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a b s t r a c t 

The Wright–Fisher model is the most popular population model for describing the behaviour of evolu- 

tionary systems with a finite population size. Approximations have commonly been used but the model 

itself has rarely been tested against time-resolved genomic data. Here, we evaluate the extent to which 

it can be inferred as the correct model under a likelihood framework. Given genome-wide data from an 

evolutionary experiment, we validate the Wright–Fisher drift model as the better option for describing 

evolutionary trajectories in a finite population. This was found by evaluating its performance against a 

Gaussian model of allele frequency propagation. However, we note a range of circumstances under which 

standard Wright–Fisher drift cannot be correctly identified. 

© 2017 The Author(s). Published by Elsevier Ltd. 
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. Introduction 

Rapid advances in high-throughput methodologies have en-

bled the collection of rich time-series from experimental evolu-

ion studies. These typically address the effects of environmen-

al conditions on adaptation stemming from de novo mutations

 Barrick and Lenski, 2013 ), initial variance induced by a genetic

ross ( Bergström et al., 2014; Culleton et al., 2005; Mancera et al.,

008 ) or simply from the standing variation characterizing a poly-

orphic starting population ( Schlötterer et al., 2014 ). Sequencing

he emerging populations during these types of experiments al-

ows for identification of molecular aspects behind the species’ re-

roductive success. 

Despite advances in the field, a challenge remains regarding the

ptimal approach for identifying loci under selection given time-

esolved genomic data. Due to linkage disequilibrium, selection

t a single locus can lead to changes in allele frequencies across

ultiple loci ( Hill and Robertson, 1966 ), confounding single-locus

pproaches to the inference of selection ( Illingworth and Musto-

en, 2011 ). Further, in smaller populations, genetic drift may have

 significant impact upon allele frequencies, such that the influence

f selection must be distinguished from stochastic effects, arising

rom both propagation and sampling ( Charlesworth, 2009; Jónás

t al., 2016; Jorde and Ryman, 2007 ). 
∗ Corresponding author. 

E-mail address: cjri2@cam.ac.uk (C. J. R. Illingworth). 
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A variety of methods have been proposed for inferring selection

n time-series under genetic drift, utilising the Wright–Fisher drift

odel for forward propagation ( Ewens, 2012 ), approximations to

he Wright–Fisher model ( Feder et al., 2014; Lacerda and Seoighe,

014; Tataru et al., 2015; Terhorst et al., 2015; Topa et al., 2015;

axman, 2011 ), its diffusion limit ( Bollback et al., 2008 ) and re-

pective spectral decomposition approaches ( Song and Steinrücken,

012; Steinrücken et al., 2014 ), or effective simulation methods

 Foll et al., 2015; Malaspinas, 2016 ). Recently, an accurate beta ap-

roximation has also be shown to model important features at the

bsorbing boundaries which, otherwise, would not be easily at-

ainable ( Tataru et al., 2015 ) (see also Tataru et al. (2016) for an

xtensive review of other methods). However, while the Wright–

isher model has become the standard approach to representing

enetic drift, it is built upon certain modelling assumptions, in-

luding the replacement of the entire population in successive gen-

rations. As such, other models may in some respects provide a

etter fit to the dynamics observed in evolutionary experiments

 Der et al., 2011 ). Experimental demonstrations intended to vali-

ate the Wright–Fisher model have suffered from limitations in the

xtent of data available for analysis ( Buri, 1956; Der et al., 2011 ). 

Here, we evaluate the extent to which a Wright–Fisher model

f genetic drift can be inferred from data pertaining to evolu-

ionary trajectories, contrasting it with a model of Gaussian dif-

usion. The Gaussian model at first sight differs greatly from the

right–Fisher model, lacking frequency-dependent variance, albeit

e note that, when compounded with the effect of finite sam-

ling, frequency-dependent variance does arise in the Gaussian
under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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model. A further contrast is noted in the computational efficiency

of the algorithms; the Gaussian model is analytically solvable, al-

lowing for rapid evaluation, whereas the Wright–Fisher model is

more computationally intensive. We test the extent to which a

model of drift is identifiable from simulated allele frequency data

and a large dataset from evolutionary experiments conducted in

Drosophila melanogaster ( Franssen et al., 2015; Orozco-terWengel

et al., 2012 ). We note that correct inference of a Wright–Fisher

model is not always possible from simulated Wright–Fisher data,

with various parameters influencing model identifiability. However,

data from evolutionary experiments shows evidence in favour of a

Wright–Fisher drift model under a likelihood-based inference ap-

proach. 

2. Results 

The potential to correctly identify a model of drift was evalu-

ated using a Hidden Markov Model with an independent emission

component, based on a version of the Kalman filter ( Barber, 2012;

Fischer et al., 2014 ). In general terms, we represented the fre-

quency of an allele as a probability distribution, propagated at each

generation, and observed via a finite sequencing process. Our emis-

sion model thus represents a form of uncertainty equivalent to that

arising from evolutionary experiments that have used the Pool-Seq

paradigm ( Kofler et al., 2012 ). Given Gaussian and Wright–Fisher

models of propagation, their relative fit to the data was evaluated

using a compound log-likelihood difference, with optimal parame-

ters identified by a standard non-linear optimization technique. 

In order to test our ability to infer correct parameters from

simulated data, given the combination of the drift model with

an emission component, we tested our model against 2 batches

of simulations covering several population sizes and variances for

the Wright–Fisher and the Gaussian model respectively. Fig. 1 ,

shows that accurate parameter inference was achieved under each

drift model. At large population sizes (or smaller variances), the

expected rate of change in an allele frequency declines, so that

a longer period of observation, represented by T , the trajectory

length, was required to estimate N (or σ G ) to a high level of ac-

curacy. Given 300 generations of data, accurate estimates of N or

σ G were obtained from all simulated populations (see Supporting

Text for consideration of the effect of the number of trajectories on

inferred parameters). 

Given sufficient data generated from a pure Wright–Fisher or

Gaussian model of drift, correct identification of the drift model

could be achieved. However, a threshold time, sometimes of 300

generations or more, was required for this to be achieved ( Fig. 2 ).

We tested a diverse set of simulated data with several represen-

tative parameters of typical E& R experiments ( Kofler and Schlt-

terer, 2014 ): sequencing depth, sampling period, initial allele fre-

quency, experimental duration and population size. The underly-

ing population size of the system, N , was a critical factor in de-

termining the threshold for identification; at higher N , the change

via drift may be insufficient for model discrimination. Further fac-

tors influenced this value; for example, trajectories starting at

lower frequencies were more informative of the drift model due

to increased frequency dependence, reflected, for example, in the

derivative of the characteristic variance. At frequency values closer

to the boundaries, q (t) = 0 and q (t) = 1 , the importance of higher-

order moments characterizing the Wright–Fisher model are also

a strong contributing factor. An increased depth and frequency

of sampling increased the extent of information available for in-

ference; each improved the ability for model discrimination (see

Fig. 2 and additional results in Supporting Text). 

While the simulations discussed above consider systems in

which drift is the only force driving evolution, in a biological sys-

tem, other factors affect allele frequency change. Selection, muta-
ion, and linkage disequilibrium each influence the shape of the

xpected distribution of allele frequencies with time, potentially

ffecting the identifiability of a model of drift 

Natural selection acting upon a population induces changes in

llele frequency over time. As such, including selection in our sim-

lations led to an increased allele frequency variance in our sim-

lation data. Subsequent inference of N under a neutral assump-

ion led to underestimates of N proportionate to the number of

oci at which selection acted. However, the correct inference of a

right–Fisher drift model in each case was not compromised (see

upporting Information). 

The rate of mutation in experimental systems relevant to our

ork, of close to μ ≈ 10 −9 ( Li and Stephan, 2006 ), has an influ-

nce on allele frequencies much smaller than the effect of ge-

etic drift. To explore the theoretical effect of mutation, simula-

ions were conducted with much higher rates of mutation. From

imulated data, population sizes were over-estimated if the start-

ng frequency was 0.1 and μN = 0 . 1 or 0.5, and under-estimated

f μN = 1 or 10 (see also Supplementary Information). At low fre-

uencies, the influence of mutation led to incorrect model identi-

cation; the Gaussian distribution describes with greater flexibility

he sample paths generated by the balance between drift, which

ushes trajectories towards either of the absorbing boundaries, and

utation, which drives the frequency spectrum away from a fre-

uency of 0 or 1. Where μN is sufficiently high, drift is overcome

y the tendency of mutation to push frequencies to q (t) = 0 . 5 .

onsidering simulations with a starting frequency of 0.5, consis-

ent overestimates of N were obtained to compensate for the ef-

ect of mutation keeping the allele frequency close to a constant

alue. However, in these cases, the Wright–Fisher model was cor-

ectly identified in comparison to the Gaussian drift model. 

The presence of linkage disequilibrium between loci may act

s a confounding factor for selection identification. Yet, for model

dentifiability without selection, hitch-hiking effects should only

ave a significant impact if the number of founding haplotypes is

educed or if the size of genomes is small ( Franssen et al., 2015;

erhorst et al., 2015 ). Under these conditions, a random bias in

llele frequency change may be observed, leading to possible in-

orrect model identification. For the simulated genomes under a

eutral coalescent model employed here (see Methods), propaga-

ion with linkage, even for a low number of founding haplotypes,

id not lead to incorrect drift model identification. Population sizes

or these datasets were slightly over-estimated (see Supplementary

nformation). 

Applying the model to experimental genomic data

 Franssen et al., 2015 ), an improved fit was not seen for the

right–Fisher model across all statistical measures considered

see Supporting Text, where the error in the estimated compound

ariance is evaluated). However, a clear result in favour of this

odel was seen via a likelihood calculation. Estimated popula-

ion sizes calculated under the Wright–Fisher model are shown

n Fig. 3 (A). Consistent with the identification of selection in

he data ( Franssen et al., 2015 ), these estimates are lower than

he reported consensus size of 10 0 0. Further calculations were

erformed to evaluate models of drift over the subset of loci in

ll chromosomes that did not reach fixation. This was intended to

erify whether the improved performance of the Wright–Fisher

odel arose from the natural inclusion of fixation events in this

rift model; a more artificial approach was required in the case

f the Gaussian drift model. While average likelihood differences

or this dataset were reduced, the tendency across chromosomes

bserved in Fig. 3 was not altered. 

In the results of Fig. 3 , differences between the estimates ob-

ained were observed for different replica datasets. As noted in

upplementary Fig. F.14, the differences between initial distribu-

ions is minimal, likely excluding this as an explanation for the
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Fig. 1. Wright–Fisher and Gaussian models of allele frequency propagation and accuracy in drift parameter inference. (A) Example trajectories generated under a Wright–

Fisher model with population sizes N = 400 (blue) and N = 40 0 0 (yellow). (B) Example trajectories generated under a model of Gaussian diffusion with σG = 0 . 018 (green) 

and σG = 0 . 006 (red). (C) Inferred versus simulated population sizes given observations over T = 50 and T = 300 generations of simulated data generated with exact Wright–

Fisher propagation. (D) Inferred σ G vs simulated σ G for equivalent calculations using the Gaussian model for trajectories. Simulations used for inference were generated with 

read depth C = 100 , sampling period �t = 10 , and starting frequency q (0) = 0 . 5 . (For interpretation of the references to colour in this figure legend, the reader is referred 

to the web version of this article.) 

Fig. 2. Potential to identify a Wright–Fisher model of evolution. Contours show lines of constant likelihood difference �L per locus per sampling instant by population size 

N and experimental duration T , between the exact Wright–Fisher and Gaussian drift models, when data is generated by Wright–Fisher propagation. Each contour represents 

the threshold below which correct model identification is possible at comparable likelihood differences. Solid lines show the contour �L = 0 . 01 ; a dashed line shows the 

contour �L = 0 . 05 , for each set of parameters. Contours were found by interpolation of data generated at specific combinations of population size and experimental duration, 

shown as gray dots, and smoothing with an exponential moving average. Log scale is used on the y-axis. 
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Fig. 3. Population size estimates from Drosophila experimental evolution time-series ( Franssen et al., 2015 ) and average likelihood per locus, between exact Wright–Fisher 

and Gaussian propagation with absorbing boundaries. R1, R2, R3 represent estimates from different experimental replicates reported in Franssen et al. (2015) (see Methods for 

further details). Boxplots in (C) and (D) correspond to the Average �L per locus and respective population size estimates for sets generated by bootstrapping (see Methods). 
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differences. In order to estimate the variance in our estimates, a

bootstrapping procedure was applied, examining sets of trajecto-

ries from L /10 loci in each case, where L is the number of loci

in the original chromosomes with identified variant alleles; 100

bootstrapping sets per chromosome and replicate were performed.

As can be seen in Fig. 3 (C) and (D), even under this conserva-

tive procedure little variance in estimates was observed, with the

exception of the small chromosome, 4. Intrinsic differences be-

tween replicates may underlie the different results ( Franssen et al.,

2015 ). 

3. Discussion 

The Wright–Fisher model is the most popular discrete-time ap-

proach for modelling populations, describing their fine-structure

as the result of a succession of randomly drawn, non-overlapping

sampling generations at a constant consensus size. However, eval-

uation of the explicit model is computationally intensive, requir-

ing repeated matrix multiplications. For this reason, published ap-

proaches for inferring selection within a population of finite size

have utilised a variety of approximations to the Wright–Fisher

model when accounting for genetic drift. 

Here, we have considered the extent to which a Wright–Fisher

model is possible to infer from time-resolved allele frequency data.

Applied to a large dataset from an evolutionary experiment, we

demonstrate that it is identifiable under a likelihood model. In so

far as a drift model can be compared to arbitrarily similar models,
t can never truly be proven to be correct through the analysis of

xperimental data. Nevertheless, under the approach outlined here,

e have identified a Wright–Fisher model of genetic drift as out-

erforming a model of drift via Gaussian noise when applied to

ata from a biological population. 

Our calculations on simulated data further show that the iden-

ification of Wright–Fisher drift is not trivial, and may not be repli-

able in other datasets; in situations where the time over which a

opulation is observed is short, where the underlying population

ize is large, or where sampling is shallow or sparse, Wright–Fisher

rift may be indistinguishable from variance in a Gaussian model.

nder such circumstances the potential for the use of alternative,

apid approximations to the Wright–Fisher approach is clear. The

aussian model described here provides one such approach, for

hich an analytical solution is possible; scope remains for research

nto fast and flexible alternative procedures applicable to situations

here data is scarce, intricate parametric approaches are not possi-

le or population models are not identifiable. Under these circum-

tances, Bayesian non-parametric inference frameworks may stand

s a viable option for evolutionary time-series analysis ( Orbanz and

eh, 2010; Topa et al., 2015 ). 

Experimental evolution and the analysis of the resulting time-

eries data have provided extensive proof for a number of evolu-

ionary modes responsible for overall trends leading to particular

henotypic outcomes ( Barrick and Lenski, 2013; Schlötterer et al.,

014 ). Several simulation studies have also tested the success of

 number of typical experimental set-ups in providing informa-
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ion on loci responding to environmental stress ( Kofler and Schlt-

erer, 2014 ), the present paper having a specific focus on stochas-

icity in evolutionary analysis. Optimising the design of experi-

ents so as to maximise the information obtained ( Liepe et al.,

013 ) may be an important step in validating Wright–Fisher pop-

lation models ( Der et al., 2011 ), or distinguishing between poten-

ial approximations ( Tataru et al., 2016 ). Further investigations are

ecessary to systematically quantify the utility of certain experi-

ental designs; a decision toolkit based on the mutual informa-

ion between experiment and theoretical framework could improve

ur understanding of the potential to predict and control evolution

 Lässig et al., 2017 ). 

. Methods 

.1. Simulated data generation 

Simulations were performed using an exact Wright–Fisher

odel. Parameters for simulations were chosen to reflect those

elevant to recent Evolve and Resequence ( E& R ) experiments

 Franssen et al., 2015; Kofler and Schltterer, 2014; Orozco-

erWengel et al., 2012 ) and representative simulation studies

 Kofler and Schltterer, 2014 ), including the population size ( N ), ini-

ial frequency distribution ( q (0)), sequencing coverage depth ( C ),

xperiment length ( T ), sampling period ( �t ), number of replicates

nd number of loci ( L ) used to infer population parameters. 

In order to test the accuracy of our inference method an addi-

ional test was performed with simulations generated by a Gaus-

ian diffusion model on the interval [0, 1] with absorbing bound-

ries (inference results in Fig. 1 and Supporting Text). 

In order to evaluate drift model identification under the infer-

nce framework outlined below, two batches of Wright–Fisher sim-

lations were studied. One considered evolution at a single locus,

here trajectories were completely independent. For this batch, we

ested model identification on both trajectories with and without

utation. A Poisson model was used when mutation was present.

s with the neutral trajectories without mutation, several popula-

ion sizes were used in the interval [10 0, 50 0 0]. For each popu-

ation size several mutation rates were analysed in order to cover

he region of μN values where the frequency spectrum changes its

hape; the selected set for μN was {0.1, 0.5, 1, 10}. From μN = 10

o μN = 0 . 1 , a transition occurs where around μN = 0 . 5 the sys-

em goes from having the most probable value located at q (t) =
 . 5 to having two significant spikes at the absorbing boundaries

 Rouzine et al., 2001 ). An additional subset of simulations was gen-

rated to study the effects of selection on inference. These included

election coefficients sampled from a uniform distribution in the

nterval [ −0 . 01 , 0 . 01] , for either 1% or 10% of the loci. 

The second batch of Wright–Fisher simulations was based on

ropagation of genomes with linkage characteristic of Drosophila

elanogaster (100 cases in total). The program FastSimCoal

 Excoffier et al., 2013 ), under a neutral coalescent model, was used

o generate the starting genomes, with roughly L = 50 0 0 polymor-

hic positions; 20 0 0 sequences were used in this instance. The

ropagation of populations under Wright–Fisher dynamics, at a

onstant census size, for genomes of length L , was performed by

 set of purpose built routines (see Section 5 ). In order to con-

truct the starting population we sampled 2 N / F times from the

et of haplotypes generated by FastSimCoal , with F = 20 represent-

ng the number of founding sequences. Further simulations with a

igher number of haplotypes could have been tested. Yet, it was

erified that even for a low number of starting genomes the task

f correct model identification was not hindered; higher F should

ot change considerably the results. Lower F , on the other hand,

ay lead to spurious effects at the allele frequency level due to

inkage ( Terhorst et al., 2015 ). The mutation rate ( μ) and the re-
ombination rate ( ρ) for the coalescent neutral model were im-

osed at μ = 3 × 10 −9 /bp/gen and ρ = 10 −8 /bp/gen, consistently

ith the experimentally determined recombination rates and the

ecombination rate calculator ( Comeron et al., 2012; Fiston-Lavier

t al., 2010 ). For both batches of simulations a binomial sampling

rocess was used to simulate sequencing of the population (see

q. (1) ). 

As we are studying identification of drift model in evolution-

ry time-series characteristic of E& R experiments, measured by

ool-Seq, the effects of migration were not addressed. Its contri-

ution to the variance under the one-locus Wright–Fisher neu-

ral model can be studied efficiently through standard methods

or recursive discrete dynamical systems ( Tataru et al., 2015, 2016 ).

ere, we also do not address recombination during the duration

f the experiment. Its effects have been proven to increase the

uccess rate in identification of loci under selection ( Kofler and

chltterer, 2014 ). Since we study linkage disequilibrium in isola-

ion, i.e. no mutation nor selection involved, if the starting point

re the genomes generated under a neutral coalescent model, re-

ombination would only allow us to transform the observed fre-

uency dynamics into the one-locus independent case reported in

ig. 2 . There, the general limits in drift model identification from

volutionary time-series data are amply shown. In addition, recom-

ination events have been seen to occur rarely in E& R studies in

rosophila ( Franssen et al., 2015 ). We also did not study the com-

ined effects of linkage, mutation and selection, since our objective

as to isolate the contribution of each of these additional factors

o drift model identification. More complicated dynamics are of in-

erest but fall beyond the scope of this work. 

.2. Experimental data: temporal allele frequencies determined by 

ool-Seq 

We analysed the data pertaining to all chromosomes

eported in Franssen et al. (2015) and available from

ryad ( http://datadryad.org ) under the accession number

oi : 10.5061/ dryad .403 b 2. The experiments performed in

ranssen et al. (2015) concerned the adaptation of Drosophila

o a novel laboratory environment and are part of an on-

oing long term experimental evolution study (see for ex-

mple Kapun et al. (2014) ; Orozco-terWengel et al. (2012) ;

obler et al. (2014) ; Versace et al. (2014) ). The flies were cultured

n a fluctuating temperature and light regime to mimic natural

onditions: the new temperature regime was cycled every 12 h

etween a temperature of 18 and 28 °C , which coincided with

ark and light periods, respectively. 3 replicates were collected

t generations 0, 15 (23 for replicate 2), 37 and 59, and allele

requencies were estimated from Pool-Seq data. The census pop-

lation throughout the experiment was approximately 10 0 0. For

urther details on the experimental protocol used to generate

he populations at each generation and replicate see the original

aper ( Franssen et al., 2015 ). Here, we will focus on identification

f drift model from the reported time-series profile. The overall

endency for each chromosome can be seen in the respective fre-

uency probability density functions at each sampling generation

eported in Supporting Information. We must emphasize that the

ethod presented here for drift model identification is based

n evaluation, under a log likelihood approach, of each locus

rajectory given a global drift model parameter, which we find

y optimizing the sum of log likelihoods across all positions (see

q. (4) ). Therefore, the probability density profiles presented in

upporting Information are for visual inspection only. Their shape

s not taken directly in the inference process, unlike previous

tudies ( Der et al., 2011 ). 

http://datadryad.org
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4.3. A continuous state-space HMM for integer data 

Inferences of drift parameters were conducted using a con-

tinuous state-space Hidden Markov Model (HMM) for one-

dimensional integer data based on a version of the Kalman fil-

ter ( Barber, 2012; Fischer et al., 2014 ). As with traditional ap-

proaches involving HMM, it incorporates a dynamical hidden

model, P (q (t k ) | q (t k −1 ) , θ ) and an emission model, P ( D ( t k )| q ( t k )),

where D i (t k ) = { n i (t k ) , C i (t k ) } describes the number of observa-

tions of a specific allele n i ( t k ), and the total read depth C i ( t k ), at

generation t k and for each locus i in a data set. Here, by default,

we assumed that for the pooled population each individual con-

tributed equally, thus leading to a simple binomial emission model,

that is: 

P (D i (t k ) | q i (t k )) = 

(
C i (t k ) 

n i (t k ) 

)
q i (t k ) 

n i (t k ) (1 − q i (t k )) 
(C i (t k ) −n i (t k )) (1)

Estimation of parameters θ was achieved via a forward algo-

rithm, consisting of multiple predict-update steps, by combining

sampling with a period �t = t k − t k −1 generations and propagation

P (q (t k ) | q (t k −1 ) , θ ) : 

P (q i (t k ) | D i (t 1: k −1 ) , θ ) 

= 

∫ 
dq i (t k −1 ) P (q i (t k ) | q i (t k −1 ) , θ ) P (q i (t k −1 ) | D i (t 1: k −1 ) , θ ) (2)

and 

P (q i (t k ) | D i (t 1: k ) , θ ) 

= 

P (D i (t k ) | q i (t k )) P (q i (t k ) | D i (t 1: k −1 ) , θ ) ∫ 
dq i (t k ) P (D i (t k ) | q i (t k )) P (q i (t k ) | D i (t 1: k −1 ) , θ ) 

(3)

leading to the likelihood 

L (θ | D ) 

= 

L ∑ 

i =1 

∑ 

k 

log 

∫ 
dq i (t k ) P (D i (t k ) | q i (t k )) P (q i (t k ) | D i (t 1: k −1 ) , θ ) (4)

Optimisation of this likelihood gave an estimate of the drift pa-

rameter θ . As is clear from the likelihood function ( Eq. (4) ) the

full combined algorithm was not necessary to achieve estimates of

the drift parameter under each evolutionary model. We, neverthe-

less, did resort to the weighting scheme underlying the forward-

backward/predict-update algorithm in order to generate posteriors

for each trajectory, in order to find means and variances character-

izing the genomic evolutionary data, and to evaluate model perfor-

mance under alternative metrics. 

We note that, in some cases, Pool-Seq experiments may involve

the selection of a subset of individuals from the pool for sequenc-

ing. In this case, Eq. (1) may be altered to derive an expression 

P (D i (t k ) | ̂  q i (t k )) P ( ̂  q i (t k ) | q i (t k )) (5)

where ˆ q i (t k ) is the frequency of the given allele in the subset of in-

dividuals chosen for sequencing, and the first part of the equation

is equivalent to that for Eq. (1) . In our calculations on experimental

data, we note that data for the relevant experiment were collected

from 500 female flies at each sampling point ( Franssen et al.,

2015 ), giving a total of 10 0 0 genomes in the sequencing pool, such

that 

P ( ̂  q i (t k ) | q i (t k )) = P ( ̂  n i (t k ) | q i (t k )) 

= 

(
10 0 0 

ˆ n i (t k ) 

)
q i (t k ) 

ˆ n i (t k ) (1 − q i (t k )) 
(10 0 0 − ˆ n i (t k )) (6)

where ˆ n i (t k ) is the number of genomes in the sample containing

the variant allele. Further details about the method are presented

in supplementary information. 
.3.1. Transition matrix construction 

Within the above framework, models representing both Gaus-

ian and Wright–Fisher variation were implemented. The tran-

ition probability density matrix for the Gaussian drift model,

 (q (t k +1 ) | q (t k ) , σG ) , representing frequency evolution between

ampling instants t k and t k +1 was constructed by using the ana-

ytical solution of the Fokker–Planck equation for a system driven

urely by noise, that is: 

∂P (q, t) 

∂t 
= 

1 

2 

∂ 2 P (q, t) 

∂q 2 
(7)

As the normal distribution is a continuous function in the fre-

uency domain, the features associated with the Wright–Fisher at

he boundary, namely absorption, are not represented naturally. In

rder to add this aspect in the Gaussian transition function, we

lso include absorbing boundaries according to: 

P G abs 
(q (t k +1 ) | q (t k ) , σG ) 

= 

⎧ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎩ 

N (q (t k +1 ) − q (t k ) | σ
√ 

�t , q (t k )) : Cond. 

�0 (t k ) : q (t k ) � = 0 , 1 ∧ q (t k +1 ) = 0 

�1 (t k ) : q (t k ) � = 0 , 1 ∧ q (t k +1 ) = 1 

1 : q (t k ) = 0 , 1 

nd 

ond. = q (t k ) � = 0 , 1 ∧ q (t k ) − 3 σ
√ 

�k +1 < q (t k +1 ) 

< q (t k ) + 3 σ
√ 

�t ∧ q (t k +1 ) � = 0 , 1 

0 (t k ) = 

∫ 0 

q (t k ) −3 σ
√ 

�t 

N (q (t k +1 ) − q (t k ) | σ
√ 

�t , q (t k )) 

1 (t k ) = 

∫ q (t k )+3 σ
√ 

�t 

1 

N (q (t k +1 ) − q (t k ) | σ
√ 

�t , q (t k )) 

(8)

Other approaches based on modelling the behaviour near

he absorbing boundaries via beta distributions and spikes

 Tataru et al., 2015 ) have also been proven to be a valid approach;

hese could also be implemented within the HMM model pre-

ented above. 

Frequency transitions were modelled on an evenly spaced dis-

rete frequency grid on the interval [0, 1], with resolution 

1 
400 . 

For the exact Wright–Fisher propagation model,

 (q (t k +1 ) | q (t k ) , N) , no tractable analytical formulation exists al-

owing immediate computation at any generation t k ( Ewens, 2012 ).

he exact transition matrix between t k and t k +1 was therefore

ound by exponentiation of the one-generation 2 N by 2 N transition

atrix, 

 (q (t k +1 ) | q (t k ) , N) = P (q (1) | q (0) , N) �t (9)

here P ( q (1)| q (0), N ) is defined by 

P i, j (q (1) | q (0) , N) 

= 

(
2 N 

2 N × q j (1) 

)
q i (0) (2 N×q j (1)) (1 − q i (0)) (2 N(1 −q j (1))) (10)

ith i, j = 1 , . . . , 401 . For values of N smaller or greater than 400,

he inverse distance method was used to interpolate between the

earest points on the discrete binomial distribution. 

In the construction of the propagator matrix we do not make

ny extra assumptions such as a one-step process on the propa-

ation grid as was the case in Malaspinas et al. (2012) ; this sim-

lification forces the Markov chain, represented in the transition

atrix, to be restricted to diagonal and off-diagonal matrix en-

ries P i,i +1 and P i,i −1 ( Van Kampen, 1992 ). Instead, we calculate the

ull transition matrix for a specific starting frequency involving all

ntries. 
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. Code availability 

The code used for matrix exponentiation and likelihood

inimization is available at: https://github.com/nunonene/

valuating- genetic- drift- in- time- series- evolutionary- analysis . 

Pre-computed Wright–Fisher transition matrices between sam-

ling instants for population sizes above 10 0 0 and frequency grid

ize of 400 are also available at the same address. For population

izes below 10 0 0 exponentiation is done during optimization. 

The set of routines used for propagation of genomes with link-

ge disequilibrium characteristic of populations of Drosophila and

nder mutation are also available at the same address. 

The program used for generating the sequences with link-

ge characteristic of Drosophila populations was FastSimCoal un-

er a neutral coalescent model, available at: http://cmpg.unibe.ch/

oftware/fastsimcoal2/ . 
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