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Abstract

In this paper, we propose a new noncausal vector autoregressive (VAR) model for non-

Gaussian time series. The assumption of non-Gaussianity is needed for reasons of identi-

fiability. Assuming that the error distribution belongs to a fairly general class of elliptical

distributions, we develop an asymptotic theory of maximum likelihood estimation and sta-

tistical inference. We argue that allowing for noncausality is of particular importance in

economic applications which currently use only conventional causal VAR models. Indeed,

if noncausality is incorrectly ignored, the use of a causal VAR model may yield suboptimal

forecasts and misleading economic interpretations. Therefore, we propose a procedure for

discriminating between causality and noncausality. The methods are illustrated with an

application to interest rate data.
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1 Introduction

The vector autoregressive (VAR) model is widely applied in various fields of application

to summarize the joint dynamics of a number of time series and to obtain forecasts.

Especially in economics and finance the model is also employed in structural analyses,

and it often provides a suitable framework for conducting tests of theoretical interest.

Typically, the error term of a VAR model is interpreted as a forecast error that should be

an independent white noise process in order for the model to capture all relevant dynamic

dependencies. For the forecast error property of the error term to hold it is necessary that

the errors are not serially correlated. However, unless the errors are Gaussian, this is not

suffi cient to guarantee independence and, even in the absence of serial correlation, it may

be possible to predict the error term by lagged values of the considered variables. This is a

relevant point because diagnostic checks in empirical analyses often suggest non-Gaussian

residuals, and the use of a conventional (causal) VAR model with Gaussian likelihood

has typically been justified by properties of quasi maximum likelihood (ML) estimation.

Indeed, instead of its conventional causal counterpart a noncausal VAR model, which

explicitly allows for the aforementioned predictability of the error term, might provide a

correct specification (for noncausal (univariate) autoregressions, see, e.g., Brockwell and

Davis (1987, Chapter 3) or Rosenblatt (2000)). These two issues are actually connected,

as distinguishing between causality and noncausality is not possible under Gaussianity.

Hence, in order to assess the nature of causality, allowance must be made for deviations

from Gaussianity when they are backed up by the data. If noncausality indeed is present,

confining to (misspecified) causal VAR models may lead to suboptimal forecasts and false

conclusions.

The statistical literature on noncausal univariate time series models is relatively small,

and, to our knowledge, noncausal VAR models were unexplored prior to our work (for

available work on noncausal autoregressions and their applications, see Rosenblatt (2000),

Andrews, Davis, and Breidt (2006), Lanne and Saikkonen (2011), and the references

therein).1 In this paper, the previous statistical theory of univariate noncausal autore-

gressive models is extended to the vector case. Our formulation of the noncausal VAR

model is a direct extension of that used by Lanne and Saikkonen (2011) in the univariate

case. To obtain a feasible approximation for the non-Gaussian likelihood function, the

distribution of the error term is assumed to belong to a fairly general class of elliptical

distributions. With this assumption we show the consistency and asymptotic normality

of an approximate (local) ML estimator, and justify the applicability of usual likelihood

1While revising this paper we learned about the related work of Davis and Song (2010). The formu-

lation of the noncausal VAR model considered by these authors is different from ours but the theoretical

results are based on assumptions that are virtually the same as used in this paper.
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based tests.

As already indicated, the noncausal VAR model can be used to check the validity

of statistical analyses based on a causal VAR model. This is important, for instance,

in economic applications where VAR models are commonly applied to test for economic

theories. Typically such tests assume the existence of a causal VAR representation whose

errors are not predictable by lagged values of the considered time series. If this is not the

case, the employed tests based on a causal VAR model are not valid and the resulting

conclusions may be misleading. We provide an illustration of this with interest rate data.

The remainder of the paper is structured as follows. Section 2 introduces the non-

causal VAR model and discusses issues of identifiability along with other features of the

model. Section 3 derives an approximation for the likelihood function and properties of

the related approximate ML estimator. Section 4 provides our empirical illustration. Sec-

tion 5 concludes. An appendix contains proofs and some technical derivations. Further

technicalities are provided online at Cambridge Journals Online in supplementary mate-

rial to this article. Readers may refer to the supplementary material associated with this

article, available at Cambridge Journals Online (journals.cambridge.org/ect).

The following notation is used throughout. The expectation operator and the covari-

ance operator are denoted by E (·) and C (·) or C (·, ·), respectively, whereas x d
= y means

that the random quantities x and y have the same distribution. To simplify notation, we

shall write z = (z1, . . . , zm) for the (column) vector z where the components zi may be

either scalars or vectors (or both). By vec(A) we denote a column vector obtained by

stacking the columns of the matrix A one below another. If A is a square matrix then

vech(A) is a column vector obtained by stacking the columns of A from the principal di-

agonal downwards (including elements on the diagonal). The usual notation A⊗B is used
for the Kronecker product of the matrices A and B. The mn×mn commutation matrix
and the n2 × n (n+ 1) /2 duplication matrix are denoted by Kmn and Dn, respectively.

Both of them are of full column rank. The former is defined by the relation Kmnvec(A) =

vec(A′) , where A is anym×nmatrix, and the latter by the relation vec(B) = Dnvech(B) ,

where B is any symmetric n× n matrix.

2 Model

2.1 Definition and basic properties

Consider the n-dimensional stochastic process yt (t = 0,±1,±2, ...) generated by

Π (B) Φ
(
B−1

)
yt = εt, (1)

3



where Π (B) = In −Π1B − · · · −ΠrB
r (n× n) and Φ (B−1) = In −Φ1B

−1 − · · · −ΦsB
−s

(n× n) are matrix polynomials in the backward shift operator B, and εt (n× 1) is a

sequence of independent, identically distributed (continuous) random vectors with zero

mean and finite positive definite covariance matrix. Moreover, the matrix polynomials

Π (z) and Φ (z) (z ∈ C) have their zeros outside the unit disc so that

det Π (z) 6= 0, |z| ≤ 1, and det Φ (z) 6= 0, |z| ≤ 1. (2)

If Φj 6= 0 for some j ∈ {1, ..., s}, equation (1) defines a noncausal vector autoregression
referred to as purely noncausal when Π1 = · · · = Πr = 0. The corresponding conventional

causal model is obtained when Φ1 = · · · = Φs = 0. Then the former condition in (2)

guarantees the stationarity of the model. In the general set up of equation (1) the same

is true for the process

ut = Φ
(
B−1

)
yt.

Specifically, there exists a δ1 > 0 such that Π (z)−1 has a well defined power series rep-

resentation Π (z)−1 =
∑∞

j=0 Mjz
j = M (z) for |z| < 1 + δ1. Consequently, the process ut

has the causal moving average representation

ut = M (B) εt =
∞∑
j=0

Mjεt−j. (3)

Notice that M0 = In and that (the elements of) the coeffi cient matrices Mj decay to zero

at a geometric rate as j →∞ (cf. Lemma 3 in Kohn (1979)). When convenient, Mj = 0,

j < 0, will be assumed.

Write Π (z)−1 = (det Π (z))−1 Ξ (z) = M (z), where Ξ (z) is the adjoint polynomial

matrix of Π (z) with degree at most (n− 1) r. Then, det Π (B)ut = Ξ (B) εt and, by the

definition of ut,

Φ
(
B−1

)
wt = Ξ (B) εt,

where wt = (det Π (B))yt. By the latter condition in (2) one can find a 0 < δ2 < 1

such that Φ (z−1)
−1

Ξ (z) has a well defined power series representation Φ (z−1)
−1

Ξ (z) =∑∞
j=−(n−1)rNjz

−j = N (z−1) for |z| > 1− δ2. Thus, the process wt has the representation

wt =
∞∑

j=−(n−1)r

Njεt+j, (4)

where the coeffi cient matrices Nj decay to zero at a geometric rate as j →∞ and, when

convenient, Nj = 0, j < − (n− 1) r, will be assumed.

From (2) it follows that the process yt itself has the representation

yt =
∞∑

j=−∞
Ψjεt−j, (5)
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where Ψj (n× n) is the coeffi cient matrix of zj in the Laurent series expansion of Ψ (z)
def
=

Φ (z−1)
−1

Π (z)−1 which exists for 1 − δ2 < |z| < 1 + δ1 with Ψj decaying to zero at a

geometric rate as |j| → ∞. The representation (5) implies that yt is a stationary and
ergodic process with finite second moments. We use the abbreviation VAR(r, s) for the

model defined by (1). In the causal case s = 0, the conventional abbreviation VAR(r) is

also used.

Denote by Et (·) the conditional expectation operator with respect to the information
set {yt, yt−1, ...} and conclude from (1) and (5) that

yt =
s−1∑
j=−∞

ΨjEt (εt−j) +

∞∑
j=s

Ψjεt−j.

In the conventional causal case, s = 0 and Et (εt−j) = 0, j ≤ −1, so that the right hand

side reduces to the moving average representation (3). However, in the noncausal case

this does not happen. Then Ψj 6= 0 for some j < 0, which in conjunction with the

representation (5) shows that yt and εt−j are correlated. Consequently, Et (εt−j) 6= 0 for

some j < 0, implying that future errors can be predicted by past values of the process

yt. A possible interpretation of this predictability is that the errors contain factors which

are not included in the model and can be predicted by the time series selected in the

model. This seems quite plausible, especially, in economic applications where time series

are typically interrelated and only a few time series out of a larger selection are used in the

analysis. The reason why some variables are excluded may be that data are not available

or the underlying economic model only contains the variables for which hypotheses of

interest are formulated.

To elaborate the preceding point further, consider a high dimensional time series vector

Xt that can be modeled by a finite order causal VAR process whose errors ξ
(x)
t , say, are

independent and identically distributed. Suppose that all components of Xt are not used

in the analysis, and let Yt be the vector containing the selected components. Then Yt
generally does not have a finite order causal VAR representation with errors independent

and identically distributed. Instead, Yt has an infinite order VAR representation whose

errors ξ(y)
t , say, are uncorrelated and have a linear representation in terms of ξ

(x)
t , the

errors of Xt (see Lemma 2 in Johansen and Juselius (2010)).2 In the Gaussian case,

the errors ξ(y)
t are independent and cannot be predicted by past values of Yt. The latter

fact follows because Yt has a linear representation in terms of present and past values

2This result is formulated in a cointegrated VAR context but can be specialized to the stationary case.

Alternatively, Yt can be represented as a causal vector ARMA process with errors that are uncorrelated

and have a linear representation in terms of ξ(x)
t (see Corollaries 11.1.1 and 11.1.2 in Lütkepohl (2005)).

The conclusions obtained here for the infinite order causal VAR process apply, in essence, to the causal

vector ARMA process.
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of ξ(y)
t and, consequently, ξ(y)

t and Yt−j (j ≥ 1) are independent. In the non-Gaussian

case the situation is different, however. Then ξ(y)
t and Yt−j (j ≥ 1) can only be shown

to be uncorrelated but, as both of them depend on lagged values of ξ(x)
t , they need

not be independent, and the possibility that ξ(y)
t can (nonlinearly) be predicted by Yt−j

(j ≥ 1) appears plausible. Thus, as errors of a noncausal VAR model can be predicted by

past values of the observed process, one may expect to observe noncausality when small

dimensional VAR models are applied. That this can indeed happen is illustrated by a

simulation experiment of Lof (2012) in the context of a bivariate VAR model.

Note that the purpose of the preceding discussion is to demonstrate how a VAR process

with an error term potentially predictable by lagged values of the process may arise and

lead to observing noncausality in applications. We are not claiming that in the described

situation, our noncausal VAR model would be superior to a causal alternative. Making

such claims is, in fact, diffi cult because it is not known whether the selected series have

a noncausal VAR representation with errors independent and identically distributed, as

assumed in our model. What can be said, however, is that in the non-Gaussian case a

causal VAR model is misspecified in the sense that its errors are dependent.

A practical complication with noncausal autoregressive models is that they cannot be

identified by second order properties or Gaussian likelihood. In the univariate case this is

explained in Brockwell and Davis (1987, p. 124—125). A similar explanation based on the

factorization of the spectral density matrix can be obtained from Hannan (1970, p. 64—67).

Specifically, one can conclude that the spectral density matrix and, hence, autocovariance

function of a noncausal VAR(r, s) process cannot be distinguished from those of a causal

VAR(r + s) process (further details on this issue are available in the Supplementary

Appendix). Thus, if yt or, equivalently, the error term εt is Gaussian, causal and noncausal

representations of (1) are statistically indistinguishable and nothing is lost by using a

conventional causal representation. However, if the errors are non-Gaussian, using a causal

representation of a true noncausal process means using a misspecified VAR model whose

errors are only uncorrelated but not independent and can be predicted by past values

of the considered series. Thus, potentially better fit and forecasts could be obtained by

using the correctly specified noncausal model.

Identification of the noncausal VAR model (1) will be discussed in Section 2.3 after

presenting assumptions employed for the error term εt. Here we only note that finding a

correct noncausal VARmodel is a larger issue than finding the correct orders r and s in (1).

The reason is that equation (1) is not the only possibility to formulate a noncausal VAR

model. For instance, as the matrix product does not commute, a different specification is

obtained by changing the order of the operators Π (B) and Φ (B−1) in (1). We have no

strong arguments in favor of the employed order although we believe that it may be the
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more convenient choice from the viewpoint of economic applications. The reason is that

the chosen order naturally gives rise to a representation of yt as a function of its future

expected values, as is common in economic models involving expectations.3

The fact that a different specification results when one changes the order of the opera-

tors Π (B) and Φ (B−1) in (1) also means that our noncausal VAR model does not include

all possible forms of noncausality. A potentially viable alternative might be based on the

equation

yt = Π∗1yt−1 + · · ·+ Π∗pyt−p + ε∗t . (6)

Here ε∗t (n× 1) is as in (1), that is, a sequence of independent, identically distributed

random vectors with zero mean and finite positive definite covariance matrix. Further-

more, the autoregressive polynomial satisfies det(In−Π∗1B − · · · −Π∗pB
p) 6= 0, |z| = 1, so

that zeros both outside and inside the unit circle are allowed. In the univariate case this

yields the formulation used by several previous authors (see, e.g., Breidt et al. (1991) and

Rosenblatt (2000)). In the vector case it has recently been considered by Davis and Song

(2010).

Unlike (1), the specification (6) is not based on a multiplicative structure and is,

in that sense, more general of the two. However, from the viewpoint of interpretation,

we find the specification (1) more straightforward as it naturally allows for separating

the ’causal’ and ’noncausal’ parts of the process. Moreover, as the following example

demonstrates, there are cases where the specification (1) cannot be imbedded in (6), at

least in a straightforward and practically convenient manner.

Consider a bivariate special case of (1) with r = s = 1 and suppose that the compo-

nents of yt satisfy y1t = π11yt−1 + ε1t and y2t = φ22y2,t+1 + ε2t where 0 < |π11| < 1 and

0 < |φ22| < 1. Thus, as a univariate process y1t is causal and y2t is purely noncausal

but assuming that ε1t and ε2t, the components of εt, are dependent there are gains in

using a bivariate model. Denoting π∗22 = 1/φ22 we have y2t = π∗22y2,t−1 − π∗22ε2,t−1 so that

the bivariate process (y1t, y2t) can be written in the form of equation (6) except that the

resulting error term (ε1t,−π∗22ε2,t−1) is not independent in time. It is possible to obtain

the specification (6) with an independent error term ε∗t = (ε1t,−π∗22ε2t) if one considers

the process (y1t, y2,t+1). However, from a practical point of view this possibility appears

diffi cult because the structure of the observed process is unknown. In more complicated

models this diffi culty apparently becomes even more pronounced.4

3For instance, in the case s = 1 equation (1) and the definition of the process ut imply that yt =

Φ1yt+1 + ut and taking conditional expectations on both sides readily shows how yt depends on the

expected value of yt+1. If the the order of the operators Π (B) and Φ
(
B−1

)
in (1) is changed the situation

gets more complicated. For instance, when r = s = 1 we have (In + Φ1Π1) yt = Φ1yt+1 + Π1yt−1 + εt

where it is possible that the matrix In + Φ1Π1 is singular.
4The argument used in this example can clearly be reversed by starting from the bivariate special case
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In spite of its simplicity the preceding example demonstrates that in the multivariate

case noncausal autoregressions appear considerably more complex than in the univariate

case where there is no essential difference between the specifications (1) and (6). If a

univariate time series can be described by (1) with Φs 6= 0 it can be described by (6)

and vice verse when Π∗p 6= 0 (to get an illustration, consider y2t alone in the preceding

example). As seen above, this does not necessarily happen in the multivariate case.

Whether a feasible specification covering all or ‘most’noncausal VAR processes exists is

an interesting question not attempted to solve in this paper.

2.2 Assumptions

In this section, we introduce assumptions that enable us to derive the likelihood function

and its derivatives as well as to discuss the identifiability of the model. Further assump-

tions, needed for the asymptotic analysis of the ML estimator and related tests, will be

introduced in subsequent sections.

As already discussed, meaningful application of the noncausal VAR model requires

that the distribution of εt is non-Gaussian. In the following assumption the distribution

of εt is restricted to a general elliptical form. As is well known, the normal distribution

belongs to the class of elliptical distributions but we will not rule it out at this point. Other

examples of elliptical distributions are discussed in Fang, Kotz, and Ng (1990, Chapter

3). Perhaps the best known non-Gaussian example is the multivariate t-distribution.

Assumption 1. The error process εt in (1) is independent and identically distributed
with zero mean, finite and positive definite covariance matrix, and an elliptical distribution

possessing a density.

Results on elliptical distributions we shall need can be found in Fang et al. (1990,

Chapter 2) on which the following discussion is based. Let Σ (n× n) be a symmetric and

positive definite parameter matrix. By Assumption 1, we have the representation

εt
d
= ρtΣ

1/2υt, (7)

where (ρt, υt) is an independent and identically distributed sequence such that ρt (scalar)

and υt (n× 1) are independent, ρt is nonnegative, and υt is uniformly distributed on the

unit ball (so that υ′tυt = 1).

of (6) given by yit = π∗iiyi,t−1 + ε∗it (i = 1, 2) with 0 < |π∗11| < 1 and |π∗22| > 1. This specification can be

transformed to the form (1) with an independent error term only if one considers the process (y1t, y2,t−1)

instead of (y1t, y2t).
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The density function of εt is of the form

fΣ (x;λ) =
1√

det (Σ)
f
(
x′Σ−1x;λ

)
(8)

for some nonnegative function f (·;λ) of a scalar variable (examples of particular cases with

Σ = In can be found in Fang et al. (1990, p. 69) and for the multivariate t-distribution

with general Σ in Section 4 (footnote 4)). In addition to the parameter matrix Σ the

distribution of εt is allowed to depend on the parameter vector λ (d× 1). The parameter

matrix Σ is closely related to the covariance matrix of εt. Specifically, because E (υt) = 0

and C (υt) = n−1In (see Fang et al. (1990, Theorem 2.7)) one obtains from (7) that

C (εt) =
E (ρ2

t )

n
Σ. (9)

Note that finiteness of the covariance matrix C (εt) is equivalent to E (ρ2
t ) < ∞. For

later purposes we also note that the density of ρ2
t , denoted by ϕρ2 (·;λ), is related to the

function f (·;λ) in (8) via

ϕρ2 (ζ;λ) =
πn/2

Γ (n/2)
ζn/2−1f (ζ;λ) , ζ ≥ 0, (10)

where Γ (·) is the gamma function (see Fang et al. (1990, p. 36)).
A convenient feature of elliptical distributions is that we can often work with the

scalar random variable ρt instead of the random vector εt. This facilitates the needed

mathematical derivations. Elliptical distributions form a fairly large class of multivariate

distributions but being symmetric they cannot allow for skewness. Using more general

distributional assumptions could be possible, but that might add to the technical compli-

cations which are considerable even in the elliptical case.

Assumptions to be imposed on the density of εt can be expressed by using the function

f (ζ;λ) (ζ ≥ 0). These assumptions are similar to those previously used by Andrews et

al. (2006) and Lanne and Saikkonen (2011) in so-called all-pass models and univariate

noncausal autoregressive models, respectively. We denote by Λ the permissible parameter

space of λ and use f ′ (ζ;λ) to signify the partial derivative ∂f (ζ, λ) /∂ζ with a similar

definition for f ′′ (ζ;λ). Also, we include a subscript (typically λ) in the expectation

operator or covariance operator when it seems reasonable to emphasize the parameter

value assumed in the calculations. Our second assumption is as follows.

Assumption 2. (i) The parameter space Λ is an open subset of Rd and that of the

parameter matrix Σ is the set of symmetric positive definite n× n matrices.
(ii) The function f (ζ;λ) is positive and twice continuously differentiable on (0,∞) × Λ.

Furthermore, for all λ ∈ Λ, a finite and positive right limit limζ→0+ f (ζ;λ) exists.
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(iii) For all λ ∈ Λ,∫ ∞
0

ζn/2+1f (ζ;λ) dζ <∞ and
∫ ∞

0

ζn/2 (1 + ζ)
(f ′ (ζ;λ))2

f (ζ;λ)
dζ <∞.

Assuming that the parameter space Λ is open is not restrictive and facilitates exposi-

tion. The former part of Assumption 2(ii) is needed to ensure the usual differentiability of

the likelihood function. It is similar to condition (A1) in Andrews et al. (2006) and Lanne

and Saikkonen (2011) although in these papers the domain of the first argument of the

function f is the whole real line. The latter part of Assumption 2(ii) is a mild technical

condition that is needed in some proofs. The first condition in Assumption 2(iii) implies

that Eλ (ρ4
t ) is finite (see (10)) and altogether this assumption guarantees finiteness of

some expectations needed in subsequent developments. In particular, the latter condition

implies finiteness of the quantities

j (λ) =
4πn/2

nΓ (n/2)

∫ ∞
0

ζn/2
(f ′ (ζ;λ))2

f (ζ;λ)
dζ =

4

n
Eλ

[
ρ2
t

(
f ′ (ρ2

t ;λ)

f (ρ2
t ;λ)

)2
]

(11)

and

i (λ) =
πn/2

Γ (n/2)

∫ ∞
0

ζn/2+1 (f ′ (ζ;λ))2

f (ζ;λ)
dζ = Eλ

[
ρ4
t

(
f ′ (ρ2

t ;λ)

f (ρ2
t ;λ)

)2
]
, (12)

where the latter equalities are obtained by using the density of ρ2
t (see (10)). The quan-

tities j (λ) and i (λ) can be used to characterize non-Gaussianity of the error term εt.

Specifically we can prove the following (a proof of this lemma as well as other proofs can

be found in Appendix B or in the Suplementary Appendix).

Lemma 1. Suppose that Assumptions 1 and 2 hold. Then, j (λ) ≥ n/Eλ (ρ2
t ) and i (λ) ≥

(n+ 2)2 [Eλ (ρ2
t )]

2
/4Eλ (ρ4

t ) where equalities hold if and only if εt is Gaussian. If εt is

Gaussian, j (λ) = 1 and i (λ) = n (n+ 2) /4.

Lemma 1 shows that assuming j (λ) > n/Eλ (ρ2
t ) gives a counterpart of condition

(A5) in Andrews et al. (2006) and Lanne and Saikkonen (2011). A difference is, however,

that in these papers the lower part of the inequality does not involve a counterpart of

the expectation Eλ (ρ2
t ). In subsequent developments we also consider a scaled version of

j (λ) given by

τ (λ) = j (λ)Eλ
(
ρ2
t

)
/n. (13)

Clearly, τ (λ) ≥ 1 with equality if and only if εt is Gaussian.

It appears useful to generalize the model defined in equation (1) by allowing restrictions

on the coeffi cient matrices Πj (j = 1, ..., r) and Φj (j = 1, ..., s). Thus, we make the

10



following assumption which even allows for general nonlinear restrictions although in

practice linear restrictions are presumably the most common ones (see, e.g., Assumption

A4 of Kohn (1979) for a similar assumption in (causal) ARMAX models).

Assumption 3. The parameter matrices Πj = Πj (ϑ1) (j = 1, ..., r) and Φj (ϑ2) (j =

1, ..., s) are twice continuously differentiable functions of the parameter vectors ϑ1 ∈ Θ1 ⊆
Rm1 and ϑ2 ∈ Θ2 ⊆ Rm2 , where the permissible parameter spaces Θ1 and Θ2 are open

and such that condition (2) holds for all ϑ = (ϑ1, ϑ2) ∈ Θ1 ×Θ2.

Together with Assumption 2(ii) this assumption guarantees the standard requirement

that the likelihood function is twice continuously differentiable. The most common ex-

ample of the restrictions imposed on Πj and Φj restricts some of their elements to zero in

which case the parameter vectors ϑ1 and ϑ2 contain the unrestricted elements of Πj and

Φj, respectively. We will continue to use the notation Πj and Φj when there is no need

to make the dependence on the underlying parameter vectors explicit.

2.3 Identifiability

In this section we demonstrate that a correct noncausal model can be distinguished from

its causal counterpart or an incorrect noncausal alternative. To this end, we consider the

uniqueness of the linear representation (5). This issue has been studied in the univariate

case by Rosenblatt (2000, Chapter 1.3) and in the vector case by Chan and Ho (2004) (see

also Davis and Song (2010) and Chan, Ho, and Tong (2006) where results of the latter

paper are discussed). Chan and Ho (2004) provide conditions under which the process

εt and the coeffi cient matrices Ψj in the linear representation (5) are ‘essentially’unique.

The linear processes they consider are more general than will be assumed below but, for

ease of exposition, we prefer to be more specific here.

Now, suppose that yt has two linear representations given by

yt =

∞∑
j=−∞

Ψjεt−j =

∞∑
j=−∞

Ψ∗jε
∗
t−j, (14)

where former is defined by (5) and the latter is defined analogously. Specifically, ε∗t (n× 1)

is a sequence of independent, identically distributed random vectors with zero mean and

finite positive definite covariance matrix, and the coeffi cient matrices Ψ∗j decay to zero

at a geometric rate as |j| → ∞. As an application of Theorem 7 Chan and Ho (2004)

we can obtain the following proposition (see also Theorem 1 of Chan et al. (2006) for a

related result). In this proposition we assume that the (excess) kurtosis of the elliptically

distributed error term εt is nonzero. The kurtosis measure we use is the one discussed

in Muirhead and Waternaux (1980, p. 33). It only depends on the function f in (8)
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and equals the common kurtosis of any component of εt. Thus, it can be defined by the

conventional kurtosis of any component of εt.

Proposition 1. Let Assumptions 1 and 2 hold and assume that the (excess) kurtosis of εt
is nonzero and that yt has the two representations in (14) with the fourth moments of ε∗t
finite. Then, there exist an integer l and a nonsingular matrix Q such that ε∗t = Q−1εt+l

and Ψ∗j = Ψj−lQ.

The result of this proposition holds even if the kurtosis of εt is zero provided a cer-

tain condition on higher order cumulants of εt holds (this condition also implies non-

Gaussianity of εt). Similar results can also be obtained when the distribution of εt is

not elliptical (see Theorem 7 of Chan and Ho (2004) or, for the required assumptions,

Conditions 5 and 6 in Chan et al. (2006)). As Theorems 3 and 4 of Chan and Ho (2004)

show, different results are obtained if the components of εt are independent, which cannot

happen for non-Gaussian elliptical distributions (see Theorem 4.1.1 of Fang et al. (1990)).

Next we use Proposition 1 to demonstrate that causal and noncausal VAR models

can be distinguished. Suppose we have data generated by a noncausal VAR(r, s) process

(1) with s ≥ 1 and the error term εt satisfying the assumptions stated in Proposition 1.

Assume, for simplicity, that Φs 6= 0 (the following discussion can readily be modified to

the case where Φs = 0). Now consider the incorrectly specified causal VAR(r + s) model

C(B)yt = ξt, C(B) =
r+s∑
j=0

CjBj, C0 = In, (15)

where det C(z) 6= 0, |z| ≤ 1 and the (stationary) error term ξt is uncorrelated with zero

mean and finite, positive definite covariance matrix (see the discussion in Section 2.1).

From this and the linear representation (1) it follows that

ξt = C(B)Φ
(
B−1

)−1
Π (B)−1 εt. (16)

We shall now demonstrate that ξt cannot be an independent sequence if the conditions

of Proposition 1 hold. Suppose that ξt is independent but has the linear representation

(16). Then, Proposition 1 (applied to ξt instead of yt) shows that, for some integer l and

a nonsingular matrix Q, ξt = Q−1εt+l and C(z)Φ (z−1)
−1

Π (z)−1Q is of the form Inz
−l (cf.

Theorems 8 and 12 of Chan and Ho (2004)). Hence, we have C(z) = Q−1Π (z) Φ (z−1) z−l

and, furthermore, Π (z)−1QC(z) = Φ (z−1) z−l. As Φs 6= 0 (and s ≥ 1) is assumed we must

have l = −s so that Π (z)−1QC(z) = −(Φs+Φs−1z+ · · ·+Φ1z
s−1−Inzs). However, as the

zeros of det (Φ (z)) lie outside the unit circle (see (2)) the zeros of det (Φ (z−1) zs) lie inside

the unit circle and, because det
(
Π (z)−1Q−1C(z)

)
6= 0, |z| ≤ 1, we get a contradiction.

Thus, the uncorrelated error term ξt of the causal representation (15) is dependent which
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makes the causal representation distinguishable from the true noncausal representation

(1). The same conclusion is obtained if in place of the causal VAR(r + s) process one

considers a misspecified noncausal VAR(r′, s′) process with r′+s′ = r+s and either r′ < r

or s′ < s.

The preceding discussion demonstrates that, under the conditions of Proposition 1

(or their extensions), different (causal or noncausal) representations of a correct non-

causal VAR(r, s) process can be distinguished because errors of incorrect representations

are only uncorrelated but not independent. In particular, even though errors of mis-

specified representations have a linear structure similar to (16) they can exhibit nonlinear

dependence. To demonstrate this, we consider dependence typically related to conditional

heteroskedasticity, which is presumably the most common type on nonlinear dependence

considered in the context of (causal) VAR models. Again, we concentrate on the case

where a causal model is incorrectly specified.

To see whether the error term ξt in (15) shows signs of conditional heteroskedastic-

ity, we consider the autocovariances of the squares of its components ξat (a = 1, ..., n).

Denote C
(
ξat, ξb,t+j

)
= γab (j) and let κabcd (j, k, l) signify the fourth order cumulant

of
(
ξat, ξb,t+j, ξc,t+k, ξd,t+l

)
. As is well known, E(ξ2

atξ
2
b,t+j) = γaa (0) γbb (0) + 2γab (j)2 +

κaabb (0, j, j) (cf. Hannan (1970, p. 209)) so that, because the sequence ξt is serially

uncorrelated,

C(ξ2
at, ξ

2
b,t+j) = κaabb (0, j, j) , for j 6= 0.

In the non-Gaussian case fourth order cumulants are generally nonzero so that squared

residuals of a (misspecified) causal VAR(r + s) model can be expected to exhibit serial

correlation. In particular cases the nature of this serial correlation can be studied by

expressing the fourth cumulants κaabb (0, j, j) in terms of the fourth cumulants of εt and

the parameters in the series expansion of C(z)Φ (z−1)
−1

Π (z) (see Hannan (1970, p. 211)).

The result is rather complicated and therefore not considered here.

The preceding discussion indicates that in non-Gaussian cases residuals of a fitted

causal VAR model can appear conditionally heteroskedastic even if the data are generated

by a noncausal VAR process with homoskedastic errors. The same can happen when one

looks at the residuals of a misspecified noncausal VAR model. Thus, noncausal VAR

models can allow for features similar to those typically modelled with GARCHmodels and,

in particular, causal VAR models with GARCH errors. A closer examination of this issue

and comparisons of noncausal VAR models and causal VAR models with GARCH errors

would be of interest but is beyond the scope of this paper. An empirical illustration of the

capability of a univariate noncausal autoregressive model to allow for features typically

modelled by a GARCH model is provided by Breidt, Davis, and Trindade (2001). In

their illustration the probable alternative to the chosen noncausal model, namely a causal
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AR(1) model with GARCH errors, would require at least two more parameters. In our

vector case corresponding differences in the number of parameters can easily become

considerably larger.

3 Parameter estimation

3.1 Likelihood function

ML estimation of the parameters of a univariate noncausal autoregressive model was

studied by Breidt et al. (1991) by using a parametrization different from that in (1).

The parametrization (1) was employed by Lanne and Saikkonen (2011) whose results are

extended here. Unless otherwise stated, Assumptions 1-3 are supposed to hold. The

derivations also assume that s > 0 but can readily be specialized to the causal case s = 0.

Suppose we have an observed time series y1, ..., yT (T > s+ nr). As in the univariate

case we derive the likelihood function by transforming the vector of observed time series.

Denote

det Π (z) = a (z) = 1− a1z − · · · − anrznr.

Then, wt = a (B) yt which in conjunction with the definition ut = Φ (B−1) yt shows that

u1

...

uT−s

wT−s+1

...

wT


=



y1 − Φ1y2 − · · · − Φsys+1

...

yT−s − Φ1yT−s+1 − · · · − ΦsyT

yT−s+1 − a1yT−s − · · · − anryT−s−nr+1

...

yT − a1yT−1 − · · · − anryT−nr


= H1



y1

...

yT−s

yT−s+1

...

yT


or briefly

x1 = H1y.

The definition of ut and (1) yield Π (B)ut = εt so that, by the preceding equality,

u1

...

ur

εr+1

...

εT−s

wT−s+1

...

wT



=



u1

...

ur

ur+1 − Π1ur − · · · − Πru1

...

uT−s − Π1uT−s−1 − · · · − ΠruT−s−r

wT−s+1

...

wT



= H2



u1

...

ur

ur+1

...

uT−s

wT−s+1

...

wT
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or

x2 = H2x1.

We also perform a third transformation which transforms the variables wT−s+1, ..., wT

in x2. To this end, define

vk,T−s+k = wT−s+k −
−k∑

j=−(n−1)r

NjεT−s+k+j, k = 1, ..., s,

where the sum is interpreted as zero when k > (n− 1) r, that is, when the lower bound

exceeds the upper bound. Note also that, by (1) and (4), vk,T−s+k can be expressed

as a function of the observed data y1, ..., yT and that the representation vk,T−s+k =∑∞
j=−k+1NjεT−s+k+j holds, showing that vk,T−s+k (k = 1, ..., s) are independent of εt,

t ≤ T − s. Now we can introduce the transformation

u1

...

ur

εr+1

...

εT−s

v1,T−s+1

...

vs,T



=



u1

...

ur

εr+1

...

εT−s

wT−s+1 −N−(n−1)rεT−s+1−(n−1)r − · · · −N−1εT−s
...

wT −N−(n−1)rεT−(n−1)r − · · · −N−sεT−s



= H3



u1

...

ur

εr+1

...

εT−s

wT−s+1

...

wT


or

z = H3x2.

Combining the preceding three transformations yields the equation

z = H3H2H1y,

where the (nonstochastic) matricesH1,H2, andH3 are nonsingular. The nonsingularity

of H2 and H3 follows from the fact that det (H2) = det (H3) = 1, as can be easily

checked. Justifying the nonsingularity of H1 is somewhat more complicated. Details are

available in the Supplementary Appendix.

From (3) and (4) it is seen that the component vectors of z given by z1 = (u1, ..., ur),

z2 = (εr+1, ..., εT−s), and z3 = (v1,T−s+1, ..., vs,T ) are independent. Thus, (under true

parameter values) the joint density function of z can be expressed as

hz1 (z1)

(
T−s∏
t=r+1

fΣ (εt;λ)

)
hz3(z3),
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where hz1 (·) and hz3 (·) signify the joint density functions of z1 and z3, respectively.

Using (1) and the fact that the determinants of H2 and H3 are unity we can write the

joint density function of the data vector y as

hz1 (z1 (ϑ))

(
T−s∏
t=r+1

fΣ

(
Π (B) Φ

(
B−1

)
yt;λ

))
hz3(z3 (ϑ)) |det (H1)| .

Here the argument z1 (ϑ) is defined by replacing ut in the definition of z1 by Φ (B−1) yt

(t = 1, ..., r) and z3 (ϑ) is defined similarly by replacing vk,T−s+k in the definition of z3

by an analog with a (B) yT−s+k and Π (B) Φ (B−1) yT−s+k+j used in place of wT−s+k and

εT−s+k+j, respectively (j = − (n− 1) r, ....,−k, k = 1, ..., s).

It is easy to check that the determinant of the (T − s)n× (T − s)n block in the upper
left hand corner of H1 is unity and, using the well-known formula for the determinant of

a partitioned matrix, it can further be seen that the determinant of H1 is independent

of the sample size T . This suggests approximating the joint density of y by the second

factor in the preceding expression, giving rise to the approximate log-likelihood function

lT (θ) =
T−s∑
t=r+1

gt (θ) , (17)

where the parameter vector θ contains the unknown parameters and (cf. (8))

gt (θ) = log f
(
εt (ϑ)′Σ−1εt (ϑ) ;λ

)
− 1

2
log det (Σ) , (18)

with

εt (ϑ) = ut (ϑ2)−
r∑
j=1

Πj (ϑ1)ut−j (ϑ2) (19)

and ut (ϑ2) = yt − Φ1 (ϑ2) yt+1 − · · · − Φs (ϑ2) yt+s. In addition to ϑ and λ the parameter

vector θ also contains the different elements of the matrix Σ, that is, the vector σ =

vech(Σ). For simplicity, we shall usually drop the word ‘approximate’and speak about

likelihood function. The same convention is used for related quantities such as the ML

estimator of the parameter θ or its score and Hessian.

Maximizing lT (θ) over permissible values of θ (see Assumptions 2(i) and 3) gives an

approximate ML estimator of θ. Note that here, as well as in the next section, the orders

r and s are assumed known. In our empirical example (see Section 4) we present one way

to specify these quantities.

3.2 Score vector

At this point we introduce the notation θ0 for the true value of the parameter θ and

similarly for its components. Note that our assumptions imply that θ0 is an interior point
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of the parameter space of θ. To simplify notation we write εt (ϑ0) = εt and ut (ϑ20) = u0t

when convenient. The subscript ‘0’will similarly be included in the coeffi cient matrices

of the infinite moving average representations (3), (4), and (5) to emphasize that they are

related to the data generation process (i.e. Mj0, Nj0, and Ψj0). We also denote πj (ϑ1) =

vec(Πj (ϑ1)) (j = 1, ..., r) and φj (ϑ2) = vec(Φj (ϑ2)) (j = 1, ..., s), and set

∇1 (ϑ1) =

[
∂

∂ϑ1

π′1 (ϑ1) : · · · : ∂

∂ϑ1

π′r (ϑ1)

]′ (
n2r ×m1

)
and

∇2 (ϑ2) =

[
∂

∂ϑ2

φ′1 (ϑ2) : · · · : ∂

∂ϑ2

φ′s (ϑ2)

]′ (
n2s×m2

)
.

In this section, we consider ∂lT (θ0) /∂θ, the score of θ evaluated at the true para-

meter value θ0. Explicit expressions of the components of the score vector are given in

Appendix A. Here we first present the expression of the limit limT→∞ T
−1C (∂lT (θ0) /∂θ)

and then at the end of the section the asymptotic distribution of the score is presented.

To this end, additional assumptions and notation are needed. Some of the assumptions

introduced here, and also in the next section, are rather technical, imposing conditions on

the distribution of the error term. It may be worth noting that these conditions are not

special in that they have been used in one form or another for years in likelihood based

statistical inference. They typically hold for distributions usually used in applications.

For instance, the multivariate t-distribution, which will be used in our empirical applica-

tion, satisfies all the assumptions we impose. For the treatment of the score of λ we first

make the following assumption.

Assumption 4. (i) There exists a function f1 (ζ) such that
∫∞

0
ζn/2−1f1 (ζ) dζ <∞ and,

in some neighborhood of λ0, |∂f (ζ;λ) /∂λi| ≤ f1 (ζ) for all ζ ≥ 0 and i = 1, ..., d.

(ii)

∣∣∣∣∣
∫ ∞

0

ζn/2−1

f (ζ;λ0)

∂

∂λi
f (ζ;λ0)

∂

∂λj
∂f (ζ;λ0) dζ

∣∣∣∣∣ <∞, i, j = 1, ..., d.

The first condition is a standard dominance condition which ensures that the score of λ

(evaluated at θ0) has zero mean whereas the second condition ensures that the covariance

matrix of the score of λ (evaluated at θ0) is finite. For other scores the corresponding

properties are obtained from the assumptions made in the previous section.

Recall the definition τ (λ) = j (λ)Eλ (ρ2
t ) /n where j (λ) is defined in (11). In what

follows, we denote j0 = j (λ0) and τ 0 = j0Eλ0 (ρ2
t ) /n. Define the n× n matrix

C11 (a, b) = τ 0

∞∑
k=0

Mk−a,0Σ0M
′
k−b,0
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and set C11 (θ0) =
[
C11 (a, b)⊗ Σ−1

0

]r
a,b=1

(n2r × n2r) and, furthermore,

Iϑ1ϑ1 (θ0) = ∇1 (ϑ10)′C11 (θ0)∇1 (ϑ10) .

It is straightforward to check that Iϑ1ϑ1 (θ0) is the standardized covariance matrix of the

score of ϑ1 or the (Fisher) information matrix of ϑ1 evaluated at θ0 (details can be found

in the proof of Proposition 2 in the Supplementary Appendix). In what follows, the

term information matrix will be used to refer to the covariance matrix of the asymptotic

distribution of the score vector ∂lT (θ0) /∂θ.

Presenting the information matrix of ϑ2 is somewhat complicated. Denoting i0 = i (λ0)

we first define

J0 = i0E
[
(vech(υtυ

′
t)) (vech(υtυ

′
t))
′]− 1

4
vech (In) vech (In)′ ,

a square matrix of order n (n+ 1) /2 (for the definition of υt, see (7)). An explicit ex-

pression of the expectation on the right hand side can be obtained from Wong and Wang

(1992, p. 274). We also denote Πi0 = Πi (ϑ10), i = 1, ..., r, and Π00 = −In, and define
the partitioned matrix C22 (θ0) = [C22 (a, b; θ0)]sa,b=1 (n2s× n2s) where the n2×n2 matrix

C22 (a, b; θ0) is

C22 (a, b; θ0) = τ 0

∞∑
k=−∞
k 6=0

r∑
i,j=0

(
Ψk+a−i,0Σ0Ψ′k+b−j,0 ⊗ Π′i0Σ−1

0 Πj0

)

+
r∑

i,j=0

(
Ψa−i,0Σ

1/2
0 ⊗ Π′i0Σ

−1/2
0

)
(4DnJ0D

′
n −Knn)

(
Σ

1/2
0 Ψ′b−j,0 ⊗ Σ

−1/2
0 Πj0

)
(see the end of the introduction for the definitions of the commutation matrix Knn and

the duplication matrix Dn). Now set

Iϑ2ϑ2 (θ0) = ∇2 (ϑ20)′C22 (θ0)∇2 (ϑ20) ,

which is the (limiting) information matrix of ϑ2 (see Appendix B).

To be able to present the information matrix of the whole parameter vector ϑ we define

the n2 × n2 matrix

C12 (a, b; θ0) = −τ 0

∞∑
k=a

r∑
i=0

(
Mk−a,0Σ0Ψ′k+b−i,0 ⊗ Σ−1

0 Πi0

)
+Knn

(
Ψ′b−a,0 ⊗ In

)
and the n2r × n2s matrix C12 (θ0) = [C12 (a, b; θ0)] = C21 (θ0)′ (a = 1, ..., r, b = 1, ..., s).

Then the off-diagonal blocks of the (limiting) information matrix of ϑ are given by

Iϑ1ϑ2 (θ0) = ∇1 (ϑ10)′C12 (θ0)∇2 (ϑ20) = Iϑ2ϑ1 (θ0)′ .
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Combining the preceding definitions we now define the matrix

Iϑϑ (θ) =
[
Iϑiϑj (θ)

]
i,j=1,2

.

For the remaining blocks of the information matrix of θ, we first define

Iσσ (θ0) = D′n

(
Σ
−1/2
0 ⊗ Σ

−1/2
0

)
DnJ0D

′
n

(
Σ
−1/2
0 ⊗ Σ

−1/2
0

)
Dn

and

Iϑ2σ (θ0) = −2

s∑
j=1

∂

∂ϑ2

φ′j (ϑ2)
r∑
i=0

(
Ψj−i,0Σ

1/2
0 ⊗ Π′i0Σ

−1/2
0

)
DnJ0D

′
n

(
Σ
−1/2
0 ⊗ Σ

−1/2
0

)
Dn

with Iϑ2σ (θ)′ = Iσϑ2 (θ). Finally, define

Iλλ (θ0) =
πn/2

Γ (n/2)

∫ ∞
0

ζn/2−1

f (ζ;λ0)

(
∂

∂λ
f (ζ;λ0)

)(
∂

∂λ
f (ζ;λ0)

)′
dζ

and

Iσλ (θ0) = −D′n
(

Σ
−1/2
0 ⊗ Σ

−1/2
0

)
Dnvech (In)

πn/2

nΓ (n/2)

∫ ∞
0

ζn/2
f ′ (ζ;λ0)

f (ζ;λ0)

∂

∂λ′
f (ζ;λ0) dζ

with Iσλ (θ0)′ = Iλσ (θ0). Here the integrals are finite by Assumptions 2(iii) and 4(ii), and

the Cauchy-Schwarz inequality.

The information matrix of the whole parameter vector θ is given by

Iθθ (θ0) =


Iϑ1ϑ1 (θ0) Iϑ1ϑ2 (θ0) 0 0

Iϑ2ϑ1 (θ0) Iϑ2ϑ2 (θ0) Iϑ2σ (θ0) 0

0 Iσϑ2 (θ0) Iσσ (θ0) Iσλ (θ0)

0 0 Iλσ (θ0) Iλλ (θ0)

 .
Note that in the scalar case n = 1 and in the purely noncausal case r = 0 the expressions

of Iϑ2ϑ2 (θ0) and Iϑ1ϑ2 (θ0) simplify and Iϑ2σ (θ0) becomes zero (see equality (B.6) in

Appendix B). The latter fact means that in these special cases the parameters ϑ and

(σ, λ) are orthogonal so that their ML estimators are asymptotically independent.

Before presenting the limiting distribution of the score of θ we introduce conditions

needed to guarantee the positive definiteness of its covariance matrix. Specifically, we

assume the following.

Assumption 5. (i) The matrices ∇1 (ϑ10) (rn2 ×m1) and ∇2 (ϑ20) (sn2 ×m2) are of full

column rank.

(ii) The matrix

[
Iσσ (θ0) Iσλ (θ0)

Iλσ (θ0) Iλλ (θ0)

]
is positive definite.
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Assumption 5(i) imposes conventional rank conditions on the first derivatives of the

functions in Assumption 3. Assumption 5(ii) is analogous to what has been assumed

in previous univariate models (see Andrews et al. (2006) and Lanne and Saikkonen

(2011)). Note, however, that unlike in the univariate case it is here less obvious that

this assumption is suffi cient for the positive definiteness of the whole information matrix

Iθθ (θ0). The reason is that in the univariate case the situation is simpler in that the

parameters λ and σ are orthogonal to the autoregressive parameters (here ϑ1 and ϑ2).

In the present case the orthogonality of σ with respect to ϑ2 generally fails but it is still

possible to do without assuming more than assumed in the univariate case. Note also

that, similarly to the aforementioned univariate cases, Assumption 5(ii) is not needed to

guarantee the positive definiteness of Iσσ (θ0). This follows from the definition of Iσσ (θ0)

and the facts that duplication matrices are of full column rank and the matrix J0 is

positive definite even in the Gaussian case (see Lemma 4 in Appendix B).

Now we can present the limiting distribution of the score.

Proposition 2. Suppose that Assumptions 1—5 hold and that εt is non-Gaussian. Then,

(T − s− r)−1/2
T−s∑
t=r+1

∂

∂θ
gt (θ0)

d→ N (0, Iθθ (θ0)) ,

where the matrix Iθθ (θ0) is positive definite.

This result generalizes the corresponding univariate result given in Breidt et al. (1991)

and Lanne and Saikkonen (2011). In the following section we generalize the work of these

authors further by deriving the limiting distribution of the (approximate) ML estimator of

θ0. Note that for this result it is crucial that εt is assumed to be non-Gaussian because in

the Gaussian case the information matrix Iθθ (θ0) is singular (see the proof of Proposition

2, Step 2). As is well known (see Theorem 1 of Rothenberg (1971)), positive definiteness

of the information matrix Iθθ (θ0) can be viewed as a local identifiability condition for the

parameter θ0.

3.3 Limiting distribution of the approximate ML estimator

The expressions of the second partial derivatives of the log-likelihood function can be found

in Appendix A. The following lemma shows that the expectations of these derivatives

evaluated at the true parameter value agree with the corresponding elements of −Iθθ (θ0).

For this lemma we need the following assumption.

Assumption 6.(i) The integral
∫∞

0
ζn/2−1f ′ (ζ;λ0) dζ is finite, limζ→∞ ζ

n/2+1f ′ (ζ;λ0)

= 0, and a finite right limit limζ→0+ f
′ (ζ;λ0) exists.
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(ii) There exists a function f2 (ζ) such that
∫∞

0
ζn/2−1f2 (ζ) dζ < ∞ and, in some neigh-

borhood of λ0, ζ |∂f ′ (ζ;λ) /∂λi| ≤ f2 (ζ) and |∂2f (ζ;λ) /∂λi∂λj| ≤ f2 (ζ) for all ζ ≥ 0

and i, j = 1, ..., d.

Assumption 6(i) is analogous to Assumptions 2(ii) and (iii) except that it is formulated

for the derivative f ′ (ζ;λ0). Assumption 6(ii) imposes a standard dominance condition

which guarantees that the expectation of ∂2gt (θ0) /∂λ∂λ′ behaves in the desired fashion.

It complements Assumption 4(i) which is formulated similarly to deal with the expectation

of ∂gt (θ0) /∂λ. Now we can formulate the following lemma.

Lemma 2. If Assumptions 1-6 hold then − (T − s− r)−1 Eθ0 [∂2lT (θ0) /∂θ∂θ′] = Iθθ (θ0) .

Lemma 2 shows that the Hessian of the log-likelihood function evaluated at the true

parameter value is related to the information matrix in the standard way, implying that

∂2gt (θ0) /∂θ∂θ′ obeys a desired law of large numbers. However, to establish the asymp-

totic normality of the ML estimator more is needed, namely that ∂2gt (θ) /∂θ∂θ′ obeys a

uniform law of large numbers in some neighborhood of θ0. For that additional assumptions

are required. As usual, it suffi ces to impose appropriate dominance conditions such as

those given in the following assumption.

Assumption 7. For all ζ ≥ 0 and all λ in some neighborhood of λ0, the functions(
f ′ (ζ;λ)

f (ζ;λ)

)2

,

∣∣∣∣f ′′ (ζ;λ)

f (ζ;λ)

∣∣∣∣ , 1

f (ζ;λ)2

(
∂

∂λj
f (ζ;λ)

)2

,

1

f (ζ;λ)

∣∣∣∣ ∂∂λj f ′ (ζ;λ)

∣∣∣∣ , 1

f (ζ;λ)

∣∣∣∣ ∂2

∂λj∂λk
f (ζ;λ)

∣∣∣∣ , j, k = 1, ..., d,

are dominated by a1 + a2ζ
a3 with a1, a2, and a3 nonnegative constants and∫∞

0
ζn/2+1+a3f (ζ;λ0) dζ <∞.

The dominance means that, for example, (f ′ (ζ;λ) /f (ζ;λ))2 ≤ a1 + a2ζ
a3 for ζ and λ

as specified. These dominance conditions are very similar to those assumed in condition

(A7) of Andrews et al. (2006) and Lanne and Saikkonen (2011).

Now we can state the main result of this section.

Theorem 1. Suppose that Assumptions 1—7 hold and that εt is non-Gaussian. Then there
exists a sequence of (local) maximizers θ̂ of lT (θ) in (17) such that

(T − s− r)1/2 (θ̂ − θ0)
d→ N

(
0, Iθθ (θ0)−1) .

Furthermore, Iθθ (θ0) can consistently be estimated by − (T − s− r)−1 ∂2lT (θ̂)/∂θ∂θ′.
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Theorem 1 shows that the usual result on asymptotic normality holds for a local max-

imizer of the likelihood function and that the limiting covariance matrix can consistently

be estimated with the Hessian of the log-likelihood function. Based on these results and

arguments used in their proof, conventional likelihood based tests with limiting chi-square

distribution can be obtained. It is worth noting, however, that consistent estimation of

the limiting covariance matrix cannot be based on the outer product of the first derivatives

of the log-likelihood function. Specifically, (T − s− r)−1∑T−s
t=r+1(∂gt(θ̂)/∂θ)(∂gt(θ̂)/∂θ

′)

is, in general, not a consistent estimator of Iθθ (θ0). The reason is that the components

of the score vector are serially correlated so that what is needed is an estimator of the

long-run covariance matrix of the (stationary) process ∂gt(θ0)/∂θ. This is not obtained by

the aforementioned estimator which does not take nonzero covariances between ∂gt(θ0)/∂θ

and ∂gk(θ0)/∂θ, k 6= t, into account. Such covariances are responsible, for example, for the

term Knn

(
Ψ′b−a ⊗ In

)
in Iϑ1ϑ2 (θ0) (for details we refer to the definition of C12 (a, b; θ0)

and the related proof in the Supplementary Appendix). However, being based on the

Hessian of the log-likelihood function the estimator given in Theorem 1 works as usual

estimating −Eθ0 [∂2gt (θ0) /∂θ∂θ′] = Iθθ (θ0) consistently (see Lemma 2). This, in turn, is

due to the fact that ∂2gt (θ) /∂θ∂θ′ is a stationary and ergodic process obeying a uniform

law of large numbers (see the proof of Theorem 1).

4 Empirical application

We illustrate the use of the noncausal VAR model with an application to U.S. interest

rate data. Specifically, we consider the expectations hypothesis of the term structure of

interest rates, according to which the long-term interest rate is a weighted sum of present

and expected future short-term interest rates. Campbell and Shiller (1991) suggested

testing the expectations hypothesis by testing the restrictions it imposes on the para-

meters of a bivariate VAR model for the change in the short-term interest rate and the

spread between the long-term and short-term interest rates. The general idea is that a

causal VAR model captures the dynamics of interest rates, and therefore, its forecasts

can be considered as investors’expectations. If these expectations are rational, i.e., they

do not systematically deviate from the observed values, this together with the expecta-

tions hypothesis imposes testable restrictions on the parameters of the VAR model. This

method, already proposed by Sargent (1979), is straightforward to implement and widely

applied in economics besides this particular application. However, it crucially depends on

the causality of the employed VAR model, suggesting that the validity of this assumption

should be checked to avoid potentially misleading conclusions. If the selected VAR model

turns out to be noncausal, the estimates may yield evidence in favor of or against the
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expectations hypothesis. In particular, according to the expectations hypothesis, the ex-

pected changes in the short rate drive the term structure, and therefore, their coeffi cients

in the Φ matrices should be significant in the equation of the spread.

The specification of a potentially noncausal VAR model is carried out along the same

lines as in the univariate case in Breidt et al. (1991) and Lanne and Saikkonen (2011).

The first step is to fit a conventional causal VAR model by least squares or Gaussian ML

and determine its order by using conventional procedures such as diagnostic checks and

model selection criteria. We deem a causal model adequate when its residuals show no

signs of serial correlation, and, once such an adequate causal model is found, we check its

residuals for Gaussianity. As already discussed, it makes sense to proceed to noncausal

models only if deviations from Gaussianity are detected. If this happens, a non-Gaussian

error distribution is adopted and all causal and noncausal models of the selected order are

estimated. Of these models the one that maximizes the log-likelihood function is selected

and its adequacy is checked by diagnostic tests.

We use the Ljung-Box and McLeod-Li tests to check for error autocorrelation and

conditional heteroskedasticity, respectively. Note, however, that when the orders of the

model are misspecified, these tests are not exactly valid as they do not take estimation

errors correctly into account. For instance, as discussed in Section 2.3, squared errors of

misspecified noncausal VAR models are, in general, serially correlated, implying that the

conventional limiting distribution of the Ljung-Box test does not apply (cf. Francq, Roy,

and Zakoïan (2005)). The reason is that misspecification of the model orders makes the

errors dependent. Nevertheless, p-values of these tests can be seen as convenient summary

measures of the autocorrelation remaining in the residuals and their squares. A similar

remark applies to the Shapiro-Wilk test we use to check the normality of the errors.

Our data set comprises the (demeaned) change in the six-month interest rate (∆rt)

and the spread between the five-year and six-month interest rates (St) (quarter-end yields

on U.S. zero-coupon bonds) from the thirty-year period 1967:1—1996:4 (120 observations)

previously used in Duffee (2002). The two series are depicted in Figure 1. The AIC and

BIC select Gaussian VAR(3) and VAR(1) models, respectively, but only the third-order

model produces serially uncorrelated errors. However, the results in Table 1 show that

its squared residuals are autocorrelated, and the Q-Q plots in the upper panel of Figure

2 indicate considerable deviations from normality. The p-values of the Shapiro-Wilk test

for the residuals of the equations of ∆rt and St equal 5.06e—9 and 7.23e—7, respectively.

Because the most severe violations of normality occur at the tails, a more leptokurtic

distribution, such as the multivariate t-distribution, might prove suitable for these data.

Results of diagnostic checks of all four third-order VAR models with t-distributed

23



errors are summarized in Table 1.5 By a wide margin, the specification maximizing the

log-likelihood function is the VAR(2,1)-t model. It also turns out to be the only one of

the estimated models that shows no signs of remaining autocorrelation in the residuals or

their squares. Given this, it is interesting to recall from Section 2.3 that, when the (non-

Gaussian) data generation process is noncausal, squared residuals of a causal VAR model

or a misspecified noncausal VAR model tend to be autocorrelated. The Q-Q plots of the

residuals in the lower panel of Figure 2 lend support to the adequacy of the multivariate

t-distribution of the errors. In particular, the t-distribution seems to capture the tails

reasonably well. Moreover, the estimate of the degrees-of-freedom parameter λ is small

(4.085), suggesting inadequacy of the Gaussian error distribution. Thus, there is clear

evidence of noncausality.

The estimates of the preferred model are presented in Table 2. The estimated Φ1

matrix seems to have an interpretation that goes contrary to the implications of the

expectations hypothesis discussed above: the estimate of Φ1,21 is insignificant at conven-

tional significance levels, indicating that an expected increase of the short-term rate has

no significant effect on the spread. Furthermore, an expected future increase of the spread

tends to decrease the short-term rate and increase the spread, i.e., the estimates of Φ1,12

and Φ1,22 are both significant at 1% level, with the former being negative and the latter

positive. This may be interpreted in favor of (expected) time-varying term premia driving

the term structure instead of expectations of future short-term rates as implied by the

expectations hypothesis.

In sum, the presence of a noncausal VAR representation of ∆rt and St invalidates

the test of the expectations hypothesis suggested by Campbell and Shiller (1991). Fur-

thermore, the estimation results of the noncausal VAR model lend little support to the

expectations hypothesis. If noncausality prevails more generally in interest rates, this

might also explain the common rejections of the expectations hypothesis when testing is

based on the assumption of a causal VAR model.

5 Conclusion

In this paper, we have proposed a new noncausal VAR model that contains the commonly

used causal VAR model as a special case. Under Gaussianity, causal and noncausal VAR

5The density function of the multivariate t-distribution for an n-dimensional random vector x with

mean zero, λ degerees of freedom, and covariance matrix λ
λ−2Σ is given by

fΣ (x;λ) =
Γ [(λ+ n) /2]

(λπ)
n/2

Γ (λ/2)
√

det (Σ)

(
1 +

1

λ
x′Σ−1x

)−(λ+n)/2

where Γ (·) is the gamma function and λ > 2 is assumed.
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models cannot be distinguished which underlines the importance of careful specification

of the error distribution of the model. Assuming that the error distribution belongs to

a fairly general class of elliptical distributions we derived asymptotic properties of an

approximate (local) ML estimator in the noncausal VAR model. The potential usefulness

of the noncausal VAR model was illustrated by means of an empirical application to the

U.S. term structure of interest rates. In that case we successfully employed an extension of

the model selection procedure presented by Breidt et al. (1991) and Lanne and Saikkonen

(2011) in the corresponding univariate case and found evidence of noncausality. This

finding invalidates the previously employed test of the expectations hypothesis of the

term structure of interest rates explicitly based on a causal VAR model.

While the new model appears useful in providing a more accurate description of time

series dynamics and checking for the validity of a causal VAR representation, it may also

have other uses. For instance, in economic applications, we expect noncausal VAR models

to be valuable in checking for so-called nonfundamentalness. In economics, a model is

said to exhibit nonfundamentalness if its solution explicitly depends on the future so

that it does not have a causal VAR representation (for a recent survey of the relevant

literature, see Alessi, Barigozzi, and Capasso (2011)). Hence, nonfundamentalness is

closely related to noncausality, and checking for noncausality can be seen as one way of

testing for nonfundamentalness. Because nonfundamentalness often invalidates the use

of conventional econometric methods, being able to detect it in advance is important.

However, the test procedures suggested in the previous literature are not very convenient

and have not been much applied in practice.

Checking for causality (or fundamentalness) is an important application of our meth-

ods, but it can only be considered as the first step in the empirical analysis of time series

data. Once noncausality has been detected, it would be natural to use the noncausal

VAR model for forecasting and structural analysis. These, however, require methods that

are not readily available. Because the prediction problem in noncausal VAR models is

generally nonlinear (cf. Rosenblatt (2000, Chapter 5)) methods used in the causal case

are not applicable and, due to the explicit dependence on the future, the same is true

for conventional simulation-based methods. In the univariate case, Lanne, Luoto, and

Saikkonen (2012) have proposed a forecasting method that could plausibly be extended

to the noncausal VAR model.

Regarding statistical aspects, the theory presented in this paper is confined to the

class of elliptical distributions. Even though the multivariate t-distribution belonging to

this class seemed adequate in our empirical applications, it would be desirable to make

extensions to other relevant classes of distributions. Also, the finite-sample properties

of the employed model selection procedure could be examined by means of simulation
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experiments. We leave all of these issues for future research.

Mathematical Appendix
Some of the mathematical derivations require rather long and tedious calculations. In

what follows, we shall therefore omit several details which can be found in the Supple-

mentary Appendix.

A Derivatives of the log-likelihood function

It will be suffi cient to consider the derivatives of gt (θ) which can be obtained by straight-

forward differentiation. To simplify notation we set h (ζ;λ) = f ′ (ζ;λ) /f (ζ;λ) ,

et (θ) = h
(
εt (ϑ)′Σ−1εt (ϑ) ;λ

)
Σ−1/2εt (ϑ) and e0t = et (θ0) . (A.1)

Then,

h′
(
εt (ϑ)′Σ−1εt (ϑ) ;λ

)
=
f ′′
(
εt (ϑ)′Σ−1εt (ϑ) ;λ

)
f
(
εt (ϑ)′Σ−1εt (ϑ) ;λ

) −(f ′ (εt (ϑ)′Σ−1εt (ϑ) ;λ
)

f
(
εt (ϑ)′Σ−1εt (ϑ) ;λ

) )2

(A.2)

and (see (7))

e0t
d
= ρth

(
ρ2
t ;λ0

)
υt = ρth0

(
ρ2
t

)
υt, (A.3)

where the latter equality defines the notation h0 (·) = h (·;λ0).

First derivatives of lT (θ). First, conclude from (19) that

∂
∂ϑ1

ε′t (ϑ) = −
r∑
i=1

∂
∂ϑ1

π′i (ϑ1) (ut−i (ϑ2)⊗ In) (A.4)

and
∂
∂ϑ2

ε′t (ϑ) =
r∑
i=0

s∑
j=1

∂
∂ϑ2

φ′j (ϑ2) (yt+j−i ⊗ Π′i) , (A.5)

with Π0 = −In = Π00. With this notation and σ = vech(Σ) one obtains from (18) that

∂
∂ϑi
gt (θ) = 2h

(
εt (ϑ)′Σ−1εt (ϑ) ;λ

)
∂
∂ϑi
ε′t (ϑ) Σ−1εt (ϑ) , i = 1, 2

∂
∂σ
gt (θ) = −h

(
εt (ϑ)′Σ−1εt (ϑ) ;λ

)
G (Σ−1)

′
(εt (ϑ)⊗ εt (ϑ))− 1

2
D′nvec (Σ−1)

∂
∂λ
gt (θ) = 1

f(εt(ϑ)′Σ−1εt(ϑ);λ)
∂
∂λ
f
(
εt (ϑ)′Σ−1εt (ϑ) ;λ

)
,

where, for brevity, G (Σ−1)
′
= D′n (Σ−1 ⊗ Σ−1) .

Second derivatives of lT (θ). Using the fact that

∂
∂ϑ′i
et (θ) = h

(
εt (ϑ)′Σ−1εt (ϑ) ;λ

)
Σ−1/2 ∂

∂ϑ′i
εt (ϑ) (A.6)

+2h′
(
εt (ϑ)′Σ−1εt (ϑ) ;λ

)
Σ−1/2εt (ϑ) εt (ϑ)′Σ−1 ∂

∂ϑ′i
εt (ϑ) , i = 1, 2,
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we first have

∂2

∂ϑ1∂ϑ
′
1
gt (θ) = −2

∑r
i=1

(
ut−i (ϑ2)′ ⊗ et (θ)′Σ−1/2 ⊗ Im1

)
∂
∂ϑ′1
vec( ∂

∂ϑ1
π′i (ϑ1))

− 2
∑r

i=1
∂
∂ϑ1

π′i (ϑ1) (ut−i (ϑ2)⊗ In) Σ−1/2 ∂
∂ϑ′1

et (θ)

∂2

∂ϑ2∂ϑ
′
2
gt (θ) = 2

∑s
j=1

∑r
i=0

(
y′t+j−i ⊗ et (θ)′Σ−1/2Πi ⊗ Im2

)
∂
∂ϑ′2
vec( ∂

∂ϑ2
φ′j (ϑ2))

+ 2
∑s

j=1
∂
∂ϑ2

φ′j (ϑ2)
∑r

i=0 (yt+j−i ⊗ Π′i) Σ−1/2 ∂
∂ϑ′2

et (θ)

∂2

∂ϑ1∂ϑ
′
2
gt (θ) = −2

∑r
i=1

∂
∂ϑ1

π′i (ϑ1)
(
In ⊗ Σ−1/2et (θ)

)
∂
∂ϑ′2

ut−i (ϑ2)

− 2
∑r

i=1
∂
∂ϑ1

π′i (ϑ1) (ut−i (ϑ2)⊗ In) Σ−1/2 ∂
∂ϑ′2

et (θ) ,

where ∂ut−i (ϑ2) /∂ϑ′2 = −
∑s

j=1(y′t+j−i ⊗ In)∂φj (ϑ2) /∂ϑ′2 (see below (19)).

Next,

∂2

∂σ∂σ′ gt (θ) = 2h
(
εt (ϑ)′Σ−1εt (ϑ) ;λ

)
D′n
(
Σ−1εt (ϑ) εt (ϑ)′Σ−1 ⊗ Σ−1

)
Dn + 1

2
D′nG (Σ−1)

+ h′
(
εt (ϑ)′Σ−1εt (ϑ) ;λ

)
G (Σ−1)

′ (
εt (ϑ) εt (ϑ)′ ⊗ εt (ϑ) εt (ϑ)′

)
G (Σ−1)

∂2

∂ϑi∂σ′
gt (θ) = −2h

(
εt (ϑ)′Σ−1εt (ϑ) ;λ

) (
εt (ϑ)′ ⊗ ∂

∂ϑi
ε′t (ϑ)

)
G (Σ−1)

− 2h′
(
εt (ϑ)′Σ−1εt (ϑ) ;λ

)
∂
∂ϑi
ε′t (ϑ) Σ−1εt (ϑ)

(
εt (ϑ)′ ⊗ εt (ϑ)′

)
G (Σ−1) , i = 1, 2

∂2

∂σ∂λ′ gt (θ) = −G (Σ−1)
′
(εt (ϑ)⊗ εt (ϑ)) ∂

∂λ′h
(
εt (ϑ)′Σ−1εt (ϑ) ;λ

)
.

Finally,

∂2

∂λ∂λ′ gt (θ) = − 1

(f(εt(ϑ)′Σ−1εt(ϑ);λ))
2
∂
∂λ
f
(
εt (ϑ)′Σ−1εt (ϑ) ;λ

)
∂
∂λ′f

(
εt (ϑ)′Σ−1εt (ϑ) ;λ

)
+ 1

f(εt(ϑ)′Σ−1εt(ϑ);λ)
∂2

∂λ∂λ′f
(
εt (ϑ)′Σ−1εt (ϑ) ;λ

)
∂2

∂ϑi∂λ
′ gt (θ) = 2 ∂

∂ϑi
ε′t (ϑ) Σ−1εt (ϑ) ∂

∂λ′h
(
εt (ϑ)′Σ−1εt (ϑ) ;λ

)
, i = 1, 2,

where

∂
∂λ′h

(
εt (ϑ)′Σ−1εt (ϑ) ;λ

)
= 1

f(εt(ϑ)′Σ−1εt(ϑ);λ)
∂
∂λ′f

′ (εt (ϑ)′Σ−1εt (ϑ) ;λ
)

− f ′(εt(ϑ)′Σ−1εt(ϑ);λ)
(f(εt(ϑ)′Σ−1εt(ϑ);λ))

2
∂
∂λ′f

(
εt (ϑ)′Σ−1εt (ϑ) ;λ

)
.

B Proofs for Sections 2 and 3

Proof of Lemma 1. For the former inequality, first conclude from the definition of the

function h (see the beginning of Appendix A) and the density of ρ2
t (see (10)) that

Eλ
[
ρ2
th
(
ρ2
t ;λ
)]

=
πn/2

Γ (n/2)

∫ ∞
0

ζn/2f ′ (ζ;λ) dζ = −n
2
. (B.1)

Here the latter equality follows because∫ ∞
0

ζn/2f ′ (ζ;λ) dζ = ζn/2f (ζ;λ) |∞0 −
n

2

∫ ∞
0

ζn/2−1f (ζ;λ) dζ = −nΓ (n/2)

2πn/2
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by Assumptions 2(ii) and (iii) (cf. Fang et al. (1990, p. 35)). Equation (B.1), the

Cauchy-Schwarz inequality, and the definition of j (λ) (see (11)) yield

1 =

{
2πn/2

nΓ (n/2)

∫ ∞
0

ζn/4
f ′ (ζ;λ)√
f (ζ;λ)

ζn/4
√
f (ζ;λ)dζ

}2

≤ 4πn/2

nΓ (n/2)

∫ ∞
0

ζn/2
(f ′ (ζ;λ))2

f (ζ;λ)
dζ · πn/2

nΓ (n/2)

∫ ∞
0

ζn/2f (ζ;λ) dζ (B.2)

= j (λ) · Eλ
(
ρ2
t

)
/n.

Thus, we have shown the claimed inequality.

From the preceding proof it is seen that equality holds if and only if there is equality in

(B.2). As is well known, this happens if and only if ζn/4f ′ (ζ;λ) /
√
f (ζ;λ) is proportional

to ζn/4
√
f (ζ;λ) or if and only if

f ′ (ζ;λ)

f (ζ;λ)
=

∂

∂ζ
log f (ζ;λ) = c for some constant c.

This implies f (ζ;λ) = b exp (−aζ) with a > 0 and b > 0. From the fact that f (x′x;λ),

x ∈ Rn, is the density function of ρtυt (see (7) and (8)) it further follows that b = (a/π)n/2

and that ρtυt has the normal density (2π)−n/2 exp (−x′x/2). Here the identity covariance

matrix is obtained because ρ2
t ∼ χ2

n, and hence from (9), C (ρ2
tυt) = In (cf. the corollary

to Lemma 1.4 and Example 1.3 of Fang et al. (1990, p. 23). Thus, εt is Gaussian

as a linear transformation of ρtυt. On the other hand, if εt is Gaussian the equality

f ′ (ζ;λ) /f (ζ;λ) = c clearly holds with c = −1/2 and, because then ρ2
t ∼ χ2

n, Eλ (ρ2
t ) = n

and j (λ) = 1. This completes the proof for j (λ). The proof for i (λ) makes use of similar

arguments. Details can be found in the Supplementary Appendix. �

Proof of Proposition 1. The proof is obtained as an application of Theorem 7 of

Chan and Ho (2004). First note that, by condition (2), the coeffi cient matrices Ψj are

square summable and the matrix
∑∞

j=−∞Ψje
−ijω is nonsingular for all ω ∈ (−π, π]. Thus,

conditions (i)-(iii) of Lemma 2 of Chan and Ho (2004) hold and we only need to verify

conditions (D1) and (D2) of their Theorem 7 (or Conditions 5 and 6 in Chan et al. (2006)).

The latter requires that any two linear combinations of εt with nonzero coeffi cient vectors

must be dependent. Thus, let α′1εt and α
′
2εt be such linear combinations (α1 6= 0 6= α2). By

Theorem 2.16 of Fang et al. (1990) the bivariate random vector (α′1εt, α
′
2εt) is elliptically

distributed and also non-Gaussian because εt is non-Gaussian by assumption. Now, if

α′1εt and α
′
2εt are independent they are uncorrelated, and by Theorem 4.11 of Fang et al.

(1990), (α′1εt, α
′
2εt) is necessarily Gaussian. As this is a contradiction, condition (D2) of

Chan and Ho (2004) holds.

To verify condition (D1) of Chan and Ho (2004), let cum (·, ..., ·) signify the cumulant
of the indicated random variables. As in the example of Chan and Ho (2004) after their
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Theorem 7, it suffi ces to show that the symmetric matrix cum (εt, εt, ε1t, ε1t) is nonsingular

(here ε1t is the first component of εt). To this end, we first show that this matrix is

positive definite when the kurtosis of εt, denoted by K, is positive (note that |K| < ∞
because ρt, and hence the components of εt have finite fourth moments, as discussed after

Assumption 2). Denote ι = (1, 0, ..., 0) (n× 1) and let α (n× 1) be an arbitrary nonzero

constant vector. Then,

α′cum (εt, εt, ε1t, ε1t)α = cum (α′εt, α
′εt, ι

′εt, ι
′εt)

= K
{
α′E (εtε

′
t)α · ι′E (εtε

′
t) ι+ 2 [α′E (εtε

′
t) ι]

2
}

(cf. Muirhead and Waternaux (1980, p. 33)). The last expression is positive, showing

the desired result. If K < 0 it can similarly be seen that the matrix cum (εt, εt, ε1t, ε1t) is

negative definite. Thus, we have verified condition (D1) of Chan and Ho (2004). �

Next we present some auxiliary results needed to prove Proposition 2. Here the true pa-

rameter value is assumed, so the notation E (·) will be used instead of Eλ0 (·) and similarly
for C (·). In these proofs frequent use will be made of well-known properties of the Kro-
necker product and the vec operator, especially the result vec(ABC) = (C ′ ⊗ A)vec(B)

which holds for any conformable matrices A, B, and C. This and other results of matrix

algebra to be employed can be found in Lütkepohl (1996). To simplify notation, we define

εt = Σ
−1/2
0 εt and note that (see (7))

εt
d
= ρtυt. (B.3)

We will also frequently write f (·;λ0) = f0 (·) and similarly for f ′0 (·) and f ′′0 (·).

Lemma 3. Under the conditions of Proposition 2,

E (e0t) = 0 and C (e0t) =
j0

4
In, (B.4)

and

C (εt, e0k) =

{
0, if t 6= k

−1
2
In, if t = k

(B.5)

Proof. By the definition of the function h0 (·) (see (A.3)) and the density of ρ2
t (see (10)),

E
[
ρ2
t

(
h0

(
ρ2
t

))2
]

=
πn/2

Γ (n/2)

∫ ∞
0

ζn/2
(f ′0 (ζ))2

f0 (ζ)
dζ =

n

4
j0,

where the latter equality is due to (11). Thus, because E (υt) = 0 and C (υt) = n−1In,

independence of the processes ρt and υt in conjunction with (A.3) proves (B.4). The

same arguments and (B.3) yield E (εte
′
0k) = E [ρtρkh0 (ρ2

k)]E (υtυ
′
k) , where E (υtυ

′
k) = 0

for t 6= k. Thus, one obtains (B.5) from this and (B.1). �
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Lemma 4. . Under the conditions of Proposition 2,

C (εt−i ⊗ e0t, εk−j ⊗ e0k) =


DnJ0D

′
n, if t = k, i = j = 0

τ0
4
In2 , if t = k, i = j 6= 0

1
4
Knn, if t 6= k, i = t− k, j = k − t

0, otherwise.

Moreover, the matrix J0 is positive definite even when εt is Gaussian.

Proof. We only prove the case t = k and i = j = 0. The other cases can be established

with similar arguments (details are available in the Supplementary Appendix). First note

that εt−i⊗ e0t
d
= ρt−iρth0 (ρ2

t ) (υt−i ⊗ υt) (see (B.3) and (A.3)). This and independence of
ρt and υt yields

E (εt ⊗ e0t) = E
[
ρ2
th0

(
ρ2
t

)]
E (υt ⊗ υt) = −1

2
Dnvech (In) ,

where the latter equality is due to (B.1) and the fact E (υt ⊗ υt) = n−1vec(In). By the

same arguments we also find that

E [(εt ⊗ e0t)(εt ⊗ e0t)
′] = E

[
ρ4
t

(
h0

(
ρ2
t

))2
]
E (υtυ

′
t ⊗ υtυ′t) = i0E (υtυ

′
t ⊗ υtυ′t) ,

where the latter equality follows from the definition of i0 (see (12)). Because

E (υtυ
′
t ⊗ υtυ′t) = E [(υt ⊗ υt) (υ′t ⊗ υ′t)] = DnE

[
(vech(υtυ

′
t)) (vech(υtυ

′
t))
′]
D′n,

the stated result is obtained from the definition of the matrix J0.

The matrix J0 is clearly symmetric and from the definition of i0 and (B.1) it follows

that, even when εt is Gaussian, i0 > {E [ρ2
th0 (ρ2

t )]}
2

= n2/4, where the inequality is strict

because ρ2
t has positive density. Now, let x be a nonzero n× 1 vector and conclude from

the preceding inequality and the definition of J0 that

4x′J0x > n2x′E
[
(vech(υtυ

′
t)) (vech(υtυ

′
t))
′]
x− x′vech (In) vech (In)′ x.

As E [vech(υtυ
′
t)] = n−1vech(In), the right hand side equals n2x′C (vech(υtυ

′
t))x, which is

clearly nonnegative and, consequently, J0 is positive definite. �

Proof of Proposition 2. The proof consists of three steps. The first one shows that the
expectation of the score of θ at the true parameter value is zero and its limiting covariance

matrix is Iθθ (θ0). The positive definiteness of Iθθ (θ0) is established in the second step

and the third step proves the asymptotic normality of the score.

Step 1. We only give a proof for the score of ϑ2 which differs most from standard

cases (proofs of the other cases are available in the Supplementary Appendix). First
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we demonstrate that the expectation of this score is zero. Denote Φ0 (z)−1 = L0 (z) =∑∞
j=0 Lj0z

j where L00 = In and the subscript zero again refers to true parameter values.

We also define Lj0 = 0 for j < 0. Using the identity L0 (z−1) = Ψ0 (z) Π0 (z) it can be

seen that

−
r∑
i=0

Ψj−i,0Πi0 =


0, j > 0

In, j = 0

L−j0, j < 0,

(B.6)

where Π00 = −In. To simplify notation we denote

A0 (k, i) = Ψk0Σ
1/2
0 ⊗ Π′i0Σ

−1/2
0 and B0 (d) = Md0Σ

1/2
0 ⊗ Σ

−1/2
0

and note that, by (B.6),

r∑
i=0

A0 (a− i, i) vec (In) = vec

(
r∑
i=0

Π′i0Ψ′a−i,0

)
= 0, a ∈ {1, ..., s} . (B.7)

Next, observe that

∂

∂ϑ2

gt (θ0) = 2
s∑
j=1

∂

∂ϑ2

φ′j (ϑ20)
r∑
i=0

(yt+j−i ⊗ Π′i0) Σ
−1/2
0 e0t (B.8)

(see Appendix A) and consider the expectation

E

(
r∑
i=0

(yt+a−i ⊗ Π′i0) Σ
−1/2
0 e0t

)
=

r∑
i=0

∞∑
k=−∞

A0 (k, i)E (εt+a−i−k ⊗ e0t) ,

which is obtained by using equation (5), the definition of A0 (k, i) , and the definition

εt = Σ
−1/2
0 εt. By Lemma 3, the expectation in the last expression equals zero if k 6= a− i

and −1
2
vec(In) if k = a− i. From this and (B.7) we find that

E

(
r∑
i=0

(yt+a−i ⊗ Π′i0) Σ
−1/2
0 e0t

)
= −1

2

r∑
i=0

A0 (a− i, i) vec (In) = 0.

This in conjunction with (17) and (B.8) implies that E (∂lT (θ0) /∂ϑ2) = 0.

As for the covariance matrix of the score of ϑ2, let 1 (·) stand for the indicator function
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and, for a, b ∈ {1, ..., s}, consider the covariance matrix

C

(
r∑
i=0

(yt+a−i ⊗ Π′i0) Σ
−1/2
0 e0t,

r∑
j=0

(yk+b−j ⊗ Π′i0) Σ
−1/2
0 e0k

)

=
∞∑

c,d=−∞

r∑
i,j=0

A0 (c, i)C ((εt+a−i−c ⊗ e0t), (εk+b−j−d ⊗ e0k))A0 (d, j)′

=
τ 0

4

∞∑
c=−∞
c 6=0

r∑
i,j=0

A0 (c+ a− i, i)A0 (c+ b− j, j)′ 1 (t = k)

+
1

4

r∑
i,j=0

A0 (t− k + a− i, i)KnnA0 (k − t+ b− j, j)′ 1 (t 6= k)

+
r∑

i,j=0

A0 (a− i, i)DnJ0D
′
nA0 (b− j, j)′ 1 (t = k) .

Here the former equality is again obtained by using (5) and the definition of A0 (k, i)

whereas the latter is justified by Lemma 4. Summing the last expression over t, k =

r + 1, ..., T − s, multiplying by 4/ (T − s− r), and letting T tend to infinity yields the

matrix C22 (a, b; θ0) (see (B.8) and the definition of Iϑ2ϑ2 (θ0)). Thus,

C22 (a, b; θ0) = τ 0

∞∑
k=−∞
k 6=0

r∑
i,j=0

A0 (k + a− i, i)A0 (k + b− j, j)′

+
∞∑

k=−∞
k 6=0

r∑
i,j=0

A0 (k + a− i, i)KnnA0 (−k + b− j, j)′

+4

r∑
i,j=0

A0 (a− i, i)DnJ0D
′
nA0 (b− j, j)′ . (B.9)

To see that the right hand side really equals the expression given in the main text, we

have to show that the second term vanishes when the range of summation is changed to

k = 0,±1,±2, ..., or that

∞∑
k=−∞

r∑
i,j=0

(
Ψk+a−i,0Σ

1/2
0 ⊗ Π′i0Σ

−1/2
0

)
Knn

(
Σ

1/2
0 Ψ′−k+b−j,0 ⊗ Σ

−1/2
0 Πj0

)
= 0.

One can show this by using the identity (Ψk+a−i,0Σ
1/2
0 ⊗Π′i0Σ

−1/2
0 )Knn = Knn(Π′i0Σ

−1/2
0 ⊗

Ψk+a−i,0Σ
1/2
0 ) (see Lütkepohl (1996), Result 9.2.2 (5)(a)), (B.6) and straightforward cal-

culation (further details can be found in the Supplementary Appendix).

From (B.8), the definition of A0 (c, i), and the preceding derivations it follows that the

covariance matrix of the score of ϑ2 divided by T − s− r converges to Iϑ2ϑ2 (θ0).
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Step 2. In view of Assumption 5(i) it suffi ces to prove the positive definiteness of
Iθθ (θ0) when ∇1 (ϑ10) = Irn2 and ∇2 (ϑ20) = Isn2 . Using the matrices A0 (k, i) and B0 (d)

introduced in the preceding step we define the sn2 × n2 and rn2 × n2 matrices

A0 (k) =

[
r∑
i=0

A0 (k + j − i, i)
]s
j=1

and B0 (k) = [B0 (k − i)]ri=1 ,

We also set

F0 =
πn/2

Γ (n/2)

∫ ∞
0

ζn/2
f ′ (ζ;λ0)

f (ζ;λ0)

∂

∂λ
f (ζ;λ0) dζ · vech (In)′ J−1

0

(
d× 1

2
n (n+ 1)

)
.

Let ηt = (η1t, η2t, η3t, η4t) be a sequence of independent and identically distributed

random vectors with zero mean. The covariance matrix of ηt as well as the dimensions of

its components will be specified shortly. We consider the linear process

xt =
∞∑
k=1

G0 (k) ηt,

where xt = (x1t, x2t, x3t, x4t) and

G0 (k) =


−B0 (k) 0 0 0

A0 (k) A0 (−k) 21 (k = 1)A0 (k − 1)Dn 0

0 0 −1 (k = 1)D′n(Σ
−1/2
0 ⊗ Σ

−1/2
0 )Dn 0

0 0 1 (k = 1)F0 1 (k = 1) Id


With an appropriate definition of the covariance matrix of ηt we have C (xt) = Iθθ (θ0).

This is achieved by assuming

C (ηt) = diag

([
τ 0In2 Knn

K ′nn τ 0In2

]
: J0 : Iλλ (θ0)− F0J0F

′
0

)
,

where the first block defines the covariance matrix of (η1t, η2t). Thus, (η1t, η2t), η3t, and

η4t are uncorrelated and the dimensions of xit agree with those of ηit (i = 1, ..., 4). By

straightforward calculations one can check that the equality C (xt) = Iθθ (θ0) really holds

(with ∇1 (ϑ10) = Irn2 and ∇2 (ϑ20) = Isn2).

From Lemma 1 and the fact that Knn is a permutation matrix it follows that the

first block of C (ηt) is positive definite. Indeed, this is implied by the positive defi-

niteness of τ 0In2 − τ−1
0 K ′nnKnn = τ 0In2 − τ−1

0 In2 , which holds because τ 0 > 1. That

J0 is positive definite follows from Lemma 4 whereas the positive definiteness of the

third block of C (ηt) is due to Assumption 5(ii) and the identity Iλλ (θ0) − F0J0F
′
0 =

Iλλ (θ0) − Iλσ (θ0) Iσσ (θ0)−1 Iσλ (θ0), which can be checked by direct calculation. Thus,

the covariance matrix C (ηt) is positive definite.
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The preceding discussion implies that the matrix Iθθ (θ0) is positive definite if the

covariance matrix C (xt) is positive definite. This, in turn, holds if the infinite dimensional

matrix [G0 (1) : G0 (2) : · · · ] is of full row rank. Proving this last fact is somewhat tedious,
so we omit details which are available in the Supplementary Appendix.

Step 3. The asymptotic normality can be proved in the same way as in previous
univariate models (see Proposition 2 of Breidt et al. (1991)). The idea is to use (3)

and (5) to approximate the processes ut−i (ϑ10) and yt+j−i (i = 1, ..., r, j = 1, ..., s) in

∂gt (θ0) /∂ϑ1 and ∂gt (θ0) /∂ϑ1, respectively, by long moving averages. After this, a central

limit theorem for finitely dependent stationary and ergodic processes in conjunction with

a standard approximation technique completes the proof. �

Proof of Lemma 2. The arguments used in the proof are analogous to those used in the
proof of Proposition 2. A detailed proof is available in the Supplementary Appendix. �

Proof of Theorem 1. First note that our Proposition 2 and Lemma 2 are analogous to
Lemmas 1 and 2 of Andrews et al. (2006). Thus, as in the proof of Theorem 1 of that

paper we can use a standard Taylor expansion and conclude that it suffi ces to show that

the Hessian of the log-likelihood function satisfies

sup
θ∈Θ0

∥∥∥∥∥N−1

T−s∑
t=r+1

(
∂2

∂θ∂θ′
gt(θ)−

∂2

∂θ∂θ′
gt(θ0)

)∥∥∥∥∥ p→ 0, (B.10)

where Θ0 is a small compact neighborhood of θ0 with non-empty interior (cf. Lanne and

Saikkonen (2011)). It can readily be checked that ∂2gt(θ)/∂θ∂θ
′ is stationary and ergodic,

and, as a function of θ, continuous. Hence, a suffi cient condition for (B.10) to hold is that

∂2gt(θ)/∂θ∂θ
′ obeys a uniform law of large numbers over Θ0. This in turn is implied by

Eθ0
(

sup
θ∈Θ0

∥∥∥∥ ∂2

∂θ∂θ′
gt(θ)

∥∥∥∥) <∞ (B.11)

(see Theorem A.2.2 in White (1994)). Proving (B.11) is straightforward and, therefore,

omitted (details can be found in the Supplementary Appendix). �

References

[1] Alessi, L., M. Barigozzi, and M. Capasso (2008). Non-Fundamentalness in Structural

Econometric Models: A Review. International Statistical Review 79, 16—47.

[2] Andrews, B. R.A. Davis, and F.J. Breidt (2006). Maximum Likelihood Estimation

for All-Pass Time Series Models. Journal of Multivariate Analysis 97, 1638-1659.

34



[3] Breidt, J., R.A. Davis, K.S. Lii, and M. Rosenblatt (1991). Maximum Likelihood

Estimation for Noncausal Autoregressive Processes. Journal of Multivariate Analysis

36, 175—198.

[4] Breidt, J., R.A. Davis, and A.A. Trindade (2001). Least Absolute Deviation Estima-

tion for All-Pass Time Series Models. The Annals of Statistics 29, 919-946.

[5] Brockwell , P.J. and R.A. Davis (1987). Time Series: Theory and Methods. Springer-

Verlag. New York.

[6] Campbell, J.Y., and R.J. Shiller (1991). Yield Spreads and Interest Rate Movements:

A Bird’s Eye View. Review of Economic Studies 58, 495—514.

[7] Chan, K.S. and L. Ho (2004). On the Unique Representation of Non-Gaussian

Multivariate Linear Processes. Technical Report #341, University of Iowa.

http://www.stat.uiowa.edu/techrep/

[8] Chan, K.S., L. Ho, and H. Tong (2006). A Note on Time-irreversibility of Multivariate

Linear Processes. Biometrika 93, 221—227.

[9] Davis, R.A., and L. Song (2010). Noncausal Vector AR Processes with Application

to Financial Time Series. Technical Report. Columbia University.

[10] Duffee, G. (2002). Term Premia and Interest Rate Forecasts in Affi ne Models. Journal

of Finance 57, 405—443.

[11] Fang, K.T., S. Kotz, S., and K.W. Ng (1990). Symmetric Multivariate and Related

Distributions. Chapman and Hall. London.

[12] Francq, C., R. Roy, and J.-M. Zakoïan (2005). Diagnostic checking in ARMA models

with uncorrelated errors. Journal of the American Statistical Association 100, 532—

544.

[13] Hannan, E.J. (1970). Multiple Time Series. John Wiley and Sons. New York.

[14] Johansen. S. and K. Juselius (2010). An Invariance Property of the Common Trends

under Linear Transformations of the Data. CREATES Research Papers 2010-72,

School of Economics and Management, University of Aarhus.

[15] Kohn, R. Asymptotic Estimation and Hypothesis Testing Results for Vector Linear

Time Series Models. Econometrica, 47, 1005—1029.

[16] Lanne, M., J. Luoto, and P. Saikkonen (2012). Optimal Forecasting of Noncausal

Autoregressive Time Series. International Journal of Forecasting (forthcoming).

35



[17] Lanne, M., and P. Saikkonen (2011). Noncausal Autoregressions for Economic Time

Series. Journal of Time Series Econometrics 3 (3), Article 3.

[18] Lof, M. (2012). Noncausality and Asset Pricing. Studies in Nonlinear Dynamics and

Econometrics (forthcoming).

[19] Lütkepohl, H. (1996). Handbook of Matrices. John Wiley & Sons,New York.

[20] Lütkepohl, H. (2005). New Introduction to Multiple Time Series Analysis. Springer-

Verlag, Berlin.

[21] Rosenblatt, M. (2000). Gaussian and Non-Gaussian Linear Time Series and Random

Fields. Springer-Verlag, New York.

[22] Rothenberg, T. J. (1971). Identification in Parametric Models. Econometrica 39,

577—591.

[23] Sargent, T.J. (1979). A Note on Maximum Likelihood Estimation of the Rational

Expectations Model of the Term Structure. Journal of Monetary Economics 5, 133—

143.

[24] White, H. (1994). Estimation, Inference and Specification Analysis. Cambridge Uni-

versity Press. New York.

[25] Wong, C.H. and T. Wang (1992). Moments for Elliptically Countered Random Ma-

trices. Sankhyā 54, 265—277.
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Figure 1: The quarterly change in the six-month U.S. interest rate (solid line) and the

spread between the five-year and six-month U.S. interest rates (dasdhes).
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Figure 2: Quantile-quantile plots of the residuals of the VAR(3,0)-N (upper panel) and

VAR(2,1)-t (lower panel) models for the U.S. term structure data.
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Table 1: Results of diagnostic checks of the third-order VARmodels for the term structure.

Model
VAR(3,0)-N VAR(3,0)-t VAR(2,1)-t VAR(1,2)-t VAR(0,3)-t

Ljung-Box (4)
0.172
0.118

0.014
0.069

0.094
0.063

9.4e—5
3.2e—5

0.003
0.027

McLeod-Li (4)
0.4.2e—4
0.002

0.023
0.183

0.896
0.930

5.2e—5
0.018

0.101
0.003

Log-likelihood —258.510 —229.985 —222.953 -227.454 —231.252

VAR(r, s) denotes the vector autoregressive model for (∆rt, St)
′ with the rth and sth order

polynomials Π(B) and Φ(B−1), respectively. N and t refer to Gaussian and t-distributed errors,
respectively. Marginal significance levels of the Ljung-Box and McLeod-Li tests with 4 lags are
reported for each equation.

Table 2: Estimation results of the VAR(2,1)-t model for (∆rt, St)
′.

Π1

—0.458

(0.156)

0.782

(0.189)
Π2

—0.241

(0.090)

0.298

(0.184)

0.138

(0.143)

0.075

(0.183)

0.320

(0.097)

—0.006

(0.164)

Φ1

0.399

(0.126)

—0.210

(0.067)

—0.240

(0.260)

0.673

(0.144)

Σ
0.296

(0.096)

—0.167

(0.106)

—0.167

(0.106)

0.312

(0.189)

λ
4.085

(1.210)

The figures in parentheses are standard errors based on the

Hessian of the log-likelihood function.
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