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Abstract: Approaches to deriving forest information from laser scanner data have 

generally made use of two methods: the area-based and individual tree-based approaches. 

In this paper, these two methods were evaluated and compared for their abilities to predict 

forest attributes at the plot level using the same datasets. Airborne laser scanner data were 

collected over the Evo forest area, southern Finland, with an averaging point density of 

2.6 points/m2. Mean height, mean diameter and volume were predicted from laser-derived 

features for plots (area-based method) or tree height, diameter at breast height and volume 

for individual trees (individual tree-based method) using random forests technique. To 

evaluate and compare the two forest inventory methods, the root-mean-squared error 

(RMSE) and correlation coefficient (R) between the predicted and observed plot-level 

values were computed. The results indicated that both area-based method (with an RMSE 

of 6.42% for mean height, 10.32% for mean diameter and 20.90% for volume) and 

individual tree-based method (with an RMSE of 5.69% for mean height, 10.77% for mean 

diameter and 18.55% for volume) produced promising and compatible results. Increase in 

point density is expected to increase the accuracy of the individual tree-based technique 

more than that of the area-based technique.  

Keywords: airborne laser scanning; random forests; area-based method; individual  

tree-based method 
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1. Introduction 

Airborne laser scanning (ALS) is an active remote-sensing technique that provides  

three-dimensional (3D) high-precision measurements of targets in the form of a point cloud (x,y,z, 

intensity of the backscattered power), based on laser-ranging measurements supported by the position 

and orientation information derived with use of a differential Global Positioning System (dGPS) 

device and an inertial measurement unit (IMU) [1,2]. Rapid technical advances in laser scanning 

currently make ALS one of the most promising technologies for the retrieval of detailed information 

on forests at different levels, i.e., from the individual tree to the plot/stand and nationwide. ALS data 

has proven superior to the other main optical data used in forest measurements [3]. 

Approaches to deriving forest information from laser scanner data can be mainly divided into two 

groups: area-based (or distribution-based) and individual tree-based approaches [4]. In area-based 

methods, quantiles (percentiles) and other nonphysical distribution-related features of reflected laser 

canopy height are used to predict forest characteristics, such as mean tree height, mean diameter, basal 

area, volume and biomass, at the plot or stand level or for other areas of interest, typically using 

regression, discriminant analysis or nonparametric estimation techniques. Establishment of the 

estimation methods is strongly based on accurate field data. Previous studies have indicated that mean 

height [e.g., 5-7], basal area [e.g., 7-9], mean volume [e.g., 9-14] and biomass [15] can be accurately 

predicted with area-based methods. For example, Means et al. [9] used height percentiles and canopy 

cover percentiles in the estimation of stand height, stand volume and basal area in forests dominated 

by Douglas-fir, with tree heights ranging from 7 to 52 m. Regression models produced a coefficient of 

determination (R2) of 0.93, 0.97 and 0.95 for mean height, stand volume and basal area, respectively. 

Næsset and Økland [16] used canopy height percentiles, maximum and mean values and coefficients 

of variation to predict mean tree height with a standard error of 7.6% (1.5 m). Wallerman and 

Holmgren [17] used the most similar neighbors (MSN) technique to estimate mean stem density and 

volume for stands dominated by Norway spruce, Scots pine and birch in Sweden with ALS data and 

optical satellite image data. They reported relative root-mean-squared errors (RMSEs) of 22% for 

mean stem density and 20% for mean volume. Lim and Treitz [15] estimated total biomass in unevenly 

aged, mature to overmature, tolerant hardwood forest, based on different canopy-based quantile 

estimators, and reported R2 between 0.83 and 0.90 and RMSE between 48 and 67 Mg/ha.  

If the number of laser pulses is increased to about 5–10 measurements per m2, it is also possible to 

recognize individual trees [18-22]. Kaartinen and Hyyppä [23] found that two points per m2 were 

adequate for older tree modeling with good accuracy. The basic principle of the individual tree-based 

method is to measure tree height, crown dimensions and tree species information from each individual 

tree and to derive other individual tree attributes, mainly based on these three physical parameters, 

such as volume, biomass, diameter-at-breast height (DBH) and age, using existing models and statistical 

techniques. The attributes are then aggregated at the required level (groups of trees, plots, stands). Since 

tree height and crown diameter may be underestimated by laser measurements [e.g., 21-24], it is good 

practice to calibrate the laser-derived metrics with field measurements [6,25]. Bortolot and 

Wynne [26] used a stepwise multiple linear regression to find an equation form for predicting biomass 

using laser-derived tree counts and heights at the individual tree level. When the model developed was 

applied to new data, correlation between the actual and predicted aboveground biomass ranged 
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between 0.59 and 0.82, and RMSEs between 13.6 and 140.4 t/ha. Hyyppä and Inkinen [22] 

demonstrated that high-density laser measurements were useful for detecting individual trees and for 

deriving characteristics such as tree height, location and crown diameter. The tree height of the 

dominant storey was obtained with a standard error of less than 1 m. Mean tree height and volume 

were evaluated at the stand level with standard errors of 13.6% and 9.5% of the respective mean 

values. In [21], the local maximum technique was used to locate trees from a laser dataset acquired 

over deciduous, coniferous and mixed stands of varying age classes and settings typical of the 

southeastern United States. The results for estimating crown diameter were similar for both pines and 

deciduous trees, with R2 values of 0.62–0.63 for the dominant trees (RMSE 1.36–1.41 m). The crown 

diameter measured improved the R2 values for volume and biomass estimation by up to 0.25 for both 

pine and deciduous plots, while the RMSE improved by up to 8 m3/ha for volume and 7 Mg/ha for 

biomass. For the pine plots, the average crown diameter alone explained 78% of the variance 

associated with biomass (RMSE 31.28 Mg/ha) and 83% of the variance for volume (RMSE 

47.90 m3/ha). Morsdorf et al. [27] demonstrated an individual tree detection method, using cluster 

analysis over a site forming part of the Swiss National Park. Tree position, height and crown diameter 

were derived from the segmented clusters and compared with field measurements. A robust linear 

regression of 917 tree height measurements yielded an adjusted R2 of 0.92. Lee and Lucas [28] used a 

height-scaled crown openness index, which provided a quantitative measure of the relative penetration 

of laser pulses into the canopy, for individual tree detection and predicting the tree height over  

mixed-species woodlands and open forest near Injune, Australia; an RMSE of 2.25 m was achieved for 

tree height. Maltamo et al. [29] used k-MSN techniques to predict both basic tree attributes and 

characteristics describing tree quality and achieved RMSEs of better than 10% in most cases. 

Both area- and individual tree-based methods have advantages and disadvantages. Individual  

tree-based methods require higher pulse density laser data for individual tree detection. As a result, the 

cost for data acquisition is also higher. As a reward, more detailed information can be provided by 

individual tree-based methods and can be aggregated to a higher level later on as requested. To establish 

the relationship between laser-derived features and forest parameters in the area-based methods, 

considerable amounts of field measurements are needed as compared with field measurements for 

calibration in the individual tree-based method. Which method to use is dependent on the need for scale 

and accuracy of the forestry information and available point density of the laser data. 

Although many studies used these methods for predicting forest characteristics, few were carried 

out to compare their abilities to predict forest attributes under the same conditions and using the same 

data and modeling technique. Here, we evaluate and compare these two methods for their accuracy and 

ability to predict forest attributes, i.e., mean height, mean diameter and mean volume at the plot level, 

from laser-derived features. A novel method (random forests) was used to develop the relationship 

between laser features and forest characteristics. Evaluation was performed by comparing the observed 

and predicted data over 69 sample plots. 
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2. Materials 

2.1. Study Area  

The 5 × 5-km study area is situated in Evo, southern Finland which belongs to the southern Boreal 

Forest Zone. It consists mainly of approximately 2,000 ha of managed boreal forest having an average 

stand size slightly less than 1 ha [30]. The topography of the area varies from 125 m to 185 m above 

sea level. Scots pine (Pinus sylvestris) and Norway spruce (Picea abies) are the dominant tree species 

in the study area, contributing 40% and 35% of the total volume, respectively [30]. The percentage of 

deciduous trees is 24% of the total volume.  

2.2. Field Measurements 

Field measurements were undertaken in summer 2007 and 2008 on 69 circular plots with 10-m 

fixed radii. Sampling of the field plots was based on prestratification of existing stand inventory data. 

All trees having a DBH of over 5 cm were tallied and tree height, DBH, lower limit of living crown, 

crown width and species were recorded. The tree volumes were calculated with standard Finnish 

models [31]. The plot-level data were obtained by averaging or summing the tree data. The descriptive 

statistics of the plots are summarized in Table 1. 

Tree locations were calculated using the geographic coordinates of the plot centers and the direction 

and distance of trees relative to the plot center. The plot centers were measured with a Trimble 

GEOXM 2005 Global Positioning System (GPS) device (Trimble Navigation Ltd., Sunnyvale, CA, 

USA), and the locations were postprocessed with local base station data, resulting in an average error 

of approximately 0.6 m [30]. Tree heights were measured using Vertex clinometers. DBH was 

measured with steel calipers. 

Table 1. Statistical summary of plot attributes. 

Variable Min Max Mean Standard deviation 
Mean tree height (m) 10.0 29.5 18.2 3.9 
Mean DBH (cm) 10.6 26.2 17.6 3.5 
Volume (m3/ha) 59.4 507.6 235.7 88.3 

2.3. Airborne Laser Data 

The ALS data were collected in midsummer 2006, using an Optech ALTM3100C-EA system 

operating at a pulse rate of 100 kHz. The data were acquired at a flight altitude of 800 m, resulting in 

an average point density of 2.6 (ranging from 1.8 to 3.4) laser hits per m2 in nonoverlapping areas and 

a footprint of 70 cm in diameter. The system was configured to record multiple returns per pulse, i.e., 

first or only, last, and intermediate. 

The ALS data were first classified into ground or nonground points using the TerraScan based on 

the method explained in [32]. A digital terrain model (DTM) was then calculated using classified 

ground points. Laser heights above the ground (normalized height or canopy height) were calculated by 

subtracting the ground elevation from the corresponding laser measurements. Canopy heights greater 

than 2 m were considered as returns from vegetation and used for tree or plot feature extraction. 
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3. Methodology 

3.1. Area-Based Method 

In the present study, the area-based method used the canopy height or vertical distribution of laser 

returns for estimating plot-level forest inventory parameters (e.g., mean height, mean DBH, and 

volume). The first laser returns within each plot were extracted. Then descriptive features (e.g., max., 

mean and standard deviation) were derived individually per plot from the normalized point height for 

the vegetation points of the first returns. The features derived from laser data are maximum height, 

mean height calculated as the arithmetic mean of laser heights, standard deviation of laser heights, 

coefficient of variation, penetration computed as the proportions of ground hits to total number of hits, 

percentiles calculated from 0% to 100% of canopy height distribution at 10% intervals and canopy 

cover percentiles expressed as the proportion of first returns below a given percentage of total height 

from 10% to 90% of the heights with 10% intervals. Plot-level characteristics were estimated based on 

these features and by the random forests approach, which is a nonparametric regression technique (see 

Section 3.3) [33]. A summary of plot features is given in Table 2. 

3.2. Individual Tree-Based Method 

3.2.1. Individual Tree Delineation 

Individual tree-based methods rely on detecting individual trees, constructing their geometry (e.g., 

tree height, crown shape) and deriving characteristics such as stem volume and stem diameter, based 

on geometry and other statistical variables. An individual tree detection method was developed 

consisting of the following steps: 

1. A raster canopy height model (CHM) was created from normalized canopy height data for each 

plot by taking the maximum values within 0.5 × 0.5-m cells. 

2. The CHM was smoothed with a Gaussian filter to remove small variations on the crown 

surface. The degree of smoothness was determined by the value of the standard deviation 

(Gaussian scale) and kernel size (5 × 5 pixels) of the filter. 

3. Minimum curvature, one of the principal curvatures, was calculated from the smoothed CHM. 

For a surface such as that of the CHM, a higher value of minimum curvature describes the 

treetop.  

4. The smoothed CHM image was then scaled based on the computed minimum curvature 

resulting in a smoothed, yet contrast-stretched image. 

5. Local maxima were then searched in a given neighborhood (3 × 3 windows). They were 

considered as treetops and used as seeds in the following marker-controlled watershed 

transformation for tree crown delineations. 

Figure 1 demonstrates one example of individual tree delineation. During the segmentation 

processes, the tree crown shape and location of individual trees were determined. Each segment was 

considered to present a single tree crown. Laser returns falling within each individual tree segment 

were extracted and used for deriving tree features. In total, 26 features were generated from the first 
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returns. They are arithmetic means of laser heights, standard deviation of heights, heights range, crown 

area, crown volume as convex hull in 3D, percentiles calculated from 0% to 90% of canopy height 

distribution for tree with 10% interval, maximum laser height, maximum crown diameter and canopy 

cover expressed as percentages of returns below a certain height (e.g., 10% to 90% of total height). A 

summary of individual tree features is given in Table 2. 

Figure 1. Individual tree detection for a single sample plot showing a CHM [m] overlaid 

with derived tree crown segments. 

 

Instead of using the existing models, individual tree DBH and stem volume were predicted based on 

these laser-derived features using the same nonparametric method (see Section 3.3) as the area-based 

method. Tree height was also predicted with the same procedure, i.e., tree height was predicted based 

on all tree features instead of using only maximum laser height as predictor in a linear regression. The 

plot-level characteristics were then computed by aggregating the value for trees in the plot. 

3.3. Random Forests 

Random forests (RF), a nonparametric regression method, was used for retrieval of forest 

parameters from laser-derived features for both the area-based and individual tree-based methods. RF 

was first developed as a classifier consisting of a collection of decision trees [33,34], but it is also used 

for solving regression problems. For regression, the RF prediction is obtained by aggregating 

regression trees, each constructed using a different random sample set of the training data, and 

choosing splits of the regression trees from subsets of the available features, randomly chosen at each 

node. We used RF to construct the prediction models because it works well when many features are 

available and no variable selection procedures are needed. To briefly describe the algorithm: RF is a 

collection of regression trees. A regression tree is built based on bootstrap samples selected randomly 

from a training dataset. A random set of attributes is then chosen from laser features and the best 
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feature is selected for splitting in each node until it grows into a proper tree, i.e., all leaf nodes are either 

too small to split or are homogeneous. The interested reader is encouraged to read further [33,34]. 

Table 2. Summaries of features extracted for plots and individual trees. 

Plot features Individual tree features 
Maximum height  Maximum height  
Mean height  Mean height  
Standard deviation  Standard deviation  
Coefficient of variation  Height range  
Penetration  Crown area  
Height percentiles (0% to 90%) Crown volume  
Canopy cover percentiles (10% to 90%) Maximum crown diameter  
 Height percentiles (0% to 90%) 
 Canopy cover percentiles (10% to 90%) 

3.4. Accuracy Assessment 

In the area-based method, the candidate predictors were 23 plot features derived from the ALS data. 

The response variables were the mean height, mean diameter and volume at the plot level. The random 

forests model was obtained by aggregating 60 regression trees, with five features tried at each split. 

The model built was then applied for prediction of data not in the bootstrap sample (they are called 

out-of-bag samples which are about one third of the total samples and act as testing data). For 

example, among 69 plots, 46 plots were used for training and the rest of 23 plots for testing each time 

when a regression tree was built. RMSEs between the predicted and observed values for the out-of-bag 

samples were used as a measure for error estimates and correlation coefficient (R) as a measure for 

goodness of the modeling. 

In the individual tree-based method, laser-detected individual trees were first matched to those 

measured in the field by a method described in [35]. The method is based on a modified Hausdorff 

distance to find the closest corresponding trees in a 3D space. Matched trees were used for training the 

prediction models based on the same procedure as in the area-based method with 26 tree features as 

candidate predictors and tree height, DBH and stem volume as response variables. The tree attributes 

were then estimated for all trees. Plot-level estimates for mean height, mean diameter and mean 

volume were calculated by aggregating the data for individual trees in the plot and compared with field 

data. RMSEs and Rs between the estimated and observed values were computed.  

4. Results 

4.1. Area-Based Prediction 

Predictions of plot-level variables with the random forests approach and the area-based method 

were compared with the corresponding field-measured data for 69 plots. Figure 2 shows the scatter 

plots of the predicted versus reference values for mean height, mean diameter and mean volume. Mean 

height was estimated with an RMSE of 6.42% and a correlation coefficient of 0.94. For mean diameter 



Remote Sens. 2010, 2                            

 

 

1488

estimation, the corresponding values were 10.32% and 0.84, respectively, and for mean volume 20.9% 

and 0.79. The level of estimation errors was compatible with the field measurements. 

Figure 2. Reference values vs. predicted values for mean height, mean diameter and 

volume using the area-based method.  

 

4.2. Individual Tree-Based Prediction 

Based on the results of individual tree detection and matching with field-measured trees, the 

matching rate for 69 plots ranged from 43% to 96%, with a mean of 69%. To investigate the effect of 

the tree detection on the results, different schemes for aggregating plot-level attributes were adopted: 

C1.  Matched field trees against matched laser trees, 

C2.  All field trees against matched laser trees (those matched with field trees), 

C3.  All field trees against all laser-detected trees, 

C4.  Linear regression performed at the plot level with all detected trees against all field trees. 

In case C1, we assumed that individual tree detection was perfect in that all field trees were 

matched with one and only one laser-detected tree, i.e., a 100% matching rate. Case C2 represents a 

situation in which the field trees were under-segmented; e.g., only taller trees were detected by laser 

and smaller trees were either integrated with a nearby taller tree or were undetectable by the laser 

measurements. In contrast to C2, all laser-detected trees, in case C3, were used in plot-level 

estimation, whether matched with a field tree or not, which is a more practical realization from the 

operational point of view. Due to the errors (under and over-segmentation) in tree detection, linear 
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regressions were performed at the plot level to calibrate the errors caused by tree detection (C4), which 

makes results more comparable to the area-based method. 

Table 3 summarizes the results for these four cases. The results suggested that the estimates varied 

significantly, depending on the individual tree detection results and calibration applied, especially for 

the characteristics obtained by summing the individual tree data. If tree detection was perfectly done 

(C1), RMSEs of 4.42% for mean height, 7.21% for mean diameter and 15.35% for mean volume could 

be achieved. In general, R between the observed and predicted plot-level attributes were over 0.9 for 

mean heights, 0.8 for mean diameters and 0.75 for mean volumes, and RMSE of under 10% for mean 

heights, 13% for mean diameters, and 35% for mean volume, except in case C3. 

Table 3. Correlation coefficients (R) and RMSEs of plot-level predictions with RF and 

individual tree-based methods. 

 RMSE (%) R 
Variable C1 C2 C3 C4 C1 C2 C3 C4 
Mean height 4.42 9.3 8.18 5.69 0.97 0.91 0.96 0.95 

Mean diameter 7.21 12.09 12.00 10.77 0.94 0.84 0.84 0.84 

Mean volume 15.35 33.61 56.52 18.55 0.95 0.76 0.85 0.85 

Figure 3. Comparison of RMSEs and R for mean height, mean diameter and volume 

estimation, using area-based and individual tree-based methods. 

  

4.3. Comparison of Both Methods 

The comparisons of both methods are graphically presented in Figure 3. If the same amount of field 

measurements were used in the prediction, both the area-based and individual tree-based methods 

produced similar result for mean diameter. The individual tree-based method gave slightly better 

results for mean height and mean volume (area-based vs. C4). With the individual tree-based method, 

the key issue is the accuracy of individual tree detection. If individual trees could be recognized 

accurately the prediction accuracy could be improved significantly, especially for volume (C1 vs. C3). 

If the most of the trees were identified, such as in case C2, we could obtain results that are compatible 
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to those of the area-based method for mean height and mean diameter. Mean volume is influenced 

most by individual tree detection.  

Figure 4. Scatter plot of stem number per plot versus matching rate. 

 

4.4. Effect of Individual Tree Detection 

Since individual tree detection has significant impact on the estimation results, it needs further 

investigation to improve the performance of the individual tree-based method. We used three measures 

to evaluate individual tree detection accuracy in this study, i.e., matching rate and percentage of 

under- and over-segmentation. Under-segmentation describes those trees undetectable with the laser 

and over-segmentation presents trees that are nonexistent, e.g., due to splitting of larger trees. Figure 4 

showed the matching rate as a function of stem number (plot density) in which a linear trend could be 

observed. As expected, the matching rate increased as the stem number decreased. Figure 5 

demonstrated the relationship between the under-/over-segmentation and caused errors in estimates. 

As can be seen, errors in volume estimates increased with the increase in under- and  

over-segmentation. However the impact of under- and over-segmentation on estimates is different in 

magnitude. The error in estimates caused by under-segmentation ranged from −3% to 31% with a 

mean of 5% for mean height, from −15% to 27% with a mean of −1% for mean diameter and from 0 to 

55% with a mean of 22% for mean volume. The errors in estimates caused by over-segmentation 

ranged from -9% to 11% with a mean of −1% for mean height, from −11% to 16% with a mean of 

−2% for mean diameter and from 12% to 161% with a mean of 53% for mean volume.  

Over-segmentation was a more serious problem than under-segmentation for volume estimates, while 

under-segmentation had more impact on mean height and mean diameter estimates in this study.  
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Figure 5. Estimation errors of mean height, mean diameter and mean volume caused by 

under-segmentation (upper panels) and over-segmentation (lower panels). 

 

5. Discussion and Conclusions  

Two widely used methods for predicting forest attributes were evaluated and compared based on 

laser-derived statistical and physical features. The test results suggested that similar accuracy was 

achieved with both methods for mean diameter and slightly better accuracy for mean height and volume 

using the individual tree-based method. The individual tree-based method gave varying results, 

depending on the accuracy of individual tree detection and applied calibration. Regardless of the 

difference in accuracy, both methods gave very promising results in estimating the plot-level attributes. 

It is worth mentioning that the point density of the laser data in this study is not high. Therefore 

individual tree detection cannot be done in an optimal way with such data, but it is higher than that 

(e.g., one point/m2) applied in conventional area-based methods. If the point density of laser data can 

be increased, e.g., by over five points per m2, individual tree detection will probably be improved and 

thus also plot-level estimates of forest attributes based on the individual tree method. Another factor 

that could influence the results of the individual tree-based method is the fact that plots in the study 

area had a more complex structure, which increases the difficulties in tree detection. 

The key issue with individual tree-based method is the accuracy of individual tree detection. The 

reason for the varying results based on the individual tree method is mainly due to the inaccuracy in 

individual tree detection. Firstly, the laser can’t see all the trees from above, so the smaller trees and/or 

understory vegetation cannot be detected or merged with nearby trees [36], causing  
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under-segmentation. On the other hand, some trees with larger branches may be identified as two or 

more segments (trees), causing over-segmentation in tree detection. Both under- and  

over-segmentation can cause errors in plot-level estimates based on the individual tree method. 

However, under- and over-segmentation behave differently with respect to plot-level estimates.  

Under-segmented plots tend to produce more accurate results than those that are over-segmented. This 

can be explained by the fact that under-segmentations normally occur when smaller trees merge with 

nearby larger trees or when trees with similar height grow closely, while over-segmentations usually 

occur when larger trees with unsmooth crowns split into two or more segments. In this study, the tree 

segmentation algorithm tended to merge smaller trees and to split taller trees with larger crowns. This 

may suggest that a multi-scale approach could be adapted in the tree detection algorithm to detect trees 

of different sizes. Secondly, the accuracy of individual tree detection was also influenced by plot 

structure. Plots dominated by coniferous trees produced higher detection rates and lower error rates 

than plots dominated by deciduous trees or mixed plots. Denser plots also give less accurate results 

than sparse plots.  

Additionally, in the individual tree-based method, a bias could result from the fact that only 

matched trees were used for training as most of them were dominant ones which were not 

representatives of the stem distribution. However, the problem could be partially compensated by 

using larger number of matched trees for training (over 1,400 in this study).  

One advantage of the individual tree-based method over the area-based method is that at least a 

major part of the stem distribution can be derived directly from the individual tree detection. 

Smaller-sized trees, which are often undetectable, can be taken into account using theoretical stem 

distributions [e.g., 37]. In addition, individual tree detection in multitemporal studies would be 

required for detailed mensuration of tree growth and input data for various growth and biomass models. 

Furthermore, the individual tree-based method provides the possibility to develop species-specific 

models which could lead to more accurate stand-level estimation particularly for mixed stands. 

One challenge with individual tree-based methods is how to calibrate the plot-level estimates 

caused by errors in tree detection. In this study, the solution was to apply a simple linear regression. 

The other alternatives need to be studied, e.g., use stem distribution information to take into account 

trees obscured in the ALS data. The results also confirmed that the individual-tree method, without 

calibration at plot level, did not result in acceptable accuracy (case C3) using present state-of-the-art 

tree finding algorithms in boreal forests. Thus, methods combining the complementary features of 

original area-based and individual tree-based methods are expected to yield highest accuracy. 

From the economic point of view, the area-based method is more efficient both in computation and 

laser data acquisitions. Normally, low-point-density data are sufficient for deriving accurate estimates 

at the plot/stand level. However, larger amounts of field measurements are required to establish the 

relationship between laser-derived features and forest characteristics, because the accuracy of area 

base estimates is largely dependent on the amount and accuracy of field measurements. With the 

individual tree-based method, individual trees need to be identified and processed, so it is 

computationally more expensive. Furthermore, higher point-density data are preferable for more 

accurate individual tree detection, because the accuracy of the estimates is highly dependent on the 

accuracy of individual tree detection, thus increasing the data acquisition costs. Accurate field 
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measurements are also needed for calibrating/establishing the prediction model both at the tree level 

and plot level, which are not conventionally done with individual tree-based methods. 

In the present study, RF was used to build prediction models for both methods to eliminate the effects 

caused by the method applied and make the results comparable since, with random forests, no standard 

models were needed for prediction. All plot/tree attributes were estimated based on the plot/tree features 

derived from ALS data. However, it’s worth noting that plot and tree features could show different 

reliability (plot features are more accurately described than tree features). The difference between them 

could influence the results obtained by individual tree- and area-based methods.  

Due to high acquisition costs, only the area-based methodology has been utilized in practical 

applications so far. However, given the fact that high-density laser data will be available at 

increasingly lower prices, individual-tree-based methods when incorporated with terrestrial laser 

scanning and logging machine measurements would pave the way for ‘precision forestry’, in which 

forest resource monitoring could be carried out at the single-tree level. Forests will eventually be 

continuously (e.g., at 10 year intervals) surveyed using laser scanners, enabling the use of change 

detection techniques (e.g., [36]) together with single-time survey techniques tested here. 

It should be noted, based on this paper, we cannot draw a final conclusion as to which method is the 

most feasible for operational forest inventory. Different costs, output quality and capacity to provide 

stem diameter distributions will lead to the conclusion that one method is more feasible than the other 

for different forestry applications. 
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