fluids and in lipid bilayers
(see for instance [91, 62, 167, 189, 202, 129, 113, 16, 116, 165, 123, 117, 202, 16]).
This tool considers a special flavor of the Irving-Kirkwood-Noll (IKN) stress
[77, 115], reviewed in Chapter 3, proposed by Goetz and Lipowsky [57], which
we refer to as the IKN-GLD stress and denote it by σGLD. To analyze the stress
produced by this tool, we examine a fluid DPPC (1,2-dipalmitoyl-sn-glycero-
3-phosphocholine) lipid bilayer at equilibrium at a given temperature and
pressure. We express the components of σGLD in cartesian coordinates (see
Fig. 2.2A). We note that, for a planar fluid lipid bilayer parallel to the x y-plane,
we expect a stress with σxx � σy y by symmetry and with σi j � 0 for i , j since
the fluid bilayer cannot sustain shear stress at equilibrium (see Fig. 2.2A).

Furthermore, due to the homogeneity in the x y-plane, the tensor compo-
nents only depend on the coordinate z. Thus, balance of linear momentum
Eq. (2.1) simplifies to ∂σzz/∂z � 0, resulting in a constant σzz . However, from
this tool we find that σzz

GLD is not constant (see Fig. 2.2B), indicating that the
field σGLD is out of equilibrium. This violation of conservation of linear mo-
mentum has sparkled some controversy [118, 16, 119, 1, 122]. Furthermore, the
IKN-GLD stress exhibits non-vanishing off-diagonal components. Although
these components could be non-zero for a lipid bilayer in the gel phase, where
the lack of fluidity could explain the emergence of shear stress at equilibrium,
they should satisfy that σx y � σyx , since balance of angular momentum is
expressed in continuum mechanics by the symmetry of the stress tensor

σ � σT . (2.2)

However, we find that σx y
GLD , σ

yx
GLD indicating that the IKN-GLD stress violates

balance of angular momentum. Thus, the stress produced by this popular tool
using IKN-GLD does not satisfy balance of linear momentum nor angular momentum.

Being fundamental requirements of continuum mechanics, it is natural
to demand that a microscopic stress definition satisfies balance of linear and
angular momentum for a system in thermodynamic equilibrium. However,
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Figure 2.2: (A) Typical simulation box for a DPPC lipid bilayer with the
bilayer midplane parallel to the x y-plane and periodic boundary conditions.
Due to the isotropy of the bilayer, the components of the stress can only
depend on z and σy y (z) � σxx (z). Since the lipid bilayer is fluid at the
simulated temperature, the off-diagonal components of the stress, which
stem from shear at equilibrium, must vanish. Furthermore, balance of linear
momentum requires that σzz is constant. (B) Components of the stress tensor
calculated using a popular tool based on GROMACS [97] and on the IKN-GLD
framework. We note that the σzz obtained from this tool is not constant,
which is inconsistent with balance of linear momentum. Furthermore, the
off-diagonal components are not zero and σx y , σyx . While the off-diagonal
components could be different from zero for a lipid bilayer in the gel phase,
these should however satisfy σx y � σyx from balance of angular momentum.
Thus, the stress computed from this tool also violates balance of angular
momentum.
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from these examples we observe that some definitions of themicroscopic stress
found in the literature do not satisfy these balance laws. The issue is striking
because these definitions have been widely employed to analyze molecular
systems from a continuum mechanics viewpoint in different research areas,
ranging from the analysis of inhomogeneous crystals to lipid bilayers. However,
an examination of whether these definitions are consistent with the continuum
notion of equilibrium, as we have done in Figs. 2.1 and 2.2, had not been
reported before.

In view of the examples in this introduction, in this Part of the Thesis we
examine why widely employed stress definitions do not satisfy balance laws of
linear and angular momentum. We focus on the two definitions discussed in
this introduction, the virial stress per atom and the IKN-GLD stress, since these
are the most prominent microscopic stress measures in the literature. Other
definitions of the microscopic stress, such as the method of planes by Heinz,
Paul and Binder [69] or the Harasima stress [66], have been analyzed elsewhere
[4, 182] with similar results: they do not satisfy mechanical equilibrium.

To solve this issue, we propose a new computational tool based on an
alternative theory rooted in the IKN theory [4], the IKN-CFD stress, that
computes stress tensors that satisfy balance of linear and angular momentum
by construction. However, we show that the IKN-CFD stress is not completely
satisfying, as it is not uniquely defined for multibody potentials, which are
popular to model metals and proteins [37, 96]. To address this issue, we
derive the microscopic stress from an alternative geometric route, based on
the Doyle-Ericksen formula of continuum mechanics, that leads to a canonical
stress of the form of IKN-CFD, which we call IKN-cCFD stress. Our definition
of the stress, along with our implementation, provides a solid foot to analyze
molecular systems from a continuum mechanics viewpoint. Furthermore, our
new method to derive the microscopic stress is a significant contribution in its
own, with potential ramifications discussed in Chapter 6.

Our procedure to compute the IKN-cCFD stress, along with other local
stress definitions including the virial stress per atom, the IKN-GLD stress
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and the IKN-CFD stress, has been made publicly available in our MDstress
library (mdstress.org), which can be either used as a standalone library or
embedded in the GROMACS 4.5.5 MD package [74]. Unless otherwise stated,
we use this library to compute the different definitions of the stress in model
systems throughout this chapter. The implementation details are given in
Appendix A.

This work is an extensive review of our recent contributions [191, 182, 183]
and is organized as follows. In the rest of this introductory chapter, we
introduce basic concepts of statistical mechanics, the cluster form of the
potential and the definition of the virial stress and the virial stress per atom.
In Chapter 3 we introduce the Irving-Kirkwood-Noll approach, and the IKN-
GLD and IKN-CFD definitions. In Chapter 4 we analyze different features
of the IKN-CFD stress in lipid bilayers. Finally, in Chapter 5 we introduce
our definition of the microscopic stress based on the Doyle-Ericksen formula,
which extends the IKN-CFD definition to arbitrary multibody potentials.

2.2 A review of statistical mechanics concepts

Let usfirst reviewsome thermodynamic and statistical-mechanics concepts that
will be employed throughout this work. We refer the interested reader to [55,
178] for extensive reviews. We consider a system of N point particles enclosed
by a volume Ω. Although different boundary conditions can be considered
for Ω, it is usual to consider periodic boundary conditions (PBC). The point-
particles are characterizedby theirmasses {mα

}
N
α�1, positions {r

α
}

N
α�1 (rα ∈ Ω),

and velocities {vα}Nα�1

(
vα ∈ R3

)
. They interact through an interatomic

potential V (r1 , . . . , rN ), from which the set of forces on the particles derive

F α
� −∂rαV (r1 , . . . , rN ), α � 1, . . . ,N, (2.3)

where we write ∂rα as a short form of ∂
∂rα . If the interatomic potential is

invariant with respect to translations and rotations, then these forces satisfy
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balance of linear momentum
N∑
α�1
F α

� 0, (2.4)

and angular momentum
N∑
α�1
F α
× rα � 0, (2.5)

where a × b stands for the vector product between vectors a and b, in compo-
nents (a × b) i � εi jk a j bk , where εi jk are the Levi-Civita symbols. The energy
of this system is given by the Hamiltonian function

H(r, p) �
N∑
α�1

| |pα | |2

2mα + V (r), (2.6)

where r �

(
r1 , . . . , rN

)
and p �

(
p1 , . . . , pN

)
collects the particle momenta

pα � mαvα. The set of possible states (r, p) that are accessible to the system is
Γ � ΩN

× R3N , which is referred to as the phase space. The time evolution of
the positions and momenta follows Hamilton’s equations

ṗα � −∂rαH � F α , vα � ṙα � ∂pαH �
pα

mα , (2.7)

where we write ȧ � da/dt. An ensemble of these systems is characterized by a
probability distribution f (r, p; t) over Γ. Conservation of probability along
the trajectory of the ensemble leads to Liouville’s equation

ḟ � 0 �⇒ ∂t f � −∂r f · ṙ − ∂p f · ṗ

�

N∑
α�1

[
−∂rα f ·

pα

mα + ∂pα f · F α
]
,

(2.8)

where here we denoted by ḟ the total or material time-derivative of f . At
equilibrium, ∂t f � 0 and we simply write f (r, p). For an ensemble at thermal
equilibrium with a thermostat at temperature T, the equilibrium probability
distribution follows the Boltzmann distribution

fB (r, p) � exp
(
−

(H(r, p) − A(T,Ω))
kBT

)
, (2.9)
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where kB is the Boltzmann constant and the normalizing factor A(T,Ω)

A(T,Ω) � −kBT log
(∫
Γ

exp
(
−

H(r, p)
kBT

)
drdp

)
, (2.10)

is the free energy of the system. Given a quantity a(r, p, t) we define the
ensemble average of such quantity as

〈a〉(t) �
∫
Γ

a(r, p, t) f (r, p, t)drdp. (2.11)

At equilibrium, for a quantity a that does not depend on time explicitely, 〈a〉
is time-independent. Then, under the assumption of ergodicity, the ensemble
average at equilibrium can be substituted by a time average for a single system
in the ensemble

〈a〉 � a , (2.12)

where

a � lim
T→∞

(
1
T

∫ T

0
a(r(t), p(t))dt

)
. (2.13)

In molecular dynamics (MD), we numerically integrate the time-evolution
of a system of point particles following Eq. (2.7). Ensemble averages are
numerically estimated from the discrete trajectory by approximating Eq. (2.13).
To consider the effect of thermostats and barostats at a single system level,
different numerical techniques can be employed to reproduce ensemble
averages, such as the Nose-Hoover thermostat [46] or the Parrinello-Rahman
barostat [128]. This allows us to reproduce through MD simulations the
NVE (fixed number of particles, volume and energy), the NVT (fixed number
of particles, volume and temperature) and NPT (fixed number of particles,
pressure and temperature) equilibrium ensembles.

2.3 Cluster expansion of the potential

Usually, the interatomic potential V (r1 , . . . , rN ) in MD is written as the sum
of multibody potentials in what is called the cluster expansion of the potential.
The cluster expansion plays a key role in different definitions of themicroscopic

21



2. Introduction and review of basic concepts

stress, as it will become clear later. Any potential energy function, including
those computed from first principles, can be expressed in a cluster form
[51, 102]

V (r1 , . . . , rN ) �
N∑

n�2

Mn∑
In�1

VIn (rI1
n , rI2

n , . . . , rIn
n ), (2.14)

where each VIn is a n−body potential, Mn ≤ *
,

N
n

+
-
is the number n−body

interactions amongst the N particles, and I1
n , I2

n , . . . , In
n label the n particles

interacting through VIn . This cluster expansion can be made unique by
requiring that the potentials VIn (rI1

n , rI2
n , . . . , rIn

n ) vanish whenever any of the
intervening particles is brought infinitely far away from the rest. If this were
not true, then such a potential would not be a genuine n−body potential, but
rather n−1 or lower [102]. With this definition, VI2 represents the interaction of
two isolated atoms, VI3 is the excess of energy of an isolated triplet of atoms not
accounted by their pair interactions, and in general VIn represents the part of
the interaction energy of n particles minus the interaction energy from all their
n−1, n−2, . . . , 2-body interactions. The cluster expansion isolates interactions
between particles, which facilitates their physical interpretation, and eases
the numerical computation of particle forces in MD codes. In biomolecular
simulations, the interatomic potential usually involves 2-body potentials, such
as bonds, Coulomb and van der Waals interactions, 3-body interactions, such
as angle potentials, and 4-body interactions, such as torsional potentials. In
protein simulations, some corrections to the potential are added through
5-body interactions [96]. In simulations of metals, such as those based on the
embedded atom method [37], the energy function is not written in a cluster
form, but the cluster form can be obtained sistematically [51, 102] and will
involve higher order terms.

2.4 Virial stress

Given a unit vector n, the virial stress Σ is a second-order tensor that encodes
the average traction t � Σ · n that a system of point particles in a volume Ω at

22



2.4. Virial stress

thermodynamic equilibrium exerts on an imaginary plane with unit normal n
splittingΩ into two parts [185]. The virial stress admits a statistical mechanics
representation that can be obtained from the change of free energy under an
infinitesimal affine deformation [178]. More precisely, let us consider a linear
deformation of Ω, ϕ : Ω→ R3, characterized by the deformation gradient F ,
x i � ϕi (X) � F i

J X
J . Denoting by A(T,F ) the free energy of the deformed

system, then the virial stress can then be computed as

Σ �
1

detF ∂FA(T,F )F T . (2.15)

Exercising Eq. (2.15) on Eq. (2.10), we get the expression [178]

Σ � ΣK + ΣV ,

ΣK � −
1
Ω

N∑
α�1
〈mαvα ⊗ vα〉 ,

ΣV � −
1
Ω

N∑
α�1
〈F α
⊗ rα〉 ,

(2.16)

where a ⊗ b denotes the dyadic product of vectors a and b. The kinetic stress
ΣK can be interpreted as an ideal gas pressure generated by the vibration
of the atoms, whereas the potential part of the stress ΣV characterizes the
contributions generated by interatomic interactions. It is clear that ΣK is a
symmetric tensor by construction; for ΣV we have that

εi jk (ΣV ) jk � −
1
Ω

〈 N∑
α�1

εi jkFαj rαk

〉
� −

1
Ω

*
,

〈 N∑
α�1
F α
× rα

〉
+
-

i

� 0, (2.17)

where we have used the definition of cross product and conservation of
angular momentum in Eq. (2.5). Since δipδ jq

− δiqδ jp � ε
i j

k ε
kpq we find that

the antisymmetric part of ΣV vanishes. Indeed

(ΣV ) i j
− (ΣV ) ji

�

(
δipδ jq

− δiqδ jp
)

(ΣV )pq � ε
i j

k ε
kpq (ΣV )pq � 0, (2.18)

where in the last step we have invoked Eq. (2.17). Therefore, the symmetry of
ΣV , and thus of Σ, is a consequence of conservation of angular momentum
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for the set of point particles. In contrast with the definition of the possibly
heterogeneous microscopic stress field, the virial stress is uniquely defined
from a thermodynamic viewpoint. For thermodynamic consistency, any
microscopic stress definition must satisfy that its average over Ω recovers the
virial stress.

2.5 Virial stress per atom

The virial stress does not provide information regarding the distribution of
tractions within the system, but rather the average tractions exerted by the
system as a whole. For solids, where atoms stay relatively immobile, it is
common to define a virial stress per atom by assigning atomic contributions
to the total virial stress in Eq. (2.16) [179]. This definition of stress per atom
is provided as a post-processing tool in the MD package LAMMPS [35] and
has been widely employed to analyze the mechanics of crystals from MD
simulations [88, 127, 194, 166]. In this method, the stress is distributed among
the particles of the system such that

ΩΣ �

N∑
α�1
Ωασα , (2.19)

where σα is the stress of particle α and Ωα is the volume of occupied by
particle α, which may be computed from a Voronoi tessellation. In particular,
each atom carries a kinetic stress

σαK � −
1
Ωα
〈mαvα ⊗ vα〉 . (2.20)

For the potential component, we consider the cluster expansion of the potential,
see Section 2.3. In this method the potential part of the virial stress per atom is
constructed by distributing the virial stress for each VIn in the cluster expansion
equally among the n particles interacting through VIn . Mathematically,

σαV �
1
Ωα

∑
In∈Iα

1
n

〈 n∑
β�1

∂
rI
β
n
VIn ⊗ r

Iβn

〉
, (2.21)
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2.5. Virial stress per atom

where Iα collects the set of potential contributions involving particle α. It is
important to note that for each VIn in the cluster expansion, the set of forces
−∂

rI
β
n
VIn are balanced

n∑
α�1

∂
rIαn VIn � 0,

n∑
α�1

∂
rIαn VIn × r

Iαn � 0. (2.22)

As a consequence, the stress at particle α, σα, is symmetric by construction.
To define a continuous stress that can be related to a continuum mechanics
theory, we first spread each particle contribution in space using Diract delta
distributions centered at the mean atomic positions

σVSA(x) �
N∑
α�1
σαδ(x − 〈rα〉). (2.23)

where VSA stands for Virial Stress per Atom. This stress, however, is a
distribution-like measure rather than a continuous function. We can spatially
average this measure with a weight function w following the results in Box 2.1
to find

σ̄VSA(x) �
N∑
α�1
σαw(x − 〈rα〉). (2.24)

Let us note that the averages of σVSA and σ̄VSA over Ω recover the virial stress

Σ �
1
Ω

∫
Ω

σVSA(x)dx �
1
Ω

∫
Ω

σ̄VSA(x)dx. (2.25)

As explained in Box 2.1, σ̄VSA is symmetric due to the symmetry of σα and,
therefore, is a continuous stress satisfying the continuum statement of balance
of angular momentum. However, it is not clear from the definition of σVSA(x)
whether it satisfies the continuum statement of balance of linear momentum
in the absence of external forces, that is divσ̄VSA(x) � 0. In fact, the results
on the graphene sheet with a Stone-Wales defect of Fig. 2.1 showed that
divσ̄VSA(x) , 0. Thus, VSA violates conservation of linear momentum.

25



2. Introduction and review of basic concepts

Box 2.1: Spatial averaging of microscopic stress fields and balance laws

The raw definitions of the microscopic stress may result in fields with
highly localized features (even singular), see Fig. 3.1A for instance. This
issue is especially severe in systems where atoms stay relatively immobile,
such as crystals at low temperatures, and undermines the interpretation
of the microscopic stress from a continuum mechanics viewpoint. Thus,
it is often convenient to spatially average microscopic stresses. We define
a spatially-averaged stress by

σ̄(x) �
∫
Ω

w(| |x − y | |)σ(y)dy, (B1)

wherew(| |x−y | |) is aweighting function,with compact support, satisfying
the normalization property∫

Ω

w(| |x − y | |)dy � 1. (B2)

It is important to note that σ̄ inherits the equilibrium properties of σ. By
construction, it is clear that σ̄ is symmetric ifσ is symmetric. Furthermore,
the divergence of σ̄ coincides with the spatial average of divσ,

divσ̄(x) �
∫
Ω

σi j (y)∂x j w(| |x − y | |)dy

�

∫
Ω

σi j (y)
(
−∂y j

)
w(| |x − y | |)dy

�

∫
Ω

divσ(y)w(| |x − y | |), dy

(B3)

where we have used that ∂x j w � −∂y j w, integration by parts, and that w
has a compact support. Thus, if divσ � 0 we get divσ̄ � 0.
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Chapter 3

The Irving-Kirkwood-Noll
approach

3.1 General framework

In the Irving-Kirkwood-Noll (IKN) approach, continuous fields are defined
from general non-equilibrium ensemble averages of atomistic properties that
are distributed in space [77, 115]. These fields are defined so that they satisfy
the balance laws of continuum mechanics by construction. For instance, in
this theory the continuum density field is defined as

ρ(x) �
N∑
α�1
〈mαδ(rα − x)〉 , (3.1)

where here the ensemble average is performed over a general non-equilibrium
statistical-mechanics distribution f (r, p; t). For each configuration in the
ensemble, the mass of each particle α � 1, . . . ,N is assigned to the position
x � rα by means of the Dirac delta distribution. Because of the ensemble
averaging, this leads to a quantity with units of mass per unit volume, defining
a true density field. Invoking the equivalence between the macroscopic
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3. The Irving-Kirkwood-Noll approach

momentum ρ(x)v(x) and themicroscopicmomentum
∑N
α�1 〈m

αvαδ(rα − x)〉,
the continuum velocity field is defined as

v(x) �
1

ρ(x)

N∑
α�1
〈mαvαδ(rα − x)〉 , (3.2)

where vα is the velocity of particle α. It is easy to show by a direct calculation
invoking Liouville’s Eq. (2.8) (see Box 3.1), that the fields defined in Eqs. (3.1)
and (3.2) satisfy the continuity equation

∂tρ + div
(
ρv

)
� 0, (3.3)

expressing balance of mass in continuum mechanics. In the absence of
external forces, the continuum balance of linear momentum requires that

divσ(x) � ∂t
[
ρ(x)v(x)

]
+ div

[
ρ(x)v(x) ⊗ v(x)

]
. (3.4)

The right hand side of this equation involves ρ(x) and v(x), which we have
already defined. The time-derivative of ρ(x)v(x) can be computed following
Eq. (B6). Inserting the definitions of ρ and v we find [4, 178]

divσ(x) � −div *
,

N∑
α�1

〈
mαvαrel ⊗ v

α
relδ(rα − x)

〉+
-
+

N∑
α�1
〈F αδ(rα − x)〉 , (3.5)

where vαrel � v
α
− v(rα) is the relative velocity of particle α with respect to

the continuum velocity at position rα, v(rα); in equilibrium vαrel � v
α. As

discussed next, it is possible to obtain a statistical-mechanics expression of
the right-hand side of Eq. (3.5) as the divergence of a tensor. Therefore, this
expression provides a connection between the statistical mechanics of the
particle system and the continuum stress tensor. However, this equation
clearly provides a non-unique definition of σ since given any stress field σ
satisfying Eq. (3.5), we can add any divergence-free field ω, i.e. divω � 0, to σ
with the resulting field σ+ω also satisfying this equation. Therefore, with this
approach we may only hope to rationally obtain an unambiguous definition
of the stress tensor making as few arbitrary choices as possible [156, 4]. It
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Box 3.1: Computing rate of change of averages from Liouville’s equation

An important point in the IKN theory is the use of Liouville’s equation to
compute rate of change of ensemble averages. Consider a general quantity
a(r, p, t) and its ensemble average 〈a〉 defined in Eq. (2.11). Then,

d
dt
〈a〉 �

∫
Γ

∂t
[
a f

]
drdp � 〈∂t a〉 +

∫
Γ

a∂t f drdp. (B4)

Using Liouville’s Eq. (2.8), and integration by parts, the second term in
the last equation can be rewritten as∫

Γ

a∂t f drdp �

N∑
α�1

∫
Γ

a
[
−∂rα f ·

pα

mα − ∂pα f · Fα
]

drdp

�

N∑
α�1

{∫
Γ

f
[
∂rα a ·

pα

mα + ∂pα a · F α
]

drdp

+

∫
Γ

[
−∂rα (a f ) ·

pα

mα − ∂pα (a f ) · F α
]

drdp
}
.

(B5)

Assuming that the system is infinitely large and that the product a f
decays appropriately at infinity, the second term in the previous equation
vanishes, and we find

d
dt
〈a〉 � 〈∂t a〉 +

N∑
α�1

〈
∂rα a ·

pα

mα + ∂pα a · F α
〉
. (B6)

For instance, given the density field ρ defined in Eq. (3.1),

∂tρ(x) � ∂t

N∑
α�1
〈mαδ(rα − x)〉 �

N∑
α�1
〈∂rαδ(rα − x) · pα〉

� −∂x *
,

N∑
α�1
〈δ(rα − x) · pα〉+

-
� −div(ρ(x)v(x)),

(B7)

where we have used that ∂rαδ(rα − x) � −∂xδ(rα − x). This proves
Eq. (3.3).
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is trivial to express the first term in the right-hand side of Eq. (3.5) as the
divergence of the tensor

σK(x) � −
〈 N∑
α�1

mαvαrel ⊗ v
α
relδ(rα − x)

〉
. (3.6)

This is the kinetic part of the IKN stress, similar to the kinetic part of the
virial stress per atom Eq. (2.20). Atomic vibrations generate sources of stress
−mαvαrel ⊗ v

α
rel that are averaged in the ensemble. The second term in the

right-hand side of Eq. (3.5) can be written as the divergence of a tensor by
applicacion of Noll’s lemma [115], a key technical ingredient in this theory,
which leads to an expression of the form

σV(x) �
〈 ∑
α,β>α

f αβ ⊗ rαβB(rα , rβ;x)
〉
. (3.7)

where rαβ � rβ − rα, f αβ are the terms of a pairwise decomposition of the
force acting on particle α (a force decomposition from now on),

F α
�

N∑
β�1
f αβ , (3.8)

satisfying
f αβ � −f βα , (3.9)

and

B(rα , rβ;x) �
∫ 1

0
δ[(1 − s)rα + srβ − x]ds , (3.10)

is the so-called bond function. As a result of this derivation, the IKN definition
of the microscopic stress

σ � σK + σV , (3.11)

satisfies balance of linear momentum by construction.
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Box 3.2: A comment on extensions of the IKN theory

In this work we focus on the IKN theory as obtained by direct application
of Noll’s lemma, which leads to a bond function of the form Eq. (3.10).
However, an alternative route to Noll’s lemma was proposed by Schofield
and Henderson [156]. In this theory the bond function takes the general
form

B(rα , rβ;x) �
∫ 1

0
δ[γrα ,rβ (s) − x]ds , (B8)

where γrα ,rβ (s) is any smooth curve joining the positions rα and rβ. The
choice of different γ leads to different definitions of the stress, adding an
extra freedom to that existing in the choice of force decomposition. For
instance, a popular path for the analysis of lipid bilayers has been the
Harasima contour [66], which is made by the union of two line segments,
one parallel to the (x-y)-plane and another parallel to the z direction.
However, it has been recently shown that all these alternative paths lead
to non-symmetric stresses [4] and are only meaningful for systems with
internal structure. For that reason, we do not discuss them further in this
work. Furthermore, in our derivation of the microscopic stress following
the Doyle-Ericksen formula of continuum mechanics (see Chapter 5) we
obtain the bond function Eq. (3.10) from an alternative method that does
not rely on Noll’s lemma.
Other extensions to the IKN theory for multibody potentials use the
concept of center of mass to calculate tractions on virtual planes that
split the particles in the potential into two groups. This is the case of the
heuristic method proposed by Heinz, Paul and Binder [69]. However, we
proved elsewhere [182] that this method does not satisfy balance of linear
and angular momentum, and we do not discuss it further in this work.
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3. The Irving-Kirkwood-Noll approach

Thebond function spreads the contribution to the stress from the interaction
between the pair αβ along the line segment joining the particles [115]. An
important feature that distinguishes the potential part of the IKN stress from
the potential part of the virial stress per atom is the presence of line sources, as
compared to point sources, where contributions from interactions are spread.
It is important to note that line sources appear naturally in the IKN expression as
a requirement for balance of linear momentum through Noll’s lemma. Alternative
extensions of the Irving-Kirkwood theory not relying on Noll’s lemma have
been proposed (see Box 3.2).

The force decomposition establishes the pairwise forces f αβ between the
particles that interact through an arbitrary multibody potential V (r1 , . . . , rN ).
An important fact of the IKN theory is that the force decomposition is not unique
in general, and different force decompositions lead to different definitions of the stress,
all of which differ by divergence free tensors[4]. In the original IKN theory, the
potential was considered as a sum of 2-body interactions. In this situation, the
force decomposition is trivially obtained as the sum of the individual forces
from each 2-body potential,

f αβ � −
∑

I∈Iα∩Iβ
∂rαVI (rα , rβ) �

∑
I∈Iα∩Iβ

∂rβVI (rα , rβ)

� −

∑
I∈Iα∩Iβ

Ṽ′I (rαβ)r̂αβ ,
(3.12)

where ṼI (rαβ) � VI (rα , rβ) is a representation of the pairwise interaction
in terms of the interatomic distance rαβ � |rαβ |, and r̂αβ � rαβ/rαβ. This
representation always exists as a result of invariance with respect to rigid
body motions. For general multibody potentials, the definition of a force
decomposition is not so clear. In the next section we analyze an instance of the
IKN stress based on a popular force decomposition for multibody interactions.
Let us note that in the IKN procedure the symmetry of the stress has not been
explicitly enforced. While the symmetry of σK is clear by construction, the
symmetry of σV will in general depend on the force decomposition, as one can
see from inspection of Eq. (3.7). We note that, for 2-body interactions, being
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3.2. The IKN-GLD stress

the pairwise forces in Eq. (3.12) parallel to rαβ, it is clear from Eq. (3.7) that
the resulting stress is symmetric.

3.2 The IKN-GLD stress

A popular force decomposition within the IKN approach for the analysis of
biomolecular simulations was proposed by Goetz and Lipowsky as [57]

f
αβ
GLD �

N∑
n�2

1
n

Mn∑
In�1

(
∂rβVIn − ∂rαVIn

)
, (3.13)

where we have used again the cluster expansion of the interatomic potential.
The stress resulting from the IKN procedure and the Goetz-Lipowksy decom-
position is referred to as IKN-GLD stress and denoted by σGLD. It is clear by
definition that f αβGLD � −f

βα
GLD and

N∑
β�1
f
αβ
GLD �

N∑
n�2

1
n

Mn∑
In�1

N∑
β�1

(
∂rβVIn − ∂rαVIn

)
� −

N∑
n�2

Mn∑
In�1

∂rαVIn � F α , (3.14)

where we have used balance of linear momentum within clusters Eq. (2.22).
Thus, the GLD is a legitimate force decomposition. Furthermore, if VIn (rα , rβ)
is a genuine pairwise interaction, GLD recovers the pairwise term Ṽ′In

(rαβ)r̂αβ.
However, given the form of Eq. (3.13), it is not clear whetherσGLD is symmetric
for multibody potentials. The IKN-GLD stress has been widely employed
for the analysis of biomolecular assemblies such as lipid bilayers (see [91, 62,
167, 189, 202, 129, 113, 16, 116, 165, 123, 117, 202, 16] for a selection of relevant
works), or membrane proteins [116] and therefore it is important to carefully
analyze its features.

We start by revisiting the simulation of the graphene sheet with a Stone-
Wales defect presented in Chapter 2. The trace of the IKN-GLD stress without
filtering is shown in Fig. 3.1A. Although this is a continuous field by definition,
it has marked concentrations at the interaction lines between atoms. To get a
continuous stress that smears out this atomistic signature, we spatially average
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3. The Irving-Kirkwood-Noll approach

Figure 3.1: IKN-GLD stress around a Stone-Wales defect in a graphene sheet.
(A) Trace of the raw IKN-GLD stress. As atoms remain almost stationary in
the crystalline structure, the raw stress exhibits all interaction lines between
carbon atoms. The color of these interaction lines indicate the magnitude and
sense of the interatomic forces. (B) Trace of the IKN-GLD with a Gaussian
filter of standard deviation of 1.25Å. The resulting continuous stress is very
similar to that obtained from the virial stress per atom in Fig. 2.1. (C) Norm of
the divergence of the IKN-GLD stress. The IKN-GLD stress is divergence-free
as expected by mechanical equilibrium.

the resulting stress with a Gaussian filter to obtain σ̄GLD as explained in Box 2.1.
We plot the resulting stress in Fig. 3.1B. To see if this stress is self-equilibrated,
we compute its divergence. In agreement with the IKN theory, divσGLD, and
thus divσ̄GLD, vanish, as we demonstrate in Fig. 3.1C.

3.3 Constraints in the IKN theory and mechanical
equilibrium

In the previous section we examined the definition of the IKN-GLD stress and
showed that, in agreement with the general IKN theory, it has a vanishing
divergence in a graphene sheet with a Stone-Wales defect at thermodynamic
equilibrium, in contrast with the virial stress per atom. However, we showed in
Chapter 2 that a popular implementation of the IKN-GLD stress leads to non-
constant σzz profiles in a lipid bilayer parallel to the x y-plane at equilibrium,
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3.3. Constraints in the IKN theory and mechanical equilibrium

which constitutes a violation of balance of linear momentum (see Fig. 2.2B).
This issue is striking because it is not coherent with the derivation of the
IKN stress based on balance of linear momentum. In the literature, this issue
has been reported in atomistic studies [16, 113, 189], while coarse-grained
(CG) simulations generally show constant σzz profiles. Apart from other
structural differences, a key ingredient that differentiates CG from atomistic
simulations is the use of bond constraints. Bonds in atomistic simulations are
stiff, with short characteristic times. To increase the integration time-step and
improve the computational efficiency, covalent bonds are often treated with
rigid constraints. Common constraint algorithms include LINCS [73], SHAKE
[52], and SETTLE [108]. On the other hand, CG simulations usually treat
bonds with harmonic potentials, since these bonds are softer, with time-scales
that can be more easily resolved. The IKN theory does not deal with forces
from constraints explicitly, and the contributions from constraints to the stress have
usually been treated heuristically in MD codes. For these reasons, the unphysical
non-constant σzz profiles have been related to the presence of bond constraints
[118, 16, 119, 1, 122].

To analyze whether bond constraints are the reason of the non-constant σzz

profiles, we examine the stress from four different CG and atomistic models
of a POPE (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine) lipid
bilayer in water, whose components are depicted in Fig. 3.2. In the atomistic
POPE model (Fig. 3.2A), all atoms but terminal hydrogens of the structure are
considered. For this lipid model, constraints are used to fix the bond lengths
between atomswith the LINCS algorithm. The atomistic watermodel also uses
the SETTLE algorithm to constraint the length between hydrogen and oxygen
atoms. In the CG POPE model based on the MARTINI force field [98, 99]
(Fig. 3.2B), a bead represents a point particle resulting from the coarse-graining
of 4 atoms of the atomistic structure. In this model bonds are softer and are
treated as harmonic bonds. We consider three types of CG water molecules.
In the simplest CG MARTINI model, a water molecule is represented with a
single bead. In the more complex big multipole water (BMW) model [195],
water molecules are effectively represented as super-molecules with three
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3. The Irving-Kirkwood-Noll approach

Figure 3.2: (A) Atomistic model for a POPE lipid and a water molecule.
All bonds are treated with bond constraints. (B) Coarse-grained MARTINI
models of POPE and water. In the model, the lipid is represented by beads
that agglutinate the effect of 4 atoms. Bonds are treated with harmonic bonds.
Water can be treated as a single bead, with a flexible BMWmodel or with a
rigid BMW model.

beads following the underlying atomic structure. In this special kind of CG
model, bonds between the three beads of the BMWwater are usually modeled
as rigid with bond constraints (CG-BMW-RW). It can also be treated as flexible
with harmonic bonds (CG-BMW-FW). Details on the simulation settings and
analysis can be found in Appendix B.

We analyze the stress in these models with a widely used implementation
of the IKN-GLD theory [97], which we refer to as the reference implementation
(Fig. 3.3). In Fig. 3.3A we compute σxx and σzz for CG POPE and observe
a constant σzz profile consistent with mechanical equilibrium. However,
when we examine the CG-BMW-RW model (Fig. 3.3B), we observe a non-
constant normal profile with large variations at the lipid-water interfaces. This
unphysical non-constant profile is not present in the similar CG-BMW-FW
model (Fig. 3.3C). Thus, this indicates that the presence of bond constraints in
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Figure 3.3: Stress profiles for different coarse-grained andatomisticmodels of a
POPE lipid bilayer analyzedwith the reference implementation. (A)MARTINI
model, (B) MARTINI with rigid BMWwater molecules, (C) MARTINI with
flexible water molecules, (D) Atomistic model. Models with bond constraints
show non-constant σzz profiles violating balance of linear momentum.

water is the source for the non-constant σzz . For the atomistic model (Fig. 3.3D),
we observe a very large non-constant σzz , whose signal is now also present at
the lipid core, presumably due to LINCS constraints. Thus, it is clear that a
proper treatment of constraints is required to avoid this unphysical results.

Here, we argue that constraints admit a straightforward treatment within the
IKN procedure by noting that Liouville’s equation Eq. (2.8) remains essentially
unchanged in the presence of constraints [67]. Considering Q constraints
denoted by Cq ({rα}) � 0, Liouville’s equation governing the evolution of the
probability distribution of the system takes the form

∂t f �

∑
α

[
−vα · ∂rα f +

1
mα

*.
,
∂rαV +

∑
q

F α
q

+/
-︸               ︷︷               ︸

F α

· ∂vα f
]
,

where F α
q � λq∂Cq/∂rα are the constraint forces and λq are the corresponding

Lagrange multipliers provided by the constraint algorithms. Based on this,
the IKN procedure outlined in Section 3.1 can be directly applied to the
constrained system, where F α includes now the constraint forces. Note that
a given particle may be subject to multiple constraints simultaneously, e.g. a
carbon atom bonded to four other atoms. Following the common approach
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Figure 3.4: Stress profiles for different coarse-grained and atomistic models of
a POPE lipid bilayer analyzed with the current implementation and IKN-GLD.
(A) MARTINI model, (B) MARTINI with rigid BMW water molecules, (C)
MARTINI with flexible water molecules, (D) Atomistic model. In this case, all
models produce constant σzz profiles.

of decomposing separately each additive contribution to F α, and noting
that a bond constraint Cq � rαβ − d � 0 between particles α and β depends
only on their distance, the corresponding constraint forces admit a trivial
decomposition F α

q � f
αβ
q � λqr

αβ/rαβ.
To show the effect of the proper treatment of bond constraints within the

IKN formalism, we repeat the previous analysis of the POPE lipid bilayers
with our implementation including constraint forces in the way we advocated
in the previous paragraph (Fig. 3.4). We observe that in all models constant
normal profiles are obtained in agreement with balance of linear momentum.

3.4 Unphysical torques in IKN-GLD

While the IKN-GLDstresswith a proper treatment of bond constraints provides
a stress consistent with balance of linear momentum, we observed in Chapter
2 that this stress definition can lead to non-symmetric stresses, which violate
conservation of angular momentum. To examine this issue further, we revisit
the stress components in the DPPC lipid bilayer (see Fig. 3.5A). We find that
the off-diagonal components are in fact antisymmetric (σx y

GLD � −σ
yx
GLD) and
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3.4. Unphysical torques in IKN-GLD

Figure 3.5: IKN-GLD leads to unphysical torques related tomolecular chirality.
(A) Different components of the stress for a DPPC lipid bilayer. Strikingly
σx y � −σyx . (B) Tractions on the surface of an imaginary cylinder embedded
in the lipid bilayer. Tractions are decomposed into a normal component to the
cylinder tnn, depicted with a color map, and a tangential component τ , shown
with arrows. The antisymmetric stress results in unphysical torques on the
surface of the cylinder. (C) DPPC has a usual left-handed chirality. However
there are two DPPC enantiomers, L-DPPC and D-DPPC. (D) Tractions on
the cylinder when we change the L-DPPC lipids of the lower monolayer
by D-DPPC lipids. Torques in the lower monolayer have now an opposite
direction to that of the pure L-DPPC. (D) Tractions on the cylinder for a
membrane composed of an homogeneous mixture of L-DPPC and D-DPPC.
For this model, torques vanish.
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3. The Irving-Kirkwood-Noll approach

of significant magnitude. To gain more physical intuition on this issue, we
compute the tractions on the surface of a test cylinder with outer unit normal
n. The traction can be decomposed into a normal and a tangential component,
t � tn n + τ , which we represent as a color map and using arrows respectively
(Fig. 3.5B). Focusing on the tangential traction, we note that τ is parallel to
the bilayer plane with sense and magnitude given by σx y � −σyx . It is also
clear that the antisymmetry of the stress tensor introduces distributed torques
of opposite sign in each leaflet of the bilayer, since σx y (z) � −σx y (−z). We
hypothesize that such behavior may be due to the internal structure of each
lipid, since the headgroup portion of DPPC contains a chiral carbon. We test
this hypothesis by comparing the stress tensors for three systemswith different
mixtures of the two DPPC enantiomers, L-DPPC and D-DPPC (related by a
mirror symmetry), depicted in Fig. 3.5C. Consistent with this hypothesis, the
torques induced in each monolayer according to GLD adopt the same sign
for a system with one monolayer composed of solely L-DPPC and the second
monolayer composed of solely D-DPPC (Fig. 3.5D). Mixing equal numbers of
each chiral lipid in both monolayers results in nearly zero distributed torques
(Fig. 3.5E). Thus, we conclude that the off-diagonal components of the IKN-GLD
stress tensor reflect the average chirality of the molecular composition.

To physically interpret the GLD distributed torques, it is necessary to resort
to an extended theory of continuum mechanics. In micropolar continuum
theories, these torques can be balanced locally invoking a couple stress
field m. The statement of balance of angular momentum then becomes
[156, 193, 111, 158],

εi
jkσ

jk
� ∇l m il . (3.15)

In our situation, however, there is no compelling physical justification for this
field since the primary objects of our model are achiral point particles [158]
and there is no apparent external source form. Thus, although the connection
between the non-symmetry of the IKN-GLD stress and molecular chirality is
very appealing, this example undermines its mechanical interpretation.

The microscopic stress tensor not only serves as a tool to explore the local
distribution of forces, but it can also provide important material properties.
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3.5. A central force decomposition: the IKN-CFD stress

For instance, the Gaussian curvature elastic modulus of lipid bilayers can be
computed as

κ̄ �

∫
(σxx − σzz) z2 dz , (3.16)

which is highly sensitive to the features of the stress profile, see [75] and
references therein. Common estimates of κ̄ suggest that it is in the order
of the negative of the bending modulus ∼ 5 − 15 · 10−20 J [101]. For the
three bilayer systems with different chiralities in Fig. 3.5, we find κ̄GLD �

(0.91, 0.57, 1.3) · 10−20 J respectively, with the wrong sign–suggesting that a
DPPC bilayer would be unstable [71]– and widely varying magnitudes. This
exemplifies the lack of consistency of the IKN-GLD stress.

3.5 A central force decomposition: the IKN-CFD stress

We have previously examined two very popular definitions of the microscopic
stress. The virial stress per atom gives a symmetric stress by construction, but
violates conservation of linear momentum from a continuum viewpoint. The
IKN approach introduces stresses that satisfy balance of linear momentum by
construction and depend on the definition of a force decomposition. A popular
force decomposition is the Goetz and Lipowsky decomposition, which leads to
the IKN-GLD stress. However, the IKN-GLD stress is not symmetric in general;
we have shown that in systems with chiral constituents, it leads to unphysical
torques that cannot be rationalized with the theory of continuummechanics of
simple bodies. In this section we introduce a recent force decomposition, the
central force decomposition, which leads to symmetric stresses by construction
within the IKN theory [4, 178]. Thus, the resulting stress satisfies both balance
of linear and angular momentum by construction in contrast with previous
definitions.

It has been recently shown [4] that to obtain a symmetric stress from the
IKN procedure, the force decomposition must satisfy the strong law of action
and reaction:

f αβ � −f βα , f αβ � ϕαβr̂
αβ . (3.17)
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3. The Irving-Kirkwood-Noll approach

The first condition was previously required to invoke Noll’s lemma (see
Eq. (3.9)). The second condition ensures that the resulting stress is symmetric;
since f αβ is parallel to rαβ, the symmetry of the stress is apparent recalling
Eq. (3.7). A force decomposition satisfying Eq. (3.17) is called a central force
decomposition (CFD) [4, 178].

To define a CFD, let us express the potential energy of the system
V (r1 , . . . , rN ) in terms of the set of distances defined by particles r1 , . . . , rN ,
which we denote by {rαβ}. With such representation Ṽ ({rαβ}), which always
exists as result of invariance with respect to rigid body transformations of
classical potentials [178], we can define the corresponding CFD as

f
αβ
CFD � ϕαβr̂

αβ , (3.18)

where
ϕαβ � ∂rαβṼ ({rαβ}). (3.19)

It is clear by definition that this definition satisfies Eq. (3.17), and

F α
� −∂rαV (r) � −

∑
β

∂rαβṼ ({rαβ})∂rα rαβ

�

∑
β

∂rαβṼ ({rαβ})r̂αβ �
∑
β

f
αβ
CFD ,

(3.20)

which shows that CFD is a genuine force decomposition. However, this CFD
has an important limitation when N > 4. To show this, we first note that
the N (N − 1)/2 interatomic distances between N particles (r12 , . . . , r (N−1)N )
cannot be arbitrarily chosen in the spaceD � RN (N−1)/2

+ . There are geometric
conditions that guarantee that these distances can be realized by a system of N
particles in Euclidean space, which define the so-called shape spaceS ⊂ D. By
noting that the dimension of S is equal to the number of degrees of freedom of
a system of point particles removing the 6 degrees of freedom corresponding
to rigid body motions, i.e. dimS � 3N − 6, it is clear that the dimension of S is
smaller than N (N − 1)/2 for N > 4. More rigorously, the geometric conditions
that (r12 , . . . , r (N−1)N ) must satisfy in order to embeddable in Euclidean space
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3.5. A central force decomposition: the IKN-CFD stress

are expressed in terms of Caley-Menger determinants [178, 93, 134]

χ(rαβ , rαγ , rβγ) ≤ 0,

χ(rαβ , rαγ , rαδ , . . . , rγδ) ≤ 0,

χ(rαβ , rαγ , rαδ , rαε , . . . , rδε) � 0,

χ(rαβ , rαγ , rαδ , rαε , rαζ , . . . , rεζ) � 0,

∀ α, β, γ, δ, ε, ζ � 1, . . . ,N, α < β < γ < δ < ε < ζ,

(3.21)

where χ(r12 , . . . , r (N−1)N ) is the Caley-Menger determinant given by

χ(r12 , . . . , r (N−1)N ) �

������������������

0 s12 s13 . . . s1N 1
s12 0 s23 . . . s2N 1
s13 s23 0 . . . s3N 1
...

...
...

. . .
...

...

s1N s2N s3N . . . 0 1
1 1 1 . . . 1 0

������������������

, (3.22)

and sαβ � (rαβ)2. The first 2 equations in Eq. (3.21) are inequalities involving
the distances between all clusters of 3 and 4 particles respectively, generalizing
the triangle inequality, and restrict S to a subset of D but do not modify
the intrinsic dimension of S. Therefore, for a potentials involving up to 4
particles, there is no difficulty in taking the partial derivative in Eq. (3.19).
However, the last two equations in Eq. (3.21), which restrict distances between
clusters of 5 and 6 particles respectively, limit the intrinsic dimension of S to
3N − 6. Therefore, when N > 4, the dimension of the manifold S is smaller
than N (N − 1)/2, and the differential calculus involved in Eq. (3.19) needs to
be carefully considered [93, 134]. Indeed, for N > 4, rαβ cannot be arbitrary
perturbed without leaving the shape space S. Noting this fact, it has been
argued that, to be able to take the partial derivative ∂rαβṼ in Eq. (3.19), the
potential needs to be extended to D [4, 178]. However, when N > 4, there
exist infinitely many extensions of the potential onto D, some of which can
be obtained by combination of Caley-Menger determinants. For instance for
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Potential Particles Pairwise terms
Coulomb 2 1

Van der Waals 2 1
Angles 3 3

Dihedrals 4 6
Bond constraints 2 1
Harmonic bonds 2 1

Table 3.1: Number of particles involved in the main MD potentials for
biomolecular simulations.

a 5-body potential expressed by the function Ṽ (r12 , . . . , r45) the alternative
representation

V̂ (r12 , . . . , r45) � Ṽ (r12 , . . . , r45) + χ(r12 , . . . , r45), (3.23)

coincides with Ṽ on S but extends the potential differently on D, and would
produce a different force decomposition in Eq. (3.18). The lack of a rational
procedure to fix this gauge freedom has been a source of criticism [111].

A natural way to alleviate the massive non-uniqueness associated with
potential extensions is to perform the CFD independently on each of the terms
of a multibody expansion of the potential energy. Within this formalism, the
CFD can be written as

f
αβ
CFD �

N∑
n�2

Mn∑
In�1

ϕIn
αβr̂

αβ , (3.24)

where
ϕIn
αβ � ∂rαβṼIn ({rαβ}). (3.25)

and ṼIn ({rαβ}) is the representation of the interatomic potential VIn ({rα}) in
terms of inter-particle distances. For interatomic potential that do not contain
cluster potentials involving more than 4 particles, as it is the case for most
force fields in MD simulations (see Table 3.1 for a table of the most relevant
potentials inMD), this definition of CFD is unique. For higher ordermultibody
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Figure 3.6: IKN-CFD stress around a Stone-Wales defect in a graphene sheet.
(A) Trace of the raw IKN-GLD stress. (B) Trace of the IKN-CFD with a
Gaussian filter of standard deviation of 1.25Å. (C) Norm of the divergence of
the IKN-CFD stress, which vanishes as expected by mechanical equilibrium.

potentials, the issue is not resolved. In chapter 5 we revisit this problem and
give a canonical CFD that extends Eq. (3.25) to arbitrary multibody potentials.

Results

Wenow revisit previous experiments with the IKN-CFDdefinition. We start by
examining the IKN-CFD stress around the Stone-Wales defect in the graphene
sheet (Fig. 3.6). As for the IKN-GLD stress, the raw IKN-CFD stress shows
concentrated stresses along interaction lines. However, the magnitude and
direction of the pairwise forces is very different to the IKN-GLD case because
of the different force decomposition (see Fig. 3.7 for the differences between
CFD and GLD for a torsion potential). After a Gaussian filter, we obtain a
distribution of the stress similar to that of the IKN-GLD stress, albeit with
larger magnitudes. As for the IKN-GLD stress, the divergence of the IKN-CFD
stress tensor vanishes in agreement with balance of linear momentum.

In the DPPC lipid bilayer the IKN-CFD stress is diagonal with σx y �
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Figure 3.7: Pairwise forces obtained from different decompositions. Torsional
potential acting on four atoms as determined by a dihedral angle φ (left).
Net forces on each atom are displayed in green. The resulting decomposed
forces in the case of CFD (top) and GLD (bottom, scaled 5x for visualization
purposes) are shown on the right. There is a great difference both in the
magnitude and direction of the resulting force pairs. While the CFD forces are
always central (i.e. parallel to rαβ), the GLD pairs are not central, and much
smaller than those of CFD.

σyx � 0 up to a noisy profile resulting from the finite sampling of the
simulation (Fig. 3.6A) and with a constant normal profile, thanks to with our
consistent treatment of constraints. Interestingly, the lateral stress σxx � σy y

has significant differences with respect to the IKN-GLD stress. Because the
IKN-CFD stress is symmetric, we obtain vanishing lateral tractions on the
surface of the imaginary cylinder (Fig. 3.6B). Computing the IKN-CFD stress
for the different mixtures of DPPC enantiomers produces the same stress
profiles (see Figure C.1). With this force decomposition, we compute again the
Gaussian bending modulus using Eq. (3.16) for the three systems in Fig. 3.5,
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Figure 3.8: IKN-CFD stress is symmetric as expected by balance of angular
momentum (A) Different components of the stress for a DPPC lipid bilayer.
(B) Tractions on the surface of an imaginary cylinder embedded in the lipid
bilayer. Tractions are decomposed into a normal component to the cylinder
tnn, depicted with a color map, and a tangential component τ , shown with
arrows.

finding κ̄CFD � (−6.4,−6.7,−6.1) · 10−20 J, in agreement with the common
estimates of κ̄, further supporting the physical validity of the IKN-CFD
approach as compared with the IKN-GLD stress.
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Chapter 4

Examining the microscopic
stress in biomembranes

4.1 Individual contributions to the stress

Thanks to the mechanically consistent IKN-CFD microscopic stress definition
and the proper treatment of constraints, all of which are implemented in our
code, we examine here details about the features of the microscopic stress in
lipid bilayers. For that, we re-examine the simulations of CG and atomistic
POPE lipid bilayers introduced in Section 3.3 focusing on the IKN-CFD stress
(see Fig. 4.1). We note that the stress profiles from CG simulations analyzed
with IKN-CFD look similar to those of IKN-GLD, while those obtained
from the atomistic membrane present significant differences in shape and
magnitude (see also Fig. 3.4). This is because CG systems do not contain
torsional potentials, for which the CFD and GLD differ greatly (see Fig. 3.7).
The qualitative differences between profiles of CG systems and those from
atomistic systems are also striking. To further investigate the nature of these
stress profiles, we separate the kinetic and the different potential contributions
(bonds, van der Waals, Coulomb, angle and dihedral potentials, etc.) for the
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Figure 4.1: Stress profiles for different coarse-grained and atomistic models of
a POPE lipid bilayer analyzed with the current implementation and IKN-CFD.
(A) MARTINI model, (B) MARTINI with rigid BMW water molecules, (C)
MARTINI with flexible water molecules, (D) Atomistic model.

coarse-grained (CG and CG-BMW-RW) and atomistic models of POPE, as
shown in Fig. 4.2. Thermodynamic equilibrium in thesemodels arises from the
sum of various contributions and therefore it is expected that the partial stress
profiles of each individual interaction may not exhibit similar behavior when
compared across models, e.g. atomistic simulations include potentials that are
not considered in the CG systems and change the equilibrium conditions. The
treatment of water in the three models is one of the biggest factors influencing
the behavior of the individual contributions to the stress.

We first focus on the CG model, which contains the least number of
interaction potentials (Fig. 4.2A). We check that for this unconstrained system,
the kinetic part of the stress locally satisfies the equipartition theorem and
therefore σxx

K (z) � σzz
K (z) � −ρ(z)kBT, where ρ(z) is the particle density

profile. The water beads in the CG model are not charged and therefore
cannot reproduce the entropic or enthalpic behavior of real water, which
are at the origin of the hydrophobic effect keeping the bilayer in place. This
makes it necessary to include attractive van der Waals interactions at the
lipid headgroups and in the water beads to preserve the integrity of the
bilayer and the cohesion of fluid water. Therefore, van der Waals forces result
in positive values in both σxx and σzz . The lipid headgroups also present
electrostatic interactions that lead to net cohesive stresses in this region. The
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Figure 4.2: Individual contributions to the total stress of coarse-grained and
atomistic membrane simulations. The lateral profile σxx is represented by blue
curves, while σzz is plotted in black. The translucent image in the background
of each plot depicts the lipid bilayer (tanned/grey atoms) and the water (light
blue/red atoms) regions to guide the reader. (A) shows the contributions for
the MARTINI CG POPE system, (B) shows those of the BMW-MARTINI (CG-
BMW-RW) POPE with rigid water (SETTLE), and (C) shows the contributions
of the atomistic POPE-PME with rigid lipid (LINCS) and water (SETTLE)
bonds.

angle contribution presents a repulsive component in σzz and an attractive
component in σxx , which result from the vertical orientation of the lipids as
well as from their packing within the membrane. The bonding contribution to
both σxx and σzz is negative due to the reduction, on average, of bond lengths
within the packed lipids.

In the more sophisticated CG-BMW-RW (Fig. 4.2B), the different water
treatment introduces major changes in several partial profiles when compared
to the CG model. These changes are located in the bulk water and at the
lipid-water interface, since the two models are very similar in the hydrophobic
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4. Examining the microscopic stress in biomembranes

core. As expected, the kinetic contribution increases with the degrees of
freedom in water. The Coulomb interactions between water molecules, which
result in cohesive intermolecular forces due to the dipole-dipole interactions,
completely changes the role of van der Waals forces. In this model, van der
Waals forces in water mostly result in collisions that generate high repulsive
stresses. On the other hand, the SETTLE constraints provide the intramolecular
forces that keep the water structure fixed, resulting in cohesive stresses. At the
lipid-water interphase, where the particle density is highest in the bilayer, the
bond contribution presents an attractive stress to compensate for the higher
rate of van der Waals collisions.

The individual contributions in the atomistic system (Fig. 4.2C) are qual-
itatively similar to those in the CG-BMW-RW model due to the analogous
treatment of water, although the stress magnitudes are significantly different.
Bonding forces, which are treated with LINCS constraints in this model, result
in both attractive and repulsive stresses in the headgroup region. The negative
peaks stem from the repulsive constraint forces that balance the attractive
electrostatic interaction between the phosphate and ethanolamine groups. The
CG and CG-BMW-RWmodels do not present this feature as these two charged
groups are directly connected by a bond and therefore the electrostatic force is
excluded.

4.2 Effect of unsaturations on stress profiles

In the atomistic model of POPE, the dihedral contributions to σxx display large
positive and negative values as shown in Fig. 4.2C (rightmost panel). In fact,
as emphasized in Fig. 4.3A, this dihedral contribution nearly coincides with
the total lateral stress profile within the hydrophobic core, and therefore the
other contributions nearly balance each other in this region. As suggested
by the excellent correlation between the location of the double bond and the
large negative peaks in each leaflet of POPE, see Fig. 4.3A, we attribute this
feature of the lateral stress profile to the dihedral potential that restraints the
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Dihedrals

Total

Double bond

Bilayer

P8 atom

Hydrophobic/
water interface

A

B C

POPE

POPC DPPC

σxx

σxx

σxx

Figure 4.3: Dihedral contribution to the lateral stress profile σxx (red curves)
compared to the total σxx profile (black curves), in atomistic POPE (A), POPC
(B), and DPPC (C) bilayers. Density plots (filled areas, in arbitrary units) of
particular lipid components are included for reference. The hydrophobic-
water interface is identified from the overlap of water and lipid tail densities,
ρwater(z) · ρtails(z).

planar geometry of this cis double bond. The potentials used to restrain the
geometry of a double bond are significantly stiffer compared to other dihedral
interactions. We present a similar comparison of the dihedral contribution
vs the total lateral profile for POPC, see Fig. 4.3B, differing from POPE in
the headgroup but also exhibiting a double bond in the tails. Again, the
contribution of dihedral forces overwhelmingly dominates the σxx profile in
the hydrophobic core. We compare this system with DPPC, see Fig. 4.3C,
which differs from POPC in that it does not have double bonds. This system
shows much smaller negative peaks in the hydrophobic core, and the total
pressure profile does not closely follow the dihedral contribution, which is
nevertheless significant. Comparison of Fig. 4.3B and C suggests that double
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4. Examining the microscopic stress in biomembranes

bonds in the lipid tails strongly affect the way stresses are distributed across
the bilayer. This is consistent with experimental observations showing that
the bending elasticity modulus of a fluid bilayer decreases with the number of
unsaturations in the lipid tails, while the lateral area compressibility practically
remains unchanged [143, 101]. The IKN-GLD stress does not capture the
effect of double bonds in σxx , see Fig. 3.4D, and therefore misses the strong
mechanical effect of dihedrals in the hydrophobic core predicted by IKN-
CFD stress calculations. While the effects of the lipid unsaturations clearly
dominate the stress profile differences between these systems, there are also
smaller variations in the headgroup region. In all three systems shown in
Fig. 4.3, there is a clear correlation between the large positive peak and the
hydrophobic-water interface as expected from their unfavorable interaction,
which induces a cohesive stress to minimize the exposure of the lipid tails to
the water. In the headgroup region, the repulsion between the charged atoms
(e.g. phosphorous, see cyan density plots in Fig. 4.3) results in a negative peak.
In summary, these results highlight the complex mechanical organization of lipid
bilayers and the potential of the microscopic stress in connecting bilayer mechanics
and lipid chemistry.
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Chapter 5

A covariant central force
decomposition

In this chapter, we reexamine the derivation of the microscopic stress from an
alternative route, not relying on the statement of balance of linear momentum,
and thus fundamentally different from the IKN procedure. This new approach
is based on a variational and geometric characterization of the stress in classical
continuum mechanics called the Doyle-Ericksen formula. Following this new
route, we obtain an expression that is equivalent to the IKN-CFD stress but
that naturally extends CFD to arbitrary multibody potentials. While our
derivation is performed at equilibrium, the emerging force decomposition can
be naturally framed in the IKN theory, and thus our expression also applies to
non-equilibrium situations.

5.1 Introduction

We define the microscopic stress as the statistical mechanics equivalent of the
so-called Doyle-Ericksen formula in continuum mechanics [45, 100, 200, 199],
in an approach similar in spirit to previous variational theories [20, 21, 107].
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5. A covariant central force decomposition

Suppose we have a continuous medium whose free energy is written as
A �

∫
Ω

adV , with a being the free energy density per unit of deformed volume.
The Doyle-Ericksen formula expresses the Cauchy stress tensor of such system
as

σi j
� 2 ∂a

∂gi j
, (5.1)

whereg is themetric tensor of the ambient space. This formula is a consequence
of requiring invariance of the statement of conservation of energy balance
statement with respect to spatial diffeomorphisms, i.e. conservation of energy
should hold in an arbitrary time-dependent curvilinear coordinate system.

For our discretemolecular system the notion of free energy density involved
in the Doyle-Ericksen formula in Eq. (5.1) is unclear. Nevertheless, it is
straightforward to modify the derivation of the Doyle-Ericksen formula in the
continuum case to obtain a more general form not requiring the existence of
such a density in terms of a functional derivative as

σi j
� 2 δA

δgi j
. (5.2)

As we show next, this equation is pertinent to molecular systems because A is
indeed a functional of g.

Being a fundamental covariance requirement of the theory of continuum
mechanics, Eq. (5.2) is a legitimate starting point to define the microscopic
stress, alternative to the continuum statement of linear momentum invoked
by the more standard IKN approach, c.f. Eq. (3.5). To exercise this idea, we
need to provide a statistical mechanics evaluation of the right-hand side of
Eq. (5.2). In this case, the dependence on g emerges when the canonical free
energy A, defined in Eq. (2.10), is expressed covariantly, i.e. for an arbitrary
coordinate system, which then allows us to take the functional derivative.

5.2 The free energy in a general coordinate system

We analyze next the dependence of the free energy on the ambient metric. For
that, we follow the passive approach of [45] and introduce an arbitrary change
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5.2. The free energy in a general coordinate system

of variables in space, characterized by the diffeomorphism ξ(x) from Ω onto
itself. This change of variables induces a canonical point transformation in
phase space

r̂α � ξ(rα), (5.3)

p̂α � [Dξ(rα)]−T pα or pαi � Diξ
j (rα) p̂αj , (5.4)

for each particle. Note that momenta transform like co-vectors or one-forms.
It immediately follows that dr̂ � [det (Dξ)]N dr and dp̂ � [det (Dξ)]−N dp,
and therefore this transformation leaves the phase volume element unchanged

dr̂ dp̂ � dr dp. (5.5)

We consider a standard form for the kinetic energy in the initial coordinate
system

K(r, p; g0) �
N∑
α�1

1
2mα g i j

0 (rα)pαi pαj , (5.6)

where g0 the metric tensor associated to the initial coordinates {x i
}. In practice,

this coordinate system is Cartesian and g i j
0 � δi j . Inserting Eq. (5.4) into

Eq. (5.6), we obtain

K(r, p; g0) �
N∑
α�1

1
2mα g i j

0 (ξ−1(r̂α))Diξ
k D jξ

l p̂αk p̂αl ,

�

N∑
α�1

1
2mα gkl (r̂α)p̂αk p̂αl � K(r̂, p̂; g), (5.7)

where we have defined g as the push-forward by the mapping ξ of the original
metric tensor

g � ξ∗ g0 � Dξ−T
(
g0 ◦ ξ

−1
)

Dξ−1. (5.8)

It is easy to see that ξ is an isometry between (Ω, g0) and (Ω, g), and therefore
if (g0) i j � δi j is the standard Euclidean metric, then g � Dξ−T Dξ−1 is the
expression of the Euclideanmetric in the coordinates given by ξ. In conclusion,
the kinetic energy takes the same form in the original and in the new variables,
provided the appropriate metric tensor is considered.
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5. A covariant central force decomposition

As for the potential energy, we consider for definiteness the cluster form
of the potential in Eq. (2.14) and express each cluster potential in terms of
particle distances

V �

N∑
n�2

Mn∑
In�1

ṼIn ({rαβ}), (5.9)

where ṼIn is any extension of the potential contribution VIn . To express V
covariantly, we note that irrespective of the coordinate system, i.e. for any
metric tensor given as in Eq. (5.8), rαβ is the length of the geodesic curve joining
points r̂α and r̂β, which we denote by cg (λ) for λ ∈ [0, 1], emphasizing its
dependence on g [41]. Since here g is the expression of the standard Euclidean
metric in a general coordinate system, there exists a single geodesic joining
any two particles (the straight line of Euclidean space described in the general
coordinate system). Thus, the distance between two particles can be written as

rαβ (r̂α , r̂β; g) �
∫ 1

0

√
[gs]i j

(
cg (λ)

)
∂λc i

g (λ) ∂λc j
g (λ) dλ, (5.10)

which clearly shows that rαβ, and hence V , H, and A, are functionals of g.
Because ξ is an isometry between (Ω, g0) and (Ω, g),

rαβ (r̂α , r̂β; g) � rαβ (rα , rβ; g0)

and cg � ξ ◦ cg0 .
Thus, if we define

H(r, p; g0) � K(r, p; g0) +
N∑

n�2

Mn∑
In�1

ṼIn ({rαβ (rα , rβ; g0)}) (5.11)

and

H(r̂, p̂; g) � K(r̂, p̂; g) +
N∑

n�2

Mn∑
In�1

ṼIn ({rαβ (r̂α , r̂β; g)}), (5.12)

we have shown that H(r, p; g0) � H(r̂, p̂; g). Performing the change of
variables given by Eqs. (5.3,5.4), this fact and Eq. (5.5) allow us to express the
canonical free energy of the system as

A � −kBT log
∫

e−H(r,p;g0)/(kBT)drdp (5.13)
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5.3. Statistical mechanics representation of the microscopic stress

� −kBT log
∫

e−H(r̂,p̂;g)/(kBT)dr̂dp̂

� −kBT log
∫

e−H(r,p;g)/(kBT)drdp, (5.14)

where in the last step we have just changed the notation for the integration
variables. Examining the first and last lines, we observe that although the
free energy is a functional of the metric tensor A[g], it is independent of it
as long as it is induced by a change of coordinates as in Eq. (5.8). We can
also see that the diffeomorphism ξ in this theory is just a tool to generate an
admissible change of the ambient metric tensor, without moving or changing
the coordinates of the particles themselves. We examine next the physical
consequences of these facts.

5.3 Statistical mechanics representation of the
microscopic stress and mechanical equilibrium

To compute the functional derivative in Eq. (5.2) we consider a family of
changes of coordinates ξs (x) from Ω onto itself, parametrized by s, and such
that at s � 0, ξ i

0(x) � x i is the identity map. The mappings ξs generate by
push-forward admissible changes of the ambientmetric tensor gs as in Eq. (5.8),
making the free energy A effectively a function of s alone, see Eq. (5.14).

Denoting by ηi (x) � ∂sξ i
s (x) |s�0 the rate of change of the coordinate

system at the identity, it follows that [41, 100]

d
ds

�����s�0
(gs )i j �

[
Lη (g0)

]
i j �

1
2

[
∇iη j + ∇ jηi

]
, (5.15)

where Lη (g) is the Lie derivative of the metric along the vector field η. Note
the analogy with the rate of deformation tensor in continuum mechanics.
Thus, the metric variation is characterized by η and the functional derivative
of any functional depending on the metric tensor, F[g], is given by the relation

d
ds

�����s�0
F[gs] �

∫
Ω

δF
δgi j

[
Lη (g0)

]
i j dΩ �

∫
Ω

δF
δgi j

hi j dΩ, (5.16)
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5. A covariant central force decomposition

where we have introduced the shorthand notation h � Lη (g0).
Recalling Doyle-Ericksen formula in Eq. (5.2), the form of the canonical

free energy in Eq. (5.14), and Eq. (5.16), we have∫
Ω

1
2σ : h dΩ �

∫
Ω

δA
δg

: h dΩ �
d
ds

�����s�0
A[gs] (5.17)

�

∫ (
d
ds

�����s�0
H(r, p; gs )

)
e−(H(r,p;g0)−A[g0])/(kBT)drdp

�

〈
d
ds

�����s�0
H(r, p; gs )

〉
�

〈∫
Ω

δH
δg

: h dΩ
〉
�

∫
Ω

〈
δH
δg

〉
: h dΩ.

Thus, by defining the instantaneous microscopic stress tensor as

σinst � 2δH
δg

� 2δK
δg︸︷︷︸

σK,inst

+ 2δV
δg︸︷︷︸

σV,inst

, (5.18)

we can represent the microscopic stress tensor as σ � σK + σV , where the
kinetic and potential contributions are the ensemble averages σK �

〈
σK,inst

〉
and σV �

〈
σV,inst

〉
.

This definition of the stress tensor obviously satisfies balance of angular
momentum because it is symmetric by construction. Furthermore, comparing
Eqs. (5.13,5.14) and recalling Eq. (5.15), it is clear that

0 �
d
ds

�����s�0
A[gs] �

∫
Ω

1
2σ : ∇η dΩ, (5.19)

which should hold for any infinitesimal change of coordinates η. This is the
weak form of balance of linear momentum for the microscopic stress.

5.4 Uniqueness of the variational definition of the
stress tensor

We emphasize that here we consider a system evolving in standard Euclidean
space but described by a general set of curvilinear coordinates. For this
reason, when computing the functional derivative of A we only consider
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5.4. Uniqueness of the variational definition of the stress tensor

metric changes characterized by Eq. (5.15), which are not the most general
metric variations (i.e. merely symmetric tensor fields). As we discuss next,
this fact is related to the fundamental non-uniqueness of the microscopic
stress tensor, also present in the proposed formalism despite previous claims
[107, 149]. Indeed, let L2 be the completion of the Hilbert space of symmetric
tensors with the scalar product

(α,β) �
∫
Ω

αi jβi j dΩ. (5.20)

This space admits the orthogonal decomposition L2 � L
‖

2 ⊕ L
⊥

2 , where

L
‖

2 �

{
h | hi j �

1
2

[
∇iη j + ∇ jηi

]}
, (5.21)

are the metric variations induced by diffeomorphisms and

L
⊥

2 � {ω | ∇ · ω � 0} , (5.22)

are perpendicular to them [23]. For infinitely large domains and smooth
decaying tensors, L‖2 ∩ L

⊥

2 only contains the zero tensor. Therefore, given any
tensor σ, it can be uniquely decomposed into a parallel part σ | | ∈ L‖2 and a
normal part σ⊥ ∈ L⊥2 . On the other hand, for bounded domains L‖2 ∩ L

⊥

2
may contain elements different from zero. That is, there may be tensors of the
form in Eq. (5.21) with zero divergence. To define a unique decomposition of
tensors into a parallel and a normal parts, boundary conditions are required,
as explained in [2, 3]. Here we do not discuss this issue further in this work. As
a direct consequence of this decomposition, the functional derivative δA/δg
in Eq. (5.17) cannot be uniquely identified since we can add to it any field in
L
⊥

2 without altering the variation of A. Physically, adding a self-equilibrated
stress field does not perform work against an infinitesimal metric variation in
L
‖

2 .
Considering general variations of the metric would remove this indetermi-

nacy, but such variations would bring the system out of the shape space, where
interatomic potentials are not intrinsically defined. In other words, metric
variations not induced by changes of coordinates would result in pairwise
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5. A covariant central force decomposition

distances that cannot be embedded in Euclidean space, and thus it would not
make physical sense to evaluate Ṽ ({rαβ}) at these pairwise distances. Despite
this fundamental indeterminacy also present in the IKN procedure, we show
next that the method presented here provides a rational and unambiguous
definition of the stress, and leads to a unique central force decomposition
irrespective of the number of particles intervening in the potential.

We also see from this discussion that, since σ satisfies Eq. (5.19), σ ∈ L⊥2 .
In other words, σ satisfies the strong form of the balance of linear momentum
divσ � 0.

5.5 Kinetic part of the microscopic stress

We focus now on the kinetic contribution to the stress tensor

σK � 2
〈
δK
δg

〉
. (5.23)

As previously discussed,

K(r, p; gs ) �
N∑
α�1

1
2mα g i j

s (rα)pαi pαj , (5.24)

which can be formally expressed as a functional depending on g(x) using
Dirac distributions δ(rα − x),

K(r, p; gs ) �
N∑
α�1

1
2mα

∫
Ω

g i j
s (x)pαi pαj δ(x − rα) dΩ. (5.25)

The variation produced by a change of metric h � Lη (g) is

d
ds

�����s�0
K(r, p; gs ) � −

N∑
α�1

1
2mα

∫
Ω

hkl (x)pαk pαl δ(x − rα) dΩ, (5.26)

where we have used the identity

d
ds

�����s�0
g i j

s (x) � −g ik
0 (x)hkl (x)g l j

0 (x) � −h i j (x), (5.27)
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5.6. Potential part of the microscopic stress

which follows from differentiating with respect to s the relation g i j
s

(
gs

)
jk � δi

k .
Recalling Eq. (5.16), it is clear that Eq. (5.26) allows us to identify the functional
derivative as

δK
δgi j

(x) � −
N∑
α�1

1
2mα gki

0 (x)g jl
0 (x)pαk pαl δ(x − rα). (5.28)

Noting that mαvαi � g ik
0 (rα)pαk and taking the ensemble average, we reach the

classical Irving-Kirkwood result

σ
i j
K (x) � −

N∑
α�1

mα
〈
vαi vα jδ(x − rα)

〉
. (5.29)

We discuss next the uniqueness of the kinetic stress. Because the kinetic
energy can be written as the integral of a kinetic energy density

K �

∫
Ω

k(x; gs (x))dΩ, (5.30)

which depends locally on the metric tensor,

k(x; gs (x)) �
N∑
α�1

1
2mα g i j

s (x)pαi pαj δ(x − rα), (5.31)

then the functional derivative can be localized to the partial derivative and

σK (x) � 2
〈
∂k
∂g

(x)
〉
. (5.32)

This formula leads directly to Eq. (5.29) and is devoid of ambiguity. The key
observation in this argument is the existence of a local energy density.

5.6 Potential part of the microscopic stress

We focus now on the potential contribution to the stress tensor

σV � 2
〈
δV
δg

〉
. (5.33)
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5. A covariant central force decomposition

Unfortunately, the potential energy cannot be naturally expressed as the
integral of a potential energy density, i.e. there is no canonical notion of how
to localize in space the potential energy of a set of discrete interacting particles
[5]. However, the cluster expansion in Eq. (2.14) provides a systematic way
to localize as much as possible the potential interactions. By computing
variations for each cluster potential VIn independently, we partially localize
these variations because they are only affected by changes of metric that alter
the distances between the particles involved, but are independent of changes
of metric that alter other regions of space.

The significance of Eq. (5.14) is that we can compute variations of A (or of
V) by keeping the particle positions fixed and just changing the background
metric gs as given by Eqs. (5.8,5.15). Therefore, we can write the inter-particle
distances as

rαβ (s) �
∫ 1

0

√
[gs]i j (c(λ, s)) ∂λc i (λ, s) ∂λc j (λ, s) dλ, (5.34)

where now the curve c(λ, s) is the geodesic relative to gs joining two particles
with fixed coordinates, and consequently we can write the potential energy as

V (s) �
N∑

n�2

Mn∑
In�1

ṼIn ◦ RIn (s), (5.35)

where RIn maps the parameter s to the sets of distances {rαβ} involved in the
potential contribution ṼIn measured with metric tensor gs . Because we only
consider metric tensors defined as in Eq. (5.8), the distances produced by
RIn lie on the shape space SIn , i.e. the range of RIn : R+ −→ SIn is precisely
the domain of ṼIn : SIn −→ R. For this reason, potential extensions are not
necessary in the present framework.

To identify δV/δg in Eq. (5.33), we need to evaluate the derivative of V with
respect to s. A crucial observation is that the chain rule applied to Eq. (5.35)
naturally involves the tangent map of ṼIn , which being ṼIn a scalar function is
homeomorphic to the covariant derivative of ṼIn along SIn . Thus, we obtain

d
ds

�����s�0
V �

N∑
n�2

Mn∑
In�1

∑
α,β>α

ϕ
SIn
αβ

d
ds

�����s�0
rαβ (s) (5.36)
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5.6. Potential part of the microscopic stress

where, in contrast to Eq. (3.19), here

ϕ
SIn
αβ �

(
∇SIn

ṼIn

)
αβ

(5.37)

stands for the αβ component of the covariant derivative of the potential along
the shape space SIn expressed in the canonical basis of the space of pairwise
distancesDIn . Because the coordinates {rαβ} do not parametrize SIn but rather
its embedding space DIn , the covariant derivative can be understood as the
projection onto SIn of the gradient of a potential extension inDIn . The result
is however independent of the extension.

Further elaborating on Eq. (5.36), we have

d
ds

�����s�0
V �

N∑
n�2

Mn∑
In�1

∑
α,β>α

ϕ
SIn
αβ

∫
Ω

δrαβ

δgi j
hi j dΩ (5.38)

�

∫
Ω

N∑
n�2

Mn∑
In�1

∑
α,β>α

ϕ
SIn
αβ

δrαβ

δgi j
hi j dΩ, (5.39)

which recalling Eq. (5.18) leads to

σ
i j
V,inst(x) � 2

N∑
n�2

Mn∑
In�1

∑
α,β>α

ϕ
SIn
αβ

δrαβ

δgi j
(x). (5.40)

To evaluate this expression, we use Eq. (5.34) carefully considering the depen-
dence on s to compute

d
ds

�����s�0
rαβ �

∫
Ω

δrαβ

δgi j
hi j dΩ (5.41)

�

∫ 1

0

1
2 |∂λc0 |g0

{
hi j∂λc i

0∂λc j
0 + Ds gi j∂λc i

0∂λc j
0 + 2gi jDs∂λc i

0 ∂λc j
0

}
dλ,

where c0(λ) � c(λ, 0) and Ds denotes the covariant differentiation along the
vector field ∂sc(λ, 0) [41]. Here, the variation of the length does not involve
boundary terms because the end points of the geodesic do not depend on s.
The second term of the integrand vanishes because the covariant derivative
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5. A covariant central force decomposition

of the metric tensor is zero. To treat the last term, we first use the fact that
Ds∂λc � Dλ∂sc [41]. Then, it is easily seen that it vanishes. Indeed,

∫ 1

0

1
|∂λc0 |g0

gi jDλW i ∂λc j
0 dλ (5.42)

is the variation of the length of c0 with respect to a variation of this curve
along the vector fieldW . Because c0 is a geodesic, this expression vanishes
for allW vanishing at the ends of the curve, in particular ∂sc.

Thus, retaining only the first term we can express the variation of bond
lengths in terms of an integral over the whole space by resorting to a Dirac
distribution

d
ds

�����s�0
rαβ (s) �

∫
Ω

∫ 1

0
δ(c0(λ) − x)

hi j (x)∂λc i
0∂λc j

0

2
√

[g0]kl (x)∂λck
0∂λc l

0

dλdΩ, (5.43)

which allows us to identify the functional derivative as

δrαβ

δgi j
(x) �

∫ 1

0
δ(c0(λ) − x)

∂λc i
0∂λc j

0

2
√

[g0]kl (x)∂λck
0∂λc l

0

dλ. (5.44)

Considering Cartesian coordinates ([g0]i j � δi j) and parametrizing the straight
line as c0(λ) � (1 − λ)rα + λrβ, this expression simplifies to

δrαβ

δg
(x) �

1
2
rαβ ⊗ rαβ

rαβ

∫ 1

0
δ

[
(1 − λ)rα + λrβ − x

]

︸                               ︷︷                               ︸
B(rα ,rβ ;x)

dλ .
(5.45)

Recalling Eq. (5.40), we obtain an expression for the potential part of the stress
tensor

σV (x) �
N∑

n�2

Mn∑
In�1

∑
α,β>α

〈
ϕ
SIn
αβ

rαβ ⊗ rαβ

rαβ
B(rα , rβ;x)

〉

�

〈 ∑
α,β>α

f αβ ⊗ rαβB(rα , rβ;x)
〉
,

(5.46)
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which, remarkably, is the Irving-Kirkwood result with a force decomposition

f αβ �

N∑
n�2

Mn∑
In�1

ϕ
SIn
αβ r̂

αβ . (5.47)

This last expression should be understood as a sum over all potential contribu-
tions that involve particles α and β. This covariant central force decomposition
(cCFD) is a close analog of the usual CFD in Eq. (3.18), which replaces the par-
tial differentiation of ṼIn by a covariant differentiation along the shape spaces
SIn . Since SIn is an open subset ofDIn for n ≤ 4, cCFD and CFD coincide in
this case. However, when n > 5, our definition resolves the ambiguity of the
usual CFD. Strikingly, this alternative derivation of the IKN theory does not
requite Noll’s lemma but results in the same bond function, see Eq. (3.10).

5.7 Evaluating the covariant derivative of the potential
along the shape space

Practically, the evaluation of (∇SIn
ṼIn )αβ can be performed by first computing

the gradient of an extension of the potential in the distance spaceDIn , ∇DIn ṼIn ,
and then projecting the result onto the tangent of the shape space SIn .

The calculation of ∇DIn ṼIn , see Eq. (3.25), for an arbitrary extension can be
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performed by solving the following linear system of equations

*..................
,

x̂12 . . . x̂1n 0 . . . 0 . . . 0
ŷ12 . . . ŷ1n 0 . . . 0 . . . 0
ẑ12 . . . ẑ1n 0 . . . 0 . . . 0
−x̂12 . . . 0 x̂23 . . . x̂2n . . . 0
− ŷ12 . . . 0 ŷ23 . . . ŷ2n . . . 0
−ẑ12 . . . 0 ẑ23 . . . ẑ2n . . . 0
...

. . .
...

...
. . .

...
. . .

...

0 . . . −ẑ1n 0 . . . −ẑ2n . . . ẑ (n−1),n

+//////////////////
-︸                                                              ︷︷                                                              ︸

D, dim � P × S

*....................
,

ϕ12
In
...

ϕ1n
In

ϕ23
In
...

ϕ2n
In
...

ϕ(n−1),n
In

+////////////////////
-︸      ︷︷      ︸

ϕ, dim � S

�

*...................
,

F1
In ,x

F1
In ,y

F1
In ,z

F2
In ,x

F2
In ,y

F2
In ,z
...

Fn
In ,z

+///////////////////
-︸  ︷︷  ︸

F, dim � P

,

(5.48)
which reflects the fact that F α

In
� −∂rαVIn �

∑
β ϕ

In
αβr̂

αβ. Here, P � 3n,
S � n(n − 1)/2, and the rank of D is R � 3n − 6 (the number of degrees
of freedom of a set of n particles satisfying balance of linear and angular
momentum). A particular solution of this system can be obtained, for instance,
by minimizing the norm of the solution ϕ.

We now note that the normal space to the shape space SIn is precisely the
kernel of D, i.e. it is the vector space spanned by the solutions of

DX � 0. (5.49)

Any component of the force decomposition on this space does not alter the net
forces on the particles, as can be checked by comparing Eqs. (5.48) and (5.49).
The solution to this problem can be computed through a QR decomposition.
LetDT be the transpose ofD. Its QR decomposition exists and has the general
form

DTP � QR �

(
Q1 Q2

) *
,

R1 R2

0 0
+
-

(5.50)

whereQ is an orthogonal matrix of dimension S × S,Q1 is a S ×R matrix with
orthonormal columns (this is uniquely defined),Q2 is a S× (S−R) matrix with
orthonormal columns, R1 is a R × R upper triangular and invertible matrix,

68



5.7. Evaluating the covariant derivative along the shape space

R2 is a R × (P − R) matrix, P is a P × P pivoting matrix. Then we can rewrite
Eq. (5.49) as

DX � PRTQTX � P *
,

RT
1 0

RT
2 0

+
-

*
,

QT
1

QT
2

+
-
X � 0. (5.51)

Taking into account that Q is an orthogonal matrix, its columns form an
orthonormal basis of RS. We can then define the two components of X on
the subspaces spanned by the columns of Q1 and Q2, X1 � QT

1 X, X2 � QT
2 X.

Inserting this decomposition in Eq. (5.51) we obtain the equivalent system

*
,

RT
1 X1

RT
2 X1

+
-
� 0. (5.52)

Since RT
1 is invertible, this results in X1 � 0, while the component X2 is

completely free. In other words, the kernel ofD is the subspace formed by the
column vectors of Q2. Therefore, given a CFD ϕ, its projection onto the shape
space is simply

ϕSIn
� Q1QT

1ϕ. (5.53)

An alternative method to compute the cCFD involves Caley-Menger deter-
minants. As illustration, let us examine the simplest example of the cCFD for
a 5-body potential following this methodology. In this case,DIn � R10

+ while
SIn is a hypersurface with dimension (3 · 5 − 6) � 9, where 6 stands for the
rigid body degrees of freedom. It can be shown [178] that SIn can be locally
characterized by the equation

χ(r12 , . . . , r45) � 0. (5.54)

The normal to SIn can then be computed as

nSIn
�

[(
∇DIn χ

)
αβ

]
�

(
∂r12χ, . . . , ∂r45χ

)
,

n̂SIn
�

nSIn

| |nSIn
| |
.

(5.55)

Thus, we can evaluate the covariant derivative of the potential along SIn by
projecting the derivative of an extension of the potential onto the tangent space
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using the normal, i.e.(
∇SIn

ṼIn

)
αβ

� ∂rαβṼIn −

(
∇DIn ṼIn · n̂SIn

) (
n̂SIn

)
αβ

�

� ∂rαβṼIn −

(
n̂SIn

)
αβ

| |nSIn
| |2

(
∂r12ṼI , . . . , ∂r45ṼI

) *...
,

∂r12χ
...

∂r45χ

+///
-

.
(5.56)

This is equivalent to the QR method presented before (the normal in Eq. (5.55)
is the generator of the null space ofD). To exercise this formula, we consider
the following 5-body potential

ṼIn (r12 , . . . , r45) �
(
s12

+ 3s13
+ s14

+ 2s15
+ 5s23

+ 2s24

+5s25
+ s34

+ s35
+ 4s45

)1/2
. (5.57)

We want to evaluate the force decomposition Eq. (5.47) at positions

r1
� (0, 0, 0), r2

� (1, 0, 0),

r3
� (1, 0, 1), r4

� (0, 1,−2),

r5
� (−2, 1, 3).

(5.58)

The normal vector to SIn at this configuration is

[nSIn ] �

*.......................
,

−0.234
0.236
0.075
−0.125
−0.585
−0.287
0.510
0.277
−0.313
−0.090

+///////////////////////
-

(5.59)

and the gradient of the potential, if we consider its trivial extension toDIn , is
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[
ϕIn
αβ

]
�

[(
∇DIn ṼIn

)
αβ

]
�

*.......................
,

0.058
0.248
0.131
0.437
0.292
0.286
1.273
0.194
0.219
1.258

+///////////////////////
-

. (5.60)

Therefore, we obtain the covariant derivative

[
ϕ
SIn
αβ

]
�

[(
∇SIn

ṼIn

)
αβ

]
�

*.......................
,

0.121
0.184
0.111
0.471
0.449
0.363
1.136
0.119
0.303
1.283

+///////////////////////
-

. (5.61)

Eq. (5.60) is used in the standard CFD, while Eq. (5.61) appears in the cCFD.
The two arrays are significantly different. If we now take another extension of
the potential to the distance space, summing for instance the Caley-Menger
determinant in Eq. (5.54) to the potential ṼIn (which does not affect the potential

71



5. A covariant central force decomposition

along SIn as the Caley-Menger determinant is 0 on it), we obtain

[
ϕIn
αβ

]
�

[(
∇DIn ṼIn

)
αβ

]
�

*.......................
,

−447.942
452.796
143.239
−239.0289
−1119.708
−548.399
977.667
530.854
−598.447
−171.067

+///////////////////////
-

, (5.62)

while the cCDF result

[
ϕ
SIn
αβ

]
�

[(
∇SIn

ṼIn

)
αβ

]
�

*.......................
,

0.121
0.184
0.111
0.471
0.449
0.363
1.136
0.119
0.303
1.283

+///////////////////////
-

, (5.63)

is independent of the representation of the potential in terms of distances
between particles. Thus, this example shows that, while CFD is extension-
dependent, cCFD is uniquely defined as the covariant derivative of the potential
along the shape space SIn .

5.8 Numerical results

In this section we exercise the theory described previously on a coiled-coil
structural protein. This protein is composed of two identical α-helical chains
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5.8. Numerical results

that wrap around each other to form a super-helix (see Fig. 5.1A). The inner
core of this coiled-coil is composed of intercalating hydrophobic amino acids,
and is surrounded by opposing negatively and positively charged amino
acids. We consider an infinitely long protein, modeled with periodic boundary
conditions. The interatomic potential is taken from a widely used protein
force-field (CHARMM22/CMAP), which comprises 2- (bonds, Coulomb and
van der Waals interactions), 3- (angle potentials), 4- (torsional potentials) and
5-body (cross-term energy correction map, CMAP) interactions. The system is
simulated in a NVT ensemble, with a fixed simulation box and the temperature
held constant at 298 K. See Appendix B for more details on the simulation
settings.

As previouslymentioned, 2-, 3- and 4-body interactions are straightforward
to decompose in a CFD: once the net forces F α are computed, the system of
equations in Eq. (5.48) admits a unique solution for the pairwise terms f αβ. In
this case both CFD and cCFD give the same results. In contrast, Eq. (5.48) for 5-
body interactions such as CMAP admits infinitely many solutions. The CMAP
interaction [96] is a backbone correction that depends on two dihedral angles,
φ and ψ. In the φψ-plane, values of the potential are given on a grid, which are
then interpolated. Since dihedral angles can be expressed in terms of distances,
we can give a natural extension of the potential VCMAP

(
φ

({
rαβ

})
, ψ

({
rαβ

}))
,

where φ depends on the distances between the first four particles, while ψ
depends on the distances between the last four particles. A natural CFD
follows

ϕαβ �
∂VCMAP(φ, ψ)

∂φ

∂φ

∂rαβ
+
∂VCMAP(φ, ψ)

∂ψ

∂ψ

∂rαβ
. (5.64)

With the terminology of [4], this CFD corresponds to a particular extension
of the CMAP potential. This CFD, or any other CFD, can then be projected
onto SIn to obtain the cCFD. However, as described in Section 5.7, a solution
to Eq. (5.48) can be found without introducing an extension by minimizing
the norm of ϕ. This latter method has two major advantages. First, it is less
intrusive with respect to the MD code. This is because it only requires the
net forces acting on the particles, which are directly provided by the MD
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5. A covariant central force decomposition

Figure 5.1: Structure of the coiled-coil protein (A) and total traction t � σ ·n on
the coiled-coil (B). The total traction is split into the normal traction tn � t · n,
which is represented as a color map, and the lateral traction τ , which we plot
with arrows.

code, rather than the partial derivatives in Eq. (5.64), which would require
modifying the CMAP routine. Second, this method is completely general for
any n-body potential, and does not rely on its specific functional form.

To analyze the microscopic stress in the coiled-coil protein, we plot the
traction t on the external surface of the protein. This surface is determined
from a level set of the mass density of the protein. We then separate the normal
traction, tn � t · n, which we represent as a color map, and the tangential
traction, τ � t − tnn, which we represent with arrows. Both the density and
the stress are ensemble averaged and smoothed by means of a Gaussian filter.

In Fig. 5.1B we plot the traction for a Gaussian filter of standard deviation
0.4 nm. From this Figure we can extract two major conclusions. First, we
observe that the zippered interface between the two coils produces outward
tractions (red), while the periphery of the protein is dominated by inward
tractions (blue). Regarding τ , we observe that tractions are larger at the
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Figure 5.2: Normal traction on the surface of the coiled-coil protein for the
total stress (A) and for the stress without the contribution from the CMAP
interaction (B).

periphery of the protein with opposite regions where arrows go leftwards
and rightwards respectively. The total force and torque obtained as surface
integrals of the traction are negligible since the cCDF stress is in mechanical
equilibrium.

Since the CMAP interaction is a higher-body correction that complicates
the calculation of the microscopic stress, one may be tempted to simply ignore
it in the analysis of the MD trajectory. To examine this, we plot the normal
traction on the protein surface considering all interactions and following the
cCFD proposed here (Fig. 5.2A) and the traction obtained ignoring the CMAP
contributions to the microscopic stress Fig. 5.2B. The figure clearly shows
that the CMAP contribution is very significant and cannot be ignored, since
otherwise the normal traction is only inwards indicating that the proteinwould
collapse. This highlights the importance of properly dealing with higher-order
interactions, as cCFD does.

We now examine the differences between cCFD and different CFDs when
analyzing the CMAP potential in the coiled-coil (Fig. 5.3). We first we compare
cCFD (A)withCFD in Eq. (5.64) (B) and see small, yet not negligible, differences
(C). To highlight the effect of the extension on the resulting CFD, we examine
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5. A covariant central force decomposition

Figure 5.3: Comparison of the CMAP contribution to the stress from different
central force decompositions for a Gaussian filter of 0.2 nm. (A) cCFD, (B)
CFD from the specific potential extension in Eq. (5.64), (C) Difference between
A and B, (D) CFD obtained from the alternative representation VCMAP + kχ,
where χ is the Caley-Menger determinant from Eq. (5.54) and k � 106 nm−5,
and (E) CFD obtained from Eq. (5.48) by finding the solution minimizing the
norm of ϕ.
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an alternative extension of the potential of the form VCMAP + kχ, where χ
is the Caley-Menger determinant defined in Eq. (5.54) (D). We see that in
this case, due to the effect of the Caley-Menger determinant, contributions of
the resulting CFD along the normal to S distort the stress field, leading to
tractions that differ from those of cCFD largely. We finally compute the CFD
obtained from the solution to Eq. (5.48) that minimizes the norm of the CFD
(D). This CFD, which does not have a clear physical justification, results in a
very non-homogeneous stress, which lacks of a meaningful interpretation. It
is remarkable that cCFD is obtained from this CFD by projecting onto S. Thus,
selecting the extension of the potential for a CFD is a delicate subject and can
lead to very different stresses, some of which do not have a clear physical
interpretation. On the other hand, cCFD is independent of the extension of
the potential and provides physically meaningful stresses.

We next use this example to examine the interpretation of the microscopic
stress in such a nanoscale mechanical system. For this, we represent in
Fig. 5.4 the structure and stress field with different levels of resolution as
given by the standard deviation of the Gaussian filter. For a Gaussian filter of
standard deviation of 0.1 nm for both the stress and the density (A) we observe
highly localized tractions, which correlate with interaction sites and molecular
features. In particular, we observe high tractions in the zippered region of the
protein. As we broaden the spacial extent of the filter (0.2 nm in B and C, 0.4
nm in D), we progressively smoothen geometric and stress features, lower the
magnitudes of the tractions, and loose atomistic details. In D, we still observe
two intercalated helical bands of inward and outward tractions that relate to
hydrophobic and hydrophilic regions of the protein. We represent in C the
stress on one of the individual coils, showing the confinement at the coil-coil
interface due to the hydrophobic effect. In summary, this example illustrates
how the microscopic stress can provide insights about the interplay between
chemistry and mechanics, and how it can provide a continuum-like picture of
a nanoscale system.
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Figure 5.4: Normal traction tn � t · n on the coiled-coil surface for increasing
smoothness from Gaussian filters with standard deviations (A) 0.1 nm (B,C)
0.2 nm (D) 0.4 nm. In (C) we plot the traction on the surface of a single coil.
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Chapter 6

Summary and discussion

In this work we have examined the definition of the microscopic stress in
molecular systems. We have shown that existing definitions of the microscopic
stress are unsatisfactory, either because they violate the balance laws of linear
or angular momentum for a continuum medium or because they are not well-
defined for general multibody potentials. We have provided a new definition
of the microscopic stress, the IKN-cCFD stress, that satisfies the balance laws
by construction and is uniquely defined for arbitrary multibody potentials.
More precisely,

• We have shown in a model system, a graphene sheet with a Stone-Wales
defect, that the virial stress per atom, a widely employed microscopic
stress for the analysis of crystalline materials, violates conservation of
linear momentum.

• In contrast, we have introduced the Irving-Kirkwood-Noll (IKN) theory,
which leads by construction to stress fields satisfying balance of linear
momentum. This definition of the stress depends on the choice of a force
decomposition of atomic forces.
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• A popular force decomposition for the analysis of lipid bilayers and
other biomolecular simulations was proposed by Goetz and Lipowsky,
and the stress resulting from the IKN procedure with this decomposition
is called the IKN-GLD stress. The IKN-GLD stress violates conservation
of angular momentum, as we have shown in a DPPC lipid bilayer. In
particular, we have found that this decomposition introduces torques
related to molecular chirality, which, however, do not have a clear
physical meaning.

• We have shown that the unphysical non-constant σzz profiles in lipid
bilayers obtained with a popular implementation of the IKN-GLD stress
were a result of an inconsistent treatment of bond constraints, solving
a long-standing controversy. We have proven that contributions to the
stress from bond constraints can be included naturally in the IKN theory
by noting that they do not disturb the form of Liouville’s equation, a key
ingredient in this theory. We have tested our approach in various coarse-
grained and atomistic bilayers containing different types of constraints.

• We have reviewed a recent definition of the IKN stress, the IKN-CFD
stress, which provides a stress satisfying balance of linear and angular
momentum by construction. This stress is well defined for interatomic
potentials involving interactions with less than five particles, which
comprises most interatomic potentials used in biomolecular simulations.

• We have used the IKN-CFD stress to examine the complex internal
features of lateral stress in lipid bilayers, where we have found the strong
effect of unsaturations that was hidden in the commonly-employed
IKN-GLD definition.

• However, the CFD is not uniquely defined for potentials involving
5- or higher-multibody potentials, which appear in some models of
proteins and metals. To address this issue, we have proposed a covariant
CFD (cCFD) that extends CFD to higher multibody potentials based on
a covariant definition of the stress within continuum mechanics, the
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Doyle-Ericksen formula. We have shown that, in contrast with the CFD,
the cCFD provides meaningful stresses regardless of the extension of
the potential one uses to evaluate it, which we have exemplified in a
coiled-coil protein. This theory provides the basis for a meaningful
computation of the microscopic stress from MD simulations.

• We have provided a freely available implementation of the IKN-cCFD
stress that can be employed within the GROMACS MD simulation
package or as a standalone library. It also provides the virial stress per
atom, and the IKN-GLD and the IKN-CFD stresses for comparison.

The new derivation of the microscopic stress is an important theoretical con-
tribution in itself. Our variational and geometric method can be extended in
various ways. For instance, by considering the second variation of the free
energy with respect to the metric tensor, one should be able to obtain expres-
sions for the fourth order tensor of elastic moduli. Implemented in a computer
code, this would allow us to compute a fundamental mechanical property,
the elasticity tensor, from an equilibrium MD simulation. This would open
new avenues in the connection between chemistry and nanoscale mechanics
with potential impact in materials design. Furthermore, the definition of
the microscopic stress based on the Doyle-Ericksen formula is in principle
applicable to electronic structure models of materials, thereby opening a new
potential connection between quantummechanics and mechanics of materials.
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Part II

Three-dimensional modeling
and simulation of lipid bilayers

and other fluid surfaces
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Chapter 7

Introduction and motivation

Lipid bilayers are unique soft materials, operating in general in the low
Reynolds limit. While their shape is predominantly dominated by curvature
elasticity as in a solid shell [92], their in-plane behavior is that of a largely
inextensible viscous fluid with Newtonian rheology [39]. These two behaviors,
however, are tightly coupled through the membrane geometry. Indeed, shape
transformations necessarily induce lipid flows that bringmaterial fromonepart
of themembrane to another [47]. On the other hand, fluid flows in the presence
of curvature generate out-of-plane forces, which further curve the membrane
and elicit elastic forces [140]. This mechanical duality provides structural
stability and adaptability, allowing membranes to build relatively stable
structures that can nevertheless undergo dynamic shape transformations. The
ability of lipid membranes to flow and remodel is critical for the cell function;
it is required in vesicular trafficking [168, 151], cell motility and migration
[12, 198], mechano-adaptation of cells to stretch and osmotic stress [84], and it
allows membrane proteins to diffuse [161], to name a few. Complementary to
observations in cells, controlled experimental studies with artificial bilayers
highlight this mechanical duality during tubulation [150, 89, 172], phase
separation [15], budding and fission [171, 203], or pearling [54].
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Thus, lipidmembranes are interfacial viscous fluids with bending elasticity.
The interplay between viscosity and elasticity determines their relaxation
dynamics after they are brought out-of-equilibrium by biological activity.
Viscous and elastic forces also determine the magnitude of the forces, or the
power, required to remodel biological membranes, or the way membrane
proteins diffuse. For these reasons, it is important to develop theoreticalmodels
that predict and quantify the out-of-equilbrium behavior of lipid membranes.
Molecular dynamics (MD) simulations, either atomistic or coarse-grained,
are a major modeling tool for bilayers, capturing chemical specificity and
equilibrium properties, see Chapter 2. However, this approach faces severe
limitations in the accessible time and length-scales. For instance, the time-step
of a fully atomistic simulation is in the order of few femtoseconds, whereas
the time-scales of relevant processes in membranes reach the millisecond;
similarly, the typical length of a MD box is in the order of tens of nanometers,
whereas membranes in vesicles and cells reach sizes of tens of micrometers.
Furthermore, consideration of hydrodynamic effects in MD simulations is
still a subject in development [192, 38]. In view of this, a continuum model
capturing the elasto-hydrodynamics of lipid bilayers is required.

The two essential mechanical features of lipid membranes, their elasticity
and interfacial hydrodynamics, have usually been examined separately. The
mechanical equilibrium of lipid bilayers can be understood to a large extent
with the classical bending model of Helfrich [70, 92, 80, 172]. For that reason,
modeling and simulation of lipid bilayers at scales beyond tens of nanometers
have mainly focused on this model, e.g. to investigate the different equilibrium
configurations of closed vesicles under geometric constraints, such as fixed
surface area or fixed enclosed volume [173, 30, 186, 49, 142, 155]. Beyond
the Helfrich model, and subsequent refinements such as the Area Difference
Elasticity model [159], more general models are required to describe the
dynamical transformations that bilayers undergo, which should capture the
interfacial dissipative mechanisms that dominate at sub-cellular scales.

The interfacial hydrodynamics of bilayer membranes was first examined
separately from membrane deformation, i.e. assuming fixed membrane shape.
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These studies focused on the mobility of membrane inclusions, such as
proteins, starting with the seminal work of Saffman and Delbrück on planar
lipid bilayers [152]. Subsequent studies have considered the effect of fluid
boundaries [175] or the (fixed) shape of the fluid membrane [86, 72, 163].
Interfacial flows of vesicles induced by shear bulk flows were also considered
at fixed vesicle shape [164]. Following the seminal work of Scriven on the
hydrodynamics of insoluble fluid films [157, 9], who presented a mathematical
framework coupling changes in geometry and interfacial hydrodynamics,
[18] examined the interfacial flow of vesicles in a shear flow allowing for
infinitesimal shape deformations. More recently, a geometrically non-linear
model for an inextensible viscous interfacial fluid with bending rigidity was
examined, formulated geometrically, and exercised under the assumption of
axisymmetry [10, 11]. Along these lines, there is an increasing interest in the
community of applied and computational mathematics to develop numerical
methods to solve the three-dimensional equations governing inextensible
viscous interfaces with curvature elasticity [114, 148, 146, 17]. This model
provides a first approximation to the dynamical behavior of lipid membranes
and is interesting in itself. It is often overlooked, however, that by ignoring the
bilayer architecture this model fails to capture many important phenomena.

Seifert and Langer developed a continuum model explicitly accounting
for the bilayer architecture and capturing the major energetic driving forces
and dissipative drag forces involved in the dynamics of lipid membranes
[160]. The elastic forces in this theory appear in response to bending of the
membrane, as in the basic Helfrich model, and to monolayer stretching (see
Fig. 7.1). As viscous effects, the in-plane Newtonian rheology of the lipid
bilayer [39] is included through shear and dilatation dissipations, and the
frictional coupling between the two monolayers opposing inter-monolayer
slippage is also included. Thismodel providedpredictions about the relaxation
dynamics of membrane fluctuations. Importantly, the material parameters of
this model can be experimentally measured [39]. This work, along with [47],
highlighted the role of inter-monolayer friction as a “hidden” but significant
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Figure 7.1: In a basic model incorporating elasticity and hydrodynamics [160],
a lipid bilayer stores energy due to bending and monolayer stretching and
dissipates energy through shear, dilatation and inter-monolayer friction.

dissipative effect. To make the mathematically complex governing equations
of this theory tractable, they were linearized about a planar state in this
and most subsequent works [53]. This approximation, however, hides much
of the interaction between shape dynamics and interfacial hydrodynamics,
which is mediated by membrane curvature. This was demonstrated by the
linearization of the theory about spherical or cylindrical configurations [138]
and by simulations based on a fully non-linear version of this theory, albeit
axisymmetric [139], which further demonstrated the geometry-dependent
subtle interplay between all the ingredients in Fig. 7.1 at multiple scales.

Seifert and Langer’s (SL) model is conceptually simple, captures sufficient
physics to describe a plethora of dynamical phenomena, and can be the basis
for more sophisticated dynamical models including for instance lipid tilt
near molecular inclusions [64, 65] or the physicochemical interaction of lipids
with scaffolding or integral proteins [27, 13]. Yet, a three-dimensional fully
non-linear formulation of this model is lacking. The original reference and
most subsequent works considered a linearized theory. Furthermore, these
equations were derived through a procedure based on the interfacial stress
tensor, which is difficult to generalize.
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Themain objective of this Part of the Thesis is to systematically derive a non-
linear SL theory for the dynamics of bilayer membranes in three dimensions.
One key aspect of this theory is that it provides a transparent modeling
framework to augment the SL model with additional physics, such as the
adsorption and mechanical action of curving proteins. The cornerstone in
this theory is Onsager’s variational principle, which as we show here and
elsewhere [13] provides a unified framework for the dissipative dynamics of
soft-matter systems. In this framework, the dynamics result from the interplay
between energetic driving forces and dissipative drag forces, each of them
deriving from potentials that are the sum of individual contributions for
each physical mechanism. In fact, the dissipative dynamics emerge from a
minimization principle, in which the free energy is identified as a Lyapunov
functional. Complex models coupling different physics can be assembled by
just adding more terms to the energy and dissipation potentials, and encoding
in them the interactions between the different physical mechanisms. Thus, this
framework provides a transparent and thermodynamically consistent method
to generate complex models. Onsager’s variational principle is applicable to
capillarity, elasticity, low Reynolds number hydrodynamics, reaction-diffusion
systems, and, as hinted in Chapter 13, provides a natural framework to model
biological activity, e.g. through the action of molecular motors.

In addition to coupling different physical ingredients, modeling lipid
bilayers inevitably requires the tools and language of differential geometry to
describe a fluid surface evolving in Euclidean space. As a result, the kinematics
and balance laws exhibit a strong dependence on geometry. For instance,
the classical rate-of-deformation tensor couples interfacial flows with shape
changes in the presence of curvature and introduces a dependence on geometry
in the statement of balance of mass. Furthermore, the bilayer nature of this
evolving interface challenges classical Lagrangian or Eulerian descriptions of
deforming bodies. Indeed, two material particles, belonging to each of the two
monolayers, occupy the same location at the mid-surface of the membrane,
and therefore it is not possible to resort to a single Lagrangian parametrization.
On the other hand, since we need to track the position of the interface, the
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7. Introduction and motivation

meaning of an Eulerian description is unclear. Arbitrary Lagrangian-Eulerian
formulations, well established for bulk media [44], appear as a natural choice
but such a formulation for a deforming surface needs careful consideration.
Thus, a proper geometric formulation of continuum mechanics is essential for
a general theory for lipid bilayers based on the SL model.

Finally, in addition to themulti-physics and geometric aspects of the theory,
the three-dimensional simulation of lipid bilayers requires unconventional
numerical methods since the resulting equations (1) involve higher-order
derivatives of the parametrization, (2) lead to a mixed system of elliptic and
hyperbolic partial differential equations and (3) are stiff anddifficult to integrate
in time [139]. Indeed, membrane shape enters into the energy and dissipation
expressions through curvature, which involves second-order derivatives of the
parametrization. From a finite element method (FEM) perspective, this implies
that the basis functions used to represent the parametrization need to be in H2

(square-integrable functions whose first- and second-order derivatives are also
square-integrable), which poses a challenge to usual finite element approaches.
Here, we propose a discretization based on subdivision surfaces, which has
already been used to study the equilibrium shapes of lipid bilayers [49] and in
engineering applications in thin shell theory [34, 33, 105]. While the Galerkin
FEM deals naturally with elliptic equations, hyperbolic systems such as the
continuity equation modeling lipid transport require special treatment [44].
Regarding time integration, we show that the functional being minimized in
Onsager’s principle can be time-discretized, yielding variational integrators
that inherit qualitative features of the time-continuous system, in particular
the existence of a Lyapunov function and therefore a notion of non-linear
stability.

As we show in Chapter 13, the theoretical and computational tools devel-
oped for the description and simulation of lipid bilayers can be readily applied
to other instances of fluid surfaces in biology. In particular, we show the direct
application of our methodology to describe and simulate the cell cortex, an
important structure that regulates many mechanical functions of animal cells
[6].
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The work is structured as follows. In Chapter 8 we introduce Onsager’s
variational principle by way of elementary mechanical models. We show
how it can be applied to incompressible and compressible viscous fluids,
as a prelude to the SL model. We also discuss how to derive variational
time-integrators. In Chapter 9, we develop the mathematical background to
describe fluid surfaces as continuous media. We examine the Lagrangian,
Eulerian or arbitrary Lagrangian-Eulerian parametrizations of the surface,
along with other key concepts such as the rate-of-deformation tensor or the
Reynolds transport theorem. In Chapter 10 we combine the results of the
previous two chapters to derive a general three-dimensional and non-linear
formulation of the SL theory for lipid bilayers. In Chapter 11, we develop a
computational approach for the time- and space-discretization of the problem,
including the finite-element formulation of the mechanical problem and the
stabilized formulation for the transport equations. In Chapters 12 and 13, we
show some examples of application of our methodology for lipid membranes
and the cell cortex respectively. Finally, we conclude with a summary and
conclusions of the work.
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Chapter 8

Onsager’s variational principle

Variational principles underly many mechanical and thermodynamic theo-
ries. These principles provide a systematic procedure to generate governing
equations, and provide an additional mathematical structure that highlights
qualitative properties of the solutions not apparent from the Euler-Lagrange
equations. For instance, the principle of minimum potential energy provides
information about the stability of equilibria, not accessible from the mere
equilibrium equations. Hamilton’s principle for the inertial mechanics of
particles and continua characterizes variationally trajectories otherwise satis-
fying “F � mA”. This variational principle provides a natural framework to
understand Noether’s theorem and to derive variational time-integrators [87].

Towards an analogous framework to model soft-matter and biological
systems, we introduce here Onsager’s variational principle [120, 121], in a
terminology introduced by [42, 43]. This variational framework describes the
dynamics of dissipative systems and is an extension of the principle of least
energy dissipation, first introduced by Rayleigh [144] [58]. Onsager’s relations
are generally invoked in the context of linear irreversible thermodynamics
[135]. However, non-linearity is essential in many soft matter systems. For
instance, lipid bilayers undergo very large deformations that elicit elastic
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8. Onsager’s variational principle

geometric non-linearity. The Helfrich model introduced in Chapter 1 is highly
non-linear. Importantly, as noted by [42], Onsager’s relations emerge from
a more general variational principle applicable in fully non-linear settings.
This fact was exploited to derive the geometrically non-linear equations for an
inextensible interfacial fluid with bending rigidity coupled to a bulk viscous
fluid [10], or to derive the governing equations for a phase-field model of
membranes coupled to a bulk viscous fluid [130]. This formalism assumes
that inertial forces are negligible (see [125] for an extension), but otherwise
encompasses the classes of problems encountered in soft matter and biological
physics, tightly coupling chemistry, hydrodynamics and non-linear solid
mechanics.

Besides soft matter physics, variational principles of the Onsager type
were introduced in solid mechanics, in particular invoking time-incremental
discretized principles to generate algorithms [124] or to develop mathematical
analysis [103, 104]. Along similar lines, Otto et al. [78, 126] identified a
variational formulation for diffusion equations as gradient flows of entropy
functionals, providing mathematical and physical insight and highlighting
the importance of adequately parametrizing the processes that modify the state
of the system. This led to a further formalization of Onsager’s variational
principle by Peletier [131] introducing the so-called process operators, which
were independently used byDoi [42] tomodel viscoelastic fluids and byRahimi
and Arroyo [139] to derive the equations of a non-linear dynamical model
for lipid bilayers. More recently, the gradient structure of reaction-diffusion
systems has been identified [103], allowing us to couple such problems with
other phenomena throughOnsager’s principle. For example, [13] describes the
reaction-diffusion-elasticity problem associated to the adsorption of curving
molecules onto lipid bilayers using Onsager’s principle.

Here, we provide an introduction to Onsager’s principle, focusing on
elementary models and on viscous compressible and incompressible fluids
in Euclidean space. These models provide a gentle introduction to the topic
and serve as a prelude to the derivation of the equations for a lipid bilayer
based on the ingredients presented in Chapter 7. We want to emphasize
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8.1. Simple one-dimensional examples

two main ideas. First, this principle leads to a systematic way to derive the
governing equations for complex systems starting from elementary energetic
and dissipative ingredients. The potentials for these mechanisms act as
building blocks of the theory. Second, the variational approach results in
a natural time-discretization that can be employed to develop variational
time-integrators for computational purposes. Furthermore, this approach
does not rely on the formulation of the strong form of the problem and can be
readily discretized with finite elements.

8.1 Simple one-dimensional examples

We consider a spring of elastic constant k coupled in parallel with a dashpot of
drag coefficient η and under the action of a force F (see Fig. 8.1A). It may seem
an overkill to invoke Onsager’s principle to describe such an elementary model.
However, we shall see that the treatment of more complex systems follows the
same rationale, and therefore this and subsequent examples provide a simple
physical picture to understand the essential ideas.

The state of the system is characterized by the displacement of the spring
with respect to its natural elongation, x. The force generated by the spring is

Fcons � −kx , (8.1)

where the label “cons” identifies that this force is conservative. The system is
also experiencing a viscous force opposing its motion

Fvisc � −µv , (8.2)

where v � ẋ. If the drag is sufficiently large, inertia can be neglected. Then,
balance of forces reads

Fcons + Fvisc + F � 0, (8.3)

leading to
ηẋ + kx � F. (8.4)
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8. Onsager’s variational principle

A B

Figure 8.1: Diagrams of two elementary mechanical systems. (A) A spring
with constant k is in parallel with a dashpot with drag coefficient η and a force
F is applied. The system is characterized by the displacement of the point of
application of the force from its equilibrium position, x. (B) The spring is now
in series with the dashpot and the force is applied to the dashpot; the system
in this case is characterized by x1, the displacement of the spring relative to its
equilibrium position, and x2, the relative displacement of the dashpot with
respect to the spring.

This is an ordinary differential equation that can be easily integrated in time to
obtain x(t) given an initial condition. But let us focus on the structure of this
equation rather than on its solution; this equation follows from a variational
principle. Indeed, on the one hand, the spring and external forces derive from
a potential, which includes the stored elastic energy in the spring and the
potential for the external force

Fcons + F � −
dF
dx

where F (x) �
k
2 x2
− Fx. (8.5)

On the other hand, the viscous force also derives from a potential, usually
referred to as the dissipation potential or as the Rayleigh dissipation function,
depending on v

Fvisc � −
∂D
∂v

where D(v) �
η

2 v2. (8.6)

The rate of change of the energy can be written, using the chain rule, as

d
dt

[F (x(t))] � dF
dx

(x(t)) ẋ(t) � (kx − F) v , (8.7)
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8.1. Simple one-dimensional examples

and therefore Ḟ depends on the state of the system x and on the rate of change
of the state v. Now, let us define the function

R(x , v) � Ḟ (x , v) +D(v) � (kx − F) v +
1
2ηv2. (8.8)

It is clear that the governing equation for this system (8.4) follows from
0 � ∂R/∂v. Furthermore, because η > 0, R is a convex function of v. Thus, we
conclude that the governing equation follows from the variational principle

v � argmin
w

R(x , w). (8.9)

This is Onsager’s variational principle and the function R(x , v) is called the
Rayleighian of the system. The minimization is performed over the rate of
change of the state of the system, v, rather than on the state of the system,
x, in contrast with the classical equilibrium principle of minimum potential
energy. This is a genuinely dynamical principle establishing a competition between the
energy release rate and dissipation. Focusing on linear response theory, Onsager
showed that this principle holds for general irreversible processes, where the
key assumptions are that (i) dissipation dominates over inertia and (ii) viscous forces
are derived from a dissipation potential. This principle, however, is still valid if F
orD are general non-harmonic potentials for the spring or for the dashpot.

Before showing the application of Onsager’s variational principle to con-
tinuous systems, we consider another discrete example consisting of a spring
in series with a dashpot loaded with a force (see Fig. 8.1B). The system is
characterized by the displacement of the spring from its equilibrium position,
x1, and by the displacement of the dashpot with respect to the spring, x2. We
denote the rate of change of these coordinates by vi � dxi/dt. Let us proceed
directly following Onsager’s variational principle. The energy of this system
is just the energy stored by the spring and the potential energy of the load,
whose application point is displaced by x1 + x2

F (x1 , x2) �
k
2 x2

1 − F(x1 + x2). (8.10)

The rate of change of the energy is

Ḟ (x1; v1 , v2) � kx1v1 − F(v1 + v2), (8.11)
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8. Onsager’s variational principle

which here happens not to depend on x2. On the other hand, the dissipation
potential can be written in terms of v2 only

D(v2) �
η

2 v2
2 . (8.12)

Thus, the Rayleighian is

R(x1; v1 , v2) � kx1v1 − F(v1 + v2) +
η

2 v2
2 (8.13)

and Onsager’s variational principle states that

v1 , v2 � argmin
w1 ,w2

R(x1; w1 , w2). (8.14)

The stationarity necessary conditions for the minimizer, 0 � ∂R/∂vi , lead to

F � kx1 � ηv2 , (8.15)

which coincides with the result obtained from direct force balance for this
system.

8.2 Incompressible Stokes flow

To show the application of Onsager’s variational framework to continuous
systems, let us now consider the derivation of the equations governing an
incompressible Newtonian fluid in three-dimensional space, the classical
Stokes equations. We consider the fluid in a fixed volume Ωwith boundary
∂Ω. The motion of material particles in the fluid is characterized by a velocity
field v(x). The field v(x) is the continuous equivalent to v in the previous
example; these variables characterize the rates of the different processes by
which the system is changing its state and are usually referred to as process
variables. The dissipation potential characterizes the energy dissipated by
these processes and therefore depends on the process variables, and possibly
on the state of the system. For this problem, the dissipation potential encodes
the energy dissipated in the viscous fluid by shear

DS[v] � µ
∫
Ω

| |d| |2 dV, (8.16)
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8.2. Incompressible Stokes flow

where d is the rate-of-deformation tensor in the bulk, d �
1
2

(
∇v + (∇v)T

)
,

| |d| | �
√

dαβdαβ, [·] stands for a functional dependence, and µ is the shear
viscosity of the fluid. We split ∂Ω into two subdomains, the Dirichlet boundary
∂DΩ, where a velocity field u(x) is imposed, and the Neumann boundary
∂NΩ , where a traction t(x) is applied. The traction at the Neumann boundary
is generating a power

PN [v] � −
∫
∂NΩ

t · vdS. (8.17)

In this problem there is no energetic ingredient, and therefore the system
is oblivious to any variable encoding the state of the system. Thus the
Rayleghian accounting for internal dissipation and power supply through
boundary traction is simply

R[v] � DS[v] + PN [v] � µ
∫
Ω

| |d| |2 dV −
∫
∂NΩ

t · vdS. (8.18)

Onsager’s principle states that the system evolves in such a way that the
Rayleghian is minimized with respect to v

v � argmin
w

R[w]. (8.19)

However, it is important to realize that the velocity field is subjected to
constraints. First, it should satisfy the Dirichlet boundary conditions. Further-
more, since the fluid is incompressible, it should satisfy ∇ · v � 0 in Ω. The
variational principle allows us to easily incorporate constraints, for instance
using a field of Lagrange multipliers, p, and forming the Lagrangian

L[v, p] � R[v] −
∫
Ω

p ∇ · v dV

� µ

∫
Ω

| |d| |2 dV −
∫
ΓN

t · vdS −
∫
Ω

p ∇ · v dV,
(8.20)

Now, the constrained Onsager’s principle can be stated as a saddle problem

v, p � argmax
q

argmin
w

{
L[w, q]

}
. (8.21)
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8. Onsager’s variational principle

Variations of the velocity field δv(x) consistent with Dirichlet boundary
conditions, i.e. δv(x) � 0 at ∂DΩ, lead to the stationarity condition

2µ
∫
Ω

d : ∇δv dV −
∫
∂NΩ

t · δv dS −
∫
Ω

p divδv dV � 0, (8.22)

where a : b � aαβbαβ. Variations with respect to p lead to∫
Ω

δp divv dV � 0. (8.23)

Eqs. (8.22) and (8.23) are the weak form of the problem. The strong form
follows after integration by parts and taking into account the arbitrariness in
δv and δp (see Box 8.1),

divσ � 0 in Ω,

divv � 0 in Ω,

v � u on ∂DΩ,

σ · n � t on ∂NΩ,

(8.24)

where σ � 2µd − pI is the stress tensor of the Newtonian fluid and I is the
3 × 3 identity tensor. Thus, the equations characterizing an incompressible
Newtonian fluid inΩ, with p playing the role of the pressure, can be obtained
from Onsager’s variational principle.

8.3 Compressible Stokes flow

As a final exercise, we consider a compressible Newtonian fluid in the low
Reynolds number limit. This example illustrates the interplay between energy
release rate and dissipation in a continuous and open system. In this case, we
consider the same dissipation mechanisms as for the incompressible Stokes
flow. However, as the fluid is compressible, we need to track its density ρ, and
find an equation of state that characterizes how the free energy depends on ρ.
We model the free energy associated to changes in density with a quadratic
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8.3. Compressible Stokes flow

Box 8.1: From the weak to the strong form

We want to show for the simple example of a Stokes flow on Ω how the
strong form of the problem is derived from the weak form. First, we note
that using the product rule of differentiation we can rewrite

d : ∇δv � div(δv · d) − divd · δv,
pdivδv � div(pδv) − ∇p · δv.

(B9)

Using these expressions we can reformulate Eq. (8.22) as

−

∫
Ω

[
2µdivd + ∇p

]
·δv dV+

∫
∂NΩ

[(
2µd + pI

)
· n − t

]
·δv dS � 0, (B10)

where we have used the divergence theorem and that δv � 0 on ∂DΩ.
Since δv can vary independently at any point in Ω and ∂NΩ, the terms
inside [·] need to vanish everywhere on the domains of integration, which
leads to

divσ � 0 in Ω,
σ · n � t on ∂NΩ,

(B11)

with σ � 2µd − pI . Furthermore, as δp can also vary independently on
Ω, from Eq. (8.23) we get the incompressibility constraint

divv � 0 in Ω, (B12)

Together with the Dirichlet boundary conditions, this leads to Eq. (8.24).

potential

F [ρ] �
∫
Ω

k
2

(
ρ

ρ0
− 1

)2

dV, (8.25)

where ρ(x, t) is the density of fluid, ρ0 is the equilibrium density and k is
the bulk elastic modulus of the material. In this case, ρ is a state variable; F
depends on the configuration of the system through state variables, such as x
in the simple one-dimensional example or ρ in this example. As before, we
consider the fluid in a fixed (or Eulerian) domain Ω. The rate of change of the
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8. Onsager’s variational principle

free energy in Ω is

Ḟ [ρ; ∂tρ] � d
dt

∫
Ω

k
2

(
ρ

ρ0
− 1

)2

dV �

∫
Ω

∂t



k
2

(
ρ

ρ0
− 1

)2
dV

�

∫
Ω

k
(
ρ

ρ0
− 1

)
∂tρ

ρ0
dV. (8.26)

We note, however, that the rate of change of the free energy for the material
contained in Ω differs from Ḟ since Ω is not a material domain. To calculate
the rate of change of the free energy for the material in Ω, let us consider a
material domain evolving with the fluid, Ωt , such that Ω0 � Ω. Then, we can
define the free energy in Ωt as

F̄
[
ρ,Ωt

]
�

∫
Ωt

k
2

(
ρ

ρ0
− 1

)2

dV, (8.27)

where we have written the explicit dependence of F̄ on Ωt because Ωt is
time-dependent. At t � 0, F � F̄ , but they will evolve differently. More
precisely, applying Reynolds transport theorem, we find that at t � 0

˙̄
F [ρ; ∂tρ;v] �

∫
Ω

k
(
ρ

ρ0
− 1

)
∂tρ

ρ0
dV +

∫
∂Ω

k
2

(
ρ

ρ0
− 1

)2

v · ndS. (8.28)

For simplicity in the notation, we call ˙̄
F [ρ,Ωt] the material time derivative of

the functional F and denote it by DtF [ρ; ∂tρ, v]. We have the relation

DtF [ρ; ∂tρ, v] � Ḟ [ρ; ∂tρ] + PT[ρ;v], (8.29)

where we have defined

PT[ρ;v] �
∫
∂Ω

k
2

(
ρ

ρ0
− 1

)2

v · ndS, (8.30)

which can be interpreted as the power supply by the transport of material in
or out of Ω. A more detailed discussion about different time-derivatives for
integrals on surfaces is given in Chapter 9. The relevant rate of change of F
for Onsager’s principle is DtF [ρ; ∂tρ, v], since tractions in the boundary are
exerted on material particles.
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8.3. Compressible Stokes flow

To be able to exercise Onsager’s principle, we need to express the rate of
change of F only in terms of the process variable v, which appears in the
dissipation functional Eq. (8.16). However, Ḟ depends on ∂tρ. To relate ∂tρ

with v we need an extra relation, which in this case is mass conservation

∂tρ + div
(
ρv

)
� 0. (8.31)

This equation has to be supplemented with a boundary condition for ρ at the
in-flow boundary

ρ(x) � c(x) on ∂IΩ, (8.32)

where ∂IΩ � {x ∈ ∂Ω : v(x) ·n(x) < 0)} and c(x) is given. This allows us to
define a process operator P, such that

∂tρ � P(ρ;v) � −div(ρv). (8.33)

Process operators relate the rate of change of the state variables, such as ∂tρ,
with the process variables, such as v. In the simple one-dimensional example,
we just had ẋ � v, and P(v) � v. Substituting Eq. (8.33) in Eq. (8.28) and
simplifying the terms in Eq. (8.28), we obtain

DtF [ρ;v] �
∫
Ω

k
2


1 −

(
ρ

ρ0

)2
divvdV, (8.34)

Now, the Rayleighian of the system can be written as the sum of Eqs. (8.16),
(8.17) and (8.34)

R[ρ;v] � DtF [ρ;v] +DS[v] + PN [v]

�

∫
Ω

k
2


1 −

(
ρ

ρ0

)2
divvdV + µ

∫
Ω

| |d| |2 dV −
∫
∂NΩ

t · vdS.
(8.35)

According to Onsager’s variational principle, the dynamics of the system
follows from

v � argmin
w

R[ρ,w]. (8.36)
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Variations of the velocity δv consistent with Dirichlet boundary conditions
result in the stationarity condition∫

Ω

k
2


1 −

(
ρ

ρ0

)2
divδvdV + 2µ

∫
Ω

d : ∇δv dV −
∫
∂NΩ

t · δvdS � 0, (8.37)

which, proceeding similarly as in Box 8.1, leads to the strong form

divσ � 0 in Ω,

∂tρ + div
(
ρv

)
� 0 in Ω,

v � u on ∂DΩ, (8.38)

σ · n � t on ∂NΩ,

ρ � c on ∂IΩ,

whereσ � 2µd− pI has the same form as before and p is given by the equation
of state

p �
k
2



(
ρ

ρ0

)2

− 1

. (8.39)

Finally, let us note that in Eq. (8.38) we have a system coupling an elliptic
PDE, requiring mechanical equilibrium, and a hyperbolic PDE, modeling mass
conservation and subjected to in-flow Dirichlet boundary conditions.

8.4 General statement of Onsager’s principle

The previous example has shown that the rate of change of the energy and
the dissipation potential may be expressed in terms of different descriptions
of the rate of change of the system. Ḟ was a functional of ∂tρ whileD was a
functional of v. To place the rate of change of the energy and the dissipation
potential on an equal footing in the Rayleighian, we needed a relation between
these two quantities (the continuity equation), termed process operator in the
terminology of [131]. We follow this reference in this Section to formalize an
abstract statement of Onsager’s principle. The objective of this formal exercise
is to conceptualize the procedure and guide our formulation of more complex
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8.4. General statement of Onsager’s principle

problems. It remains a nontrivial task, however, to map a particular physical
model into this formalism.

In the examples examined previously, we have seen that the main ingredi-
ents in Onsager’s modeling framework are (1) the state variables, such as x or ρ,
which identify the state of the system, (2) the free energy F , which depends on
the state variables, (3) the process variables, such as v or v, which describe how
the system changes its state and generates dissipation, (4) the process operator
P, which relates the rate of change of the state variables and the process
variables, (5) the dissipation potentialD, measuring the energy dissipated by
the process variables, and possibly (6) potentials accounting for the externally
supplied power P and (7) constraints such as the incompressibility condition.
Constraints may be formulated on the state or on the process variables, but the
former can always be linearized and expressed as constraints on the process
variables. Collecting all these ingredients, we can abstractly state Onsager’s
variational principle as follows.

Let us describe a dissipative system through some state variables X(t)
evolving in a suitable space (possibly a non-linear manifold), a free energy
F (X), some process variables V (living in a vector bundle and therefore with
a clear notion of 0), a dissipation potential D(X; V), and a potential for the
external power supply P(X; V). Suppose also that the process variables are
linearly constrained by 0 � C(X)V during the time-evolution of the system.
F is often a non-linear function of X, D may be a non-linear function of X
but is generally quadratic in V , and P is generally linear in V . However, D
does not need to be quadratic in V in Onsager’s formalism as described here.
As motivated below, the thermodynamic requirements we will need on D are (1)
that it is nonnegative, (2) that D(X, 0) � 0 and (3) that it is a convex function of
V . We will also assume here that the dissipation potential is differentiable.
This is not necessarily the case, for instance in rate-independent dissipative
processes such as dry friction, which can nevertheless be framed in Onsager’s
principle. The differentiability assumption is justified here because soft and
biological matter is generally wet and rate-dependent.

To form the Rayleighian, we need to evaluate the rate of change of the
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8. Onsager’s variational principle

energy, which can be obtained by the chain rule

Ḟ (X; ∂t X) �
d
dt

[F (X(t))] � DF (X) ∂t X, (8.40)

where DF (X) denotes the derivative of the free energy. The situation is slightly
more complicated when considering free energy integrals over non-material
domains (open systems). In these cases, the rate of change of the free energy
that is relevant for Onsager’s principle is DtF , the material time-derivative of
the free energy, which differs from Ḟ by a term in the boundary parametrizing
the flow of energy to/from the domain. This is the case in the example in
Section 8.3. This, however, does not complicate the application of Onsager’s
principle in any way since the term in the boundary can be included in the
power function P.

In general, the process variable V (v in the previous example) will not
be simply the time-derivative of the state variable ∂t X (∂tρ in the previous
example), although this was the case in the examples of Section 8.1. To relate
these two descriptions of the evolution of the state of the system, we need a
process operator, which we consider here to be linear

∂t X � P(X)V. (8.41)

This operator will often be either trivial, i.e. ∂t X � V , or a statement of
conservation of mass. Importantly, as noted by [126, 131], V often contains
redundant information to describe ∂t X, which is however required to properly
model dissipation. This is the case in the previous example, where ∂tρ is a
scalar field but v is a vector field.

The process operator allows us to express the rate of change of the system
in terms of the process variable V , and thus form the Rayleighian as

R(X; V) � DF (X) P(X)V +D(X; V) + P(X; V). (8.42)

Onsager’s variational principle then states that the system evolves such that

V � argmin
W

R(X; W ), (8.43)

106



8.4. General statement of Onsager’s principle

subject to the constraints on W

C(X)W � 0. (8.44)

The constrained dynamics can be equivalently characterized as stationary
(saddle) points of the Lagrangian

L(X; V,Λ) � DF (X) P(X)V +D(X; V) + P(X; V) +Λ · C(X) V, (8.45)

whereΛ are the Lagrangemultipliers. Once V is obtained from this variational
principle, we can then integrate ∂t X in time recalling Eq. (8.41).

Let us now formally examine an important qualitative property of the
resulting dissipative dynamics. For this, we consider a “homogeneous”
system with P(X; V) � 0. The stationarity condition 0 � δΛL simply leads to
0 � C(X)V . The stationarity condition 0 � δVL results in the Euler-Lagrange
equations

0 � DXF (X) P(X) + DVD(X; V) +Λ · C(X). (8.46)

Multiplying this equation by the actual V along the dissipative dynamics and
rearranging terms, we obtain

DXF (X) P(X)V︸               ︷︷               ︸
Ḟ

� −DVD(X; V)V −Λ · C(X)V︸  ︷︷  ︸
0

, (8.47)

and since D is convex and differentiable in V and we have required that
D(X; 0) � 0, we conclude that

0 � D(X; 0) ≥ D(X; V) + DVD(X; V)(0 − V). (8.48)

Since we have requiredD(X; V) ≥ 0, we conclude from this equation that

0 ≥ −D(X; V) ≥ −DVD(X; V)V. (8.49)

This equation, together with Eq. (8.47), show that during the dynamics

Ḟ � −DVD(X; V)V ≤ 0, (8.50)
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8. Onsager’s variational principle

and DVD(X; V)V is the rate of dissipation. For quadratic dissipation poten-
tials, it is easily checked that DVD(X; V)V � 2D(X; V). Therefore, the free
energy F is a Lyapunov function of the dynamics. This also shows that Onsager’s
principle complies with the second law of thermodynamics by construction, as long
as D satisfies a set of minimal requirements. Finally, we note that this notion
of stability is fully non-linear and does not assume a quadratic form for the
dissipation or free energy potentials.

8.5 Time discretization: A variational time-integrator

To discretize in time the governing equations obtained from Onsager’s vari-
ational principle, the most common approach is to discretize Eq. (8.46), a
system of ODEs or PDEs. However, the variational principle for the dynamics
offers an alternative option: discretizing in time the variational principle itself,
see Eq. (8.43). Time-integrators based on the discretization of a variational
principle are usually referred to as variational time-integrators, and have been
widely employed, for instance, for the discretization of Hamilton’s principle in
conservative systems, in molecular dynamics [55] or in continuum mechanics
[87], and in the context of dissipative systems [124, 130]. Variational time-
integrators inherit qualitative properties of the associated time-continuous
problem. For instance, in the case of time-integrators based on Hamilton’s
principle, Noether’s theorem ensures that symmetries in the discrete action
result in conserved currents as in the original continuous theory. Here, we
propose a first order variational time-integrator for Onsager’s principle that
inherits thatF is a Lyapunov functional of the dynamics. This feature provides
stability to the resulting discrete dynamics by construction. To describe this
variational time-integrator, let us consider a time discretization characterized
by the time grid (t1 , . . . , tN ) and let us start with the simple case in which
∂t X � V . We will consider here the simplest low order version of implicit
variational time-integrator based on Onsager’s principle, and leave the investi-
gation of higher-order schemes to future work. We approximate Vn � V (tn)
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with a simple backward difference

Vn+1
≈

Xn+1
− Xn

∆tn , (8.51)

where Xn � X(tn) and ∆tn � tn+1
− tn . The dissipation potential and the

power can now be approximated as

D(X; V) ≈ D
(
Xn ; Xn+1

− Xn

∆tn

)
,

P(X; V) ≈ P
(
Xn ; Xn+1

− Xn

∆tn

)
.

(8.52)

To discretize the Rayleighian, we also need to discretize the rate of change
of the free energy. Rather than resorting to an expression like Ḟ ≈ DF ·(

Xn+1
− Xn

)
/∆tn , we consider

Ḟ (X, ∂t X) ≈
F

(
Xn+1

)
− F (Xn)

∆tn , (8.53)

or a similar higher-order finite difference. This approach ensures that F is
a Lyapunov functional of the dynamics, as we prove below, and retains the
full non-linearity of F in the formulation. Using the previous expressions we
define the discrete Rayleighian as

R

(
Xn ; Xn+1

)
�

F

(
Xn+1

)
∆tn +D

(
Xn ; Xn+1

− Xn

∆tn

)
+ P

(
Xn ; Xn+1

− Xn

∆tn

)
,

(8.54)

where we have ignored the constant term F (Xn)/∆t since it is irrelevant from
the viewpoint of the variational principle. Then, Eq. (8.43) is approximated by

Xn+1
� argmin

X
R

(
Xn ; X

)
. (8.55)

Thus, the dynamical problem arising from our variational time discretization
can be interpreted as an energy minimization problem for F , which is usually
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8. Onsager’s variational principle

a non-linear function of Xn+1, with the addition of a convex –and in many
occasions quadratic– function of Xn+1, D, subject to the external forces
represented in P. The weight of F relative toD and P is controlled by ∆tn ,
which can be decreased to ease the solvability of the problem by increasing
the influence of the convex functionalD, or increased to allow the system to
reach equilibrium faster. Let us now prove that the free energy is a Lyapunov
functional of the dynamics, for which we consider a homogeneous problem
with P(X; V) � 0. We evaluate the Rayleighians

R

(
Xn ; Xn+1

)
�

F

(
Xn+1

)
∆tn +D

(
Xn ; Xn+1

− Xn

∆tn

)
,

R
(
Xn ; Xn)

�
F (Xn)
∆tn +D

(
Xn ; 0

)
�
F (Xn)
∆tn ,

(8.56)

where we have used that D (Xn ; 0) � 0. Since Xn+1 minimizes R, it is clear
that R

(
Xn ; Xn+1

)
− R (Xn ; Xn) ≤ 0. Then,

0 ≥ R
(
Xn ; Xn+1

)
− R

(
Xn ; Xn)

�

F

(
Xn+1

)
− F (Xn)

∆tn +D

(
Xn ; Xn+1

− Xn

∆tn

)
≥

F

(
Xn+1

)
− F (Xn)

∆tn ,

(8.57)

where we have used thatD
(
Xn ; Xn+1

−Xn

∆tn

)
is positive. Therefore, we obtain

F

(
Xn+1

)
≤ F

(
Xn) . (8.58)

which shows that F is a Lyapunov functional of the discrete dynamics. We note
here that a key point is that Ḟ has been discretized in terms of the difference
F (Xn+1) − F (Xn). Thus, the time-step is not limited by stability, but rather
by the accuracy and by the solvability of the non-linear optimization problem
in Eq. (8.55) (which becomes “easier” or “more convex” for small ∆tn). This is
particularly important in stiff problems, such as those involving the Helfrich
curvature energy.
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8.5. Time discretization: A variational time-integrator

There are some cases in which ∂t X , V and the previous discretization
cannot be carried out explicitly. For those cases, we keep Vn+1 as the variable
of the discrete problem and consider a simple forward Euler approximation
for the process operator

∂t X ≈
Xn+1

− Xn

∆tn � P
(
Xn ; Vn+1

)
�⇒ Xn+1

� Xn
+ ∆tnP

(
Xn ; Vn+1

)
. (8.59)

We can then rewrite Eq. (8.53) as

Ḟ ≈

F

(
Xn+1

)
− F (Xn)

∆tn �

F

(
Xn + ∆tP

(
Xn ; Vn+1

))
− F (Xn)

∆tn . (8.60)

This approximation still retains the non-linearity of F as is thus implicit in
this sense. We can now define the Rayleghian as

R(Xn ; Vn+1) �
F

(
Xn + ∆tnP(Xn ; Vn+1)

)
∆tn

+D(Xn ; Vn+1) + P(Xn ; Vn+1),
(8.61)

and solve
Vn+1

� argmin
V

R(Xn ; V). (8.62)

Finally, we can recover the rate of change of the state variables by solving
Eq. (8.59). It is easily shown that with this discretization F is also a Lyapunov
function of the dynamics. For systems with only some of the variables
satisfying ∂t X � V , we can use a formulation mixing the two approaches
presented here independently.

Example: compressible Stokes flow

Let us show the application of this time-integrator for the simple compressible
Stokes flow of Section 8.3. In this example, the process operator is not trivial.
The discrete Rayleighian takes the form:

R
n[ρn ;v] �

F
[
ρn + ∆tn P

(
ρ, v

)]
∆tn +DS [v] + PN [v] + PT [v]
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8. Onsager’s variational principle

Figure 8.2: Time-evolution of a compressible visco-elastic fluid in the presence
of an original disturbance. The free enegy is a Lyapunov functional of the
dynamics. The sub-plots (A-C) show the density state (color map) along with
the velocity profile (arrows).

�

∫
Ω

k
2

(
ρn
− ∆tn div

(
ρnv

)
ρ0

− 1
)2

dV + µ

∫
Ω

| |d| |2 dV

−

∫
∂NΩ

t · vdS +

∫
∂Ω

k
2

(
ρn

ρ0
− 1

)2

v · ndS. (8.63)

Let us note that F [ρn+∆tn P(ρ,vn+1)]−F [ρn ]
∆tn approximates Ḟ and not DtF and for

that reason we need to write the transport power explicitly. Then,

vn+1
� argmin

v

R
n[ρn ;v]. (8.64)
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and
ρn+1

� ρn
− ∆tndiv

(
ρnvn+1

)
. (8.65)

This time-discretization of the system of differential equations leads to an
elliptic problem for vn+1, the mechanical problem in Eq. (8.64), and a simple
algebraic equation for ρn+1 in Eq. (8.65). In Fig, 8.2 we show a simple example
of the time-evolution of the compressible Stokes flow following the discrete
dynamics in Eqs. (8.64) and (8.65). Initially, the system is prepared out of
equilibrium with a given density profile (of the form of a Gaussian centered at
the origin). The system is then allowed to equilibrate following the dissipative
dynamics. HomogeneousDirichlet boundary conditions are considered for the
flow at the boundary of the square. The different snapshots show the density
and velocity profiles at different instants during the evolution. As expected,
the free energy monotonically decreases. For the spatial discretization, we
have followed an approach similar to the one discussed in Chapter 11.
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Chapter 9

Mathematical description of
fluid surfaces

In this chapter, we focus on the representation of fluid surfaces as a two-
dimensional continuum moving in Euclidean space. One way to represent
this kind of material is through a Lagrangian parametrization of the surface,
φ(ξ, t), in which a material particle is identified with a point ξ∗ in parametric
domain and φ(ξ∗ , t) follows its trajectory in time. However, Lagrangian
parametrizations present two major drawbacks for the description of fluid
surfaces, and lipid bilayers in particular. First, due to the fluid nature of
the interface, Lagrangian parametrizations suffer from very large distortions
that are difficult to accommodate with conventional discretization schemes.
Second, a single Lagrangian parametrization cannot track simultaneously all
material particles in amulticomponent material. For example, in a lipid bilayer,
two material particles, representing lipid molecules from each monolayer,
occupy the same position on the surface; a single Lagrangian parametrization
cannot track the time-evolution of both simultaneously because they can slip
relative to each other.

It follows from arguments of material symmetry that for elastic fluid
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9. Mathematical description of fluid surfaces

surfaces the free energy only depends on φ through the density field and the
meanandGaussian curvatures, H andK respectively,whichonlydependon the
shape of the surface [173]. Thus, one can separate the description of the density
field, viewed as a scalar field that is advected by flows on the surface, from
the parametrization of the surface, now seen as a mathematical tool employed
to characterize the surface shape and independent of in-plane deformations.
This leads to arbitrary Lagrangian-Eulerian (ALE) parametrizations that are
better suited for the description of fluid surfaces. Although ALE formulations
are common for the numerical treatment of fluids in the bulk [44], special
consideration is required to treat fluid surfaces. In this chapter, we examine
the definition of Lagrangian, Eulerian and ALE parametrizations of material
surfaces and establish their relations. Associated with the flow generated by
these parametrizations, we define the Lagrangian, Eulerian and ALE time-
derivatives of fields on the surface. We then introduce the right Cauchy
deformation tensor and the rate-of-deformation tensor, which characterizes
the rate at which lengths, angles and areas transform on the time-evolving
surface. Using the results obtained from previous Sections, we examine
time-derivatives of integrals on time-evolving surfaces, and derive the form
of Reynolds transport theorem and conservation of mass for the Lagrangian,
Eulerian and ALE descriptions. Throughout the chapter, we make extensive
use of the differential geometry of surfaces, including the definition of the
metric tensor or first fundamental form g, the curvature tensor or second
fundamental form k, covariant differentiation ∇, and Lie derivation Lv, along
with the definition of maps, push-forwards and pull-backs. We briefly review
these concepts in Appendix D. We refer to [40, 41] for extensive reviews on
the differential geometry of surfaces and manifolds in general.

9.1 Lagrangian, Eulerian and ALE parametrizations

In this section, we consider the parametrization of a two-dimensional contin-
uumΓt moving inR3. Weassume the existence of aLagrangianparametrization
of Γt , φ : Γ̄ × I 3 (ξ, t) 7→ x ∈ Γt , where Γ̄ ⊂ R2, Γt ⊂ R3 and I ⊂ R, so that
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a point ξ � (ξ1 , ξ2) ∈ Γ̄ identifies a material particle and the curve obtained
by fixing ξ, φξ(t) � φ (ξ, t), its trajectory in R3 (see Fig. 9.1). We focus on a
specific chart, although the arguments presented in this section can be trivially
extended to surfaces represented with an atlas of charts. For systems with
multiple components, where material particles of the different components
coexist at the same point x ∈ Γt , a single Lagrangian parametrization of Γt

does not exist. This is the case of a lipid bilayer, where a point x ∈ Γt has
simultaneously attached two material particles belonging to each monolayer.
Nevertheless, we can always define a Lagrangian parametrization for each of
the components of the system independently so that the results in this and
following Sections can be applied to each component (monolayer) separately.
The velocity resulting from the Lagrangian parametrization is called the
material velocity

V̄ (ξ, t) �
d
dt
φξ(t) � ∂tφ (ξ, t) . (9.1)

The spatial velocity V on Γt is obtained by composition with φ−1

V (x, t) � V̄ ◦ φ−1(x, t). (9.2)

We note that φ−1(x, t) refers to the inverse of the mapping φt (ξ) � φ(ξ, t)
obtained by fixing time t. In general, V has a tangential and a normal
component to Γt

V � v + vnn, (9.3)

wheren is the unit normal to the surface. The normal velocity vn characterizes
shape changes of Γt while v represents the flow ofmaterial tangent to Γt . In the
remainder of this work we denote by upper-case letters vectors with tangential
and normal components to Γt and by lower-case letters vectors that are tangent
to Γt ; the only exception to this rule is the normal n. We now introduce
an alternative parametrization of the surface ψ : Γ̃ × I 3 (ξ, t) 7→ x ∈ Γt ,
where Γ̃ ⊂ R2. The curves of constant ξ, ψξ(t) � ψ(ξ, t) do not follow
trajectories of material particles in general. The velocity fields associated with
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Figure 9.1: A Lagrangian parametrization φ(ξ, t) maps a domain Γ̄ ⊂ R2 onto
a time-evolving surface Γt . Fixing a point ξ̄ in Γ̄, the curve in R3 generated by
φ follows the time evolution of a material particle (blue). The velocity of this
particle at time t is given by V . An alternative parametrization ψ(ξ, t) maps
the parametric domain Γ̃ onto Γt . The composition θ � ψ−1

◦φ characterize the
position of material particles in Γ̃. The curve in Γ̃ generated by the mapping θ
for ξ̄ fixed (green) indicates how the parametric position of a material particle
evolves with time in Γ̃. At time t this curve has a velocity c̃. The curve
constructed from the map ψ by fixing ξ̃ � θ(ξ̄, t) (red) does not follow the
time-evolution of any material particle in general. At time t this curve has a
velocityW . The velocities V andW are related by V �W + c, where c is the
push-forward of c̃ through ψ.

this parametrization are

W̃ (ξ, t) �
d
dt
ψξ(t) � ∂tψ(ξ, t),

W (x, t) � W̃ ◦ψ−1(x, t) � w + wnn.
(9.4)

We can construct a map relating both parametrizations θ � ψ−1
◦ φ : Γ̄ × I 3

(ξ, t) 7→ ξ ∈ Γ̃. The curves of constant ξ, θξ(t) � θ(ξ, t), track the parametric

118



9.1. Lagrangian, Eulerian and ALE parametrizations

positions of material particles evolving in Γ̃, and have a velocity

c̄(ξ, t) �
d
dt
θξ(t) � ∂tθ(ξ, t).

c̃(ξ, t) � c̄ ◦ θ−1(ξ),
(9.5)

To physically interpret c̃, we note that its push-forward by ψ is a field on Γt

that represents the relative velocity of material particles with respect to the
parametrization given by ψ. Indeed,

c � ψ∗c̃ � [Dψc̃] ◦ψ−1 , (9.6)

where ψ∗ denotes the push-forward, and Dψ stands for the derivative of ψ,
which is a linear mapping Dψ : TξΓ̃ → TxΓ from the tangent space of Γ̃ at
ξ, TξΓ̃, to the tangent space of Γ at x � ψ(ξ), TxΓ. Using the chain rule and
previous definitions

V � ∂tφ ◦ φ
−1

� ∂t
(
ψ ◦ψ−1

◦ φ
)
◦ φ−1

� ∂t (ψ ◦ θ) ◦ φ−1

� ∂tψ ◦ θ ◦ φ
−1

+

[
(Dψ) ◦ θ ◦ φ−1

] [
∂tθ ◦ φ

−1
]

� ∂tψ ◦ψ
−1

+

[
(Dψ) ◦ψ−1

] [
c̄ ◦ φ−1

]
(9.7)

�W +

[
(Dψ) ◦ψ−1

] [
c̃ ◦ θ ◦ φ−1

]

�W +

[
(Dψ) ◦ψ−1

] [
c̃ ◦ψ−1

]

�W + [(Dψ) c̃] ◦ψ−1

�W +ψ∗c̃

�W + c.

Since c is the push-forward with respect to ψ, then it is tangent to Γt . Compar-
ing Eqs. (9.3) and (9.4), we conclude that

vn � wn , (9.8)

and
v � w + c. (9.9)
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This reflects that, since both parametrizations describe the same shape, their
normal velocities, characterizing shape changes, must coincide. With this
restriction in mind, we can now introduce the notion of Eulerian parametriza-
tion in the context of a time-evolving surface. We say that a parametrization χ
is Eulerian if its velocity field is always perpendicular to the surface

∂tχ ◦ χ
−1

� vnn. (9.10)

In summary, the parametrizationφ is a Lagrangian parametrization that tracks
the evolution ofmaterial particles as theymovewith and along Γt . On the other
hand, χ is an Eulerian parametrization whose velocity is always perpendicular
to Γt regardless of the tangential flows of material. These parametrizations are
special cases of a general parametrization ψ, which may present tangential
movements not consistent with the velocity of material particles. This kind
of parametrization is referred to as an arbitrary Lagrangian-Eulerian (ALE)
parametrization.

We introduce here some notation. The pull-back of a tensor t on Γt onto
the material, Eulerian and ALE parametric domains are denoted by

t̄ � φ∗t, t̂ � χ∗t, t̃ � ψ∗t, (9.11)

where φ∗ denotes the pull-back through φ. In the basis of the tangent bundle
to Γt given by the vector fields

{
e1 � ∂1φ ◦ φ

−1 , e2 � ∂2φ ◦ φ
−1

}
, the so-called

convected basis of φ, the components of t equal those of t̄ in the orthonormal
basis {i1 , i2} of Γ̄ given by the pair of normalized vectors perpendicular to the
lines of constant ξ2 and ξ1. Equivalently, this holds for tensors expressed in
the convected basis given by the Eulerian and ALE parametrizations.

9.2 Material, Eulerian and ALE time derivatives

We introduce next the concept of time-derivative of fields on Γt . Let us focus for
simplicity on a scalar field f (x, t). We first note that the operator ∂t acting on
f (x, t), with the usual meaning of taking the time-derivative at x fixed, is not
well defined since x cannot be held fixed in a time-evolving surface in general
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[31]. The idea of time-derivative can be more easily rationalized with the use
of a parametrization. Let us first consider the Lagrangian parametrization φ.
Fixing a point ξ ∈ Γ̄, we can compute how f (x, t) changes along the curve
φξ(t). We define the material time derivative of the scalar f as

Dt f (x, t) ≡
d
dt

f
(
φξ(t), t

) �����ξ�φ−1(x)
. (9.12)

We note that f
(
φξ(t), t

)
is a function of t only and therefore the right-hand

side of the previous expression is univocally defined. By noting that the pull-
back of f onto Γ̄ is f̄ � φ∗ f � f ◦ φ, we can rewrite the previous expression
as

Dt f (x, t) �
d
dt

f̄ (ξ, t)
�����ξ�φ−1(x)

� ∂t f̄ ◦ φ−1(x) � ∂t
(

f ◦ φ
)
◦ φ−1(x) � φ∗∂t

(
φ∗ f

)
(x),

(9.13)

where ∂t f̄ has the usual meaning of taking the partial derivative of f̄ at fixed
ξ. This is nothing but the Lie-derivative of f along the flow generated by V ,
usually denoted by LV f , which is an extension to non-tangential vector fields
of the usual definition of Lie-derivative (see Appendix D.6). Thus, the material
time-derivative of f is the push-forward of the time-derivative of the pull-back
of f by the Lagrangian parametrization φ

Dt f � LV f � φ∗∂t
(
φ∗ f

)
. (9.14)

We can equivalently define the ALE time-derivative of f

∂̃t f ≡ LW f � ψ∗∂t
(
ψ∗ f

)
, (9.15)

and the Eulerian time derivative

∂t f ≡ Lvnnt � χ∗∂t
(
χ∗ f

)
. (9.16)

In this context the meaning of the symbol ∂t is clear; it measures the rate of
change of f along the flow normal to Γt . If the shape of Γt remains stationary,
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then ∂t recovers the usual meaning of taking the derivative with respect to
time at fixed x. We note that ∂t retains the usual meaning when applied to
fields on parametric domains, e.g. ∂t f̄ � lim∆t→0

f̄ (ξ,t+∆t)− f̄ (ξ,t)
∆t , and should

not be confused with the definition Eq. (9.16) for fields on Γt . The operators
Dt , ∂̃t and ∂t are related. For instance, using previous definitions in Eq. (9.11)
and the chain rule,

Dt f � ∂t f̄ ◦ φ−1
� ∂t

(
f̃ ◦ θ

)
◦ φ−1

� ∂t f̃ ◦ θ ◦ φ−1
+

[
D f̃ ◦ θ ◦ φ−1

] [
∂tθ ◦ φ

−1
]

� LW f +
[
D f̃ ◦ψ−1

] [
c̄ ◦ φ−1

]

� LW f +
[
D f̃ ◦ψ−1

] [
c̃ ◦ θ ◦ φ−1

]

� LW f +
[
D f̃ ◦ψ−1

] [
c̃ ◦ψ−1

]

� LW f +
[
D f̃ c̃

]
◦ψ−1.

(9.17)

Here we identify
[
D f̃ c̃

]
◦ ψ−1 as the pull-back of ∇ f (c), where ∇ f is the

covariant derivative of f , i.e. a linear form that, applied to a vector c, computes
the directional derivative of f along c (see Appendix D). Thus, we can rewrite
the previous equation as

Dt f � LW f + ∇ f (c)

� ∂̃t f + ∇ f (c),
(9.18)

which can also be expressed as

Dt f � ∂̃t f + grad f · (c). (9.19)

where grad f is the gradient of f , defined as grad f � (∇ f )], in components(
grad f

) a
� gab

∇b f . Equivalently one can derive the relations

Dt f � ∂t f + grad f · v,

∂̃t f � ∂t f + grad f ·w.
(9.20)

9.3 Deformation and rate-of-deformation tensors

An important tensor on Γt is the first fundamental form or metric tensor g. The
metric tensor induces a scalar product on the tangent space of Γt that allows

122



9.3. Deformation and rate-of-deformation tensors

us to measure lengths, angles and areas on Γt . Given two tangent vectors to
Γt , v and w, the scalar product is defined by

v ·w � g (v,w) � gab va wb . (9.21)

where the notation g(·, ·) denotes that g is a bilinear form. For surfaces in R3,
the metric tensor is defined so that the scalar product on Γt coincides with the
scalar product 〈·, ·〉 in R3, v ·w � 〈v,w〉 for all v and w tangent to Γt . Then,
given a basis {e1 , e2} of TΓt , the tangent bundle of Γt , the components of the
metric tensor in this basis are gab � 〈ea , eb〉. Let us consider two curves in the
parametric domain Γ̄, given by ᾱ(λ) : [−1, 1]→ Γ̄ and β̄(λ) : [−1, 1]→ Γ̄, that
cross at λ � 0, and the image of these curves by φ, α(λ, t) � φ(ᾱ(λ), t) and
β(λ, t) � φ(β̄(λ), t) (see Fig. 9.2). The length of α (and equivalently of β) is
given by the functional

l[α](t) �
∫ 1

−1
| |∂λα| |dλ. (9.22)

where | |v | | �
√
v · v is the norm of v. The angle θ(t) between curves α and β

is given by

cos θ(t) �
[
∂λα · ∂λβ
| |∂λα| | | |∂λβ | |

]

λ�0
(9.23)

The time-evolution of the lengths of material curves and the angles between
themmeasures how the material deforms. It is interesting to note that the pull-
back of g, ḡ � φ∗g, induces a time-dependent scalar product on Γ̄ that allows
us to compute products of deformed vectors from their time-independent
description on Γ̄. For instance,

(∂λα · ∂λβ)λ�0 � [(g ◦α) (∂λα, ∂λβ)]λ�0

�

[
(g ◦ φ ◦ ᾱ)

(
(Dφ ◦ ᾱ) ᾱ′, (Dφ ◦ ᾱ) β̄′

)]
λ�0

�

[{ [
DφT (g ◦ φ) Dφ

]
◦ ᾱ

} (
ᾱ′, β̄′

)]
λ�0

�

[
(ḡ ◦ ᾱ)

(
ᾱ′, β̄′

)]
λ�0

,

(9.24)
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9. Mathematical description of fluid surfaces

Figure 9.2: The material curves ᾱ and β̄ are mapped onto Γt to curves α and
β through the Lagrangian parametrization φ. As Γt deforms, the length of
material curves and the angle between them changes. Through the action of
the pull-back, we can induce a metric on Γ̄, ḡ � φ∗g, the right Cauchy-Green
deformation tensor, that allows us to compute scalar products such as ∂λα ·∂λβ
from ḡ(ᾱ′, β̄′). Thus, the deformation of Γt is encoded on Γ̄ by ḡ.

where we have used that ḡ � φ∗g � DφT (g ◦ φ) Dφ. In components

(
∂λα

a∂λβa
)
λ�0 �

[(
gab ◦α

)
∂λα

a∂λβ
b

]
λ�0

(9.25)

�

[(
gab ◦ φ ◦ ᾱ

) (
Dφa

c ◦ ᾱ
) d

dλ
ᾱc

(
Dφb

d ◦ ᾱ
) d

dλ
β̄d

]

λ�0

�

[{ [(
gab ◦ φ

)
(Dφ)a

c (Dφ)b
d

]
◦ ᾱ

} d
dλ
ᾱc d

dλ
β̄d

]

λ�0

�

[(
ḡab ◦ ᾱ

) d
dλ
ᾱa d

dλ
β̄b

]

λ�0
.
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9.3. Deformation and rate-of-deformation tensors

Equivalently,

| |∂λα| | �
√

(ḡ ◦ ᾱ) (ᾱ′, ᾱ′). (9.26)

Thus, scalar products, lengths and angles of material curves on Γt , such as
α and β, can be measured on Γ̄ , from the time-independent ᾱ and β̄, with
the time-dependent scalar product induced by ḡ. It is clear from Eqs. (9.24)
and (9.26) that the time-dependence of these measures of local deformation
is completely encoded in ḡ. We conclude that the tensor ḡ characterizes the
deformation of Γt ; in continuum mechanics this tensor is referred to as the
(right Cauchy-Green) deformation tensor and is generally denoted by C. The
rate of change of this tensor is

d̄ �
1
2∂t ḡ, (9.27)

where the 1/2 is introduced here to follow the usual convention. The push-
forward of this tensor to Γt by φ defines the so-called rate-of-deformation
tensor,

d �
1
2φ∗∂t ḡ �

1
2φ∗∂t (φ∗g) �

1
2 LV g, (9.28)

where we recognize again the Lie derivative, this time applied to the metric
tensor. The rate of change of the scalar product can then be written as

d
dt

(∂λα · ∂λβ)
�����λ�0

�

[
d
dt

(ḡ ◦ ᾱ)
(
ᾱ′, β̄′

)]

λ�0

�

[
(∂t ḡ ◦ ᾱ)

(
ᾱ′, β̄′

)]
λ�0

�

[
φ∗ (∂t ḡ ◦ ᾱ)

(
φ∗ᾱ

′,φ∗β̄
′
)]
λ�0

� 2 [(d ◦α) (∂λα, ∂λβ)]λ�0 ,

(9.29)

and the rate of change of the norm

[
d
dt
|∂λα|

]
�

1
2 |∂λα|

d
dt

(ḡ ◦ ᾱ)
(
ᾱ′, ᾱ′

)
�

1
|∂λα|

(d ◦α) (∂λα, ∂λα) .
(9.30)
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Thus, the rate of change of the deformation of Γt is encoded in d. To obtain
the form of this tensor in terms of V , let us consider the components of ḡ

[ḡ]ab (ξ) � gab ◦ φ(ξ) � 〈ea , eb〉 ◦ φ(ξ) (9.31)

where ea � ∂aφ ◦ φ
−1. Then, since pull-backs and push-forward do not have

an effect in convected coordinates, we have

[LV g]ab � ∂t ḡab ◦ φ
−1

�

[
〈∂t∂aφ ◦ φ

−1 , eb〉 + 〈ea , ∂t∂bφ ◦ φ
−1
〉

]
(9.32)

�

[〈
∂a [(v + vnn) ◦ φ] ◦ φ−1 , eb

〉
+

〈
ea , ∂a [(v + vnn) ◦ φ] ◦ φ−1

〉]

� ∇a vb + ∇b va − 2vn kab ,

where we have used the conmutativity of partial derivatives, the definition
of covariant derivative ∇a vb � 〈∂a (v ◦ φ) ◦ φ−1 , eb〉, the orthogonality of n
to the tangent space of Γt 〈ea ,n〉 � 0, and the definition of the curvature
tensor kab � 〈∂b (n ◦ φ) ◦ φ−1 , ea〉. Therefore, the expression of the rate-
of-deformation tensor for a surface moving in Euclidean space is given by
[100]

d �
1
2

[
∇v[ +

(
∇v[

)T
]
− vnk, (9.33)

or in indicial notation

dab �
1
2 [∇a vb + ∇b va] − vn kab . (9.34)

From this expression, it is clear that Γt deforms through tangential flows,
which contribute to the rate-of-deformation tensor with the usual term
1
2

[
∇v[ +

(
∇v[

)T
]
, but also through the change in shape of Γt , which con-

tributes with the term −vnk. This relation illustrates the coupling between
tangential flows and shape changes in the presence of curvature.

9.4 Reynolds transport theorem and conservation of
mass

In this section we extend the concept of Lagrangian, Eulerian and ALE time-
derivatives of integrals on Γt . These are useful for computing the rate of
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9.4. Reynolds transport theorem and conservation of mass

change of the free energy in Onsager’s variational principle for non-material
domains, or to derive conservation of mass. Consider a subset Ξ ⊂ Γt , a scalar
field f : Γt → R, and define

I �
∫
Ξ

f dS. (9.35)

To compute this integral, we can pull-back f dS onto Γ̄

I �
∫
Ξ̄

f̄ J̄dξ. (9.36)

where Ξ̄ � φ−1(Ξ), J̄ �
√

ḡ, ḡ � det(ḡ) � det
(
DφT

· Dφ
)
and dξ � dξ1dξ2.

We define the material time derivative of I as

Dt I �
d
dt

∫
Ξ̄

f̄ J̄dξ. (9.37)

This characterizes the change of the integral I when the domain Ξ is a material
subset of Γt , i.e. it evolves following the flow generated by φ (see Fig. 9.3).
Developing the definition we have

Dt I �
d
dt

∫
Ξ̄

f̄ J̄dξ �

�

∫
Ξ̄

∂t
(

f̄ J̄
)

dξ �

∫
Ξ̄

(
∂t f̄ J̄ + f̄ ∂t J̄

)
dξ.

(9.38)

The rate of change of J̄ �
√

ḡ can be written in terms of d by noting that ∂t J �
1
2J ∂t ḡ and using Jacobi’s formula ∂t ḡ � ḡḡ−1 : (∂t ḡ) � ḡ

[
g−1 : (LV g) ◦ φ

]
�

2 ḡ [trd ◦ φ], where trd � da
a � gab dab is the trace of the tensor d. Thus, we

have
∂t J̄ � J̄ (trd ◦ φ) � J̄ [(divv − vnH) ◦ φ] , (9.39)

where we have used Eq. (9.33), and divv � ∇a va is the surface divergence of
the tangential vector field v. Then,

Dt I �
∫
Ξ

Dt f dS +

∫
Ξ̄

f̄ J̄ [(divv − vnH) ◦ φ] dξ �

�

∫
Ξ

[
Dt f + f (divv − vnH)

]
dS.

(9.40)
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9. Mathematical description of fluid surfaces

Figure 9.3: Given a domain Ξ on Γt1 and a scalar function f , we can compute
the integral of f on Ξ, I �

∫
Ξ

f dS, on Γ̄ by pulling back the domain onto Γ̄,
Ξ̄ � φ−1(Ξ), the function f̄ � φ∗ f and using the Jacobian J̄ �

√
ḡ, I �

∫
Ξ̄

f̄ J̄dξ
(blue). The same can be done for the ALE parametrization (red). As t evolves,
the domain Ξ evolves differently following the Lagrangian parametrization,
φ

(
Ξ̃
)
, or the ALE parametrization, ψ

(
Ξ̃
)
, and therefore the rate of change

of I on Γ̄, Dt I, and on Γ̃, ∂̃t I, is different. These are the material and ALE
time-derivatives of I.

Using Eqs. (9.17) and (9.20) and the divergence theorem for surfaces (see
Appendix D.7), we can rewrite the previous equation in different ways

Dt I �
∫
Ξ

[
∂t f + div

(
f v

)
− f vnH

]
dS, (9.41)

�

∫
Ξ

[
∂t f − f vnH

]
dS +

∫
∂Ξ

f v · νdl , (9.42)

�

∫
Ξ

[
∂̃t f + div

(
f c

)
+ f (divw − vnH)

]
dS, (9.43)
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�

∫
Ξ

[
∂̃t f + f (divw − vnH)

]
dS +

∫
∂Ξ

f c · νdl , (9.44)

where ∂Ξ indicates the boundary curve of Ξ and ν the outer normal to ∂Ξ
and tangent to Ξ. Eqs. (9.40)-(9.44) are the equivalent to Reynold’s transport
theorem for material domains terms of the material, Eulerian and ALE time-
derivative of f . As for scalar fields, we can extend the notion of material
time-derivative of an integral relative to other parametrizations. In particular,
we can consider the parametric domain Ξ̃ � ψ−1(Ξ), and the time-derivative

∂̃t I �
d
dt

∫
Ξ̃

f̃ J̃dξ, (9.45)

where J̃ � det g̃. This time-derivative characterizes the change of I when it
follows the flow generated by the ALE parametrization. One can easily prove
that

Dt I � ∂̃t I +
∫
∂Ξ

f c · νdl. (9.46)

For an Eulerian parametrization, one equivalently finds

Dt I � ∂t I +
∫
∂Ξ

f v · νdl. (9.47)

From the previous expressions, it is clear that for a closed surface Dt I � ∂̃t I �
∂t I.

If f � ρ, the mass density, conservation of mass for every material sub-
domain Γt requires that

Dt

∫
Ξ

ρdS �

∫
Ξ

rdS, (9.48)

where r is the rate of creation of mass per unit area, which may for instance
result from the exchange of material with the bulk. Since this must hold for
every subdomain Ξ, localization leads to the Lagrangian, Eulerian and ALE
forms of local conservation of mass

0 � Dtρ + ρ (divv − vnH) − r,

� ∂tρ + div(ρv) − ρvnH − r,

� ∂̃tρ + div(ρc) + ρ (divw − vnH) − r.

(9.49)
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For inextensible fluid surfaces in the absence of mass exchange, balance of
mass reduces to Dtρ � 0, leading to the condition

divv − vnH � 0. (9.50)

It is then clear that for an inextensible surface with curvature, any shape
change must be accompanied by a tangent flow to fulfill the inextensibility
constraint, providing a clear example of the coupling between tangent flows
and shape changes in the presence of curvature.

9.5 Characterization of elastic fluid surfaces:
monolayers and bilayers

In previous Sections we have examined the definition of different parametriza-
tions of a fluid surface Γt . Now, let us consider, without specific mention to
any specific model, the basic ingredients needed for the characterization of a
fluid surface from the viewpoint of Onsager’s variational principle. For con-
creteness, we consider that Γt is either a simple mono-component visco-elastic
fluid or a bilayer model composed of two monolayers. These examples are
relevant for modeling lipid bilayers. A summary of the different descriptions
for these systems is presented in table 9.1.

Let us start with the monolayer. One way to describe Γt is through a
Lagrangian parametrization φ. Since the Lagrangian parametrization encodes
the deformation mapping of Γt , the free energy associated with Γt can be
entirely written in terms of φ, F [φ]. Furthermore, since the velocity of the
material particles is given by V̄ � ∂tφ, we are in the simple situation in which
Ẋ � V and we can characterize the dissipation potential as D

[
φ; V̄

]
. From

the viewpoint of Onsager’s variational principle, it is clear that the number of
(continuous) degrees of freedom for this problem is 3, the components of V̄ .
As a major drawback, φ will in general develop large distortions due to the
fluid nature of the monolayer that may require substantial remeshing.

Let us now consider a bilayer; in this case we can to consider φ+, a
Lagrangian parametrization for one of the layers, and φ− a Lagrangian
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parametrization for the other layer. Associated with these Lagrangian
parametrizations, we have the velocity fields V̄ + and V̄ − (6 degrees of free-
dom). However, since both layers move together coherently, it is clear that
v+

n � v−n , which imposes a constraint in the formulation. Thus, the degrees of
freedom of the system are only 5. However, imposing the constraint v+

n � v−n
would in general require introducing a Lagrange multiplier field λn , and
constructing a Lagrangian with the term

−

∫
Γt

λn (v+
n − v−n )dS. (9.51)

This approach (1) increases the number of effective degrees of freedom to 7 and
(2) may lead to problems related to the consistency between discrete functional
spaces for V ± and λn used in a numerical implementation of the problem. In
conclusion, Lagrangian descriptions present two major drawbacks: (1) they
lead to large distortions and (2) they require constraints for bilayer models.

Let us now go back to the monolayer. As mentioned in the introduction to
this Chapter, due to material symmetries in a fluid surface, F[φ] can be written
entirely as F[ρ,H, K], where ρ � ρref/J is the density of the fluid, and H and K
and are the mean and Gaussian curvatures, which only depend on the shape
of Γt but not on in-plane deformations [173]. In other words, due to the fluid
nature of the surface, in-plane deformations contained in φ only enter the free
energy through ρ. This suggests using an alternative approach to Lagrangian
parametrizations that separates in-plane deformations from the shape of Γt .
Thus, we describe the surface Γt by an Eulerian or ALE parametrization ψ;
H and K can be expressed in terms of ψ. On Γt we consider a time-evolving
density field ρ. This leads to the set of state variables {ρ,ψ}. To characterize
the rate of change of the shape we consider W̃ � ∂tψ. Along with W̃ , we also
need to consider the tangential flow of material, which is characterized by the
vector field v. Recalling balance of mass, it is clear that ∂̃tρ is related to both
W̃ and v through the process operator

∂̃tρ � div(ρc) + ρ (divw − vnH) , (9.52)
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9.5. Characterization of elastic fluid surfaces: monolayers and bilayers

where we have assumed that there is no production of material for simplicity.
Thus, W̃ and v form the set of process variables {W̃ , v}. With this approach,
we have been able to separate the flow of material from the change in shape
of the surface. Of course W̃ contains redundant information to describe the
shape changes, but these extra degrees of freedom can be chosen to avoid
large distortions generated by the fluid nature of the surface. For this reason,
in this work we focus on ALE parametrizations for the description of fluid
surfaces. However, this approach has three major drawbacks that we need
to take into account. First, it leads to a system with 5 degrees of freedom
as opposed to the 3 that we found for a Lagrangian approach. For a bilayer
model, the same analysis leads to the state variables {ψ, ρ+ , ρ−} and the set
of process variables {W̃ , v+ , v−}, which has as many as 7 degrees of freedom.
Thus, there is a severe increase in the number of degrees of freedom. Second,
the tangent fields v, which in a Lagrangian parametrization are simply the
projection of V onto the tangent bundle of Γt , are now degrees of freedom in
their own and independent of W̃ . The interpolation of tangent vector fields in
general curvilinear coordinates and with multiple charts is a delicate issue,
as we describe in Chapter 11. Third, since ρ is now a state variable and not a
by-product of φ, we need to consider explicitly a non-trivial process operator,
Eq. (9.52), which needs to be solved together with the minimization of the
Rayleighian. In the next Section we describe an ALE parametrization based
on an offset that solves the problem of the excess of degrees of freedom in
the parametrization. Then, we introduce the Hodge decomposition of vector
fields, which allows us to characterize v in terms of scalar potentials α and β,
which can be easily interpolated and do not increase the number of degrees of
freedom in the formulation. One cannot, however, avoid taking into account
the process operator in Onsager’s framework as discussed in Chapter 8.

An ALE parametrization based on an offset

We define next an ALE parametrization that reduces the degrees of freedom
required to describe ψ from 3 to 1. Let us consider the state of the surface at a
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A B

Figure 9.4: Surface parametrization in terms of an offset. (A) The field of
directorsM represents the direction in which the point x0 ∈ Γt0 can evolve.
The height function h, which may be negative, represents the distance of the
point parametrized x on Γt to Γt0 in the direction ofM . (B) In this example Γt
lies at the limit of the tubular neighborhood to Γt0 for the set of directors.

given time t0, Γt0 , and a parametrization of this surface ψ0(ξ). We consider
a vector field M (ξ), representing a field of directors sitting on Γt0 , with
non-zero normal component but possibly not normal to Γt0 . Then, we define a
parametrization of Γt at time t > t0 in terms of the offset of a point x � ψ0(ξ)
alongM (ξ),

ψ(ξ, t) � ψ0(ξ) + h(ξ, t)M (ξ), (9.53)

see Fig. 9.4A. Thus, the field that characterizes the time-evolution of the
parametrization is h, a simple scalar field on Γ̃. However, not all surfaces
can be parametrized in terms of Eq. (9.53); those that can lie in what is called
the tubular neighborhood of Γt0 , defined as TM (Γt0 ) � {Γ : ∃ a scalar field h ∈
Γ̄ : ∀ x ∈ Γ ∃ ξ ∈ Γ̃ : ψ0(ξ) + h(ξ)M (ξ)}. For some interval I � (t0 , t0 + ε),
the deformed surface Γt will lie in the tubular neighborhood of Γt0 if the
time-evolution is smooth. However, after some time, Γt may get out of the
tubular neighborhood of Γt0 (see Fig. 9.4B for an example). A simple solution
to this issue is then to update the reference configuration Γt0 . This kind of
parametrization was proposed by [142], withM being the field of normals to
Γt0 , and generalizes the classical Monge parametrization, where Γt0 is a plane,
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9.5. Characterization of elastic fluid surfaces: monolayers and bilayers

M is the (constant) normal to Γt0 and h is simply the height of the surface Γt

with respect to the plane [40]. We finally note that for this kind of surface
parametrization we have,

W (x, t) � (∂t hM ) ◦ψ−1(x, t). (9.54)

where since h is a scalar field on Γ̃, ∂t h retains its usual meaning of taking
the time-derivative at fixed ξ. In general, this field will have non-zero normal
and tangential components. Thus, with this offset parametrization of the
surface we recover a formulation for both the bilayer and the monolayer that
are optimal from the point of view of the number of degrees of freedom, see
Table 9.1.

Velocity potentials: Hodge decomposition

It is sometimes useful to describe tangent vectors to Γt with vector potentials.
Given a vector field V ∈ R3, it is well-known that V admits a decomposition
in terms of the gradient of a function Φ and the curl of a vector potentialA in
what is called the Helmholtz decomposition,

V � GRADΦ + CURLA, (9.55)

where GRAD and CURL stand for the gradient and curl in R3. For a vector
field tangent to a plane embedded in R3, this can be simplified to

V � GRADΦ + CURL (Ψn) , (9.56)

where n is the normal to the plane andΨ is a scalar function. Therefore, for a
plane embedded in R3, a vector field can be represented in terms of two scalar
fields,Φ andΨ. This property can be generalized to arbitrary surfaces in terms
of their intrinsic differential geometry, i.e. not relying on their embedding in
R3, as a special case of the Hodge decomposition for n-forms [41]. A vector
field v tangent to a surface Γ can be decomposed as

v � gradα + curlβ, (9.57)
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9. Mathematical description of fluid surfaces

Figure 9.5: A vector field on a surface can be decomposed in a solenoidal and
a irrotational fields.

where α and β are scalar fields on Γ and we have introduced the operator
(curlβ)a � εab

∇bβ, where ε is the antisymmetric tensor (see Appendix D). This
decomposition will be useful later for the discretization of vector fields tangent
to Γ. This decomposition is unique for simply connected closed surfaces,
i.e. closed surfaces with genus equal to 0 (see Fig. 9.5 for an example on an
ellipsoid). Equivalently, the decomposition is unique for simply connected
surfaces with boundary ∂Ω with either of the following boundary conditions
[25]

∇α ∧ ν[ � 0 at ∂Γ, (9.58)

where ν is the boundary normal tangent to Ω, ν[ its associated 1-form, and ∧
indicates the external product of 1-forms (in components α ∧ β � εabαaβb dS),
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or
curlβ · ν � 0 at ∂Γ. (9.59)

In the absence of shape changes, from Eq. (9.50) it is clear that an inextensible
flow satisfies divv � 0. In this case, v can be represented in terms of a stream
function β, v � curlβ. This approach has been recently employed to describe
flows in lipid bilayers with fixed shapes [109, 163, 146]. However, we note that
for inextensible surfaces that are deforming in space, both α and β need be
considered. In this case, it follows from Eq. (9.50) that α and vn satisfy the
constraint

∆α � vnH, (9.60)

where ∆α � divgradα and we have used the fact that divv � divgradα +

div curlα � divgradα � ∆α.
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Chapter 10

Amodel for the mechanics of
lipid bilayers

10.1 Introduction

Using Onsager’s variational principle and the description of fluid surfaces, we
can now address the three-dimensional and non-linear variational formulation
of the mechanics of a lipid bilayer following the Seifert-Langer (SL) model
sketched in Chapter 7, which has not been developed before. This model is
driven by curvature and stretching elasticity and is dragged by in-plane shear
and dilatation viscosity, and by inter-monolayer friction (see Fig. 7.1).

Let us start by identifying the state variables of this system. We characterize
the state of a lipid bilayer at a given time t by the position of its mid-surface
Γt and two density fields, ρ+(x, t) and ρ−(x, t), which represent the lipid
densities of the upper (+) and lower (-) monolayers per unit area of the
mid-surface Γt (see Fig. 10.1). The shape and position of Γt is characterized
by an ALE parametrization of the form discussed in Section 9.5, ψ(ξ, t) �

ψ0(ξ) + h(ξ, t)M (ξ), so that the surface Γt is given by the scalar field h on
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10. A model for the mechanics of lipid bilayers

Figure 10.1: Sketch of relevant fields in the SL model. The densities at the
monolayer midsurfaces ρ̆± are projected onto the bilayer midsurface leading
to the scalar fields ρ± : Γt → R. The velocity fields v± identify the velocity of
the material particles at Γt .

Γ̃. All fields depending on the shape of Γt , such as H, K or dS, ultimately
depend on ψ and therefore on h. Thus, the scalar fields h and ρ± are the state
variables of the lipid bilayer.

The process variables characterizing the rate of change of the material
are ∂t h, which provides the information about shape changes, and the two
tangential velocity fields of the fluid, v+ and v−, which represent the flow
of material particles along Γt . The rate of change of ρ± is related to these
fields through mass conservation, which in the ALE formulation reads (see
Eq. (9.49))

∂̃tρ
±
+ div(ρ±c±) + ρ± (divw − vnH) � 0, (10.1)

where c± � v± −w. Thus, we define the process operator P as

∂̃tρ
±
� P

(
h , ρ±; ∂t h , v±

)
� −div(ρ±c±) − ρ± (divw − vnH) . (10.2)

where
vn � ∂t h 〈M ,n〉 , (10.3)

and
w �W − vnn. (10.4)
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10.2. Energy

For simplicity, we consider the formulation for a closed membrane first and
extend the results for a patch of membrane with boundary in Section 10.5.

10.2 Energy

The energy stored by the membrane due to the curvature of each monolayer is
represented by the classical Helfrich model

FH [h] �
∫
Γt

[
κ
2 (H − H0)2

+ κ̄K
]

dS, (10.5)

where κ is the bendingmodulus, κ̄ the Gaussian bendingmodulus, and H0 the
spontaneous curvature of the bilayer. In this approximation, this energy does
not depend on the lipid densities. Apart from the bending energy, monolayers
also store energy due to stretching. To characterize the stretching energy, let
us first note that the density fields at the neutral surface of each monolayer, ρ̆+

and ρ̆−, are related to ρ+ and ρ− through (see Fig. 10.1)

ρ̆± � ρ±
(
1 ± dH + O(d2K)

)
(10.6)

where d (≈ 1 nm) is the distance between the mid-surface and the neutral
surface of each monolayer, usually close to the polar-apolar interface [101].
Following [160, 139] we define a simple quadratic elastic energy for each
monolayer, equivalent to the energy considered for the compressible Stokes
problem in Section 8.3,

FS
[
h , ρ±

]
�

∫
Γt

kS

2

(
ρ̆±

ρ0
− 1

)2

dS �

∫
Γt

kS

2

[
ρ±

ρ0
(1 ± dH) − 1

]2

dS, (10.7)

where kS is the stretching modulus of each monolayer. Here and throughout
the text, whenever ± appears in a functional we imply a summation on + and
− unless otherwise noted. Although the energy was initially modeled with a
quadratic potential depending on ρ̆±, the resulting expression in terms of ρ±

is a non-linear function of the shape of Γt due to the coupling with H. The
total energy is

F
[
h , ρ±

]
� FH [h] + FS

[
h , ρ±

]
. (10.8)
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Associated with the free energy F , we define the free energy density for each
monolayer

f ±
(
h , ρ±

)
�

1
2

[
κ
2 (H − H0)2

+ κ̄K
]
+

kS

2

[
ρ±

ρ0
(1 ± dH) − 1

]2

, (10.9)

where we have split the Helfrich energy equally amongst the two monolayers.

10.3 Dissipation

We take into account three main dissipation mechanisms in the bilayer. First
we consider the dissipation due to shear, similar to the examples in the bulk in
Chapter 8,

DS
[
h; ∂t h , v±

]
�

∫
Γt

µ| |d± | |2dS, (10.10)

where µ is the shear viscosity and

d± �
1
2

{
∇

(
v±

) [
+

[
∇

(
v±

) []T}
− vnk, (10.11)

is the rate-of-deformation tensor for each monolayer (see Eq. (9.33)). We
note that, since d± contains the term vnk, DS also accounts for the rate-of-
deformation induced by shape changes of Γt . Additionally, we consider a
dilatational dissipation

DD
[
h; ∂t h , v±

]
�

1
2

∫
Γt

λ
(
trd±

)2 dS, (10.12)

where λ is the dilatational viscosity. Finally, we consider the inter-monolayer
friction caused by the slippage of fluid from one monolayer on the other,

DI
[
h; ∂t h , v±

]
�

∫
Γt

bI | |v
+
− v− | |2dS, (10.13)

where bI is the inter-monolayer viscosity. Thus, the total dissipation is

D
[
h; ∂t h , v±

]
� DS

[
h; ∂t h , v±

]
+DD

[
h; ∂t h , v±

]
+DI

[
h; ∂t h , v±

]
. (10.14)

Interestingly, all the material parameters in this theory (κ, kS , d , λ, µ, bI) can
be measured experimentally [39].
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10.4. Governing equations

10.4 Governing equations

Now that we have identified the energies and dissipations of our system, we
can write the Rayleighian as

R
[
h; ∂t h , v±

]
� ∂̃tF

[
h; ∂t h , v±

]
+D

[
h; ∂t h , v±

]
. (10.15)

and Onsager’s variational principle reduces to{
∂t h , v±

}
� argmin
{∂t h ,v±}

R
[
h; ∂t h , v±

]
(10.16)

Note that, for a closed surface, ∂̃tF � DtF (see Section 9.4). The strong
form that follows from this principle involves the shape equation and the
different viscous stresses on the bilayer. The expression for small deviations
from a plane was originally given by [160], where h identifies the height with
respect to the plane following a classical Monge parametrization. Although
the derivation of the strong form is interesting in itself, it is not required for
our computational purposes, and we leave for future work. If we represent
the velocities v± through velocity potentials

v± � gradα± + curlβ± , (10.17)

we can rewrite the Rayleighian in terms of α± and β± and define

R
[
h , ρ±; ∂t h , α± , β±

]
�∂̃tF

[
h , ρ±; ∂t h , α± , β±

]
+D

[
h , ρ±; ∂t h , α± , β±

]
.

(10.18)

Then, we need to solve{
∂t h , α± , β±

}
� argmin
{∂t h ,α± ,β±}

R
[
h , ρ±; ∂t h , α± , β±

]
,

∂̃tρ
±
� P

(
h , ρ±; ∂t h , α± , β±

)
,

(10.19)

wherewe have rewritten the process operator in terms of the velocity potentials.
Again, this is a system of mixed elliptic and hyperbolic PDEs. Before dealing
with the numerical treatment of the problem in Chapter 11, we examine the
statement of the problem for open patches.
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10. A model for the mechanics of lipid bilayers

10.5 Open patch: Boundary conditions

Let us now consider a patch of membrane. In this case Γt is a surface with
boundary, which we denote by ∂Γt . Here, we do not consider membranes with
a physical boundary; the boundary delimits the region of study of an otherwise
larger membrane. We consider that this patch of surface follows the flow
generated by the parametrization ψ, which is not Eulerian nor Lagrangian.
Thus, the boundary ∂Γt is mapped by ψ from a boundary ∂Γ̃ that stays
stationary in parametric space. The field ∂t h admits two kinds of Dirichlet
boundary conditions at ∂Γ̃ since R depends on second order derivatives of ∂t h
with respect to parametric coordinates. Thus, we have the Dirichlet boundary
conditions

∂t h � o at ∂Dh Γ̃,

∇̃ν̃∂t h � θ at ∂Dh′ Γ̃,
(10.20)

where ν̃ is the outer normal to ∂Γ̃ and ∇̃ denotes the gradient on Γ̃. We note
that in general ∂Dh Γ̃∩ ∂Dh′ Γ̃ , ∅. For the velocity fields v±, we have a Dirichlet
boundary condition

v± � u± at ∂Dv±
Γt , (10.21)

with u± given. If we write the velocity in terms of vector potentials, this
Dirichlet boundary condition becomes

gradα± + curlβ± � u± at ∂Dv±
Γt . (10.22)

We also need one of the boundary conditions

gradα± ∧ ν � 0 at ∂Γt , (10.23)

curlβ± · ν � 0 at ∂Γt , (10.24)

for a unique Hodge decomposition of v±. We choose (10.23) over (10.24) since,
for a stationary shape in the inextensible limit, these conditions lead to α± � 0.
The action of an external traction T ± � t± + tnn and a bending moment ω
generate a power at the boundary [174]

PN [h , ∂t h , α± , β±] � −
∫
∂Γt

[〈
T ± ,V ±

〉
+ ω · D±t n

]
dl (10.25)
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where T ± � t± + tnn is the traction exerted on the boundary, ω is the bending
moment and D±t is the material time-derivative in the upper and lower
monolayers respectively. We write the power generated by tractions and
moments at the whole boundary ∂Γt for notational convenience. Taking into
account that D±t n � −gradvn − k

]
· v±.

PN [h , ∂t h , α± , β±] � −
∫
∂Γt

[
t± · v± + tn vn + ω ·

(
−gradvn − k

]
· v±

)]
dl

(10.26)

�

∫
∂Γt

(
k] · ω − t±

)
· v±dl +

∫
∂Γt

(
ω · gradvn − tn vn

)
dl

Furthermore, since now the patch is open and follows the ALE description, we
need to consider the power generated by the transport of material across ∂Γt

PT[h , ∂t h , α± , β±] �
∫
∂Γt

f ±c± · νdl , (10.27)

where f ± is the free energy density, see Eq. (10.9). Finally, balance of mass has
to be complemented with an in-flow condition for ρ±

ρ±(x) � c±(x) on ∂IΓt , (10.28)

where ∂IΓt � {x ∈ ∂Γt : v(x) · ν (x) < 0)} and c±(x) is given. Altogether, we
obtain the Rayleighian

R � ∂̃tF +D + PN + PT . (10.29)

The constraints applied to the process variables from Dirichlet boundary
conditions are Eqs. (10.20), (10.23), (10.24) and the constraint associated to the
process operator is Eq. (10.28).
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Chapter 11

A computational framework for
the simulation of lipid bilayers

11.1 Time discretization

For the time-discretization of Eq. (10.19) we consider the idea described in
Section 8.5. We have two kinds of state variables, h, whose time-derivative
∂t h is a process variable, and ρ±, for which we have the process operator
∂̃tρ± � P(h , ρ±; ∂t h , α± , β±). We discretize the time-evolution of the system
in a general non-uniform grid (t1 , . . . , tN ) so that tn+1

− tn � ∆tn for n �

0, . . . ,N − 1. We discretize variables in time using the same convention, for
any field a evolving in time an � a(tn). The discrete Rayleighian is

R
n

[
hn ,

(
ρ±

)n ; h , α± , β±
]
�

F

[
h ,

(
ρ±

)n
+ ∆t P

(
h ,

(
ρ±

)n ; h−hn

∆t , α
± , β±

)]

∆tn

(11.1)

+D

[
hn ; h − hn

∆tn , α± , β±
]
+ PN

[
hn ; h − hn

∆tn , α± , β±
]
+ PT

[
hn ; h − hn

∆tn , α± , β±
]
.
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The discrete time-evolution of h and the velocity potentials α± and β± can be
obtained by applying Onsager’s principle

{
hn+1 ,

(
α±

)n+1 ,
(
β±

)n+1}
� argmin
{h ,α± ,β±}

R
n

[
hn ,

(
ρ±

)n ; h , α± , β±
]

(11.2)

To obtain the discrete time-evolution ρ±, we apply the process operator

(
ρ±

)n+1
�

(
ρ̃±

)n
+ ∆tn P

(
hn+1 ,

(
ρ±

)n ; hn+1
− hn

∆tn ,
(
α±

)n+1 ,
(
β±

)n+1
)

(11.3)

Thus, the time-evolution of the system is given by an interative and staggered
process in which given the fields

(
ρ±

)n and hn at time tn , one can solve
Eq. (11.2) to obtain (α±)n+1,

(
β±

)n+1, and hn+1, which can then be used to solve
for ρn+1 using Eq. (11.3). This shows that the system of differential equations
has been transformed through time discretization into (1) an elliptic problem
from Onsager’s principle, which solves hn+1 along with (α±)n+1 and

(
β±

)n+1,
and (2) an algebraic problem for

(
ρ±

)n+1 from mass conservation.

11.2 Spatial discretization

In this Section we examine the spatial discretization of Γt and the different
fields defined on it. For simplicity, let us start by examining the spatial
discretization of a generic surface Γ. We first note that, for the discretization
of the Rayleighian later on, we need that the curvature tensor k be square-
integrable on Γ. For that reason, the parametrization of Γ must be in H2,
i.e. it must be a square-integrable function with its its first- and second-order
derivatives being square-integrable functions too; we call such a surface a
H2 surface. The problem of discretizing a H2 surface may be addressed
resorting to different numerical frameworks, such as higher-order B-splines
[133] or max-ent approximants [106]. Another versatile technique to discretize
smooth surfaces based on meshes with arbitrary connectivity is subdivision
surfaces. Here we focus on Loop subdivision surfaces based on triangular meshes
[94, 170, 26, 33], which we discuss in Appendix E. To define the discretization
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11.2. Spatial discretization

Figure 11.1: In subdivision surfaces, a control mesh is used to parametrize
the surface Γ. For each triangle in the control mesh, E, the mapping Eq. (11.4),
depending on the control points of the first ring of neighbors to E, xI with
I ∈ 〈E〉1, define the surface ΓE (blue). The union of ΓE for each E in the control
mesh forms the H2 surface Γ.

of Γ with subdivision surfaces, we consider a control mesh made of triangles
E � 1, . . . ,Ne whose edges join the set of control points I � 1, . . . ,Nn with
positions {xI }

Nn
I�1. For each triangle in the mesh, we define the parametrization

ψE (ξ) : Γ̃→ R3, with Γ̃ the reference triangle (see Fig. 11.1), by

ψE (ξ) �
∑

I∈〈E〉1
BE

I (ξ)xI , (11.4)

where BE
I represents the subdivision surface basis function associated to node

I at element E and 〈E〉1 identifies the set of control points whose basis
functions do not vanish on E, which are those contained in the first ring of
nodes surrounding E –including the nodes forming the element and all first
neighbors to them. We denote by ΓE � ψE

(
Γ̃
)
the curved triangle obtained

by the local parametrization in Eq. (11.4). It can be shown that these curved
triangles are disjoint and that their union defines a C2-continuous surface
almost everywhere, except at a finite number of points where it is C1. These
points coincide with the image by ψ of irregular nodes in the mesh, which are
those with a valence different from 6. There, the surface is continuous with
continuous derivative but presents a discontinuity in the second derivative.
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11. A computational framework for the simulation of lipid bilayers

For the parametrization of the surface Γt0 , we write

ψE
0 (ξ) �

∑
I∈〈E〉1

BE
I (ξ)x0I . (11.5)

Thus, the control mesh in our scheme is given by the position of the control
points {x0I }

Nn
I�1. In Γ̃we also define the fields

hE (ξ) �
∑

I∈〈E〉1
BE

I (ξ)hI , (11.6)

ME (ξ) �
∑

I∈〈E〉1
BE

I (ξ)MI , (11.7)

and then the parametrization of the deformed surface Γt reads

ψE (ξ) �
∑

I∈〈E〉1
BE

I (ξ)x0I +
*.
,

∑
J∈〈E〉1

BE
J (ξ)h J

+/
-

*.
,

∑
K∈〈E〉1

BE
K (ξ)MK

+/
-
. (11.8)

We note that, given that ψ0, h andM are in H2, ψ is also in H2. We can define
in Γ̃ other kinds of basis functions. In particular, we consider the set of linear
basis functions NI (ξ) with I ∈ 〈E〉0, the zeroth-ring of nodes of the element,
defined by

NE1 � (1 − ξ1 , 1 − ξ2) NE2 � (ξ1 , 0), NE3 � (0, ξ2), (11.9)

where E1 , E2 and E3 denote the labels of the three nodes forming the element
E. We can then discretize fields on Γt also with NI if they only need to be in H1

(that is, square-integrable functions with a square-integrable derivative). This
is the case of the density field, since the Rayleighian and the process operator
only depend on ρ± through its value and its first-order derivatives,(

ρ±
)E (ξ) �

∑
I∈〈E〉0

NE
I (ξ)ρ±I . (11.10)

We note that here all integrals and equations are computed in parametric space
Γ̃. For notational simplicity, we use the same symbol to denote ρ and ρ̃ � ρ ◦ψ,
since there is no danger of confusion between different parametrizations; the
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parametrization is fixed to be of the form Eq. (11.8), and this diffeomorphism
identifies points in ΓE

t with points in Γ̃ univocally. Following the discretization
of ρ±, we could be tempted to discretize the components of v as((

v±
) a)E

(ξ) �
∑

I∈〈E〉0
NE

I (ξ)
(
v±

) a
I . (11.11)

since the Rayleighian only depends on v± through its value and its first-order
derivatives. However, we note that since(

v±
)E

�

((
v±

) a)E
eE

a �

((
v±

) a)E
∂aψ

E , (11.12)

and since ∂aψ
E is discontinuous across elements due to the jump in the defi-

nition of local coordinates, for v to be continuous va must be discontinuous
across elements. This cannot be achieved with the set NE

I , which always pro-
duces a continuous function. One possible solution is to increase the number
of degrees of freedom of the problem and discretize the three components of
v± in the global basis of Euclidean space

v± �
(
v±

)α
iα . (11.13)

Being the basis vectors iα constant, vα is continuous and we could use((
v±

)α)E
(ξ) �

∑
I∈〈E〉0

NE
I (ξ)

(
v±

)α
I . (11.14)

However, since (v±)1 , (v±)2 , (v±)3 are not independent –as they must be
tangent toΓ–, onewouldneed to introduce the additional contraint (v±)E

·n � 0.
A more convenient option is to recall the Hodge decomposition of v± in
Eq. (10.17) and discretize the scalar fields α± and β±. We note that α± and
β± need to be in H2 for d± to be well-defined. This is not a problem for our
formulation, since subdivision basis functions are smooth enough. Thus, we
consider the following discretization for the velocity potentials(

α±
)E (ξ) �

∑
I∈〈E〉1

BE
I (ξ)α±I , (11.15)

151



11. A computational framework for the simulation of lipid bilayers

(
β±

)E (ξ) �
∑

I∈〈E〉1
BE

I (ξ)β±I . (11.16)

Now that we have introduced the spatial discretization of the different fields
on Γt we can tackle the mechanical and transport problems.

11.3 Finite element formulation of force balance

To obtain the equations that govern the discrete time-evolution of the control
values of the different fields, we first calculate the discretized functionals in
the Rayleighian. In this Section we omit the summation on E for notational
simplicity. The discretized Helfrich energy is

FH ({hI }) �
∫
Γ̃

[
κ
2 (H ({hI }) − H0)2

+ κ̄K ({hI })
]

J ({hI }) dξ, (11.17)

where we have written the explicit dependence of the different quantities on
the control values of the unknowns,

{
hI , α±I , β

±

I

}
, and omit the dependence

on the rest of fields for simplicity. The discretized stretching energy, can be
written as

FS
({

hI , α
±

I , β
±

I

})
�

∫
Γ̃

kS

2



(
ρ±

)n
+ ∆tn P

({
hI , α±I , β

±

I

})
ρ0

(11.18)

× (1 ± dH ({hI })) − 1


2

J ({hI }) dξ,

and the discretized dissipation potentials as

DS
({

hI , α
±

I , β
±

I

})
� µ

∫
Γ̃

���
���d
±
({

hI , α
±

I , β
±

I

}) ���
���
2

Jn dξ, (11.19)

DD
({

hI , α
±

I , β
±

I

})
�
λ
2

∫
Γ̃

(
tr d±

({
hI , α

±

I , β
±

I

}))2
Jn dξ, (11.20)

DI
({

hI , α
±

I , β
±

I

})
�

bI

2

∫
Γ̃

���
��� v
−
({
α+I , β

+

I

})
−v−

({
α−I , β

−

I

}) ���
���
2

Jn dξ, (11.21)
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For the power generated by tractions at the boundary, we consider the collection
of edges l � 1, . . . ,Nl indentifying the boundary of the control mesh. These
edges lie at elements where basis functions can be calculated. Defining the
variable λ at each edge that goes from 0 to 1 linearly along the edge in Γ̃, we
can then write

PN
({

hI , α
±

I , β
±

I

})
�

Nl∑
l�1

[∫ 1

0

(
k]ω − t±

)
· v±

({
α±I , β

±

I

})
| |∇λψ

n
| |dλ

+

∫ 1

0

(
ω · gradvn ({hI }) − tn ({hI }) vn ({hI })

)
| |∇λψ

n
| |dλ

]
, (11.22)

where we have used that the length element is dl � | |∇λψn
| |dλ, ∇λψ � ∂aψλa

and λ is the vector joining the two nodes in the edge le in Γ̃. Equivalently,

PT
({

hI , α
±

I , β
±

I

})
�

Nl∑
l�1

∫ 1

0
f ±

({
hI , α

±

I , β
±

I

})
× (11.23)

c±
({

hI , α
±

I , β
±

I

})
· ν | |∇λψ

n
| |dλ,

For the numeric integration of Eqs. (11.17)-(11.23) we use Gauss quadrature in
the reference element Γ̃, although other integration schemes specially suited
for subdivision surfaces have been recently proposed [81]. We define the array
with the unknowns per node for the mechanical problem as

u �

*...
,

u1
...

uNn

+///
-

, (11.24)

where

uI �

*........
,

hI

α+I
β+I
α−I
β−I

+////////
-

. (11.25)
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Then, extremizing the discrete Rayleighian amounts to solving the equation
on u

f(u) �
1
∆tn h(u) + d(u) + p � 0, (11.26)

where

hI (u) �

*.........
,

∂hIF

∂α+I F

∂β+I F

∂α−I F

∂β−I F

+/////////
-

, dI (u) �

*.........
,

∂hID

∂α+I D

∂β+I D

∂α−I D

∂β−I D

+/////////
-

, pI �

*.........
,

∂hIP

∂α+I P

∂β+I P

∂α−I P

∂β−I P

+/////////
-

. (11.27)

and p is independent of u. This is a non-linear system of equations emanating
from an optimization problem in u. To solve it, we can resort to a variety of
optimization solvers. Here, we employ Newton’s method. To use this method,
we compute the hessian of the Rayleighian, which takes the form

K(u) �
1
∆tn H(u) + D, (11.28)

with

HI J (u) �

*..........
,

∂hI∂h JF ∂hI∂α+J F ∂hI∂β+J F ∂hI∂α−J F ∂hI∂β−J F
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+

J
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J
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−

J
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J
F
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J
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+

J
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J
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−

J
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−

J
F ∂α−I ∂β

−

J
F

∂β−I ∂h JF ∂β−I ∂α+J F ∂β−I ∂β+J F ∂β−I ∂α
−

J
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−

J
F

+//////////
-

, (11.29)

and

DI J �

*..........
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J
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, (11.30)
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where D is independent of u because the dissipation potential is a quadratic
function of the rates of change of the system. Then, Newton’s method results
in the iterative algorithm

K
(
u(n)

) (
u(n+1)

− u(n)
)
� f

(
u(n)

)
, (11.31)

where here we denote by u(n) the n-th step in Newton’s iterations, which
should not be confused with un , which contains the solution at the time-step
n. We can rewrite Eq. (11.31) as( 1

∆tn H
(
u(n)

)
+ D

) (
u(n)
− u(n+1)

)
�

1
∆tn h

(
u(n)

)
+ d

(
u(n)

)
+ p. (11.32)

The solution to this iterative process leads to un+1.

11.4 Advection: Stabilized finite element formulation

Once we have solved the mechanical problem, we can now address the
transport problem. Discretizing Eq. (11.3) we obtain∑

I

ρ±I NI �
(
ρ±

)n [
1 + ∆tn trd±

]
+ ∆tn c± · gradρn , (11.33)

To obtain the weak form, we multiply the previous expression by the test
function

w J � NJ , (11.34)

following a usual Garlerkin method to solve the algebraic equation in a
least-square sense. Then, the weak form is∑

I

∫
Γ̃

ρ±I NI NJ �

∫
Γ̃

NJ
{(
ρ±

)n [
1 + ∆tn trd±

]
+ ∆tn c± · gradρn

}
, (11.35)

where, as in the previous Section, we have omitted the summation on E for
simplicity. Defining the solution vector for the transport problem

r± �

*...
,

ρ±1
...

ρ±Nn

+///
-

, (11.36)
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the system of equations can be formulated as a linear problem

M±r± � s± , (11.37)

with
M±I J �

∫
Γ̃

NI NJ Jdξ, (11.38)

the mass matrix and

s±J �

∫
Γ̃

{(
ρ±

)n [
1 + ∆t trd±

]
+ ∆t c± · gradρn

}
Jdξ. (11.39)

Alternative to Eq. (11.3), which uses a simple forward Euler integration, we
could consider an implicit Euler scheme to discretize in time the process
operator in the transport problem, which leads to(

ρ±
)n+1

−
(
ρ±

)n

∆tn +
(
ρ±

)n+1 trd± + c± · grad
(
ρ±

)n+1
� 0. (11.40)

This is a reaction-convection problem in
(
ρ±

)n+1 and its discretization with
finite elements has to be carefully considered, since Garlerkin methods cannot
deal with large convective terms. Discretizing we obtain∑

I

ρ±I
[
NI

(
1 + ∆tn trd±

)
+ ∆tn c± · gradNI

]
�

(
ρ±

)n . (11.41)

To deal with the convective term appropriately, we use the test functions

w J � NJ + γs∆tn c± · gradNJ , (11.42)

following a Petrov-Garlerkin method in which the weight functions do not
coincide with the basis functions used in the approximation of the solution(
ρ±

)n+1. This method is called stream-upwind Petrov Garlerkin (SUPG) [44],
which is able to resolve the convective term of the transport problem by adding
some numerical diffusion controlled by the SUPG parameter γs . Then, the
weak form is∑

I

ρ±I

∫
Γ̃

(
NJ + γs∆tn c± · gradNJ

) [
NI

(
1 + ∆tn trd±

)
+ ∆tn c± · gradNI

]
Jdξ
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�

∫
Γ̃

(
NJ + γs∆tn c± · gradNJ

) (
ρ±

)n Jdξ, (11.43)

which can also be written as a linear system

M̂±r± � ŝ± , (11.44)

with

M̂±I J �

∫
Γ̃

(
NJ + γs∆tn c± · gradNJ

)
×[

NI
(
1 + ∆tn trd±

)
+ ∆tn c± · gradNI

]
Jdξ, (11.45)

and
ŝ±J �

∫
Γ̃

(
NJ + γs∆tn c± · gradNJ

) (
ρ±

)n Jdξ. (11.46)

We note that M̂ is not symmetric.
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Chapter 12

Numerical examples

In this Chapter we examine a series of examples that illustrate the theoretical
and computational framework for lipid bilayers developed in this Part of the
Thesis. In particular, we examine two important processes in lipid bilayers,
the relaxation of density disturbances and the mobility of proteins with
spontaneous curvature.

12.1 Relaxation of density disturbances

Introduction

Membranes in cells and organelles are often exposed to changes in their
local density. For instance, proteins and other membrane inclusions, such
as polymers, insert in the membrane and locally change the lipid packing
[162, 184]. Chemical signals, such as pH disturbances [82, 54], can also
alter the lipid density of the membrane. Furthermore, changes in the local
density can occur asymmetrically, affecting only one of the two monolayers
and mobilizing intermonolayer slippage. Local density perturbations lead
to transient dynamics, where lipid flows and shape changes are tightly
coupled, and in which the interplay between stretching, bending, shear and
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intermonolayer friction is crucial. Thus, these processes constitute an excellent
example of application of our theoretical and computational framework.
Furthermore, these processes have been previously examined under the
assumption of axisymmetry [139], which can be used as a reference to verify
our numerical procedure.

Simulation setting

Following [139], we examine deflated spheroidal prolate vesicles, initially at
equilibrium, to which we apply a density disturbance. To prepare the initial
state, we start with a sphere of radius R and, fixing its volume V , we increase
its surface area S to obtain a given reduced volume v, which is defined as the
ratio between V and the volume of a sphere with surface area S

v �
3
√

4πV
S3/2 . (12.1)

For a sphere v � 1 and v < 1 otherwise. During the area increase, we solve
the shape that minimizes the Helfrich energy. To break the initial symmetry
of the sphere, we perturb the vesicle in the z direction to force it to take a
prolate shape with the longer axis aligned with this direction. Once the shape
has been obtained, we initialize the lipid densities on each monolayer close to
their equilibrium state for the given shape, i.e.

ρ± � ρ0(1 ∓ dH). (12.2)

To do this, we solve a least-squares problem for ρ± (note that since H is
discontinuous at irregular nodes, Eq. (12.2) cannot be imposed strongly at the
control points in general). Then, we let the density and shape relax; this leads
to the initial equilibrium state of the vesicle. To perturb the initial density
profiles, we add a perturbation

δρ± � δρ̆±(1 ∓ dH), (12.3)

where
δρ̆± � δρ̆±m f (θ, φ), (12.4)
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12.1. Relaxation of density disturbances

is the perturbation of the densities at the neutral surfaces of each monolayer,
δρ̆±m is the maximum value of the perturbation at the outer and inner mono-
layers respectively, and f (θ, φ) is a function with values from 0 to 1 of the
angles (θ, φ) of a set of spherical coordinates.

Following the common estimates for the model parameters [39, 139], we
choose κ � 10−19 J, kS � 5×10−2 J ·m−2, bI � 109 J ·s ·m−4, µ � 5×10−10 J ·s ·m−2,
and λ � 0 (this parameter seems to play a minor role in the dynamics).

Results

To compare with [139], we start by examining a small vesicle (R � 200 nm)
with a reduced volume v � 0.99, to which we apply a disturbance of the 5% in
the outer monolayer, δρ̆+m/ρ0 � 5%, with a distribution f (θ) given by

f (θ) � tanh
(w − θ

π

)
, (12.5)

where w �
π
10 controls the width of the disturbance. We show some snapshots

of the dynamics along with the time-evolution of the dissipation and the main
energy contributions, see Fig. 12.1. First, we observe that the total energy F
decays with time (Fig. 12.1A), as expected since F is a Lyapunov functional
of the dynamics. Furthermore, from Fig. 12.1B we observe that the largest
energetic component is FH, the Helfrich energy. However, it does not play
a significant role in this problem since its variation is very small. Instead,
we observe that the relaxation of the stretching in the upper monolayer, and
the response of stretching in the lower monolayer are the main drivers of the
dynamics (see Fig. 12.1B). In snapshot III, we can observe how the local density
asymmetry results in a small but noticeable shape change, whose signature
can be seen in the curvature energy.

To better understand the dynamics, let us introduce a set of time-scales that
are associated to our model, for which we follow the nomenclature in [139].
First, we note that gradients of the average density relax with a time-scale
given by t4 �

µ

kS
, as they are driven by stretching energy and dragged by
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Figure 12.1: Relaxation dynamics of a density perturbation on the outer
monolayer of a small vesicle of R � 200 nm with δρ̆+m � 5%. (A) Energy (blue)
and dissipation (green) along the time-evolution of the system. Note that the
x−axis is in log-scale to enhance the different time-scales in the problem. (B)
Time-evolution of the different energies of the problem. (I-IV) show snapshots
of the shape and the densities of outer and inner monolayers at different stages
of the dynamics.

shear dissipation. This time-scale is size-independent, and usually very fast,
t4 ≈ 10 ns for our choice of model parameters. This relaxation occurs without
mobilizing intermonolayer slippage or bending energy. Gradients of density
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12.1. Relaxation of density disturbances

differences between monolayers are also penalized by the stretching energy.
However, at fixed shape, balancing these gradients requires intermonolayer
slippage. Indeed, density differences have been shown to diffuse with a

diffusivity D �
kS

bI
[47], which results in a time-scale t1 �

S̄
D

�
S̄bI

kS
, where

S̄ is the area of the density disturbance. However, density differences can
also relax by curving the membrane, not mobilizing intermonolayer slippage,

with a time-scale given by t2 �

√

S̄µ
kSd

. It is clear that t1 and t2 characterize
two alternative ways of relaxing density differences. Interestingly, t1 scales
linearly with the perturbed area S̄ whereas t2 scales with the square-root of
S̄. This suggests the existence of a given value S̄∗ below which t1 dominates
and above which t2 dominates. For our set of model parameters, S̄∗ � 0.25 nm,
which is smaller than the bilayer thickness. Thus, in the conditions of our
simulations, density differences relax faster by changing shape rather than by
diffusing laterally on the bilayer. This is the reason why the membrane of the
previous example has a non-negligible shape change even if the initial density
disturbance is small.

For the 200nm vesicle, we find that t1 ≈ 0.151 ms and t2 ≈ 1 µs. These
time-scales are clearly apparent from Fig. 12.1A. First, we observe an initial
decay of the total energy associated with the rapid equilibration of the total
density, in a time-scale comparable with t4. We then observe a decay of the
energy characterized by a shape deformation that accommodates the density
difference in a time-scale comparable with t2. Finally, this shape deformation
and the density difference relax in a time-scale comparable with t1. Consistent
with this description, we observe an initial decay of the stretching energy of the
outer monolayer, accompanied with an increase of the stretching energy of the
lower monolayer, but with an almost negligible change in the bending energy
(see Fig. 12.1B); given the initial disturbance of the total density, lipids in
both monolayers are mobilized without creating curvature or intermonolayer
slippage. Then, the total stretching energy partially relaxes due to the shape
change, along with a small increase of the Helfrich energy. Finally, the
stretching energy relaxes by lateral diffusion of the excess density through
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Figure 12.2: Convergence of the numerical method. (A) Difference between
the energies obtained from the simulation of the meshes n1 (8,394 nodes),n2
(33,570) and reg (65,538) with respect to n3 (134,274). (B) Time-evolution of
the time-step. (C) Comparison with a simulation with fixed time-step for the
first 100 ns of dynamics.
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intermonolayer slippage, the Helfrich energy decays almost to its original
value, and the excess of energy due to the increase in the total mass of the
upper monolayer is accommodated in the stretching energies of the outer and
inner monolayers.

We note here two important aspects of the numerical simulation of the
previous example. First, we have employed an unstructured mesh that has
a larger resolution in the region where the density difference is applied (see
Fig. 12.2 n1). A regular mesh with an equivalent resolution of the target zone
requires many more nodes and degrees of freedom (see Fig. 12.2 reg), which
leads to a much higher computational effort (with simulations 7 times longer
under the same conditions). Thus, our general formulation on unstructured
meshes allows us to focus on regions where density gradients and curvatures
are higher to increase the computational efficiency. To examine the convergence
of the numerical method, we compute the dynamics for two different levels
of refinement of the previous unstructured mesh (Fig. 12.2 n2 and n3) and
also for the regular mesh. In Fig. 12.2A we compute the difference in the total
energy between the solution of mesh n3, taken as reference, and the others,
which shows that the relative error between them is smaller than 0.1%. This
analysis also shows that the difference between the meshes n1 and n3 is greater
than that between n2 and n3, which is expected for a convergent method.

Second, given the dramatic difference between the time-scales of the
problem, the time-step of the simulation has been adapted during the time-
evolution, as we show in Fig. 12.2B. The simulation starts with a time-step of
0.1 ns to capture the initial fast dynamics associated to t4 and progressively
increases up to 0.1 ms. This is a difference of 6 orders of magnitude. To adapt
the time-step we employ the following prescription: if Newton’s method is
solved less than NS steps, with NS given initially (usually a number between
4 and 6), we increase ∆tn+1 � f∆tn with f a scaling factor greater than 1, if
however Newton’s method does not converge in NS steps, we reduce ∆tn+1 as
∆tn+1 � ∆tn/ f . This adaptive time-stepping algorithm allows us to perform
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Figure 12.3: Time-evolution of the total mass difference (A) and the volume
difference (B) with respect to their initial values.

the simulation in less than 300 time-steps, whereas a fixed time-step algorithm
with the required initial resolution would need 10 million of time-steps. To
show that, however, the dynamics is not affected by the adaptive time-stepping,
we plot the difference in the total energy between a simulation with a fixed
time-step and the simulation with the adaptability time-step for the first 100
ns of dynamics, which shows a difference smaller than 0.1% (Fig. 12.2C).

Another important aspect of the numerical method is the global conser-
vation of mass and volume. Conservation of the total mass is not directly
imposed in our numerical procedure, and we rely on the local mass conser-
vation imposed weakly through the process operator. On the other hand,
conservation of volume is imposed as a non-linear constraint at every time-step.
We show the time-evolution of the total mass in the outer and innermonolayers
and the total volume in Fig. 12.3, where we observe total mass differences
smaller than 10−2% and volume differences smaller than 10−4%.

To further show the versatility of the numerical method, we examine the
dynamics of a non-axisymmetric system, in which we have rotated the initial
vesicle, and to which we apply a density disturbance pattern with δρ+m � 25%
(see Fig. 12.4). We observe a similar dynamics, now with a larger bulge due
to the larger density difference, and with an initial stretching energy 4-times
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Figure 12.4: Relaxation dynamics of a density perturbation on the outer
monolayer of a small vesicle of R � 200 nm with δρ̆+m � 25% for a non-
axisymmetric case. (A) Energy (blue) and dissipation (green) along the
time-evolution of the system. (B) Time-evolution of the different energies of
the problem. (I-IV) show snapshots of the shape and the density of outer
monolayer at different stages of the dynamics.

167



12. Numerical examples

Figure 12.5: Relaxation dynamics of a density perturbation on the outer
monolayer of a small vesicle of R � 2 µm with δρ̆+m � 5%. (A) Time-evolution
of the different energies of the problem. (B) Time-evolution of the different
sources of dissipation of the problem. (I-IV) show snapshots of the shape and
the density of outer monolayer at different stages of the dynamics.
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larger than the bending energy.

Finally, we analyze a vesicle of R � 2 µm with δρ̆+m/ρ0 � 5%. For this size,
the stretching energy becomes even more determinating than in the case of
R � 200 nm. Indeed, the relative influence between the different energetic
components is highly size-dependent. Given two vesicles, say 1 and 2, related
by a geometric scaling factor X, we have that FH(2) � FH(1) (the Helfrich
energy is size independent), whereas FS(2) � X2

FS(1). In agreement with this,
the dynamics for R � 2 µm show the formation of a large bulge that affects the
shape of the whole vesicle and with a stretching energy 20-fold larger than
the Helfrich energy (see Fig. 12.5). The time-scales associated to this problem
are t1 ≈ 15 ms and t2 ≈ 10 µs, with t4 � 20 ns as before. In agreement with
these time-scales, we observe again the initial peak of energy decrease in a
scale comparable with t4, and a total duration of the relaxation dynamics of
10 ms, similar to t1. In Fig. 12.5B we plot the value of the different dissipation
contributions, shear and intermonolayer friction, in a log-log plot. This plot
shows that, during the initial equilibration of the total density and during the
bulge formation, shear dissipation dominates. However, at the later stages of
the dynamics, where the shape relaxes back to equilibrium, density differences
relax due to intermonolayer slippage.

Surprisingly, in the initial stages of the bulge formation (Fig. 12.5III), we
observe that a pattern resembling buckling forms at the edge of the bulge,
presumably caused by a transient and local compression in a large enough

region (compared to the Föppl-von Kármán length-scale lFvK �

√
κ
σ
≈ 5 nm,

where we have used the expression of the tension for the stretching energy

σ � kS

((
ρ±

ρ0

)2
− 1

)
≈ 10−2 J·m−2 for ρ± � 1.05ρ0). This kind of buckling

deformation is a three-dimensional phenomenon that could not develop in the
axisymmetric simulations in [139]. To examine this phenomenon further, we
zoom Fig. 12.5IV in the region where the pattern forms, see Fig. 12.6. First, we
note that the formation of the pattern does not result from an increase of the
total energy, which suggest that it is not caused by a numerical instability of our
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method. In Figs. 12.6I and II, we show the velocity field of the outer monolayer
near the bulge at two different instants during the pattern formation. After the
pattern has formed, Figs. 12.6III and IV, the amplitude of the bulge continues
to increase, and the oscillatory deformation pattern progressively dissapears,
see Fig. 12.6V. The rest of the dynamics is similar to that obtained in [139],
which suggest that the pattern forms due to an initial buckling instability that
does not affect the final fate of the dynamics. Our model is lacking of the
dissipative forces induced by the bulk medium, which provides a dynamical
confinement that may attenuate or remove this buckling-induced pattern
formation. Indeed, the size of the disturbance is close to the Saffman-Delbrück
length, and therefore bulk dissipation could start playing a role. Thus, whether
this phenomenon can be observed in experiments or is an artifact of the lack
of bulk viscosity is an open question.

In summary, these examples provide a verification of our numerical
approach in a fully non-linear and three-dimensional setting.

12.2 Rheology of inclusions in lipid membranes:
beyond the Saffman-Delbrück theory

Introduction

Proteins and other inclusions such as lipid or protein aggregates, populate
biological membranes. Because the lipid membrane is fluid, these inclusions
diffuse on the membrane as in a two-dimensional viscous fluid. This lateral
mobility of proteins enables the dynamical lateral organization of biological
membranes, for instance in cell-cell adhesion junctions.

As a first approach to understanding protein diffusion on lipid membranes,
let us consider a simple model in which the membrane is represented as an
inextensible viscous fluid of interfacial viscosity µ. Computing the protein
diffusion constant on the lipid membrane is equivalent to finding the mobility
of a circular inclusion on a two-dimensional Stokes flow. In this fluid, we
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Figure 12.6: (A) Zoom of Fig. 12.5A in the region in which the pattern forms.
(I) and (II) show the velocity field with arrows, which lead to the pattern
formation. After the pattern has formed, the bulge continues growing (III)
and (IV). Finally, once the bulge grows large enough, the wrinkles associated
to the pattern smoothly dissappear.

consider a protein of cylindrical shapewith a negligible spontaneous curvature.
For simplicity, we consider a planar membrane (see Fig. 12.7A). The Stokes-
Einstein relation states that the diffusion coefficient is the product of the
thermal energy kBT and the hydrodynamic mobility M,

D � kBTM. (12.6)

For instance, in a three-dimensional viscous fluid of viscosity µb , a sphere of
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Figure 12.7: (A) Side view of a viscous layer of viscosity µ with an inclusion
(black) moving on it. Velocity of the fluid is represented with black arrows.
(B) Same system but now embedded in another viscous medium of viscosity
µb . (C) The inclusion now generates a spontaneous curvature that creates a
dimple. Displacing the inclusion involves displacing the dimple (the velocity
of the bidimensional fluid has non-tangential components that indicate the
movement of the dimple).

radius a moves with a mobility

M3D �
1

6πµb a
, (12.7)
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where the scaling M ∼ 1/(µb a) can be explained from dimensional analysis,
whereas the pre-factor 1/(6π) can only be obtained from the solution to a
boundary value problem for the Stokes flow. A similar dimensional analysis
for the mobility of a circular inclusion of size a in a two-dimensional fluid
of viscosity µ predicts a mobility M ∼ 1/µ, independent of a. However, by
solving a boundary value problem in a circular patch of membrane of radius l,
one obtains

D2D �
kBT
4πµ

[
log

(
l
a

)
−

1
2

]
. (12.8)

We note that D2D → ∞ as l → ∞. In other words, the drag force that the
protein feels when moving in a viscous 2D fluid tends to zero as the size of
the patch increases; this is the well-known Stokes paradox. There are different
ways to overcome this paradox, depending on the context. In our setting, we
note that the membrane inclusion is not moving in a bidimensional medium
in vacuum. Instead, the membrane is surrounded by another viscous fluid of
viscosity µb (see Fig. 12.7B). Although since a � µ/µb , a dimensional analysis
argument would suggest that µb is irrelevant, the limit µb → 0 turns out to
be a singular one. In a celebrated paper [152], Saffman and Delbrück showed
that the diffusion constant of an inclusion in such a system has the form

DSD �
kBT
4πµ

[
log

(
lSD
a

)
− γ

]
, (12.9)

where lSD � µ/µb is the so-called Saffman-Delbrück length, and γ is Euler’s
constant. Thus, although the bulk viscosity of the membrane µ/d is much
larger than the viscosity of the bulk µb , the effect of the bulk fluid is needed
in order to overcome the Stokes paradox. The main dragging mechanism
acting on the protein is the interfacial viscous force generated by the protein-
membrane interaction, but the bulk fluid imposes a constraint on the interfacial
fluid in the far field that cannot be neglected. Yet, the dependence on µb is
weak. Note also that in contrast to D3D , the dependence on the inclusion
size is also weak. Eq. (12.10) predicts a logarithmic scaling of the diffusion
constant with respect to the protein size a, which has been confirmed in a
number of experiments (see [141] and references therein). However, other
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experiments [56, 137] present deviations of the Saffman-Delbrück theory for
proteins that induce deformations of the lipid membrane, and in particular for
proteins with intrinsic curvature. Indeed, a protein moving on a self-generated
curved environment must not only displace the surrounding lipids as in a pure
bidimensionalmedium, butmust also displace the dimple generated by its own
intrinsic curvature (see Fig. 12.7C). Following this interpretation, the protein
would behave as if it had an apparent size a′ larger than a. From previous
Chapters we have learned that the coupling between tangent flows and shape
changes in the presence of curvature is not trivial, and thus the interplay
between the motion of the dimple and the lipid flows may greatly affect the
hydrodynamic mobility of the inclusion in unexpected ways. In particular, as
shown in [140], non-uniform lipid flows in a curved environment generate out-
of-plane viscous forces, that further deform the membrane and mobilize the
bending rigidity. As a result, the proteinwill move as in a visco-elastic medium
rather than on a purely viscous medium despite the Newtonian rheology of
the membrane. The diffusion coeficient becomes frequency-dependent, as
explained by the generalized Stokes-Einstein relations [169].

Recently, several works have tried to generalize the Saffman-Delbrück
theory for proteins with intrinsic curvature. In [112], Naji et al. analyzed a
membrane with Helfrich energy coupled to a curving protein following a
Langevin dynamics, where hydrodynamics are included with an Oseen kernel
accounting for the bulk medium and membrane viscosity is neglected. This
study finds that the dimple caused by the curvature of the protein leads to a
reduction of protein mobility. In agreement with this work, Quemeneur et
al. [137] showed experimentally that the mobility of a protein with intrinsic
curvature increases with tension; increasing tension would reduce the ampli-
tude of the dimple, resulting in a larger mobility. To analyze their experiments,
Quemeneur et al. followed an analytic approach similar to [145] also based
on an Oseen kernel for the bulk viscosity that neglects or makes dramatic
approximations of the interfacial elasto-hydrodynamics. As noted by Morris
and Turner [109], the Oseen approximation cannot properly deal with lipid
flows on the membrane, which are the main dragging force that membrane
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inclusions sense. To overcome this issue, Morris and Turner analyzed the
hydrodynamic force exerted on a protein moving on an inextensible lipid
bilayer following a perturbation approach. The membrane is initially planar
and deforms due to the presence of the protein, which imposes a contact angle
with a given stiffness. A perturbation expansion is developed in terms of the
protein angle with respect to the plane and, at zeroth order, they reproduce
the Saffman-Delbrück expression Eq. (12.10). Following the expansion up
to second order, they show that the tension-dependent mobility depends on
the stiffness of the protein: for sufficiently soft proteins, the protein mobility
increases with tension as the dimple becomes flatter with increasing tension.
However, there is a technical issue in the boundary conditions used in this
work, which are not consistent with the protein translating parallel to the
x y-plane [181].

Here we use the theoretical and computational framework described in
previous Chapters to investigate how the intrinsic curvature of a protein affects
its mobility. Modeling a protein as a membrane domain with spontaneous
curvature HG, we investigate how tension σ affects its mobility, as in [137, 109].
Following the same line of thought as in [152] and [109], we compute the
interfacial flow around the protein in the absence of bulk fluid. For amembrane
of finite size, we can then compute the difference in diffusivity of such curved
protein with respect to a planar protein of same size a, allowing us to compute
its tension-dependent apparent size a′(σ). As curvature only affects the
interfacial flow near the dimple, we assume that, in the far field, the solution
is that of Saffman-Delbrück theory, which leads to a diffusivity

DSD(σ) �
kBT
4πµ

[
log

(
lSD

a′(σ)

)
− γ

]
. (12.10)

To model the protein-membrane interaction, we modify the energy and
dissipation potential as we explain next.
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Figure 12.8: Protein density function ρG (r) for a protein of radius 20 nm.

Modeling protein-membrane interactions

To model the effect of the protein on the membrane, we follow an approach
similar to that in [112], where the protein is considered as a field in the
x y-plane that is characterized by a density ρG (r), where r � | |Px − xG | | is the
distance of x to xG in the x y-plane, P stands for the projection operator onto
the x y-plane, and xG is the center of the protein (see Fig. 12.8). To model the
bending rigidity of the protein we consider the following Helfrich-like energy
functional

FP[h] �
∫
Γt

κ̄ρG (r) [H − HG]2 dS, (12.11)

where κ̄ is the bending rigidity associated to the protein-membrane composite
system, and HG stands for the spontaneous curvature of the protein. To
penalize the slippage of the protein with respect to the surrounding lipid fluid,
we add the dissipation potential

DP[∂t h , α± , β±] � 1
2

∫
Γt

bGρG (r) | |Pv± − vG | |
2dS, (12.12)

where bG measures the strength of the frictional interaction between the bilayer
and the protein. We simulate the system in a circular patch of membrane of
radius l with open boundary conditions, that is, we let fluid go in and out
of the patch, but with a constraint on the total velocity vB �

∫
∂Γt
vdl � 0 so
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that the patch does not have a net movement with respect to the far field. We
impose a clamped boundary condition at the circular edge of the domain, so
that it lies on the x y-plane with zero slope. We prescribe a tension σ and the
lipid density on the in-flow part of the boundary to

ρI � ρ0

√
1 − σ

kS
. (12.13)

so that this density is at equilibrium with the prescribed tension. We note that,
due to the translational invariance of the problem, it is equivalent to move
the protein laterally with a velocity vG with vB � 0 or to fix the velocity of
the protein to 0 and set vB � −vG. From a numerical viewpoint, the former
needs updating the position of the protein, and therefore updating the mesh
if more resolution is needed near the protein. The latter approach allows us to
fix the protein position and keep the mesh fixed. For this reason, we follow
this approach, although we have checked that they are indeed equivalent.

Results

We compute the tension-dependent hydrodynamic mobility (and hence the
diffusion coefficient see Eq. (12.6)) for a protein of size a � 20 nm on a patch
of l � 100 nm, with κ̄ � 10κ. The dynamics do not depend on bG if it is
sufficiently large. We show the main results in Fig. 12.9. In Fig. 12.9A we show
the difference in the shape of the dimple caused by the intrinsic curvature
of the protein for two different tensions, along with the distribution of the
density lipid in the upper monolayer. The basal levels of the density are
different, because tension is related to lipid density in the model. Both density
profiles depend on curvature, and therefore, they are not homogeneous at
the dimple. In Fig. 12.9B we show the typical velocity profile around the
inclusion, along with the density of the lower monolayer. This Figure shows
how this largely inextensible fluid flow adapts not only to the obstacle but
also to the curved geometry. Because of the coupling between interfacial
hydrodynamics and shape dynamics in the presence of curvature. The velocity
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Figure 12.9: Mobility of a protein with intrinsic curvature as a function of
tension. (A) Side view of the dimple caused by the intrinsic curvature for two
different tensions with the density of the upper monolayer represented with
colormap. (B) Velocity profile around the dimple and density of the lower
monolayer. (C) Time-evolution of the mobility (diffusivity) for the two values
of tension. (D) Diffusivity as a function of tension at the initial instant (blue)
and for the steady state (green) along with the Saffman-Delbrück value.

field is time-dependent, which leads to a time-dependent mobility coefficient
(see Fig. 12.9C). Because mobility (diffusivity) is time-dependent, for each
tension we can keep track of the instantaneous and of the steady-state mobility.
In Fig. 12.9D we show the dependence of the diffusion coefficient on tension
at the fast and low time-scales. For higher tensions, the diffusivity is initially
larger than for lower tensions, presumably due to the higher compliance of
the more floppy system. However, the final diffusivity increases with tension,
as expected for a smaller dimple. For higher tensions , the dimple is smaller
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and the flow finds less resistance.
In summary, the diffusion of proteins on lipid bilayers is a central topic

in membrane biophysics with a long history, dating back to the work of
Saffman and Delbrück in 1975, which nevertheless is not fully settled. The
study of the diffusion of proteins with intrinsic curvature has highlighted the
need to account for the interaction between curvature and hydrodynamics,
a subtle topic for which theoretical tools have been lacking. It has been
examined with various models making drastic approximations about the
elasto-hydrodynamics of lipid bilayers. In this work, we have shown that the
frequency-dependence of the diffusion of proteins with intrinsic curvature
is a significant effect. Our results indicate that the hydrodynamic mobility is
dominated by the interfacial hydrodynamics of the membrane, where the bulk
only enters through far field effects and intermonolayer slippage is a minor
effect. However, slippage may become more important in proteins interacting
only with one monolayer. A systematic study of the mobility of proteins and
other membrane inclusions based on the approach presented here will be the
subject of future work.
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Chapter 13

Modeling and simulation of the
actin cortex

13.1 Introduction

In this Chapter, we apply the tools developed for the modeling and simulation
of lipid bilayers to another important fluid surface of the cell, the cell cortex.
The cell cortex is a layer of cross-linked actin filaments lying just beneath
the plasma membrane of animal cells [154]. The thickness of this layer is of
hundreds of nanometers, while the typical size of an animal cell is of tens
of microns. Thus, this layer can be considered as a quasi two-dimensional
material. Apart from actin, this network is crowded with myosin motors,
which bind to actin filaments. By consuming ATP, these molecular motors
pull on actin filaments and generate an active tension. In turn, this active
tension, if non-uniform, generates actin flows and drives shape changes.
As another important property, the actin network undergoes a dynamic
remodeling, with a continuous turnover of actin monomers, by polimerization
and depolimerization in the filaments, and binding and unbinding of cross-
linking proteins. This process is characterized by a time-scale in the order
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Figure 13.1: A viscous model for the cell cortex. (A) Schematic view of the
different processes taking place in the cortex. (B) Schematic view of the main
ingredients in our model.

of a few seconds. At time-scales smaller than the turnover time, the cortex
behaves as an elastic network. On the other hand, at larger time-scales, the
dynamic remodeling of the cortex leads to a fluid-like viscous behavior with
active tension.

The theoretical and computational framework developed for lipid bilayers
in this Part of the Thesis can be adapted to model the cell cortex. In the next
Section we discuss the most basic ingredients needed to describe the cell
cortex and in Section 3.12 we present a series of simulations that exemplify
our approach.
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13.2 Basic ingredients of the model

Following previous works [187], we model the cortex as an isotropic viscous
material confined to a surface. This, and other previous works [24, 153],
were restricted to axisymmetric or to two-dimensional flows, and derived the
active gel equation from the stress tensor and the continuum statement of
balance of linear momentum. Here, we develop a fully three-dimensional and
geometrically non-linear model invoking Onsager’s variational principle.

This modeling framework is based on two major approximations of the
mechanical properties of the cortex. First, the elastic behavior at time-scales
smaller than the turnover is neglected, since it plays amarginal role in processes
happening at longer time-scales. Second, the model does not account for the
orientational order of actin filaments; thus, we assume that the orientation of
actin filaments is distributed randomly so that the effective response of the
material is isotropic. This may not be the case in some important examples,
such as during cytokinesis [147].

Mathematically, we characterize the cortex as a time-evolving surface Γt

with a space-varying thickness ρ. From the viewpoint of Onsager’s variational
principle, Γt and ρ are our state variables. The process variable in this problem
is the velocity field V of actin, with a tangential component v, characterizing
the flow of actin on Γt , and a normal component vnn, describing the change
of shape of the cell. The viscous rheology of the cortex is characterized by a
dissipation potential, similar to that of lipid bilayers

D[ρ;V ] �
∫

ρ
[
µ| |d| |2 + λ(trd)2

]
dS, (13.1)

where here µ and λ are the bulk shear and dilatational viscosities of the cortex,
which we integrate along the cortex thickness ρ. Thus, this model neglects
the viscous dissipation due to changes in cortex thickness. To characterize
the active tension generated by the activity of myosin motors, we consider a
power input

P[ρ;V ] �
∫

σtrd dS, (13.2)
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where σ is an active tension proportional to the cortex thickness and to a
measure of myosin activity ξ,

σ � ρξ, (13.3)

where ξ(x, t) may be a function of space and time. A more detailed modeling
would describe ξ in terms of a chemical power supply linked to ATP hydrolysis.
Instead, here we will write

ξ(x, t) � ξ0 + δξ(x, t), (13.4)

where ξ0 is a measure of the basal activity in the cortex, and δξ(x, t) is a
measure of the overactivity. Since trdmeasures the rate at which local area
expands (positive trd) or contracts (negative trd), for a positive σ the previous
term will try to contract the cortex area. As we neglect the elastic behavior of
the cortex, there is no free energy associated to the problem. To relate the rate
of change of ρ and V , we consider balance of cortex material

Dtρ + ρ (divv − vnH) � kp − kdρ, (13.5)

where the first term in the right hand side stands for the polimerization of
actin, which we assume to happen at a constant rate kp , independent of the
thickness since it happens at the plasma membrane, and the second term
stands for the depolimerization of actin, which is proportional to the amount
of actin given by the local thickness, kdρ. The ratio ρeq � kp/kd determines
the thickness at equilibrium. Finally, we consider that the volume V of the cell
is constant, for which we impose a constraint with the pressure P acting as a
Lagrange multiplier.

Following [187], we choose the following set of model parameters, µ � 106

Pa·s, λ � 2µ, kd � 0.04 s−1, kp � 0.008 µm·s−1, and σ0 � 103 Pa.

13.3 Results: measuring the rheology of the cortex

The elementary model introduced in the previous section exhibits a non-trivial
phenomenology that can mimic the behavior of cells in different situations, as
we show in this Section for three relevant examples.

184



13.3. Results: measuring the rheology of the cortex

We examine first a rheological essay to characterize the response of the
cortex to compression, following the experimental setup in [50]. We place an
initially spherical cell between two plates as we show in Fig. 13.2A, and we let
it relax. To represent the confinement of the plates, we introduce a free energy

Fc �

∫
Γt

V (z)dS, (13.6)

where z is a coordinate perpendicular to the plates, and V (z) is a energy
density characterizing the repulsion with respect to the plates,

V (z) �



0 if |z | < h/2,
kc

3

(
|z | − h/2
δc

)3

if |z | ≥ h/2.
(13.7)

with kc and δc characterizing the strength and the width of the repulsive
interaction respectively. Since the volume of the cell is constant regardless
of the compression, and since there is a basal tension given by ρeqξ0, the
cell will exert a reaction force on the plates that confine it, which in general
will depend on the separation between the plates. We now apply a sequence
of compression events, characterized by the separation between the plates
given in the green curve of Fig. 13.2B. These compression events produce
a non-trivial time-dependent reaction force (blue curve); the reaction force
increases during compression application, and then set-points higher than
before compression. Peaks are a result of a non-equilibrium response of the
cortex. To show it, we plot the density and velocity profiles at different stages of
the dynamics during the first compression event (see Fig. 13.2I-IV). From these
figures we can associate the density gradients in II to shape changes. Indeed,
the part of the cortex that becomes in contact with the plates is transiently and
locally compressed in the lateral direction, which leads to an increase in the
local density because actin does not have time to flow out of this region or
depolimerize. On the other hand, the free part of the cortex is expanding and,
since there is not enough material coming by actin flows or polimerization,
the density decreases. Thus, the magnitude of the peak and its relaxation
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Figure 13.2: Rheological essay to examine the behavior of a cortical vesicle
confinement between two plates. (A) Scheme of the setup. (B) Height (green)
and reaction force (blue) of the cortex to a series of compression events. (I-
IV) Different stages of the cell shape and the cortex density during the first
compression event.

dynamics are dictated by the interplay between actin flows, shape changes,
and turnover. The behavior predicted with our model is similar to that found
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Figure 13.3: Rheological essay to examine the behavior of a cortical vesicle
under shear. (A) Scheme of the setup. (B) Time-evolution of the reaction
force. (C) Dependence of the force on the viscous friction with the plates (I-II)
Different stages of cortex flows during equilibration.

experimentally in [50]. Thus, this example shows that our simple model
captures this non-trivial phenomenology, and could be used to infer material
parameters from these mechanical tests on rounded cells.

In a second rheological essay, we apply a shear test, in which, using the
configuration obtained from the previous essay, we move the two plates
confining the cortex in opposite directions with a velocity v in the x direction
(see Fig. 13.3A). To characterize the frictional viscosity between the plate and
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the cortex, we add a dissipation potential

Dc �

∫
Γt

µcV′(z)
2

[(
vx − vplate

x

)2
+

(
vy − vplate

y

)2]
dS, (13.8)

where vplate � ±vi1 is the velocity of the upper and lower plates respectively,
µc is a viscous friction coefficient, and the friction is proportional to the normal
pressure exerted on the wall, V′(z), in agreement with the framework of
hydration lubrication [83]. In this case, we measure the lateral force exerted
by the cortex on the plates due to this viscous interaction. As in the previous
example, we observe a time-dependent response of the lateral force (see
Fig. 13.3B). This time-dependence is caused by an initial accommodation of
the cortex density and shape characterized by non-tangential velocity fields
(see Fig. 13.3I). After some time, the system reaches a steady state in which
the velocity field has only tangential velocities, i.e. shape is not changing
(Fig. 13.3II). The density disturbance and the reaction force generated by
shearing the plates depend dramatically on µc , as we show in Fig. 13.3C. For
µc < 10−3 s·nm−1 the cortex is practically unaffected by the movement of the
plates and shows a negligible density disturbance and velocity profile. For
10−3 < µc < 1 s·nm−1 there is a continuous density gradient on the contact
region that follows from the constant compression/expansion of the opposite
edges of the contact region in the direction of the flow. For µc > 101 s·nm−1

the viscous friction with the wall is so high that gradients of the density
cannot propagate along the contact region, where the cortex velocity is nearly
v everywhere. In turn, the ability of the cortical shell to maintain density
gradients depends on turnover (characterized by kp and kd). In summary, the
reaction force is tightly controlled by shape changes, cortical flows, turnover,
and the viscous drag with the plates. Therefore, this test in combination with
the previous one could serve the purpose of material characterization.

Finally, we analyze another mechanical function of the cortex, namely its
ability to generate cell migration in confined environments through nonspecific
adhesion. For this experiment, we consider the cortex confined in a tube of
radius R parallel to the x axis Fig. 13.4A. Thus, we introduce the confinement
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potential

V (r) �



0 if r < R,
kc

3

( r − R
δc

)3
if r ≥ R.

(13.9)

where r � y2 + z2, and the dissipation potential associated to the viscous
interaction with the tube

Dc �

∫
Γt

µcV′(r)
2 v2

x dS. (13.10)

In confinement, the cell cortex self-polarizes and generates a gradient of active
tension that drives the movement of the cell [24]. In a minimal model of
polarization, we introduce a space-dependent activity

δξ � ξ0

(1
2 +

x − xcell

L

)
, (13.11)

where L is the total length of the confined cell along x and xcell is the geometric
center of the cell. This gradient of activity will induce a directed cortical
flow sustained by a net depolymerization in the contracting end and a net
polimerization in the expanding end. Thanks to the frictional interaction
with the wall, this flow will produce a propulsive force and cell motion along
the tube. However, the cell motion will necessarily displace the fluid in
the capillary, producing a hydrodynamic drag. The balance between the
propulsive force and the drag force will set the cell velocity. The problem is
subtle because the cortical flow itself will depend on the cell velocity. The
effect of the fluid in the capillary can be introducedwith a dissipation potential
of the form

Dd �
µd

2 | |vcell | |
2 , (13.12)

where vcell � ẋcell and µd can be computed from elementary hydrodynamics
and involves the tube length. Following [24], we choose µd � 200 kPa·s·m−1.
As we show in Fig. 13.4B, the net velocity of the cell (proportional to the drag
hydrodynamic force Fd � −µdvcell and hence to the frictional propulsive force
by mechanical equilibrium on the cell) significantly depends on the viscous
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Figure 13.4: Actin flows regulate the migration of cells through non-specific
adhesion. (A) Scheme of the system. (B) Net velocity of the cell as a function
of the friction coefficient. (I-III) illustrate the density and velocity profiles of
the cortex. In (I), there is no net velocity of the cell (velocity is tangent to the
surface). In (II) and (III) the net velocities are not tangent to the cell surface
and generate a constant contraction of the rear and expansion of the cell front
(upper figures). To examine the velocity profile in detail for these cases (lower
figures), we decompose the velocity into the velocity of the cell (green) and
the relative velocity of the cortex with respect to the center.

interaction with the tube. For µc < 10−5 s·nm−1, the polarization of the cell
leads to a gradient of density and to a steady actin flow, which, however, does
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not generate significant frictional forces with the wall and therefore is not
affected by those forces. Accordingly, this cortical flow does not create a net
movement of the cell (Fig. 13.4I). For µc > 10−5 s·nm−1, the actin flow generated
by the activity gradient generates a significantly larger propulsive frictional
force to proper the cell forward. The sliding velocity with the wall becomes
smaller as µc increases, but the frictional propulsive force increases up to a
point (µ ∼ 10−2 s·nm−1, II). Beyond this point, the velocity of the adhered zone
becomes very small, and the density nearly uniform in the contact region, and
the cell velocity (or propulsing force) slightly decreases. The rate of turnover
controls the ability of the system to sustain density gradients, and hence the
steady state. The same behavior of the net velocity with respect to the friction
coefficient was found in experimentally in [24], where it was explained with a
simple model similar in spirit to ours. Thus, our modeling framework is able
to reproduce cell migration through non-specific adhesion, which emerges in
the presence of polarization as the interplay between shape changes leading to
the contraction of the rear and expansion and the front of the cell, actin flows,
and actin turnover, and the frictional interaction with the confining surface.
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Discussion and future work

We have developed a novel theoretical and computational framework to model
and simulate the fully non-linear and three-dimensional dynamics of lipid
membranes and other fluid surfaces, such as the cell cortex. More precisely,

• We have introduced a three-dimensional and non-linear formulation
of the mechanics of lipid bilayers, generalizing the model by Seifert
and Langer [160]. We have developed this formulation based on (1)
Onsager’s variational principle, a framework formodeling the dynamical
behavior of dissipative systems, and (2) the differential geometry of fluid
deformable surfaces.

• We have exercised the previous model in three-dimensional simulations,
discretizing a system coupling an elliptic PDE for balance of linear
momentum and a hyperbolic PDE for balance of mass. For the time-
discretization, we have developed a novel variational time-integrator
based on the discretization of Onsager’s variational principle. Our
spatial discretization is based on a combination of subdivision and linear
finite elements, which allows us to account for the coupling between
curvature and lipid flows.
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• We have applied the previous theoretical and computational framework
to another instance of fluid surface in the cell, the cortex. Our model is
based on a viscous isotropic view of the cortex, which is able to reproduce
a number of rheological experiments and could be employed to infer
material parameters in conjunction with experiments.

Our formulation also sets the basis of future lines of work:

• The proposed framework opens new possibilities in the study of shape
pattern formation under dynamical changes in lateral strain or osmotic
conditions in supported membranes [172] beyond axisymmetry, relevant
to cell membrane mechano-adaptation [84].

• Ourmethod could also be useful to understand the effective rheology of a
bilayer populated by transmembrane proteins, limiting inter-monolayer
slippage in a heterogeneousmanner, which could explain the unexpected
and highly viscous behavior of complex biomembranes [29], or coupled
to additional fields describing the concentration of membrane proteins
to understand the dynamics of curvature sensing and generation (see
[13, 19] and references therein).

• While interfacial hydrodynamics are dominant at length-scales smaller
than the Saffman-Delbrück length, the bulk hydrodynamics may be
a relevant ingredient in processes involving larger scales. Including
the bulk hydrodynamics is straightforward conceptually, but requires
specialized computational methods.

• While our model for the cortex can reproduce a number of rheologi-
cal experiments, it is insufficient to reproduce phenomena where the
transient elastic behavior of the cortex becomes important, such as in
laser ablation [153], or situations in which the orientational order of
actin filaments becomes relevant [147]. Furthermore, a more detailed
mechano-chemical model of activity, the explicit treatment of the cytosol,
and models capable of spontaneously producing polarization would
provide a more complete understanding of the mechanics of the cortex.
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• Finally, our models could allow us to investigate the complex interplay
between the plasma membrane and the cortex/cytoskeleton.

In summary, our theoretical and computational framework provides a solid
footing for the three-dimensional non-linear modeling and simulation of
different processes involving lipid bilayers and the cell cortex.
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Appendix A

Implementation of local stress
calculations

A.1 IKN stress

Here, we implement the IKN stress (GLD, CFD and cCFD) following Eqs. (3.6)
and (3.7) . We discretize the simulation volume into a three-dimensional
rectangular grid of cell size

(
ax , ay , az

)
, and compute the stress tensor in each

node of the grid x(i , j,k) . To collect data at grid points we use trilinear weight
functions of the form

w
(
y,x(i , j,k)

)
�




∏
I

1
aI

*.
,
1 −

���(y − x(i , j,k))I
���

aI

+/
-

when ���(y − x(i , j,k))I
��� < aI ,

I � x , y , z

0 otherwise,
(A.1)

which are centered at each x(i , j,k) and whose support is given by the eight
grid cells adjacent to it (see Fig. A.1 for an illustration in 2D). Then, the stress
at a grid point is

σ(i , j,k) �

∫
Ω

σ(y)w
(
y,x(i , j,k)

)
dy (A.2)
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A. Implementation of local stress calculations

This corresponds to a spatial filter aimed at collecting data at grid points
but not mollifying the pointwise fields, in contrast with Eq. (B1). Common
implementations of the IKN stress in MD simulations use constant weights
within each cell [117, 201, 62], resulting in noisier and discontinuous stress
fields at the edges of the cells. Broader and smoother weight functions such as
higher order B-splines or long-range mollifying functions [110, 178] produce
smoother stress fields, but can excessively smear local features and increase
the computational cost. This issue is not minor, since the computational time
required to calculate the local stress can be comparable to the time to simulate
the system. We also note that the smaller the grid cells are, the longer the MD
simulations need to be to adequately sample each local cell. In our experience,
the trilinear weighting functions provide a good compromise of smoothness
and efficiency. The weighted bond function Bw

(
rαi , r

β
i ,x(i , j,k)

)
can be easily

calculated analytically by integrating w
(
x(i , j,k) ;y

)
along the interaction lines

crossing the grid cell:

Bw
(
rαi , r

β
i ;x(i , j,k)

)
�

∫
Ω

w
(
y,x(i , j,k)

)
B(rα , rβ;x)dy

�

∫ 1

0
w

[
(1 − s)rα + srβ − x;x(i , j,k)

]
ds ,

(A.3)

In addition to the spatial averaging, we must also decompose the forces
resulting from multibody interactions, such as angle and dihedral potentials.
For the GLD, Eq. (3.13) can be applied directly from the particle forces F α that
the MD package provides. For the CFD, we solve the overdetermined system
of equations Eq. (5.48) for each of the terms of the cluster expansion of the
potential. Numerically, the system of equations can be solved by generic linear
algebra algorithms, such as Gaussian elimination with partial pivoting, or by
noting the special form of the equations as implemented in our code [190]. For
underdetermined systems, such as those appearing for 5-body potentials for
the CFD, we employ the DGELSD solver of LAPACK [7] based on the SVD
decomposition that finds the solution with minimum norm. To compute the
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A.1. IKN stress

Figure A.1: Space discretization into a grid. The pointwise stress tensor is
spatially averaged and distributed into regularly spaced grid points with a
trilinear weighting function supported on the adjacent cells. The contour
plot illustrates the weighting function in 2D. The contribution to the stress
tensor at the grid point (i , j) for two interacting particles α and β is weighted
by the bond function, B

(
x(i , j) ; rα , rβ

)
, which is the integral of the weight

function, w
(
x(i , j) , y

)
, along the line segment connecting α and β. Because of

the support of w
(
x(i , j) , y

)
, only the solid part of the segment contributes to

B
(
x(i , j) ; rα , rβ

)
.

cCFD for 5-body interactions we apply Eq. (5.56) using the result from the
previous solver.

It is worth noting that the SETTLE algorithm aggregates three bond
constraints for a water molecule, and outputs the sum of the three constraint
forces on each particle, but not the individual Lagrange multipliers. It is easy
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A. Implementation of local stress calculations

to recover the three Lagrange multipliers [108], for instance performing a CFD
on the SETTLE forces as if it was a three-body potential. We adopt this method
to identify the Lagrange multipliers of SETTLE constraints both for CFD and
GLD, and then follow the standard treatment of constraints described in the
section 3.3.

Periodic boundary conditions are handled by considering always the
closest periodic image of two interacting particles.

A.2 Virial stress per atom

The virial stress per atom is computed from Eqs. (2.20) and (2.21) from the
velocities and forces obtained directly from the MD package and assigned to
each particle individually. To compute the volume of each particle, we use a
Voronoi tessellation at the average configuration of the ensemble, similar to
what it is proposed in [35].
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Appendix B

MD simulations: Simulated
systems and analysis

All simulations were conducted with the GROMACS 4.5.5 simulation package
[74, 136] at the Barcelona Supercomputing Center.

B.1 Graphene

The graphene sheet with the Stone-Wales defect was simulated with a Morse-
potential modified version of the OPLS-AA FF [36] for 500 ns of data collection
where the positions and velocities were stored every 5 ps. The system was
simulated in the NVT ensemble and temperature was held at 300 K with a
Nosé-Hoover thermostat. The infinitely periodic (in x and y directions) sheet
contains 1500 atoms and was simulated in a box of size [6.369 nm, 6.131 nm,
3.0 nm]. Lennard-Jones forces were calculated with a plain cut-off of 1.0 nm,
and all carbon atoms were uncharged.
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B. MD simulations: Simulated systems and analysis

B.2 Lipid bilayers

Coarse-grained simulations were performed with the unmodified MARTINI
[98, 99] force-field (FF) and a recently developed FF known as BMW-MARTINI
[196], based onMARTINI and reparametrized for usage with the big multipole
water (BMW)model [195]. All coarse-grained simulations are composed of 200
POPE lipids (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine) and
3000 coarse-grained water molecules (equivalent to 12000 atomistic waters).
Pressure was semi-isotropically coupled with a Parrinello-Rahman barostat
[128] at 1 atm, and the temperature was held constant at 37 ◦C with a
Nosé-Hoover thermostat [46]. MARTINI simulations were performed with a
switched Lennard-Jones potential (the switch function is applied at a radius of
0.9 nm and the potential is zero at a radius of 1.2 nm), and a shifted Coulombic
potential (cut-off radius of 1.2 nm) with a relative dielectric constant εr � 15
for explicit screening. The integration time step for this model is 40 fs. The
Lennard-Jones interactions for BMW-MARTINI systems were calculated in
the same way as MARTINI, except for water-water interactions, where the
switch function is applied at a radius of 1.2 nm and the potential is zero at
a radius of 1.4 nm. Electrostatic interactions for this model were calculated
using a reaction-field treatment [180] with a cut-off radius of 1.4 nm and a
dielectric constant εr f � 74. In BMW-MARTINI simulations, the time step
was 2 fs for flexible water and 20 fs for rigid water.

Atomistic bilayers were simulated with the Gromos 43A1-S3 [32] FF. For
simulations with the G43A1-S3 FF, Lennard-Jones forces where calculated
using a twin-range cut-off scheme with interactions within 1.0 nm calculated
at every time step and interactions between 1.0 and 1.6 nm only updated
every 5 time steps. Long-range electrostatic interactions were computed
using the particle-mesh Ewald (PME) method with a real-space cut-off of 1.0
nm and a Fourier grid spacing of 0.15 nm. Pressure was semi-isotropically
coupled with a Parrinello-Rahman barostat at 1 atm, and the temperature
was held constant at 37 ◦C for both POPE and POPC (1-palmitoyl-2-oleoyl-sn-
glycero-3-phosphocholine), and at 50 ◦C for DPPC (1,2-dipalmitoyl-sn-glycero-
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B.3. Coiled-coil

3-phosphocholine) with a Nosé-Hoover thermostat. All atomistic systems
are composed of 200 lipids and 12000 water molecules (SPC/E [22]). The
integration time step for the atomistic simulations was 2 fs.

All simulated systems were run for a 400 ns equilibration period, followed
by a 100 ns data collection period where the positions and velocities were
stored every 5 ps. The analysis for atomistic systems simulated with the PME
methodwas carried out only considering Coulomb forces up to a cut-off radius
of 2.2 nm. The accuracy of this common treatment is examined in [191].

B.3 Coiled-coil

A synthetic coiled-coil protein was constructed from two identical parallel
alpha-helices each with the amino-acid sequence (IEALKAE)14. The protein
was simulated as an infinitely long periodicmolecule with a pitch of -3.673◦ per
residue, so that the beginning and end residues of each chain would interact
seamlessly across the periodic boundary. The positions of the backbone atoms
were generated using the CCCP server [60, 61] and the sidechain positionswere
subsequently added with the molecular visualization package UCSF Chimera
[132]. The amino-acid sequence was selected as it has been experimentally
shown to be very stable even for short chains [176]. The protein was simulated
with the CHARMM22/CMAP force field [95, 96]. Lennard-Jones forces where
calculated using a cut-off scheme with a switching function between 1.0 nm
and 1.2 nm. Long-range electrostatic interactions were computed using the
particle-mesh Ewald (PME) method with a real-space cut-off of 1.2 nm and a
Fourier grid spacing of 0.12 nm. Temperature was held constant at 298 K with
a Nosé-Hoover thermostat. The system was composed of 196 protein residues
(3,080 atoms) with 8,703 TIP3P [79] water molecules (26,109 atoms) and 28
Na+ ions to neutralize the protein charge. Two alpha carbons of each protein
chain were harmonically restrained with a force constant of 500 kJ/mol·nm2

in order to prevent rotation of the molecule. The system was simulated under
constant volume conditions, with the box size ([14.423 nm, 4.488 nm, 4.488
nm]) adjusted to produce global pressures close to 1 atm. The hydrated
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B. MD simulations: Simulated systems and analysis

protein system was first pre-equilibrated with harmonic position restraints
on the protein backbone atoms for 250 ps. After the short pre-equilibration,
the system was simulated for 300 ns where the first 100 ns were used for
equilibration and the remaining 200 ns for data collection (storing position
and velocities every 5 ps). The stress fields (cCFD, nCFD, and GLD) for the
coiled-coil protein were calculated over the simulation period from 100 to
300 ns using a coulomb cut-off radius of 2.2 nm and a grid spacing of 0.1 nm.
The computed stress fields were processed with a Gaussian filter (standard
deviation of 0.8 nm) to remove high frequency fluctuations. The surface of
the protein used to compute the traction was obtained as an iso-contour of
the mass-density of the protein (also processed with a Gaussian filter with a
standard deviation of 0.4 nm). Visualization of the traction was performed
with the program ParaView.
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Appendix C

Stress and traction for different
mixtures of DPPC enantiomers

Figure C.1: Effect of chirality in the IKN-CFD stress and IKN-GLD stress. (A)
IKN-CFD and IKN-GLD stresses for a bilayer composed of a monolayer of
L-DPPC lipids and a monolayer of D-DPPC lipids (see inset on the left). While
the IKN-CFD stress is diagonal, the IKN-GLD off-diagonal stress profiles are
opposite to those in the membrane composed of two monolayers of L-DPPC
lipids for the lower monolayer (see Fig. S3). (B) IKN-CFD and IKN-GLD
stresses for a bilayer composed of a twomonolayer with homogeneousmixture
of L-DPPC lipids and D-DPPC lipids. The IKN-CFD stress remains diagonal
regardless of the chirality of the lipids. In B, the IKN-GLD stress is also
diagonal. From all these calculations we conclude that the torque densities
generated in the IKN-GLD stresses stem from the internal chirality of the
lipids.
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Appendix D

Differential geometry of
surfaces

D.1 Parametrization of the surface

In R3 we consider the cartesian coordinates x1 , x2 , x3 and the orthonormal
basis {i1 , i2 , i3}. We say that a subset Γ ⊂ R3 is a (regular) surface if for each
x � (x1 , x2 , x3) ∈ Γ, there exists a neighborhood V ∈ R3 of x and a map, called
a chart or parametrization, φ � (φ1 , φ2 , φ3) : Γ̄ → V ∩ Γ with Γ̄ ⊂ R2 such
that (i) φ is a differentiable homeomorphism, i.e. a differentiable function with
continuous inverse, and (ii) the differential of φ, Dφ : R2

→ R3, has rank two
everywhere. We consider in Γ̄ a cartesian coordinate system characterized by
coordinates ξ̄1 and ξ̄2 and the orthonormal basis

{
ī1 , ī2

}
. In these coordinates,

Dφ is represented by the matrix

Dφ �

*...
,

∂1φ1 ∂2φ1

∂1φ2 ∂2φ2

∂1φ3 ∂2φ3

+///
-

(D.1)

where ∂a ≡
∂
∂ξ̄a

. In components we write Dφαa � ∂aφα, where we use latin
letters for indices running from 1 to 2 and greek letters for indices running
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D. Differential geometry of surfaces

from 1 to 3. The parametrization φ is local, in the sense that it may not cover
the entire surface, V ∩ Γ , Γ, so that various parametrizations are required to
describe Γ. A set of parametrizations describing a surface that are compatible
with each other is called an atlas of charts of the surface.

D.2 Tensor fields on a surface

A curve γ̄ : R 3 u 7→ ξ̄ ∈ Γ̄ in parametric space, with velocity dγ̄
du

���u�0
� vaia ,

maps onto a curve γ on Γ by composition with φ, γ ≡ φ ◦ γ̄. The velocity of
this curve

v(u) �
dγ
du

�����u�0
� [Dφ ◦ γ̄] dγ̄

du

�����u�0
� [∂aφ ◦ γ̄] va , (D.2)

is a tangent vector to Γ at the point x � γ (0). The set of tangent vectors passing
through a point x ∈ Γ forms the tangent space to Γ at x, denoted by TxΓ. A
basis in TxΓ is given by the pair of vectors

ea (x) � ∂aφ ◦ φ
−1(x), (D.3)

which are tangent to the curves ξa � ξ̄a ◦ φ
−1 and form a basis due to the

regularity condition (ii), the so-called convected basis by φ. The velocity of
γ (t) in this basis is v � vaea ; thus, the components of dγ

dt in ea are equal to
those of dγ̄

dt in ia . We now define the action of a vector v ∈ TxΓ on a scalar
function f ∈ Γ, which computes the rate of change of f along any curve γ (t)
with tangent vector v at x,

v[ f ] ≡
d f (γ (t))

dt

�����t�0
�

d f̄ (γ̄ (t))
dt

�����t�0
� ∂a f̄ va

� ∂a f va , (D.4)

where f̄ � f ◦ φ, and we have defined ∂a f ≡ ∂a f̄ for notational simplicity.
The definition is independent of the choice of γ (t). We define the dual space
to TxΓ as the space of linear functionals, acting on tangent vectors, which we
denote by T∗xΓ. Linear functionals are also called 1-forms or covectors. Given
a scalar field f : Γ→ R, we define an associated 1-form at x, the differential of
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D.3. Push-forward and pull-back

f , d f , through its action on the vectors v ∈ TxΓ as

d f (v) ≡ v[ f ]. (D.5)

A basis for T∗xΓ is then given by the pair of forms

ea
� dξa , (D.6)

a � 1, 2, which satisfy the relation

ea (eb) � δa
b . (D.7)

Given a 1-form α we write α � αae
a , with αa are the components of α in

the basis
{
e1 , e2

}
. In particular, d f � ∂a f ea . In general a m-contravariant n-

covariant tensor, or (m , n)-tensor in short, is given byT � Ta1 ...am
b1 ...bn

ea1⊗· · ·⊗

eam⊗e
b1⊗· · ·⊗ebn and belongs to the product spaceT (m ,n)

x Γ � (TxΓ)m
⊗ (TxΓ)n .

Upper indices indicate contravariant components whereas lower indices
indicate covariant components. We define the m-tangent n-cotangent bundle
as the union of all m-tangent n-cotangent spaces on the surface, T (m ,n)Γ �

∪x∈ΓT
(m ,n)
x Γ. A (m , n)-tensor field is a mapping T : x ∈ Γ → (x,T ) ∈

(TΓ)m
⊗ (TΓ)n that assigns a (m , n)-tensor to every point x ∈ Γ. In the next

section we introduce two important 2-covariant tensor fields on Γ, the first and
second fundamental forms.

D.3 Push-forward and pull-back

Although the push-forward and the pull-back operations are defined for
maps between general manifolds, here we focus on the push-forward and
the pull-back defined by the parametrization φ, which is a map between Γ̄
and Γ. The push-forward is a linear operation that takes a tensor t̄ in Γ̄ and
transforms it onto a tensor t � φ∗t̄ on Γ. For a scalar, it is simply defined as
the composition

f � φ∗ f̄ � f̄ ◦ φ−1. (D.8)
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D. Differential geometry of surfaces

For a vector v̄, φ∗v̄ is defined so that v̄[ f̄ ] coincides with (φ∗v̄)
[
φ∗ f̄

]
for all f̄ ,

which leads to
v � φ∗v̄ � (Dφ v̄) ◦ φ−1 , (D.9)

Similarly, for a 1-form ᾱ,φ∗ᾱ is defined so that ᾱ[v̄] coincides with (φ∗ᾱ)[φ∗v̄]
for all v̄, which leads to

α � φ∗ᾱ �

(
Dφ−1 v̄

)
◦ φ−1. (D.10)

For a general (m , n)-tensor, we apply Eq. (D.9) to all contravariant components
and Eq. (D.10) to all covariant components. On the other hand, the pull-back
is a linear operation that takes a tensor t in Γ and transforms it onto a tensor
t̄ � φ∗t on Γ̄. Following the same line of thought as for the push-forward, we
find

f̄ � φ∗ f � f ◦ φ, (D.11)

v̄ � φ∗v �

(
Dφ−1 v̄

)
◦ φ, (D.12)

ᾱ � φ∗α � (Dφ v̄) ◦ φ, (D.13)

and for a general (m , n)-tensor, we apply Eq. (D.12) to all contravariant
components and Eq. (D.13) to all covariant components. It is clear that the
pull-back is the inverse of the push-forward (and vice versa),

φ∗φ∗t̄ � t̄, φ∗φ
∗t � t. (D.14)

Finally, the components of a tensor on Γ̄ and those of its push-forward on Γ
in the convected basis by φ are the same. Equivalently, the components of a
tensor on the convected basis on Γ are the same that its pull-back.

D.4 First and second fundamental forms, and the
antisymmetric tensor

The inner product in R3, given by 〈v,w〉 � vαδαβvβ with δαβ the Kronecker
delta, induces a natural inner product on the tangent space of Γ. More precisely,
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D.4. First and second fundamental forms, and the antisymmetric tensor

we define the metric tensor or first fundamental form on Γ as the 2-covariant
tensor that satisfies

g(v,w) � 〈v,w〉 (D.15)

for all v,w ∈ TxΓ. In components, we find

gab �

(
(Dφ)αa ◦ φ

−1
)
δαβ

(
(Dφ)βb ◦ φ

−1
)
� 〈ea , eb〉. (D.16)

The inverse of the metric tensor, g−1 has components gab , i.e. gac gcb � δa
b .

From the definition of the metric components,

ea (eb) � δa
b � gac gcb � gac (ec · eb), (D.17)

we can define the relations between the basis of the tangent and cotangent
spaces

ea
� gacec , ea � gace

c . (D.18)

Thus, the application of the metric tensor to a vector leads to a form, in what
is called lowering the index. Equivalently, the application of the inverse of
the metric tensor to a form leads to a vector, in what is called raising the
index. For instance, lowering the index of a vector v � vaea leads to the
1-form vae

a � gab vbea and raising the index of a 1-form α � αae
a leads to the

vector αaea � gabαbea . We write T ] or T [ to identify the tensor obtained by
raising or lowering all indices of a tensor. Upper and lower indices can be
contracted by letting covariant components act on contravariant components.
For instance, we define the trace of a (1, 1)-tensor T as

trT � Ta
a . (D.19)

We define the scalar product of vectors as

v ·w � v[ (w) � w[ (v) � va wa
� gab va wb , (D.20)

and the norm
| |v | | �

√
v · v �

√
gab va vb . (D.21)
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It is clear from the definition of v ·w and | |v | | that the metric tensor contains
the information required to compute lengths and angles on Γ. We also define
the scalar product of covariant 2-tensors as

p : q � p] (q) � q[ (p) � pab qab � gac pcd gdb qab , (D.22)

and the norm
| |p| | �

√
p : p �

√
gac pcd gdb pab . (D.23)

The determinant of the metric is g � εab ga1 gb2, where the εab are the Levi-
Civita symbols, and dΓ �

√
gdξ1dξ2 is the volume form of the surface. It

is important to note that the Levi-Civita symbols do not form a tensor and
should not be confused with the Levi-Civita (or antisymmetric) tensor field

εab
� εab/

√
g. (D.24)

For surfaces embedded in Euclidean space, the surface normal can be
obtained from the basis vectors

n �
e1 × e2
| |e1 × e2 | |

. (D.25)

The surface curvature or second fundamental form is a (0, 2)-tensor field given
by

kab � −〈∂a (n ◦ φ−1) ◦ φ, eb〉 � 〈n, ∂a∂bφ ◦ φ
−1
〉. (D.26)

These components measure how the normal changes along the curve ξa in the
direction of eb , which is zero if the surface is planar but differs from zero for
curved surfaces. The mean and Gaussian curvatures are the scalar fields

H � trk, K � detk, (D.27)

where detk � εa
bκ

1
a κ

b
2.

D.5 Covariant differentiation

We are interested in computing derivatives of tensor fields along the curves
of Γ. For scalars, this notion was already introduced by d f , which we will
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D.5. Covariant differentiation

also call the covarariant derivative of f and denote it by ∇ f . This is a 1-
form that, when applied to vectors v, it gives the directional derivative of
f along v. For a general tensor, these derivatives will contain an intrinsic
part tangent to Γ and a normal part. The intrinsic part introduces the notion
of covariant differentiation, which generalizes to manifolds the gradient of
a tensor and introduces important results such as the divergence theorem.
Here we introduce covariant derivatives as the projections onto Γ of partial
derivatives on the surface; for a systematic way of introducing covariant
derivatives without the notion of embedding space see [100, 41]. Let us first
consider how the basis vectors eb change along the curves ξa

∂aeb � ∂a∂bφ ◦ φ
−1. (D.28)

Since the right-hand side of the previous equation is a vector in Euclidean
space, it can be expressed in terms of the basis of R3 formed by the two tangent
vectors e1 and e2, and the normal to the surface n

∂aeb � Γc
abec + kabn. (D.29)

where the curvature tensor appears naturally from Eq. (D.26). The symbols
Γc

ab are called the Christoffel symbols. We note that from commutation of
partial derivatives, we have Γc

ab � Γc
ba . Furthermore, by computing partial

derivatives of the components of the metric tensor, we obtain

∂a gbd �

〈
∂a∂bφ ◦ φ

−1 , ed

〉
+

〈
eb , ∂a∂dφ ◦ φ

−1
〉
� Γc

ab gcd + Γ
c
ad gcb ,

∂b gad � Γc
ab gcd + Γ

c
bd gca ,

∂d gba � Γc
db gca + Γ

c
ad gcb ,

(D.30)

This system can be solved by summing the first two equations and substracting
the last, to get

Γc
ab �

1
2 gcd [

gbd ,a + gad ,b − gba ,d
]
. (D.31)

For a general vector v, applying the linearity of the partial derivative we find

∂av � ∂a vbeb + vb∂aeb � ∂a vbeb + Γ
c
ab vbec + κabn, (D.32)
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The operator defined by
∂v ≡ ∂av ⊗ e

a , (D.33)

can be applied to tangent vectors u to give the change of v along the direction
of u

∂uv � ∂v(u) � ∂a vb uaeb + Γ
c
ab vb uaec + κab vb uan, (D.34)

The projection of ∂uv onto TΓ is a vector called the covariant derivative of v in
the direction of u,

∇uv � ∇avua
� ∂a vb uaeb + Γ

c
abec vb ua . (D.35)

and generalizes the concept of directional derivative to surfaces. In particular,
for the basis vectors we have

∇bea � Γc
abec . (D.36)

The (1, 1)-tensor,

∇v � ∇av ⊗ e
a
�

(
∂a vbeb + Γ

c
abec vb

)
⊗ ea , (D.37)

is called the covariant derivative of the vector v, in components,

∇b va
� ∂a vb

+ Γc
ab vb . (D.38)

The action of the operator ∇ can be extended to general tensors by noting that

∂a
(〈
eb , ec

〉)
� 0⇒

〈
∂ae

b , ec
〉
� −

〈
eb , ∂aec

〉
� −

〈
eb ,−Γd

aced + κacn
〉
� −Γa

bc

⇒ ∇be
a
� −Γa

bce
c

(D.39)

Thus, we define the covariant derivative of a (m , n)-tensor as

∇cTa1 ...am
b1 ...bn

� ∂cTa1 ...am
b1 ...bn

+

+ Γ
a1

cdTd...am
b1 ...bn

+ (all upper indices)

− Γd
cb1

Ta1 ...am
d...bn

− (all lower indices),

(D.40)
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which is a (m , n + 1)-tensor. As particular instances of the action of the
covariant derivative we define the divergence operator

divT � tr (∇T ) , (D.41)

and the gradient operator

grad f �
(
∇ f

) ]
�

(
d f

) ] . (D.42)

D.6 Flows and Lie derivatives

We introduce here the concept of Lie derivative, which measures the rate of
change of a tensor field T (x) along the flow generated by a vector field u(x).
For simplicity, we start with the concept of Lie derivative of a vector field v(x)
along another vector field u(x). Let us employ a physical picture; we consider
Γ as a continuous material and u as the generator of a deformation, or flow,
on Γ. We interpret v as a measure system on Γ; when applied to a function
f , v[ f ] measures the derivative of f in the direction of v. For simplicity,
we consider that u and v are independent of time. The time evolution of
material particles follow integral curves of u(x), which are defined as the
curves χt (x) : R→ Γ that satisfy dχt (x)

dt � u ◦ γ for all t and χ0(x) � x. The
collection of integral curves defines the deformation mapping χt (x). Let us
now consider a scalar field f (x, t), such as the density of material or the local
temperature, that is advected with the flow. The evolution of f is then given
by f (x, t) � f (χ−1

t (x), 0) � χt∗ f0(x), where f0(x) � f (x, 0). We consider the
time-evolution of the action v[ f ] along an integral curve χt (x), v(χt (x))[ f (
bmxit (x), t)], which is a function of t only. The rate of change of this measure
at t � 0 is

d
dt
v(χt (x))

[
f (χt (x), t)

] �����t�0
�

d
dt
v(χt (x))

[
χt∗ f0(χt (x))

] �����t�0

�
d
dt
χ∗tv(x)

�����t�0

[
f0(x)

]
.

(D.43)
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Thus, the rate of change of v when applied to scalar fields that follow the
deformation is given by the quantity

Lu(v) ≡
d
dt
χ∗tv

�����t�0
. (D.44)

This is the Lie derivative of the vector field v along the vector field u. This
definition can be generalized to any tensor

Lu(T ) ≡
d
dt
χ∗tT

�����t�0
. (D.45)

Inwords, the Lie derivativemeasures the rate of change of a tensor fieldT when
applied to tensor fields that are advected with the deformation generated
by u. Among the properties of the Lie derivative are (i) Lu(T1 ⊗ T2) �

Lu(T1) ⊗T2 +T1 ⊗ Lu(T2), (ii) Lu+w (T ) � Lu(T )+ Lw (T ), and (iii) Lu(u) � 0.
An important Lie derivative for continuum mechanics is the Lie derivative

of the metric tensor. Let us consider two material curves, parametrized with
their respective arc-lengths, α(s) : R → Γ and β(s) : R → Γ, that pass by x
at s � 0. We examine the advection of these curves, αt (s) � χt ◦ α(s) and
βt (s) � χt ◦ α(s); let us note that s is not the arc-length of the curves αt (s) and
βt (s) for t > 0 since they may be deformed along the flow. The angle between
both curves along the integral curve of the flow χt (x) is given by the scalar
product

dαt (s)
ds

·
dβt (s)

ds

�����s�0
� g(χt (x))

(
dαt (s)

ds
,

dβt (s)
ds

) �����s�0
, (D.46)

and the rate of change of the angle at t � 0 is given by

d
dt

dαt (s)
ds

·
dβt (s)

ds

�����s�0,t�0
�

d
dt
g(χt (x))

(
dαt (s)

ds
,

dβt (s)
ds

) �����s�0,t�0

�
d
dt
χ∗t (x)g

�����t�0

(
dα(s)

ds
,

dβ(s)
ds

) �����s�0

� Lug
(

dα(s)
ds

,
dβ(s)

ds

) �����s�0
.

(D.47)
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Equivalently, the time derivative along the flow of the arc-length of either of
the curves is given by

d
dt

dαt (s)
ds

·
dαt (s)

ds

�����s�0,t�0
� Lug

(
dα(s)

ds
,

dα(s)
ds

) �����s�0
. (D.48)

Thus, Lug measures the rate at which the material is deforming. The rate-of-
deformation tensor for the flow χt is then defined as

d �
1
2 Lug. (D.49)

Let us note that the action of the Lie derivative on a general tensor T can be
expressed in terms of covariant derivatives

[Lu(T )]a1 ...am
b1 ...bn

� Ta1 ...am
b1 ...bn |c

uc

− Tc...am
b1 ...bn

ua1
|c − (all upper indices)

− Ta1 ...am
c...bn

uc
|b1
− (all lower indices).

(D.50)

In particular, this leads to the expression

d �
1
2

(
ua |b + ub |a

)
. (D.51)

We finally note that, for scalars,

d f (u) � ∇u f � Lu f . (D.52)

D.7 Divergence theorem

Let us finally introduce without proof the divergence theorem for surfaces.
Given a domain Γ ⊂ Γ, with contour ∂Γ, and a vector field v on Γ,∫

Γ

divv dΓ �
∫
∂Γ
v · νdl , (D.53)

where ν is the unit outer normal vector to the contour ∂Γ tangent to Γ, and dl
is the length element of the curve. If ∂Γ is parametrized by t, ∂Γ(t) : R→ Γ,
dl � ���

���
d∂Γ(t)

dt
���
��� dt.
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Appendix E

Loop subdivision surfaces:
Smooth surfaces with exact
boundary control

E.1 Definition

Subdivision surfaces extend spline-based smooth surfaces defined on shift-
invariantmeshes to irregularmeshes. This paradigmhinges on thewell-known
refinement properties of B-splines –any B-spline can be expressed as the linear
combination of B-splines on a refined mesh– and generalizes them to irregular
meshes. Here we focus on Loop subdivision surfaces, which extend quartic
box-splines in regular triangular meshes, with six incident edges to each node,
to arbitrary connectivity triangular meshes [94].

In Loop subdivision surfaces, the starting point is a general triangulation,
where fields are defined at the nodes through their control values. Following
the isogeometric paradigm, these fields include the positions of the nodes of
the triangulation. The triangulation can be subdivided iteratively following
a 2-step procedure. First, the mesh is refined by adding new points at edge
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midpoints. Each triangle in the existing triangulation is then replaced by
four new triangles, obtained by connecting new and preexisting nodes. In
the second stage, fields defined in the original mesh are mapped onto the
new mesh by means of a subdivision mask. The subdivision mask is a linear
application represented by S(n)

i (n) j (n−1) , with i (n) being the label of a node at the
nth subdivision level, and j (n−1) being the label of a node in the (n − 1)th
subdivision level. If the mask is well chosen, fields, including the surface
geometry, obtained at the limit of an infinite number of subdivision steps are
C2 almost everywhere except at a finite number of points, whose positions
correspond to those mapped from the irregular nodes in the control mesh,
where they are C1 [94]. The subdivision mask maps old nodes onto new
nodes locally. In Loop subdivision if i (n) is a vertex in one of the triangles E(n)

obtained by subdividing the triangle G(n−1), then S(n)
i (n) j (n−1) is only different

from zero if j (n−1) is within the first ring of G(n−1) , including the nodes in
G(n−1) and all first neighbors to them.

Here we focus on a recent extension of Loop’s original subdivision rules
that provides an exact description of non-manifold features, such as creases,
borders or corners [26]. This facilitates representing complex geometries
and topologies as required for many realistic engineering applications [33].
Nodes are tagged as interior, crease or corner depending on their position at
the control mesh and new nodes, with their corresponding tags, are created
following the subdivision procedure. The subdivision matrix depends both on
the valence (number of incident edges) of each node and their tags as shown
in Fig. E.1.

Let us consider a parametrization of the control mesh ψ : R2
→ Γ(0) so

that given a point x in the control mesh x � ψ(s) for some s ∈ R2. Due to the
linearity of the subdivision process, any fieldu(s) defined at the limit surface Γ
can be characterized through its values at the control mesh, {ua }a�1,...,N , where
N is the number of nodes in the control mesh, and the set basis functions
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Figure E.1: Subdivision rules for interior and tagged patches. Each arrow
indicates a term in the subdivisionmatrix. (A) Subdivisionmask for an interior
node in terms of its neighbors. The parameter w depends on the valence of the
node. (B) Subdivision mask for a crease node. In this case only the nodes that
are at the border are taken into account. (C) Subdivision mask for a corner, in
this case the corner is interpolated. (D) Creation of a node at an interior edge.
The parameter γ depends on the valence of the marked vertex as well as its
nature (interior, crease or corner). (E) New node at the edge of the border.

{Ba (s)}a�1,...,N ,

u(s) �
N∑

a�1
Ba (s)ua . (E.1)

The basis functions, Ba (s), are obtained as the limit when n →∞ of

B(n)
a (sb) �

N∑
cn−1�1

S(n)
bcn−1

(n−3). . .
N∑

c1�1
S(2)

c2c1 S(1)
c1a , (E.2)

and
B(s) � lim

n→∞
B(n)

a (s), (E.3)

where sb is the parametric position of node b at the nth subdivision level.
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E.2 An efficient implementation

To practically compute the basis functions Ba (s) we work element-wise. For
each element, we define its subdivision patch, which is formed by its first ring
of nearest nodes. These nodes are the only ones whose basis functions are
different from zero at the given element. We then distinguish two cases. If
the 3 nodes forming the element are regular, with 6 incident edges each, and
the patch does not contain crease or corner tags, then the 12 basis functions at
this element coincide with quartic box-splines and can therefore be directly
computed without explicit subdivision [94, 170]. On the other hand, if the
element contains one or several irregular nodes or has corner/crease tags,
explicit subdivision is required.

Remarkably, no new irregular points are created at the subdivision proce-
dure. Therefore, the number of irregular nodes remains constant and their
density, and thus their area of influence, tends to zero as n →∞. We can then
evaluate the basis functions at any interior point s different from the position
of an irregular node at the control mesh with an algorithm consisting on two
steps:

1. Given a point s on the control mesh, locally subdivide the mesh until
reaching an interior regular patch in the absence of crease/corner tags,
say in n steps, and compute thematrixproduct

∑N
cn−1�1 S(n)

bcn−1
(n−3). . .

∑N
c1�1 S(2)

c2c1 S(1)
c1a .

2. Evaluate quartic box-splines for this regular patch B̃b (s). Then we can
recover the basis function for the control node as

Ba (s) �
∑

b

B̃b (s)
N∑

cn−1�1
S(n)

bcn−1
(n−3). . .

N∑
c1�1

S(2)
c2c1 S(1)

c1a (E.4)

Equivalently, we compute the first and second derivatives of the basis
function from

Ba (s) �
∑

b

B̃b ,si (s)
N∑

cn−1�1
S(n)

bcn−1
(n−3). . .

N∑
c1�1

S(2)
c2c1 S(1)

c1a (E.5)
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Figure E.2: Basis functions for irregular regular nodes. (A) Regular node at
distance 1 to the border. In the interior elements, the basis function corresponds
to a box-spline. In the element at the border, the basis functions are evaluated
through explicit subdivision until reaching a regular patchwithout tags, where
box-splines can be calculated and the basis function recovered. At the very
border, the basis function is evaluated through the use of limit masks (see the
main text). (B) Basis function for an irregular crease node. The basis function
is C2 everywhere except at the node, where it is C1. (C) basis function for a
convex corner. Here the function is C2 everywhere except at the corner, where
it is C1. (D) Basis function for a concave corner. Here the basis function is C2
everywhere except at the corner, where it is C0.

Ba (s) �
∑

b

B̃b ,s1s2 (s)
N∑

cn−1�1
S(n)

bcn−1
(n−3). . .

N∑
c1�1

S(2)
c2c1 S(1)

c1a (E.6)

This algorithm cannot be applied to evaluate the basis functions at the borders
or irregular nodes, since at these points it is impossible to reach a regular
patch without crease/corner tags. Fortunately, in this case the problem can be
posed in terms of limit masks, which can be obtained from an analysis of the
eigenstructure of subdivision matrices as shown in [170, 26].
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