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Abstract

We study the internal alignment of a statistical ensemble of Gaussian random ellipsoids with respect to
the radiation direction. We solve the rigid body dynamics due to scattering forces and torques, using a
numerically exact and efficient T -matrix solver for arbitrary particle shapes and compositions. We then
compare the polarization of the aligned ensemble to a randomly oriented ensemble and a perfectly aligned
ensemble. We find that the ensemble becomes partially aligned under monochromatic radiation and that
the internal alignment has an significant effect on the intensity and polarization of the scattered light.
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1. Introduction

Understanding the statistical behavior of dust is
crucial in interpretation of observational results and
in the tackling of inverse problems, such as deduc-
ing magnetic field properties from observed polar-
ization [1] or dust properties in general.

Aligned dust particles were shown to be the cause
of interstellar polarization in the near-infrared and
the visible light regimes in 1949 independently by
Hall and Hiltner [2, 3]. In a few years, the dis-
cussion about the causes of alignment were started
by Davis and Greenstein [4]. In the following sev-
eral decades, the dominating mechanism of align-
ment was debated, until radiative torques became
the leading explanation to observations, with other
effects contributing in different local environments
[5, 6].

Even though the subtle interactions causing
many local abnormalities in the observation data
are understood better than ever (see current state
in [7, 8] and references therein), much groundwork
in understanding the observations can still be done.
For example, statistical modeling of the effect of
dust dynamics on polarization has been an unreach-
able computational effort until recent years.
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In this work, our aim is to illustrate the effect
of scattering of light from dust particles to the po-
larization of dust using state-of-the-art numerical
scattering methods. We focus on the bare prob-
lem on the effect of scattering only to the dynam-
ics, leading the way to addition of several physical
processes found in the interstellar environment, e.g.
gas bombardment, Larmor precession and param-
agnetic relaxation [7]. We model solid dust particles
using Gaussian random shapes [9, 10]. The reaction
of the particles to the scattering of different wave-
lengths is studied by numerically integrating the
equations of motion. The results are then used to
create an ensemble average of the scattering matrix
describing angle-dependent intensity and polariza-
tion.

To the best knowledge of the authors, such nu-
merically exact methods have never been applied in
the same scale for dynamical systems.

2. Theory of scattering dynamics

In this work, the combination of rigid body dy-
namics, electromagnetic scattering, and radiative
forces and torques are shortened as scattering dy-
namics. In scattering dynamics, we will solve the
equations of motion for a dust particle through di-
rect step-by-step calculations. This is possible for
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Figure 1: The position of a tetrahedral model of a solid
particle with its principal axes with respect to the laboratory
coordinates. Each tetrahedron is handled with respect to the
principal axis coordinates. Orientation can be handled in the
plane wave case separately with e.g. using rotation matrices,
describing the orientation of the principal axes w.r.t. to the
laboratory frame axes.

an arbitrary particle through a fast and accurate
way of solving the T -matrix of scattering.

In the following subsections, the relevant physics
in scattering dynamics is reviewed.

2.1. Dynamics of a rigid body

A rigid body can be used to model a dust particle
in almost any conceivable situation. Even in such
situations, where a real dust particle would deform
or break, the change in the inertia parameters of the
particle can be modeled. These situations would,
of course, change also the corresponding scattering
problem so that methods introduced later would
face considerable problems. For this, and the sim-
plicity of notation, we will focus on the theory of a
strictly rigid body in our model.

The particle may be a single solid particle, such
as illustrated in Figure 1, or an aggregate. For the
purposes of the scattering solver, the solid particles
are discretized as tetrahedral meshes, where each
tetrahedron is homogeneous. In both cases, the in-
ertia parameters of the particle are solved using the
parallel axis theorem. Method of reference tetrahe-
dra [11] simplifies the calculation of the moment of
inertia tensor of an arbitrary tetrahedron.

Diagonalization of the moment of inertia tensor
gives the so-called principal axes of the particle.
Principal coordinates are a type of body coordi-
nates who coincide with the principal axes. Thus,

the principal coordinate system is defined with re-
spect to the laboratory coordinates by an orienta-
tion matrix

P =

P1,x P2,x P3,x

P1,y P2,y P3,y

P1,z P2,z P3,z

 = (a1 a2 a3), (1)

where column vectors ai are the principal axes of
the particle from smallest moment of inertia to
largest. The equations of rotational motion are sim-
plified into Euler’s equations in the principal axes,
and they are the usual choice for solving rotational
dynamics.

2.2. Electromagnetic forces and torques

For a general description of scattering, the most
important quantities are the size parameter of the
particle, x = ka = 2πa/λ, the shape and the com-
plex index of refraction n = nRe+inIm of the parti-
cle. Above, a is the equivalent radius of the particle
to a sphere of the same volume, k is the wavenum-
ber, and λ the wavelength of the incident radiation.
Usually, the dimensionless size parameter is enough
to describe many interesting quantities. However,
in order to make sense of the dynamical time scales,
it is temptating to choose a concrete size and den-
sity for the particle and fix the wavelengths to cor-
respond to certain size parameters.

In space environments, the incident radiation
from starlight is mostly visible and infrared light,
and can be modeled as plane waves. Regarding dust
in space, a wavelength range of 200–2000 nm corre-
sponds to size parameter range 0.03–30 for particles
ranging from 0.01 µm to 1 µm in equivalent radius.

The mechanical effects of radiation are described
by the Maxwell stress tensor, T, which should not
be confused with the T -matrix. The Maxwell stress
tensor has components

Tij = ε0

(
EiEj −

1

2
δijE

2

)
+

1

µ0

(
BiBj −

1

2
δijB

2

)
.

(2)
For almost all intents and purposes the term with
the Maxwell stress tensor dominates the total force
in a volume V ,

F =

∮
S

T · n̂dS − ε0µ0

∫
V

∂

∂t
SdV, (3)

where S is the surface of V , where momentum
transfer is occuring. This is due to the fact, that
the latter term describes the momentum contained
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within the volume instead of being transferred into
it. The latter term, containing the Poynting vector
S, varies with the frequency of the radiation, and
thus for most applications, will be averaged out of
consideration [12].

After averaging, total force and torque will be
represented by simple surface integrals containing
the Maxwell stress tensor,

F =

∮
S

T · n̂ dS,

N =

∮
S

r× (T · n̂) dS.

(4)

The torque obtained by solving the scattering
problem can be written in terms of normalized
quantities [13] as

N =
λa2

2c
〈S〉inc QN, (5)

where 〈S〉inc is the incident Poynting vector, and
QN is the normalized quantity, the torque effi-
ciency. In particular the torque efficiency can be
used to compare results between different geome-
tries with the same consistency.

2.3. The solution of the scattering problem

Solving the scattering problem is to simply write
the scattered field in terms of the incident field us-
ing knowledge about the scatterer.

The incident and scattered fields can be ex-
panded in terms of vector spherical wave functions
(VSWFs),

Einc =

∞∑
n=1

n∑
m=−n

anmMinc
nm + bnmNinc

nm,

Esca =

∞∑
n=1

n∑
m=−n

pnmMsca
nm + qnmNsca

nm,

(6)

where M
inc/sca
nm ,N

inc/sca
nm are the incident and scat-

tered VSWFs based on spherical Bessel functions
and Hankel functions of the first kind, with expan-
sion coefficients anm, bnm, pnm, and qnm. There
is some freedom in choosing the explicit form of
the expansion, some standards can be found in e.g.
[14, 15]. This treatment allows the analytical calcu-
lation of the integrals in (4) [16]. A VSWF expan-
sion thus paves the way for applying the T -matrix
method in the calculation of forces and torques with
ease.

In the T -matrix formulation, the T -matrix of the
scatterer gives the relation between the scattered
and incident VSWF coefficients,

p̃ = T ã, (7)

where all scattered and incident VSWF coefficients
are collected into vectors p̃ and ã.

The most difficult part of the problem is to find
the T -matrix for the scatterer. For some simple ge-
ometries, such as smooth ellipsoids, efficient meth-
ods can be formulated, but for arbitrary shapes, or
even cubes, usual point-matching methods will of-
ten have problems. In these cases, numerical meth-
ods may be used [17, 18].

We calculate the T -matrix using the electric cur-
rent volume integral equation (JVIE) formulation
of scattering [19], which is an efficient approach for
even strongly inhomogeneous scatterers. The JVIE
formulation is then used to solve the T -matrix by
linking the discretization basis function coefficients
of JVIE with the VSWF expansion coefficients of
the T -matrix method [20].

As the T -matrix solves scattering with arbitrary
incident VSWF expanded fields, the problem of a
spinning dust particle can simply apply the usual
rotation formulae for the expansion coefficients [21].
The complete solution requires transformations be-
tween frames of reference.

3. Polarization by aligned Gaussian random
shapes

The goal of this work is to study, how unpo-
larized light gets polarized under scattering from
aligned dust particles, modeled as a statistical en-
semble of Gaussian random shapes. The simulated
situation is reduced to laboratory conditions: in-
stead of studying a realistic wavelength band, we
focus on polarization effect on certain single ratios
of particle size and wavelength, or size parameters.

3.1. Measures of polarization

The polarization state of light can be encoded
into a Stokes vector I = (I,Q, U, V )T, whose com-
ponents are called the Stokes parameters. The pa-
rameter I is proportional to the total flux, whereas
Q and U describe the state of linear polarization,
and V the state of circular polarization.

With disregard to coherence, a complete picture
of polarization under interactions is given by the
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Mueller matrix. The Mueller matrix maps the in-
cident Stokes vector to a transmitted Stokes vector
[22]. The Mueller matrix for a single scattering pro-
cess is also called simply a scattering matrix, which
we will also refer to henceforth.

The scattering matrix is a 4 × 4-matrix, the
columns of which describe, how the unpolarized,
horizontal-vertical polarized, ±45◦-polarized and
circularly polarized components transform under
scattering. It is well-known, that for a mixture of
randomly oriented particles with equal amount of
mirror image particles, the scattering matrix be-
comes block-diagonal with 6 independent elements
[23]: 

S11 S12 0 0
S12 S11 0 0
0 0 S33 S34

0 0 −S34 S44

 . (8)

From the shape of the above scattering matrix, it
is obvious that unpolarized incident radiation will
become linearly polarized.

3.2. Gaussian random spheres and ellipsoids

For modeling the shapes of irregular particles we
use Gaussian random shapes, either spheres [9] or
ellipsoids [10], such as illustrated in Figure 2. The
radius statistics for the spheres are drawn from a
lognormal distribution, and can be generated us-
ing a spherical harmonics expansion for the radius,
and a Legendre expansion for its autocorrelation
function. The defining parameters of the spheres
are thus the standard deviation σ and the correla-
tion lenght l. For the ellipsoids, an extension of
the sphere, two additional shape parameters are
needed: the axial ratios a : b and b : c.

3.3. Polarization by aligned particles

Aligned particles refer in this work to particles
in a stable rotational motion, where the angular
velocity vector and one of the principal axes of the
particle is pointing to a small angular window. This
is more exactly called internal alignment, as an ex-
ternal reference direction is yet to be introduced.
Under radiation, both internal and external align-
ment have been shown to occur in interstellar dust
[5, 24]. Moreover, alignment happens preferably to
the principal axis of the highest moment of inertia,
Q3, as it resists any perturbation the most, be it by
torques or dissipation of rotational energy.

Figure 2: An example of a Gaussian random ellipsoid, rep-
resented as a tetrahedral mesh, with σ = 0.125, l = 0.35 and
a : b : c = 1 : 0.8 : 0.6.

When dust particles are systematically aligned,
the observables in comparison with randomly ori-
ented particles will change in many ways. The scat-
tering matrix will lose some of its symmetry prop-
erties, particularly the 2×2 block off-diagonals can
become non-zero. Thus, alignment is one mecha-
nism how an unpolarized incident beam can obtain
a circularly polarized component. This circular po-
larization due to scattering effects has been demon-
strated in the past using semianalytical methods
[7].

4. Numerical Methods

We apply a Fortran software for solving the equa-
tions of motion for an inhomogeneous particle, dis-
cretized by either tetrahedral meshing, which has
been developed by the authors. The software anal-
yses the mesh geometry, then calculates the inertia
parameters and the T -matrix of the scatterer. The
T -matrix is determined by an implementation of
the JVIE T -matrix method, abbreviated as T -VIE
[25].

The dynamical simulation is run until the situa-
tion is evolved a predefined number of time steps,
Nsteps, or until internal alignment of the principal
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axis of largest moment of inertia, a3, occurs. Then,
the Mueller matrix components are solved as the
average from the last 1.5 percent of the run. For
comparison, Mueller matrices of randomly oriented
and perfectly aligned particles are created.

Perfect alignment refers here to the situation,
where a3 and angular velocity ω are perfectly par-
allel to each other and perpendicular to the wave
vector k of the incident radiation, directed along the
z-axis of the laboratory frame. Also, in all cases, an
artificial external alignment is introduced by rotat-
ing the situation so that the average of ω has an
(x, y)-projection (1, 0). This is done to introduce
another external direction, which with k is needed
to analyse alignment at all.

5. Results

An ensemble of 60 homogeneous Gaussian ellip-
soids, composed of 15 ellipsoids, oblate spheroids,
prolate spheroids, and spheres each, described in
Figure 3, with size parameters ka = {0.3, 1, 3} and
complex refractive indices n = {1.31 + i0.0, 1.70 +
i0.0, 2.0 + i0.2}, corresponding ice, silicate and or-
ganic compounds, often assumed to be contained in
cosmic dust. Geometries were evolved for Nsteps =
1 · 107 timesteps under unpolarized incident radia-
tion.

Time stepping is adaptive, so that during a single
timestep, a maximum rotation of 0.01 radians is al-
lowed. The time scales in the calculations presented
here are affected only by the incident Poynting vec-
tor, as the focus is solely on the dynamical effects of
scattering. Taking inertia properties (inertia tensor
I, volume V) of solid spheres, roughly the size of 1
µm and the wavelenght, and ρ ∼ 1000 kg

m3 , a back-of-
the-envelope calculation starting from ∆ω ∼ I−1N
and (5) gives a rough approximation on the rela-
tion between the maximum rotation θmax and the
timestep ∆t as, disregarding the SI-units,

θmax ∼ 100 〈S〉inc QN∆t. (9)

A typical torque efficiency can be of order 10−2.
Thus, if the incident planewave amplitude is set to
unity, or 〈S〉inc ≈ 10−3 W

m2 , the expected lenght of
the simulation is several days of simulated time, at
maximum.

The simulations were run in total 6 times, each
with randomized initial orientation of the particle,
to obtain an average alignment result for each par-
ticle.

Table 1: Values of log(Csca) per particle for the 60 randomly
oriented Gaussian particles (GE).

n\ka 0.3 1.0 3.0
1.31+i0.0 -4.566 -1.752 0.628
1.7+i0.0 -4.162 -1.194 1.076
2.0+i0.2 -3.900 -0.933 0.773

After the dynamical simulation, alignment of the
stable principal axes, a1 and a3, were observed. As
a considerable fraction showed no alignment un-
der this monochromatic situation, the ensemble is
henceforth called imperfectly aligned. The internal
alignment of the ensemble is summarized in Figure
4 histogrammatically. As the measure of alignment,
the smallest angle between average directions of the
stable principal axes and the angular velocity was
chosen. This results, in many cases, in two separate
distributions, of which the leftmost below about 30
degrees has the aligned particles, with precession
about the angular velocity.As the angular velocity
has greater oscillations than the angular momen-
tum, averaging of highly unstable situations appear
as more random noise in the histograms. In figure 5,
the evolution of alignment is studied at 4 different
times during the simulations. The times t1− t4 are
the situation at 10 000, 100 000, 1 000 000, and 10
000 000 timesteps, respectively. Gradual alignment
is visible in all ensembles of different size parame-
ters, with most alignment in the ka = 3 case.

First, in Figure 6, we compare the S11 and S12

components of all the randomly oriented particle
scattering matrices of the smooth base geometries
to the deformed Gaussian shapes. 500 random ori-
entations are used for the calculations. Correspond-
ing scattering cross sections Csca, normalized to
a single particle, are tabulated in Table 1. The
smaller size parameters, ka = 0.3 and 1, show sim-
ilar results as small spherical particles[22]. For the
largest size parameter, ka = 3, smooth particles re-
sult in larger intensity to the backscattering direc-
tions. In all cases, the degree of linear polarization
is very nearly the same.

Then, we compare the randomly oriented case
and the imperfectly aligned case in Figures 7–11.
The intensities are highly similar for all size param-
eters and shapes. The polarizations have visible, up
to 10 percent differences, in all size parameters for
the total ensemble average, in Figure 7. Cross sec-
tions per particle are found in Table 2. For the av-
erage of each geometry type, the largest difference
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Figure 3: The Gaussian random shapes used in the simulation. All shapes are realizations of the Gaussian ellipsoid with
σ = 0.35 and l = 0.125. Axial ratios a : b : c are 1:0.8:0.6, 1:1:0.5, 1:0.5:0.5, and 1:1:0.99, corresponding to an ellipsoid, an
oblate and a prolate spheroid, and a sphere, were chosen. The base shapes with 15 realizations of the Gaussian ellipsoid are in
said order from top left to bottom right.

Figure 4: Internal alignment of the ensemble for each size parameter. The red bars correspond to the most stable state,
alignment of a3 with respect to the angular velocity. Most aligned particles can be found in the case ka = 3. The prolate
spheroids exhibit the most stable alignment, and the oblate spheroids the least alignment with much alignment of the non-
preferred axis a1.
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Figure 5: Evolution of the alignment of the whole ensemble, with same format as in Figure 4.

Figure 6: Comparison of averaged polarization between ran-
dom orientations of the 4 smooth ellipsoids (S) and the 60
different Gaussian ellipsoids (GE). All curves have the same
scale, with intensities additionally normalized to unity at
θ = 30 degrees. The curves of size parameters ka = 0.3 and
1 are shifted by steps of 2

Table 2: Same as Table 1, but for the imperfectly aligned
(Al) case from Figure 7 for the whole ensemble of geometries.

n\ka 0.3 1.0 3.0
1.31+i0.0 -4.314 -1.541 0.8041
1.7+i0.0 -3.972 -0.998 1.254
2.0+i0.2 -3.702 -0.7323 0.9731

Table 3: Same as Table 2, but for only the deformed spheres.

n\ka 0.3 1.0 3.0
1.31+i0.0 -4.694 -1.754 0.818
1.7+i0.0 -4.069 -1.050 1.262
2.0+i0.2 -3.815 -0.790 0.891

is in the prolate spheroid case, in Figure 10, where
also the highest level of alignment is observed.

Finally, we compare the imperfectly and per-
fectly aligned cases. The comparison is made in
scattering planes, defined by the azimuthal angle
φ = 0◦, 1◦, . . . , 359◦, in the notation of [22]. The
average scattering matrices are computed for the
whole ensemble at the time, and the different re-
fractive indices are separated into the Figures 12–
14. The refractive index affects the general shape

7



Figure 7: Comparison of the average scattering matrix el-
ements for both randomly oriented (RO) and imperfectly
aligned (Al) cases for all 60 deformed Gaussian shapes.
Above 2 subplots as in Figure 6, but with additional 2 matrix
elements, both shifted by 0.2.

Figure 8: As in Figure 7, but for the 15 deformed spheres
only.

Figure 9: As in Figure 7, but for the 15 deformed oblate
spheroids only.

Table 4: Same as Table 2, but for only the deformed oblate
spheroids

n\ka 0.3 1.0 3.0
1.31+i0.0 -4.689 -1.776 0.7961
1.7+i0.0 -4.043 -1.039 1.273
2.0+i0.2 -3.680 -0.728 1.023

Figure 10: As in Figure 7, but for the 15 deformed prolate
spheroids only. Note that in the S14/S11 component, the
solid red line of case ka = 1 overlaps the below curves of
case ka = 3 slightly.
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Table 5: Same as Table 2, but for only the deformed prolate
spheroids

n\ka 0.3 1.0 3.0
1.31+i0.0 -3.876 -1.199 0.797
1.7+i0.0 -3.788 -0.885 1.216
2.0+i0.2 -3.566 -0.658 0.988

Figure 11: As in Figure 7, but for the 15 deformed ellipsoids
only.

Table 6: Same as Table 2, but for only the deformed ellip-
soids

n\ka 0.3 1.0 3.0
1.31+i0.0 -4.692 -1.759 0.805
1.7+i0.0 -4.057 -1.042 1.263
2.0+i0.2 -3.792 -0.765 0.980

of the scattering matrix components Sij(θ, ϕ). The
level of alignment affects all components similarly,
with imperfect alignment flattening the variations
in both θ and ϕ directions when compared to the
perfectly aligned case.

In all cases, the intensity comparison results in
slight changes with respect to the to level of align-
ment. From Tables 3–6 we also see, that the more
aligned smaller prolate spheroids result in higher
scattering cross sections. Also, as size parameter
grows, so do the differences in the relative intensi-
ties. The ±45◦ and the circular polarizations show
higher relative differences in all size parameters,
with more varying levels in the imperfectly aligned
case, and some systematic changes in the increasing
size parameter direction.

The effect of the level of alignment is analysed
in Figure 15 for the case n = 1.7 + i0.0, ka = 3,
where many differences are visible. Generally, the
imperfectly aligned case shows similar angle depen-
dencies, with less detail and level of polarization.
The ellipsoids and prolate spheroids result in simi-
lar polarizations in both alignment states. Spheres
and oblate spheroids show similar features to each
other in the highly imperfectly aligned case. All
perfectly aligned non-spherical shapes exhibit simi-
lar angle dependencies in the S13/S11- and S14/S11-
components. The similarities are lost with a cor-
relation to the alignment level in the imperfectly
aligned case.

6. Conclusions

We found in our study of internal alignment that
monochromatic illumination will align particles in
large quantities for size parameter ka ≈ 3 regard-
less of shape. The smaller size parameters exhibit
internal alignment mostly for the prolate spheroid
base shape. Such size-dependent alignment effi-
ciency behavior has been demonstrated using semi-
analytical methods [6]. The refractive index has a
significant effect on the general shape of scattering
matrix components, but, as is expected, the only
systematic effect of imperfect internal alignment is
visible only as the flattening of the components.

We also explicitly showed that internal alignment
affects polarization in the ensemble level for sin-
gle scattering. In addition, the level of alignment
in the ensemble, the composition and shape of the
dust, and even the alignment direction are visible
in the polarization. The setup, while reduced in the
sense of modeling real environments, can be used to
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Figure 12: Sheets of the scattering matrix elements as functions of θ and φ for the whole ensemble with refractive index
n = 1.31 + i0.0, representing ice. The sheet is scaled as flattened, if the maximum deviation from zero is less than 0.01.

Figure 13: As in Figure 12, but for n = 1.7 + i0.0.
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Figure 14: As in Figure 12, but for n = 2.0 + i0.2.

Figure 15: Effect of alignment level on polarization for the case n = 1.7 + i0.0, ka = 3.
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understand the polarization of large dust particles,
whose dissipation of angular momentum is weak.

The methodology presented in this work can also
be applied for solving scattering in more realistic
environments, in order to understand for example
the implications of astrophysical conditions on po-
larization. This is possible by modeling realistic
forces during the dynamical simulation, and by con-
sidering particles in a realistic illuminating radia-
tion. Also, the studying of dynamical quantities for
the ensemble, such as the stable points of the angu-
lar velocity in 3D space, is efficient in our method,
needing only small additions in current implemen-
tations.
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