1	Taxonomy of prokaryotic viruses: 2016 update from the ICTV Bacterial and
2	Archaeal Viruses Subcommittee
3	
4	Evelien M. Adriaenssens ¹ , Mart Krupovic ² , Petar Knezevic ³ , Hans-Wolfgang
5	Ackermann ⁴ , Jakub Barylski ⁵ , J. Rodney Brister ⁶ , Martha R. C. Clokie ⁷ , Siobain
6	Duffy ⁸ , Bas E. Dutilh ^{9,10} , Robert A. Edwards ¹¹ , Francois Enault ^{12,13} , Ho Bin Jang ¹⁴ ,
7	Jochen Klumpp ¹⁵ , Andrew M. Kropinski ^{16,*} , Rob Lavigne ¹⁷ , Minna M. Poranen ¹⁸ ,
8	David Prangishvili ² , Janis Rumnieks ¹⁹ , Matthew B. Sullivan ¹⁴ , Finn K. Vogensen ²⁰ ,
9	Johannes Wittmann ²¹ , Hanna M. Oksanen ^{18, 22} , Annika Gillis ²³ , and Jens H. Kuhn ²⁴
10	
11	¹ Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United
12	Kingdom (previously Centre for Microbial Ecology and Genomics, Department of
13	Genetics, University of Pretoria, Pretoria, South Africa); ² Unit of Molecular Biology of
14	the Gene in Extremophiles, Department of Microbiology, Institut Pasteur, 75015 Paris,
15	France; ³ Department of Biology and Ecology, Faculty of Sciences, University of Novi
16	Sad, Serbia; ⁴ L'Institut de biologie intégrative et des systems, Université Laval, Pavillon
17	Charles-Eugène-Marchand, Quebec, QC, G1V 0A6, Canada; ⁵ Department of Molecular
18	Virology, Institute of Experimental Biology, Adam Mickiewicz University, Poznan,
19	Poland; ⁶ National Center for Biotechnology Information, National Library of Medicine,
20	National Institutes of Health, Bethesda, MD 20894, USA; ⁷ Department of Infection,
21	Immunity and Inflammation, University of Leicester, Leicester, LE1 9HN, UK;
22	⁸ Department of Ecology, Evolution and Natural Resources, Rutgers University, New
23	Brunswick, NJ, 08901, USA; ⁹ Theoretical Biology and Bioinformatics, Utrecht

24	University, Utrecht, The Netherlands; ¹⁰ Centre for Molecular and Biomolecular
25	Informatics, Radboud University Medical Centre, Nijmegen, The Netherlands;
26	¹¹ Departments of Computer Science and Biology, San Diego State University, San Diego,
27	CA 92182, USA; ¹² Laboratoire Microorganismes: Génome et Environnement, Clermont
28	Université, Université Blaise Pascal, Clermont-Ferrand, France; ¹³ CNRS UMR 6023,
29	LMGE, Aubière, France; ¹⁴ Department of Microbiology, The Ohio State University,
30	Columbus OH, 43210, USA; ¹⁵ Institute of Food, Nutrition and Health, ETH Zurich, 8092
31	Zurich, Switzerland; ¹⁶ Departments of Food Science, Molecular and Cellular Biology,
32	and Pathobiology, University of Guelph, Guelph, ON, N1G 2W1, Canada; ¹⁷ Laboratory
33	of Gene Technology, KU Leuven, 3001 Leuven, Belgium; ¹⁸ Department of Biosciences,
34	University of Helsinki, Helsinki, Finland; ¹⁹ Latvian Biomedical Research and Study
35	Center, Riga, LV, 1067, Latvia; ²⁰ Department of Food Science, University of
36	Copenhagen, 1958 Frederiksberg C, Denmark; ²¹ Leibniz-Institut DSMZ-Deutsche
37	Sammlung von Mikroorganismen und Zellkulturen GmbH, 38124 Braunschweig,
38	Germany; ²² Institute of Biotechnology, University of Helsinki, Helsinki, Finland;
39	²³ Laboratory of Food and Environmental Microbiology, Université catholique de
40	Louvain, 1348 Louvain-la-Neuve, Belgium; ²⁴ Integrated Research Facility at Fort
41	Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of
42	Health, Fort Detrick, Frederick, MD, 21702, USA
43	
44	ORCID
45	Evelien M. Adriaenssens orcid.org/0000-0003-4826-5406
46	Bas E. Dutilh orcid.org/0000-0003-2329-7890

47	Rob Edwards	orcid.org/0000-0001-8383-8949
48	Annika Gillis	orcid.org/0000-0002-6735-3359
49	Andrew M. Kropinski	orcid.org/0000-0002-6871-6799
50	Mart Krupovic	orcid.org/0000-0001-5486-0098
51	Jens H. Kuhn	orcid.org/0000-0002-7800-6045
52	Rob Lavigne	orcid.org/0000-0001-7377-1314
53	Johannes Wittmann	orcid.org/0000-0002-7275-9927
54		
55	*Corresponding author: A	MK: Departments of Food Science, Molecular and Cellular
56	Biology, and Pathobiolog	y, University of Guelph, 50 Stone Rd E, Guelph, ON, N1G
57	2W1, Canada; Phone: +1	519-824-4120 x54519; Email: <u>Phage.Canada@gmail.com</u>
58		
59	Keywords: ICTV; Internation	onal Committee on Taxonomy of Viruses; phage; prokaryotic

60 viruses; virus classification; virus nomenclature; virus taxonomy

The prokaryotic virus community is represented at the International Committee on
Taxonomy of Viruses (ICTV) by the Bacterial and Archaeal Viruses Subcommittee.
Since our last report [13], the committee composition has changed, and a large number of
taxonomic proposals (TaxoProps) were submitted to the ICTV Executive Committee
(EC) for approval.

66

67	1.	New appointments. The committee has been enlarged through the additions of
68		Drs. J. Rodney Brister (Chair—Molecular Typing), Ho Bin Jang (Member), Petar
69		Knezevic (Chair—ICTV Inoviridae Study Group), Hanna M. Oksanen (Chair—
70		ICTV Corticoviridae Study Group), and Minna M. Poranen (Chair—ICTV
71		Cystoviridae Study Group). In addition, Dr. Mart Krupovic has taken over the
72		Chairmanship of the ICTV Plasmaviridae Study Group.

73

74 2. Future of the order *Caudovirales*. With dramatic increase in the number of 75 characterized tailed bacterial and archaeal viruses, it is becoming increasingly 76 clear that the order *Caudovirales* (and the three included families *Myoviridae*, 77 Siphoviridae and Podoviridae) can no longer sustain the huge genetic diversity 78 within this virus group [6] and has to be adequately reorganized. Indeed, 79 taxonomic hurdles with this and some other expansive groups of viruses, 80 prompted ICTV to explore the possibility of introducing additional taxonomic 81 levels. Initial ideas and plans were presented to the microbial viruses community 82 at the 2016 EMBO conference "Viruses of Microbes IV" (Liverpool, UK). 83 Currently, the Bacterial and Archaeal Viruses Subcommittee is examining the

consistency of the order *Caudovirales* on the example of a diverse group of
phages currently classified in the subfamily *Spounavirinae* [2,8,9,11,15]. We
applied a range of complementary DNA and protein sequence analysis tools as
well as phylogenetic methods to the analysis of 93 *Bacillus, Enterococcus, Listeria*, and *Staphylococcus* phages with large genomes (≈110–160 kb). A
manuscript describing our findings is in preparation and the appropriate
TaxoProps will be submitted.

91 3. Taxonomy of prokaryotic viruses found in GenBank. Genomes of prokaryotic 92 viruses are accumulating in public sequence databases, such as GenBank, at an 93 increasing rate. Oftentimes, these genomes are being deposited without or with 94 only minimal taxonomy descriptions. To appropriately classify these viruses, the 95 Subcommittee adopted a holistic approach with the first line discriminator being 96 DNA sequence identity (calculated using NCBI BLASTN [3, 12] or Gegenees 97 BLASTN [1]) of the genome in question to those of previously classified viruses. 98 Next, overall protein identity was calculated using Gegenees TBLASTX for large 99 datasets and CoreGenes 3.5 [14] for smaller sets. Lastly, phylogenetic analyses of 100 one to three conserved phage proteins, often including the large subunit of the 101 terminase and major capsid proteins or DNA replication-associated proteins, were 102 carried out using maximum likelihood method as implemented at Phylogeny.fr 103 [5]. The changes described here were formalized and submitted in more than 80 104 ICTV TaxoProps for consideration by the ICTV EC (http://www.ictvonline.org). 105 One new archaeal virus family (Tristromaviridae), six new bacteriophage 106 subfamilies (Ounavirinae [Salmonella phage FelixO1], Sepvirinae [Escherichia

107	phage 933W], Arquatrovirinae [Streptomyces phage R4], Bclasvirinae
108	[Mycobacterium phage Acadian], Mclasvirinae [Mycobacterium phage Pipefish]
109	and Pclasvirinae [Mycobacterium phage Fishburne]), and 88 new genera
110	including 249 species are covered in these proposals (Table 1). These proposals
111	were submitted to the ICTV EC in 2016 for approval. In addition, another 70
112	phages and one archaeal virus belonging to existing genera were classified. Of
113	particular note is a fundamental reorganization of the Inoviridae by Petar
114	Knezevic, Chair of the Inoviridae Study Group, who has rearranged the two
115	existing genera (Inovirus and Plectovirus); created five new genera and 17 new
116	species; reassigned 12 previously approved species; and deleted 29 species.

117 Table 1. Taxonomy proposals (TaxoProps) describing new taxa (families, subfamilies, genera) submitted to the ICTV Executive

118 Committee in 2016.

Family	Subfamily	New genus	Type species	Number of new species in genus(total number of species in genus)
Inoviridae		Fibrovirus	Vibrio virus fs1	1 (2)
Inoviridae		Habenivirus	Ralstonia virus RSM1	3
Inoviridae		Lineavirus	Salmonella virus Ike	0 (2)
Inoviridae		Saetivirus	Vibrio virus fs2	1 (2)
Inoviridae		Vespertiliovirus	Spiroplasma virus R8A2B	1 (3)
Myoviridae	Ounavirinae	Ea214virus	Erwinia virus Ea214	1 (2)
Myoviridae	Ounavirinae	Mooglevirus	Citrobacter virus Moogle	2
Myoviridae	Ounavirinae	Suspvirus	Escherichia virus SUSP1	2
Myoviridae	Spounavirinae	Tsarbombavirus	Bacillus virus TsarBomba	2
Myoviridae	Tevenvirinae	Jd18virus	Klebsiella virus JD18	2
Myoviridae	Tevenvirinae	Kp15virus	Klebsiella virus KP15	5

Myoviridae	Tevenvirinae	Moonvirus	Citrobacter virus Moon	2
Myoviridae		Abouovirus	Brevibacillus virus Abouo	2
Myoviridae		Agrican357virus	Erwinia virus Ea35-70	5
Myoviridae		Arvlvirus	Arthobacter virus ArV1	2
Myoviridae		Elvirus	Pseudomonas virus EL	0 (1)
Myoviridae		Jimmervirus	Brevibacillus virus Jimmer	2
Myoviridae		M12virus	Sinorhizobium virus M12	3
Myoviridae		Marthavirus	Arthrobacter virus Martha	4
Myoviridae		Msw3virus	Edwardsiella virus MSW3	2
Myoviridae		Rsl2virus	Ralstonia virus RSL2	2
Myoviridae		Rslunavirus	Ralstonia virus RSL1	1
Myoviridae		Sep1virus	Staphylococcus virus SEP1	2
Myoviridae		Spn3virus	Salmonella virus SPN3US	1
Podoviridae	Autographivirinae	Frilvirus	Acinetobacter virus Fri1	7
Podoviridae	Autographivirinae	Kp32virus	Klebsiella virus KP32	6

Podoviridae	Autographivirinae	Pradovirus	Xylella virus Prado	3
Podoviridae	Picovirinae	Cp1virus	Streptococcus virus Cp1	1
Podoviridae	Sepvirinae	Nona33virus	Escherichia virus 933W	5
Podoviridae	Sepvirinae	Pocjvirus	Shigella virus POCJ13	2
Podoviridae	Sepvirinae	Tl2011virus	Escherichia virus TL2011	4
Podoviridae		Ea92virus	Erwinia virus Ea9-2	2
Podoviridae		Kflvirus	Edwardsiella virus KF1	1
Podoviridae		Kpp25virus	Pseudomonas virus KPP25	2
Podoviridae		Luz7virus	Pseudomonas virus LUZ7	2
Podoviridae		Prtbvirus	Brucella virus Pr	2
Podoviridae		Una961virus	Helicobacter virus 1961P	3
Siphoviridae	Arquatrovirinae	Camvirus	Streptomyces virus phiCam	2
Siphoviridae	Arquatrovirinae	Likavirus	Streptomyces virus Lika	9
Siphoviridae	Arquatrovirinae	R4virus	Streptomyces virus R4	2
Siphoviridae	Bclasvirinae	Acadianvirus	Mycobacterium virus Acadian	2 (3)

Siphoviridae	Bclasvirinae	Coopervirus	Mycobacterium virus Cooper	5 (10)
Siphoviridae	Bclasvirinae	Pipefishvirus	Mycobacterium virus Pipefish	1 (4)
Siphoviridae	Bclasvirinae	Rosebushvirus	Mycobacterium virus Rosebush	1 (2)
Siphoviridae	Mclasvirinae	Bongovirus	Mycobacterium virus Bongo	0 (1)
Siphoviridae	Pclasvirinae	Fishburnevirus	Mycobacterium virus Fishburne	4 (5)
Siphoviridae	Pclasvirinae	Phayoncevirus	Mycobacterium virus Phayonce	1
Siphoviridae		Ab18virus	Pseudomonas virus Ab18	3
Siphoviridae		Amigovirus	Arthrobacter virus Amigo	1
Siphoviridae		Bennievirus	Arthrobacter virus Bennie	9
Siphoviridae		Bernal13virus	Mycobacterium virus Bernal13	1
Siphoviridae		Cronusvirus	Rhodobacter virus RcCronus	1
Siphoviridae		Decurrovirus	Arthrobacter virus Decurro	1
Siphoviridae		Demosthenesvirus	Gordonia virus Demosthenes	3
Siphoviridae		Eiauvirus	Edwardsiella virus eiAU	1
Siphoviridae		Gaiavirus	Mycobacterium virus Gaia	1

Siphoviridae	Gilesvirus	Mycobacterium virus Giles	1
Siphoviridae	Gordonvirus	Arthrobacter virus Gordon	2
Siphoviridae	Gordtnkvirus	Gordonia virus GordTnk2	1
Siphoviridae	Harrisonvirus	Paenibacillus virus Harrison	1
Siphoviridae	Jenstvirus	Brevibacillus virus Jenst	1
Siphoviridae	Jwxvirus	Achromobacter virus JWX	2
Siphoviridae	Kelleziovirus	Arthrobacter virus Kellezio	2
Siphoviridae	Laroyevirus	Arthrobacter virus Laroye	1
Siphoviridae	Marvinvirus	Mycobacterium virus Marvin	2
Siphoviridae	Mudcatvirus	Arthrobacter virus Mudcat	2
Siphoviridae	Np1virus	Pseudomonas virus NP1	2
Siphoviridae	P12002virus	Polaribacter virus P12002L	2
Siphoviridae	P12024virus	Nonlabens virus P12024S	2
Siphoviridae	Pa6virus	Propionibacterium virus PA6	57
Siphoviridae	PaMx74virus	Pseudomonas virus PaMx74	2

Siphoviridae	Patiencevirus	Mycobacterium virus Patience	0 (1)
Siphoviridae	Pepy6virus	Rhodococcus virus Pepy6	2
Siphoviridae	Pis4avirus	Aeromonas virus pIS4A	1
Siphoviridae	Rdjlvirus	Roseobacter virus RDJL1	2
Siphoviridae	Rer2virus	Rhodococcus virus RER2	1
Siphoviridae	Send513virus	Mycobacterium virus Send513	2
Siphoviridae	Smoothievirus	Gordonia virus Smoothie	4
Siphoviridae	Soupsvirus	Gordonia virus Soups	1
Siphoviridae	Tankvirus	Arthrobacter virus Tank	1
Siphoviridae	Tin2virus	Tsukamurella virus TIN2	3
Siphoviridae	Titanvirus	Rhodobacter virus RcTitan	2
Siphoviridae	Vegasvirus	Paenibacillus virus Vegas	1
Siphoviridae	Vendettavirus	Gordonia virus Vendetta	1
Siphoviridae	Wildcatvirus	Mycobacterium virus Wildcat	1
Siphoviridae	Woesvirus	Gordonia virus Woes	3

Siphoviridae	Ydn12virus	Streptomyces virus YDN12	2
Tristromaviridae	Alphatristromavirus	Pyrobaculum filamentous virus 1	1 (2)

119 COMPLIANCE WITH ETHICAL STANDARDS

120 The views and conclusions contained in this document are those of the authors and 121 should not be interpreted as necessarily representing the official policies, either expressed 122 or implied, of the US Department of Health and Human Services or of the institutions and 123 companies affiliated with the authors.

124 Funding

125 This work was funded in part through Battelle Memorial Institute's prime contract with 126 the US National Institute of Allergy and Infectious Diseases (NIAID) under Contract No. 127 HHSN272200700016I. A subcontractor to Battelle Memorial Institute who performed 128 this work is: J.H.K., an employee of Tunnell Government Services, Inc. B.E.D. was 129 supported by the Netherlands Organization for Scientific Research (NWO) Vidi Grant 130 864.14.004. R.A.E was supported by grant MCB-1330800 from the National Science 131 Foundation. J.R.B. was supported by the Intramural Research Program of the National 132 Institutes of Health, National Library of Medicine. R.L. is a member of the phagebiotics 133 research community, supported by FWO Vlaanderen. M.M.P. was supported by the 134 Academy of Finland (272507 and 250113). A.G. was supported by the National Fund for 135 Scientific Research (FNRS). H.M.O. was supported by University of Helsinki funding for 136 Instruct research infrastructure, a Landmark ESFRI project. E.M.A was funded by project 137 funding from the National Environmental Research Council (NERC, UK) and a 138 Postdoctoral Fellowship from the Claude Leon Foundation (South Africa).

139 Conflict of interest

140 The authors declare that they have no conflict of interest.

141 Ethical approval

142 This article does not contain any studies with human participants or animals performed143 by any of the authors.

144

145 ACKNOWLEDGEMENTS

146 The committee would like to thank Dr. Igor Tolstoy (NCBI) for making available 147 unpublished data on the structure of the NCBI viral database; and Dr. Graham Hatfull 148 (University of Pittsburgh) for permitting us to use Actinobacteriophage Database electron 149 micrographs in this year's taxonomy proposals. The authors thank Laura Bollinger 150 (NIH/NIAID Integrated Research Facility at Fort Detrick, Frederick, MD, USA) for 151 editing this paper.

152 REFERENCES

- Ågren J, Sundström A, Håfström T, Segerman B (2012) Gegenees: fragmented
 alignment of multiple genomes for determining phylogenomic distances and
 genetic signatures unique for specified target groups. PLoS One 7:e39107
- 156 2. Barylski J, Nowicki G, Goździcka-Józefiak A (2014) The discovery of
 157 phiAGATE, a novel phage infecting *Bacillus pumilus*, leads to new insights into
 158 the phylogeny of the subfamily *Spounavirinae*. PLoS One 9:e86632
- 159 3. Boratyn GM, Camacho C, Cooper PS, Coulouris G, Fong A, Ma N, Madden TL,
- 160 Matten WT, McGinnis SD, Merezhuk Y, Raytselis Y, Sayers EW, Tao T, Ye J,
- 161 Zaretskaya I (2013). BLAST: a more efficient report with usability improvements.
 162 Nucleic Acids Res. 41(Web Server issue):W29-33.
- 163 4. Derbyshire MK, Gonzales NR, Lu S, He J, Marchler GH, Wang Z, Marchler164 Bauer A (2015) Improving the consistency of domain annotation within the
 165 Conserved Domain Database. Database (Oxford) 2015:bav010
- 166 5. Dereeper A, Guignon V, Blanc G, Audic S, Buffet S, Chevenet F, Dufayard J-F,
- 167 Guindon S, Lefort V, Lescot M, Claverie J-M, Gascuel O (2008) Phylogeny.fr:
- robust phylogenetic analysis for the non-specialist. Nucleic Acids Res 36:W465469
- 170 6. Iranzo J, Krupovic M, Koonin EV (2016). The <u>Doubledouble-Stranded stranded</u>
 171 DNA <u>Virosphere virosphere</u> as a <u>Modular modular Hierarchical hierarchical</u>
 172 <u>Network-network of Gene-gene Sharingsharing. MmBio-</u> 7(4). pii:-e00978-16.
- 173 7. Kawashima S, Ogata H, Kanehisa M (1999) AAindex: Amino Acid Index
 174 Database. Nucleic Acids Res 27:368-369

- 175 8. Klumpp J, Lavigne R, Loessner MJ, Ackermann H-W (2010) The SPO1-related
 176 bacteriophages. Arch Virol 155:1547-1561
- 177 9. Klumpp J, Schmuki M, Sozhamannan S, Beyer W, Fouts DE, Bernbach V,
- 178 Calendar R, Loessner MJ (2014) The odd one out: *Bacillus* ACT bacteriophage
- 179 CP-51 exhibits unusual properties compared to related *Spounavirinae* W.Ph. and
- 180 Bastille. Virology 462-463:299-308
- 181 10. Krupovic M, Dutilh BE, Adriaenssens EM, Wittmann J, Vogensen FK, Sullivan
- 182 MB, Rumnieks J, Prangishvili D, Lavigne R, Kropinski AM, Klumpp J, Gillis A,
- 183 Enault F, Edwards RA, Duffy S, Clokie MRC, Barylski J, Ackermann H-W,
- 184 Kuhn JH (2016) Taxonomy of prokaryotic viruses: update from the ICTV
 185 Bacterial and Archaeal Viruses Subcommittee. Arch Virol 161:1095-1099
- 186 11. Lavigne R, Darius P, Summer EJ, Seto D, Mahadevan P, Nilsson AS, Ackermann
 187 HW, Kropinski AM (2009) Classification of *Myoviridae* bacteriophages using
- 188protein sequence similarity. BMC Microbiol 9:224
- 189 12. NCBI Resource Coordinators (2016). Database resources of the National Center
 190 for Biotechnology Information. Nucleic Acids Res. 44(D1):D7-19.
- 191 13. Rohwer F, Edwards R (2002) The Phage Proteomic Tree: a genome-based
 192 taxonomy for phage. J Bacteriol 184:4529-4535
- 193 14. Turner D, Reynolds D, Seto D, Mahadevan P (2013) CoreGenes3.5: a webserver
 194 for the determination of core genes from sets of viral and small bacterial genomes.
 195 BMC Res Notes 6:140
- 196 15. Uchiyama J, Maeda Y, Takemura I, Gamoh K, Matsuzaki S, Daibata M (2012)
 197 Analysis of deoxynucleosides in bacteriophages \$\phiEF24C\$ and K and the frequency

- 198 of a specific restriction site in the genomes of members of the bacteriophage
- 199 subfamily *Spounavirinae*. Arch Virol 157:1587-1592