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Internalization of a polysialic acid-binding
Escherichia coli bacteriophage into eukaryotic
neuroblastoma cells
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Eukaryotic organisms are continuously exposed to bacteriophages, which are efficient gene

transfer agents in bacteria. However, bacteriophages are considered not to pass the eukar-

yotic cell membrane and enter nonphagocytic cells. Here we report the binding and pene-

tration of Escherichia coli PK1A2 bacteriophage into live eukaryotic neuroblastoma cells

in vitro. The phage interacts with cell surface polysialic acid, which shares structural similarity

with the bacterial phage receptor. Using fluorescence and electron microscopy, we show that

phages are internalized via the endolysosomal route and persist inside the human cells up to

one day without affecting cell viability. Phage capsid integrity is lost in lysosomes, and the

phage DNA is eventually degraded. We did not detect the entry of phage DNA into the

nucleus; however, we speculate that this might occur as a rare event, and propose that this

potential mechanism could explain prokaryote–eukaryote gene flow.
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The evolution of cellular life is tightly bound to viruses that
use host organisms to complete their life cycle. Bacter-
iophages, viruses that infect bacteria, are the most

numerous replicating entities in the biosphere, with an estimated
global population of 1031 phage particles1, 2. Phages play funda-
mental roles in bacterial ecology and virulence3. Their ability to
package DNA fragments of the host genome during phage pro-
pagation makes them powerful vehicles for horizontal gene
transfer, a dominant process in microbial evolution4. It has been
estimated that phages mediate over 1016 gene transfer events each
second5. In the face of omnipresent phage-rich environments,
animals frequently come into contact with phages. Host mucosal
surfaces are densely populated by residential microbial commu-
nities that consist largely of bacteria. Within this setting, the
phage populations are dominating the viral community in the
gut6, 7 and have an important contribution to bacterial–host
interactions8, 9.

Single observations suggest that interdomain genetic exchanges
from bacteria to eukaryotes have occurred during evolution10–12.
Bacterium-to-eukaryote horizontal gene transfer events are sug-
gested to provide novel traits important in conferring advantages
for specific niches, such as genes encoding metabolic enzymes13, 14.
However, the mechanisms that permit the acquisition of genetic
variability via interdomain transfers remain elusive. The cell
membrane acts as a barrier between the aqueous cytoplasm and
the outside environment, and this efficiently delimits the transfer
of molecules, such as DNA, across the membrane. Unlike pro-
karyotes, eukaryotes lack mechanisms for uptake of free DNA
from the environment. While it is generally assumed that the
enormous reservoir of genetic diversity encompassed by phages is
restricted within the borders of the prokaryotic world, evidence is

accumulating that gene flow through phages is potentially a
horizontal gene transfer pathway between prokaryotes and
eukaryotes15–17. In line with this, phage genes have under
experimental conditions been integrated into the genome of
eukaryotic cells18. Phage genes can also be expressed in eukar-
yotic cells19–21.

While it has been previously shown that phage lambda is
capable of transducing mammalian cells20, 21, there is currently
no direct evidence demonstrating a specific mechanism by which
phages traverse the eukaryotic membrane and enter non-
phagocytic cells, and thereby open a door for gene transfer. Here,
we show that bacteriophage bound specifically to a mammalian
cell receptor can pass the cell membrane barrier and be inter-
nalized by means of endocytic vesicles. The access to the cell
could conceivably provide an entry port for the introduction of
foreign genetic material into the cell, even though we did not
detect the entry of phage DNA into the cell nucleus. The
phage–eukaryotic cell interaction reported here expands the
functional capacity of phages and support that phages represent
an unexplored factor in the evolution of eukaryotes.

Results
Binding of bacteriophage to a target on neuroblastoma cells.
The Escherichia coli bacteriophage PK1A2, a member of the
Podoviridae family and variant of PK1A, was originally isolated
by its ability to bind bacteria containing reduced amounts of its
polysaccharide receptor, the K1 polysialic acid capsule22 con-
sisting of α2,8-linked N-acetylneuraminic acid units. The bac-
terial receptor structure is identical to polysialic acid present on
mammalian cells23 and protects the bacterial cell against the
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Fig. 1 Bacteriophage PK1A2 binds specifically to mammalian polysialic acid-expressing cells. a Fluorescence microscopic images of cells incubated with
FITC-labeled PK1A2 phages (green) and neural cell adhesion molecule NCAM antibodies (red) to assess phage surface binding. Polysialic acid-containing
(polySia+) human neuroblastoma SK-N-SH, kSK-N-SH and SH-SY5Y cells as well as human polysialic acid-negative (polySia−) neuroblastoma SK-N-AS
and fibroblast BJ cells were incubated with FITC-labeled phages for 1 h at room temperature and stained for NCAM, the carrier protein of polysialic acid. b
Inhibition of phage binding to kSK-N-SH cells by pretreatment with endosialidase or incubation in the presence of free polysialic acid. As a control, phage
containing catalytically active endosialidase as the binding agent was used. Nuclei were stained with DAPI (blue). Representative images from two to three
biological replicates are shown. The scale bars represent 20 µm
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immune system during invasive infection24. Compared to the
PK1A phage with catalytic endosialidase as a tailspike protein,
PK1A2 has two amino acid substitutions in the endosialidase that
abolish the catalytic activity but still permit polysialic acid
binding25. PK1A2 phage is able to recognize and remain bound to
polysialic acid on paraformaldehyde-fixed baby hamster kidney
fibroblast cells and tissue sections of developing rat brain26. In
eukaryotes, polysialic acid is highly expressed in the nervous
system during development, but also detected in malignancies
such as neuroblastomas27, 28. As receptor–ligand interaction is
the initial step of viral infection, we first examined the interaction
of PK1A2 with human cell lines expressing different amounts of
polysialic acid to confirm the specificity of the phage binding.

We used epifluorescence microscopy to evaluate the binding of
PK1A2 to cultured human cells. In order to examine cell binding,
we labeled purified phage particles with fluorescein isothiocyanate
(FITC) and added them to SK-N-SH cells, a human neuroblas-
toma cell line that expresses polysialic acid as a part of the neural
cell adhesion molecule NCAM29. This continuous cell line is

commonly used as an in vitro model in neuroscience and
polysialic acid research. In culture, the cell line contains two
morphological variants, the neuroblastic (N-type) cells rich in
polysialic acid as well as the flat substrate-adherent/Schwannian
(S-type) cells containing little polysialic acid30. A polysialic acid
and NCAM-expressing N-type cell population (kSK-N-SH) has
been previously isolated from the SK-N-SH cell line31. The
labeled PK1A2 phages bound specifically to the N-type cells and
had a similar distribution to the polysialic acid carrier molecule
NCAM (Fig. 1a). Similar results were obtained with SH-SY5Y
cells that also express polysialic acid32, whereas the S-type cells of
SK-N-AS and human BJ fibroblasts, which contain little or no
polysialic acid, were negative for phage binding, and had low or
undetectable amounts of NCAM (Fig. 1a).

To verify that the phages bind specifically to polysialic acid, we
assessed phage binding after removal of cell surface polysialic acid
by endosialidase, an enzyme that specifically degrades polysialic
acid33. The binding of phages to the endosialidase-treated cells
was abolished (Fig. 1b). The binding was also inhibited by
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Fig. 2 Phages are endocytosed into live neuroblastoma cells. a Time course of PK1A2 phage internalization into cultured kSK-N-SH cells. Cells were
incubated with FITC-labeled phages (green) at 37 °C for the times indicated, fixed and examined for the presence of phages and surface-expressed
polysialic acid (red). b Quantitative analysis of phage internalization. Data are presented as the percentages of positive cells that stained for cell surface
polysialic acid or contained internalized phages and the values represent means of three randomly chosen fields± s.d. of a single experiment. For each field,
at least 60 cells were examined. c Immunofluorescence detection of internalized biotin-conjugated phages after 24 h of incubation. Control cells or cells
permeabilized with 0.2% Triton X-100 were stained with Alexa Fluor 488 FluoroNanogold-streptavidin (green). Cells without phages were used as control
of staining specificity. Nuclei were stained with DAPI (blue). All data shown are representative for two biological replicates. The scale bars represent 20 µm
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competition with a high concentration of soluble polysialic acid
(purified polysialic acid from E. coli K1). In parallel control
experiments, FITC-labeled PK1A phages which differ from the
PK1A2 phage in expressing active endosialidase themselves did
not remain bound to the cells (Fig. 1b) because of degrading their
polysialic acid-containing target26.

Internalization of bacteriophage into cells. We next examined
whether the phage binds to live cells and is internalized into the
cells. Live kSK-N-SH cells were incubated with the phage particles
at 37 °C for various intervals after which the cells were fixed and
examined. After 30 min of incubation, clusters of fluorescent
phages started to appear in the cell and their amount increased up
to 24 h (Fig. 2a, b). The appearance of phages inside the cell
correlated with a decline in the amount of available polysialic acid
ligand at the cell surface (Fig. 2a, b), which remained at the cell
surface if no phage was added (Supplementary Fig. 1). After 6 h,

cell surface polysialic acid had disappeared and the phages had
redistributed to vesicle-like structures in the perinuclear region of
the cells. The results suggest that the binding induces inter-
nalization of the phage–polysialic acid complex and consequently
leads to the progressive disappearance of polysialic acid from the
cell surface.

To confirm that the phages were indeed localized inside the
cell, cells incubated with biotin-labeled phages were probed with a
streptavidin-conjugated stain. We found that the phages could
only be observed in cells made permeable to the stain (Fig. 2c),
which suggests that the phages resided intracellularly and were
not accessible in non-permeabilized cells. Altogether, the results
indicate that binding of the phages to polysialic acid is followed
by their progressive internalization into the cells.

Polysialic acid dependence of bacteriophage internalization.
Intracellular phages were present only in polysialic acid-

d

a

24   h

Phage
DAPI

Polysialic acid
DAPI

Endosialidase in
phage 24 h

e
37 °C 4 °C

Phage
DAPI

Free polysialic
acid 24 h

Free polysialic
acid 4 °C

Phage
DAPI

b

Polysialic acid
DAPI

kSK-N-SH SK-N-AS SH-SY5Y BJ BHK-21

c

0

20

40

60

80

100

Cell surface
polysialic acid

Phages
internalized (24 h)

polySia+
kSK-N-SH 24 h

polySia–
SK-N-AS 24 h

polySia+
SH-SY5Y 24 h

polySia+
BHK-21 24 h

polySia–
BJ 24 h

0  0 0  0

Endosialidase in
phage 4 °C

P
ro

po
rt

io
n 

of
po

si
tiv

e 
ce

lls
 (

%
)

kS
K-N

-S
H

SK-N
-A

S

SH-S
Y5Y BJ

BHK-2
1

Fig. 3 Phage internalization requires polysialic acid. a Detection of cell surface polysialic acid in human neuroblastoma (kSK-N-SH, SK-N-AS and SH-SY5Y),
human fibroblast (BJ) and hamster kidney (BHK-21) cells. The cells were grown on coverslips, fixed and stained for surface-expressed polysialic acid. b
Internalization of FITC-labeled PK1A2 phages into polysialic acid-containing (polySia+ ) cells compared to polysialic acid-negative (polySia−) cells after 24
h of incubation at 37 °C. c Quantitative analysis of phage internalization. Percentages of cells expressing cell surface polysialic acid or having endocytosed
FITC-labeled phages after incubation with phages for 24 h at 37 °C. The values represent means of three randomly chosen fields± s.d. of a single
experiment. For each field, at least 25 cells were examined. d Inhibition of phage internalization. kSK-N-SH cells incubated with phages (green) in the
absence or the presence of free polysialic acid, or control phages containing active endosialidase for 24 h at 37 °C. After incubation, the cells were fixed and
stained for surface-expressed polysialic acid (red). e Effect of low temperature on phage internalization. kSK-N-SH cells were incubated with phages in the
absence or the presence of free polysialic acid for 4 h at 37 or 4 °C, or control phages containing active endosialidase for 4 h at 4 °C. Nuclei were stained
with DAPI (blue). All data shown are representative for two biological replicates. The scale bars represent 20 µm

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-02057-3

4 NATURE COMMUNICATIONS |8:  1915 |DOI: 10.1038/s41467-017-02057-3 |www.nature.com/naturecommunications

www.nature.com/naturecommunications


expressing cells and not in polysialic acid-negative cells
(Fig. 3a–c). Incubation of kSK-N-SH cells together with free
polysialic acid prevented phage internalization and retained
polysialic acid at the cell surface (Fig. 3d). Control PK1A phages
containing catalytically active endosialidase caused the removal of
polysialic acid from the cell surface and were not internalized.

We also examined whether phage internalization could be
arrested by low temperature, which is known to block
endocytosis. Incubating the cells at 4 °C allowed phage binding
to the cells but inhibited phage internalization (Fig. 3e). As
controls, soluble bacterial polysialic acid abolished the binding of
the phage, and endosialidase-containing phage (due to its
polysialic acid-cleaving activity) did not remain bound (Fig. 3e).

Endolysosomal routing of bacteriophage. To characterize the
intracellular trafficking of phages in kSK-N-SH cells, it was
necessary to distinguish between surface-bound and internalized
phage particles. Proteolytic treatments used to remove or degrade
extracellular phages, subtilisin34, trypsin35 and proteinase K36,
were not effective or only partially in the logarithmic scale of
phage titering (up to a 3-log decrease of phage titer for proteinase
K at 20 mgml−1). Even the removal of non-internalized, surface-
bound phages by acid wash37 was not efficient enough and also
affected cell morphology. In contrast, when free polysialic acid
was used to displace the bound phages from the cell surface by

competition, complete removal of phages was observed, with no
apparent morphological effects on the cells (Supplementary
Fig. 2). Vesicles containing phages were still present visible in the
perinuclear location.

After removal of surface-bound phages, a low level of
fluorescence could be detected in intracellular vesicular compart-
ments already after 15 min incubation (Fig. 4a). As also seen in
Fig. 2, increasing the incubation time enhanced the intracellular
accumulation and clustering of phage particles, which suggested
that the formation of the intracellular clusters of phages is a result
of constitutive endocytosis.

To determine whether internalized phage particles are shuttled
to the endolysosomal pathway, phage-incubated cells were
stained for early endosomes (early endosome antigen 1, EEA1)
and late endosomes/lysosomes (lysosome associated membrane
protein 1, LAMP1). After 2 h, a minor portion of phages was
associated with early endosomes, whereas most phages were
found in the late endosomal/lysosomal compartments (Fig. 4b, c).
In line with this, the majority of phages was associated with
lysosomes labeled with the acidotropic dye LysoTracker (Fig. 4b,
c).

Persistence and delayed inactivation of internalized phage. To
determine if phages that have been internalized by the cells
remained infectious, we performed a quantitative analysis of
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Fig. 4 Progression of phage internalization after removal of surface-bound phages and direction to lysosomes. a Time course of PK1A2 phage
internalization into kSK-N-SH cells. Following incubation with FITC-labeled phages (green) for the times indicated at 37 °C, the non-internalized phages
were stripped off by polysialic acid competition. An intracellular phage cluster is indicated with an arrow. b Phage clusters in early-endosomal and
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intracellular and extracellular phage populations at different time
points. In order to recover only internalized phage particles from
kSK-N-SH cells, the phages bound to the surface were removed
by polysialic acid competition, after which the intracellular pha-
ges were released by lysing the cells. The samples were then used
to infect their host bacteria for quantification of the recovered
phages by titration analysis. To quantify cell surface-bound
phages, the polysialic acid treatment was omitted and non-lysed
detached cells were used. The results revealed that a notable
proportion of the internalized phages retained their infectious
capacity during the 24 h incubation period (Fig. 5a). At 24-h time
point, ~30% of the intracellular phages were still infectious as
compared to the titer at 2 h.

To further study the stability of the phage inside the kSK-N-SH
cell, we performed a pulse-chase experiment. After incubating the
phages with cells for 24 h, the extracellular and surface-bound
phages were removed by polysialic acid competition, and the
internalized phages were chased for additional 24 and 48 h in
culture media without phages. A quarter of the intracellular
phages remained active during the first 24-h chase (Fig. 5b). On
the contrary, a dramatic 3-log reduction was observed after the
next 24 h, resulting in a virtual disappearance of infectious phages
from the cells. Control quantification of the number of any
remaining extracellular phages showed that the polysialic acid
treatment had efficiently removed any background noise due to
non-internalized phages. Fluorescence microscopy confirmed that
phages could be detected in the form of large clusters after 24-h
chase, whereas almost no fluorescence signal was present at the
end of the 48-h chase (Fig. 5c). Finally, cell viability assays were
performed to assess whether the internalized phages could be
toxic to the kSK-N-SH cells. The cells were exposed to increasing
amounts of phages in the growth medium and the proportions of
surviving cells after 24 h of incubation were determined. No
apparent cytotoxicity to the cells was observed (Fig. 5d). Similar
results were also obtained with the endosialidase-containing
control phage which depolymerizes polysialic acid and remains
extracellular.

Phage DNA internalization and exposure. To monitor the fate
of the double-stranded phage DNA in the cell, we labeled it by
incorporation of 5-ethynyl-2′-deoxyuridine (EdU) in the phage-E.
coli culture. Using purified EdU-labeled phages, a progressive
internalization of the phages from the cell surface was observed
(Fig. 6a, upper panel). Chasing for additional 24 and 48 h led to a
decrease and disappearance of the label, comparable to the result
seen for the FITC-labeled phages (Fig. 5c). Similar results were
obtained with phages labeled with 5-bromo-2′-deoxyuridine
(BrdU) (Fig. 6b, upper panel).

The EdU-labeled phage particles provided a strong signal in
this staining protocol only after acid pretreatment which opens
the protein capsid and renders the phage genome accessible to the
labeling reaction (Supplementary Fig. 3a). To detect exposed
phage DNA without intact capsid, the staining was also
performed without the acid pretreatment. In this case, no
staining was detected up to 6 h of internalization, which indicated
that the capsid was intact (Fig. 6a, lower panel). A punctate
staining was observed in the perinuclear region at 24 h and
gradually disappeared during the chase period.

In addition to the opening the capsid, the BrdU detection
method requires that the double-stranded phage DNA has been
denatured to the single-stranded form38 (Supplementary Fig. 3b).
Cells incubated with BrdU-labeled phages not pretreated with
acid gave no signal at any time point (Fig. 6b, lower panel), which
indicated that phage DNA was not single-stranded, not even at
the time point of exposure (24 h and onwards).

Fate of phage DNA. At 24 h, as much as 45% of the intracellular
EdU-labeled phages were detected without acid pretreatment,
which suggests that the phage DNA was exposed (Fig. 6c). In
order to find out the localization of these phages, their distribu-
tion in relation to the endocytic markers was investigated. The
majority of the phage DNA was co-distributed with the late
endosomal/lysosomal compartments (Figs. 6d, e). However,
provided that the markers had reached all of the vesicles, a minor
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fraction of the particles with exposed DNA seemed not to be
associated with these compartments (Fig. 6d, insets).

We next investigated the localization of internalized phage
DNA sequences by fluorescence in situ hybridization (FISH)
using a whole-genome approach. At 24 h and subsequent chase
time points, punctate signals of phage DNA were found mostly in

a perinuclear localization (Fig. 6f), in agreement with the results
for total phage DNA staining using EdU and BrdU. We did not
detect phage DNA in the cell nucleus using FISH.

Notably, EdU and BrdU signals often co-localized with DAPI
staining in most cells at 24 h and onwards, which indicated that
the nucleotides released from the internalized phages had reached
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Methods. EdU staining reveals DNA irrespective of strand form, the BrdU method reveals DNA in single-strand form. Representative images from three
biological replicates are shown. c Quantification of phage vesicles positive for EdU at 24 h and after subsequent chase for 24 h (each vesicle may contain
several phage particles). At least 100 cells were quantified for each condition. Results are expressed as mean± s.d. of three independent experiments. The
asterisks mark P-value of< 0.005 as calculated by Student’s t-test. d Association of EdU-labeled phage clusters with lysosomal compartments. The cells
were incubated with phages (green) for 24 h at 37 °C to reveal exposed phage DNA and LAMP1 (red) or LysoTracker (red) as in Figs. 4b and 6a. Nuclei were
stained with DAPI (blue). Representative images from two biological replicates are shown. e Quantification of EdU-labeled phage vesicles positive for LAMP1
or LysoTracker at 24 h in d. At least 300 vesicles were analyzed for each condition and the data represent the mean± s.d. of two independent experiments. f
Detection of internalized phage DNA by fluorescence in situ hybridization (FISH). kSK-N-SH cells were incubated with phages in the absence or the presence
of free polysialic acid or with control phages containing active endosialidase at 37 °C for the times indicated. The samples were processed for in situ
hybridization using Alexa Fluor 488-labeled DNA probes covering the phage genome (green). Nuclei were stained with DAPI (blue). Representative images
from three biological replicates are shown. The scale bars represent 20 µm in a and b, 10 µm in d and f, the insets have been enlarged 3-fold
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the nuclei (Fig. 6a, b; Supplementary Fig. 4a, b). Similar staining
was obtained if cells were cultured in the presence of free BrdU
(Supplementary Fig. 5). In general, free nucleoside analogs are
known to be incorporated into newly synthesized DNA during
the growth of cells39.

Detection of internalized phage by electron microscopy. We
further used transmission electron microscopy to examine the
binding and internalization of the phage into the cells. At 1 h
post-incubation, phage particles with their typical icosahedral-
shaped capsid and short tail morphology were readily observed at
the cell surface (Fig. 7a), whereas endosialidase-containing con-
trol phages were not observed interacting with the cells (Fig. 7b).
As seen in Fig. 7a, surface-bound phage particles were still visible
after 24 h incubation, albeit to a lesser extent than at 1 h. Struc-
tures similar in size and morphology to phage particles were
found embedded in vesicles, however, it was not possible to
identify them with certainty as phages due to their insufficient
contrast.

To visualize the internalized phages, the phage was first labeled
with biotin, incubated with the cells and then detected with
streptavidin conjugated to Alexa Fluor 488 dye and Nanogold
particles. Electron microscopy demonstrated surface-bound
particles along the plasma membranes as well as intact phage
particles enclosed in intracellular vesicles (Fig. 8). Most phage
particles were found within vesicles containing several phages,
some occasional vesicles a single phage particle were also
observed. Consistent with the fluorescence microscopy results,
the phages appeared to accumulate into large vesicles over time,
as a result of vesicle fusion during their routing via the
endolysosomal pathway.

Discussion
The barrier function of the cell membrane keeps prokaryotic and
eukaryotic gene pools separated. Despite this, a number of hor-
izontal gene transfer events from bacteria to eukaryotes are
indicated to have occurred in diverse eukaryotic groups and
include both endosymbionts and nonendosymbionts11, 13, 40. The
mechanisms involved are not known. Here, we demonstrate that
phages can specifically interact with a cell surface component of
eukaryotic cells, and that the bound phages can enter the cells.

As being by far the most abundant viruses in the human body,
bacteriophages are integral components of our microbiota and
serve as extensive reservoirs of genetic diversity41. Aside from the
paradigm that phages can only infect bacteria and have no
intrinsic tropism for other organisms, there are few indications
that natural phage particles have direct cellular interactions with
mammalian cells26, 42. Phage particles are able to pass through
the intestinal mucosa to the bloodstream, spread systemically and
translocate to tissues and organs such as the spleen42–45. The
underlying mechanisms are not known but have been suggested
to include breaks in the epithelial barriers or transepithelial
transport by dendritic cells. Phages can even accumulate in the
brain, at least when given intraperitoneally or intranasally45–47.
Although it has been discussed that mammals may have
mechanisms for uptake of phage particles8, 18, 48, 49 and inter-
actions are indirectly indicated by lambda phage transduction20,
21, no detailed mechanism has been presented demonstrating that
natural phages can enter nonphagocytic mammalian cells. With a
polysialic acid-binding phage and mammalian cell lines, we
observe in this study that phages are capable of penetration into
the cells after specific binding to the cell surface. This demon-
strates a gate to cross the boundaries between the bacterial
virosphere and eukaryotes.

1 h 24 h

Phage

1 h

Endosialidase in phage

a b

Fig. 7 Ultrastructural analysis of cells with phages. a, b Transmission electron micrographs of thin sections of kSK-N-SH cells incubated with phages (a) or
endosialidase-containing control phages (b) at 37 °C for the times indicated. The arrows indicate examples of surface-bound phage particles. The scale
bars represent 100 nm

10 min 1 h

Biotin-phage

24  h

Fig. 8 Ultrastructural visualization of internalized phages. Transmission electron micrographs of thin sections of kSK-N-SH cells incubated with biotin-
conjugated PK1A2 phages at 37 °C for the times indicated. After incubation, the cells were fixed and stained with Alexa Fluor 488 FluoroNanogold-
streptavidin probe, followed by silver-enhanced nanogold and gold toning treatments. Phage particles decorated with enhanced gold particles are seen at
the cell surface (arrows) and within cytoplasmic vesicles (arrowheads). The scale bars represent 100 nm
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Similar to most eukaryotic viruses50, the PK1A2 phage seems
to take advantage of the endocytic machinery of the eukaryotic
cell for virus entry. It has been shown that the turnover of cell
surface polysialic acid involves internalization of the poly-
saccharide and its protein carrier NCAM into endosomes51.
Phage internalization reduces the amount of cell surface polysialic
acid and this may have significant biological influences due to the
role of this surface component as a regulator of cell interactions28.
The entry process of the phage is temperature-dependent and is
initiated by recognition and binding to the cellular polysialic acid,
triggering endocytosis. The internalization results in the locali-
zation of the majority of the phages in lysosomes in the peri-
nuclear region. In the lysosomes the phage capsid integrity is lost
and the phage DNA is detected in its exposed form. The entry of
phage DNA into the nucleus would in an evolutionary perspec-
tive be the next decisive step but is probably a rare event, which
we were not able to detect under the experimental conditions
used. Most phage DNA in the lysosomes is degraded and the
nucleosides are reused by the cell, as indicated by the diffuse
staining pattern of the marker nucleosides in the nuclei. It should
be noted that foreign intracellular double-stranded DNA may
have biological effects, such as modulation of the immune sys-
tem8, 48, 49. In the case of Toll-like receptors, even DNA inter-
nalized into the lysosomal compartment induces signaling
cascades and lysosomes in general are engaged in important
regulatory functions52.

The structural similarity of polysialic acid polysaccharide of the
bacterial host E. coli K1 and the polysialic acid at the surface of
the eukaryotic cell lines of this study explains the ability of the
phage to bind to both cell types. Thus the phage binding and
internalization is based on the molecular mimicry between the
pathogenic bacterium and its host. The PK1A2 phage represents a
natural variant of the PK1A phage, which was obtained without
mutagenesis by selection for binding to bacteria with reduced
amount of polysialic acid22. Phage uptake was observed in this
study with one specific phage and three mammalian cell lines
in vitro. However, there are also other examples of structurally
similar surface carbohydrates of pathogenic bacteria shared by the
host cells such as the hyaluronan capsule of group A Strepto-
coccus53, sialylated capsular polysaccharide of group B Strepto-
coccus54, as well as sialylated lipooligosaccharide of
Campylobacter jejuni55 and meningococci56. Considering the
prevalence of molecular mimicry in the microbial world57, 58, it is
likely that there are many other host-mimicking cell surface
epitopes that are targeted by phages. In addition, considering the
enormous amount of phages present in the biosphere (~1031) and
their natural susceptibility to genetic variation, it should be
considered that a number of binding sites compatible with
eukaryotic cell surface epitopes may be naturally generated by
chance. Thus, there could be many more incidences of the uptake
of phages by eukaryotic cells.

The phages’ ability to cross the physical barrier of eukaryotic
cell represents a potential route for genetic exchanges, expanding
the genetic pool accessible to eukaryotes. Recently, bacterial
aerolysin and lysozyme genes were found to have been trans-
ferred multiple times into various eukaryotes59, 60. In both
examples homologs were identified in phages, which suggests that
they may have contributed to the distribution of the genes
between bacteria and eukaryotes. Homologs of a capsid protein
gene from Chlamydia-infecting bacteriophage found in diverse
bacterial species have been reported to occur in the genomes of
two multicellular eukaryotes61. The presence of prokaryotic
sequences in tumor cells have also been shown62. On the other
hand, genes with eukaryotic homology are present in phage
genomes, which suggests that horizontal gene transfer may hap-
pen in both directions16. Notably, several phages have gene

delivery tools that facilitate intracellular movement of phage
DNA through the nuclear envelope17. The proteins responsible
for this are covalently linked to the phage genome ends and
contain eukaryotic nuclear localization signals that promote their
accumulation in the nucleus. Once inside the eukaryotic cell,
these terminal proteins provide mechanism for localizing foreign
DNA for gene expression or even integration into the cell gen-
ome17, 63. Our pulse-chase experiment showed that the inter-
nalized phages could be recovered from the cells in their infective
form up to 24 h, followed by an effective inactivation of phages
within the cells. The penetration of the phage genome through
the cell membrane barrier at the outer border of the cell is a
prerequisite to any incidental gene exchange processes within the
cell, the detailed mechanisms of which remain to be explored.

The close physical coexistence of phages and eukaryotes may
offer many opportunities for gene exchanges to occur. Con-
sidering the tremendous diversity of genotypic and phenotypic
phage variants in nature and the rapid evolutionary capacity of
the phage genomes, it is not unlikely that over a long evolutionary
time period phages have influenced the eukaryotic genomes in
multiple ways. The mechanism of crossing the cell membrane
barrier between the bacterial and eukaryotic gene pools may be
one contributing factor to enable this influence to occur.

Methods
Cell culture. The cell lines obtained from the American Type Culture Collection
(ATCC) included human neuroblastoma cell lines SK-N-SH (ATCC HTB-11), SK-
N-AS (ATCC CRL-2137) and SH-SY5Y (ATCC CRL-2266), human foreskin
fibroblast cell line BJ (ATCC CRL-2522), and baby hamster kidney fibroblast cell
line BHK-21 (ATCC CCL-10). The polysialic acid-expressing cell line kSK-N-SH
was previously established in our laboratory from SK-N-SH cells by immuno-
magnetic bead separation31, and was authenticated together with SK-N-SH cell line
by using GenePrint® 10 system (Institute for Molecular Medicine Finland). Cell
lines were checked for the absence of mycoplasma infections using the EZ-PCR
Mycoplasma Test Kit (Biological Industries). All cells were cultured in DMEM
containing 4.5 g l−1 glucose (Sigma-Aldrich), supplemented with 10% fetal bovine
serum (HyClone), and 100 U ml−1 penicillin and 100 μg ml−1 streptomycin
(Gibco), and maintained at 37 °C in 5% CO2 under a humidified atmosphere. For
binding and uptake assays, the cells were grown on 13-mm glass slides in 24-well
plates to approximately 70% confluence.

Propagation and purification of bacteriophages. The E. coli bacteriophages
PK1A and PK1A2 have been described by Gross et al.64 and Pelkonen et al.22,
respectively. Preliminary sequence analysis reveals that PK1A2 is very closely
related to E. coli K1-specific phage K1E, as 94% of the genome is 96% identical to
K1E (the genome sequence was deposited in GenBank, accession number
MG004687). Thus, the phage belongs to the SP6 subgroup within the
T7 supergroup65. The K1-encapsulated E. coli host strain IH3088 was used for the
propagation of PK1A, and strain EH954 derived from IH3088 that has a highly
reduced amount of the K1 capsule for PK1A266. The phages were purified as
described before67. Briefly, lysates of phages were obtained by infecting exponen-
tially growing host cells in Luria Bertani (LB) broth at 37 °C. After removing the
bacterial debris by centrifugation, the phages were precipitated at 4 °C by addition
of 10% polyethylene glycol 6000, 0.5 M NaCl, followed by centrifugation. Further
purification and concentration of the phages were achieved by CsCl density gra-
dient ultracentrifugation. Finally, the phages collected from the gradient were
dialyzed against 25 mM sodium phosphate, pH 7.4, 150 mM NaCl at 4 °C, and the
titer (plaque-forming units per ml, p.f.u. ml−1) was determined by plaque assay.

Labeling of phage capsid. To label the phage capsid with amine-reactive FITC,
the buffer of purified phages (1 × 1011 p.f.u.) was changed using Amicon Ultra-15
centrifugal filter devices (Millipore) to 0.1 M carbonate buffer pH 9.0, and FITC
(Sigma-Aldrich) was added to a final concentration of 0.25 mgml−1. After incu-
bation for 1 h at room temperature with rotation in the dark, unbound dye was
removed via buffer exchange into 25 mM sodium phosphate, pH 7.4, 150 mM NaCl
using centrifugal filter devices. To label with amine-reactive DSB-X biotin, the
DSB-X Biotin Protein Labeling Kit (Molecular Probes) was used according to the
manufacturer’s instructions. Briefly, phages (4 × 1010 p.f.u.) were resuspended in
220 µl of 0.1 M carbonate buffer, pH 8.5, and DSB-X biotin was added to a final
concentration of 0.09 mgml−1. After incubation for 1.5 h at room temperature with
stirring, excess biotin was removed by purification resin.

Labeling of phage DNA. To incorporate nucleoside analog EdU or BrdU into
phage genome, phages were propagated in host bacteria at 37 °C in presence of 50
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μM EdU (Molecular Probes) or 300 µM BrdU (Roche), added at the beginning of
the infection, and purified by CsCl density gradient ultracentrifugation. The
incorporations were tested on immobilized phage particles. The labeled phages or
unlabeled control phages (5 × 105 p.f.u. in a volume of 5 µl) in phosphate-buffered
saline, pH 7.4 (PBS, Gibco) were spotted onto Polysine adhesion slides (Thermo
Scientific) and air-dried at 37 °C for 10 min. To open phage capsids and make the
incorporated nucleoside analogs EdU or BrdU accessible for the staining reagents,
the samples were pretreated with a 4 M HCl for 20 min at room temperature and
then washed six times with PBS. To detect exposure of the EdU or BrdU-labeled
DNA of the phage particles, the stainings were also performed without HCl pre-
treatment. For the detection of EdU, the Click-iT Plus EdU Alexa Fluor 488
Imaging Kit (Molecular Probes) was used according to the manufacturer’s
instructions. For the detection of BrdU, mouse anti-BrdU antibody (clone B44, BD
Biosciences) diluted 1:50 in 1% BSA in PBS was used, followed by Alexa Fluor 555
Plus goat anti-mouse antibody (A32727, Molecular Probes) diluted 1:500 in 1%
BSA in PBS, each for 1 h at room temperature. For mounting, 5 µl of antifade
solution (0.5% ascorbic acid, 50% glycerol in PBS) was added to center of sample
and covered with a coverslip. Samples were examined by an Olympus BX50F-3
microscope and imaged by a Retiga 6000 CCD camera and Image-Pro Plus
7.0 software.

Construction and purification of recombinant proteins. The pQE31-based
constructs pFEndoNA2 and pFEndoNA for inactive and active endosialidase-GFP
fusion proteins, respectively, were available from previous work68. For DsRed
fusion derivative, the gfp gene in pFEndoNA2 was replaced with NotI and SpeI
restriction sites and a PCR-amplified DsRed-Monomer coding sequence (Clon-
tech). Briefly, linear pFEndoNA2 without the gfp gene was amplified using inverse
PCR with Phusion High-Fidelity DNA Polymerase (Thermo Scientific) and 5%
DMSO as a PCR additive as recommended by the manufacturer. The purified PCR
product was treated with DpnI in order to digest the parental plasmid strands and
ligated with the DsRed-Monomer coding sequence, yielding the plasmid pDsEn-
doNA2. The construct was verified by DNA sequencing at the Institute of Bio-
technology at the University of Helsinki.

Constructs were expressed in E. coli M15 (pREP4) expression strain as N-
terminal histidine-tagged fusion proteins and purified under native conditions
using nickel-nitrilotriacetic acid resin (Qiagen) as described before68.

Phage binding to cells and immunofluorescent staining. Before phage binding
and immunostaining, the eukaryotic cells were washed with PBS and fixed with
cold 4% paraformaldehyde in PBS for 25 min at room temperature. After washing
three times with PBS, non-specific binding was blocked with 1.5% normal horse
serum (Vector Laboratories) in PBS for 1 h at room temperature. FITC-labeled
phages (2.5 × 108 p.f.u.) in PBS were added onto the fixed cells and incubated for 1
h at room temperature. A control experiment was performed in the presence of
unlabeled phages, PBS without phages or PBS with a free FITC label. As further
control, the FITC-labeled phages were incubated with cells in the presence of free
bacterial polysialic acid (1 mgml−1 colominic acid, poly-2,8-N-acetylneuraminic
acid sodium salt, Sigma-Aldrich), which is structurally identical to eukaryotic cell
surface polysialic acid69. For enzymatic removal of cell surface polysialic acid
before phage binding67, cells were treated with 10 μg ml−1 of active endosialidase-
GFP fusion protein for 3 h at 37 °C in a 5% CO2 humidified atmosphere, followed
by two washes with PBS and fixation in paraformaldehyde in PBS.

For detection of polysialic acid expression, cells were stained with 10 µg ml−1

inactive endosialidase-GFP fusion protein or inactive endosialidase-DsRed fusion
protein in PBS for 1 h at room temperature. For the staining of the protein carrier
of polysialic acid, NCAM, rabbit polyclonal anti-human NCAM antibody (AB5032,
Millipore) diluted 1:250 in PBS was used, followed by Alexa Fluor 555 goat anti-
rabbit secondary antibody (A-21429, Molecular Probes) diluted 1:500 in PBS, each
for 2 h at room temperature. Secondary antibody control omitting the NCAM
antibody was prepared for each tested cell line and confirmed the specificity of the
staining. The coverslips were washed three times with PBS, mounted with ProLong
Mounting Medium with DAPI (Molecular Probes) and visualized with fluorescence
microscopy. Polysialic acid expression and NCAM staining were confirmed by flow
cytometry as described previously31.

Phage internalization assay and immunofluorescence. For analysis of phage
internalization in mammalian cells, cells were incubated with FITC-labeled phages
(2.5 × 108 p.f.u.) in cell culture medium at 37 °C in a 5% CO2 humidified atmo-
sphere. After various time intervals, the cells were washed with PBS and fixed with
cold 4% paraformaldehyde in PBS for 25 min at room temperature. Finally, the
coverslips were washed, mounted and observed by fluorescence microscopy.

For the staining of biotin-labeled phage, cells grown on coverslips were
incubated with the phages (2.5 × 108 p.f.u.) for 24 h at 37 °C in a 5% CO2

humidified atmosphere. The cells were washed with PBS, fixed with cold 4%
paraformaldehyde in PBS for 25 min, and permeabilized by incubation for 5 min at
room temperature with 0.2% Triton X-100 in PBS. After washing three times with
PBS and incubation with 1.5% normal horse serum in PBS for 1 h at room
temperature, the cells were stained for 1 h at room temperature with Alexa Fluor
488 FluoroNanogold-Streptavidin (Nanoprobes) probe diluted 1:100 in PBS. In

parallel, non-permeabilized control cells were stained with the probe without
Triton X-100 treatment.

For the staining of EdU-labeled phage, cells incubated with the phages (2.5 ×
108 p.f.u.) for various intervals were fixed, washed, permeabilized and visualized by
the Click-iT Plus EdU Alexa Fluor 488 Imaging Kit (Molecular Probes) according
to the manufacturer’s protocol. For the staining of BrdU-labeled phage, cell
samples fixed with paraformaldehyde were permeabilized with 0.2% Triton X-100
in PBS for 10 min at room temperature and then immunolabelling was performed
as described above for immobilized phage particles. For HCl pretreatment samples,
the coverslips were incubated with 4M HCl for 20 min at room temperature and
then washed six times with PBS after the permeabilization step. Finally, coverslips
were incubated with 20 ng ml−1 DAPI (Sigma-Aldrich) for 5 min at room
temperature and washed three times with PBS, followed by mounting in antifade
solution (0.5% ascorbic acid, 50% glycerol in PBS), sealing with nail polish and
examination under fluorescence microscope. For the quantification of EdU-positive
vesicles, the dye positive vesicles from at least 100 different cells were counted for
each individual experiment.

For EEA1 or LAMP1 immunolabelling, cells incubated with FITC-labeled
phages were fixed with paraformaldehyde and permeabilized with 0.1% Triton X-
100, 1.5% normal horse serum in PBS for 1 h at room temperature. Then the cells
were incubated at 4 °C overnight with rabbit monoclonal EEA1 (C45B10, Cell
Signaling) or LAMP1 (D2D11, Cell Signaling) antibody diluted 1:200. The
secondary antibody Alexa Fluor 555 goat anti-rabbit (A-21429, Molecular Probes)
was used at 1:500 for 2 h at room temperature. For cells incubated with EdU-
labeled phages, the antibody incubations were performed after EdU detection. To
stain lysosomes, live cells were incubated with 50 nM LysoTracker Red DND-99
(Molecular Probes) in cell culture medium for 30 min at 37 °C in a 5% CO2

humidified atmosphere. For the quantification of percent overlap between phage
clusters and endocytic markers, phage-positive vesicles were identified and scored
whether a marker of interest was also present on the vesicles. A minimum of 300
vesicles from at least ten different cells was quantified for each individual
experiment.

Fluorescence in situ hybridization. Alexa Fluor 488-labeled DNA probes were
generated by nick translation using fluorescence in situ hybridization (FISH) Tag
DNA Multicolor Kit (Molecular Probes) and PK1A2 genomic DNA as the template
according to the manufacturer’s instructions. The method aims at the generation of
a whole-genome mixture of overlapping DNA fragments. The average length of
~500 bp for optimal hybridization was verified by agarose gel electrophoresis.

To detect phage genomes, cells incubated with the phages (2.5 × 108 p.f.u.) and
fixed with cold 4% paraformaldehyde in PBS for 25 min at room temperature were
permeabilized with 0.5% Triton X-100 in PBS for 10 min at room temperature and
washed three times with PBS. Coverslips were inverted over 25 μl of hybridization
buffer made of 15% ethylene carbonate, 20% dextran sulfate, 600 mM NaCl, 30 mM
sodium citrate pH 7.070 and incubated for 10 min at 80 °C. Coverslips were then
placed on top of 5 µl of hybridization buffer that contained 6 ng µl-1 labeled probes
and was denaturated for 10 min at 80 °C. Samples were incubated for 2.5 h at 45 °C
in a humid chamber, followed by three washes with 15% ethylene carbonate, 2 ×
SSC (300 mM NaCl, 30 mM sodium citrate pH 7.0) for 5 min each at 45 °C and
three washes in 2 × SSC at room temperature. Coverslips were incubated with 20 ng
ml-1 DAPI (Sigma-Aldrich) for 5 min at room temperature and washed three times
with PBS. Finally, coverslips were mounted in SlowFade Gold antifade reagent
(Molecular Probes) and examined under fluorescence microscope.

Proteolytic inactivation of phage. Stability of the phage toward proteolytic
inactivation was tested by treating phages (2.5 × 108 p.f.u.) with a solution con-
taining 2.5 mg ml−1 trypsin-EDTA (Gibco) for 5 min at 37 °C, 3 or 30 mgml−1

subtilisin (Sigma-Aldrich) in 50 mM Tris-HCl, 150 mM NaCl, pH 7.5 for 1 h at
room temperature, or 2 or 20 mgml−1 proteinase K (Sigma-Aldrich) in PBS for 1 h
at 37 °C. After incubation, the proteases were inactivated by the addition of
cOmplete EDTA-free protease inhibitor cocktail (Roche) according to the manu-
facturer’s instructions and the samples were assayed for p.f.u. by titering.

Removal of cell surface phage. For removing cell membrane-bound phages, both
acidic and polysialic acid buffer conditions were tested. For acid wash, the cells
were prewashed with ice-cold PBS and then incubated once or twice with 0.2 M
glycine-HCl, pH 2.2 for 5 min on ice, followed by two washes with ice-cold PBS.
For polysialic acid treatment, the cells were prewashed twice with cell culture
medium and then incubated three times with 1 mgml−1 free bacterial polysialic
acid in cell culture medium for 5 min at 37 °C in a 5% CO2 humidified atmosphere,
followed by five washes with PBS.

Quantification of phages. To assess the amount of internalized phages, the cells
grown in 24-well plates to approximately 70% confluence were incubated with
phages (2.5 × 108 p.f.u.) for various time intervals at 37 °C in a 5% CO2 humidified
atmosphere. The cells were then polysialic acid-treated in the plates as described
above. Then the cells were detached with a brief trypsinization, transferred into
microcentrifuge tubes and pelleted for 4 min at 400 g. After washing twice with
PBS, cells were lysed according to the procedure of Ivanenkov et al.34 Briefly, the
cells were resuspended in 0.5 ml of lysis buffer (2% sodium deoxycholate, 10 mM
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Tris-HCl, 2 mM EDTA, pH 8.0), vortexed for 10 s and incubated for 1 h at room
temperature. The lysis buffer had no effect on phage infectivity after 1 h incubation.
After cell lysis, the lysates were vortexed for 10 s and p.f.u. were quantified by
titering. To prevent counting of any extracellular phages that could survive poly-
sialic acid treatment procedure, samples without the cell lysis step were made in
parallel with each assay. The titer of internalized phages was calculated by sub-
tracting the p.f.u. value obtained with non-lysed cells from p.f.u. value obtained
with lysed cells.

For quantification of cell surface bound phages, the cells incubated with phages
were directly washed three times with PBS without polysialic acid treatment. Cells
were then detached and washed as described above. The lysis step was omitted and
phages were quantified by titering.

For pulse-chase assay, the cells were first incubated with pulse medium
containing 2.5 × 108 p.f.u. of phage for 24 h at 37 °C in a 5% CO2 humidified
atmosphere. The pulse medium was aspirated, and extracellular phages were
removed by polysialic acid treatment procedure as described above. Cell culture
medium was then added to cells followed by incubation for 24 or 48 h at 37 °C in a
5% CO2 humidified atmosphere. Following the chase, internalized and cell surface
bound phages were quantified as described above.

Cell viability assay. The kSK-N-SH cells (5 × 104 cells per well) were seeded in 96-
well plates. After overnight attachment, the cells were incubated with increasing
amounts of the phages PK1A2 or PK1A (103–109 p.f.u. per well) for 24 h at 37 °C
in a 5% CO2 humidified atmosphere. A 3-(4,5-dimetrylthiazol-2-yl)-2,5-diphe-
nyltetrazolium bromide (MTT, Sigma-Aldrich) stock solution (5 mgml−1 in RPMI
1640 without phenol red, Gibco) was filter sterilized and added to the final con-
centration of 0.5 mg ml−1, followed by incubation for a further 3 h. Then the
medium was aspirated and 100 µl of 4 mM HCl in anhydrous isopropanol was
added to each wells. After incubating for an additional 30 min at room temperature
in the dark, the absorbance was measured with an ELISA recorder (Multiskan GO,
Thermo Scientific) at a wavelength of 560 nm with background subtraction at 690
nm. Cell viability was calculated in relation to control (non-treated) cells.

Transmission electron microscopy. The cells grown on 13-mm glass slides in 24-
well plates were incubated with phages (2.5 × 108 p.f.u.) for various time intervals at
37 °C in a 5% CO2 humidified atmosphere. After washing with PBS, cells were fixed
with freshly made 4% paraformaldehyde in PBS for 30 min at room temperature
and then washed three times with PBS. For pre-embedding labeling of biotin-
phages, the cells were permeabilized and blocked with saponin buffer (0.01%
saponin, 0.1% bovine serum albumin in 100 mM sodium phosphate buffer, pH 7.4)
for 8 min and then reacted for 1 h at room temperature with Alexa Fluor 488
FluoroNanogold-Streptavidin (Nanoprobes) probe diluted 1:200 in saponin buffer.
After washing three times with saponin buffer and 100 mM sodium phosphate
buffer, pH 7.4, the cells were post-fixed with 1% glutaraldehyde in 100 mM sodium
phosphate buffer for 10 min and quenched with 50 mM glycine (Sigma-Aldrich) in
100 mM sodium phosphate buffer for 5 min at room temperature. Following
washes with double-distilled water, gold particles were silver-intensified using the
HQ Silver Enhancement Kit (Nanoprobes) for about 5 min in the dark according to
manufacturer’s directions, followed by gold toning (three washes with 2% sodium
acetate, toning in 0.05% gold chloride on ice, and excess silver removed with 0.3%
sodium thiosulfate). The cells were further post-fixed in 1% reduced osmium
tetroxide, 15 mgml−1 potassium hexacyanoferrate, 100 mM sodium cacodylate
buffer, pH 7.4 for 1 h at 4 °C, dehydrated with 70%, 96% and absolute ethanol, and
flat embedded in Epon (TAAB 812) for 2 h prior to polymerization for 14 h at 60 °
C. Ultrathin sections were cut parallel to the coverslip and collected on copper
mesh grids, followed by post-staining with uranyl acetate and lead citrate. Sample
grids were observed using a JEM-1400 transmission electron microscope (JEOL)
operating at 120 kV and equipped with an ORIUS SC1000 bottom mounted CCD
camera (Gatan).

Statistical analysis. For quantitative data, results were reported as the mean ± s.d.
For phage quantification assays, differences between mean values were tested for
significance by performing an unpaired, two-sided Student’s t-test. P-values of
<0.05 were considered statistically significant.

Data availability. Phage PK1A2 genome sequence data have been deposited in the
GenBank nucleotide database under accession number MG004687. All other
relevant data supporting the findings of this study are available within the article
and its Supplementary Information files, or from the corresponding author on
request.
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