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ABSTRACT 

Aims: The study examines whether the number of alcohol-specific deaths can be predicted by 

population total and/or beverage-specific alcohol consumption and if, how precisely. The data are 

annual series of spirits, wine, beer and total consumption and alcohol-specific deaths in Finland in 

the years 1969-2015. 

Methods: We specify a ARDL (Auto Regressive Distributed Lags) model with cointegrated varia-

bles, to be used in prediction. In our model the number of alcohol specific deaths is the response 

variable, and log of spirits consumption and log of non-spirits consumption, are the explanatory 

variables. The response variable has one added annual lag and the explanatory variables have 

both four annual added lags in the model. 

Results:  In our data alcohol-specific deaths, log of spirits and log of non-spirits consumption are 

significantly cointegrated. The precision of the estimated model is good.  The prediction results 

include prediction of the 2008 downturn in alcohol deaths, using the data from the years 1969 – 

2004, forecasting the as yet unknown 2016 alcohol deaths on the basis of known values of alcohol 

consumption up to 2016, and forecasts of future (2017-2020) alcohol deaths from 2016 on. Fore-

casted effects of a proposed Finnish alcohol policy change, leading to six percent total consump-

tion increase, are estimated. 

Conclusions: The number of alcohol-specific deaths can be predicted with an appropriate time-

series regression model on the basis of population consumption. It is important to consider also 

beverage type because of the improved predictive power. The model is useful in an evaluation of 

proposed alcohol policy changes. 
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INTRODUCTION 

It is commonly thought that total consumption of alcohol in a country determines how 

much harm is caused by drinking alcoholic beverages. Inspection of graphs showing per capita al-

cohol consumption and various harms over calendar time by the naked eye may suggest corre-

spondence. This can be misleading because successive observations are not independent and 

trends and other forms of non-stationarity may lead to apparent but spurious associations.  Spe-

cial time-series methods are needed to control for autocorrelation and non-stationarity. 

In addition to total alcohol consumption, type of beverage may also play a role.  In a 

pooled cross-sectional time-series analysis, spirits consumption was found to associate as strongly 

as total alcohol consumption with cirrhosis mortality in five countries, Australia, Canada, New Zea-

land, the United Kingdom and the United States in 1953-1993, while wine and beer were not sig-

nificant (Kerr et al., 2000). Here and later in our article, spirits denote distilled, that is hard, liquor. 

In another cross-sectional time-series analysis, higher spirits consumption was found to associate 

more strongly than other beverages with higher cirrhosis, head and neck cancer and ischemic 

heart disease (IHD) mortality in 48 states of USA in 1957-2002, while higher beer and wine con-

sumption were found to associate with lower ischemic heart disease mortality (Kerr and Ye, 2011). 

Alcohol-related disease mortality declined by 7.0% after a 1990 tax increase for spirits and beer.  

On the other hand, a spirits-only tax increase was not significantly associated with mortality, and 

small tax decreases on beer between 1996 and 2006 had no measurable effect on mortality 

(Delcher et al., 2012). Thus, beverage type may influence the number of alcohol-related deaths. 
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The above studies have not examined cointegration among the response and explanatory 

series. In this article, we model the relation between total and beverage-specific alcohol consump-

tion and alcohol-specific mortality with a number of lagged variables. We show that the presence 

of cointegration gives us increased predictive precision.  

The data pertains to Finland from the years 1969-2015/2016.  Alcohol-specific mortality 

contains causes of death with a mention of alcohol in the diagnosis name. 

MATERIALS AND METHODS 

Data 

 We studied alcohol-specific deaths, defined as cause-of-death group 41 in Finland. The se-

ries consisted of 46 consecutive years, 1969-2015. From 1969 to 1986 these deaths comprised 

ICD-8 codes 291, 303, 5710, 577(only males) and E860. From 1987 to 1995, respectively ICD-9 

codes 291, 303, 3050, 3575, 4255,5353, 5710-5713,5770D-5770F,5771C-5771D,7607A,7795A and 

E851. From 1996 and later the ICD-10 codes were F10, G312, G4051, G621, G721, I426, K292, K70, 

K860, K852, 0354, P043, Q860 and X45. These are underlying causes of deaths, that is disease or 

injury that initiated the train of morbid events. Contributory causes of death are not included, be-

cause their causal role is unclear. Data on the aforementioned deaths were extracted from the 

registers of Statistics Finland (Suomen virallinen tilasto 2016) and consumption in absolute (100%) 

alcohol, consumed as various beverages, were obtained from the register in the National Institute 

for Health and Welfare (www.thl.fi) in Finland. Alcohol-specific mortality showed a clear increasing 

trend in Finland from 1969 to 1990. The rate of increase became higher in 1987 when the ICD-9 

cause-of-death classification, containing more codes with alcohol etiology than the former one, 
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was first applied. The peak was reached in 2007. The ICD-10 cause-of-death classification, contain-

ing again more codes with alcohol etiology than the former one, was first applied in 1995, the year 

when Finland joined the European Union. 

 The following variables were studied (variable names in parentheses): number of alcohol-

specific deaths (alcdeath) per 100 000 person-years in population aged 15 years or older, total an-

nual alcohol consumption per capita in liters of absolute alcohol (totalcons), distilled spirits, beer 

and wine consumption per capita in liters of absolute alcohol in population aged 15 years or older 

(spirits, beers, wines) and beers and wines together (non-spirits). A derived variable, the ratio of 

spirits and total consumption in percent (spiritspct) was also explored. All these variables were 

also examined in natural logs.  Figure 1 gives an overview of the annual development of the main 

variables over the period 1969-2015. 

***********Insert Figure 1 about here************************ 

Methods 

 A visual examination shows that none of the series are trend-stationary; the type of trend 

varies from series to series. It is also obvious that fixed time trends are not an appropriate descrip-

tion of the non-stationarity (both because fixed trends lack substantial credibility and because 

they would require a higher degree polynomial representation). The remaining possibility is that 

the trends are stochastic. Thus, to set up a regression model we need to eliminate the spurious 

effects of stochastic trends in the data,  to avoid ‘spurious regression’ (Newbold and Granger, 

1974). 

 We tested all the series (also in logs) for unit roots, i.e. the hypothesis that the trends could 

be due to random walks.  We first applied augmented Dickey-Fuller unit root tests to the series in 
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levels (also in logs), at their non-differenced, original values. The tests showed that unit root hy-

potheses could not be rejected for any series, either with or without the assumption of a linear 

trend component in the data. Further unit root tests showed that the unit root hypothesis could 

be rejected for the once differenced versions of the series. With further examination of the auto-

correlation structures, we inferred that the series could be assumed to be stationary, I(0), in differ-

enced form and thus I(1) in levels.  

Cointegration relationships 

 Informally, we can say that non-stationary time series are cointegrated when they move 

‘together in time’. Cointegrated series are bound together by an error correcting feedback mecha-

nism, in contrast to a spurious regression where the series which, while actually independent, 

merely seem to move together for some while. More formally cointegration means here that there 

exist linear combinations of our I(1) series that are I(0). We tested for the cointegration relation-

ships among alcdeath and the consumption variables using the Bounds test (Pesaran et al., 2001) 

and the Johansen trace test (Johansen, 1995). 

 We found that the three-variable vector {alcdeath, log(spirits), log(non-spirits)} was cointe-

grated. Indeed, the null hypothesis of no long-run relationship was clearly rejected, with a high sig-

nificance level (Bounds F-statistic = 9.19, I(1) bound at the 0.01 limit = 5.0,  p<0.01).  

Several other combinations vectors were tested. To name but a few, the vectors {alcdeath, 

log(spirits), log(totalcons)} and {alcdeath, totalcons, spiritspct} were cointegrated.   Neither the 

pairs {alcdeath, log(spirits)} nor {alcdeath, log(totalcons)} nor any other pair formed with alcdeath 

or log(alcdeath) were cointegrated.  
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It should be obvious, by substantial reasoning, that the explanatory direction is from consumption 

variables to alcohol deaths. We furthermore tested the direction by applying Wald tests of 

Granger-causality to the key variables and came to the same conclusion. 

 The tests and all estimations in the paper were performed either with EViews (9.5) or 

STATA (10.0) software. 

 1st difference model 

 As an introductory application, we proceed by estimating the concurrent effects of con-

sumption variables on alcohol deaths in first-difference form with ordinary least squares (OLS). 

The basic linear first difference regression model is of the form 

  ∆𝑎𝑙𝑐𝑑𝑒𝑎𝑡ℎ𝑡 = 𝛽0 + 𝛽1∆𝑠𝑝𝑖𝑟𝑖𝑡𝑠𝑡 + 𝛽2∆𝑡𝑜𝑡𝑎𝑙𝑐𝑜𝑛𝑠𝑡 + ⋯ + 𝜀𝑡                  (1) 

with possible additional explanatory variables. The difference operator ∆  is defined as  

∆𝑎𝑙𝑐𝑑𝑒𝑎𝑡ℎ𝑡 = 𝑎𝑙𝑐𝑑𝑒𝑎𝑡ℎ𝑡 − 𝑎𝑙𝑐𝑑𝑒𝑎𝑡ℎ𝑡−1where t refers to an observation year and the error term 

𝜀𝑡 is assumed (and later tested) to meet the usual OLS assumptions. The model thus explains year-

to-year changes in alcohol deaths by concurrent year-to-year changes in consumption variables. 

We used also the differences in natural logs, e.g. ∆log (𝑠𝑝𝑖𝑟𝑖𝑡𝑠)𝑡,  instead of differences like 

∆𝑠𝑝𝑖𝑟𝑖𝑡𝑠𝑡.  Note that we have included a constant in the equation (equivalent to a linear trend in 

levels). We applied the usual regression diagnostics to the residuals, tested the significance of ex-

planatory variables and assessed the goodness of fit.   

The ARDL model – lagged explanatory variables. 

 It is well known that there is a considerable time lag between heavy consumption and 

death from alcohol. We thus needed to consider lagged explanatory variables. Given the cointe-
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gration of variables and direction of (Granger) causality, we use the ARDL (standing for Auto Re-

gressive Distributed Lags) methodology for our modeling. As indicated by the name, the ARDL 

models may include lagged values (lags) of both the dependent and the independent variables. In 

particular, with an underlying ARDL and cointegrated I(1) variables, we can estimate a cointegra-

tion or error correcting form for the short run (or year-to year) changes and a long-run or equilib-

rium form of the relationship between the variables.   

 The basic underlying form of an ARDL model with a response variable y and just one ex-

planatory variable x, is in levels 

𝑦𝑡 = 𝛽0 +  𝛽1𝑦𝑡−1 + 𝛽2𝑦𝑡−2 + ⋯ + 𝛽𝑝𝑦𝑡−𝑝 + 𝛼0𝑥𝑡−0 + 𝛼1𝑥𝑡−1 + ⋯ + 𝛼𝑞𝑥𝑡−𝑞 + 𝜀𝑡.                  

The model above is denoted as ARDL(p,q) with p the number of lags in the response variable and q 

the number of lags in the explanatory variable.  A model with two or more explanatory variables is 

analogous. 

 Specification of an ARDL -model requires many decisions and judgements but the basic dif-

ficulty is in the specification of lag lengths. Using the Bayes Schwartz information criteria for lag 

lengths and many other specification checks and tools we arrived at an ARDL(1,4,4) -model speci-

fied in the basic form as 

𝑦𝑡 = 𝛼0 +  𝛼1𝑦𝑡−1 + 𝛽0𝑥1𝑡 + 𝛽1𝑥1𝑡−1 + 𝛽2𝑥𝑡−2 + 𝛽3𝑥1𝑡−3 + 𝛽4𝑥1𝑡−4 

+𝛾0𝑥2𝑡 + 𝛾1𝑥2𝑡−1 + 𝛾2𝑥2𝑡−2 + 𝛾3𝑥2𝑡−3 + 𝛾4𝑥2𝑡−4 + 𝜀𝑡,               (2) 

 

where y = alcdeath with added lag 1 variable, 𝑥1 = log(spirits) with lags 0 – 4, and 𝑥2 = log(non-spir-

its), with lags 0 – 4 and 𝛼𝑖, 𝛽𝑗 , 𝛾𝑘, 𝜀𝑡 designating the regression coefficients and the error term, re-

spectively.  
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Some of the choices made in model specification need to be spelled out. First, we decided to use a 

basic model where the response variable was expressed in levels and the explanatory variables in 

logs (the level-log specification). For the response variable the choice of the non-logged form was 

based on the observation that the logged form caused heteroskedasticity in the residuals. Apart 

from heteroskedasticity there was no essential difference in model performance. For the explana-

tory variables logging was preferable for at least two reasons: easy interpretation of the coeffi-

cients (percent change) and cointegration of spirits and non-spirits with alcohol deaths when in log 

form. Further, total consumption as an explanatory variable leads to interpretational difficulties 

once any of its subcomponents (e.g. spirits) are also in the model and total consumption alone is 

an inefficient predictor. This is why we decided to leave total consumption out, given that spirits 

and non-spirits together cover the information in total consumption. 

It is in practice more interesting to examine the error correcting or cointegration form of 

(2). This representation of the ARDL(1,4,4) model is in our case of the form 

       Δ𝑦𝑡 = 𝛿0Δ𝑥1𝑡 + 𝛿1Δ𝑥1𝑡−1 + 𝛿2Δ𝑥𝑡−2 + 𝛿3Δ𝑥1𝑡−3 + 𝜃0Δ𝑥2𝑡 + 𝜃1Δ𝑥2𝑡−1  + 𝜃2Δ𝑥2𝑡−2 +

                    𝜃3Δ𝑥2𝑡−3 + 𝛼𝐸𝐶𝑡−1 + 𝜀𝑡                                                              (3)     

            

with 𝑦, 𝑥1 and 𝑥2 as defined in (2),  𝛿𝑖 , 𝜃𝑗 being regression coefficients,   𝐸𝐶𝑡 the error correction 

term, (or, the cointegration relationship), 𝛼 the ‘speed’ coefficient for the error correction term 

and 𝜀𝑡 the usual error term. Here the constant is assumed to be ‘restricted’ to the error correction 

term.  We will not go into further details of the fairly complicated modelling, testing or estimation 

issues, see (Pesaran et al., 2001)  
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RESULTS 

Estimation and specification results from the concurrent 1st difference models 

  The basic model of type (1) gives rise to only two feasible regression equations, given in Ta-

ble1 with estimation results. The models are presented in a transformed semi-logarithmic model, 

where Δ𝑎𝑙𝑐𝑑𝑒𝑎𝑡ℎ is replaced by Δ log(𝑎𝑙𝑐𝑑𝑒𝑎𝑡ℎ) and Δ𝑠𝑝𝑖𝑟𝑖𝑡𝑠 with  Δlog (𝑠𝑝𝑖𝑟𝑖𝑡𝑠). Essentially 

the same results were obtained without the logarithmic transformation but logarithms are used 

because of ease of interpretation and uniformity with the ARDL -model. From Table 1 we can see 

that both spirits and total consumption (in separate models) are significant explanatory variables. 

Changes in (the log of) spirits predict concurrent changes in alcohol deaths as well as or better 

than changes in (the log of) total consumption. The residual diagnostics showed no deviation from 

OLS assumptions. For instance, the Box-Ljung Q-tests for autocorrelated residuals were not signifi-

cant for any lag up to 24. No other available consumption variable (such as beers, wines, nonspir-

its, spiritspct) reached significance or improved explanatory power, either alone or with other vari-

ables. Using both spirits and total consumption in the same model as in (1) neither improved fit 

nor reached significance for either variable.  It should be noted that the Root MSE’s, estimates of 

residual standard deviation, are fairly high, 2.13 and 2.19, respectively. This means that predic-

tions/forecasts from the models have fairly large prediction limits.  

***************Insert Table 1 about here************************ 

To sum up, the models of type (1) establish a statistically significant but weak predictive relation-

ship between concurrent alcohol deaths and either spirits or total consumption. 
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Estimation results from the ARDL model 

The form (2) of the ARDL(1,4,4) model represents the short term annual changes in alcohol 

deaths. Table 2 shows the estimated coefficients of model (2), i.e. the coefficients of lagged 

Δlog (𝑠𝑝𝑖𝑟𝑖𝑡𝑠) and Δlog (𝑛𝑜𝑛𝑠𝑝𝑖𝑟𝑖𝑡𝑠) variables, of the lagged error correction variable 𝐸𝐶, and the 

coefficients of the equilibrium equation, together with their standard errors and significance 

*********Insert Table 2 about here***************** 

 It is noteworthy that the error correction term 𝐸𝐶𝑡−1 is negative, fairly large in absolute 

value (-0.63) and statistically highly significant. The error correction term  𝐸𝐶𝑡−1 is the difference be-

tween the observed 𝑎𝑙𝑑𝑒𝑎𝑡ℎ𝑡−1 and its long run (see below) predicted value. 𝐸𝐶𝑡−1 works as a negative 

feedback, adjusting shocks in alcohol deaths rapidly (-0.63 meaning in about a year and a half) 

back towards equilibrium, in turn given by the long run equation 

       𝑎𝑙𝑐𝑑𝑒𝑎𝑡ℎ =  −  104.35 + 17.44 ∗ log(𝑠𝑝𝑖𝑟𝑖𝑡𝑠) + 67.74 ∗ log(𝑛𝑜𝑛𝑠𝑝𝑖𝑟𝑖𝑡𝑠).            (4) 
 

The equation (4) describing the long run relationship between the response and the ex-

planatory variables, shows that for a given non-spirits consumption, a one percent increase in per 

capita spirits consumption tends in the long run equilibrium towards an approximate increase of 

alcohol deaths by 0.174 deaths per 100 000. Similarly, for a given per capita spirits consumption a 

one percent increase in non-spirits percentage tends to increase alcohol deaths by 0.67 deaths per 

100 000. The equilibrium states are not observed but remain theoretical constructs. 

 Figures 2 and 3 show the fit (observed and predicted values) of the ARDL(1,4,4) model for 

the levels (Figure 2) and annual changes (Figure 3). The model is clearly and measurably superior 

to the basic models (1.1 and 1.2) in terms of fit (approximate  𝑅2 = 0.75, 𝑅𝑜𝑜𝑡𝑀𝑆𝐸 = 1.35 ). 

*************  Insert Figures 2 & 3 about here. *********************** 
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Forecasts from the ARDL model 

An ex ante forecast from 2005 on 

Apart from the ex post predictions (fits) in Figures 2 and 3, we demonstrate ex ante alcohol death 

forecasts. First, we remind the reader that alcohol deaths increased until about 2007 and have de-

creased ever since. To test the forecasting capability of the model in ex ante forecasting we re-es-

timated the ARDL(1,4,4) model using only the years 1969 – 2004, and forecast the alcohol deaths 

for the years 2005 – 2015, using only the 1969-2004 model and the available alcohol consumption 

numbers for 2005-2015.  The result is presented graphically in Figure 4. It can be seen that the 

model is able to forecast the peak and the decrease following 2007 well. 

 

************* Insert Figure 4 about here ************************************* 

A one-step and a policy change forecast for 2016 

At the time of the writing the 2016 consumption figures are already available but the number of 

deaths is yet to be released. Now, using the full model for 1969-2015, we get a forecast of 36.95 

deaths per 100.000 (with prediction limits 33.5 - 40.3) for the year 2016 (Table 3 below). 

It has been proposed that a future change in alcohol policy in Finland would increase the total con-

sumption by up to 6% by an increased non-spirits consumption (Mäkelä and Österberg, 2016). Let 

us now assume, counterfactually, a 6% increase having happened in 2016, which implies that non-

spirits consumption would have increased from the observed 6.61 litres to 7.11 litres per capita. 

The model forecast is now 36.90 deaths per 100.000 (with prediction limits 33.4 -  40.4), see Table 

3.  Above we have seen that the no-policy change no-increase forecast was 36.95. Thus, a one year 

6% shock would not matter very much and certainly would not be statistically significant. 
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Effects of a 6% increase in the near future 

Forecasting the future is always subject to great imprecision but the following exercise demon-

strates further the effects of proposed changes in consumption. We compare the forecasts of the 

future five years, 2016 – 2020 under two different assumptions. First, we forecast the future con-

sumption of spirits and non-spirits per capita for the years 2017 – 2020, using standard ARIMA 

forecasting (technical details not presented). Second, we assume, counterfactually, a permanent 

level shift of 6% of the total consumption from the level forecast by the ARIMA models, the in-

creases taking place entirely in non-spirits consumption. Finally, we compare the forecasts of alco-

hol deaths from the ARDL model in the two series. The assumption of a permanent shift is obvi-

ously a rather extreme choice, given that temporary shocks are more realistic and tend to fade 

out, but this is only for comparison. The results are given in Table 3. A note of warning is that the 

prediction intervals for the years 2017 – 2020 are certainly too narrow. They are calculated condi-

tional on the ARIMA forecasts of spirits and non-spirits, the forecast error in these not being ac-

counted for.  As seen from Table 3, the assumed consumption shift tends to increase the number 

of alcohol deaths, but very slowly in the first years. The increases are not likely to be statistically 

significant, but the trend is clear. 

 

*********Insert Table 3 about here******************  
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DISCUSSION 

   

Strengths. Earlier studies of aggregate alcohol consumption have applied differencing and 

Box-Jenkins (ARIMA) modeling. We showed that cointegration analysis and autoregressive distrib-

uted lags models are useful in alcohol studies. In particular, a good fit to the data (or relatively pre-

cise ex post point predictions) were obtained by the ARDL(1,4,4) model. The existence of clear and 

significant cointegrating relations is in itself important, and enhances the credibility of a stable as-

sociation between consumption, beverage type and alcohol deaths. 

 In forecasting, we were able to show that the model is able to predict ex ante the down-

ward turn in alcohol deaths in 2007. Some short-term forecasts were even slightly surprising. A 6% 

increase in non-spirits consumption did not predict any increase in alcohol deaths, albeit in the 

context of a particular year (2016).  However, a counterfactual experiment of a permanent 6% in-

crease in non-spirits consumption showed a clear, slow increase in alcohol deaths. 

 Limitations. One should note that our data basis for time-series analysis is annual aggre-

gate data and that therefore the number of observations available (N=47) is limited. Much of the 

inference would improve on the one hand on having longer series than ours – although ours is as 

long as that in the earlier studies mentioned in the introduction - on the other hand 47 years can 

be a (too) long period to be stable from an epidemiological or societal point of view. 

 We did not include unrecorded consumption in our data for two reasons. First, estimates 

on unrecorded alcohol consumption are less reliable than recoded consumption. The latter is 

based on the sales statistics while the former is compiled from several sources, and is based 
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mainly on telephone interviews. Secondly, annual estimates on unrecorded consumption showed 

a slower increasing trend than recorded consumption in 1965-1995 and no clear trend change af-

ter that (Yearbook of alcohol and drug statistics 2015, figure 2). Thirdly, we did not have data on 

the consumption of industrial alcohol products, not aimed for human consumption, and contain-

ing over 90 % of alcohol. These substances were popular in the 1960's and 1970's in Finland and 

frequently detected in alcohol-specific deaths at that time (Poikolainen, 1977). Thus, the im-

portance of spirits seems to be somewhat underestimated in our data. Fourthly, we did not have 

annual data on the number of alcoholics. Mortality, and especially that due to alcohol, is high 

among alcoholics while non-alcoholic drinkers have considerably lower death rates (Dawson, 

2000; Lundin et al., 2015). Therefore, no direct causal conclusions can be made about the effect of 

alcohol consumption in a population on the alcohol-related mortality, based on the present data. 

However, our findings suggest a useful way to make near future forecasts. 

Alcohol-specific deaths are a category containing etiologic diagnoses, that is, alcohol is 

mentioned in the disease name. Therefore, alcohol is a necessary cause. Not a sufficient cause, 

since death is caused by many factors. Alcohol may, or may not, be the decisive factor. The accu-

racy in ascertaining these deaths depends on the judgement of the cause-of-death determination 

which remains to be unknown. Attributions to alcohol may be under- or overestimated. Each revi-

sion of the ICD has provided more diagnoses with alcohol etiology which may have increased the 

number of alcohol-specific deaths. We did not study alcohol-attributable fractions of other deaths. 

If these were included the associations might be weaker, because alcohol intake has been found to 

decrease the risk of death for some of these other diseases. 
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 It is unknown how much these results can be generalized. The possible effects are likely to 

be time and country specific, rather than universal. The effects may vary by country and time, de-

pending on many factors, such as drinking habits, relative price, availability, beverage preferences 

and other ingredients than alcohol in the beverages. 

 To sum up, ARDL models with cointegrated variables offer better forecasting precision over 

mere differencing and/or various Box-Jenkins methods that have been more common in alcohol 

research. However, the better precision is due to the cointegration relationship present in our 

data, explicitly taken into account in the model. Nevertheless, future improvements in the preci-

sion of forecasts would be welcome. In studying the relationship between alcohol consumption 

and alcohol-specific deaths it is important to consider, not only total consumption, but also bever-

age types.  
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Tables 

 

 

Table1. Regression models of change in alcohol deaths on change in spirits and change in 

total consumption 1969-2015 

 
 

Model 
1.1 

 

Coefficient of Estimate (std.error) t-value ( 𝒑 > 𝒕) 𝑹𝟐 Root MSE 

 

   0.159 2.13 
Δlog (𝑠𝑝𝑖𝑟𝑖𝑡𝑠) 13.71 ( 4.74 ) 2.89 (0.006)   

𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 0.58 ( 0.31 ) 1.86 (0.069)    

 
Model 

1.2 

 

 

   0.116 2.19 
Δlog (𝑡𝑜𝑡𝑎𝑙𝑐𝑜𝑛𝑠) 20.35 ( 8.47 ) 2.40(0.027)   

constant 0.36 (0.33) 1.09  (0.278)   
 

Regression estimates from the 1st differences models, for years 1969 - 2015, adjusted N=46.  

Model 1.1 expresses changes in alcohol deaths per 100 000 explained by changes in the logarithm 

of spirits per capita, given by the linear equation  ∆𝑎𝑙𝑐𝑑𝑒𝑎𝑡ℎ𝑡 = 𝛼0 + 𝛼1∆log (𝑠𝑝𝑖𝑟𝑖𝑡𝑠)𝑡 .  Model 

1.2 gives changes in alcohol deaths per 100 000 explained by changes in the logarithm of total con-

sumption per capita, given by the equation  ∆𝑎𝑙𝑐𝑑𝑒𝑎𝑡ℎ𝑡 = 𝛽0 + 𝛽1∆log (𝑡𝑜𝑡𝑎𝑙𝑐𝑜𝑛𝑠)𝑡 
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Table 2. Results from the ARDL(1,4,4) model in cointegration form 

     

Cointegrating Form. Dependent variable: ∆𝑎𝑙𝑐𝑑𝑒𝑎𝑡ℎ𝑡 
     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     ∆log(𝑠𝑝𝑖𝑟𝑖𝑡𝑠)𝑡 23.80 4.74 5.02 0.000 

∆log(𝑠𝑝𝑖𝑟𝑖𝑡𝑠)𝑡−1 15.63 4.80 3.26 0.003 

∆log(𝑠𝑝𝑖𝑟𝑖𝑡𝑠)𝑡−2 -5.10 5.24 -0.97 0.337 

∆log(𝑠𝑝𝑖𝑟𝑖𝑡𝑠)𝑡−3 10.29 4.54 2.26 0.030 

∆log(𝑛𝑜𝑛𝑠𝑝𝑖𝑟𝑖𝑡𝑠)𝑡 0.79 7.76 0.10 0.919 

∆log(𝑛𝑜𝑛𝑝𝑖𝑟𝑖𝑡𝑠)𝑡−1 -22.72 9.06          -2.51       0.017 

∆log(𝑛𝑜𝑛𝑠𝑝𝑖𝑟𝑖𝑡𝑠)𝑡−2 -12.14 9.42 -1.29 0.206 

∆log(𝑛𝑜𝑛𝑠𝑝𝑖𝑟𝑖𝑡𝑠)𝑡−3 -25.86 8.95 -2.89 0.007 

𝐸𝐶𝑡−1 -0.63 0.10 -6.23 0.000 

     
      𝐸𝐶𝑡 = 𝑎𝑙𝑐𝑑𝑒𝑎𝑡ℎ𝑡 −  

[17.44 ∗ log(𝑠𝑝𝑖𝑟𝑖𝑡𝑠)𝑡 + 67.74 ∗ log(𝑛𝑜𝑛𝑠𝑝𝑖𝑟𝑖𝑡𝑠)𝑡 −   104.35] 
 

     
     

Long Run Coefficients 
     

     Variable Coefficient Std. Error t-Statistic Prob.    
     
     log(spirits) 17.44 3.65 4.77 0.000 

log(nonspirits) 67.74 3.15 21.49 0.000 

constant -104.35 8.70 -11.99 0.000 

     
     
          

The estimated constrained error correcting form and the long-run form of the ARDL(1,4,4) 

model given in formula (3). Shown are the estimated coefficients of the lagged Δlog (𝑠𝑝𝑖𝑟𝑖𝑡𝑠) and 

Δlog (𝑛𝑜𝑛𝑠𝑝𝑖𝑟𝑖𝑡𝑠) variables, of the lagged error correction variable 𝐸𝐶𝑡−1, and the coefficients of 

the equilibrium equation and their standard errors and t-tests for coefficient significance. 
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Table 3. Forecasts of alcohol deaths for years 2016 - 2020 

YEAR 

MODEL  2016 2017 2018 2019 2020 

ARDL(1,4,4) 
1969 – 2015. 
No policy 
change in 
2016 

Alcohol deaths 
forecast per 
100.000 

 
36.95 

 
35.17 

 
34.70 

 
35.21 

 
34.28 

.95 prediction  
limits of  
forecast 

 
33.5 - 40.3 

 
31.6 - 38.7 

 
31.1 - 38.2 

 
31.5 - 38.9 

 
30.6 - 37.9 

ARDL(1,4,4) 
1969 -2015. 
6% consump-
tion increase 
from 2016 on. 
 

Alcohol deaths 
forecast per 
100.000 

 
36.90 

 
36.63 

 
37.66 

 
37.14 

 
38.12 

.95 prediction  
limits of  
forecast 

 
33.4 -  40.4 

 
33.0 - 40.3 

 
34.0 - 41.3 

 
33.5 - 40.8 

 
34.5 - 41.8 

 

Forecasts, for the years 2016 – 2020, of alcohol deaths derived from the ARDL(1,4,4) model, for-

mula (3) of the years 1969-2015. The underlying explanatory values of Δlog (𝑠𝑝𝑖𝑟𝑖𝑡𝑠) and 

Δlog (𝑛𝑜𝑛𝑠𝑝𝑖𝑟𝑖𝑡𝑠) for the years 2017 -2020 are obtained by standard ARIMA forecasting. The first 

row of forecasts is estimated without additional assumptions, the second row by assuming a 6% 

increase in total consumption, entirely in the non-spirits. For the years 2017-2020 the 0.95 predic-

tion limits are conditional on the predicted explanatory variables, and are thus too narrow in real-

ity. 
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Figure Legends 

Figure 1.  

Time series of the main variables 1969 -2015. All figures are annual and relate to the population over 15 

years of age in Finland. The alcohol consumption figures (the left axis) are in litres absolute alcohol per cap-

ita (15 years +). The alcohol deaths (the right hand axis) are per 100.000 of population (15 years +). 

Figure 2. 

Observed and predicted values in levels with .95 prediction limits from the estimated ARDL(1,4,4) 

model. The model coefficients are given (in cointegration form) in Table 2. 

Figure 3.  

Observed and predicted values in first differences from the estimated ARDL(1,4,4) model. The 

model coefficients are given (in cointegration form) in Table 2. 

Figure 4.  

Observed alcohol deaths and forecast values from a ARDL(1,4,4) model  estimated on the 1969 – 

2004 data. The ex ante forecasts with prediction limits are for the years 2005 – 2015. 


