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Abstract

Since the mid-1980s, Phillips curve forecasts of U.S. inflation have been
inferior to those of a conventional causal autoregression. However, little
change in forecast accuracy is detected against the benchmark of a noncausal
autoregression, more accurately characterizing U.S. inflation dynamics.
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1. Introduction

In their recent, widely cited article, Stock and Watson (2007, SW hence-
forth) argued that while U.S. inflation in general has become easier to fore-
cast after 1983, it has also become more diffi cult to improve upon univariate
models by means of backward-looking Phillips curve (PC) forecasts. Specifi-
cally, they claim that before 1983, PC models were superior to the univariate
autoregressive (AR) model, but after 1984, the situation has reversed. We
argue that SW’s benchmark model is not the appropriate univariate model,
especially in the 1970—1983 period, but, in fact, inflation dynamics are better
captured by a noncausal, instead of a conventional causal AR model. This
claim is backed up by the findings of Lanne and Saikkonen (2011) and Lanne
et al. (2009) for the CPI inflation and Lanne et al. (2011) for the GDP price
inflation. Also, in contrast to SW, we do not force a unit root in the inflation
process.
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Our results show that once the noncausal AR benchmark is adopted, the
changes in the forecastability of U.S. GDP inflation are minor, and mainly
confined to the two-year forecast horizon. As to the other inflation measures
(personal consumption expenditure deflator for core items (PCE-core) and
all items (PCE-all), and the consumer price index (CPI-U)) considered by
SW, the PC forecasts very rarely beat the noncausal AR forecast in either
forecast period.
The plan of the paper is as follows. In Section 2, we present the noncausal

AR model, and discuss estimation and forecasting. Section 3 presents the
forecasting results and comparisons to SW’s findings. Finally, Section 4
concludes.

2. Noncausal AR Model

Let us consider the following noncausal ARmodel for inflation πt (t = 0,±1,±2, ...),

ϕ
(
B−1

)
φ (B) πt = εt, (1)

where φ (B) = 1 − φ1B − · · · − φrBr, ϕ (B−1) = 1 − ϕ1B−1 − · · · − ϕsB−s,
and εt is a sequence of independent, identically distributed (continuous) ran-
dom variables with mean zero and variance σ2 or, briefly, εt ∼ i.i.d. (0, σ2).
Moreover, B is the usual backward shift operator, that is, Bkπt = πt−k
(k = 0,±1, ...), and the polynomials φ (z) and ϕ (z) have their zeros outside
the unit circle so that

φ (z) 6= 0 for |z| ≤ 1 and ϕ (z) 6= 0 for |z| ≤ 1. (2)

This formulation was recently suggested by Lanne and Saikkonen (2011). We
use the abbreviation AR(r, s) for the model defined by (1). If ϕ1 = · · · =
ϕs = 0, model (1) reduces to the conventional causal AR(r) model.
The conditions in (2) imply that πt has the two-sided moving average

representation

πt =
∞∑

j=−∞
ψjεt−j, (3)

where ψj is the coeffi cient of z
j in the Laurent series expansion of φ (z)−1 ϕ (z−1)

−1 def
=

ψ (z). Note that this implies that past observations can be used to predict
future errors. From (1) one also obtains the representation

πt = φ1πt−1 + · · ·+ φrπt−r + vt, (4)
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where vt = ϕ (B−1)
−1
εt =

∑∞
j=0 βjεt+j with βj the coeffi cient of z

j in the

power series expansion of ϕ (B−1)
−1. This representation can be used to

obtain forecasts. Taking conditional expectations conditional on past and
present inflation of (4) yields

πt = φ1πt−1 + · · ·+ φrπt−r + Et

( ∞∑
j=0

βjεt+j

)
,

which shows that in a noncausal AR model, future errors are predictable by
past values of inflation. If the true model is noncausal, but this is ignored in
forecasting, i.e., forecasts are based on a causal AR model, this predictabil-
ity is dismissed, leading to inferior forecast accuracy despite the causal and
noncausal forecasts being based on the same information.
A well-known feature of noncausal autoregressions is that a non-Gaussian

error term is required to achieve identification (see, e.g., Breidt et al., 1991,
and Brockwell and Davis, 1987, p. 124—125). This follows from the fact that
the same autocovariance function can be obtained irrespective of whether
the roots of φ (z) and ϕ (z) in (1) are inside or outside the unit circle, i.e.,
whether πt is causal or noncausal. Since the Gaussian likelihood is completely
determined by the autocovariance function, causal and noncausal processes
cannot be distinguished under Gaussianity. Therefore, following Lanne and
Saikkonen (2011), we specify Student’s t-distribution for εt. In addition to
these authors, also Lanne et al. (2009, 2011) have shown this distribution
to fit U.S. inflation series well. A small value of the degrees-of-freedom pa-
rameter is required for identification, as otherwise the t-distibution comes
close to the normal distribution, and identification is not achieved (or it is
weak).2 Under this assumption, the noncausal AR model can be estimated
by maximizing the approximate likelihood function proposed by Lanne and
Saikkonen (2011). The approximation involves conditioning on the first r
and last s observations. As the orders of the polynomials are typically small,
the approximation error is likely to be negligible.
To compute forecasts based on representation (4), simulation methods are

called for. Let ET (·) signify the conditional expectation operator given the
observed data vector π = (π1, ..., πT ). From (4) it is seen that the optimal

2For the inflation series considered in Section 3, the degrees-of-freedom parameter is
estimated small, indicating strong identification. For instance, for the GDP price inflation
series, the estimate for the entire sample period is 4.94 with a standard error of 1.82.
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predictor of πT+h (h > 0) based on π satisfies

ET (πT+h) = φ1ET (πT+h−1) + · · ·+ φrET (πT+h−r) + ET (vT+h) .

Thus, if we are able to forecast the variable vT+h, we can compute forecasts
of inflation recursively. In the purely noncausal case of particular interest in
this paper, the optimal forecast of πT+h reduces to ET (vT+h). To calculate
vT+h in practice we use the approximation vT+h ≈

∑M−h
j=0 βjεT+h+j,where

the integer M is supposed to be so large that the approximation error is
negligible for all forecast horizons h of interest. To a close approximation we
then have

ET (πT+h) ≈ φ1ET (πT+h−1) + · · ·+ φrET (πT+h−r) + ET

(
M−h∑
j=0

βjεT+h+j

)
.

(5)
Lanne et al. (2011) show how to generate by simulation the conditional
density of future errors needed in the computation of the conditional ex-
pectation of

∑M−h
j=0 βjεT+h+j. Following their recommendations based on

simulation experiments, we set M = 50, and the number of replications, N ,
in the simulation procedure equals 100 000.

3. Forecast Results

We focus on quarterly GDP price index inflation, but we also considered
a number of other inflation measures (PCE-core, PCE-all and CPI-U).3 All
data are downloaded from Mark Watson’s web page. The PC forecasts are
calculated using autoregressive distributed lag models with various activity
variables and potentially gap variables based on them as additional regressors
(SW’s equation (3)). The specifications PC-∆u, PC-∆y, PC-∆CapUtil and
PC-∆Permits omit gap variables. For detailed variable definitions, see SW.
The noncausal AR models are estimated recursively, with data from

1960:I—1969:IV used for initial parameter estimation. Following SW, forecast
results are presented separately for the periods 1970:I—1983:IV and 1984:I—
2004:IV. Unlike SW, we only consider iterated multistep forecasts that SW

3To save space, the results are not reported, but they are available upon request. The
general conclusion are the same as those for GDP price inflation.

4



found quantitatively quite similar to their direct forecasts. Lanne and Saikko-
nen (2011) propose a model selection procedure that was employed in fore-
casting by Lanne et al. (2011). However, in this paper all noncausal forecasts
are based on the recursively estimated fixed AR(0,4) model that should be
adequate for quarterly data. SW mainly rely on the Akaike information cri-
terion (AIC) in model selection, i.e., they recursively select the order of the
AR model (denoted AR(AIC) below). However, they also show that the fixed
AR(4,0) model produces similar results.
Table 1 reproduces the root mean squared forecast errors (RMSFE) of

the AR(AIC) forecast and the relative mean squred forecast errors (MSFE)
of a number of alternative models in relation to that model from SW’s Ta-
bles 1 and 4. Compared to the benchmark AR(AIC) model, the predictive
performance of virtually all PC models is inferior in the latter compared to
the former subsample period at all horizons. This is even more clearly seen
in the left panel of Table 3 that presents the percentage changes of the rel-
ative MSFEs. There are only two negative entries, both of which are small
in absolute value compared to the positive percentage changes. Moreover,
while in the 1970—1983 period, the relative MSFEs in Table 1 are, in general,
less than unity, indicating the superiority of the PC models, the situation is
reversed in the 1984—2004 period. This evidence warrants SW’s claim that
since the mid-1980s, it has been diffi cult for inflation forecasts to improve on
univariate models.
If the purely noncausal AR(0,4) model is used as the benchmark, the re-

sults are drastically different. As the figures in Table 2 show, the PC forecasts
are, in general inferior to this univariate benchmark model. In contrast to
Table 1, this is the case also in the 1970—1983 period, while the performance
of the AR(AIC) and AR(0,4) models is similar in the 1984—2004 period. As
a result, the changes in predictive accuracy of the PC models are, in general,
much smaller than SW’s results in Table 1 lead one to believe. Moreover, the
right panel of Table 3 shows that in many cases, the predictive performance
of these models has improved, especially at horizons of four quarters or less,
and in case of relative deterioration, it is much lesser than suggested by SW.
Particularly noteworthy is the result that the model with the change in build-
ing permits as the predictor (PC-∆Permits) is the only model that beats the
AR(0,4) benchmark at all horizons in the latter subsample period, and shows
great improvement in predictive accuracy over the 1970—1983 period.
In addition to the PC forecasts, SW also considered the random walk

forecasts (AO) of Atkeson and Ohanian (2001). In accordance with their
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results, we also find that these forecasts improve upon the AR(0,4) and PC
forecasts at the one- and two-year horizons in the 1984—2004 period but not
at other horizons or in the first subsample period.
Although the differences in predictive accuracy of the noncausal AR

model are smaller than those of the causal AR(AIC) model, also the RMS-
FEs of the former have declined since 1984. Hence, in accordance with the
findings of SW, in absolute terms, inflation has become easier to forecast even
when the set of univariate models is extended by the noncausal AR model.

4. Conclusion

We have shown that compared to the noncausal AR benchmark model,
U.S. inflation has hardly become more diffi cult to forecast by means of
backward-looking PC models since the mid-1980s, contrary to the claims
of SW, who used the causal autoregression as the benchmark. At the very
least the differences are much smaller than SW found. Based on the findings
in the previous literature, U.S. inflation dynamics are better described by a
noncausal than a causal AR model, and hence, the noncausal model should
be taken as the benchmark model against which the PC forecasts are judged.
These findings are reinforced by the fact that the noncausal AR(0,4) model
also consistently produces more accurate forecasts than the causal AR(4,0)
or AR(AIC) models in the 1970—1983 period and has comparable accuracy
in the 1984—2004 sample. Our results show, that compared to this univariate
benchmark, the PC models provide poor forecasts both before and after the
mid-1980s.
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Table 1: Pseudo out-of-sample forecasting results for GDP inflation with the AR(AIC)
model as the benchmark.

1970:I—1983:IV 1984:I—2004:IV
h = 1 h = 2 h = 4 h = 8 h = 1 h = 2 h = 4 h = 8

AR(AIC) RMSFE 1.72 1.75 1.89 2.38 0.78 0.68 0.62 0.73
Relative MSFEs
AR(AIC) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
AO 1.95 1.57 1.06 1.00 1.22 1.10 0.89 0.84
PC-u 0.85 0.92 0.88 0.61 0.95 1.11 1.48 1.78
PC-∆u 0.87 0.87 0.86 0.64 1.06 1.27 1.83 2.21
PC-ugap1-sided 0.88 0.99 0.98 0.87 1.06 1.29 1.84 2.39
PC-∆y 0.99 1.06 0.93 0.58 1.05 1.06 1.23 1.53
PC-ygap1-sided 0.94 0.97 0.99 0.78 0.97 0.97 1.25 1.55
PC-CapUtil 0.85 0.88 0.79 0.55 0.95 1.01 1.35 1.52
PC-∆CapUtil 1.02 1.00 0.87 0.64 1.03 1.10 1.30 1.51
PC-Permits 0.93 1.02 0.98 0.78 1.08 1.23 1.31 1.52
PC-∆Permits 1.02 1.04 0.99 0.86 1.00 1.00 1.00 1.02
AR(4,0) 0.95 1.08 1.05 0.93 0.93 0.96 0.99 0.94
AR(0,4) 0.87 0.81 0.75 0.66 1.03 1.02 1.01 1.07

The table reproduces results in Stock and Watson’s (2007) Tables 1 and 4 and presents our
results based on the noncausal AR(0,4) model. The first row reports the root mean squared
forecast errors of the causal AR(AIC) benchmark forecast. The rest of the entries are the relative
mean squared forecast errors relative to the AR(AIC) benchmark.
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Table 2: Pseudo out-of-sample forecasting results for GDP inflation with the AR(0,4)
model as the benchmark.

1970:I—1983:IV 1984:I—2004:IV
h = 1 h = 2 h = 4 h = 8 h = 1 h = 2 h = 4 h = 8

AR(0,4) RMSFE 1.60 1.58 1.64 1.93 0.79 0.69 0.62 0.76
Relative MSFEs
AR(0,4) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
AO 2.25 1.93 1.41 1.51 1.19 1.08 0.88 0.78
PC-u 0.98 1.14 1.18 0.93 0.92 1.09 1.46 1.66
PC-∆u 1.00 1.07 1.15 0.96 1.03 1.25 1.82 2.06
PC-ugap1-sided 1.01 1.21 1.31 1.32 1.04 1.27 1.82 2.23
PC-∆y 1.14 1.30 1.25 0.88 1.02 1.04 1.22 1.43
PC-ygap1-sided 1.09 1.20 1.33 1.18 0.94 0.96 1.24 1.44
PC-CapUtil 0.98 1.08 1.06 0.84 0.93 0.99 1.34 1.41
PC-∆CapUtil 1.18 1.23 1.16 0.97 1.00 1.08 1.29 1.41
PC-Permits 1.08 1.25 1.31 1.19 1.05 1.21 1.29 1.42
PC-∆Permits 1.18 1.28 1.32 1.30 0.97 0.98 0.99 0.95
AR(4,0) 1.10 1.33 1.34 1.51 0.97 0.98 0.99 0.93

The first row reports the root mean squared forecast errors of the AR(0,4) benchmark fore-
cast. The rest of the entries are the relative mean squared forecast errors relative to the AR(0,4)
benchmark.
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Table 3: Percentage changes in the relative MSFE in relation to the AR(AIC) model
(left panel) and the AR(0,4) model (right panel) between the 1970—1983 and 1984—2004
periods.

Benchmark Model
AR(AIC) AR(0,4)

h = 1 h = 2 h = 4 h = 8 h = 1 h = 2 h = 4 h = 8
AO —46.3% —35.7% —17.6% —17.0% —63.5% —57.8% —47.8% —65.4%
PC-u 11.3% 18.1% 51.6% 106.7% —5.8% —4.1% 21.3% 58.3%
PC-∆u 20.2% 38.3% 76.3% 124.2% 3.1% 16.2% 46.1% 75.8%
PC-ugap1-sided 19.4% 26.6% 63.0% 100.6% 2.2% 4.4% 32.8% 52.2%
PC-∆y 6.1% 0.3% 27.6% 96.4% —11.0% —21.9% —2.6% 48.0%
PC-ygap1-sided 2.7% 0.0% 23.8% 68.1% —14.5% —22.2% —6.4% 19.7%
PC-CapUtil 11.9% 13.4% 53.2% 100.8% —5.3% —8.8% 23.0% 52.4%
PC-∆CapUtil 0.0% 9.5% 40.2% 86.3% —17.1% —12.7% 10.0% 37.9%
PC-Permits 14.6% 18.5% 28.6% 66.3% —2.5% —3.7% —1.6% 17.9%
PC-∆Permits —2.4% —4.3% 1.5% 16.9% —19.5% —26.5% —28.7% —31.5%
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