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In a next step we also analyzed MAIT cell frequencies in 7
patients longitudinally before and after HCV therapy. In analogy
to our previous results in HIV patients who were started on
antiretroviral therapy (ART) we also did not see a recovery of
the MAIT cell frequencies upon initiation of HCV therapy
(Fig. 1C). Further studies will need to evaluate whether these cells
need longer time to recover after successful HCV therapy [9].

To our knowledge, an analysis of MAIT cell frequencies in HCV
mono-infection in parallel with HCV/HIV co-infection has not
been performed before. While we see a slight deterioration of
MAIT cells in HCV, not surprisingly we see a trend of even more
profound depletion in ART-treated HIV mono-infected and ART-
treated HIV/HCV co-infected patients. One hypothesis is that
immune activation due to microbial translocation [8,10] is fur-
ther aggravated by global lack of MAIT cells which might be a
fundamental mechanism by which HIV accelerates progression
of chronic liver disease and HCV infection [7].

Further phenotypic and functional studies are required to con-
firm our results. Most importantly, we note that studies of intra-
hepatic MAIT cell phenotype and frequency in different liver
diseases, HIV mono-infection or sepsis are largely missing. These
future studies should then also correlate MAIT cell frequencies
with clinical parameters, liver histology (grading and staging)
and the stage of the liver disease as well as with laboratory mark-
ers of microbial translocation [9].
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The MBOAT? variant rs641738 alters hepatic phosphatidylinositols
and increases severity of non-alcoholic fatty liver disease in humans

To the Editor:

We have recently shown in 125 subjects that insulin resistance
and the PNPLA3 1148M gene variant, two common risk factors
of NAFLD, are characterized with markedly different content

Journal of Hepatology 2016 vol. 65 | 1261-1273

and composition of lipids in the human liver [1]. In 2015, a vari-
ant in membrane bound O-acyltransferase domain containing 7
(MBOAT?) at rs641738 was discovered to increase the risk of alco-
hol-related cirrhosis [2]. This variant was also shown to increase
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the risk of steatosis and histologic liver damage in NAFLD, inde-
pendent of obesity [3]. The variant allele was common with a
population prevalence of 58-67% and characterized by decreased
hepatic gene and protein expression of MBOAT7 [3]. MBOAT7 is
also known as lysophosphatidylinositol acyltransferase 1 (LPIAT1),
which catalyzes acyl-chain remodeling of phosphatidylinositols
(PIs) [4]. Consistent with this function, plasma lipidomics analy-
ses showed that amongst various lipid classes (triglycerides, cho-
lesteryl esters, phospholipids, ceramides and sphingomyelins),
only concentrations of PIs were altered [3]. Specifically, plasma
concentrations of PI (36:4), PI (38:3) and PI (38:5) were
decreased in proportion to the number of MBOAT7 variant alleles,
while most other PIs were increased [3].

To study effects of genetic variation in MBOAT7 on human
liver histology and lipidome, we genotyped the subjects in our
previous study at rs641738 [1]. The subjects were consecutive
patients undergoing bariatric surgery recruited using the inclu-
sion and exclusion criteria described in [1]. The liver lipidome
was analyzed using ultra-high performance liquid and gas chro-
matography combined with mass spectrometry and histology
as described [1]. DNA was available from 115 subjects (age
48.0 0.8 years, BMI 45.4 0.5 kg/m?, 67 % women), who were
divided into three groups based on their MBOAT7 genotype at
1s641738 (n = 35 for CC, n =60 for CT, n = 20 for TT).

The MBOAT7 genotype groups were similar with respect to
age, gender, BMI, waist circumference, PNPLA3 1148M and
TM6SF2 E167K genotypes (data not shown).

Steatosis (% of grades 0/1/2/3 were 23/60/3/14, 25/62/12/2
and 20/55/25/0, p=0.03 in CC, CT and TT groups) and necroin-
flammatory (% of grades 0/1/2/3 were 74/26/0/0, 87/13/0/0 and
60/35/0/5, p=0.04) grades differed significantly between the
MBOAT7 groups. The prevalence of significant fibrosis (F2-4)
increased with number of MBOAT? variant alleles (0 vs. 5 vs. 25
%, p=0.001, Fig. 1). Of 7 different PIs in the human liver, PI
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Fig. 1. Prevalence of significant fibrosis and hepatic concentrations of
phosphatidylinositols PI (40:5), PI (36:4), and PI (38:3) in groups according
to the MBOAT? genotype at rs641738. Data are in % and median (25th-75th
percentile), and were tested using Pearson’s 2 test, Kolmogorov-Smirnov test
and Mann-Whitney U test, as appropriate. *p <0.05, **p <0.01.

(36:4) and PI (38:3), i.e,, the same PIs as in the plasma in the
study of Mancina and Dongiovanni et al. [3], decreased signifi-
cantly as a function of the number of MBOAT7 variant alleles,
while the concentration of PI (40:5) increased (Fig. 1). All other
lipid classes in the human liver (triglycerides, cholesterol esters,
ceramides, sphingomyelins, hexosylceramides, phospholipids,
and free fatty acids) were similar between the groups (data not
shown). Fasting insulin (13.7 [8.4-17.1], 11.2 [6.5-18.3] and
12.3 [7.0-18.8] mU/L in CC, CT and TT groups), glucose (5.9
[5.0-6.6], 5.8 [5.4-6.6] and 5.7 [5.1-6.1] mmol/L), triglycerides
(1.24[1.06-1.55], 1.29 [0.91-1.69] and 1.08 [1.00-1.59] mmol/L),
HDL (1.15 [0.98-1.33], 1.09 [0.93-1.38] and 0.98 [0.86-1.13]
mmol/L) and low density lipoprotein (2.5 [1.9-3.4], 2.3 [1.7-
2.9] and 2.4 [1.5-3.5] mmol/L) cholesterol concentrations were
similar between the groups.

We thus replicate effects of the MBOAT? variant rs641738 on
human liver histology with respect to steatosis and necroinflam-
mation, and an increased prevalence of significant fibrosis [3].
The latter is the key predictor of overall mortality, liver trans-
plantation, and liver-related events [5,6].

Pls are lipids, which regulate membrane dynamics and signal
transduction pathways [4]. They consist of a glycerol backbone
and two variable fatty acyl-chains, of which one is predomi-
nantly saturated and the other polyunsaturated [4]. MBOAT7
participates in acyl-chain remodeling of Pls in the Lands’ cycle,
in which it incorporates a polyunsaturated fatty acyl-chain into
a PI [4]. In mice, knockout of LPIAT1, i.e. MBOAT?7, affects concen-
trations of hepatic polyunsaturated PIs [7]. Another enzyme of
the MBOAT family, MBOAT5, participates in the acyl-chain
remodeling of phosphatidylcholines [8]. Knockout of MBOAT5
in mice decreases arachidonic acid-containing phosphatidyl-
cholines in the liver and increases the risk of hepatic steatosis
and inflammation [8]. MBOAT7 deficiency is thus predicted to
increase free polyunsaturated fatty acids [9] and their proinflam-
matory metabolites, which are increased in plasma of subjects
with non-alcoholic steatohepatitis [10]. Detailed understanding
of the mechanisms via which the altered hepatic phosphatidyli-
nositol metabolism leads to liver fibrosis are thus of considerable
interest.

In conclusion, we confirm that the common variant in
MBOAT7 rs641738 associates with histologic liver damage, partic-
ularly significant fibrosis. We extend previous data by showing
that altered polyunsaturated PI metabolism characterizes the
human liver in carriers of the MBOAT7 variant. These data are
consistent with recent data in plasma and a role for MBOAT7 in
hepatic phosphatidylinositol remodeling [3].
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Establishing the independence and clinical importance of
non-alcoholic fatty liver disease as a risk factor for
cardiovascular disease

To the Editor:

The evaluation of the nature of the association between non-
alcoholic fatty liver disease (NAFLD) and cardiovascular risk
has been the topic of a number of reports. There is emerging
consensus that NAFLD is positively correlated with increased
cardiovascular risk and several groups have indicated that this
is independent of known risk factors [1]. The importance of this

association is underlined by the observation that cardiovascu-
lar disease is a leading cause of death in individuals with
NAFLD [2,3].

To further illuminate this topic two recent papers have been
published in the Journal of Hepatology. The first of these comes
from the LIDO Study Group and assesses the impact of hepatic
steatosis on the incidence and development of carotid
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