
Indexing Old Literary Finnish text
Kimmo Koskenniemi
University of Helsinki

kimmo.koskenniemi@helsinki.fi

Pirkko Kuutti
Institute for the Languages of Finland

pirkko.kuutti@kotus.fi

Abstract

Apurpose of this studywas to test theHelsinki Finite-State Transducer (HFST)
technology tools, including its hfst-twolc compiler, the use of weighted finite-
state transducers, to use the HFST tools out of Python scripts, and to use them
together for comparing two related language forms. A strict procedure was fol-
lowed in constructing, testing and revising two-level rules which relate written
Modern Standard Finnish and Old Literary Finnish as used in the 17th century
Bible. In particular, the advantages of the strict independence of the two-level
rules were utilised. No practical production system was planned, but the results
could be quite useful for indexing and concordancing similar Old Literary Finnish
texts.

1 Corpus
A corpus of readily available old Finnish texts was needed for the study, more specif-
ically texts whose language was sufficiently different from Modern Standard Finnish
(MSF), but where the variation within the corpus was reasonable. The Finnish lan-
guage used between years 1540 and 1810 which is called Old Literary Finnish (OLF, in
Finnish “vanha kirjasuomi”) is sufficiently distinct from MSF for the purposes of this
study. Morphological analyzers for MSF cannot be used as such for any OLF texts.
The differences are greater the further one goes back in time.

The Finnish translation of the Bible from year 1642 (often called Biblia) seemed
suitable for the purposes of this project. Its language is homogenous enough and
the text of Biblia is available as a digital text from the Kaino1 service of The Centre
for Languages in Finland (Kotus). The whole translation consist of some 900,000 word
tokens. For the present study, the fourth part of the Old Testament (VT-4, some 20,000
word tokens) and the first part from the New Testament (UT-1, some 12,000 word
tokens) were selected and used together as our corpus2. A smaller corpus could have
been sufficient for the design of the rules but one needed a fair amount of text in order
to extract a list of common word forms.

1http://kaino.kotus.fi/
2These parts VT-4 and UT-1 refer to the files available in the Kaino service.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Helsingin yliopiston digitaalinen arkisto

https://core.ac.uk/display/146449084?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
kimmo.koskenniemi@helsinki.fi
pirkko.kuutti@kotus.fi

Thematerial chosen was fairly but not fully homogeneous. Orthographic conven-
tions used in the corpus were reasonably consistent although they represent signifi-
cantly more variation than what one finds in MSF texts. Some older materials might
have been harder to handle, and some more recent materials might have been easier
but less interesting to process.

An extract of the 1642 translation of the Bible (B1-Jes-3:11 - 3:12) along with its
modern translation3 (1992), is given in Figure 1 with some notes on the structural
differences between them.

OLF MSF Note
Mutta woi jumalattomita: Voi jumalatonta! missing word
sillä he owat pahat Hänen käy huonosti, PL vs. SG,

different verb
and
construction

ja heille maxetan hänelle tehdään different verb
nijncuin he ansaidzewat. niin kuin hän itse teki. different

construction
Lapset owat minun
Canssani waiwajat

Kansani valtiaat ovat lapsia, different

ja waimot wallidzewat
heitä.

ja naiset hallitsevat sitä. different verb

Minun Canssani Kansani,
sinun lohduttajas
häiridzewät sinun

sinun opastajasi vievät
sinut harhaan,

different verb
and case

ja turmelewat tien jota
sinun käymän pidäis.

he ovat hämmentäneet
askeltesi suunnan.

different verb
construction

Figure 1: A small extract of Biblia 1642 and the same passage in modern translation.

There are many kinds of differences between the translations. Some of the reflect
orthographic conventions which have changed meanwhile, such as using w instead of
v and sometimes a single letter a instead of a double aa for a long vowel. OLF of those
days had more features from the western dialects than MSF. The language itself has
also changed meanwhile and continues to change. The changes are both phonological
and morphological: the OLF texts often omit word final letters. The use of ending
allomorphs was then quite different, and has changed significantly even during the
last fifty years, as one can see by comparing Nykysuomen sanakirja (Sadeniemi, 1951–
-1961) and Kielitoimiston sanakirja (Grönros and Kotimaisten kielten tutkimuskeskus,
2006).

One can also find some words in the corpus that are not used in the MSF, and
some familiar words are used in another sense. The present study did not try to solve
such problems which concern the vocabulary and the lexicon. In this study, only
phonological, morphophonological and to some extent the allomorphic differences
are addressed.

3http://www.evl.fi/raamattu/1992/Jes.3.html

2 Representative example words
It is obvious from the above examples that one cannot align the Biblia 1642 with the
modern translation word by word directly, because the translations are so far apart
from each other. Instead of statistical word alignment and large sets of words, we use
a fairly small set of carefully chosen good quality examples.

We started from the list of all word forms which occurred at least six times in the
corpus. The list browsed and some 180 example words were picked up. The words
were chosen so that there were a few examples from each type of systematic differ-
ences between OLF and MSF written forms of the Finnish language. Figure 2 shows
a fragment out of the word forms chosen by her.

caupungihin
caupungijn
corwes
cuckoi
cuolemaan
cuoleman
cuolluitten
cuulitta
cuulcan
kärsimän

Figure 2: Some of the selected example words out of the corpus.

It was important that the list of example words would cover all common sys-
tematic differences between the MSF and the OLF forms, including orthographic and
morphophonological ones.

3 Example word pairs
The next step was to associate each of these OLF word forms with its likely MSF
counterparts. The possible MSF forms corresponding to each OLF form were addded,
see Figure 3. If the OLF word form could correspond to several MSF word forms, the
OLF form was repeated, see cuoleman and kärsimän below. The relation between
the OLF forms and the MSF forms is inherently many-to-many, i.e. one modern form
may correspond to several different old forms, and an old form may correspond to
several distinct modern forms. Rules must permit some variation but still constrain
the possibilities to a minimum.

4 Character by character alignment
The above example word pairs are not usable for our purposes as such, because the
OLF and the MSF word forms are sometimes of different length. The OLF form of-
ten omits a final vowel, reduces long vowels into short ones and shortens geminate
consonants, but sometimes geminates a consonant or adds a vowel etc.

Therefore, we must add some zero symbols as necessary so that the similar letters
correspond to each other, first letter in theMSFword to the first letter in the OLFword

kaupunkiin:caupungihin
kaupunkiin:caupungijn
korvessa:corwes
kukko:cuckoi
kuolemaan:cuolemaan
kuoleman:cuoleman
kuolemaan:cuoleman
kuolleitten:cuolluitten
kuulitte:cuulitta
kuulkoon:cuulcan
kärsimän:kärsimän
kärsimään:kärsimän

Figure 3: The selected OLF example word forms with their corresponding forms in
MSF. The MSF form is to the left of the colon and the OLF form to the right.

etc. If MSF word is longer than the OLF word, one must add one or more zeros to the
old word in order to make the letters correspond to each other. Correspondingly, if
the modern word is shorter, the zeros have to be added in it. The goal is that the
letters in all corresponding positions would be similar. Zeros are added as necessary,
but sparingly, e.g. as in kärsimään:kärsimäØn (‘to suffer’).

It must be stressed that a real character is used as a zero instead of an epsilon,
an empty string or its representation 0 in the XFST regular expression language. For
practical reasons, the Danish Ø was chosen as the zero symbol in rules, examples
consistently in this article.4

The exact positions of the inserted zeros are as important as is the selecting of the
examples. The positions of the zeros determine what kinds of character correspon-
dences we have. One must describe each correspondence with a rule, so the grammar
may change a lot by changing the positions of the zeros a bit. In particular, any poorly
positioned zerowould force us towritemore rules, and possibly very inadequate rules.
The proper alignment also affects how well the grammar can apply to the rest of the
corpus.

Letters representing similar (or identical) sounds ought to be matched with each
other. Matching very different ones, e.g. consonants with a vowels must be avoided.

The initial insertion of the zeros was made manually using one’s linguistic intu-
ition as a guideline. Once the zeros were in place, we converted the pairs of words
into sequences of pairs5 of letter pairs as shown in Figure 4 where pairs with identical
letters are printed as a single letter and pairs of corresponding non-identical letters
are separated by a colon.

Once we have the aligned pairs, we compute a list of different pairs and their
frequencies as in Figure 5. The pairs end up as the declaration of the alphabet in
the two-level rule grammar. The frequencies guide the authoring of rules and can be
directly used for weighting alternative analyses.

4Many finite-state tools interpret the digit 0 as a null string or epsilon. Often all traces of such a null
string are lost in finite-state operations. In the two-level framework, this is not desired, and it is safer to
delete the zero symbols Ø explicitly when desired.

5The conversion was done simply by:
hfst-strings2fst -i new-old-words.text |
hfst-fst2strings -X print-space -X print-pairs -o new-old-pairs.text

k:c a u p u n k:g i Ø:h i n
k:c a u p u n k:g i i:j n
k:c o r v:w e s:Ø s a:Ø
k:c u k:c k o Ø:i
k:c u o l e m a a n
k:c u o l e m a:Ø a n
k:c u o l e m a n
k:c u o l l e:u i t t e n
k:c u u l k:c o:Ø o:a n
k:c u u l i t t e:a
k ä r s i m ä n
k ä r s i m ä:Ø ä n

Figure 4: Some example words with zeros added and aligned letter by letter and shown
as a sequence of letter pairs.

158 a 2 e:ö 5 j:Ø 130 n 84 s 60 u 5 ö
39 a:Ø 22 e:Ø 23 k 61 o 2 s:n 4 u:Ø 1 Ø:d
1 b 2 f:p 53 k:c 2 o:a 16 s:z 1 v 1 Ø:e
9 d 3 g 12 k:g 7 o:Ø 16 s:Ø 1 v:f 3 Ø:g

97 e 26 h 6 k:x 30 p 102 t 2 v:g 4 Ø:h
3 e:a 122 i 54 l 5 p:b 29 t:d 34 v:w 1 Ø:i
3 e:i 4 i:j 1 l:Ø 1 p:w 1 t:l 17 y 1 Ø:n
1 e:u 12 i:Ø 36 m 1 p:Ø 1 t:r 1 y:Ø 1 Ø:s
1 e:ä 6 j 3 m:Ø 30 r 1 t:Ø 44 ä 4 Ø:t

22 ä:Ø

Figure 5: Frequencies of the letter pairs found in the aligned example words.

5 Automatic alignment
One may add further examples at the later stages of the research. One may also want
to remove some examples, if they turn out not to represent any general patterns.
To facilitate the maintenance of the collection of examples, an automatic character
by character alignment was constructed, see also (Koskenniemi, 2017). Such an au-
tomatic procedure for character by character alignment is expected to be useful for
other purposes as well, including computational historical linguistics where it can be
used in relating cognate words, c.f. Koskenniemi (2013a).

The International Phonetic Alphabet (IPA) presents a general taxonomy for vow-
els and another for consonants, both based on the articulatory features of sounds.
This taxonomy and the features can be utilised in computing approximate distances
between sounds. Alphabetic scripts of MSF and OLF can quite well be characterised
using the articulatory features of the IPA. For our purposes, only a subset of all fea-
tures permitted by the IPA is needed.

A short Python script (see Appendix 13) waswritten for building aweighted finite-
state transducer (WFST) out of the IPA features for the letters. For two-valued fea-
tures, and for tongue height of vowels and for the place of articulation of consonants,

an ad hoc numeric value was assigned for each position.6 The distances were com-
puted by adding the absolute values of the differences in each feature. Insertions and
deletions of letters were all given a constant fairly long distance. In addition to these
systematically computed distances, some individual distances were set. These were
needed e.g. in order to guarantee a unique treatment of the shortening of double vow-
els or consonants. Otherwise one could delete either of the two and there would be
no difference in the overall sum of distances. Thus, a few extra items were added in
the distance calculation so that it is always the latter letter of the two that is deleted if
any (e.g. a a:Ø rather than a:Ø a). Ambiguities caused by the orthographic conven-
tions, e.g between k:x s:Ø and k:Ø s:x and gemination (adding a second identical
consonant after, not before the existing one) were resolved in a similar manner.

import sys, io, fileinput
import libhfst
tok = libhfst.HfstTokenizer()
algfile = libhfst.HfstInputStream("chardist.fst")
align = algfile.read()
for line in sys.stdin:

(f1,f2) = line.strip().split(sep=":")
w1 = libhfst.fst(f1).insert_freely(("Ø","Ø")).minimize()
w2 = libhfst.fst(f2).insert_freely(("Ø","Ø")).minimize()
w1.compose(align).compose(w2)
res = w1.n_best(1).minimize()
paths = res.extract_paths(output='text')
print(paths.strip())

Figure 6: Python script for aligning words letter by letter.

A Python script was written, see Figure 6 to implement the actual alignment. The
script uses the WFST for distances that was created as discussed above. The script
reads an example word pair (w1, w2) at a time, converts the MSF word w1 into a
FST and inserts zero symbols Ø freely to it. The same is done for the OLF word w2.
Then, w1 is composed with the alignment WFST align and w2:

w1/Ø .o. align .o. w2/Ø

Out of the many possible string pairs that the resulting WFST represents, only
the one with the smallest weight taken and printed. When testing the alignment
procedure, one can assess the relative success of each aligned pair of words. Each
pair of words gets a score as the sum of all character pair correspondence weights.
Very high total weights indicate untypical pairs of characters which may sometimes
be a error in the example word pair.

All finite-state functions that were needed for the script were available in the
HFST-Python integration. This particular operation appears to be clumsy to perform
using the standalone programs or XFST or Foma.7

6The actual process of aligning appears not to be sensitive to the choice of the distances among vowels
and among consonants as long as consonants and vowels are not allowed to correspond to each other (with
the exception of semivowels). It would worth while to find well motivated distance measures, maybe using
data from historical linguistics.

7One can do it using the HFST command line programs by converting first the MSF words into a se-

6 Writing the two-level rules
For a more detailed description of two-level rules see (Beesley and Karttunen, 2003)
and Karttunen et al. (1987). For method of finding contexts for rules, see Koskenniemi
(2013b). The rules to be written in this project have a common alphabet which consists
of the letter pairs shown above in Figure 5. We have to write a two-level rule for each
non-identical pair (unless there is just one alternative, or if we let all alternatives be
allowed anywhere). The rules may be written in any order one finds convenient. Let
us start with the pair e:a. Gnu Emacs was used for editing of test examples, rules and
all other files. Emacs command Occurs was thus available and used for extracting
the right kind of information out of the examples in letter pair format as in Figure 7.

3 matches for "e:a" in buffer: new-old-pairs.text
71: k:c u u l i t t e:a

141: t u l e t t e:a
142: t u l i m m e:a

Figure 7: Occurrences of e:a in the examples.

These OLF word forms sound like some dialectal forms found even today. It was
deduced that the correspondence e:a was restricted to two personal plural endings
in verbs. Any other MSF word forms ending in e do not have OLF forms with a
instead. Any letters e inside theMSFwords are likewise unaffected by this alternation.
This rule has no access to the grammatical features, it relies on patterns consisting of
letters. Thus, the following rule in Figure 8 was written.

"e:a" e:a => [t t | m m] _ .#. ;
! k:c u u l i t t e:a
! t u l i m m e:a

Figure 8: Two-level rule which restricts the positions where MSF e may correspond
to a in OLF.

By convention, examples on which the rule was designed, were always included
as comments to the rule. According to the conventions of the two-level rules, see
Karttunen et al. (1987), this rule says that the pair e:a may occur only if preceded by
tt or mm and is at the end of a word. Only the context restriction (=>) is used, not
the double arrow8 because there are some words where the stem ends similarly, e.g.
lumme or ammewhere the final vowel does not change. Even the best andmost obvious
rules are bound to be ambiguous as long as one only has the surface representations
available without any morphological or grammatical knowledge.

One can test the first rule right away after it has been written, as will be explained
in the next section. Experienced two-level grammar writers often design a few rules
before they test them. So, let us study another letter pair s:Ø before we proceed to
testing, see Figure 9.

quence of FSTs by hfst-strings2fst, the same for OLF words, and then composing the sequences element by
element with the alignment FST

8A double arrow <=> rule would require that the change is obligatory in the given context

16 matches for "s:Ø" in buffer: new-old-pairs.text
14: e d e s s:Ø ä
25: h a a:Ø h d e s s:Ø a:Ø
26: h a a k:x s:Ø i
31: h e n g e s s:Ø ä:Ø
37: h y v:w ä k:x s:Ø i
52: k:c a n s s:Ø a n s a:Ø
60: k:c o r v:w e s s:Ø a:Ø
80: m u r h e e:Ø l l i s e k:x s:Ø i
83: n i i:j s s:Ø ä

119: s e a s s:Ø a:Ø
126: s y d ä m e s s:Ø ä n s ä:Ø
127: s y n a g o g a s s:Ø a:Ø
129: t a p p a a:Ø k:x s:Ø e n s a:Ø
150: u n e s s:Ø a:Ø
160: v:w a p a a:Ø k:x s:Ø i
172: y k:x s:Ø i n ä n s ä:Ø

Figure 9: Occurrences of s:Ø in the examples.

It is easy to see two patterns here. A double ss in MSF is reduced into a single s
in OLF and ks in MSF words is represented as xØ in OLF. Thus, we need a rule with
two context parts as in Figure 10.

"s:Ø" s:Ø => s _ ;
! e d e s s:Ø ä
! s e a s s:Ø a:Ø

:x _ ;
! h a a k:x s:Ø i

Figure 10: Two-level rule for restricting the deletion of s.

Each rule is then compiled into a FST using the two-level compiler hfst-twolc.
All rules together form the two-level grammar which is compiled into a sequence of
such rule transducers. If one has forgotten or mixed some punctuation in the rules
whenwriting the grammar, there will be error messages with a pointer to the probable
location and cause of the error. The grammar writer is expected to correct the error
and recompile.

7 Validating the rules against examples
There is a facility for testing two-level grammars. There is a special program, hfst-pair-test
which checks whether the grammar accepts all examples given as sequences of letter
pairs. The same Makefile which compiles the rules, does this check right away. The
program reports any inconsistencies, e.g. character pairs occurring in other contexts
than those allowed by the rules or misaligned words resulting in character pairs not
allowed by the grammar.

Two familiar concepts from information retrieval are used here with a specific
interpretation. Recallmeans here the proportion of OLFwords that will get the correct

MSF word among the results of the analysis (no matter how many wrong alternatives
were produced). Precision means here the propotion of correct MSF results among
all proposed results for a set of OLF words, eg. all word tokens in the corpus. Recall
and precision can equally well be used for the inverse relation, i.e. from the modern
words to the old words.

One ought to remember that the testing of pair string examples only detects prob-
lems where the rules are too restrictive. Initially, before we have any rules, all exam-
ples would pass the check. Using just a few rules, one could retrieve all old forms for
a modern form (as long as they participate in those alternations that were present in
the examples). But the initial grammar has a very poor precision. A modern word
corresponds to very many (possibly infinitely many) old words and vice versa. As
we write more rules in our two-level grammar, the recall can only degrade, but every
new rule improves the precision.

If one finds new types of regularities during the process, one ought to add new
word pairs to the examples. New letter pairs can then be introduced in the examples,
aligned and tested.

8 Standalone testing of the grammar
When one has rules for all letter pairs, the two-level grammar can be tested in a new
manner. One can now generate tentative OLF forms from the MSF ones. One gets
several results per each modern word. Using unweighted rules, all results of such
generation are equal. There is one trivial weighting that can be used here to prioritise
more likely result words: use the statistics we have from the example words as in
Figure 5. A short Python script is used for computing a WFST out of the frequencies.
Intersecting the weighted transducer with intersected rule FST gives us a new rule
WFST. This one can be safely tested by inputting MSF words to it and selecting at
most N, say 20, best results. If the correct one is among the top results, the rules
seem to do the right thing. See the transcript in Figure 11 where one can see what the
grammar generates out of a few modern words.

The weighted rule transducer can be inverted and thereafter tested in the same
way. In the present project, the mapping from OLF to MSF words is expected to be
more ambiguous than the other direction. Thus, the weighting is useful in check-
ing the production of candidate modern forms. Figure 12 shows the 20 first results
generated from an old word isäm (‘our father’) out of the total of 32 results.

For some other OLF words, there will be many more results, e.g. for cullainen
(‘golden’), more than 300 results were produced. Even as such, the mapping might
be useful in indexing or searching a corpus. One may easily produce a transducer
oldwords which accepts exactly the word forms in the corpus. Composing the map-
ping new2old used in Figure 11 with oldwords could be quite useful. One could
build a search facility using it which would use modern word forms as search keys
and expand it according to new2old and do the actual search using the existing OLF
words the mapping gives.

It would be impractical to use the abovemethod in existing concordance programs,
as it would require the inclusion of all alternatives, even the nonsense modern “word
forms” in the index. However, nothing would prevent to use new2old in a front end
processor to traditional concordance programs such as Korp, described in e.g. Borin
et al. (2012).

$ hfst-strings2fst | hfst-compose -2 intro.fst | \
hfst-compose -2 new2old-one-w.fst |\
hfst-compose -2 delete.fst | hfst-project -p output | \
hfst-fst2strings -w -N 20

>>sija
sija 1.86035
sia 2.12402 +
>>sokeat
sokeat 3.84277
sokiat 8.85742 +
>>ruoskitte
ruoskitte 4.18848 +
ruoskitt 6.3291
ruoskitta 9.20312 +
ruoskite 10.8613
ruoskit 13.002

Figure 11: Testing how the plain rules generate tentative OLF word forms out of MSF
word forms. The MSF word form as input is marked with >> and the correct results
are marked with a plus sign (+).

9 Combining the grammar with OMORFI
Aswe noticed above, the rules are quite ambiguouswhen generating tentativemodern
word forms out of an OLF word form. We have a lot of candidates, among which the
correct one is hidden. Most of the noise words are non-words in MSF. Thus, it is a
natural idea to filter the noisy output of the rules using a spell-checker for MSF.

OMORFI is a finite-state morphological analyser which is open source and freely
available, cf. Pirinen (2015). It is made using the same HFST tools, so it was easy
to combine it to other transducers used in this study, for further information on the
HFST morphological tools, see e.g. Lindén et al. (2011). OMORFI is distributed both
as source code and as binary FSTs.9 The source form consists of more than 300 files
and appears fairly complicated. More than a dozen Makefiles are needed for building
the FST that recognises Finnish word forms. Therefore, it was easier to use the binary
transducer which comes with the package even if there would have been an obvious
need to modify the lexicon and rules to better suit the needs of this project.

The transducer finnish-analyze.fst takes a Finnish word form as its input
and outputs its analyses as a combination of a base form and the morphosyntactic
features characterising the grammatical form, e.g. as in Figure 13.

The morphosyntactic features are not needed for the filtering of the noise words
from the set of candidates that the rule transducer generates. Only the input side of
the transducer is needed for the selection of acceptable word forms of MSF. One can
simply drop the output part and keep the input side of the analysis FST.10

The mapping all the way from OLF word forms into valid MSF word forms is
the composition of four transducers in sequence, see Figure 14. One may run these

9The FSTs distributed were in a so called fast lookup form. One can convert them back to the HFST
standard form and then modify and manipulate them for the needs of this project.

10Projection is made using the command hfst-project -p input

$ hfst-strings2fst | hfst-compose -2 intro.fst | \
hfst-compose -2 old2new-one-w.fst | \
hfst-compose -2 delete.fst | hfst-project -p output | \
hfst-fst2strings -w -N 20

>>isäm
isäm 1.23633
isääm 2.94141
isäme 3.82129
issäm 4.31348
iisäm 4.84863
isääme 5.52637
issääm 6.01855
iisääm 6.55371
issäme 6.89844
isämme 7.40625 +
iisäme 7.43359
iissäm 7.92578
issääme 8.60352
isäämme 9.11133 +
iisääme 9.13867
iissääm 9.63086
issämme 10.4834
iissäme 10.5107
iisämme 11.0186
issäämme 12.1885

Figure 12: A test where we see the first 20 results that the inverted rules generate out
of one OLF word ’isäm’. The correct results are marked with a plus (+).

$ hfst-strings2fst |\
hfst-compose -2 finnish-analysis.fst |\
hfst-fst2strings

>>kuutamoilta
kuutamoilta:kuutamo N Abl Pl
kuutamoilta:kuutamo#ilta N Nom Sg

Figure 13: Morphological analysis using plain OMORFI. Two outputs are generated
from the input ”kuutamoilta” which is either ”from moonlights” or ”moonlight” +
”evening”. Note the word boundary in the second result.

as a run-time pipeline using separate HFST programs or one may compose them in
advance for efficiency.

The combination of the steps in Figure 14 does roughly what was expected. If we
feed the OLF words in the Figure 2 to it, each old word will be expanded to several
possible MSF word candidates, and the analyser will then filter away all but those
candidates that it considers acceptable MSF word forms, as is seen in Figure 15.

It is noticed that most of the modern word forms offered by the sequence are quite
acceptable. In particular, all correct interpretations that we wanted, are present. In
addition to the desired results, there are some artificial words. One of them is the very

OLF word form
↓

intro.fst
↓

OLF word form with zeros added in all possible ways
↓

old2new.fst
↓

candidates for MSF word forms with zeros
↓

delete.fst
↓

candidates cleaned of all zeros
↓

finnish-analyze-surf.fst
↓

valid MSF word form candidates

Figure 14: Producing MSF word form candidates out of OLF word forms.

caupungihin [kaupunkihiin, kaupunkiin]
caupungijn [kaupunkiin, kaupunkiini]
corwes [korvessa]
cuckoi [kukko]
cuolemaan [kuolemaan, kuolemaani]
cuoleman [kuolemaan, kuolemaani, kuoleman, kuolemana,

kuolemani, kuolleemman]
cuolluitten [kuolleitten, kuolleitteni]
cuulcan [kuulkoon]
cuulitta [kuulitta, kuulitte]
kärsimän [kärsimän, kärsimäni, kärsimään, kärsimääni]

Figure 15: Analyses of some example words using the two-level grammar and filtering
with OMORFI.

first result kaupunkihiin (‘to the city’) which looks odd. It turns out to be a com-
pound of kaupunki (‘town’) and hiki (‘sweat’) which is a nonsense word. Another
extra result is kuulitta (‘you heard’), is also an odd compound of kuu (‘moon’) and
litta (a children’s play e.g. with a ball).

The number of compound boundaries in a word form would be useful as a cri-
terion for excluding less likely analyses. Unfortunately, when using OMORFI, this
information is only available when one reduces the word forms all the way to their
base forms. With some Python scripting and processing the knowledge about the
number of compound boundaries can be used at the right place. One first produces
a list of all pairs where the first component is the OLF word form and the second
component is the analyses OMORFI accepts out of the many candidates that the rules
propose. The following pairs are in the long list:

aitais:aitaiisi
aitais:aitaisi
aitais:aitasi
aitais:aittaiisi
aitais:aittaisi
aitais:aittasi

The next step is to analyse again the right parts which were already once accepted
by OMORFI, and we get a list containing entries like the following:

aitaiisi:aita#iisi A Pos Nom Sg
aitaisi:aidata V Cond Act ConNeg
aitaisi:aidata V Cond Act Sg3
aitaisi:aita#isi N Nom Sg
aitasi:aidata V Pst Act Sg3
aitasi:aita N Gen Sg PxSg2
aitasi:aita N Nom Pl PxSg2
aitasi:aita N Nom Sg PxSg2
aittaiisi:aitta#iisi A Pos Nom Sg
aittaisi:aitta#isi N Nom Sg
aittaisi:aitta N Gen Pl PxSg2

From these pairs, we only use the number of word boundaries # in the stem that is
on the right. For each surface form we store the least number of boundaries its base
form analyses have. The first one has only a compound analysis, so it gets the count
1. The next, aitaisi (‘of your barn(s)’ or ‘of your fence(s)’) has three analyses, two
without boundaries and one with one boundary, so it gets the count 0:

aitaiisi 1
aitaisi 0
aitasi 0
aittaiisi 1
aittaisi 0
aittasi 0

Now one can return to the processing of the result pairs where the left part is the
OLF word and the right part is a word form proposed by the rules and accepted by
OMORFI. For each OLF word, we now have a list of candidate MSF words. We can

fairly safely drop some candidateMSFword forms by using their compound boundary
count as computed above. We throw away all candidates which have more compound
boundaries than the one that has the least number of them. Thus, we start from the
following list of modern forms for the OLF word form aitais:

aitais 1 [aitaiisi, aitaisi, aitasi, aittaiisi,
aittaisi, aittasi]

According to the counts we computed, the first and the fourth have a boundary
count 1 and the rest have no boundaries. Thus, we drop the first and the fourth,
and get the final result which now contains only acceptable words and no artificial
constructions:

aitais 1 [aitaisi, aitasi, aittaisi, aittasi]

This processing sounds complicated,11 but it is motivated by the fact that OMORFI
produces a lot of extra analyses using its liberal compounding mechanism. Anyway,
the Python script which does the trick, is short, fast and straightforward.

10 Reducing to the base forms
Normally, OMORFI reduces word forms to their base forms and base forms would be
often even better for searching and indexing than the word forms themselves. Thus, in
parallel to the operations in the previous section, the candidate MSF word forms were
filtered and reduced to their base forms. This list had the same kinds of problems
with the liberal compounding of OMORFI as we saw in the previous section. The
artificial compounds could be removed in the sameway, in fact easier as the compound
boundaries were present in the base forms directly. Before the filtering, the results
for a base form alendamisest (‘from lowering’)looked like the following:

alen#da#miss#eesti 'sale'+'da'+'miss'+'Estonian'
alen#da#miss#este 'sale'+'da'+'miss'+'obstacle'
alentaa 'to lower'
alentaminen 'lowering'
alentamis#eesti 'lowering'+'Estonian'
alentamis#este 'lowering'+'obstacle'
alen#tamminen 'sale'+'made of oak'
alen#tammis#eesti 'sale'+'made of oak'+'Estonian'
alen#tammis#este 'sale'+'made of oak'+'obstacle'

Again, the filtering program considers this set of candidate MSF base forms. It
finds two candidates with no compound boundaries and sevenwith one or two bound-
aries. The program throws away those seven and keeps the two. So the result for
alendamisest becomes:

alentaa
alentaminen

11It would also possible to handle the stem counts using WFSTs. One may convert the list of MSF forms
and compound part counts into a weighted transducer which accepts the modern forms and use the weight
as a criterion for excluding.

11 Tuning the two-level rules
At this point the rules have been tested against the examples and they have been used
separately for some manually typed in words in order to assess the precision of the
rules, i.e. how many unwanted analyses they produce. We have tools for reducing
OLF word forms into MSF word forms and also to MSF base forms. Now one can see
what the rules and OMORFI together actually do to the masses of words of the Biblia
1642 corpus.

One can expect that some rules are too permissive. This will show up as too many
candidate MSF words. On the other hand, some rules might have too narrow context
conditions, which will be seen as some OLF words left without the desired candidate
words. It is also possible that some regular phenomena were not present in the exam-
ple words. Then we have no applicable rules and many OLF words remain without
the desired candidate MSF words. In the two first cases, we must consider revising
the two-level rules we have written. In the last case, we must select further example
word pairs and write yet another rule and test it.

For the checking what actually exists in the the Biblia 1642 corpus, three files
were used: the source text itself, an alphabetical list of distinct OLF word forms in the
corpus, and a list of reversed OLF word forms (sorted starting from the last character).
Using the Gnu/Linux less and egrep commands, one got quick answers to questions
such as: “Are there many other words similar to this one?” or “Is this really a form of
the word I think?”.

The tuning consumedmore time than the writing of the initial two-level grammar.
It was also more demanding because one must check that changes in rules do not
have negative effects, such as dropping some desired candidate words which were
previously correctly generated. For this purpose, the changes in the rules were always
checked by producing a separate new list and comparing it against a previous full
list of analyses12. If the differences were all for the better, then the new rules were
accepted, and the new lists taken as the new benchmark for the following changes.
Some of the new or lost analyses required checking from the corpus or the lists of old
words as mentioned above.

The tuning required partial knowledge of the language in the corpus andwasmade
by Kimmo Koskenniemi. An overall sense of present day Finnish and some familiarity
with Finnish dialects seemed to be sufficient for finding generalisations and adequate
context characterisations. Just one OLF word form (käätyxi, ‘that has been turned’)
could not be interpreted by looking at the Biblia 1642 occurrences. One had to look it
up in a more recent Bible translation.

All changes of the rules were automatically checked against the collection of hand-
selected example word pairs. Any discrepancies were immediately detected and the
rule violating some word pair was pointed at. After correcting the rule that failed,
the rules were recompiled, retested and the full lists were recomputed. A handful of
new example words were included in this process. The original and the new examples
were used testing the rules thereafter at every cycle.

There appears to be no clear limit how long one can tune a grammar. After a
certain level is reached the return of each cycle diminishes. Many of the remain-
ing shortcomings could be better solved if one could have a different morphological
analyser for Finnish. In particular, one would like to modify the compounding mech-
anism, make the derivational capacity more productive, and use a morphophonemic

12The checking was done using the Gnu/Linux comm program

representation for MSF as the basis for rules. Then one would have access to many
relevant conditions for determining the forms of the OLF.13 Such a re-implementation
of Finnish morphological analysis would be motivated also when applying two-level
methods to historical linguistics of Finno-Ugric languages, see Koskenniemi (2013a).

A couple cases occurred where a new letter pair and an entirely new rule had to
be established. That posed no major problem as long as the main principles of letter
alignment and correspondences remained unchanged. With a few new example word
pairs, there were no particular problems.

A common question that arose was to decide whether the rejection of MSF word
forms was an error or a feature of OMORFI. The analyser is committed to obey the
guidelines for word inflection as described in Kielitoimiston sanakirja14 (2006) which
is also available as a net service.15 In most cases, a fifty years earlier norm of MSF
would have better suited the needs of this project.

12 Evaluation of the mapping
The rules were developed using a set of example words. So the discussion of the
success and the shortcomings of the mappings cannot be estimated by testing with
the same words. One can assess how the mapping covers the vocabulary of the corpus
by taking a sample of the list of all distinct word forms in the corpus, i.e. some 26,500
words. This list consist mostly of infrequent words. Half of them are hapax legomena,
i.e. occurring only once. Less than 5,000 words occur more than 5 times in the corpus.
Two 100 word samples were selected, one out the full list of distinct word forms and
another from a list consisting of word forms occurring at least six times in the corpus.
Both samples were made out of the respective total list by first skipping some entries
and then proceeding with even intervals (the length of the list divided by 100). A third
sample was made from the running text.

12.1 Proper nouns and abbreviations

The Biblia 1642 corpus contains plenty of proper names, biblical and other. Names of
persons and places occur typically fairly few times and only within a short passage
of text. There are two kinds of problems concerning them. Dictionaries lack most of
them, so the filtering could not work properly. Most proper names are unlike normal
Finnish words, and the orthography used in writing them differed from that of normal
OLF words. Proper names are often written as in Swedish or German and not adjusted
to Finnish.

By mistake, some material, such as references to other parts of the Bible remained
in the corpus although the intention was to exclude them all. This happened probably
because suchmarkings hadmore variable forms thanwas expected. The abbreviations
so included, are not valid OLF words and not a target of this study.

Thus, the proper nouns and abbreviations do occur in the samples, but could be
ignored in the results. Proper nouns, and many other words were written with capital
letters in Biblia 1642. In addition, capital letters are found in the corpus in unusual

13OMORFI is open source and readily available for modifications. It was designed, however, without
morphophonemes or explicit indication for alternating phonemes. OMORFI is very good for e.g. spell
checking and even for generating inflected forms e.g. in machine translation. Modifying it for the present
purposes would be as difficult as building a new analyzer.

14The dictionary of the Finnish language bureau
15http://www.kielitoimistonsanakirja.fi/

places, e.g. both as the first and the second letters. Precise normalisation of the corpus
was not a goal of this project, so nothing was done beyond forcing all text to lower
case.

12.2 Words occurring more than five times

The result of testing a sample of 100 word forms out of the list of word forms occurring
at least six times in the corpus is in Appendix 1. The following is a summary of the
results with this sample:

• Eight biblical proper names or abbreviations were missed.16

• In addition, six OLF word forms were left without a proper analysis: an obsolete
form käätyxi of verb käännetyksi (‘turned’, ‘converted’); slightly archaic in-
flections löytty (‘found’), saatit (‘you might’, ‘you/they escorted’), sijpein
(‘of wings’), vartioidzit (‘they/you guarded’); a word form mixette (‘why
not (you)’) accidentally missing from OMORFI. One may assume that these and
similar words would be correctly analysed, if the filtering morphological ana-
lyzer could be modified so that it accepts older inflectional forms.

12.3 All word forms in the corpus

The full list of the other 100 word sample which was taken out of the total list of all
word forms occurring in the corpus is in Appendix 2. Following is a summary of the
results:

• There were 11 proper names or abbreviations which were rejected: Ahabin,
Bath, Giledassa, Ismaelille, Kanaaneri, Kyrenestä, Magnus, Moph, Pet
(=Petrus), Pilatus, Publiuksella. See the discussion above.

• In addition, 16 words did not get the proper analysis, 10 of them occurred just
once in the corpus. Two fairly frequent words (ettäs (‘you not’), synteins (‘of
their sins’)) were not accepted by OMORFI and therefore were lost, and so was
poismenit (‘you/they went away’) which is nowadays written as two words.

• Out of the remaining 13 unanalysed words, one onnettomudexen (‘to his mis-
fortune’) was analysed to the correct base form but not to the less frequent form
actually used in the corpus.

• For three words, one could study further for a possible revision of the rules:
cauhiuttan, julgista (‘priech’, not ‘public’), tervehdimmä (‘wewelcome(ed)’).

• Many missed OLF words might be better handled by revising the lexicon of the
morphological analyzer rather than the rules developed for this paper. There is
no guarantee that rule revisions would really improve the recall. The OLF word
onnettomudexen =onnettomuudeksenne (‘to your misfortune’) is a case in
the point. It would be tempting to include a rule which would allow the recog-
nition of the plural second person possessive suffix by deleting the two final
letters. One ought to be careful, though: the rule would over-generate because

16Four of the eight would be accepted by OMORFI if given with a capital letter: proper names Amoksen,
Saul, Jerusalemista, and the roman numeral XI. Proper name Gedalia would not have been in
OMORFI, neither the two abbreviations Cap and Ioh accidentally included in the list.

there are many other words ending similarly and not so many occurrences of
this suffix.17 One would need access to the morphophonological level of MSF
in order to describe this suffix accurately.

• Altogether some 165 analyses were produced for the 100 word forms. Some 79
of them were exact matches to the actual word in the corpus. Ten proposed
analyses were unacceptable (six as artificial compounds, four as guesses for
proper names).

12.4 Sample of word tokens from the running text

The two above test estimated how well the method covers the vocabulary. Another
aspect is, howwell the method covers the text, i.e. how large a portion of word tokens
in the running text would get a proper base form using which the place could be
retrieved. For this purpose, a sample of 100 words was made, starting with a small
offset and stepping through the text at equal intervals. A summary of results with
this test:

• Four word tokens were proper names: Babelin, Efraimin , Israelin, Maria;
two were abbreviations: Reg, XXI and were left without a correct analysis.

• Three tokens were left without a proper analysis: iohtunut (‘caused by’), mu-
rehitit (‘they worried’), sijhenasti (‘till then’). The j:i is a very rare cor-
respondence, and the last two ones are ungrammatical in MSF.

• The remaining 91 words of this sample were given among others, the correct
analysis.

One may speculate that frequent words are more common in samples of running
text than in samples from lists of distinct word forms. Therefore, it would be expected
that the rules and OMORFI perform better with such samples.

13 Conclusion
On the whole, the authors consider the precision and recall of the combination of the
two-level rules and OMORFI successful, somewhat better than was expected. Spend-
ing more time with the rules and tuning the context conditions would not have a
significant effect on the performance. By making the conditions looser, one may im-
prove the recall at the expense of precision. With some manually compiled lists and
paying attention to the capital letters, one could handle the proper namesmuch better.

Themost promising line of development would be to build a different type of mor-
phological analyser. OLF form like jalgat (‘feet’) corresponds to MSF surface form
jalØat. Adding a potential g in all possible places seems a bad idea. The morpho-
phonemic representation of the modern form could be something as j a l kØ a +
t. Relating g with the morphophoneme kØ describes the phenomenon more logically.

17It is possible to modify the endings in OMORFI although one has to make changes in many places of
the lexicon.

Acknowledgements
We are grateful for the Institute for the Languages of Finland for the free availability
and use of the Old Literary Finnish materials which was necessary for this project.
We are also grateful for the FIN-CLARIN project which has implemented the HFST
software and offers technical support for it.

The division of labour between the authors was that Pirkko Kuutti selected the
material for the corpus and prepared the set of examples and checked the judgements
in the final results. Kimmo Koskenniemi did all other tasks.

References
Kenneth R. Beesley and Lauri Karttunen. 2003. Two-Level Rule Compiler . Xerox PARC.

https://web.stanford.edu/~laurik/.book2software/.

Biblia. 1642. Biblia, Se on: Coco Pyhä Ramattu, Suomexi. Pääramattuin, Hebrean ja
Grecan jälken: Esipuhetten, Marginaliain, Concordantiain, Selitösten ja Registerein
cansa.. Pipping 42, Henrik Keyser, Stockholmis.

Lars Borin, Markus Forsberg, and Johan Roxendal. 2012. Korp –- the corpus infras-
tructure of språkbanken. In Proceedings of LREC 2012. Istanbul: ELRA. page 474–478.

Eija-Riitta Grönros and Kotimaisten kielten tutkimuskeskus. 2006. Kielitoimiston
sanakirja. Kotimaisten kielten tutkimuskeskuksen julkaisuja. Kotimaisten kielten
tutkimuskeskus. http://www.kielitoimistonsanakirja.fi/.

Lauri Karttunen, Kimmo Koskenniemi, and Ronald M. Kaplan. 1987. A compiler for
two-level phonological rules. In M. Dalrymple, R. Kaplan, L. Karttunen, K. Kosken-
niemi, S. Shaio, andM.Wescoat, editors, Tools for Morphological Analysis, Center for
the Study of Language and Information, Stanford University, Palo Alto, California,
USA, volume 87-108 of CSLI Reports, pages 1–61.

Kimmo Koskenniemi. 2013a. Finite-state relations between two historically closely
related languages. In Proceedings of the workshop on computational historical lin-
guistics at NODALIDA 2013; May 22-24; 2013; Oslo; Norway. Linköping University
Electronic Press; Linköpings universitet, number 87 in NEALT Proceedings Series
18, pages 53–53.

Kimmo Koskenniemi. 2013b. An informal discovery procedure for two-level rules.
Journal of Language Modelling 1(1):155–188. http://jlm.ipipan.waw.pl/.

Kimmo Koskenniemi. 2017. Aligning phonemes using finte-state methods. In Pro-
ceedings of the 21st Nordic Conference on Computational Linguistics. Association for
Computational Linguistics, Gothenburg, Sweden, pages 56–64.

Krister Lindén, Erik Axelson, Sam Hardwick, Tommi A. Pirinen, and Miikka Silfver-
berg. 2011. Hfst – framework for compiling and applying morphologies. In Cerstin
Mahlow and Michael Piotrowski, editors, Systems and Frameworks for Computa-
tional Morphology 2011 (SFCM-2011). Springer-Verlag, volume 100 of Communica-
tions in Computer and Information Science, pages 67–85.

https://web.stanford.edu/~laurik/.book2software/
http://www.kielitoimistonsanakirja.fi/
http://jlm.ipipan.waw.pl/
http://jlm.ipipan.waw.pl/

TommiA. Pirinen. 2015. Omorfi—free and open sourcemorphological lexical database
for finnish. In Proceedings of the 20th Nordic Conference of Computational Linguistics
(NODALIDA 2015). Linköping University Electronic Press, Sweden, Vilnius, Lithua-
nia, pages 313–315. http://www.aclweb.org/anthology/W15-1844.

Matti Sadeniemi, editor. 1951–-1961. Nykysuomen sanakirja, volume 1–6. WSOY.

Appendix 1: Sample out of words occurring at least 6
times
This sample was made out of the word forms occurring at least six times in the corpus.
The list was divided in 100 parts of equal length and then the 42nd word from each
part was selected. This sample was not used for writing or tuning the rules. The rules
were not changed after this sample was processed and this article was written.

The analysis of the sample was manually checked looking up the passages in the
corpus for judging what the original word form stood for. Decisions were inserted in
the list using following markings: Names or abbreviations are marked with a preced-
ing (§). They were left outside the present study because OMORFI would not cover
them in any case. OLFwords whichwere leftwithout any correct analyses aremarked
with a preceding (@) sign. After an equal sign (=), a desired result is given, i.e. a result
that one would wish that the analysis would produce. Those MSF word forms which
were attested to be correct, are marked with a plus sign (+). The results which were
considered to be wrong, are marked with an asterisk (*). The remaining unmarked
MSF word forms in the results are formally possible but not attested in the Biblia
corpus.

ajasta 22 +ajasta, ajastaa
§ amoxen 6 =Amoksen
apostoleille 8 +apostoleille
asti 178 +asti
autuuden 21 +autuuden, autuuteen, autuuteeni, +autuuteni
cadzos 20 +katsos
callis 7 kalliisi, kalliissa, +kallis
§ cap 150 =abbreviation (not part of the text)
catumattomudens 9 kaatumattomuuteensa, kaatumattomuutensa,

katumattomuuteensa, +katumattomuutensa
§ cesareaan 11 =Kesareaan
colmas 26 +kolmas
costaman 10 koostamaan, koostamaani, koostaman, koostamani,

+kostamaan, kostamaani, +kostaman, kostamani
cuitengin 328 +kuitenkin, kuittenkin
cunnias 9 kunniaasi, +kunniasi, +kunniassa
cuulemma 7 kuulemma, +kuulemme, kuulleemme, kuullemme
duomidzeman 20 +tuomitsemaan, tuomitsemaani, +tuomitseman,

tuomitsemani
egyptiläisten 10 +egyptiläisten, egyptiläisteni
engelille 8 +enkelille
epäjumalain 22 +epäjumalain, epäjumalaini
että 2808 +että
§ gedalia 7 =Gedalia
harwat 15 +harvat

http://www.aclweb.org/anthology/W15-1844
http://www.aclweb.org/anthology/W15-1844
http://www.aclweb.org/anthology/W15-1844

heitän 9 +heitän, =heidät, heittäne, *heittäni, *heittään,
*heitäni, *heitään

hetke 14 +hetkeä
huones 35 +huoneesi, +huoneessa
hywä 160 +hyvä, +hyvää, =hyvät
häwitetän 14 hävitettäne, hävitettäni, hävitettään,

+hävitetään, hävitteettäni, hävitteettään
ihmisest 12 +ihmisestä
§ ioh 21 =abbreviation (not part of text)
itkemän 17 +itkemän, itkemäni, +itkemään, itkemääni
§ jerusalemist 58 =Jerusalemista
jolle 14 +jolle
judalaisista 12 +juutalaisista
jumalinen 9 +jumalinen, jumalineen, jumalineni
kedolla 53 +kedolla, ketolla
kircasta 7 kirkasta, +kirkastaa
kylään 7 +kylään, kylääni, kyyllään, kyylään, kyylääni
käsiwartens 14 käsivarteensa, +käsivartensa, käsivarttensa
@ käätyxi 21 =käätyksi (obsolete inflection pro 'käännetyksi)
laskeman 7 +laskeman, +laskemaan, laskemaani, laskemani
lewitat 11 +leviitat
luetan 14 luetan, +luetaan, luettane
lyödyxi 6 +lyödyksi
@ löytty 13 =löytty (obsolete inflection pro 'löydetty')
mailma 57 +maailma, +maailmaa
menewät 44 +menevät
miehens 11 mieheensä, +miehensä
@ mixette 6 =miksette (OK in MSF but OMORFI rejects)
muu 30 +muu
neljäkymmendä 16 +neljäkymmentä, neljääkymmentä
nimittä 12 nimittä, +nimittää
nähdä 88 +nähdä
oikein 87 +oikein, oikeine, oikeini
oma 34 +oma, +omaa
opetuslastens 40 +opetuslastensa
oxa 11 +oksa, +oksaa
paimen 19 +paimen
palwelusta 22 palvellusta, +palvelusta
parembi 11 +parempi
perkelestä 6 +perkeleestä
pidetän 14 pidettäne, pidettäni, pidettään, +pidetään,

piteettäni, piteettään
pohjaisest 8 +pohjaisesta, pohjaisesti
prophetalle 26 +profeetalle
puolelle 19 +puolelle
päiwiä 9 +päiviä
päät 7 +päät, pääte
rangaisewa 18 +rankaiseva, rankaisevaa
ristinnaulidzit 6 ristiinnaulitsit, ristiinnaulitsitte,

+ristiinnaulitsivat
ruumis 10 +ruumis, +ruumiisi, ruumiissa, ruumissa
@ saatit 14 =saatit (old inflection pro 'saattoivat'), *saatit
sanani 45 +sanani, +sanaani
§ saul 8 =Saul

seuracunda 38 +seurakunta, +seurakuntaa
@ sijpein 10 =siipein (old inflection pro 'siipien')
sisäldä 11 +sisältä, sisältää
sucucunda 25 +sukukunta, +sukukuntaa, *suukukunta, *suukukuntaa
suus 9 +suusi, +suussa
synnyttä 13 synnyttä, +synnyttää
tahto 243 tahto, +tahtoa, +tahtoo
tapahtunut 65 +tapahtunut
tehkät 47 +tehkää
tie 15 +tie
toiseens 6 +toiseensa
tulella 35 +tulella, tulleella, tuulella, tuulleella
turmelit 6 +turmelit, turmelitte, +turmelivat
tyttäres 10 tyttäreesi, +tyttäresi, tyttäressä
täytti 11 +täytti
uscollinen 10 +uskollinen
waelsi 26 +vaelsi
waldacundain 15 +valtakuntain, valtakuntaini
wanhast 8 +vanhasta, vanhasti
@ wartioidzit 8 =vartioitsivat (old inflection pro 'vartioivat')
wertauxen 34 vertaukseen, vertaukseeni, +vertauksen, vertaukseni
wihollisen 15 viholliseen, viholliseeni, +vihollisen, +viholliseni
woi 223 +voi
wuorten 22 +vuorten, vuorteni
§ xi 13 =XI (not part of the text)
yljän 13 +yljän
ystäwä 6 +ystävä, ystävää
änellä 27 +äänellä

Appendix 2: Sample out of all OLF word forms
This sample was taken out of the full list of all distinct OLF word forms of the corpus,
i.e. each word form was just once in the list no matter how many times it occurred
in the corpus. The sample starts with the 86th word and proceeds with steps of equal
length in the alphabetical list. The markings for proper names or abbreviations (§),
words with no analysis (@), manually added interpretations (=), correct analyses (+)
and completely irrelevant candidates for MSF words (*) follow the same principles as
in the sample in Appendix 1.

§ ahabin 3 =Ahabin
@ alaidzen 1 =alitse
andimexi 1 +antimeksi
arpoja 1 +arpoja
asuwat 59 +asuvat
§ bath 3 =Bath
cahleis 5 +kahleissa
@ cananeri 1 =kanaaneri=Kaanaan asukas, *kanan-erie
carsi 2 kaarsi, +karsi, karsii
@ cauhiuttan 1 =kauheuttaan
@ cherubim 5 =kerubim=kerubi
colminaisuden 2 +kolminaisuuden, kolminaisuuteen,

kolminaisuuteeni, kolminaisuutena, kolminaisuuteni
cotcatkin 1 kotkaatkin, +kotkatkin

cullastans 1 +kullastansa, kultastansa
cuolettaman 1 +kuolettamaan, kuolettamaani, kuolettaman,

kuolettamana, kuolettamani
cuurnidzet 2 +kuurnitset, kuurnitsette
edestäm 8 +edestämme
eläwäin 1 +eläväin, eläväini
epäjumalista 2 +epäjumalista
@ ettäs 100 =ettäs (OMORFI)
§ gileadis 5 =Gileadissa
halkeisit 1 halkeisit, +halkeisivat, halkeisitte
hedelmälisest 2 +hedelmällisesti, hedelmällisestä
@ heräjä 1 =heräjä=herää, herääjä, herääjää
hopiaxi 1 +hopeaksi
hurscana 1 +hurskaana
häpiäs 13 +häpeäsi, +häpeässä, +häpeääsi
ihmisildä 17 +ihmisiltä
§ ismaelille 1 =Ismaelille
jalca 3 +jalka, +jalkaa
johdatan 3 +johdatan, johdattane
@ julgista 1 =julkistaa
jutteli 7 +jutteli
kelwatcon 1 +kelvatkoon
kijtoswirren 4 +kiitos-virren
kitans 1 kitaansa, +kitansa
§ kyrenist 1 =Kyrenestä
kätensä 1 +kätensä, +käteensä, kättensä
lainaxi 1 +lainaksi
laulun 3 +laulun, lauluna, lauluni, lauluun, lauluuni
lewollisest 1 +levollisesta, levollisesti
lohdutuxellans 1 +lohdutuksellansa
luotat 5 +luotat, luotaat, luotaatte, luotatte
lähikyläins 1 +lähikyläinsä
§ magnus 3 =Magnus=Suuri, *maa-gnuusi
@ medzäficunapuulle 1 =metsä-viikuna-puulle
miehest 4 +miehestä
§ moph 1 =Moph
muucalaisilda 1 +muukalaisilta
@ nautitcat 1 =nautitkaa=nauttikaa
nimiä 1 +nimiä, nimeä, nimeää
nurisewat 1 +nurisevat, nurissevat
@ ohrapion 1 =ohrapivon=ohrakourallisen, *ohrapioni
@ onnettomudexen 1 =onnettomuudeksenne, onnettomuudekseen,

onnettomuudekseni
ota 102 +ota, oitta, otaa, +ottaa
pahenetta 1 +pahenette
paljastawat 1 +paljastavat
paransin 2 +paransin
peljännet 2 peljännet, +peljänneet, peljännette
§ pet 6 =Pet=Petrus=abbreviation, *peet
§ pilatus 58 =Pilatus, *pilattusi, *pilattuusi, *pilatussa
@ poismenit 1 =poismenit=pois menit
§ publiuxella 1 =Publiuksella
purpuraan 1 purpuraan, +purppuraan, purppuraani, purpuraani
päälimmäistä 1 +päällimmäistä

racastawanans 1 +rakastavanansa
rascautta 2 +raskautta, +raskauttaa
riemuhuudon 1 +riemuhuudon, riemuhuutona, riemuhuutoni,

riemuhuutoon, riemuhuutooni
rucouxens 3 rukoukseensa, +rukouksensa
saamme 8 +saamme
saitte 4 +saitte
@ saphir 3 =safiiri
selitetyt 1 +selitetyt
sielä 1 +siellä
@ sisälmäisin 1 =sisälmäisiin=sisimmäisiin?
sotawäke 4 +sotaväkeä
suremmaxi 1 +suuremmaksi
@ syndeins 30 =synteinsä/syntiensä (OMORFI)
syöxemän 1 +syöksemän, syöksemäni, +syöksemään,

syöksemääni
taitons 1 +taitonsa, taitoonsa, taittonsa, taittoonsa
taudist 3 +taudista, tautiista, tautiistä, tautista
@ terwehdimmä 2 =tervehdimme
todistaja 4 +todistaja, todistajaa
tottunet 3 +tottunet, tottuneet, tottunette
tunnustin 2 +tunnustin
tyhmäin 1 +tyhmäin, tyhmäini
töilläs 1 +töilläsi, töiltäsi
uscalda 4 +uskaltaa
wacudes 1 vakuudessa, vakuuteesi, +vakuutesi
waiwan 12 +vaivaan, vaivaani, +vaivan, vaivana,

+vaivani
wallidzewat 7 +vallitsevat
warcaudella 1 +varkaudella
weidzet 1 +veitset
wialliset 2 +vialliset
wihollisillans 1 +vihollisillansa
wircaan 6 +virkaan, virkaani
wuoria 7 +vuoria
wääristä 4 +vääristä, vääristää
@ ylöllist 1 =ylöllistä=ilkeätä?
yxi 334 yksi

Appendix 3: Two-level rules
Alphabet
a a:Ø b d e e:a e:i e:u e:ä e:ö e:Ø f:p g h i i:j i:Ø
j j:i j:Ø k k:c k:g k:x l l:Ø m m:Ø n o o:a o:Ø p p:b p:w
r s s:n s:z s:Ø t t:d t:l t:n t:r t:Ø u u:Ø v v:f v:g v:w v:Ø
y y:Ø ä ä:Ø ö ö:ä ö:Ø Ø:d Ø:e Ø:g Ø:h Ø:i Ø:n Ø:s Ø:t ;

Sets
Vowel = a e i o u y ä ö ;
Cons = b c d f g h j k l m n p r s t v w x z ;

Definitions
Suf1 = [n i: | n s a: | s i: | m m: e:] ;

Suf2 = (k i n | k a :Ø n) ;
aSuff = ((a:) (n | Suf1) | i n | i Suf1 | l [l e|t a] (Suf1) |

n | n a (Suf1) | s [s:|t] a: (Suf1) | t |
[t:|:t] a (Suf1) | k:x s: e Suf1 | k:x s:Ø i) Suf2 .#. ;

oSuff = [k:x s: i | l l [a|e (e: n)] (Suf1) | n [a|e] (Suf1) |
s [s:|t] a: (Suf1) | t | [t:|:t] a (Suf1) |
t t e n | t t e Suf1] Suf2 .#. ;

Rules

"a:Ø" a:Ø => a: _ ;
! p a l a j a a:Ø
! r a a:Ø m a t t u

:Cons e _ .#. ;
! k:c a i k:c k e a:Ø

:Cons o a:Ø _ .#. ;
! h o l h o a:Ø a:Ø

:Cons o _ [(a:Ø) .#. | :i :s | j [a|i] | :m |
:n .#. | t (t e:) .#. | :w | :Ø* :x] ;

! k i r o a:Ø i s i t
! p u t o a:Ø v:w a t
! p u t o a:Ø m i s i l l a
! v a i n o a:Ø a:Ø
! v:w a i n o a:Ø j a n i
! v:w a i n o a:Ø t t e:a
! [n | s (s:Ø) | s t] _ .#. ;

[s (s:Ø) | s t] _ .#. ;
! s e a s s:Ø a:Ø
! a i k:c a n a:Ø
! e v a n k:g e l i u m i s t a:Ø

i v:Ø _ t .#. ;
! a n t:n o i v:Ø a:Ø t
! s o t:d i:e i v:Ø a:Ø t

"e:Ø" e:Ø => e _ ;
! i h m e e:Ø t

_ .#. ;
! i s ä m m:Ø e:Ø

_ i t [t e n | a | ä] .#. ;
! a p o s t o l e:Ø i t t e n

i s _ n [a | ä] .#. ;
! t o i s e:Ø n a

a t _ r i [a | o] ;
! a t e:Ø r i o i t:d s:z i

"e:a" e:a => [t t | m m] _ .#. ;
! k:c u u l i t t e:a
! t u l i m m e:a

"e:u" e:u => l _ i t ;
! k:c u o l l e:u i t t e n

"e:ä" e:ä => n _ m ;
! e n e:ä m p:b ä Ø:t ä

"e:i" e:i => t a _ n .#. ;
! o p e t t a e:i n

_ [a | ä] ;
! r u s k e:i a t

"e:ö" e:ö => .#. y l _ n ;
! y l e:ö n k:c a t:d s:z o

"f:p" f:p => _ Ø:h ;
! p r o f:p Ø:h e e:Ø t t:Ø a i n

"i:j" i:j => i _ ;
! n i i:j s s:Ø ä

"i:Ø" i:Ø => i _ ;
! r u u m i i:Ø n

o _ t ;
! o s o i:Ø t t i

[n | s | s t] _ .#. ;
! n i m e s i:Ø
! k:c o l m a s t i:Ø

"i:Ø .#." i:Ø <= i _ .#. ;

"j:i" j:i => .#. o r _ a ;
! o r j:i a t

"ij:iØ" j:Ø => [k: | l | s: | t:] i _ [a aSuff | o i oSuff] ;
! k:c a m a r i p a l v:w e l i j:Ø a Ø:t a
! k:c a u p i t:d s:z i j:Ø a t
! k:c u l k i j:Ø o i t a
! k:c u r k i s t e l i j:Ø a t
! h a k i j:Ø a t
! h a l t:d i j:Ø a
! h a l t:d i j:Ø o i l l e
! h a l l i t:d s:z i j:Ø a
! j u o k:x s:Ø i j:Ø a n
! p a l v:w e l i j:Ø a
! p a l v:w e l i j:Ø o i t a
! r a n k:g a i s i j:Ø a
! v:w a a t i j:Ø a n s a:Ø
! v:w a l e h t e l i j:Ø a t
! v:w a r t i j:Ø a

s i _ [a oSuff | o oSuff | o i t] ;
! s i j:Ø a

t e k i _ ä ;
! t e k i j:Ø ä

"k:c" k:c => \:k _ [k | (:Ø) [:a | :o | :u] | Ø:h | l | r] ;
! j a l k:c a i n s a:Ø

"kk:ck" k:c <= _ k ;

"k:g" k:g => n _ ;

! e n k:g ä
.#. t y _ ö ;

! t y k:g ö s i:Ø

"k:x" k:x <=> _ s:Ø ;
! h a a k:x s:Ø i

"ll:lØ" l:Ø => l _ ;
! e h t o o:Ø l l:Ø i s e n

"mm:mØ" m:Ø => m _ Vowel: ;
! i s ä m m:Ø e:Ø

!"nn:nØ" n:Ø => n _ e:Ø .#. ;
! k ä s i ä n n:Ø e:Ø
! t e i t ä n n:Ø e:Ø
! a j a t u k:x s:Ø i a n n:Ø e:Ø
! k y m m e n e n n:Ø e n

"o:Ø" o:Ø => o: _ ;
! e h t o o:Ø n a

"o:a" o:a => k: _ o: n .#. ;
! k:c u u l k:c o:a o:Ø n
"~ oo:oa" o:o /<= o:a _ ;

"p:b" p:b => m _ ;
! s u u r e m p:b i
! ?? s a p:b Ø:b a t h:t i
! ?? m u Ø:u l p:b e:ä r i n
! ?? t o p:b i a a:Ø n

"p:w" p:w => _ [u | y| ä] :i (s i: (v:Ø ä:Ø t)) .#. ;
! v:w i i:j p:W y i
! l u o p:w u i
! r e p:w ä i s i:Ø
! l e p:w ä Ø:i s i v:Ø ä:Ø t

"pp:pØ" p:Ø => :Vowel (:m | :l | :r) p _ ;
! k:c u m p p:Ø a n i

"s:Ø" s:Ø => s _ ;
! e d e s s:Ø ä
! s e a s s:Ø a:Ø

:x _ ;
! h a a k:x s:Ø i

"s:n" s:n => s _ [e | u | y] t .#. ;
! n o u:Ø s s:n u t
! k:c a t k:c a i s s:n e e:Ø t

"s:z" s:z => t: _ ;
! e t:d s:z i

.#. j o k: a i Ø:d _ e ;

! j o k:c a i Ø:d s:z e l l e

"t:d" t:d => [a|e|i|o|u (u:Ø)|y|ä|ö|h|l|n|t:] _ [a|e|i|o|u|y|ä|ö] ;
! p e l t:d o

_ s:z ;
! p a i t:d s:z i

.#. _ u o m [a | i] ;
! t:d u o m i o n
"lt:ll" t:l => .#. :Cons* :Vowel (:Vowel) l _ ;
! k:c u l t:l a i n e n

"t:n" t:n => n _ [[o|u] i (v: a:Ø) (t)] .#. ;
! a n t:n o i
! i l m a a:Ø n t:n u i
! a n t:n o i v:Ø a:Ø t

n _ [[ö|y] i (v: ä:Ø) (t)] .#. ;
! s y n t:n y i v:Ø ä:Ø t

n _ [a|ä|y] i s i (v:Ø [a:Ø|ä:Ø]) t .#. ;
! a n t:n a i s i v:Ø a:Ø t

"rt:rr" t:r => r _ a i s ;
! k:c u m a r t:r a i s i:Ø

"t:Ø" t:Ø => t _ ;
! p r o f:p Ø:h e e:Ø t t:Ø a i n

"u:Ø" u:Ø => u _ ;
! h a l t:d u u:Ø n
! p a k:c a n a l l i s u u:Ø d e s t a:Ø

n o _ s s:n ;
! n o u:Ø s s:n u t

"v:f" v:f => .#. _ [a n :g | i :c u n a] ;
! v:f a n k:g i n a
! v:f i k:c u n a

"v:g" v:g => u _ u ;
! s u v:g u n
! l u v:g u n
! r i u v:g u l l a

"v:Ø" v:Ø => i _ [a:Ø|ä:Ø] t .#. ;
! s a i s v:Ø a:Ø t

"y:Ø" y:Ø => y _ ;
! v:w ä ä r y y:Ø t t ä

"ä:Ø" ä:Ø => ä _ ;
! k ä ä:Ø r m e e:Ø n

[e | n s | s s:Ø | s t] _ .#. ;
! h e t k e ä:Ø
! n ä k ö n s ä:Ø
! h e n g e s s:Ø ä:Ø

.#. t i e t _ k [ä ä:Ø Ø:t| ö] ;

! t i e t ä:Ø k ä ä:Ø Ø:t
i v:Ø _ t .#. ;

! k ä ä n t:n i v:Ø ä:Ø t

"ö:Ø" ö:Ø => k ö: _ [n | t] .#. ;
! ä l k ö ö:Ø n

"ö:ä" ö:ä => _ ö: n .#. ;
! ä l k ö:ä ö:Ø n

"~ öö:äö" ö:ö /<= ö:ä _ ;

"Ø:d" Ø:d => _ s:z ;
! j o k:c a i Ø:d s:z e l l e
! j o u 0:d s:z e n
! ä k k:Ø i Ø:d s:z e l t ä

"Ø:e" Ø:e => .#. [e :d :z | k ä r s | k ä ä r | p y :Ø h k |
r u o :c k | s a l | s o t: | v: a a t:] _ i .#. ;

! e t:d s:z Ø:e i
! k ä r s Ø:e i
! k ä ä r Ø:e i
! p y y:Ø h k Ø:e i
! r u o k:c k Ø:e i
! s a l l Ø:e i
! s o t:d Ø:e i
! s o t Ø:e i
! v:w a a t:d Ø:e i

"Ø:g" Ø:g => .#. [a i|a l|j a|p a|t e|k:c o (r)|r u o|h u o|n ä]
_ [a|e|o|u|y|ö] ;

! a i Ø:g o i t
! a l Ø:g u s t a
! h u o Ø:g a t a
! j a Ø:g a t t e
! k:c o Ø:g o s s:Ø a:Ø
! k:c o Ø:g o l l a
! k:k o r Ø:g o t a n
! n ä Ø:g y n
! n ä Ø:g ö n
! p a Ø:g o s t a:Ø
! r u o Ø:g o n
! t e Ø:g o i l l a
! v:w a a ':g a l l a

"Ø:h" Ø:h => f:p _ ;
! f:p Ø:h a r i s e u s t e n

a _ a n .#. ;
! j u h l a Ø:h a n

e _ e n .#. ;
! h ä n e Ø:h e n

i _ i n .#. ;
! k:c a r i Ø:h i n

o _ o n .#. ;

! a r m o Ø:h o n
u _ u n .#. ;

! l o p p u Ø:h u n
ä _ ä n .#. ;

! e l ä m ä Ø:h ä n
ö _ ö n .#. ;

! k i v:w i s t ö Ø:h ö n
.#. k:c _ r i s t ;

! k:c Ø:h r i s t u s

"asi:ais" Ø:i => [a|ä] _ s i:Ø ;
! a v:w a Ø:i s i:Ø

[a|ä] _ s i v:Ø [a:Ø|ä:Ø] t .#. ;
! l e p:w ä Ø:i s i v:Ø ä:Ø t

k:c u k:c k o _ .#. ;
! k:c u k:c k o Ø:i

o _ n u t ;
! a i k:c o Ø:i n u t

"Ø:n" Ø:n => t:d s:z e _ .#. ;
! y l i t:d s:z e Ø:n
! o h i t:d s:z e Ø:n
! l ä p i t:d s:z e Ø:n
! e d i t:d s:z e Ø:n
! a l a i t:d s:z e Ø:n

"Ø:s" Ø:s => .#. :c a n s _ [:a | :o] ;
! k:c a n s Ø:s a n

"Ø:t" Ø:t => k: [a a:Ø | ä ä:Ø] _ .#. ;
! a n t:d a k:c a a:Ø Ø:t

Vowel: Cons:+ Vowel:+ Cons:+ [a|o|i] _ a .#. ;
! a s i a Ø:t a
! p a h e m p:b i Ø:t a

Vowel: Cons:+ Vowel:+ Cons:+ [ä|i] _ ä .#. ;
! k y y n ä r ä Ø:t ä
"Ø:w" Ø:w => l _ o i [l | s] ;
! j a l Ø:w o i l l a

Appendix 4: Distances for automaticcharacter bycharac-
ter alignment
The following short Python program builds a WFST which relates MSF word forms to
OLF word forms. The resulting WFST is used in the alignment script in Figure 6. The
WFST restricts the character by character matching by rejecting most consonant to
vowel and vowel to consonant correspondences. Furthermore it gives penalty weights
for letter correspondences depending on how many of their features differ and how
much they differ. The numerical values used in the program are more or less arbitrary
and one may tune them in order to improve the accuracy.

The program was made for written Finnish language, but one could modify it in
order to use it for some other languages. In particular, it would be interesting to
extend it so that it would cover phonetic IPA representations of any language.

"""Produces a kind of a distance matrix between
characters in an alphabet."""
import sys, io
import libhfst
algfile = libhfst.HfstOutputStream(filename="chardist.fst")

vowels = {
'i':('Close','Front','Unrounded'),
'y':('Close','Front','Rounded'),
'u':('Close','Back','Rounded'),
'e':('Mid','Front','Unrounded'),
'ö':('Mid','Front','Rounded'),
'o':('Mid','Back','Rounded'),
'ä':('Open','Front','Unrounded'),
'a':('Open','Back','Unrounded')
}

cmo = {'Close':1, 'Mid':2, 'Open':3}
fb = {'Front':1, 'Back':2}
ur = {'Unrounded':1, 'Rounded':2}

consonants = {
'm':('Bilab','Voiced','Nasal'),
'p':('Bilab','Unvoiced','Stop'),
'b':('Bilab','Voiced','Stop'),
'v':('Labdent','Voiced','Fricative'),
'w':('Labdent','Voiced','Fricative'),
'f':('Labdent','Unvoiced','Fricative'),
'n':('Alveolar','Voiced','Nasal'),
't':('Alveolar','Unvoiced','Stop'),
'd':('Alveolar','Voiced','Stop'),
's':('Alveolar','Unvoiced','Sibilant'),
'l':('Alveolar','Voiced','Lateral'),
'r':('Alveolar','Voiced','Tremulant'),
'j':('Velar','Voiced','Approximant'),
'k':('Velar','Unvoiced','Stop'),
'g':('Velar','Voiced','Stop'),
'h':('Glottal','Unvoiced','Fricative')}

pos = {'Bilab':1, 'Labdent':1, 'Alveolar':2, 'Velar':3, 'Glottal':4}
voic = {'Unvoiced':1, 'Voiced':2}
def cmodist(x1, x2):

"""Computes a distance of Close/Mid/Open and returns it"""
return abs(cmo[x2] - cmo[x1])

def posdist(x1, x2):
"""Computes a distance of articulation position and returns it"""
return abs(pos[x2] - pos[x1])

def adist(x1, x2):
"""Computes a distance between symbols"""
return (0 if x1 == x2 else 1)

def printlset(lset):
"""Print the set of letters and their features"""
ll = sorted(lset.keys());

flist = []
for l in ll:

(x,y,z) = lset[l]
flist.append("{} : {},{},{}".format(l, x, y, z))

print('\n'.join(flist))

def featmetr(lset1, lset2, f1, f2, f3):
"""Compute all metric distances between letters in d1 and d2

according to their features."""
ll1 = sorted(lset1.keys())
ll2 = sorted(lset2.keys())
ml = []
for l1 in ll1:

(x1,y1,z1) = lset1[l1]
for l2 in ll2:

(x2,y2,z2) = lset2[l2]
dist = f1(x1,x2) + f2(y1,y2) + f3(z1,z2)
ml.append("{}:{}::{}".format(l1,l2,dist))

return (ml)

vvlist = featmetr(vowels, vowels, cmodist, adist, adist)
cclist = featmetr(consonants, consonants, posdist, adist, adist)
vowl = sorted(vowels.keys())
cons = sorted(consonants.keys())
letters = sorted(vowl + cons)
dellist = ['{}:Ø::{}'.format(l,3) for l in letters]
epelist = ['Ø:{}::{}'.format(l,3) for l in letters]
dbllist = ['{} Ø:{}::{}'.format(l,l,2) for l in letters]
sholist = ['{} {}:Ø::{}'.format(l,l,2) for l in letters]

speclist = ['k:c::0 k::0', 'k:x s:Ø::0', 't:d s:z::0', 'Ø:d s:z::3',
'i:j::1', 'j:i::1', 'i j:Ø::0', 'i i:j::0',
'f:p Ø:h::0', 'u:v::1', 'v:u::1', 'u:w::1', 'k:c::1',
'[o:Ø o:?]::5']

all = vvlist + cclist + dbllist +
sholist + dellist + epelist + speclist

re = '[{}]*'.format(' | '.join(all))

algfst = libhfst.regex(re)
algfile.write(algfst)
algfile.flush()
algfile.close()

	Corpus
	Representative example words
	Example word pairs
	Character by character alignment
	Automatic alignment
	Writing the two-level rules
	Validating the rules against examples
	Standalone testing of the grammar
	Combining the grammar with OMORFI
	Reducing to the base forms
	Tuning the two-level rules
	Evaluation of the mapping
	Proper nouns and abbreviations
	Words occurring more than five times
	All word forms in the corpus
	Sample of word tokens from the running text

	Conclusion

