
An approach to Machine Learning with Big Data

Ella Peltonen

Master’s Thesis
University of Helsinki
Department of Computer Science

Helsinki, September 19, 2013

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Helsingin yliopiston digitaalinen arkisto

https://core.ac.uk/display/146449772?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Faculty of Science Department of Computer Science

Ella Peltonen

An approach to Machine Learning with Big Data

Computer Science

Master’s Thesis September 19, 2013 65

Data Analysis, Machine Learning, Cloud Computing, Big Data

Cloud computing offers important resources, performance, and services nowadays when it has
became popular to collect, store and analyze large data sets. This thesis builds on Berkeley
Data Analysis Stack (BDAS) as a cloud computing environment designed for Big Data
handling and analysis. Especially two parts of the BDAS, the cluster resource manager Mesos
and the distribution manager Spark will be introduced. They offer important features, such
as efficiency, multi-tenancy, and fault tolerance, for cloud computing. The Spark system
expands MapReduce, the well-known cloud computing paradigm.

Machine learning algorithms can predict trends and anomalies of large data sets. This
thesis will present one of them, a distributed decision tree algorithm, implemented on the
Spark system. As an example case, the decision tree will be used on the versatile energy
consumption data from mobile devices, such as smart phones and tablets, of the Carat project.
The data consists of information about the usage of the device, such as which applications
have been running, network connections, battery temperatures, and screen brightness, for
example.

The decision tree aims to find chains of data features that might lead to energy consump-
tion anomalies. Results of the analysis can be used to advise users on how to improve their
battery life. This thesis will present selected analysis results together with advantages and
disadvantages of the decision tree analysis.

ACM Computing Classification System (CCS):
Networks → Cloud computing
Theory of computation → MapReduce algorithms
Information systems → Mobile information processing systems

Tiedekunta — Fakultet — Faculty Laitos — Institution — Department

Tekijä — Författare — Author

Työn nimi — Arbetets titel — Title

Oppiaine — Läroämne — Subject

Työn laji — Arbetets art — Level Aika — Datum — Month and year Sivumäärä — Sidoantal — Number of pages

Tiivistelmä — Referat — Abstract

Avainsanat — Nyckelord — Keywords

Säilytyspaikka — Förvaringsställe — Where deposited

Muita tietoja — Övriga uppgifter — Additional information

HELSINGIN YLIOPISTO — HELSINGFORS UNIVERSITET — UNIVERSITY OF HELSINKI

Contents
1 Introduction 1

2 Background 4
2.1 Big Data . 4
2.2 Clusters and cloud computing environments 5
2.3 The MapReduce paradigm . 10
2.4 Distributed machine learning and data analysis 14

3 Berkeley Data Analysis Stack 16
3.1 Cluster resource manager: Mesos 17
3.2 In-memory cluster computing: Spark 17
3.3 Spark versus MapReduce . 22

4 An example: Carat data analysis 26
4.1 Carat: collaborative energy analysis 26
4.2 Analysis specification . 28
4.3 The decision tree algorithm 30
4.4 Impurity measurement . 33

5 The Spark decision tree for Carat 35
5.1 Attributes and data preprocessing 35
5.2 The Spark decision tree implementation 37
5.3 Validation with the synthetic data set 42
5.4 Cross validation with the real Carat data 44

6 Results 49

7 Discussion 57

8 Conclusion 59

9 References 62

ii

1 Introduction

Nowadays, many of corporations, companies and organizations can gather
gigabytes or even terabytes of data from their customers and applications.
Data can include various information, for example, which products have
been searched and purchased from online stores, how location or battery
state of mobile phones has changed, or which pictures have been uploaded
to the Internet by customers. These masses of data need to be analyzed
and processed to information and towards new applications. Despite the
contents of each data set, many analyzing frameworks and softwares can
be very general in purpose; their common challenge is how to handle large
amounts of data safely, reliably, and with sufficient performance.

Some super computers can load large amounts of data to their memory,
but in many cases distribution offers better solutions to handle large data
sets. Shared computing load enables scheduled and structured models:
computers can specialize and relocate operations among themselves, and
take responsibility for fault tolerance in common.

In virtual cluster or cloud based computing, called simply cluster comput-
ing in this thesis, the cluster itself manages things such as security, reliability,
scalability, and performance [12]. Then the analysis part is possible to sepa-
rate to its own abstraction layer. Figure 1 presents three layers over a cluster
operating system.

The first layer, called cluster resources, is a platform for a virtual cluster
architecture. It manages connections and communication between computing
nodes, administration operations, possible joins and removals of nodes, file
system accesses, and other resource allocations [27].

Over the cluster resource layer there is a middle layer, computing man-
ager, which is the actual distribution layer. It is responsible for different
computation jobs and it allocates these jobs for the nodes via the cluster
resource layer below [27, 37]. One reason to separate these two layers is to
separate abstract distribution logic and an architecture-related clustering
system. In this way, it is possible to use the same distribution frameworks in
different cluster architectures and, vice versa, a cluster can offer its services
to different kinds of distribution frameworks.

Analysis software has also been separated to its own layer. There lies
all the data and application-specific operations. Data analysis software can

1

Cluster resources

Abstraction layer: Spark

Analysis software

Computing manager

Algorithm library

Operating system

Figure 1: General cluster based computing stack. The abstraction helps to
design diverse and flexible data analysis system where each layer has its own
responsibilities.

run functions of API offered by the computing manager layer. This helps
for developing and relocating different data analysis programs. If available,
the analysis program can also benefit from a generally purposed algorithm
library developed for distributed computing.

Data analysis considers a large range of different algorithms related
to data mining, machine learning, and statistical analysis. When these
methods and algorithms have been implemented as a distributed system,
such as cloud or cluster of multiple servers, there will be several aspects
to take into account. The algorithms might not to be effective when the
data is shared with hundreds or even thousands of nodes, for example.
All the programming operations will not be reasonable or even possible to
implement for a distributed computing system. In this thesis, it is notable
that the algorithms themselves will stay centralized, with one output and
one controller, only the computing process and the data have been shared
between nodes of the distributed system.

This thesis will present some solutions pertaining to distributed Big
Data analysis. One of the most popular approaches is the MapReduce
paradigm developed by Google and first published in 2004 [16]. From the

2

academic field, this thesis will focus on Berkeley Data Analysis Stack (BDAS)
[5], developed by AMPLab of UC Berkeley after 2010 for expanding the
MapReduce paradigm. This thesis will introduce both of these systems and
also give a brief overview to the larger field of the distributed data analysis.

Machine learning algorithms are often a very important part of any
analysis and data mining tools. Therefore this thesis will present some
ideas to implementing machine learning algorithms especially over the BDAS
system. As an example, this thesis will present a distributed decision tree
for the BDAS system related to a collaborative energy diagnosis project
called Carat [6, 31, 32]. Carat has been developed by UC Berkeley and
University of Helsinki. Its data consists of energy consumption information
of mobile devices from more than half a million devices that submit about
half a million data items per week.

Carat data offers information about, for example, battery power, battery
health and temperatures, charging durations, network connections, and
running applications. The main idea is to find feature chains that might
predict particular energy consumption behavior, where a feature is a property
of the data with a specific value. For example, if a mobile network is connected
and the battery temperature is very high, this combination of features might
lead to high energy consumption. The decision tree is one possible solution
to find such feature chains.

The thesis has been divided to three main parts: background, introduc-
tion to BDAS, and an implementation example. Section 2 will present the
background of the Big Data analysis field: basics of cloud computing envi-
ronments, the MapReduce paradigm and the meaning of distributed machine
learning algorithms in the Big Data analysis cases. Section 3 will present
the Berkeley Data Analysis Stack as an architecture and two of its layers in
detail, cluster resource sharing system Mesos [21] and distribution manager
Spark [37]. Section 4 will present the Carat data analysis system and the
decision tree algorithm. Section 5 is a description of an implementation of
the BDAS decision tree for the Carat data. Section 6 will present results of
the decision tree analysis. Finally, Section 7 discusses lessons learned and
Section 8 for concludes the thesis.

3

2 Background

This section presents background of the analysis of large data sets, the
distributed computing and the the cloud computing environments. A research
trend of the 21st century has been to solve how to combine the knowledge of
the virtualized computing environments and Big Data analysis [26]. These
areas are well described in the literature, but the purpose of this Section is
to expose the main ideas, definitions and subsections behind the distributed
Big Data analysis.

Section 2.1 presents definitions for the Big Data. Section 2.2 describes
cloud computing environments and services in data analysis point of view.
Section 2.3 presents the MapReduce paradigm for distributed data analysis.
Section 2.4 focuses on how the Big Data, cloud computing and MapRe-
duce based paradigms has been combined to the distributed data analysis
and remarks shortly some ready distributed machine learning libraries and
techniques presented in the literature.

2.1 Big Data

"Big Data" is not a well-defined term even though it is widely used. Even its
popularity might cause the definition problems: everyone wants to use the
fashion terms. How big should the data be to be honored as Big Data?

Ji et al. [26] have gathered some definitions that all have at least one
common factor: Big Data is something that is very hard or even impossible
to handle with traditional and current management tools such as databases
and computing environments. Also the time complexity aspect has been
taken into account: Big Data is easily "so big" that its processing in any
possible way takes time and performance effectiveness.

When datastores grow and computing environments get faster and more
high-powered, it becomes more difficult to give a specific answer to the
question "How big is big?" In some cases, even a data set of some gigabytes
might be too big to be managed with the current storage or analysis tools.
Despite this, there are the data sets of more than terabytes in the world.

Organizations and companies can see the value of Big Data in several
ways [29]. Information from customers’ behavior can support the creation of
new products, services, and business models. Customer segments based on
data analysis, clustering for example, can help target the right services to

4

those who need them. New ways to monetize data are being developed all
the time.

The data works also as a training set for learning algorithms and computer-
supported decision making. The digitized data could be shared and stored to
multiple places, and for use of multiple users. Digitization has also emerged
the questions about the data accessibility, privacy, and security – as well as
issues of legality – which are still a challenge in the Big Data area [26].

The computing paradigms and environments should be suitable for man-
aging huge amounts of data with diverse of file types and resources [15, 26].
This thesis presents MapReduce based solutions, especially the Spark system
[37] of BDAS, as one possibility to solve the paradigm question, and cloud
computing as an answer for the problem of environments.

2.2 Clusters and cloud computing environments

Cloud computing is based on hardware clusters and grids. A grid is a cluster
where a group of distributed computers operate together as a network for
mutual computation. The grid is more sophisticated and efficient solution
than just one high-performance computer, but it does not have the benefits
of virtualization: scalability, resource sharing, and mobility.

A cloud is typically a cluster, where resource sharing and runtime com-
puting have been organized in a more or less virtualized way. Foster et al.
[19] name four requirements that complete and specialize the cloud as a
distributed computing paradigm:

1. The cloud is more scalable than traditional systems such as grids.

2. The cloud could be presented as an abstraction of different services it
offers; also, a service is an important keyword in the cloud computing
area.

3. One advantage of virtualization is its lower cost when compared to
grids or supercomputers; anyone with a credit card can buy a part of a
cloud without expensive hardware purchases.

4. The cloud is virtually configured, so it is possible to start, remove
and reallocate jobs in the cloud without any interest of underlying
hardware.

5

Grid Cloud
Architecture Integrate hardware re-

sources and operation
systems via network

Integrate different re-
sources via standard pro-
tocols of Internet

Security model Administration domain,
multiple security issues

User accounts are modi-
fiable by web forms, sim-
ple to use

Business model A user has a pre-ordered
number of hours or bytes
in use

A user pays on consump-
tion basis, e.g., per in-
stance hour consumed,
bytes of storage used or
data transfered

Programming
model

Environment specific Environment specific or
PaaS service applica-
tions

Virtualization Limited, e.g., virtual
workspaces

Offers an illusion of a sin-
gle computing interface

Compute
model

Jobs are queued by re-
source manager

Resources are shared by
users at the same time

Applications High performance com-
puting, different kind of
applications

Interactive and
transaction-oriented
computing, also mul-
tiple set of possible
applications

Table 1: Some main differences between grid and cloud computing by Foster
et al. [19]

Table 1 represents some main differences between grid and cloud computing
as Foster et al. have defined [19].

Figure 2 presents example elements of the data analysis cloud. The cloud
is based on hardware resources. The relationship between hardware and the
cloud depends on the organization model of the hardware layer infrastructure.
The cloud works as an environment for the different kind of virtual machines
and virtual resources, for example, shared file systems and data storages. In
most of the data analysis systems, virtual machines have been organized as
a network of a controller node and a set of worker nodes. The controller is
responsible for job sharing and communication between the cloud and clients
of which there may be several. The worker nodes run the actual computing
jobs and return the results to the controller.

Lin et al. [27] present three different organizations for ordering the

6

Virtual controller
node

Virtual worker
nodes

HardwareClients

Shared storage

Figure 2: A simple cloud architecture for data analysis scenarios. Placement
of, for example, job and tasks schedulers and managers can vary.

cloud over the hardware machines: dedicated, consolidated and hybrid
organization. Figure 3 presents an example of these organizations. Their main
difference is how independent the applications are of each other. A dedicated
organization gives to each application its own infrastructure and responsibility
over resources. A consolidated organization involves a management system
in cluster resources layer, which globally coordinates and controls all the
applications, their computing environments and required resources. A hybrid
organization is a collection of orders where some of the applications has
their own hardware resources and some of the application are sharing the
resources by a cluster management system.

The dedicated organization works well if there are only few and just
stable applications running in the cluster, but frequently the consolidated
organization is more flexible and adaptable to different and possible variable
situations. A significant disadvantage of the consolidated organization is
its increased need for scheduling, controlling, decision making and fairness
policies. In Section 3, this thesis will present one consolidated cluster system,
Apache Mesos [21] that is part of the Berkeley Data Analysis Stack (BDAS).
Mesos enables running multiple jobs over it, for example, both of the Spark
and Hadoop instances.

In cloud computing, there are frequently used terms and their acronyms

7

Spark Hadoop ...
Spark, Hadoop, ...

Matlab Spark, Hadoop

Dedicated organization Consolidated organization Hybrid organization

Virtualization and cluster
resources management
e.g. Apache Mesos

Figure 3: A comparison between the dedicated, consolidated and hybrid
cluster organizations [27] with example applications. The main difference
is the middleware layer that takes care of, for example, resource managing,
data accessing, job scheduling, and load balancing

for different kinds of services the cloud can offer: an Infrastructure as a
Service (IaaS), a Platform as a Service (PaaS), and a Software as a Service
(SaaS) [30]. These terms are used for describing the cluster organization
from the user’s point of view.

Figure 4 shows relations of the different services. Infrastructures such
as clusters and isolated servers with operating systems, and platforms such
as application-hosting environments, offer computing utility to software
developers. These softwares, basically web applications, run in the cloud for
end users or clients. The service can exploit some public database that is
offering Data as a Service (DaaS) [35]. When discussing data analysis, these
definitions are not the key elements, but they are useful to know.

Armbrust et al. have considered IaaS and PaaS together [12] without
a significant difference and they could be handled as a lower-level services.
Data analysis software could be understood as a SaaS level service. Then the
SaaS user is a client or an application that exploits the analysis results. This
thesis presents one such system, Carat, in Section 4. The results provided
by analysis software can be also regarded as having their individual worth,
for example, for scientific purposes. The definition of the SaaS requires
frequently also some application for the end users [12, 30], such as a mobile

8

Data as a Service
(DaaS)

Software as a
Service (SaaS)

Infrastructure as
a Service (IaaS)

Platform as a
Service (PaaS)

Computing utility

Web applications

SaaS user

SaaS developer
PaaS/IaaS user

or

Figure 4: IaaS, PaaS, SaaS, and DaaS parts working together. For a practical
example, see also the Carat system in Figure 10 in Section 4.

9

application that benefits the data analysis results.
Cloud computing has its requirements and challenges. Clouds have to

manage large computing facilities and multiple simultaneous requests and
operations similarly to grid computing [19]. Because of clouds’ layered
structure and transparency, resources could seem to be infinite [13], which is
not true. Planning the costs of cloud computing can be difficult [13]: how
to just use resources that are needed, taking into account data transmission
costs, performance and scalability of the cloud environment. Data security
and privacy are big issues here, also legality of sharing the data to third-party
services [19, 26].

This thesis uses the term cluster as an umbrella term for different types
of hardware and virtualization solutions. For most of the presented analysis
environments, such as MapReduce Hadoop and BDAS, the cloud is the
primary environment. But there are no requirements to avoid the grid as a
cluster resources layer architecture if the analysis system is still usable that
way. In this thesis, the example presented in Section 5 has been implemented
using the cloud environments Amazon Elastic Compute Cloud (Amazon
EC2) [1] and OpenStack [9] over the private cluster of University of Helsinki.

2.3 The MapReduce paradigm

MapReduce is a popular distributed computing paradigm developed by
Google researchers Jeffrey Dean and Sanjay Ghemawat [16, 17, 18]. Its main
idea is to concentrate all the computing operations to two functions: map
and reduce which the user has to implement. Computing nodes will specialize
so that one of them works as a controller or so called master node, and the
rest are workers participating in the actual computation: map and reduce
operations.

Several open source MapReduce implementations have been developed.
Hadoop [2] is one of the most popular. Also many other implementations have
been presented and Hadoop has got its next generation version, called YARN
[27]. Because of versatility of the implementations, this section focuses on
MapReduce as a distributed computing paradigm, which is mainly important
for understanding systems such as BDAS Spark.

Figure 5 shows how map and reduce functions operate together. The
map function is a single operation that is done to each element of the data
set, separately and in distributed way. Data items are presented as key and

10

Input file 1

Input file 2

Input file 3

Input file n

Intermediate
file / cache

Intermediate
file / cache

Intermediate
file / cache

Map phase

Output file 1

Output file 2

Output file m

Reduce
phase

Figure 5: An iteration example from MapReduce. Worker nodes of the map
phase read the input files and after the operation save intermediate files to
their local disks or caches. Workers of the reduce phase use the intermediate
files as their input. Reducer nodes save the final results as output files.

value pairs. Each worker node reads a split of the data items from input files
and does the map, or produces another list with the modified data items:

map(key1, value1)→ list(key2, value2).

This output of the map function is stored to intermediate files and they
will be stored to the local cache or disk. The reduce function reads the
intermediate files and merges data items related to the same key. An output
of reduce will be a list of values:

reduce(key2, list(value2))→ list(value3).

For a simplified example, there is a list of prices l = [5.0, 8.5, 11.25] related
to the same item k as a key. All of them will be increased 5% and after that
added together for total costs. The map function is l2 = l.map(_×1.05) and
the result of the map phase is l2 = [5.25, 8.925, 11.8125]. The reduce function
l2.reduce(_ + _) to add the values to 25.9875. If these calculations are used
on a list of multiple items, the reduce part would produce, for example, a
sum of prices for every item and return them as a list of sums.

When iterating map and reduce phases one after the other and using a

11

previous output as a next input, it is possible to construct other algorithms.
For example, a prominent unsupervised clustering algorithm K-means [28]
is easy to implement with map and reduce phases. Algorithm 1 describes
the basic K-means based on the book [34, pages 496-498]. The algorithm
is initialized with a list of random centroids. A centroid means an average
or a central point of each cluster, which the K-means algorithm try to find.
In each step of the iteration, each data point will be assigned to the closest
centroid (line 4). The algorithm will produce clusters as a set of data points
for each of the centroids. After this, new centroids will be recomputed as a
mean of the data points in the corresponding cluster (line 5).

Algorithm 1 Basic K-means algorithm
1: Let D be a set of data points
2: Initialize centroids as a set C of size k
3: repeat
4: For each data point d ∈ D assign its nearest centroid c ∈ C
5: For each c, collect assigned data points and recompute a new c2
6: until Centroids do not change

Algorithm 2 describes a K-means algorithm modification for the MapRe-
duce paradigm. There are three parts: first to the master (a master()
function), second to nodes in the map phase (a map() function), and last
to nodes in the reduce phase (a reduce() function). Note that depending
its load and the used system, each node can do both map and reduce work.
The master works as a controller node that schedules jobs and collects the
results. It starts each iteration when sending map requests to the mappers
and takes care that the output will be used as a next input.

The K-means algorithm is divided so that the map phase assigns data
points to their corresponding centroids and the reduce phase computes the
mean of the cluster to the new centroid. It is also the reducer’s task to collect
the list of the data points related to the each centroid. One centroid will
be reduced by only one reducer node – this guarantees the validity of the
results.

12

Algorithm 2 MapReduce K-means
A master part will be ran by a controller node, functions map and reduce by
worker nodes.
function master()

1: Let D be a set of data points (a, d) where a is just some key and d the
data point

2: Initialize centroids as a set C of size k
3: repeat
4: Broadcast C to the mapper nodes
5: Divide data points to the mapper nodes and let them map
6: Receive new centroids from the reducer nodes and let this list be C
7: until Centroids do not change

function map(a, d)
1: for a data point d assign its nearest centroid c ∈ C
2: return (c, d) where the centroid c is now a key

function reduce(c, list[d])
1: c2 = mean of list[d]
2: return c2 as a new centroid for the cluster

Depending the implementation, each reducer node will produce a list of
elements related to each centroid in C.

13

2.4 Distributed machine learning and data analysis

Cloud computing environments and the MapReduce paradigm offer a basis
for Big Data analysis. One main aim is to ensure sufficient performance
and scalability for handling possible large data sets. This challenge sets
requirements also for algorithms and techniques reasonable to use for analysis,
not only environments and systems. One of the keywords here is distributed
computing.

Machine learning techniques are an important part of any data analysis
system. When computing is performed on multiple computers, for example, in
the cloud between virtual machines, also the algorithm should be implemented
in an appropriate way. All the methods may not even be suitable at all
because of size or structure of the data [26].

MapReduce based analysis environments, such as Hadoop, and its expan-
sion Spark presented in Section 3, are practical when each data item has
been targeted with multiple, separated, and isolated operations [37]. These
are easy to implement with a map-like functions. When it is necessary to
compute anything through the full data set, there have to be used reduce-like
functions. They require more memory and computing performance because
of reading through all the data items. For iterative and runtime differences
of the Spark and classic MapReduce, see Section 3.3.

There are some ready to use libraries of machine learning algorithms,
which are using the MapReduce paradigm. Apache Mahout [3] is a Hadoop-
based implementation that offers many algorithms for clustering, classifica-
tion, and frequent itemset mining. Because Hadoop still requires implemen-
tation work, Ghoting et al. have presented SystemML [20] that proposes a
higher-level language, algorithm library and performance optimizations for
Hadoop jobs. In addition to the machine learning algorithms, SystemML
offers statistical methods and linear algebra models for analysis use.

Kraska et al. have presented the MLBase [24] system that is also men-
tioned with the Berkeley Data Analysis Stack (BDAS) [5] as a part of the
projects of AMPLab of UC Berkeley. MLBase offers high-level primitives
and operations that help writing machine learning algorithms even without
any understanding of the lower level issues such as scalability, load balancing,
and data storing.

Apache Mahout, SystemML and MLBase are presented as an example of
the trend to produce full libraries or higher-level languages for ease to writing

14

algorithms. Without taking a position on their optimizations or performance,
they are hiding most of the lower level operations, forgetting the situations
if developers were interested in observing the distribution system or code an
algorithm of their own.

This thesis will present a decision tree algorithm implemented on BDAS
Spark [37] in Section 4. Own implementations are necessary if no common
libraries exist, which is frequently the situation with Spark today. Also, there
can be a need for distribution or memory use management in the code level,
even if there would not be any other reasons to avoid existing libraries and
frameworks.

15

3 Berkeley Data Analysis Stack

Cluster resources: Mesos

Abstraction layer: Spark

Analysis software: Carat Analysis

Computing manager: Spark

Algorithm library

Operating system

Figure 6: Berkeley Data Analysis Stack (BDAS) layers of cluster resource
sharing and a computing manager, and the Carat data analysis as an user
application. Compare to Figure 1.

Berkeley Data Analysis Stack (BDAS) [5] is a set of Big Data analysis
software components developed by AMPLab of UC Berkeley. In May 2013
BDAS consisted of four different systems: a cluster resource manager called
Mesos, a distributed in-memory file system called Tachyon, a cluster com-
puting system called Spark, and an SQL API for data storages called Shark.
Probably there will be more coming later. This thesis will focus on two of
them: Mesos [21, 4] and Spark [37, 11].

Figure 6 presents how the Berkeley Data Analysis Stack has been used
in this thesis. See also the earlier Figure 1 as a comparison. Atop the
operating system, Mesos handles cluster resources and offers these resources
to frameworks. The frameworks, such as a computing manager Spark, choose
the resources they need. Spark works as a distribution interface between the
cluster and the actual data analysis application implemented by user. Spark
offers a distributed data structure RDD, the Resilient Distributed Dataset,
and a lot of functions for data modifications, which are used by the analysis
software. In the perfect model, there could also be an algorithmic library for

16

the flexible working with the analysis software.
Section 3.1 presents the Mesos system and Section 3.2 the Spark system.

Spark will be also compared to the MapReduce on Section 3.3. The Carat
data analysis software will be presented as an implementation example in
Section 5.

3.1 Cluster resource manager: Mesos

BDAS Mesos is a platform for sharing and allocating the cluster resources,
for example, CPU and RAM capacities of cloud participating servers. Mesos
has been presented in the paper of Hindman et al. [21] in March 2011, but
it has been also mentioned earlier, with its original name Nexus, in the
workshop report [22] in June 2009. An open source implementation of Mesos
[4] has been included in the Apache Incubator project in January 2011.

The fundamental idea of the Mesos system is to be a fine-grained cluster
computing platform that allows running one or more different platforms in
the same time in the same cluster. In other words, Mesos is a multi-tenant
system. The term framework means an upper layer software that manages
and executes computing jobs, such as Spark or MapReduce Hadoop. In
the classification of Lin et al. [27], Mesos represents a consolidated cluster
organization, shown in Figure 3 in Section 2.2.

The architecture of Mesos is presented in Figure 7. Mesos has one
controller node, called master, which communicates with the frameworks.
Each framework runs a job scheduler that schedules the jobs, which the
framework should run. The scheduler sends the job, if there are enough free
resources, to the master. The master splits the job to tasks, which it gives
to the worker nodes, called slaves. Slaves run a process called task executor
that performs the actual computation.

Mesos offers the cluster resources to the frameworks. The frameworks
either access the resources or not, depending their current demands. This
is also a fairness policy of Mesos: Mesos decides how many resources it can
give, and the frameworks choose, which resources they will accept.

3.2 In-memory cluster computing: Spark

Zaharia et al. have presented the ideology of the Resilient Distributed Datasets
(RDD) in their paper [37] published in April 2012, but also mentioned earlier

17

Spark framework
Job scheduler

Mesos master
Allocation module

Other framework
Job scheduler

Mesos slave 1
Task executor

Mesos slave 2
Task executor

Mesos slave n
Task executor

task task

Figure 7: Mesos architecture. An upper layer framework schedules a job and
gives it to the master. The master will split the job to the tasks. The master
node works as a controller, which allocates the tasks to worker nodes or so
called slaves.

18

as a technical report [36] in July 2011 and a workshop report [38] in June
2010. The Spark system [11] is an open source implementation of the RDDs.
Spark can be understood as a computing framework of the distributed system
just as MapReduce [16] and its free implementation Hadoop [2]. In fact, the
lower layer Mesos can easily run both Spark and Hadoop jobs.

An RDD is a collection of data items. The RDD is partitioned, so the
same RDD is parallelized to different worker machines. The RDD is read-only,
which means it is possible to create only from other RDDs or by reading
it from a file system. The RDD is only accomplished when necessary: this
is called laziness, which is also a paradigm of the Spark implementation
language Scala [10].

In addition, the RDD has three particular features:

1. Lineage. The RDD remembers the operations that are attached to
it. This a very powerful feature also in failure cases, for example, if a
worker node crashes: the lost parts of an RDD can always be recovered.

2. Persistence, or Caching. A user can moderate a storage strategy
RDD uses, e.g. in-memory only or the memory and the disk. This
functionality makes computing faster, when the data is cached in
memory. Caching is a fault-tolerant feature, because possibly lost data
partitions will be recovered via the RDD’s lineage.

3. Data locality, or partitioning. An user can control also the count of
data partitions by the particular functions.

Together these features make RDD/Spark more effective than a basic
MapReduce/Hadoop implementation, as Zaharia et al. have shown in their
article [37]. However, the reported experiences from Spark are still limited.

Spark API is available in three languages: Scala, Java, and Python.
This thesis will consider only the Scala functions for Spark, and no other
implementations of Spark will be covered. Spark itself is implemented on
Scala and many of its functions seem to be inspired by Scala native functions,
such as map and filter.

Spark offers two different types of operations for RDDs: transformations
and actions. The RDD’s lineage saves the operations of the both types, but
only the actions are computed instantly. The actions typically also return
some value, for example, count that returns a number of elements in the

19

Action Data operation Meaning
reduce(func) RDD[V]→ V MapReduce like reduce, uses a

function func to aggregate the
data items

foreach(func) RDD[V]→ Unit Does the same operation func
to each data item, does not re-
turn anything

count() RDD[V]→ Long Returns a count of the data
items in RDD

collect() RDD[V]→ Array[V] Returns the data items to the
master as an array of elements
type V

first() RDD[V]→ V Returns a first item of the
RDD, same as take(1)

take(n) RDD[V]→ Array[V] Returns n first items of RDD
as an array

saveAsText-
File(path)

Saves RDD to the defined file
system (local or distributed) as
text files

saveAsObject-
File(path)

As saveAsTextF ile, but
writes object files that are easy
to read again to Spark

broadcast(obj) obj →
spark.Broadcast[obj]

Makes the current version of
the object available for all the
nodes

Table 2: Some of the main Spark RDD actions, which are performed imme-
diately as opposed to the Spark transformations presented in Table 3. The
whole API document is available on [11].

RDD and a MapReduce style aggregating function reduce. Table 2 presents
some other examples of the main actions.

The transformations are operations, which create a new RDD from an
existing old one. This means they do not modify the old one, and in the Scala
style manner, it is necessary to pick the returning value to the variable. The
transformations are executed lazily. Typically they are waiting in the RDD’s
lineage until some action operation appears. Functions such as map and
filter are transformations; they create a new RDD based on given parameter
function. In the case of the map, the new RDD consist of the same count of
moderated data items, whereas the filter gets a boolean function and returns
a new RDD whose every element satisfies the boolean function. Table 3

20

Transfor-
mation

Data operation Meaning

map(func) RDD[V]→ RDD[W] MapReduce like map, uses a
function func for every item
in the data set of type V and
returns a new set of type W

flatMap(func) RDD[V]→ RDD[W] Similar to map, but returns a
flatted sequence where every
input item can produce zero or
more output items

filter(func) RDD[V]→ RDD[V] Rerturns a selected set of items
on which a boolean function
func returns true

groupByKey() RDD[(K, V)]
→ RDD[(K, Seq[V])]

Collects all the data sets re-
lated to each key and returns
them as a key and sequence of
the corresponding data items

reduceByKey() RDD[(K, V)]
→ RDD[(K, V)]

Reduces or aggregates the data
items related to each key

Table 3: Some of the main Spark RDD transformations, which are performed
lazily. The whole API document is available on [11].

presents some of the main transformations.
Algorithm 3 presents a K-means clustering algorithm introduced in

Section 2.3, now in the form of Spark Scala API. Algorithm 3 starts like
Algorithms 1 and 2 by initializing the starting set of centroids. In contrast
to MapReduce K-means Algorithm 2, the data structure for the data points
is an RDD and there is no necessary to implement own map and reduce
functions.

All the iteration phases happen in one loop. The centroids have to be
broadcast to the slave nodes, that means that the current values of variables
are shared throughout all the participating nodes. After that, a Spark map
function can be used for assigning the closest centroid to the each data point
in the RDD. Clusters based to the centroids are got by a Spark function
groupByKey, which returns a set of sequences lead by each key. The new
centroids are easy to compute as means of the data points in the clusters.
The notation (_._2) inside the map function means that the operation will
be run on the second element of the RDD, which is after the groupByKey
function: (key, seq[datapoints]). The function collect moves the RDD to an

21

Algorithm 3 Spark K-means clustering
1: Let D be an RDD of data points
2: Initialize centroids as a set C of size k
3: repeat
4: centroids = broadcast(C)
5: assigned = D.map(datapoint => {

closest = centroids.map(centroid => dist(centroid, datapoint)).min
(closest, datapoint)
})

6: clusters = assigned.groupByKey
7: C = clusters.map(_._ 2.mean).collect
8: until Centroids do not change

array. Functions min and mean are from the native Scala library [10].

3.3 Spark versus MapReduce

Zaharia et al. [37, 36] have evaluated the performance of Spark and two
different Hadoop implementations. They measured iteration times of two
iterative machine learning algorithms, logistic regression and K-means clus-
tering, in each three systems. In the first iteration, Spark was moderately
faster than the Hadoop implementations, and in the later iterations, Spark
was clearly faster. Zaharia et al. explain the differences in the overhead of
the Hadoop stack, overhead of the HDFS as a data service, and used binary
convertion.

In addition to the performance, Zaharia et al. [37] defend Spark’s versa-
tility over the other distributed programming interfaces. For example, the
MapReduce phases are possible to implement with Spark API: the map phase
by the functions map or flatMap, and the reduce phase by the functions
reduceByKey or groupByKey. Also some other other programming models
are easy to implement with the functions of the Spark API, more specifically
presented by Zaharia et al. [37]

Spark’s RDD model with its transformation and action lineage also offers
a possibility to return to any state of the system or separated node in the
case of some fault or lost node. So the states of any algorithm are easy to re-
compute, if necessary. This is one difference between Spark and MapReduce
implementations such as Hadoop, that write the outputs separately between
the iterations: the next step of computing does not necessarily know what

22

has happened before it.
Figure 8 presents a data flow of the MapReduce system. MapReduce

also actualized each operation one by one as presented in Section 2.3 about
the map and reduce phases. The iterations of the algorithm are shown as
tasks. Each task has one map and one reduce phase, and when the iteration
continues, also the map and reduce phases alternate. The controller has to
handle the inputs and outputs between the tasks.

Figure 9 presents data flow of the Spark system. The controller node
handles the RDD lineage. The operations, both transformations and actions,
have been attached to the lineage. The transformations will be actually
performed with the actions: for the first action, all the transformations before
it will be run in order. This reduces the number of necessary intermediate
states. Compared to the MapReduce, only the necessary operations will
done to the data point: because of known lineage, earlier operations are not
performed to the data point that will be filtered away in some later step, for
example.

Section 3 has presented the Berkeley Data Analysis System (BDAS) and
two of its main parts, Mesos and Spark, which construct a cloud comput-
ing environment operating together. Spark has also been compared to the
MapReduce paradigm. As an example of the Spark and Mesos implemen-
tations, this thesis will present a decision tree classification algorithm in
Section 4.

23

Distributed file system

Computing
nodes

Controller node

Reduce phase,
results from task 1

Task 1,
map phase

data

Task 2,
map phase

Reduce phase,
results from task 2

Iterate similarly
tasks 3 to n.

Figure 8: The data flow of MapReduce. Each map and reduce phases are
iterated in turns. Computing is managed by controller node, which also
organize inputs and outputs of each iteration. More about MapReduce
paradigm in Section 2.3.

24

Distributed file system

Computing nodes,
local cache

Controller node
An action to
RDD,
results

Transfor-
mations to
RDD

Data

Figure 9: The data flow of Spark. Each transformation has been collected
together to RDD’s lineage and performed when the next action appears.
Compared to MapReduce data flow in Figure 8, the Spark data flow saves
unnecessary iterations.

25

4 An example: Carat data analysis

This section introduces the Carat energy consumption data and gives speci-
fication for a decision tree, which is a widely used classification technique.
Section 5 will present the implementation for the decision tree algorithm
over Berkeley Data Analysis Stack, especially the Spark and Mesos systems.

Section 4.1 introduces shortly the Carat project. Section 4.2 exposes
motivation for using data analysis methods for the Carat data and gives an
abstract level specification for the analysis process. A decision tree algorithm
is presented in Section 4.3 and entropy as impurity measurement in Section
4.4.

4.1 Carat: collaborative energy analysis

Carat [31, 6, 33] is a research project of UC Berkeley and University of
Helsinki. Its aim is to discover energy anomalies from mobile devices by
collecting and analyzing the energy measurements by users or clients. In
addition to the research, Carat offers an application with tips for reducing
the energy consumption of the user’s device.

Figure 10 presents the structure of the Carat systems. Circa 600.000
clients (in July 2013) have installed the Carat mobile application that mea-
sures and sends the data to the Carat project’s Amazon cloud. The data
is stored and analyzed in the cloud. After the analysis, the cloud returns
results to the clients as statistical reports from their energy consumption
compared to the other known devices, and actions or tips how to improve
own device’s energy behavior. A classic example about the actions is to
avoid some very energy greedy application, such as a free game with many
advertisements.

The Carat analysis software has been implemented on Spark presented in
Section 3.2 in Scala language [10]. The analysis software is run over Mesos
presented in Section 3.1. Mesos is run in the cloud of Amazon EC2 [1].
Figure 10 shows also a researcher as a Carat developer or data analyst. Her
or his aspiration here is to improve the analysis quality and coverage with
multiple methods, for example, machine learning algorithms.

After it was published worldwide in June 2012, Carat has collected more
than 150 GB of data from iOS and Android devices, both mobile phones
and tablets. This crowd of different devices provide about half a million

26

Big Data

Spark: Carat
analysis software

Amazon EC2

Carat clients

Carat developer /
data analyst

Reports
and actions

Data
measurements

Computing utility

Storage and
analysis

Figure 10: A structure of the Carat analysis system. The services can also
be compared to Figure 4 in Section 2.

27

new samples per week. Each sample includes information from the device’s
native API, such as a device model, an operating system version, battery
state, inside temperature, applications in action, and a set of extra features,
such as screen brightness and network connections.

There are multiple research objectives related to the Carat data and
the Carat analysis system. The main interest has been in applications that
could be associated with increased energy consumption. The current analysis
system can find applications that are using more energy altogether – these
anomalies are called hogs – or just in some particular device – called bugs.
The next step is to take account also the features and other information given
by the mobile APIs. Especially the Android devices offer a lot of information
from their use.

4.2 Analysis specification

The aim of the Carat analysis is to find combinations of attributes, such
as running applications or enabled network connections, that could lead
to energy anomalies. These attribute combinations might be presented as
attribute chains, which are easy to ’follow’: the chain presents sequentially
the combination leading to the anomaly. New actions will be composed to
the clients based on the attribute chains. One possible way to construct the
attribute chains is a decision tree algorithm presented more detail in Section
4.3.

Each data sample offers following information about the device defined
by its API [31, 33]:

• Battery level, in iOS every five percent granularity.

• Event that caused a sample, for example, battery level charged by one
percent.

• Battery state, for example, if the device is currently plugged in to the
power supply.

• A list of the currently running applications and processes.

• Operating system and its version.

• Model of the device.

28

• Time stamp.

• Anonymous hash-based identification of the user.

• In Android devices, a list of features related to usage of battery, CPU,
memory, network (see Table 4).

This information can be used as attributes for the analysis algorithms,
but the presented work with the decision tree is based on the Android features
given in Table 4. The iOS system is more closed than Android API and most
of these features are not possible to obtain from iOS devices. Also, Android
battery level is possible to measure in one percent granularity versus iOS
just in five percent. Teaching and validation data sets have been constructed
from the Android samples that also decreases the data samples to one-third.

For the analysis, samples are organized to sample pairs, that means an
interval between two temporally sequential samples from the client. The
sample pairs can represent the energy consumption and changes in the
applications and the features. The data has been cleaned so that only
interesting sample pairs are left: for example, eliminated sample pairs include
those where the energy use seems to have decreased because of battery
charging or where another sample of the pair has been lost. Every sample
pair includes all the attributes of both of its samples, energy consumption
as a change between two samples, given as percent in a second, and other
attributes as a pair or a list of values.

This kind of change in the battery drain or energy consumption will be
hence called a rate value. If the rate value is high, near 0.04% per second, it
means that it is possible to search reasons from the attribute set and vice
versa. The decision tree uses the attributes for classifying the rate values
and the rate values compose the classes: low, medium, and high energy
consumption. The decision tree tries to find the attribute chains, which
frequently direct to a certain class of energy consumption.

Applications have been explored in earlier work [31, 33], but the Android
features presented in Table 4 have not been approached thus far. In this thesis,
the decision tree uses specifically the Android features for attribute chain
making. After that, the next step could be to try to combine these aspects of
the Carat data even if the number of possible combinations increases quickly
with each new attribute.

29

Feature Values
Battery charger String: AC, USB, unplugged
Battery health String: dead, cold, overheat, good etc.
Battery temperature Numerical value
CPU usage Numerical value between 0-100
Distance traveled Numerical, positive value
Memory active Numerical
Memory inactive Numerical
Mobile data activity String: in, out, none etc.
Mobile data status String: connected, disconnected etc.
Mobile network type String: GPRS, EDGE, UMTS etc.
Network type String: wi-fi, mobile, wimax, etc.
Screen brightness Numerical value between 0-255, -1 if set to

automatic
Uptime Numerical value
Wi-fi link speed Numerical, positive value
Wi-fi signal strength Numerical, positive value
Wi-fi status String: disabled, enabled, unknown etc.

Table 4: Examples from the Android features. All the values are given by
Android API, and they can vary based on the Android version and a phone
model.

Section 4.3 introduces the decision tree classification algorithm more detail.
Section 4.4 presents the entropy heuristic as impurity measurement and
splitting condition. Section 5 presents the Spark decision tree implementation,
including Section 5.1, that focuses on the Android features as decision making
attributes and gives some examples how to handle both discrete and numerical
values.

4.3 The decision tree algorithm

The decision tree is a well-known algorithm for classification and regression.
It has been introduced early at least in the book by Breiman et al. [14] but
presented many times in the literature.

Algorithm 4 presents a decision tree structure based on the book of Tan
et al. [34, pages 164-165]. The algorithm has an input as a set of training
data points and a set of attributes. The algorithm builds a tree recursively.
In each node, the algorithm makes a split based on the attribute that derive
results in minimal impurity. The impurity has been measured by some

30

heuristic, for example, entropy or gini index. This work uses the entropy
heuristic presented in Section 4.4.

Algorithm 4 Basic decision tree
Let D be a set of training data points
Let A be a set of attributes

function growthTree(D, A)
1: if stopping condition == true then
2: leaf = new node
3: leaf.class = classify()
4: return leaf
5: else
6: root = new Node
7: bestAttribute = findBestSplit(D, A)
8: let V be a set of values of the best attribute
9: for all v ∈ V do

10: Dv = {d|d.bestAttribute = v and d ∈ D}
11: child = growthTree(Dv, A)
12: add child as a descendant of the root
13: end for
14: end if
15: return root

The decision tree algorithm 4 starts by checking the stopping condition
that could be, for example, the size of the remaining data points or attributes
or some other measurement, such as the count of performed iterations. If
the stopping condition returns true, a leaf node will be created. A function
classify gives a class or label to the leaf node. Majority of data points
determines to which class the leaf node assign.

If the stopping condition returns false, the iteration continues and a new
root node will be created for a subtree and a child of the earlier node. A
function findBestSplit gets a set of training data points and a set of attributes
and returns the attribute that direct to the best split in future. Next, the
split will be made based on the best attribute. For each value of the best
attribute, a new children node will be created. So a size of the training data
point set will increase and, if wanted so, also the used attribute could be
removed in order to avoid reusing the attributes.

Figure 11 presents an example decision tree. The root node estimate the
attribute network type to be the best, or it leads to decreasing impurity in

31

Root node

Analyze the best split for each
attributes in the attribute list

Attributes, e.g.:
- Distance travelled
- Network type
- Screen brightness

The first best attribute:
network type, values:
mobile, wi-fi, or some other

Mobile
network Wi-fi Some

other
network

First level children
nodes

Analyze the best split
based on attributes left:
- Distance travelled
- Screen brightness

The best attribute:
Screen brigthness,
values: automatic,
manual

Automatic Manual

And again:
analyze the best split
based on attributes left,
now only:
- Distance travelled

The best attribute:
Distance travelled, values:
< 10m, 10-100m, 100m >

< 10m 10-100m 100m >

Second level
children nodes

Attributes left:
- Screen brightness

Figure 11: A decision tree example. Each node makes a decision for the next
best split. For example, the subtree left has been first split by network type
and then by screen brightness.

32

the tree. Network type has values mobile, wi-fi, and some other network.
Each first level child gets a list of remaining attributes and estimates the next
best split. The node split by mobile as the network type gets the attribute
screen brigthness for its next best split. The node split by wi-fi gets the
attribute distrance travelled. This iteration will be continued until fulfilled
the stopping condition.

The decision tree algorithm is possible to implement also without recur-
sion. In this case, nodes should be saved to some helping data structure, such
as stack or list. Section 5.2 presents the Spark decision tree that were first
implemented with recursion but after that without it because of performance
issues.

4.4 Impurity measurement

The decision tree can estimate goodness of the next split by several heuristics.
In this work, entropy has been used for measuring impurity of the splits.
Entropy is presented, for example, in the book of Tan et al. [34, pages
158-160].

Entropy is defined so that

Entropy = −
c−1∑
i=0

p(i|t)log2p(i|t)

where c is a count of possible classes, i is an iteration over data points and t

presents a count of data point entries in the given node. This denote that
the notation p(i|t) means a fraction of data points in class i appearing in
the node t. The value of entropy is in the range [0, 1] so that 0 means all
the data points of the node belongs to the same class and 1 means the data
points are divided equally between the classes. For simplicity, it is defined
that 0log20 = 0.

When growing the tree, variances in the entropy are aggregated to the
information gain that presents a difference of impurity between the parent
and the children nodes. The information gain IG is defined so that

IG(A, a) = Entropy(A)−
n∑

v=0
(Av/A)Entropy(Av)

where A is a set of attributes and a ∈ A, and values of each attribute are

33

presented as v ∈ values(a) and n is a number of values of attribute a.
For each attribute a ∈ A it will produce an information gain. The gain

is a difference between the node’s current entropy before the split, which
could be given also as a parent note’s entropy, and the sum of entropies of
every children node made by attribute values. The entropies of the children
nodes are weighted with the count of data points belonging on this current
children node.

After producing the information gains for each attribute, the attribute
with the highest information gain will be picked up for the splitting condition.
This defines the best attribute for the next split:

bestAttribute = max{IG(A, a)|∀a ∈ A}.

Because trying to minimize the entropy in the decision tree, the best informa-
tion gain is such that where the difference in impurity of the parent and the
child node is maximized. The child consists of a fraction of the data points of
the original parent, so the child will inevitably have a entropy measurement
leading to more pure results.

34

5 The Spark decision tree for Carat

This section presents the Spark implementation of the decision tree algorithm
which has been used for analyzing the Carat data. The analysis specification
has been presented in Section 4. Section 5.1 introduces to preprocessing of
the Carat data. Section 5.2 presents the Spark decision tree implementation.
Section 5.3 focuses on validation process of the decision tree algorithm.
Analysis results will be presented in Section 6.

5.1 Attributes and data preprocessing

Table 4 shows examples from the Android features of the Carat data. Some
of the features has discrete values, given as strings, for example, mobile
network type has values "GPRS", "EDGE", or "UMTS". Some of the features
has numerical values, for example, screen brightness is always an integer
from the range 0 to 255, or -1 if the screen brightness has set to automatic
in the device. Some numerical attributes has floating values, for example,
distance traveled, or wi-fi link speed.

Multiple diversity of different attribute values has to be handled in
suitable way. In this work, it seemed to be a sufficient solution to discretize
all the attributes. This means that all the attributes with numerical values
are presented as value ranges, which describe classes such as the discrete
values describe a class. For example, possible classes of the attribute distance
traveled can be zero to one meter, one meter to hundred meters, and all
the values more than hundred meters. Sometimes a single value may be
enough to present a class, for example, the screen brightness has value -1 that
describes devices where the screen brightness has been set to be automatic
instead of manually by user. The attribute classes used in this work are
presented in Table 5.

The value classes for each attribute should be results of some automated
method, such as clustering or statistical analysis, so the classes will base on the
Carat data. They are also possible to type by expectations based on natural
groups, such as low, high, and automatically set screen brightness values. In
terms of the implementation, all the attributes are given to the algorithm
as a parameter, so they are possible to modify without modifications to the
decision tree algorithm’s implementation.

The decision tree algorithm uses the entropy heuristic as an impurity

35

Attribute Value classes
Network status connected, other
Battery voltage 0-2.5, 2.5-5, 5->
Mobile network type GPRS, EDGE, UMTS, 3G, other
Battery temperature 0-20, 20-40, 40-100
Wi-fi status enabled, other
Network type wifi, mobile, wimax, other
CPU usage 0-20, 20-40, 40-60, 60-80, 80-101
Battery health dead, cold, overheat, over voltage, good, other
Mobile data activity none, in, out, inout, dormant, other
Screen brightness -1, 0-101, 101-255, 255
Distance traveled 0-101, 101->
Mobile data status connected, disconnected, suspended, other

Table 5: Attributes used in the example of this work. Numerical ranges used
so that the lowed bound includes to the range, but the upper bound does
not.

measurement function for splitting decisions. The entropy measurement is
presented better in Section 4.4. For working correctly, entropy measurement
needs to know the ending classes beforehand. This means the rate classes
mentioned in Section 4.2. They represent if energy consumption has been
low, medium, or high – possible in more detail groups.

Different rate values and their amounts of the Android data are presented
in Figure 12. Figure shows that there are lot of samples with just a small
rate value, which means a little energy consumption, maybe the devices have
been idle. There are fewer rate values with very high energy consumption,
but the distribution is not smooth and some increased values are possible to
observe. Rate values can be interpreted as hours by the formula

h =
100
rate

3600

so that the energy consumption 0.015 per second means circa 1,85 hours of
total battery life, for example. Vice versa, the rate value can be interpreted
to hours by the formula

rate = 100
h · 3600

Figure 12 also shows that there are no clear clusters naturally in the data.
In this thesis, natural split are used for present energy consumption groups:
low as more than 24 hours of total battery life, high as fewer than eight

36

Figure 12: Counts of different rate values in the Android data set.

hours of total battery life, and medium as their intermediate. These number
of hours also represent how often the device should be charged, roughly. For
more information, also rates that predict less than an hour battery usage
form a class. So the rate classes the approach of this thesis will be:

1. Low consumption, more than 24 hours of total battery life: rate values
< 0.001157

2. Medium consumption, eight to 24 hours of total battery life: rate values
∈ [0.001157, 0.003472[

3. High consumption, less than eight hours of total battery life: rate
values ∈ [0.003472, 0.027777[

4. Only an hour of total battery life: rate values ≥ 0.027777

5.2 The Spark decision tree implementation

The basic structure of the decision tree algorithm has been presented in
Section 4.3. It was recursion-based, and also a recursion version of the Spark

37

decision tree has been developed. Because of multiple performance issues,
also the non-recursive version has been tested. Algorithm 5 presents this
non-recursive version which based on a feature chain list as the helping data
structure.

Algorithm 5 Non-recursive Spark decision tree
Let D be an RDD of training data items (sample pairs)
Let A be a set of attributes (Android features)
Let C be a set of rate classes

Let chainSet to to be a set of ready feature chains
Let n be maximum depth of the tree
There can be used also other stopping conditions.

function makeDecisionTree()
1: Broadcasting the attributes can make this faster.
2: (feature, values) = bestSplit(D, A, C)
3: chainSet ++= values.map(value => new Chain((feature, value)))
4: iteration = 1
5: iterationRDD = null
6: while iteration <= n do
7: chainSet.filter(_.length == iteration).foreach(chain => {
8: attributes = broadcast(chain.attributes)
9: iterationRDD = D.filter(chain)

10: (feature, values) = bestSplit(D, A, C)
11: if feature != null then
12: attributes = chain.attributes - feature
13: chainSet ++= values.map(value => {
14: newFeatures = chain.features ++ (feature, value)
15: new Chain(newFeatures)
16: })
17: end if
18: iteration += 1
19: })
20: end while
21: return chainSet

The bestSplit function is given in Algorithm 6.

The training set D of the data items consists of sample pairs presented
in the specification in Section 4.2. A sample pair contains a set of Android
features and a rate value from one measurement interval. The attribute set A

38

Split by CPU usage

0-40% 40-60% 60-100%

Split by
Network type

Wi-fiMobile

Root node

First level
children

Second
level
children

Figure 13: One feature chain of decision tree is colored with red. After two
splits, this chain consists of feature and value pairs (CPU usage, 40-60%)
and (Network_type, mobile).

contains Android features given in from a = (attribute_name, Set[values]).
The class set C represents the classes of rate values introduced in Section 5.1.
The rate classes are used for measuring entropy presented in Section 4.4.

The set called chainSet is the helping data structure that saves the chains
discovered. A chain consists of a path from the root node to some children
node as presented in Figure 13. The chain is presented as an ordered list of
features and their values which the splits are based. The tree contains chains
from the root to the leafs or from the root to some children in the middle
of the tree. For example, the tree in Figure 13 consists of eight chains: five
from the root to the leafs and three from the root to the first level children.

The main function makeDecisionTree makes first a split for the root
node. The bestSplit function, presented in Algorithm 6, returns the best
attribute as (feature, values) where the second part is a set of values. Every
(feature, value) pairs form the first chains.

After the first split, the algorithm continues iterating the children node
levels in order of breadth-first search presented in Figure 14. Iteration
continues until the stopping condition has been fulfilled. Now, there is only
the iteration depth used as a stopping condition, but also others are possible,
such as the size of the training items left. At the beginning of each iteration

39

1

3

6

4

5 8 9

2

7

Root node

First level
children

Second
level
children

Figure 14: Breadth-first search. Nodes are handled in the order of numbering.
The levels are colored for clarity.

level, the algorithm separate chains that are as long as the given index. This
aims only chains of the previous iteration level can be used as a seeds for
the next level chains.

The attributes of the seed chain are broadcast. The training set D

is filtered by the attributes of the chain, so that the appropriate sample
pairs are separated to the variable iterationRDD. For example, if the
chain consists of the feature and value pairs (network_type, mobile) and
(battery_healt, good), the filtering operation returns the sample pairs where
the network type is mobile and the battery health is good. In the recursive
version of the decision tree algorithm, this filtering would be managed when
splitting the training set to the children nodes, for example.

The best split is measured by the function bestSplit called by the main
function makeDecisionTree. The function bestSplit also uses the function mea-
sureGoodness for perform the entropy heuristic. They both are represented
in Algorithm 6.

The function bestSplit has a sets of sample pairs in the RDD, attributes
and rate classes. At first, the sample pairs are ordered by each feature given
in the attribute set so that each feature has a set of the related sample pairs.
Second, the sets of features and sample pairs are organized to the sets of the

40

Algorithm 6 Best split functions
These functions are used for measuring the best split. In addition to them,
there are also helping functions for computing entropy heuristic as presented
in Section 4.4.

function bestSplit(samples, attributes, classes)
1: byFeature = map samples by each feature ∈ attributes
2: byFeatureAndValue = map samples by values of each feature
3: if byFeatureAndValue != empty then
4: entropiesAfterSplit = byFeatureAndValue.map(samples => {
5: measureGoodness(samples, classes)
6: })
7: entropyBefore = measure entropy after split
8: bestIG = entropiesAfterSplit.map(entropyAfter => entropyBefore -

entropyAfter).max
9: return bestIG as a pair (bestFeature, values)

10: end if

function measureGoodness(samples, classes)
1: split = get a real class for each item ∈ samples
2: entropies = measure entropy for each part ∈ split
3: entropyAfterSplit = sum of entropies weighted by part size

41

feature, the feature values and the related sample pairs, so that:

byFeatureAndV alue = RDD(feature, Map(value, Set(samplepair)))

where for each feature there is a map of the feature values and the sample
pair set. This form of the RDD helps in the next steps of the algorithm.

The algorithm prunes the feature and value combinations which have no
sample pairs. If the sample pairs exist, the algorithm measures a entropy for
each possible splits. The splits are based on the features and their values,
so the function measureGoodness is attached to each sample pair set in the
byFeatureAndValue RDD. For the information gain presented in Section 4.4,
the algorithm also measures entropy after the split. It can also be given as
a parameter from the earlier iteration, except to the root node that has no
parents. The best information gain is chosen by maximizing the difference of
entropy after and before the splits. The function bestSplit returns the best
information gain as a pair of the best feature and its values.

The function measureGoodness implements the actual entropy heuristic
with necessary helping functions. At first, each sample pair is assigned to one
of the given rate value classes. Second, entropy is measured for each set of
the assigned sample pairs, that are comprehended to the parts of the possible
split or the next child nodes. Finally, the entropy after split is measured as
a sum of entropies of the parts weighted by size of each part.

5.3 Validation with the synthetic data set

The Spark decision tree has tested with the synthetic data set generated by
Matlab [8]. This data set consists of thousand data items that have been
separated to six rate classes. Each data item includes a limited set of Carat
like attributes that are divided so that the decision tree results are possible
to assume.

The Matlab classification and regression tree function classregtree [7] has
been ran also with the same synthetic data set. Because the classregtree
function produces only binomial decisions, also the synthetic data set has
been designed so that the Spark decision tree should also return a binary
tree. For the Spark decision tree, the synthetic data set has been written as
an RDD.

Figure 15 presents the output of the function classregtree based on the

42

Figure 15: The output of the Matlab classification and regression tree function
classregtree based on the synthetic data set.

synthetic data set. For simplicity, the attribute classes are presented as
numbers. The equivalent value names are:

• Network type: 1 = wi-fi, 2 = mobile

• Screen brightness: 2 = 101-254, 3 = 255

• CPU usage: 2 = 20-40%, 5 = 80-100%

• Distance travelled: 1 = 0 to 100 meters, 3 = more than 100 meters

With the synthetic data set, the Spark decision tree produces the following
attribute chains:

• Network type = mobile

• Network type = wi-fi

• Network type = mobile, CPU usage = 20-40

• Network type = mobile, CPU usage = 80-100

43

• Network type = wi-fi, Screen brightness = 101-254

• Network type = wi-fi, Screen brightness = 255

• Network type = mobile, CPU usage = 80-100, Distance traveled =
100-10000000000

• Network type = mobile, CPU usage = 80-100, Distance traveled =
0-100

which are equivalent to the results of the Matlab function classregtree.

5.4 Cross validation with the real Carat data

K-fold cross validation has been run with the real Carat data. K-fold cross
validation, presented by Kohavi [23] et alia, is a validation technique where
the data set has been divided to two parts: a training set and a test set. The
decision tree is growth by the training set and after that validated by the
test set. This operations are iterated K times, so that each time the test set
is individual 1/K part of the full data and the training set consists of K − 1
data folds. Figure 16 shows how test and training data sets alternate during
iterations.

The basic cross validation technique measures the error rate for each test
set. The full error rate can be given as an average of errors of the iterations,
for example. Basically, the test set error means that how many items in the
test set are classified wrong by the decision tree. This requires the attribute
chains always lead just in one possible class. In the Carat data set, it is even

. . .

1. iteration

2. iteration

K. iteration

Test set Training set

Figure 16: An example of the K-fold cross validation.

44

suitable that one chain can lead to multiple classes – the class distributions
are more interesting than choosing one specific class for each of the chains.

In this work, K = 10 that leads to ten folds and iterations. The cross
validation aims to handle the full data set divided into K parts, but because
of performance issues, the folds of this work are initialized randomly selecting
a data fraction of the right size to be a fold. So the validation is possible to
execute in hours instead of days. All the measurements have been executed
in Amazon EC2 cluster of ten nodes of eight vCPU and 30GB RAM.

The fold size was first measured circa 12 000 sample pairs, which means
size of the training set is circa 9 · 12 000 = 108 000 sample pairs. The training
set of this size seems to make the decision tree really slow. At 108 000 sample
pairs, the run did not completed before 48 hours when the maximum depth
of the tree is four only. In comparison, a tree of circa 12 000 sample pairs
and the same depth has generated in less than an hour, and a tree of circa 1
200 sample pairs in circa five minutes. So the scalability is superlinear.

Because of this quick-growing time complexity, the fold size has been
reduced by random sampling to circa 1 200 sample pairs. This fold size leads
to the training set of circa 10 800 sample pairs. Hence, the cross validation
is not a comprehensive to all the Carat data samples, but it can give a small
approach, at least.

Results of the cross validation analysis are represented in Figures 17 and
18, as differences in class distributions between the training set and the test
set. After the observation that each attribute chain of the decision tree can
lead multiple classes, there is no possibility to classify the sample pairs to
any kind of truth classes. That is because it is more relevant to compare, in
which distributions the sample pairs have been separated when growing the
decision tree by the training set, and then, when validating the decision tree
by the test set.

Figure 17 presents average Kullback–Leibler divergences for each of the
cross validation folds. The Kullback–Leibler divergence [25] is a widely known,
statistical measurement that offers a tool for comparing two distributions
P and Q, where P is the ’truth’ and Q is the distribution whose impurity
should be measured. The Kullback–Leibler divergence is defined so that

KLd(P ||Q) =
n∑

i=0
log

(
P (i)
Q(i)

)
· P (i)

45

Figure 17: Averages Kullback–Leibler divergence in the 10-fold cross valida-
tion for the Carat data.

In this work, P is defined to be the distribution of the training set and
Q to be the distribution of the test set, where distributions mean how the
sample pairs of each chain have been separated to the different rate classes.
The Kullback–Leibler divergence works so that if the distribution Q reminds
the distribution P much, the sum in the formula approach towards zero.
If the distributions Q and P are the same in each measured point, the
Kullback-Leibler divergence is zero.

The Kullback-Leibler divergence has been measured for the rate class
distributions per chain. As mentioned, the chain can lead to the multiple
rate classes, and parts of each rate class are given as a distribution. For each
chain in the decision tree, there is

KLd(chain) = KLd(training(chain)||test(chain))

and for each decision tree or for each fold, there is

AverageKLd =
∑n

chain KLd(chain)
n

where n is a count of chains. Absolute value averages of each fold are
presented in Figure 17.

46

Figure 18: Average differences of expected values in the 10-fold cross valida-
tion for the Carat data.

Figure 17 represents that in the cross validation experiment, the folds
two and eight have been lead to the minimum impurity, if measured by the
Kullback-Leibler divergence. The average Kullback-Leibler divergence over
all the folds is 0.0224485835 and the standard deviation is 0.0114797276
that both seems to be near zero. The decision tree of the fold eight will be
represented in Section 6 in more detail.

Figure 18 presents the average differences in expected values between the
training set and the test set, measured by each fold separately. The differences
are given as percentages. The expected values in the Carat analysis present
the total battery life of the device under under existing conditions. That
means, for example, that in the fold number eight, there are 10% difference
in the total battery life between the average case in the training set and the
average case in the test set. Hence, the smaller difference aims to the larger
similarity.

Because of limited size of the data sets used to the cross validation
experiment, it is hard to analyze how comprehensive these measurements
are in a broader perspective. The performance issues and superlinear time
complexity make any wider measurements arduous to perform. One of the
key elements of the distributed Big Data analysis in the cloud computing
environments should be low execution time – and in this form, the distributed
decision tree will not be as fast as desirable. Because the Spark system has

47

been found to have good performance [37], it is probable that the Spark
decision tree implementation needs more optimizations.

Regardless the performance issues, Section 6 will introduce some results
of the decision tree analysis in the form of decision trees found. Section 7
will summarize lessons learned and discuss some future work prospects.

48

6 Results

Figure 19 represents an example of a decision tree for Carat data. This
decision tree has a depth of three and it is based on the data fold number
8 from the cross validation experiment in Section 5.4. The tree has been
grown by circa 10 800 sample pairs as a training set, and also information
presented next is based on this training set. When making any conclusions
about the results, it is important to notice the results are based on a small
part of the whole data set.

In Figure 19, the attribute that has lead to the split is presented inside
the node. Values of the attribute are presented in connection with edges.
For example, the attribute of the first split is battery temperature with
values 0-20, 20-40, and 40-100, given in degrees Celsius. When the battery
temperature has the value 0-20, the child node 2.1. determines that its
next attribute for a split will be screen brightness. The attribute sets are
individual per chain. For example, after the split by the attribute distance
traveled in node 2.2. both of its children nodes 3.3. and 3.4. are split by the
attribute screen brightness.

Rate class distributions of root to leaf chains are presented in boxes
after each leaf node. The percentage shows a proportion of sample pairs
belonging to each rate class defined in Section 5.1 and given in hours, for
clarity. According to the percentage proportions, the chains with the most
sample pairs in the lowest rate class (only an hour of total battery life), are:

• Battery temperature = 20-40, Battery voltage = 0-2.5, Screen bright-
ness = -1 – 25%

• Battery temperature = 20-40, Battery voltage = 0-2.5, Screen bright-
ness = 101-255 – 12%

• Battery temperature = 20-40, Battery voltage = 2.5-5, Network type
= wimax – 66%

All these chains contain only a few sample pairs in the aggregate. That
can be seen in Figure 20, that presents the decision tree of Figure 19 when
the nodes have been scaled by the data set size in each split by common
logarithm log(x). A chain in the middle of the tree includes significantly
more sample pairs than the other chains. In the depth of four, this large

49

1. Battery
 temperature

2.1. Screen
 brightness

0-20

2.2. Distance
 traveled

20-40

2.3. Battery
 voltage

40-100

3.1. Distance
 traveled

-1

3.2. Mobile
 network type0-101

3.3. Battery
 voltage

101-255

3.4. Screen
 brightness

0-101

3.5. Screen
 brightness

101->

3.6. Screen
 brightness

0-2.5

3.7. Network
 type

2.5-5

24h> 65%, 8-24h 27%
1-8h 7%, <1h 1%0-101

24h> 65%, 8-24h 35%
1-8h 0, <1h 0

101->

24h> 63%, 8-24h 22%
1-8h 14%, <1h 1%

other

24h> 33%, 8-24h 33%
1-8h 33%, <1h 0edge

24h> 0, 8-24h 25%
1-8h 75%, <1h 0

gprs

24h> 45%, 8-24h 30%
1-8h 23%, <1h 2%0-2.5

24h> 60%, 8-24h 28%
1-8h 12%, <1h 0

2.5-5

24h> 0, 8-24h 20%
1-8h 80%, <1h 0

5->

24h> 46%, 8-24h 29%
1-8h 24%, <1h 1%

-1

24h> 45%, 8-24h 27%
1-8h 26%, <1h 2%0-101

24h> 42%, 8-24h 29%
1-8h 27%, <1h 2%

101-255

24h> 43%, 8-24h 35%
1-8h 21%, <1h 1%-1

24h> 44%, 8-24h 28%
1-8h 27%, <1h 1%

0-101

24h> 45%, 8-24h 26%
1-8h 28%, <1h 1%

101-255

24h> 0, 8-24h 75%
1-8h 0, <1h 25%-1

24h> 0, 8-24h 50%
1-8h 50%, <1h 0

0/101

24h> 0, 8-24h 0
1-8h 88%, <1h 12%

101-255

24h> 32%, 8-24h 20%
1-8h 46%, <1h 2%mobile

24h> 47%, 8-24h 19%
1-8h 33%, <1h 1%

wifi

24h> 17%, 8-24h 0
1-8h 17%, <1h 66%

wimax

24h> 53%, 8-24h 15%
1-8h 32%, <1h 0

other

Figure 19: A result graph of depth three based on the data fold 8 from the
cross validation experiment in Section 5.4. Rate class distributions of each
root to leaf chain are presented in boxes.

50

 1.

2.1.

2.2.

2.3.

3.1.

3.2.

3.3.

3.4.

3.5.

3.6.

3.7.

4.1.

4.2.

4.3.

4.4.

4.5.

4.6.

4.7.

4.8.

4.9.

4.10.

4.11.

4.12.

4.13.

4.14.

4.15.

4.16.

4.17.

4.18.

4.19.

4.20.

4.21.

Figure 20: The decision tree of Figure 19 where the node size in the nodes is
scaled by size of the data set in the current split and by common logarithm
log(x).

51

Attribute chain Average bat-
tery life

Sample pairs
(class / total)

Battery temperature = 20-40 16.17h 134 / 8137
= 1.6 %

Battery temperature = 20-40,
Distance traveled = 0-101

16.11h 134 / 8070
= 1.7 %

Battery temperature = 20-40,
Distance traveled = 0-101,
Screen brightness = -1

19.05h 37 / 3781
= 0.98 %

Battery temperature = 20-40,
Distance traveled = 0-101,
Screen brightness = -1,
Mobile data activity = none

19.06h 33 / 3414
= 0.96 %

Battery temperature = 20-40,
Distance traveled = 0-101,
Screen brightness = 0-101

16.96h 31 / 2089
= 1.4 %

Battery temperature = 20-40,
Distance traveled = 0-101,
Screen brightness = 101-255

14.82h 37 / 1721
= 2.1 %

Table 6: Attribute chains that have lead to a rate class of 0.027777 or higher,
that means at most an hour of total battery life.

set of sample pairs starts also to scatter. Next, there are analyzed chains
that do not have a high proportion of the lowest rate classes but do have a
number of sample pairs belonging to these classes: an hour or less of total
battery life and an hour to eight hours of total battery life.

According to the rate classes presented in Section 5.1, a rate value more
than 0.027777 represents the highest energy consumption profile and the
lowest total battery life, an hour only. In the training set of the decision
tree in Figure 19, there are attribute chains that have led to this class with
more than 30 sample pairs. They are presented in Table 6 together with the
average total battery life of the chain in the entirety and the number of the
sample pairs of this rate class compared to the full number of sample pairs
of this chain.

Table 6 shows the following: The two first attribute chains have a same
number of sample pairs, so in every time the battery temperature with the
value 20-40 leads to the highest energy consumption class, there exists also
the attribute distance traveled with the value 0-101. It seems that the device
has been in place and in room temperature. After that, the class has been

52

divided by the values of the attribute screen brightness. Compared to the
values of the average total battery life, the sample pairs of this rate class
seems to be incorrectly classified. Regarding the number of the sample pairs
in the class and in total, they are certainly in the minority.

The rate value 0.003472 to 0.027777 means that there are less than eight
hours but more than an hour of total battery life in the device. The attribute
chains that lead to this class are presented in Table 7. Only attribute chains
of more than a hundred sample pairs are taken into account.

Table 7 shows the following results: There are much more sample pairs in
the rate class 0.003472 to 0.027777 than in the rate class 0.027777 or higher.
In both of the rate classes, there are mostly sample pairs where the attribute
battery temperature has a value of 20-40 and the attribute distance traveled
has a value 0-101, which possibly means these devices are in place and in
room temperature.

After the attributes battery temperature and distance traveled, the
attribute screen brightness appears again. There are 926 sample pairs in
this class where the screen brightness has been set to automatic, that means
the value -1. In contrast, there are 548 sample pairs in which the screen
brightness has been set between the values 0 and 101, but also 407 sample
pairs in which it has set between the values 101 to 255. For simplicity, the
bound value 101 belongs to higher class only. This observation might be
interesting, because it is a common hypothesis that the automatic screen
brightness might save the battery life.

Compared to the average battery life of the chains, the averages are more
positive than the observed class. When the part of the sample pairs in the
class increases, also the average battery life decreases. Against previous
assumptions, there are no attributes related to network connections on the
top of the decision tree.

Figure 21 represents the expected values of each node in the decision
tree of Figure 19. These values are hours of total battery life in the device:
the more red, the lower expected value of total battery life in current node.
Figure 21 is comparable to the mentioned chains that have the highest
proportion of sample pairs related to the rate class of just an hour of total
battery life.

The decision tree is possible to use for giving advices to the devices of the
Carat community. Attributes of the new data measurements are compared

53

Attribute chain Average bat-
tery life

Sample pairs
(class / total)

Battery temperature = 20-40 16.17h 2177 / 8137
= 26.7 %

Battery temperature = 20-40,
Distance traveled = 0-101

16.11h 2166 / 8070
= 26.8%

Battery temperature = 20-40,
Distance traveled = 0-101,
Screen brightness = -1

19.05h 926 / 3781
= 24.5%

Battery temperature = 20-40,
Distance traveled = 0-101,
Screen brightness = -1,
Mobile data activity = inout

16.98h 253 / 894
= 28.3%

Battery temperature = 20-40,
Distance traveled = 0-101,
Screen brightness = -1,
Mobile data activity = none

19.06h 801 / 3414
= 23.5%

Battery temperature = 20-40,
Distance traveled = 0-101,
Screen brightness = 0-101

16.96h 548 / 2089
= 26.2%

Battery temperature = 20-40,
Distance traveled = 0-101,
Screen brightness = 0-101,
Network type = mobile

16.90h 309 / 1155
= 26.8%

Battery temperature = 20-40,
Distance traveled = 0-101,
Screen brightness = 0-101,
Network type = wifi

19.71h 214 / 828
= 25.8%

Battery temperature = 20-40,
Distance traveled = 0-101,
Screen brightness = 101-255,
Mobile network type = other

15.84h 407 / 1559
= 26.1%

Battery temperature = 20-40,
Distance traveled = 101->

19.72h 201 / 802
=25.1%

Battery temperature = 40-100 11.09h 154 / 332
= 46.4%

Battery temperature = 40-100,
Battery voltage = 2.5-5

11.96h 142 / 314
= 45.2%

Battery temperature = 40-100,
Battery voltage = 2.5-5,
Network type = mobile,
Mobile data status = connected

12.07h 108 / 235
= 46.0%

Table 7: Attribute chains that have led a rate class 0.003472 to 0.027777,
that means one to eight hours of total battery life.

54

24 h >

8-24 h

1-8 h

< 1h

Figure 21: The decision tree of Figure 19 where the color of the node indicates
the expected value of total battery life: the more red, the lower expected
value of total battery life.

55

to the decision tree. If the new measurements seems to be fitting to the
chains, which are known for leading to increase in total battery life, an advice
will be sent to the device. For example, if the new measurement contains
an attribute chain battery temperature = 40-100, battery voltage = 0-2.5,
screen brightness = -1, the advice can be such as "put screen brightness under
101". That is because the decision tree of this attribute combination leads
to the low total battery life, but the near chain where screen brightness has
the value 0-101 leads higher total battery life. For searching the decision
tree, also other improving advices can be given, depending on how much the
improvement should be and how the walk through the decision tree has been
organized.

56

7 Discussion

Even with multiple optimizations, the experiments of this thesis have shown
that the Spark implementation of the distributed decision tree slows down
significantly when the number of items in the training data set increases.
This means that it does not make sense to grow a decision tree that covers
the full Carat data set or even a large subset of it. This is unfortunate,
because the Spark system has been designed specifically for large scale cluster
computing. Some more optimizations or even some other, more suitable or
efficient algorithms, are needed.

An additional optimization might be to change the data format in which
the sample pairs are represented. Currently, there are many string compar-
isons that are heavy to execute and generate Java objects. One effective
solution would be to represent information of the sample pairs in binary
format as bit vectors. With a simple API around for the binary vectors, they
should be as easy to use in the algorithmic code as the objects where the
attributes are presented in String format.

For the Carat data analysis system, it might be possible to try to find
a decision tree that describes the data set as well as possible. When new
data items are measured, they can work as an input for improving the
accuracy of the old decision tree, for example, evaluating the tree towards
lower error rates via cross validation technique. This evaluation model can
also work when the whole data can not be used for growing the tree because
of performance or memory complexity issues.

One of the aims of distributed data analysis is to develop solutions, which
do not require more time or memory to be executed, even when the size of
the data set grows. Certainly, the time or memory complexity for handling
the new data items should not depend on the size of the old data set.

If the distributed decision tree will work efficiently in the future, an
interesting approach might be to expand the decision tree for handling also
other attributes than Android features. A possible choice is to handle also
running applications as attributes of the decision tree. This increases the
number of possible chains or attribute combinations rapidly, but it might
offer a better overview to energy consumption of the devices in the Carat
project.

There are also other data mining algorithms that can be even more

57

effective when trying to find attribute combinations. For example, some of
the frequent itemset mining algorithms or association rule mining algorithms
might be interesting to implement for the Spark distributed computing
environment. The decision tree is focused on organized combinations, because
the splits have been made sequentially. This can lead some information losses,
for example, if the split has been made based on the attribute of minimal
difference to the second best. For example, the frequent itemset mining
algorithms should provide a solution for these kind of cases, because they do
not take the attribute order in the combinations into account [34].

A broader perspective, the data mining and machine learning algorithms
offer a set of tools for better understanding and summarizing the information
of the large data sets. Implementing these algorithms efficiently requires
deep understanding of the distribution system and paradigms, such as Spark
and MapReduce. This thesis has been a great lesson on how to implement
more complex algorithms for Spark, and how to take into account the size
of the large data set and the limited memory even in the cloud computing
environment.

58

8 Conclusion

This thesis has introduced the current fields of Big Data, cloud computing
and distributed machine learning. It has presented what cloud computing
environments can provide for analyzing large data sets efficiently. Especially,
this thesis has presented Berkeley Data Analysis Stack and two of its systems:
the dynamic cluster resource manager Mesos, and the in-memory cluster
computing system Spark.

Spark extends a well-known computing paradigm MapReduce. In contrast
to MapReduce that provides two functions only, map and reduce, the Spark
system offers a diverse library of functions and memory control operators.
MapReduce requires that the developer implements both the map and reduce
functions, whereas Spark offers the API of easy to use Scala-like functions.

This thesis has presented the Carat project, that collects energy con-
sumption data from mobile devices, such as smart phones and tablets. The
devices send their measurements to the cloud, where the Carat analysis
system performs data analysis, and returns advices for energy control as
feedback. The Carat analysis system has been implemented on the Spark
system.

This thesis has presented the Spark implementation of a distributed
decision tree algorithm. As an example, the decision tree has been used
on the Carat data. The decision tree uses the features of Android devices,
such as screen brightness, distance traveled, and network connections, as
attributes of the algorithm. The decision tree algorithm produces attribute
chains, or paths of the decision tree, that describe combinations that might
lead to particular energy consumption behavior. The aim of the decision
tree analysis is to find and predict possible energy anomalies.

The Spark decision tree algorithm has been validated by the synthetic
data set, where the results are comparable to the Matlab decision tree
implementation, and by the K-fold cross validation technique, where it has
been used on the real Carat data samples. Some interesting results of the
decision tree analysis have also been represented at the end of this thesis,
together with advantages and disadvantages of the decision tree analysis.

In conclusion, some other algorithms have been proposed to compensate
or supplement the decision tree analysis, for example frequent itemset mining
algorithms and association rule mining algorithms. Some other interesting

59

algorithms to implement on Spark would be linear regression and nearest
neighbor classification algorithms. They can offer a broader perspective for
the entire data.

When the suitable algorithms have been recognized and implemented on
Spark, the cloud environment can offer data analysis and data mining as
services such as any other computing properties. This means that the mobile
application can contact to the cloud, send the data measurements and, after
the data processing and executing the algorithms, get some feedback from
the cloud based on the new measurements and all the data gathered in the
past. This process can be named as Data Mining as a Service (DMaaS).

The DMaaS systems should have some requirements related to efficiency
and performance. Frequently, the devices need feedback in short order with-
out any unnecessary delays. Approximated results with sufficient feedback
can be enough if the exact results require more time to be executed – it is
possible to improve the results afterwards. Short response times advocate
streaming systems and algorithms, for example. The Spark system has been
developed to the Streaming Spark system already.

The sensor data provides its own challenges. There are lot of different sorts
of sensors. Mobile devices have sensors for location, position, acceleration,
battery temperature and voltage, for example. Heterogeneity of the sensing
devices can be wide. For example, mobile devices have multiple models,
operating systems and hardware components. The sensors can measure
incorrectly or imprecisely and the devices are frequently moving, which can
lead to possible low data reliability.

For handling large amounts of the sensor data, the DMaaS system should
provide appropriate data locations with sufficient distributed file systems,
efficient data mining algorithms for bringing some sense to the versatile data,
and also machine learning tools for predicting the future behavior of the
sensing devices. To reduce the unnecessary data measurements or computing
load of the analysis system, it can be relevant to discuss how the sensing
devices as clients can also participate to the data processing, for example,
by preprocessing the measurements already in the mobile device.

After the work of this thesis, the concept of Data Mining as a Service holds
great potential for future work. The possible research questions would be
related to the topics of data streaming, collaboration of client-side computing
and cloud computing, approximated and immediate results from the analysis

60

system, machine learning algorithms, and appropriate data locations. At its
best, the DMaaS systems would combine the best efforts of cloud computing,
data mining algorithms and Big Data, for use of different kind of applications,
but especially sensing applications in mobile devices.

61

9 References
[1] Amazon elastic compute cloud (Amazon EC2). http://aws.amazon.

com/ec2.

[2] Apache Hadoop. http://hadoop.apache.org.

[3] Apache Mahout. http://mahout.apache.org.

[4] Apache Mesos: Dynamic resource sharing for clusters. http://
incubator.apache.org/mesos.

[5] Berkeley data analysis stack (BDAS). https://amplab.cs.berkeley.
edu/bdas.

[6] Carat: Collaborative energy diagnosis. http://carat.cs.berkeley.
edu.

[7] Matlab classification and regression tree. http://www.mathworks.se/
help/stats/classregtree.html.

[8] Matlab: the language of technical computing. http://www.mathworks.
se/products/matlab/.

[9] OpenStack cloud software. http://www.openstack.org.

[10] Scala language. http://www.scala-lang.org.

[11] Spark: Lightining-fast cluster computing. http://www.spark-project.
org.

[12] Michael Armbrust, Armando Fox, Rean Griffith, Anthony D. Joseph,
Randy Katz, Andy Konwinski, Gunho Lee, David Patterson, Ariel
Rabkin, Ion Stoica, and Matei Zaharia. A view of cloud computing.
Communications of the ACM, 53(4):50–58, 2010.

[13] Michael Armbrust, Armando Fox, Rean Griffith, Anthony D. Joseph,
Randy H. Katz, Andrew Konwinski, Gunho Lee, David A. Patterson,
Ariel Rabkin, Ion Stoica, and Matei Zaharia. Above the clouds: A
Berkeley view of cloud computing. Technical Report UCB/EECS-2009-
28, EECS Department, University of California, Berkeley, Feb 2009.

[14] Leo Breiman, Jerome Friedman, Richard Olshen, and Charles Stone.
Classification and regression trees. Wadsworth, Belmont (CA), 1984.

[15] Jeffrey Cohen, Brian Dolan, Mark Dunlap, Joseph M. Hellerstein, and
Caleb Welton. MAD skills: New analysis practices for big data. In Pro-
ceedings of the VLDB Endowment, pages 1481–1492. VLDB Endowment,
2009.

62

http://aws.amazon.com/ec2
http://aws.amazon.com/ec2
http://hadoop.apache.org
http://mahout.apache.org
http://incubator.apache.org/mesos
http://incubator.apache.org/mesos
https://amplab.cs.berkeley.edu/bdas
https://amplab.cs.berkeley.edu/bdas
http://carat.cs.berkeley.edu
http://carat.cs.berkeley.edu
http://www.mathworks.se/help/stats/classregtree.html
http://www.mathworks.se/help/stats/classregtree.html
http://www.mathworks.se/products/matlab/
http://www.mathworks.se/products/matlab/
http://www.openstack.org
http://www.scala-lang.org
http://www.spark-project.org
http://www.spark-project.org

[16] Jeffrey Dean and Sanjay Ghemawat. MapReduce: Simplified data
processing on large clusters. In Proceedings of the Sixth Symposium on
Operating Systems Design and Implementation, OSDI ’04, 2004.

[17] Jeffrey Dean and Sanjay Ghemawat. MapReduce: Simplified data
processing on large clusters. Communications of the ACM, 51(1):107–
113, 2008.

[18] Jeffrey Dean and Sanjay Ghemawat. MapReduce: A flexible data
processing tool. Communications of the ACM, 53(1):72–77, 2010.

[19] Ian Foster, Yong Zhao, Ioan Raicu, and Shiyong Lu. Cloud comput-
ing and grid computing 360-degree compared. In Proceedings of Grid
Computing Environments Workshop, GCE ’08, pages 1–10, 2008.

[20] Amol Ghotingm, Rajasekar Krishnamurthy, Edwin Pednault, Berthold
Reinwald, Vikas Sindhwani, Shirish Tatikonda, Yuanyuan Tian, and
Shivakumar Vaithyanathan. SystemML: Declarative machine learning
on MapReduce. In Proceedings of IEEE 27th International Conference
on Data Engineering, ICDE ’11. USENIX Association, 2011.

[21] Benjamin Hindman, Andy Konwinski, Matei Zaharia, Ali Ghodsi, An-
thony D. Joseph, Randy Katz, Scott Shenker, and Ion Stoica. Mesos:
A platform for fine-grained resource sharing in the data center. In
Proceedings of NSDI ’11: 8th USENIX Symposium on Networked Sys-
tems Design and Implementation, NSDI ’11, pages 295–308. USENIX
Association, 2011.

[22] Benjamin Hindman, Andy Konwinski, Matei Zaharia, and Ion Stoica. A
common substrate for cluster computing. In USENIX Workshop on Hot
Topics in Cloud Computing, HotCloud ’09. USENIX Association, 2009.

[23] Ron Kohavi. A study of cross-validation and bootstrap for accuracy
estimation and model selection. In Proceedings of the Fourteenth Inter-
national Joint Conference on Artificial Intelligence, IJCAI 95, pages
1137–1143. Morgan Kaufmann, 1995.

[24] Tim Kraska, Ameet Talwalkar, John Duchi, Rean Griffith, Michael F.
Franklin, and Michael Jordan. MLbase: A distributed machine-learning
system. In Proceedings of 6th Biennial Conference on Innovative Data
Systems Research, CIDR ’13, 2013.

[25] Solomon Kullback and Richard A. Leibler. On information and suffi-
ciency. Annals of Mathematical Statistics, 22(1):79–86, 1951.

[26] Yu Li, Wenming Qiu, Uchechukwu Awada, and Keqiu Li. Big data
processing in cloud computing environments. In Proceedings of 12th In-

63

ternational Symposium on Pervasive Systems, Algorithms and Networks,
pages 17–22. IEEE, 2012.

[27] Jian Lin, Li Zha, and Zhiwei Xu. Consolidated cluster systems for data
centers in the cloud age: A survey and analysis. Frontiers of Computer
Science, 7(1):1–9, 2013.

[28] James MacQueen. Some methods for classification and analysis of
multivariate observations. In Proceedings of the 5th Berkeley Symposium
on Mathematical Statistics and Probability. University of California
Press, 1967.

[29] James Manyika, Michael Chui, Brad Brown, Jacques Bughin, Richard
Dobbs, Charles Roxburgh, and Angela Hung Byers. Big data: The next
frontier for innovation, competition, and productivity. Technical report,
McKinsey Global Institute, May 2011.

[30] Peter Mell and Timothy Grance. The NIST definition of cloud computing.
Technical Report NIST Special Publication 800-145, National Institute
of Standards and Technology, Sep 2011.

[31] Adam Oliner, Anand Padmanabha Iyer, Ion Stoica, Eemil Lagerspetz,
and Sasu Tarkoma. Collaborative energy debugging for mobile devices.
In Eighth Workshop on Hot Topics in System Dependability, HotDep
’12. USENIX Association, 2012.

[32] Adam Oliner, Anand Padmanabha Iyer, Ion Stoica, Eemil Lagerspetz,
and Sasu Tarkoma. Carat: Collaborative energy diagnosis for mobile
devices. In Proceedings of the 11th ACM Conference on Embedded
Networked Sensor Systems, SenSys ’13, 2013. To appear.

[33] Adam Oliner, Anand Padmanabha Iyer, Ion Stoica, Eemil Lagerspetz,
and Sasu Tarkoma. Carat: Collaborative energy diagnosis for mobile
devices. Technical Report UCB/EECS-2013-17, EECS Department,
University of California, Berkeley, Mar 2013.

[34] Pang-Ning Tan, Michael Steinbach, and Vipin Kumar. Introduction to
Data Mining. Pearson Education, 2006.

[35] Hong-Linh Truong and Schahram Dustdar. On analyzing and specifying
concerns for data as a service. In Proceedings of Services Computing
Conference, APSCC ’09, 2009.

[36] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave,
Justin Ma, Murphy McCauley, Michael J. Franklin, Scott Shenker, and
Ion Stoica. Resilient distributed datasets: A fault-tolerant abstraction
for in-memory cluster computing. Technical Report UCB/EECS-2011-82,
EECS Department, University of California, Berkeley, Jul 2011.

64

[37] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave,
Justin Ma, Murphy McCauley, Michael J. Franklin, Scott Shenker, and
Ion Stoica. Resilient distributed datasets: A fault-tolerant abstraction for
in-memory cluster computing. In Proceedings of NSDI ’12: 9th USENIX
Symposium on Networked Systems Design and Implementation, NSDI
’12, pages 15–28. USENIX Association, 2012.

[38] Matei Zaharia, Mosharaf Chowdhury, Michael J. Franklin, Scott Shenker,
and Ion Stoica. Spark: Cluster computing with working sets. In 2nd
USENIX Workshop on Hot Topics in Cloud Computing, HotCloud ’10.
USENIX Association, 2010.

65

	Introduction
	Background
	Big Data
	Clusters and cloud computing environments
	The MapReduce paradigm
	Distributed machine learning and data analysis

	Berkeley Data Analysis Stack
	Cluster resource manager: Mesos
	In-memory cluster computing: Spark
	Spark versus MapReduce

	An example: Carat data analysis
	Carat: collaborative energy analysis
	Analysis specification
	The decision tree algorithm
	Impurity measurement

	The Spark decision tree for Carat
	Attributes and data preprocessing
	The Spark decision tree implementation
	Validation with the synthetic data set
	Cross validation with the real Carat data

	Results
	Discussion
	Conclusion
	References

