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. Introduction 

Ischemic stroke is the most common cerebrovascular disease

nd one of the most common causes of death and disability world-

ide ( WHO, 2012 ). In ischemic stroke an obstruction of the cere-

ral blood supply causes tissue hypoxia (underperfusion) and ad-

ancing tissue death over the next hours. The affected area of

he brain, the stroke lesion, undergoes a number of disease stages

hat can be subdivided into acute (0-24h), sub-acute (24h-2w),

nd chronic ( > 2w) according to the time passed since stroke on-

et ( González et al., 2011 ). Magnetic resonance imaging (MRI) of

he brain is often used to assess the presence of a stroke lesion,

t’s location, extent, age, and other factors as this modality is highly

ensitive for many of the critical tissue changes observed in stroke.

Time is brain is the watchword of stroke units worldwide. Pos-

ible treatment options are largely restricted to reperfusion thera-

ies (thrombolysis, thrombectomy), which have to be administered

ot later than four to six hours after the onset of symptoms. Un-

ortunately, these interventions are associated with an increasing

isk of bleeding the longer the lesion has been underperfused. To

his end, considerable effort has gone into finding image descrip-

ors that predict stroke outcome ( Wheeler et al., 2013 ), treatment

esponse ( Albers et al., 2006; Lansberg et al., 2012 ), or the patients

hat would benefit from a treatment even beyond the regular treat-

ent window ( Kemmling et al., 2015 ). 

At present, only a qualitative lesion assessment is incorpo-

ated in the clinical workflow. Stroke research studies, which

equire quantitative evaluation, depend on manually delineated

esions. But the manual segmentation of the lesion remains

 tedious and time consuming task, taking up to 15 min-

tes per case ( Martel et al., 1999 ), with low inter-rater agree-

ent ( Neumann et al., 2009 ). Developing automated methods that

ocate, segment, and quantify the stroke lesion area from MRI

cans remains an open challenge. Suitable image processing algo-

ithms can be expected to have a broad impact by supporting the

linicians’ decisions and render their predictions more robust and

eproducible. 

In the treatment decision context, an automatic method would

rovide the medical practitioners with a reliable and, above all, re-

roducible penumbra estimation, based on which quantitative de-

ision procedures can be developed to weight the treatment risks

gainst the potential gain. For medical trials, the results would

ecome more reliable and reproducible, hence strengthening the

nding and reducing the required amount of subjects for credi-
mon cerebrovascular disease, and its diagnosis, treatment, and study re-

gorithms for stroke lesion segmentation from magnetic resonance imaging

earched, but the reported results are largely incomparable due to different

s. We approached this urgent problem of comparability with the Ischemic

ES) challenge organized in conjunction with the MICCAI 2015 conference.

mon evaluation framework, describe the publicly available datasets, and

sub-challenges: Sub-Acute Stroke Lesion Segmentation (SISS) and Stroke

 total of 16 research groups participated with a wide range of state-of-

 algorithms. A thorough analysis of the obtained data enables a critical

of-the-art, recommendations for further developments, and the identifica-

he segmentation of acute perfusion lesions addressed in SPES was found

hms applied to sub-acute lesion segmentation in SISS still lack accuracy.

ristic of any method was found to perform superior to the others. Instead,

ion appearances, their evolution, and the observed challenges should be

 ISLES image datasets continue to be publicly available through an online

n ongoing benchmarking resource ( www.isles-challenge.org ). 

© 2016 Elsevier B.V. All rights reserved.

le results. Another beneficiary would be cognitive neuroscientists,

ho often perform studies where cerebral injuries are correlated

ith cognitive function and for whom lesion segmentation is an

mportant prerequisite for statistical analysis. 

Still, segmenting stroke lesions from MRI images poses a chal-

enging problem. First, the stroke lesions’ appearance varies signif-

cantly over time, not only between but even within the clinical

hases of stroke development. This holds especially true for the

ub-acute phase, which is studied in the SISS sub-challenge: At

he beginning of this interval, the lesion usually shows strongly

yperintense in the diffusion weighted imaging (DWI) sequence

nd moderately hyperintense in fluid attenuation inversion recov-

ry (FLAIR). Towards the second week, the hyperintensity in the

LAIR sequence increases while the DWI appearance converges to-

ards isointensity ( González et al., 2011 ). Additionally, a ring of

dema can build up and disappear again. In the acute phase, the

WI denotes the infarcted region as hyperintensity. The magnitude

f the actual underperfusion shows up on perfusion maps. The

ismatch between these two is often considered the potentially

alvageable tissue, termed penumbra ( González et al., 2011 ). Sec-

nd, stroke lesions can appear at any location in the brain and take

n any shape. They may or may not be aligned with the vascu-

ar supply territories and multiple lesions can appear at the same

ime (e.g. caused by an embolic shower). Some lesions may have

adii of few millimeters while others encompass almost a complete

emisphere. Third, lesion structures may not appear as homoge-

eous regions; instead, their intensity can vary significantly within

he lesion territory. In addition, automatic stroke lesion segmenta-

ion is complicated by the possible presence of other stroke-similar

athologies, such as chronic stroke lesions or white matter hyper-

ntensities (WMHs). The latter is especially prevalent in older pa-

ients which constitute the highest risk group for stroke. Finally, a

ood segmentation approach must comply with the clinical work-

ow. That means working with routinely acquired MRI scans of

linical quality, coping with movement artifacts, imaging artifacts,

he effects of varying scanning parameters and machines, and pro-

ucing results within the available time window. 

.1. Current methods 

The quantification of stroke lesions has gained increasing inter-

st during the past years ( Fig. 1 ). Nevertheless, only few groups

ave started to develop automatic image segmentation techniques

or this task in recent years despite the urgency of this prob-

em. A recent review of non-chronic stroke lesion segmenta-

http://www.isles-challenge.org
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Table 1 

Listing of publications describing non-chronic stroke lesion segmentation in MRI with evaluation on hu- 

man image data since Rekik et al. (2012) . Column A denotes the lesion phase, i.e., (A)cute, (S)ub-acute 

or (C)hronic. Column T denotes the method type, i.e., (A)utomatic or (S)emi-automatic. Column N de- 

notes the number of testing cases (mostly leave-one-out evaluation scheme is employed). Column Se- 

quences denotes the used MRI sequences. Column DC denotes the reported Dice’s coefficient score if avail- 

able. Column Metrics denotes the metrics used in the evaluation. Abbreviations are: V = visual evaluation, 

VE = volume error, PPV = positive prediction value, + = other metrics, m = median reported. Note that the 

lesion phases were adapted to our definition if sufficient information was available. 

Method A T N Sequences DC Metrics 

Prakash et al. (2006) A A 57 DWI 0 .72 DC,+ 

Soltanian-Zadeh et al. (2007) ASC A 2 T1,T2,DWI,PD + 

Seghier et al. (2008) SC A 8 T1 0 .64 DC 

Forbes et al. (2010) ? A 3 T2,FLAIR,DWI 0 .63 DC 

Saad et al. (2011) AC A ? DWI V 

Mujumdar et al. (2012) A S 41 DWI,ADC 0 .81 DC 

Artzi et al. (2013) AS S 10 FLAIR,DWI ASSD,HD,VE 

Maier et al. (2014) S A 8 T1,T2,FLAIR,DWI,ADC 0 .74 DC,ASSD,HD 

Tsai et al. (2014) AS A 22 DWI,ADC 0 .9 DC,PPV 

Mah et al. (2014) S A 38 T2,DWI 0 .73 DC m , + 

Nabizadeh et al. (2014) AS S 6 DWI 0 .80 DC,+ 

Ghosh et al. (2014) S A 2 ADC VE 

Maier et al. (2015c ) S A 37 T1,T2,FLAIR,DWI,ADC 0 .63 DC,ASSD,HD 

Muda et al. (2015) AC A 20 DWI 0 .73 DC 

Derntl et al. (2015) S A 13 T1,T1c,T2,FLAIR 0 .42 DC 

Menze et al. (2015) AS A 18 T1,T1c,T2,FLAIR,DWI 0 .78 DC 

Maier et al. (2015b ) S A 37 FLAIR 0 .44-0.67 DC,ASSD,HD 

Maier et al. (2015b ) S A 37 T1,T2,FLAIR,DWI,ADC 0 .54-0.73 DC,ASSD,HD 

Fig. 1. Increasing count of publications over the years as returned by Google scholar 

for the search terms ischemic stroke segmentation on 2016-05-17. 
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tion ( Rekik et al., 2012 ) summarizes the most important works un-

til 2008, reporting as few as five automated stroke lesion segmen-

tation algorithms. A collection of more recent approaches not in-

cluded in Rekik et al. (2012) are listed in Table 1 . While an increas-

ing number of automatic solutions are presented, there are also a

number of semi-automatic methods indicating the difficulty of the

task. Among the automatic algorithms, only a few employ pattern

classification techniques to learn a segmentation function ( Prakash

et al., 2006; Maier et al., 2014; 2015c ) or design probabilistic gen-

erative models of the lesion formation ( Derntl et al., 2015; Menze

et al., 2015; Forbes et al., 2010; Kabir et al., 2007; Martel et al.,

1999 ). 

While all approaches make an effort to quantify segmenta-

tion accuracies, most lack detailed descriptions of the employed

dataset, which is a critical matter as stroke lesion shape and ap-

pearance changes rapidly during the first hours and days, signifi-

cantly altering the difficulty of the segmentation task. Information
bout the stroke evolution phase is sometimes omitted ( Seghier

t al., 2008; Forbes et al., 2010 ) or, if mentioned, not clearly

efined ( Saad et al., 2011; Muda et al., 2015 ). Where provided,

he definition of acute stroke often mixes with the sub-acute

hase ( Ghosh et al., 2014; Mah et al., 2014; Tsai et al., 2014 ). Only a

ew studies give details on pathological inclusion and exclusion cri-

eria of the data ( James et al., 2006; Maier et al., 2015c ), although

hese are important characteristics: Results obtained on right-

emispheric stroke only ( Dastidar et al., 20 0 0 ) are not comparable

o ones omitting small lesions ( Mah et al., 2014 ) nor to those ob-

ained from two central axial slices of each volume ( Li et al., 2004 ).

omparability is further impeded by a wide range of dataset sizes

 N ∈ [2, 57]), employed MRI sequences and quantitative evaluation

easures. All this renders the interpretation of the results difficult

nd explains the wide range of segmentation accuracies reported

ver the years. A very recent work ( Maier et al., 2015b ) compares

 number of classification algorithms on a common dataset, but

hese do not fully represent the state-of-the-art nor are they im-

lemented by their respective authors. 

In the present benchmark study, we approach the urgent prob-

em of comparability. To this end, we planned, organized, and pur-

ued the I schemic S troke LE sion S egmentation (ISLES) challenge:

 direct, fair, and independently controlled comparison of auto-

atic methods on a carefully selected public dataset. ISLES 2015

as organized as a satellite event of the International Conference

n Medical Image Computing and Computer Assisted Intervention

MICCAI) 2015, held in Munich, Germany. ISLES combined two sub-

hallenges dealing with different phases of the stroke lesion evo-

ution: First, the S troke P erfusion ES timation (SPES) challenge deal-

ng with the image interpretation of the acute phase of stroke;

econd, the S ub-acute I schemic S troke lesion S egmentation (SISS)

hallenge dealing with the later stroke image patterns. In both

asks we aim at answering a number of open questions: What is

he current state-of-the-art performance of automatic methods for

schemic stroke lesion segmentation? Which type or class of algo-

ithms is most suited for the task? Which difficulties are overcome

nd which challenges remain? And what are the recommendations

e can give to researchers in the field after the extensive evalua-

ion conducted? 
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Fig. 2. Increasing count of challenges over the years as collected on http:// 

grand-challenge.org on 2016-05-17. 
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. Setup of ISLES 

Image segmentation challenges aim at an independent and fair

omparison of various segmentation methods for a given segmen-

ation task. In these de-facto benchmarks participants are first pro-

ided with representative training data with associated ground

ruth, on which they can adjust their algorithms. Later, a testing

ataset without ground truth is distributed and the participants

ubmit their results to the organizers, who score and rank the sub-

issions. 

Previous challenges in the medical image processing communi-

ies dealt with the segmentation of tumors ( Menze et al., 2015 )

r multiple sclerosis lesions ( Styner et al., 2008 ) in MRI brain

ata; complete lungs ( Murphy, 2011 ) or their vessels ( Rudyanto

t al., 2014 ) in computed tomography scans; 4D ventricle ex-

raction ( Petitjean et al., 2015 ) as well as myocardial tracking

nd deformation ( Tobon-Gomez et al., 2013 ); prostate segmen-

ation from MRI ( Litjens et al., 2014 ); and brain extraction in

dults ( Shattuck et al., 2009 ) and neonatals ( Išgum et al., 2015 ). 

The number of challenges has been steadily increasing over

he past years ( Fig. 2 ) as visible from the events listed on http:

/grand-challenge.org . Many of these have become the de-facto

valuation standard for new algorithms, in particular when ad-

ering to some standards listed on the same web resource: Both

raining and testing dataset are representative for the task, well

escribed, and large enough to draw significant conclusions from

he results; the associated ground truth is created by experts fol-

owing a clearly defined set of rules; the evaluation metrics chosen

apture all aspects relevant for the task; and, ideally, challenges re-

ain open for future contestants and serve as an ongoing bench-

ark for algorithms in the field. 

With ISLES 2015, we introduce for the first time a benchmark

or the growing but inaccessible collection of stroke lesion segmen-

ation algorithms. The challenge was launched in February 2015

nd potential participants were contacted directly following an ex-

ensive literature review on stroke segmentation or via suitable

ailing lists. The training datasets for SISS and SPES were released

n April 2015 using the SICAS Medical Image Repository (SMIR)

latform 

4 ( Kistler et al., 2013 ). The participants were able to down-

oad the testing datasets from September 14, 2015, and had to sub-
4 www.smir.ch 
it their results within a week. The ground truth for this second

et is kept private with the organizers. Repeated submissions were

llowed, but only the last one counted. The organizers evaluated

he submitted results and presented them during a final workshop

t the international MICCAI conference 2015 in Munich, Germany.

ll conclusions presented in this paper are drawn from these test-

ng results. 

We refrained from an on-site evaluation as previous at-

empts ( Murphy et al., 2011; Menze et al., 2015; Petitjean et al.,

015 ) have shown that such endeavors may be prone to compli-

ations unrelated to the actual algorithms’ performances. Instead,

he results obtained on the evaluation set were hidden from the

articipants to avoid tuning on the testing dataset. 

The ISLES benchmark is open post-challenge for researchers to

ontinue evaluating segmentation performance through the SMIR

valuation platform. The results and rankings of the initial partic-

pants remain as a frozen table on the challenge web page 5 while

he SMIR platform supplies an automatically generated listing of

hese and all future results. 

Interested research teams could register for one or both sub-

hallenges. All submitted algorithms were required to be fully au-

omatic; no other restrictions were imposed. Until the day of the

hallenge, the SMIR platform listed over 120 registered users for

he ISLES 2015 challenge and a similar count of training dataset

ownloads. Of these, 14 teams provided testing dataset results for

ISS and 7 algorithms participated in SPES. Their affiliations and

ethods can be found in Table 2 . For a detailed description of the

lgorithms please refer to Appendix A . 

. Data and methods 

.1. SISS image data and ground truth 

We gathered 64 sub-acute ischemic stroke cases for the train-

ng and testing sets of the SISS challenge. A total of 56 cases were

upplied by the University Medical Center Schleswig-Holstein in

übeck, Germany. They were acquired in diagnostic routine with

arying resolutions, views, and imaging artifact load. Another eight

ases were scanned at the Department of Neuroradiology at the

linikum rechts der Isar in Munich, Germany. Both centers are

quipped with 3T Phillips systems. The local ethics committee ap-

roved their release under Az.14-256A. Full data anonymization

as ensured by removing all patient information from the files and

he facial bone structure from the images. 

Considered for inclusion were all cases with a diagnosis of is-

hemic stroke for which at least the set of T1-weighted (T1), T2-

eighted (T2), DWI ( b = 10 0 0 ) and FLAIR MRI sequences had been

cquired. Additional pathological deformation, such as, e.g., non-

troke WMHs, haemorrhages, or previous strokes, did not lead to

he exclusion of a case. Scans performed outside the sub-acute

troke development phase were rejected. As the exact time passed

ince stroke onset is not known in most cases, lesions were visu-

lly classified as sub-acute infarct if a pathologic signal was found

oncomitantly in FLAIR and DWI images (presence of vasogenic

nd cytotoxic edema with evidence of swelling due to increased

ater content). 

In order to focus the analysis on the participating algo-

ithms rather than assessing the preprocessing techniques em-

loyed by each team, all cases were consistently preprocessed

y the organizers: The MRI sequences are skull-stripped using

ET2 ( Jenkinson et al., 2005 ) with a manual correction step where

equired, b-spline-resampled to an isotropic spacing of 1 mm 

3 , and
5 www.isles-challenge.org 

http://grand-challenge.org
http://grand-challenge.org
http://www.smir.ch
http://www.isles-challenge.org
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Table 2 

List of all participants in the ISLES challenge. All teams are color coded for easier ref- 

erence in all further listings. The ML column denotes whether the submitted algo- 

rithm is based on machine learning. Refer to the SISS and SPES columns for the sub- 

challenges each team participated in. Additionally, a very short summary of each method 

is provided. For a detailed description of each algorithm and used abbreviations see 

Appendix A . 

Team FN SN ML SISS SPES 

–
UK-Imp1 Liang Chen Y Y 

Regional RFs (dorsal, medial, ventral) 

–
DE-Dkfz Michael Goetz Y Y 

Image selector RF + online lesion ET 

–
FI-Hus Hanna Halme Y Y 

RF (deviation from global average) + Contextual Clustering (CC) 

–
CA-McGill Andrew Jesson Y Y 

Local classifiers (554 GMM) + regional RF 

–
UK-Imp2 Konstantinos Kamnitsas Y Y 

2-path 3D CNN + CRF 

–
US-Jhu John Muschelli Y Y 

RF (e.g. SD, skew, kurtosis) 

–
SE-Cth Qaiser Mahmood Y Y 

RF (e.g. gradient, entropy) 

–
US-Odu Syed Reza Y Y 

RF (many features, e.g., texture) 

–
TW-Ntust Ching-Wei Wang Y Y 

RF (many features, e.g., edge) 

–
CN-Neu Chaolu Feng N Y Y 

Bias-correcting Fuzzy C-Means + Level Set 

–
BE-Kul1 Tom Haeck N Y Y 

Tissue priors + EM-opt MRF + Level Set on sequence subset 

–
CA-USher Francis Dutil Y Y Y 

2-path 2D CNN 

–
DE-UzL Oskar Maier Y Y Y 

RF (anatomically and appearance motivated features) 

–
BE-Kul2 David Robben Y Y Y 

Cascaded ETs 

–
DE-Ukf Elias Kellner N Y 

Rule-based hemisphere-comparing approach 

–
CH-Insel Richard McKinley Y Y 

RF (case bootstrapped forest of forests) 
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rigidly co-registered to the FLAIR sequences with the elastix tool-

box ( Klein et al., 2010 ). 

Acquired in a routine diagnostic setting and representing the

clinical reality, these data sets are afflicted by secondary patholo-

gies, such as stroke similar deformations and chronic stroke le-

sions, as well as imaging artifacts, varying acquisition orientations,

differing resolutions, or movement artifacts. 

In addition to the wide range of acquisition and clinically re-

lated variety, the sub-acute lesions themselves display a wide

range of variability ( Table 3 ). Great care has been taken to pre-

serve the diversity of the stroke cases when splitting the data into

testing and training datasets: both contain single- and multi-focal

cases, small and large lesions, and were divided by further crite-

ria ( Table 3 ). The main difference between the sets is the addition

of the eight cases from Munich to the testing dataset only; hence,

this second center data was not available during the training phase

( Table 4 ). 

All expert segmentations used in ISLES were prepared by ex-

perienced raters. For SISS, two ground truth sets (GT01 and GT02)

were created and the segmentations were performed on the FLAIR

sequence, which is known to exhibit lower inter-rater differences
 t
s, e.g., T2 ( Neumann et al., 2009 ). The guidelines for expert raters

ere as follows: 

1. The segmentation is performed on the FLAIR sequence 

2. Other sequences provide additional information 

3. Only sub-acute ischemic stroke lesions are segmented 

4. Partially surrounded sulci/fissures are not included 

5. Very thin/small or largely surrounded sulci/fissures are in-

cluded 

6. Surrounded haemorrhagic transformations are included 

7. The segmentation contains no holes 

8. The segmentation is exact but spatially consistent (no sudden

spikes or notches) 

Acute infarct lesions (DWI signal for cytotoxic edema only, no

LAIR signal for vasogenic edema) or residual infarct lesions with

liosis and scarring after infarction (no DWI signal for cytotoxic

dema, no evidence of swelling) were not included. For the train-

ng, only GT01 was made available to the participants, while the

esting data evaluation took place over both sets. 



O. Maier et al. / Medical Image Analysis 35 (2017) 250–269 255 

Table 3 

Stroke lesion characteristics of the 64 SISS cases. The strong diversity is represen- 

tative for stroke lesions and emphasizes the difficulty of the task. μ denotes the 

mean value, [ min, max ] the interval and n the total count. Abbreviations are: an- 

terior cerebral artery (ACA), middle cerebral artery (MCA), posterior cerebral artery 

(PCA) and basilar artery (BA). 

Lesion count μ = 2 . 46 

[1, 14] 

Lesion volume μ = 17 . 59 ml 

[1 .00, 346.06] 

Haemorrhage present n 1 = 12 

0 = no,1 = yes 

Non-stroke WMH load μ = 1 . 34 

0 = none, 1 = small, 2 = medium, 3 = large 

Lesion localization (lobes) n 1 = 11 , n 2 = 24 , n 3 = 42 , n 4 = 17 , n 5 = 2 , n 6 = 6 

1 = frontal, 2 = temporal, 3 = parietal, 4 = occipital, 

5 = midbrain, 6 = cerebellum 

Lesion localization n 1 = 36 , n 2 = 49 

1 = cortical, 2 = subcortical 

Affected artery n 1 = 6 , n 2 = 45 , n 3 = 11 , n 4 = 5 , n 5 = 0 

1 = ACA, 2 = MCA, 3 = PCA, 4 = BA, 5 = other 

Midline shift n 0 = 51 , n 1 = 5 , n 2 = 0 

0 = none, 1 = slight, 2 = strong 

Ventricular enhancement n 0 = 38 , n 1 = 15 , n 2 = 3 

0 = none, 1 = slight, 2 = strong 

Laterality n 1 = 18 , n 2 = 35 , n 3 = 3 

1 = left, 2 = right, 3 = both 

Table 4 

Details of the SISS data. 

number of cases 28 training and 36 testing 

number of medical centres 1 (train), 2 (test) 

number of expert segmentations for each case 1 (train), 2 (test) 

MRI sequences FLAIR, T2 TSE, T1 TFE/TSE, DWI 
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Table 5 

Details of the SPES data. 

Number of cases 30 training and 20 testing 

Number of medical centres 1 

Number of expert segmentations for 

each case 

1 

MRI sequences T1c, T2, DWI, CBF, CBV, TTP, Tmax 

Table 6 

Stroke lesion characteristics of the 50 SPES cases. The cases are restricted 

to MCA stroke eligible for cerebrovascular treatment. μ denotes the mean 

value, [ min, max ] the interval and n the total count. 

Lesion count μ = 1 

Not always connected, but single occlusion as source. 

Lesion volume μ = 133 . 21 ml 

[45 .62, 252.20] 

Affected artery all MCA 

Laterality n 1 = 22 , n 2 = 28 , n 3 = 0 

1 = left, 2 = right, 3 = both 
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.2. SPES image data and ground truth 

All patients included in the SPES dataset were treated for acute

schemic stroke at the University Hospital of Bern between 2005

nd 2013. Patients included in the dataset received the diagnosis

f ischemic stroke by MRI with an identifiable lesion on DWI as

ell as on perfusion weighted imaging (PWI), with a proximal oc-

lusion of the middle cerebral artery (MCA) (M1 or M2 segment)

ocumented on digital subtraction angiography. An attempt at en-

ovascular therapy was undertaken, either by intra-arterial throm-

olysis (before 2010) or by mechanical thrombectomy (since 2010).

he patients had a minimum age of 18 and the images were not

ubject to motion artifacts. 

The stroke MRI was performed on either a 1.5T (Siemens Mag-

etom Avanto) or 3T MRI system (Siemens Magnetom Trio). The

troke protocol encompassed whole brain DWI (24 slices, thickness

 mm, repetition time 3200 ms, echo time 87 ms, number of aver-

ges 2, matrix 256 × 256) yielding isotropic b10 0 0 images. For PWI

he standard dynamic-susceptibility contrast enhanced perfusion

RI (gradient-echo echo-planar imaging sequence, repetition time

410 ms, echo time 30 ms, field of view 230 × 230 mm, voxel size:

.8 × 1.8 × 5.0 mm, slice thickness 5 mm, 19 slices, 80 acquisi-

ions) was acquired. PWI scans were recorded during the first pass

f a standard bolus of 0.1 mmol/kg gadobutrol (Gadovist, Bayer

ealthcare). Contrast medium was injected at a rate of 5 ml/s

ollowed by a 20 ml bolus of saline at a rate of 5 ml/s. Perfu-

ion maps were obtained by block-circular singular value decom-

osition using the Perfusion Mismatch Analyzer (PMA, from Acute

troke Imaging Standardization Group ASIST) Ver.3.4.0.6. The arte-

ial input function is automatically determined by PMA based on

istograms of peak concentration, time-to-peak and mean transit

ime. 

Sequences and derived maps made available to the participants

re T1 contrast enhanced (T1c), T2, DWI, cerebral blood flow (CBF),
erebral blood volume (CBV), time-to-peak (TTP), and time-to-max

Tmax) ( Table 5 ). 

For preprocessing, all images were rigidly registered to the T1c

ith constant resolution of 2 × 2 × 2 mm and automatically skull-

tripped ( Bauer et al., 2013 ). This resolution was chosen in regard

o the low 1.8.8 × 5.0 mm resolution of the PWI images. Together

ith the removal of all patient data from the files, full anonymiza-

ion was achieved. 

To determine the eligibility of a patient for treatment or to as-

ess a treatment response in clinical trials, the pretreatment es-

imation of the potentially salvageable penumbral area is crucial.

 6 second threshold applied to the Tmax map has been sug-

ested ( Straka et al., 2010 ) and successfully applied in large multi-

enter trials ( Lansberg et al., 2012 ) to determine the area of hy-

operfusion (i.e. penumbra + core). But this approach requires the

anual setting of a region of interest as well as considerable man-

al postprocessing. For SPES, we are interested in whether ad-

anced segmentation algorithms could replace manual correction

f thresholded perfusion maps, yielding faster and reproducible es-

imation of tissue at risk volume. 

The hypoperfused tissue was segmented semi-manually with

licer 3D Version 4.3.1 by a medical doctor with a preadjusted

hreshold for Tmax of 6 seconds applied to regions of interest as

escribed in Straka et al. (2010) and Lansberg et al. (2012) , fol-

owed by a manual correction step consisting in removing sulci,

on-stroke pathologies and previous infarcts by taking into account

he other perfusion maps and anatomical images. The label repre-

ents the stroke-affected regions with restricted perfusion, which

s the first requirement to determine the penumbral area via a

erfusion-diffusion mismatch approach. 

The collected data therefore includes a variety of acute MCA

ases ( Table 6 ) that were split into training and testing cases by

n experienced neuroradiologist using as criteria the complexity in

isually defining the extent of the penumbral area. 

The training dataset is additionally equipped with a manually

reated DWI segmentation ground truth set, which roughly de-

otes the stroke’s core area. These are not considered in the chal-

enge. 

.3. Evaluation metrics 

As measures we employ (1) Dice’s coefficient (DC), which de-

cribes the volume overlap between two segmentations and is sen-

itive to the lesion size; (2) the average symmetric surface dis-

ance (ASSD), which denotes the average surface distance between

wo segmentations; and (3) the Hausdorff distance (HD), which is
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Table 7 

SISS challenge leaderboard after evaluating the 14 participating methods on the testing 

dataset. The rank is the final measure for ordering the algorithms’ performances relative 

to each other. The cases column denotes the number of successfully (i.e., all DC > 0) 

segmented cases. All evaluation measures are given in mean ± STD. Please note that the 

ASSD and HD values were computed excluding the failed cases (they do, however, incur 

the lowest vacant rank for these cases). The three next-to-last rows display the results 

obtained with different fusion approaches. The last row shows the inter-observer results 

for comparison. 

Rank Method Cases ASSD (mm) DC [0,1] HD (mm) 

3 .25 
–

UK-Imp2 34/36 05 .96 ± 09.38 0 .59 ± 0.31 37 .88 ± 30.06 

3 .82 
–

CN-Neu 32/36 03 .27 ± 03.62 0 .55 ± 0.30 19 .78 ± 15.65 

5 .63 
–

FI-Hus 31/36 08 .05 ± 09.57 0 .47 ± 0.32 40 .23 ± 33.17 

6 .40 
–

US-Odu 33/36 06 .24 ± 05.21 0 .43 ± 0.27 41 .76 ± 25.11 

6 .67 
–

BE-Kul2 33/36 11 .27 ± 10.17 0 .43 ± 0.30 60 .79 ± 31.14 

6 .70 
–

DE-UzL 31/36 10 .21 ± 09.44 0 .42 ± 0.33 49 .17 ± 29.6 

7 .07 
–

US-Jhu 33/36 11 .54 ± 11.14 0 .42 ± 0.32 62 .43 ± 28.64 

7 .54 
–

UK-Imp1 34/36 11 .71 ± 10.12 0 .44 ± 0.30 70 .61 ± 24.59 

7 .66 
–

CA-USher 27/36 09 .25 ± 09.79 0 .35 ± 0.32 44 .91 ± 32.53 

7 .92 
–

BE-Kul1 30/36 12 .24 ± 13.49 0 .37 ± 0.33 58 .65 ± 29.99 

7 .97 
–

CA-McGill 31/36 11 .04 ± 13.68 0 .32 ± 0.26 40 .42 ± 26.98 

9 .18 
–

SE-Cth 30/36 10 .00 ± 06.61 0 .38 ± 0.28 72 .16 ± 17.32 

9 .21 
–

DE-Dkfz 35/36 14 .20 ± 10.41 0 .33 ± 0.28 77 .95 ± 22.13 

10 .99 
–

TW-Ntust 15/36 07 .59 ± 06.24 0 .16 ± 0.26 38 .54 ± 20.36 

majority vote 34/36 11 .47 ± 19.89 0 .51 ± 0.30 38 .11 ± 30.45 

STAPLE 36/36 12 .90 ± 10.64 0 .44 ± 0.32 71 .08 ± 25.03 

SIMPLE 34/36 07 .83 ± 14.97 0 .57 ± 0.29 29 .40 ± 28.11 

inter-observer 36/36 02 .02 ± 02.17 0 .70 ± 0.20 15 .46 ± 13.56 

Fig. 3. Significant differences between the 14 participating methods’ case ranks ac- 

cording to a two-sided Wilcoxon signed-rank test ( p < 0.025). Each node represents 

a team, each edge a significant difference of the tail side team over the head side 

team. Therefore, the less outgoing and the more incoming edges a team has (de- 

noted by numbers in brackets (# out/ # in ) for easier interpretation), the weaker its 

method compared to the others. The saturation of the node colors indicates the 

strength of a method, where better methods are highlighted with more saturated 

colors. Note that all teams with the same number of incoming and outgoing edges 

perform, statistically spoken, equally well. A higher importance of incoming over 

outgoing edges or vice-versa cannot be readily established. (For interpretation of 

the references to colour in this figure legend, the reader is referred to the web ver- 

sion of this article.) 

Fig. 4. Adaptation to the data from the second medical center. The graph shows 

each method’s average DC scores on the 28 cases from the first and the eight cases 

from the second medical center. The methods are color coded. (For interpretation 

of the references to colour in this figure legend, the reader is referred to the web 

version of this article.) 

Fig. 5. Differences in performance on the two ground truth sets. The graph shows 

each methods average DC scores on the 36 testing dataset cases broken down by 

ground truth set. A star ( ∗) before a team’s name denotes statistical significant 

difference according to a paired Student’s t -test with p < 0.05. The methods are 

color coded. (For interpretation of the references to colour in this figure legend, the 

reader is referred to the web version of this article.) 
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Fig. 6. Box plots of the 14 teams’ DC results on all testing dataset cases, i.e., the 

first box was computed from all teams’ results on the first case. The band in the 

box denotes the median, the upper and lower limits the first and third quartile. 

Outliers are plotted as diamonds. 
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 measure of the maximum surface distance and hence especially

ensitive to outliers. 

The DC is defined as 

C = 

2 | A ∩ B | 
| A | + | B | (1) 

ith A and B denoting the set of all voxels of ground truth and

egmentation respectively. To compute the ASSD we first define the

verage surface distance (ASD), a directed measure, as 

SD (A S , B S ) = 

∑ 

a ∈ A S min b∈ B S d(a, b) 

| A S | (2)

nd then average over both directions to obtain the ASSD 

SSD (A S , B S ) = 

ASD (A S , B S ) + ASD (B S , A S ) 

2 

(3)

ere A S and B S denote the surface voxels of ground truth and seg-

entation respectively. Similar, the HD is defined as the maximum

f all surface distances with 

D (A S , B S ) = max { max 
a ∈ A S 

min 

b∈ B S 
d(a, b) , max 

b∈ B S 
min 

a ∈ A S 
d(b, a ) } (4)

he distance measure d ( · ) employed in both cases is the Eu-

lidean distance, computed taking the voxel size into account. 

.4. Ranking 

After selecting suitable evaluation metrics, we face the problem

f establishing a meaningful ranking for the competing algorithms

s the different measures are neither in the same range nor direc-

ion. 

In the simplest case, metrics are evaluated individually and dif-

erent rankings are offered ( Menze et al., 2015 ). But this would

ean neglecting the aspects revealed by the remaining measures

nd is hence a bad choice for most challenges. 

A second approach taken by some challenges ( Styner et al.,

008 ) is to compare two expert segmentations against each other.

he resulting evaluation values are then assumed to indicate the

pper limit and hence denote the 100 percent mark of each mea-

ure. New segmentations are then evaluated and the values com-

ared to their respective 100 percent marks, resulting in a percent-

ge rating for each measure. Drawback is that for measure with an

nfinite range, such as the ASSD, one has to define an arbitrary zero

ercent mark. 

We chose a third approach based on the ideas

f Murphy et al. (2011) that builds on the concept that a ranking

eveals only the direction of a relationship between two items

i.e. higher, lower, equal) but not its magnitude. Basically, each

articipant’s results are ranked per case according to each of the

hree metrics and then the obtained ranks are averaged. For a

ore detailed account see Appendix B . 
.5. Label fusion 

The specific design of each automatic segmentation algorithm

ill result in certain strengths and weaknesses for particular chal-

enges in the present image data. Multiple strategies have been

roposed in the past to automatically determine the quality of sev-

ral raters or segmentation algorithms ( Xu et al., 1992; Warfield

t al., 2004; Langerak et al., 2010 ). These algorithms enable a

uitable selection and/or fusion to best combine complementary

egmentation approaches. To study and compensate the potential

arying segmentation accuracy of all methods for individual cases,

e apply the following three popular label fusion algorithms to

heir test results (see Tab 7 , bottom): First, majority vote ( Xu et al.,

992 ), which simply counts the number of foreground votes over

ll classification results for each voxel separately and assigns a

oreground label if this number is greater than half the number of

lgorithms. Second, the STAPLE algorithm ( Warfield et al., 2004 ),

hich performs a simultaneous truth and performance level es-

imation, that calculates a global weight for each rater and at-

empts to remove the negative influence of poor algorithms dur-

ng majority voting. Third, the SIMPLE algorithm ( Langerak et al.,

010 ), which employs a selective and iterative method for perfor-

ance level estimation by successively removing the algorithms

ith poorest accuracy as judged by their respective Dice score

gainst a weighted majority vote, where the weights are deter-

ined by the previously estimated performances. 

. Results: SISS 

.1. Inter-observer variance 

Comparing the two ground truths of SISS against each other

rovides (1) the baseline above which an automatic method can

e considered to produce results superior to a human rater and

2) a measure of the task’s difficulty ( Table 7 , last row). The two

xpert segmentations overlap at least partially for all cases. Com-

ared to similar tasks, such as, e.g., brain tumor segmentation, for

hich inter-observer DC values of 0.74 ± 0.13 to 0.85 ± 0.08 are

eported ( Menze et al., 2015 ), the ischemic stroke lesion segmen-

ations problem can be considered difficult with a mean DC score

f 0.70 ± 0.20. 

.2. Leaderboard 

The main result of the SISS challenge is a leaderboard for

tate-of-the-art methods in sub-acute ischemic stroke lesion seg-

entation ( Table 7 ). The evaluation measures and ranking sys-

em employed are described in the method part of this article

 Section 3.4 ). No participating method succeeded in segmenting all

6 testing cases successfully (DC > 0) and the best scores are still

ubstantially below the human rater performance. Note that for

ll following experiments, we will focus on DC averages only as

he ASSD and HD values cannot be readily computed for the failed

ases and are thus not suitable for a direct comparison of methods

ith differing numbers of failure cases. 

.3. Statistical analysis 

We performed a statistical analysis of the results to rule

ut random influences on the leaderboard ranking. Each pair of

ethods is compared with the two-sided Wilcoxon signed-rank

est ( Wilcoxon, 1945 ), a nonparametric test of the null hypothe-

is that two samples come from the same population against an

lternative hypothesis ( Fig. 3 ). 

The two highest ranking methods, UK-Imp2 and CN-Neu, show

o statistically significant differences with a confidence of 95%
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Fig. 7. Visual results for selected difficult (10, 17, 23), easy (2, 5, 13), and second center (29, 32) cases from the SISS testing dataset. The first row shows the distribution of 

all 14 submitted results on a slice of the FLAIR volume. The second row shows the same image with the ground truth (GT01) outlined in red. And the third row shows the 

corresponding DWI sequence. Please refer to the online version for colors. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O  

p  

m  

t  

o  

G  

s

 

o  

f  

t  

s  

w  

t  

n  

p

4

 

t  

a

 

d  

t  

a  

t  

c

 

a  

h  

n  

t  

o  

w  
(i.e. p < 0.025). No other algorithm performs better than them,

and they both are better than the 12 remaining ones. Next comes

a group of four methods (FI-Hus, BE-Kul2, US-Odu, De-UzL) to

which only the two winners prove superior. But among these,

FI-Hus takes the highest position as it is statistically better than

eight other methods, while the other three only prove superior to

at most four competitors. The established leaderboard ranking is

largely confirmed by the statistical analysis. 

4.4. Impact of multi-center data 

Cases acquired at different medical centers can differ greatly in

appearance. A good automatic stroke lesion segmentation method

should be able to cope with these variations. We broke down each

method’s results by medical center ( Fig. 4 ) to test whether this

holds true for the participating algorithms. 

Since the training dataset contained only cases from the first

center, the difference in performance should reveal the methods’

generalization abilities. We observed that not a single algorithm

reached second center scores comparable to its first center scores.

This is a strong hint towards a difficult adaptation problem. 

4.5. Combining the participants’ results by label fusion 

Applying the three label fusion algorithms presented in

Section 3.5 lead to the results presented in Table 7 at the bottom.

We found that the SIMPLE algorithm performed best and could re-

duce outliers as evident by a lower Hausdorff distance. When using

majority voting or STAPLE, the negative influence of multiple failed

segmentations that are correlated yielded a lower accuracy than at

least the two top ranked algorithms. 

4.6. Dependency on observer variations 

A good segmentation method does not only adapt well to sec-

ond center data but equally to another observer’s ground truth.
nly the GT01 ground truth set was made available to the partici-

ating teams during the training/tuning phase. Hence, particularly

achine learning solutions could be expected to show deficits on

he second rater ground truth GT02. To test how well the meth-

ds generalize, we compared their performance on the testing sets

T01 ground truth against their performance on the formerly un-

een GT02 set ( Fig. 5 ). 

The average DC scores of each method differed only slightly

ver the ground truth sets. Only in a single case, UK-Imp2, the dif-

erence was significant (paired Student’s t -test with p < 0.05), but

he higher results were obtained for the, formerly unseen, GT02

et. We can hence conclude that all algorithms generalized well

ith respect to expert segmentations of different raters. An addi-

ional data analysis showed that the ranking of the methods does

ot change if only one or the other of the ground truth sets is em-

loyed for evaluation. 

.7. Outlier cases 

A benchmark is only as good as its data. The average scores ob-

ained on the different cases of the testing dataset differed widely

nd some proved especially difficult or easy to segment ( Fig. 6 ). 

For cases 29 to 36, this variation can be explained through the

ifferent acquisition parameters at the second medical center. But

he weak performance of most methods on cases such as 10, 17

nd 23 must have other reasons. We compared these visually to

he overall most successful cases 2, 5 and 13 to detect possible

ommonalities ( Fig. 7 ). 

The three cases that were successfully processed by nearly all

lgorithms show large, clearly outlined lesions with a strongly

yperintense FLAIR signal. In two of these cases, the DWI sig-

al is relatively weak, in some areas nearly isointense. Still, for

hese cases the algorithms displayed the highest confidence. One

f the most difficult cases (17) contains only a single small lesion

ith marginal FLAIR and strong DWI hyperintensities. Another case
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Table 8 

Correlation between the SISS case characteristics and 

the average DC values over all teams. A ρ denotes 

a Spearman correlation, a t a Student’s t -test. All p- 

values are two tailed ( p 2 ). Significant results accord- 

ing to a 95% confidence interval are denoted by a 
∗ . Secondary tests appearing in the table were per- 

formed against the lesion volume rather than the av- 

erage DC values. 

Characteristic Test p 2 

Lesion count ρ = −0 . 21 0 .23 

Lesion volume ρ = +0 . 76 0 .00 ∗

Haemorrhage present t = +2 . 29 0 .03 ∗

vs. lesion volume t = +4 . 33 0 .00 ∗

Non-stroke WMH load ρ = −0 . 01 0 .97 

Midline shift t = +0 . 51 0 .62 

Ventricular enhancement t = +1 . 56 0 .13 

Laterality t = +2 . 66 0 .01 ∗

vs. lesion volume t = +2 . 12 0 .03 ∗

Movement artifacts ρ = −0 . 30 0 .08 

Imaging artifacts ρ = +0 . 24 0 .15 
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Fig. 8. Visualization of significant differences between the 7 participating methods’ 

case ranks. Each node represents a team, each edge a significant difference of the 

tail side team over the head side team according to a two-sided Wilcoxon signed- 

rank test ( p < 0.025). Therefore, the less outgoing and the more incoming edges 

a team has (denoted by numbers in brackets (# out/ # in ) for easier interpretation), 

the weaker its method compared to the others. The saturation of the node colors 

roughly denotes the strength of a method, where better methods are depicted with 

stronger colors. Note that all teams with the same number of incoming and outgo- 

ing edges perform, statistically spoken, equally well. 

Fig. 9. DC score result of all 7 SPES teams for each of the testing dataset cases. 

Most methods show a similar pattern. Please refer to the online version for color. 
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10), equally showing a small lesion, has a stronger FLAIR support,

ut also displays large periventricular WMHs that seem to con-

use most algorithms despite missing DWI hyperintensities. This

ehavior was also visible for the third of the failed cases (17):

ere, the actual lesion is correctly segmented by most methods

s it is clearly outlined with strong FLAIR and DWI support. But

any algorithms additionally delineated parts of the periventricu-

ar WMHs, which again only show up in the FLAIR sequence. 

.8. Correlation with lesion characteristics 

The properties of the cases might have an influence on the seg-

entation quality as some are clearly easier to segment than oth-

rs. To find such correlations, we related various lesion characteris-

ics to the average DC scores obtained over all teams using suitable

tatistics ( Table 8 ). 

Significant moderate correlation was found between the lesion

olume and the average DC values. A statistically significant dif-

erence of means was found when comparing cases with haemor-

hage present and cases without, as well as between left hemi-

pheric and right hemispheric lesions. Since the characteristics

annot be assumed to be independent, we furthermore tested the

ast two groupings for significant differences in lesion volumes be-

ween the groups. This was found in both cases (see secondary test

or each of these two characteristics). We could not reliably estab-

ish a significant influence on the results for any single parameter.

ven the influence of lesion volume is not certain as we will detail

n the discussion. 

. Results: SPES 

.1. Leaderboard 

To establish an overall leaderboard for state-of-the-art meth-

ds in automatic acute ischemic stroke lesion segmentation,

ll submitted results were ranked relatively as described in

ection 3.4 ( Table 9 ). 

We opted not to calculate the HD for SPES as it does not re-

ect the clinical interest of providing volumetric information of the

enumbra region. In addition, since some lesions in SPES contained

oles, the HD was not a useful metric for gauging segmentation

uality. This ranking is the outcome of the challenge event and was

sed to determine the competition winners. No completely failed

egmentation (DC < 0) was submitted for any of the algorithms
nd the evaluation results of the highest ranking teams denote a

igh segmentation accuracy. 

.2. Statistical analysis 

A strict ranking is suited to determine the winners of a com-

etition, but average performance scores are ignoring the spread

f the results. To this end, we pursued a statistical analysis that

akes into account the dispersion in the distribution of case-wise

esults, and we compare each pair of methods with the two-sided

ilcoxon signed-rank test ( Fig. 8 ). 

In this test, we do not observe significant differences between

he two first ranked methods nor between the third and fourth

lace. Hence, SPES has two first ranked, two second ranked, and

ne third ranked method according to the statistical analysis. 

.3. Results per case and method 

A similarity in performance based on statistical tests and aver-

ge scores between the first two and second two methods was al-

eady established. To test whether these pairs behave similarly for

ll of the testing dataset cases, we plotted the DC scores of each

eam against the cases ( Fig. 9 ). 

The performance lines of the highest ranked methods, CH-Insel

nd DE-UzL, display a very similar pattern and, except for some
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Table 9 

SPES challenge leaderboard after evaluating the 7 participating methods on the testing 

dataset. The rank is the final measure for ordering the algorithms’ performances relative 

to each other. The cases column denotes the number of successfully (i.e., all DC > 0) seg- 

mented cases. All evaluation measures are given in mean ± STD. Since no method failed 

completely on a single case, the reported ASSD values are suitable for a direct comparison 

between methods. The three next-to-last rows display the results obtained with different 

fusion approaches. The last two rows denote thresholding methods employed in clinical 

studies. 

rank method cases ASSD (mm) DC [0,1] 

2 .02 
–

CH-Insel 20/20 1 .65 ± 1.40 0 .82 ± 0.08 

2 .20 
–

DE-UzL 20/20 1 .36 ± 0.74 0 .81 ± 0.09 

3 .92 
–

BE-Kul2 20/20 2 .77 ± 3.27 0 .78 ± 0.09 

4 .05 
–

CN-Neu 20/20 2 .29 ± 1.76 0 .76 ± 0.09 

4 .60 
–

DE-Ukf 20/20 2 .44 ± 1.93 0 .73 ± 0.13 

5 .15 
–

BE-Kul1 20/20 4 .00 ± 3.39 0 .67 ± 0.24 

6 .05 
–

CA-USher 20/20 5 .53 ± 7.59 0 .54 ± 0.26 

majority vote 20/20 1 .75 ± 0.39 0 .82 ± 0.08 

STAPLE 20/20 2 .40 ± 1.22 0 .82 ± 0.06 

SIMPLE 20/20 1 .69 ± 0.50 0 .83 ± 0.07 

Tmax > 6 s ( Christensen et al., 2010 ) 20/20 13 .02 ± 4.15 0 .27 ± 0.10 

Tmax > 6 s & size > 3 ml ( Straka et al., 2010 ) 20/20 7 .04 ± 4.99 0 .32 ± 0.13 
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small variation, reach mostly very similar DC values. It seems like

both methods are doing roughly the same. This observation does

not hold true for the two runner-ups, BE-Kul2 and CN-Neu. Both

methods display outliers towards the lower end and their perfor-

mances for the testing dataset cases are not as near to each other

as observed for the first two methods, i.e., while similar in average

performance, the methods seem to represent different segmenta-

tion functions. The lowest ranked methods mainly differ from the

others in the sense that they fail to cope with the more difficult

cases. 

Overall, most algorithms exhibit the same tendencies, i.e., imag-

ing and/or pathological differences between the cases seem to in-

fluence all methods in a similar fashion. In other words, the meth-

ods agree largely on what could be considered difficult and easy

cases. 

The outcome of combining all participants’ results by means of

label fusion (c.f. Section 3.5 ) yielded the highest Dice scores when

using the SIMPLE algorithm, but (for the SPES data) applying STA-

PLE and majority vote produce a similar outcome (see Table 9 , bot-

tom) 

5.4. Outlier cases 

We took a close look at two cases with overall low average DC

scores, cases 05 and 11, to establish a rationale behind the lower

performance of the algorithms ( Fig. 10 ). For case 05, we can be

observed two previous embolisms that cause a compensatory per-

fusion change, depicted as two hyperintensity regions within the

lesion area in the diffusion image and as hypoperfused areas in the

Tmax map. The difficulties associated to the segmentation of case

11 are related to an acute infarct presenting a mismatch with a in-

tensity pattern similar on the Tmax and in the borderline intensity

range of 6 seconds. In summary, the main difficulties faced by the

algorithms are related to physiological aspects, such as collateral

flow, previous infarcts, etc. 

6. Discussion: SISS 

With the SISS challenge, we provided a public dataset with a

fair and independent automatic evaluation system to serve as a

general benchmark for automatic sub-acute ischemic stroke lesion
egmentation methods. As main result of the challenge event, we

re able to assess the current state of the art performance in auto-

atic sub-acute ischemic stroke lesion segmentation and to give

ell-founded recommendations for future developments. In this

ection, we review the results of the experiments conducted, dis-

uss their potential implications, and try to answer the questions

osed in the introduction. 

Foremost, we aimed to establish if the task can be considered

olved: The answer is a clear no. Even the best methods are still

ar from human rater performance as set by the inter-rater results.

nd while the observers agreed at least partially in all cases, no

utomatic method segmented all cases successfully. Many issues

emain and a target-oriented community effort is required to im-

rove the situation. 

The best accuracy reached is an average DC of 0.6 with an ASSD

f 4 mm. The high average HD of at least 20 mm reveals many out-

iers and/or missed lesions. An STD of 0.3 DC denotes high varia-

ions; indeed, we observe many completely or largely failed cases

or each method. 

Previously published DC results on sub-acute data ( Table 1 ) are

ll slightly to considerably better. This underlines the need for

 public dataset for stroke segmentation evaluation that encom-

asses the entire complexity of the task as private datasets are

ften too selective and the reported results differ greatly without

roviding the information required to identify the causes behind

hese variations. 

The low scores obtained by all participating algorithms show

hat sub-acute ischemic stroke lesion segmentation is a very dif-

cult task. This is furthermore supported by the high inter-rater

ariations obtained, an observation that has been made before:

eumann et al. (2009) report median inter-rater agreement of

C = 0 . 78 and HD = 23 . 4 mm over 14 subjects and 9 raters and

iez et al. (20 0 0) volume differences of 18 ± 16%. 

.1. The most suitable algorithm and the remaining challenges 

The benchmark results were reviewed to identify the type of

lgorithm most suitable for sub-acute ischemic stroke lesion seg-

entation, but no definite winner could be determined. While

here are clear methodological differences between the submit-

ed methods, the same methodological approach (used in differ-
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Fig. 10. Sequences of some cases with a low (05 and 11) and high (15) average DC score over all 7 teams participating in SPES. The ground truth is painted red into the 

DWI sequence slices in the first column. The last column shows the distribution of the resulting segmentations on the gray-scale version of the TTP. All perfusion maps are 

windowed equally for direct comparison. Please refer to the online version for colors. 
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nt algorithms) may lead to substantially different performance.

e were not even able to determine clear performance differ-

nces between types of approaches: The two statistically equally

ell performing winners include one machine learning algorithm

ased on deep learning (UK-Imp2 with a convolutional neural net-

ork (CNN)) and one non-machine learning approach (CN-Neu

ith fuzzy C-means). We have to conclude that many of the par-

icipating algorithms are equally suited and that the devil is in

he detail. This finding is supported by the wide spread of per-

ormances for random forest (RF) methods, including the third and

he next to last position in the ranking. Adaptation to the task and

uning of the hyperparameters is the key to good results. An obser-

ation made is that the three winners all use a combination of two

lgorithms, possibly compensating the weak points of one with the

ther. 

All participating methods showed good generalization abilities

egarding the second rater. Since the inter-rater variability is high,

e can assume that even the machine learning algorithms did not

uffer from overfitting or, in other words, managed to avoid the

nter-rater idiosyncrasies. Another explanation could be that the

ifferences between the two raters fall into regions where little

mage information supports the presence of lesions. 

Quite contrary, not a single algorithm adapted well to the sec-

nd medical center data. Differences in MRI acquisition parameters

nd machine dependent intensity variations are known to pose a

hallenge for all automatic image processing methods ( Han et al.,

006 ). Seemingly, the center-dependent differences are difficult to

earn or model. Regrettably, we did not have enough second cen-

er data in the testing dataset to draw a conclusive picture as the

bserved high variations might equally be caused by the consid-

rably smaller lesion sizes in the second center dataset or other

actors not attributable to multi-center variations ( Jovicich et al.,

009 ). Special attention should be paid to this point when devel-

ping applications. 

b  

g  
Cases for which all methods obtained good results show mostly

arge and well delineated lesions with a strong FLAIR signal

hile small lesions with only a slightly hyperintense FLAIR sup-

ort posed difficulties. Surprisingly, quite a number of algorithms

ave trouble differentiating between sub-acute stroke lesions and

eriventricular WMHs despite the fact that the latter shows an

sointense DWI signal. This might be attributable to the strongly

yperintense DWI artifacts and often inhomogeneous lesion ap-

earance, reducing the methods’ confidence in the DWI signal. It

s hard to judge whether these findings hold true for other state-

f-the-art methods because most publications provide only limited

nformation and discussions on the particularities of their perfor-

ance or failure scenarios. 

None of our collected lesion characteristics was found to exhibit

 significant influence on the results ( Table 8 ): The lesion volume

orrelates significantly with the scores, but the DC is known to

each higher values for larger volumes. The apparent performance

ifferences in the presence of haemorrhages and the dependency

n laterality could both be explained by differences in the respec-

ive group’s lesion sizes. To investigate combinations of character-

stics with, e.g., multifactorial ANOVAs, a larger number of cases

ould be required. 

The conclusions drawn here are meant to be general and valid

or most of the participating methods. A method-wise discussion

s out of the scope of this article. Any interested reader is invited

o download the participants’ training dataset results and perform

er/his own analysis to test whether these findings hold true for a

articular algorithm. 

.2. Recommendations and limitations 

When developing new methods, no particular algorithm should

e excluded a-priori. Instead, the characteristics of stroke lesion

ppearances, their evolution, and the observed challenges should

e studied in detail. Based on this information, new solutions tar-

eting the specific problems can be developed. A specific algorithm
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can then be selected depending on how well the envisioned so-

lutions can be integrated. Where possible, the strength of differ-

ent approaches should be combined to counterbalance their weak-

nesses. 

Evaluation should never be solely conducted on a private

dataset as the variation between the cases is too large for a small

set to compensate for all of them and, hence, renders any fair com-

parison impossible. We believe that with SISS we supplied a test-

ing dataset which suitably reflects the high variation in stroke le-

sions characteristics and encompassed the complexity of the seg-

mentation task. 

Special attention should be put on the adaptation to second

center data, which proved to be especially difficult. One could

either concentrate on single-center solutions, try to develop a

method that can encompass the large inter-center variations, or

aim for an approach that can be specifically adapted. The whole

subject requires further investigation and should not be handled

lightly. 

Considering that multiple complete failures were exhibited, it

would be interesting to develop solutions that allow automatic

segmentation algorithms to signal a warning when they assume

to have failed on a segmentation. This problem is related to multi-

classifier competence, which few publications have dealt with to

date ( Woloszynski and Kurzynski, 2011; Galar et al., 2013 ). 

Label fusion (see Section 3.5 ) and automatic quality rating

may be a potential avenue to compensate for different short-

comings of multiple algorithms that have been applied to the

same data. We found that up to some degree the SIMPLE algo-

rithm ( Langerak et al., 2010 ) was able to improve over the aver-

age participants’ results by automatically assigning a higher weight

to the respective algorithm that performed best for a given image.

The weights obtained with the SIMPLE algorithm for each method

may be used as an a priori selection of effective algorithms in the

absence of manual segmentations. There is, however, a risk of a

negative influence of multiple failed segmentations that are cor-

related as evident by the generally lower accuracy of the STAPLE

fusion ( Tables 7 and 9 ). 

Physicians and clinical researchers should not expect a fully au-

tomatic, reliable, and precise solution in the near future; the task

is simply too complex and variable for current algorithms to solve.

Instead, the findings of this investigation can help them to iden-

tify suitable solutions that can serve as support tools: In particu-

lar clearly outlined, large lesions are already segmented with good

results, which are usually tedious to outline by hand. For smaller

and less pronounced lesions the manual approach is still recom-

mended. Furthermore, they should be aware that individual adap-

tations to each data source are most likely required - either by tun-

ing the hyperparameters or through machine learning. 

7. Discussion: SPES 

All the best ranking methods show high average DC, low ASSD

and only minimal STD, denoting accurate and robust results. A lin-

ear regression analysis furthermore revealed a good volume fit for

the best methods (CH-Insel: r = 0 . 87 and DE-UzL: r = 0 . 93 ). We

can say that reliable and robust perfusion lesion estimation from

acute stroke MRI is in reach. For a final answer, a thorough in-

vestigation of the inter- and intra-rater scores would be required,

which lies out of the scope of this work. 

In clinical context a Tmax thresholding at > 6 s was estab-

lished to correlate best with other cerebral blood flow mea-

sures ( Takasawa et al., 2008; Olivot et al., 2009b ) and final le-

sion outcome ( Olivot et al., 2009a; Christensen et al., 2010; Fork-

ert et al., 2013 ). It is already used in large studies ( Lansberg et al.,

2012 ). We started out with the same method when creating the

ground truth for SPES, but followed by considerable human correc-
ion. The comparison against the simple thresholding ( Table 9 , sec-

nd to last row) hence gives an idea of the intervention in creat-

ng the ground truth. Compared against the participating methods,

t becomes clear that these managed to capture the physicians in-

ention when segmenting the perfusion lesion quite well and that

imple thresholding might not suffice. 

An improved version proposed by Straka et al. (2010) , where

inary objects smaller than 3 ml are additionally removed, leads

o better results ( Table 9 , last row) than simple thresholding but

till far from SPES’ algorithms. Thresholding is clearly not a suitable

pproach for penumbra estimation. 

The discrepancy between the relatively good results re-

orted by Olivot et al. (2009a ), Christensen et al. (2010) and

traka et al. (2010) and the poor performance observed in this

tudy can be partially explained by the different end-points (ex-

ert segmentation on PWI-MRI vs. follow-up FLAIR/T2), the differ-

nt evaluation measures (DC/ASSD vs. volume similarity), and the

ifferent data. This only serves to highlight the need for a pub-

ic evaluation dataset. From an image processing point of view, the

olume correlation is not a suitable measure to evaluate segmen-

ations as it can lead to good results despite completely missed

esions. 

.1. The most suitable algorithm and the remaining challenges 

Both of the winning methods are based on machine learning

RFs) and both additionally employ expert knowledge (e.g. a prior

hresholding of the Tmax map). Their results are significantly bet-

er than those of all other teams. The other methods in order of

ecreasing rank are: another RF method, a modeling approach, a

ule based approach, another modeling approach, and a CNN. 

Although the number of participating methods is too small to

raw a general conclusion, the results suggest that RFs in their var-

ous configurations are highly suitable algorithms for the task of

troke penumbra estimation. Furthermore, they are known to be

obust and allow for a computational effective application, both of

hich are strong requirements in clinical context. 

An automated method has to fulfill the strict requirements of

linical routine. Since time is brain when treating stroke, it has

o fit tightly into the stroke protocol, i.e., is restricted to a few

inutes of runtime ( Straka et al. (2010) state ± 5 min as an up-

er limit). With 6 min (CH-Insel) and 20 sec (DE-UzL), including all

re- and post-processing steps, the two winning methods fit the

equirements, DE-UzL even leaving room for overhead. 

.2. Recommendations and limitations 

New approaches for perfusion estimation should move away

rom simple methods (e.g. rule-based or thresholding). These are

asy to apply, but our results indicate that they cannot capture

he whole complexity of the problem. Machine learning, especially

Fs, seem to be more suitable for the task: They can model non-

inear functional relationship between data and desired results that

 simpler approach cannot. Domain knowledge is likely required

o achieve state-of-the-art results as the Tmax map thresholding

f the two winning methods indicates. Evaluation should in any

ase be performed via a combination of suitable, quantitative mea-

ures. Simple volume difference or qualitative evaluation are of

imited expressiveness and render the presented results incompa-

able. Where possible, the evaluation and training data should be

ublicly released. Finally, it has to be kept in mind that the seg-

entation task is a time-critical one and application times are al-

ays to be reported alongside the quantitative results. 

The presented algorithms are close to clinical use. However, in-

ensive work is further needed to increase their robustness for

he variety of confounding factors appearing in clinical practice.
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n this direction, a clear direct improvement seems to be the in-

orporation of knowledge regarding collateral flow, which is also

sed in the clinical workflow to stratify selection of patient treat-

ent. It remains to be shown that the diffusion lesion can be seg-

ented equally well and whether the resulting perfusion-diffusion

ismatch agrees with follow-up lesions. To this end, a benchmark

ith manually segmented follow-up lesions would be desirable. 

SPES suffers from a few limitations: While MCA strokes are

ost common and well suited for mechanical reperfusion ther-

pies ( Kemmling et al., 2015 ), the restriction to low-noise MCA

ases limits the result transfer to clinical routine. The generality of

he results is additionally reduced by providing only single-center,

ingle-ground truth data. Finally, voxel-sized errors in the ground

ruth prevented the evaluation of the HD, which would have pro-

ided additional information. 

. Conclusion 

With ISLES, we provide an evaluation framework for the fair

nd direct comparison of current and future ischemic stroke lesion

egmentation algorithms. To this end, we prepared and released

ell described, carefully selected, and annotated multi-spectral

RI datasets under a research license; developed a suitable rank-

ng system; and invited research groups from all over the world to

articipate. An extensive analysis of 21 state-of-the-art methods’

esults presented in this work allowed us to derive recommenda-

ions and to identify remaining challenges. We have shown that

egmentation of acute perfusion lesions in MRI is feasible. The best

ethods for sub-acute lesion segmentation, on the other hand, still

ack the accuracy and robustness required for an immediate em-

loyment. Second-center acquisition parameters and small lesions

ith weak FLAIR-support proved the main challenges. Overall, no

ype of segmentation algorithm was found to perform superior

o the others. What could be observed is that approaches using

ombinations of multiple methods and/or domain knowledge per-

ormed best. 

A valuable addition to ISLES would be a similarly organized

enchmark based on CT image data, enabling a direct comparison

etween the modalities and the information they can provide to

egmentation algorithms. 

For the next version of ISLES, we would like to focus on the

cute segmentation problem from a therapeutical point of view. By

odeling a benchmark reflecting the time-critical decision making

rocesses for cerebrovascular therapies, we hope to promote the

ransfer from methods to clinical routine and further the exchange

etween the disciplines. A multi-center dataset with hundreds of

ases will allow the participants to develop complex solutions. 

otes 

– CA-USher encountered a bug in their implementation. Their

ew results can be found on www.smir.ch/ISLES/Start2015 . 

– UK-Imp2 will make their software publicly available at

ttps://biomedia.doc.ic.ac.uk/software/deepmedic/ in the hope that 

t facilitates research in related problems. 
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ppendix A. Participating algorithms 

This section includes short descriptions of the participating al-

orithms. For a more detailed description please refer to the work-

hop’s postproceeding volume ( Crimi et al., 2016 ) or the challenge

roceedings ( Maier et al., 2015a ). 

Used abbreviations are: white matter (WM), gray matter (GM),

erebral spinal fluid (CSF), random forest (RF), extremely random-

zed trees (ET), contextual clustering (CC), gaussian mixture models

GMM), convolutional neural network (CNN), Markov Random Field

MRF), Conditional Random Field (CRF) and expectation maximiza-

ion (EM). 

.1. – UK-Imp1 (Liang Chen et al.) 

We propose a multi-scale patch-based random forest algorithm

or sub-acute stroke lesion segmentation. In the first step, we per-

orm an intensity normalization under the exclusion of outliers.

econd, we extract features from all images: Patch-wise intensi-

ies of each modality are extracted at multiple scales obtained

ith Gaussian smoothing. We parcellate the whole brain into three

arts, including top, middle, and bottom. To keep an equilibrated

lass balance in the training set, only a subset of background

atches is samples from locations all over the brain. Subsequently,

e train three standard RF ( Breiman, 2001 ) classifiers based on the

atches selected from three parts of the brain. Finally, we perform

ome postprocessing operations, including smoothing the outputs

f the RFs, applying a threshold, and performing some morpholog-

cal operations to obtain the binary lesion map. 

http://www.smir.ch/ISLES/Start2015
https://biomedia.doc.ic.ac.uk/software/deepmedic/
http://dx.doi.org/10.13039/501100004184
https://www.center-tbi.eu
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A.2. – DE-Dkfz (Michael Götz et al.) 

The basic idea of this approach is that a single classifier might

not be able to learn all possible appearances of stroke lesions. We

therefore use ‘Input-Data Adaptive Learning’ to train an individual

classifier for every input image. The learning is done in two steps:

First, we learn the similarity between two images to be able to find

similar images for unseen data. We define the similarity between

two images as the DC that can be achieved by a classifier trained

on the first image with the second image. Neighborhood Approx-

imation Forests (NAF) ( Konukoglu et al., 2013 ) are used to predict

similar images for images without a ground-truth label (e.g. with-

out the possibility to calculate the DC). We use first-order statis-

tic description of the complete images as features for the learn-

ing algorithm. While the first step is done offline, the second step

is done online, when a new and unlabeled image should be seg-

mented. A specific, voxel-wise classifier is trained from the closest

three images, selected by the previous trained NAF. For the voxel

classifier we use ETs ( Geurts et al., 2006 ) which incorporate DALSA

to show the general applicability of our approach ( Goetz et al.,

2016 ). In addition to the intensity values we use Gaussian, Differ-

ence of Gaussian, Laplacian of Gaussian (3 directions), and Hessian

of Gaussian with Gaussian sigmas of 1, 2, 3 mm for every modality,

leading to 82 features per voxel. 

A.3. – FI-Hus (Hanna-Leena Halme et al.) 

The method performs lesion segmentation with a RF algorithm

and subsequent CC ( Salli et al., 2001 ). We utilize the training data

to build statistical templates and use them for calculation of in-

dividual voxel-wise differences from the voxel-wise cross-subject

mean. First, all image volumes are warped to a common template

space using Advanced Normalization Tools (ANTS). Mean and stan-

dard deviation over subjects are calculated voxel-by-voxel, sepa-

rately for T1, T2, FLAIR and DWI images; these constitute the statis-

tical templates. The initial lesion segmentation is calculated using

RF classification and 16 image features. The features include nor-

malized voxel intensity, spatially filtered voxel intensity, intensity

deviation from the mean specified by the template, and voxel-wise

asymmetry in intensities across hemispheres, calculated separately

for each imaging sequence. For RF training, we only use a random

subset of voxels in order to decrease computational time and avoid

classifier overfitting, As a last phase, the lesion probability maps

given by the RF classifier are subjected to CC to spatially regular-

ize the segmentation. The CC algorithm takes the neighborhood of

each voxel into account by using a Markov random field prior and

iterated conditional modes algorithm. 

A.4. – CA-McGill 

The authors of this method decided against participating in this

article. A description of their approach can be found in the challenge’s

proceedings on http://www.isles-challenge.org/ISLES2015/ 

A.5. – UK-Imp2 (Konstantinos Kamnitsas et al.) 

We developed an automatic segmentation system, based on a

11-layers deep, multi-scale, 3D CNN. The network classifies voxels

after processing a multi-modal 3D patch around them. To achieve

efficient processing of greater image context, we developed a net-

work architecture with two parallel convolutional pathways that

processes the image at different scales. To train our system we
uild upon the work in Urban et al. (2014) and form batches with

arge image segments, equally sampled from the two classes. We

xploit our network’s fully convolutional nature to densely train

n multiple voxels in the central part of the segments. By utilizing

mall 3 3 kernels that lead to deeper architectures with less train-

ble parameters, as well as adopting Dropout, Batch Normaliza-

ion ( Ioffe and Szegedy, 2015 ) and augmenting the database using

eflection along the sagittal axis, we heavily regularize our network

nd show that it is possible to train such a deep and wide net-

ork on a limited database. Training our CNN takes approximately

ne day on a GeForce GTX Titan Black, while inference on a brain

olume requires 3 minutes. We applied only minimum preprocess-

ng, normalizing the modalities of each patient to zero mean and

nit variance. For our final submission in the testing phase of the

hallenge, the outputs of 3 similar CNNs were averaged, to reduce

oise caused by randomness during training. Additionally, we im-

lemented a 3D, densely connected CRF by extending the work

f Krähenbühl and Koltun (2012) , which can efficiently postprocess

 multi-modal scan in 2 minutes. Finally, connected components

maller than 20 voxels are eliminated. 

.6. – US-Jhu (John Muschelli) 

As rigid registration may not correct local differences between

patial locations across sequences, we re-register images to the

LAIR using Symmetric Normalization ( Avants et al., 2008 ). We

ormalize the voxel intensities to a z-score using the 20% trimmed

ean and standard deviation from each image. To train an algo-

ithm, we create a series of predictors, including the x-y flipped

oxel intensity, local moments (mean, sd, skew, kurtosis), and the

mages smoothed with large Gaussian filters. We trained a RF from

 images, downsampled to 30 0,0 0 0 voxels, with the manual seg-

entation as the outcome ( Breiman, 2001 ). From the RF, we ob-

ained the probability of lesion and determined the threshold for

hese probabilities using the out-of-sample voxels from the train-

ng images, optimizing for the DC. 

.7. – SE-Cth (Qaiser Mahmood et al.) 

The proposed framework takes the multi-spectral MRI brain

mages as input and includes two preprocessing steps: (1) Cor-

ection of bias field using the N3 bias field correction algo-

ithm ( Sled et al., 1998 ) and (2) normalization of the intensity val-

es of each MRI modality to the interval [0, 1], done by applying

inear histogram stretching. For each voxel of multi-spectral MRI

mages, the following set of meaningful features is extracted: in-

ensities, smooth intensities, median intensities, gradient, magni-

ude of the gradient and local entropy. All these features were nor-

alized to zero mean and unit deviation. These features are then

mployed to train the RF ( Criminisi and Shotton, 2013 ) classifier

nd segment the sub-acute ischemic stroke lesion. In this work, we

et the RF parameters to: number of trees = 150 and depth of each

ree = 50. A total of 999,0 0 0 data samples (i.e. 37,0 0 0 randomly se-

ected from each training case) is used to train the RF classifier.

inally, the postprocessing is performed using dilation and erosion

perations in order to remove small objects falsely classified as

troke lesion. 

.8. – US-Odu (Syed M S Reza et al.) 

This work proposes fully automatic ischemic stroke lesion seg-

entation in multispectral brain MRI by innovating on our prior

rain tumor segmentation work ( Reza and Iftekharuddin, 2014 ).

http://www.isles-challenge.org/ISLES2015/
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he method starts with the standard MRI preprocessing steps: in-

ensity inhomogeneity correction and normalization. Next step in-

olves two primary sets of feature extraction from T1, T2, FLAIR

nd DWI imaging sequences. The first set of features includes

he pixel intensities ( I FL , I T 1 , I T 2 , I DWI ) and differences of intensi-

ies ( d 1 = I F L − I T 1 , d 2 = I F L − I T 2 , d 3 = I F L − I DW I ) that represents the

lobal characteristics of brain tissues. In the second set, local tex-

ure features such as piece-wise triangular prism surface area,

ulti-fractal Brownian motion ( Islam et al., 2013 ) and structure

ensor based local gradients are extracted to capture the surface

ariation of the brain tissues. We use a mutual information based

mplementation of minimum redundancy maximum relevance fea-

ure ranking technique and choose the 19 top ranked features. A

lassical RF classifier is employed to classify the brain tissues as

esion or background. Finally, a binary morphological filter is used

o reduce the false positives from the original detections. We ob-

erve a few remaining false positives that compromise the overall

erformance. Our future works will include the study of more ef-

ective features, sophisticated feature selection techniques and an

ffective false positive reduction technique. 

.9. – TW-Ntust (Ching-Wei Wang et al.) 

A fully automatic machine learning based stroke lesion three-

imensions segmentation system is built, which consists of a fea-

ure selection method, a multi-level RF model and a simple 3D

egistration approach. Only the FLAIR sequence was used and 275

eatures, which can be categorized into 24 types, are extracted for

uilding RF models. To deal with the three dimensional data, a

ulti-RF model is developed and for stacks of five slices in the

 direction, a random forest model is built. The RF model gen-

rates probability maps. After obtaining the potential candidates

rom the RFs, we build a three-dimensional registration framework

ith backward and forward searching ( Wang et al., 2015 ). It is ap-

lied to generate optimal three-dimensional predictions and too

emove larger outliers. The system finds the largest object among

ll stacks and uses the stack with the largest object as the ref-

renced stack. Then, the system performs backward and forward

egistration to maintain spatial consistency and remove the objects

ith no overlap to the detected objects in the neighboring stacks. 

.10. – CN-Neu (Chaolu Feng) 

We propose a framework to automatically extract ischemic le-

ions from multi-spectral MRI images. We suppose that the input

mages of different modalities have already been rigidly registered

n the same coordinate system and non-brain tissues have already

een removed from the images ( Gao et al., 2014 ). Lesion segmenta-

ion is then performed by the proposed framework in three major

teps: 1) preliminary segmentation, 2) segmentation fusion, and 3)

oundary refinement. No training data is needed and no prepro-

essing and postprocessing steps involved. In the proposed frame-

ork, MRI images of each modality are first segmented into brain

issues (WM, GM and CSF) and ischemic lesions by weighting sup-

ressed fuzzy c-means. Preliminary lesion segmentation results are

hen fused among all the imaging modalities by majority voting.

he judge rule is that candidate voxels are regarded as lesions only

f 1) they are considered as brain lesions in FLAIR images, and 2)

hey are viewed as brain lesions in more than 1 imaging modal-

ty beside FLAIR. The fused segmentation results are finally refined

y a three phase level set method. The level set formulation is de-

ned on multi-spectral images with the capability of dealing with

ntensity inhomogeneities ( Feng et al., 2013 ). 
.11. – BE-Kul1 (Tom Haeck et al.) 

We present a fully-automated generative method that can be

pplied to individual patient images without need for a training

ata set. An EM-approach is used for estimating intensity models

GMMs) for both normal and pathological tissue. The segmenta-

ion is represented by a level-set that is iteratively updated to label

oxels as either normal or pathological, based on which intensity

odel explains the voxels’ intensity the best. A convex level-set

ormulation is adopted ( Goldstein et al., 2009 ), that eliminates the

eed for manual initialization of the level-set. For each iteration to

pdate the level-set, a full EM-estimation of the GMM parameters

s done. 

As a preprocessing step, spatial priors of WM, GM and CSF are

on-rigidly registered to the patient image. The prior information

s relaxed by smoothing the spatial priors with a Gaussian kernel.

or SPES, we make use of the T2-weighted and TTP-weighted MR

mages and for SISS the diffusion weighted and FLAIR-weighted MR

mages. For SPES, the modalities are used in a completely mul-

ivariate way, i.e., with bivariate Gaussian models. For SISS, the

odalities are segmented separately and a voxel is only labeled

s lesion if it is a lesion in both modalities. 

.12. – CA-USher (Francis Dutil et al.) 

We propose a fully-automatic CNN approach which is accurate

hile also being computationally efficient, a balance that exist-

ng methods have struggled to achieve. We approach the problem

y solving it slice by slice from the axial view. The segmentation

roblem is then treated by predicting the label of the center of

ll the overlapping patches. We propose an architecture with two

athways: one which focuses on small details of the tissues and

ne focusing on the larger context. We also propose a two-phase

atch-wise training procedure allowing us to train models in a few

ours and to account for the imbalanced classes. We first train the

odel with a balanced dataset which allows us to learn features

mpartial to the distribution of classes. We then train the second

hase by only training on the classification layer with a distribu-

ion closer to the ground truth’s. This way we learn good features

nd introduce the correct class prior to the model. Fully exploit-

ng the convolutional nature of our model also allows to segment

 complete brain image in 25 seconds. To test the ability of CNNs

o learn useful features from scratch, we employ only minimal pre-

rocessing. We truncate the 1% highest and lowest intensities and

pplied N4ITK bias correction. The input data is then normalized

y subtracting the channel mean and dividing by its standard de-

iation. A postprocessing method based on connected components

s also implemented to remove small blobs which might appear in

he predictions. 

.13. – DE-UzL (Oskar Maier et al.) 

We propose a novel voxel-wise RF classification method with

eatures chosen to model a human observers discriminative cri-

eria when segmenting a brain lesion. They are based on inten-

ity, hemispheric difference, local histograms and center distances

s detailed in ( Maier et al., 2015c; 2016 ). First, the already co-

egistered, isotropic voxel-spacing and skull-stripped sequences are

reprocessed with bias field correction and intensity range stan-

ardization ( Maier, 2016 ) (SISS) resp. the Tmax capped at 10 s

SPES). A total of 1,0 0 0,0 0 0 voxels are randomly sampled, keeping

ach case’s class ratio intact (i.e. imbalanced). With this training

et, 50 trees are trained using Gini impurity and 

√ 

163 features for
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Table B.10 

Example of resolving ties for ISLES. 

Team DC Rank Team 

T-A 0 .33 1 T-C 

T-B 0 .33 2 T-A, T-B, T-D 

T-C 0 .50 3 

T-D 0 .33 4 

T-E 0 .31 5 T-E 

(a) Before... (b) ... after. 
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node optimization. For SISS, the a-posteriori forest probability map

is thresholded at 0.4 and objects smaller than 1 ml removed. For

SPES, the threshold is 0.35 and only the largest connected compo-

nent is kept. Both are followed by an hole closing in sagittal slices.

The proposed method was equally successfully applied to BRATS

challenge data ( Maier et al., 2016 ), underlining the generality of

our approach. 

A.14. – BE-Kul2 (David Robben et al.) 

A single segmentation method for both the SISS and SPES sub-

challenges is proposed ( Robben et al., 2016 ). First, all data is pre-

processed, including bias-field correction, linear intensity standard-

ization, and affine registration to MNI space. Then, each voxel is

probabilistically classified as lesion or background within the na-

tive image space. The classifier consists of 3 cascaded levels, in

which each level extends the feature set and uses a more com-

plex extremely randomized forest ( Geurts et al., 2006 ). The first

level only uses the T1 intensity. The second level uses all modali-

ties, smoothed in a local neighborhood at different radii, as well as

voxel coordinates in atlas space. The third level additionally uses

the probabilities estimated in level 2, smoothed locally. Classifier

hyperparameters were tuned using 5-fold cross-validation. Testing

data is preprocessed similarly and the voxelwise probabilities are

predicted by the classifier. A technique to select the threshold that

optimizes the DC is presented and applied to the predicted proba-

bility map in order to obtain the final binary segmentation. 

A.15. – DE-Ukf (Elias Kellner et al.) 

In almost all cases of acute embolic anterior circulation stroke

only one hemisphere is affected. We exploit this fact to (i) re-

strict the segmentation to only the affected hemisphere and (ii)

to preselect the potential lesion by comparing local histograms of

the affected side with the contralateral counterpart used as refer-

ence. Our approach is based on the evaluation of just the Tmax

and ADC-maps. First, we automatically find the plane which sepa-

rates the left and right hemisphere by co-registration with a mir-

rored Tmax-image, and identify the affected hemisphere as the

one with the higher median value. For each voxel at position 

�
 x ,

a normalized, regional histogram H( � x , t i ) is calculated in a 20 × 20

× 12mm 

3 neighborhood with a bin-width of t i +1 − t i = 1 . 5s . The

difference to the corresponding contralateral histogram 

˜ H ( � x , t i ) ,

taken from the mirrored part of the brain is calculated via D ( � x ) =
1 / 2 

∑ 

i | H( � x , t i ) − ˜ H ( � x , t i ) | . The resulting map of histogram differ-

ences is thresholded by 0.5 to find the regions with unusual Tmax

values. This preselection is thresholded with the generally accepted

value of Tmax > 6s. The histogram neighborhood size and the

morphological operation parameters are globally fine-tuned based

on the training dataset. To clean the mask, morphological erosion

and dilation is applied. Finally, the segmentation is multiplied with

ADC > 1700mm 

2 /s to remove CSF voxels. 

A.16. – CH-Insel (Richard McKinley et al.) 

The model is trained only using data from the SPES dataset; no

additional data is used. The method makes use of all seven imag-

ing modalities. Before learning takes place, the following prepro-

cessing steps are employed: TMax values are censored below zero

and above 100, and all imaging modalities are then scaled to lie in

the interval [0, 256]. Simple image texture features, based on those

first used in Porz et al. (2014) are extracted from each imaging

modality. The resulting data points are used to train a decision for-

est model which assigns to each volume element a label indicating
f it should be considered part of the perfusion lesion. The train-

ng algorithm is a modification of RF ( Breiman, 2001 ), in which

ootstrapping of the training data is performed first at the patient

evel, and only then at the voxel level. This avoids the effects of

atient-level clustering and leads to out-of-sample patients. This

ut-of-sample data is then used to empirically discover a thresh-

ld at which the DC of the segmentation is maximized, avoiding

he need for holding out training data to tune the classifier. After

egmenting with this threshold, no further postprocessing was ap-

lied. The method takes approximately six minutes to segment a

ew case. 

ppendix B. Ranking schema 

Our ranking system builds on the concept that a rank reveals

nly the direction of a relationship between two items (i.e. higher,

ower, equal), but not its magnitude. After obtaining from each par-

icipating team the segmentation results for each case, the follow-

ng steps are executed: 

1. Compute the DC, ASSD & HD values for each case 

2. Establish each team’s rank for DC, ASSD & HD separately for

each case 

3. Compute the mean rank over all three evaluation measures/case

to obtain the team’s rank for the case 

4. Compute the mean over all case-specific ranks to obtain the

team’s final rank 

Graphically, the schema looks like displayed in Fig. B.11 . 

The outcome of the procedure is a final rank (real number) for

ach participant, which defines its standing in the leaderboard rel-

tive to all others. For SISS, with two ground truth sets for the test-

ng dataset, their respective final ranks are averaged. For SPES, only

he DC and the ASSD were used. 

This approach can be applied to any number of measures, in-

ependent of their range, type or direction. Its outcome denotes

nly the differences between algorithms and hence serves its pur-

ose. For any interpretation of the results, the distinct evaluation

easure values obtained have to be considered too. 

A challenge with winners requires an absolute ranking; an on-

oing benchmark does not. For the online, ongoing leaderboard,

he rank is not computed. Rather, each user is invited to sort the

esult table according to their favorite evaluation measure. 

ailed cases and resolving ties. In one step of our algorithm, we

ave to rank the performance of each team on one case regard-

ng a single evaluation metric. Such a situation can lead to ties,

hich have to be handled specially. We chose to decorate both

ied teams with the upper rank and leaving the following empty

see Table B.10 for an example). 

This behavior has an interesting effect for very difficult cases,

here most teams fail to produce a valid segmentation, as can be

een in the example of Table B.11 . 

Thus, difficult cases do not alter the mean as they would do

hen simply averaging, e.g., the DC values over all cases. Instead,
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Fig. B.11. Ranking schema as employed in the ISLES challenge. 

Table B.11 

Tie resolving for difficult cases. 

Team DC Rank Team 

T-A 0 .00 1 T-C 

T-B 0 .00 2 T-A, T-B, T-D, T-E 

T-C 0 .10 3 

T-D 0 .00 4 

T-E 0 .00 5 

(a) Before... (b) ... after. 
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nly the performance relative to all other algorithms is compared,

esulting in a more expressive ranking. 

Beside resolving ties, we decided to introduce a concept of

ailed cases: When faced with (1) a missing segmentation mask

r (2) a DC value of 0.00 (i.e. no overlap at all), the concerned case

as declared failed and all metric evaluation values subsequently

et to infinity. Combined with the employed ranking approach and

bove described treatment of ties, this allows to incorporate miss-

ng segmentations in the ranking in a natural and fair manner. It

ould be argued that a DC of 0.00 could well mean that another

art of the brain has been segmented. But the case has neverthe-

ess to be considered a failed one, as the target structure has not

een detected. Not declaring the case a failure would lead meth-

ds submitting a single random voxel segmentation to be ranked

igher than an empty segmentation mask. 

upplementary material 

Supplementary material associated with this article can be

ound, in the online version, at 10.1016/j.media.2016.07.009 
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