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Abstract16

We consider scattering of electromagnetic waves by a finite discrete random medium com-17

posed of spherical particles. The size of the random medium can range from microscopic18

sizes of a few wavelengths to macroscopic sizes approaching infinity. The size of the par-19

ticles is assumed to be of the order of the wavelength. We extend the numerical Monte20

Carlo method of radiative transfer and coherent backscattering (RT-CB) to the case of21

dense packing of particles. We adopt the ensemble-averaged first-order incoherent ex-22

tinction, scattering, and absorption characteristics of a volume element of particles as23

input for the RT-CB. The volume element must be larger than the wavelength but smaller24

than the mean free path length of incoherent extinction. In the radiative transfer part,25

at each absorption and scattering process, we account for absorption with the help of26

the single-scattering albedo and peel off the Stokes parameters of radiation emerging from27

the medium in predefined scattering angles. We then generate a new scattering direc-28

tion using the joint probability density for the local polar and azimuthal scattering an-29

gles. In the coherent backscattering part, we utilize amplitude scattering matrices along30

the radiative-transfer path and the reciprocal path, and utilize the reciprocity of elec-31

tromagnetic waves to verify the computation. We illustrate the incoherent volume-element32

scattering characteristics and compare the dense-medium RT-CB to asymptotically ex-33

act results computed using the Superposition T -matrix method (STMM). We show that34

the dense-medium RT-CB compares favorably to the STMM for the current cases of35

sparse and dense discrete random media studied.36

1 Introduction37

Multiple electromagnetic scattering in discrete random media of particles consti-38

tutes a challenging computational problem in classical electromagnetics. Whereas wavelength-39

scale random media can be assessed accurately using, for example, the Superposition T -40

Matrix (STMM; e.g., [1; 2] and Volume-Integral-Equation Methods (VIEM; e.g., [3]), un-41

surmountable computational difficulties arise for random media much larger than the42

wavelength. Furthermore, whereas the classical radiative transfer approximation accom-43

panied with coherent backscattering (RT-CB; [4]) has been validated for sparse ran-44

dom media with particle volume densities smaller than ∼5% [5], no accurate computa-45

tional methods are available for dense random media with high volume densities.46

Our scientific motivation for resolving the open computational problem derives from47

two ubiquitous astrophysical phenomena observed at small solar phase angles (the Sun-48

Object-Observer angle) for the Moon, asteroids, Saturn’s rings, transneptunian objects,49

and atmosphereless Solar System objects at large. First, a nonlinear increase of bright-50

ness, commonly called the opposition effect (e.g., [6]), is observed toward the zero phase51

angle in the magnitude scale. Second, the scattered light is observed to be partially lin-52

early polarized parallel to the Sun-Object-Observer plane, commonly called negative po-53

larization ([7]). This is contrary to the common positive polarization perpen-54

dicular to the scattering plane arising from Rayleigh scattering and Fresnel55

reflection. In 1980s, the coherent-backscattering mechanism was suggested as a par-56

tial explanation for the phenomena [8; 9].57

The RT-CB Monte Carlo ray-tracing method relies on exponential ex-58

tinction in a homogeneous scattering and absorbing medium, where the scat-59

terers are assumed to be in each others’ far-field regimes. Multiple scatter-60

ing takes place in the far-field approximation and is fully described by the61

2×2 Jones scattering amplitude matrices for the incident, fully transversely62

polarized electromagnetic field. The field representation is required due to63

the tracing of the electromagnetic phase difference between wave components64

interacting along reciprocal paths. The 4×4 Mueller scattering matrices are65

–2–



Confidential manuscript submitted to Radio Science

utilized, for example, in the generation of new interaction directions and in66

the numerical integration of the radiative-transfer-only signal (RT-only).67

We generalize the RT-CB for dense discrete random media of scattering and ab-68

sorbing particles by introducing incoherent first-order interactions among volume el-69

ements of particles within the random media (for an early approach, see [10; 11]). In the70

first-order approximation, the scattered field of a given volume-element re-71

alization is the sum of the fields due to the individual spherical particles, ac-72

counting for the electromagnetic phase of the incident field as well as the phase73

originally due to the Green’s function. In size, the volume elements must be of the74

order of the wavelength or larger, but nevertheless smaller than the extinction mean free75

path of the medium. The discrete random medium is considered to be fully packed76

with the volume elements, that is, the volume density of the elements is 100%.77

Our approach has been triggered, first, by the earlier Monte Carlo studies on78

volume-element extinction in random media of particles with sizes near and79

within the Rayleigh regime [12; 13]. Second, earlier studies mostly based on the80

Percus-Yevick approximation (e.g., [14; 15]) as well as the more recent derivation of81

the RT equation from the Maxwell equations for sparse discrete random media [16] have82

encouraged us to search for more precise RT-related multiple scattering methods for83

dense media. In summary, introducing incoherent volume elements promises to remove84

shortcomings in classical RT for sparse random media.85

In Sect. 2, we present the basic theoretical framework for scattering and absorp-86

tion by spherical particles. We then describe multiple scattering in discrete spherical ran-87

dom media with sizes varying from the length scale of a few wavelengths upwards. We88

introduce the incoherent extinction, scattering, and absorption coefficients of a volume89

element of particles. Section 3 provides an assessment of the numerical methods for the90

computation of the extinction, scattering, and absorption coefficients, as well as the in-91

coherent scattering matrix elements. We also describe the key points of the Monte Carlo92

RT-CB method. In Sect. 4, we show our first results for incoherent volume-element scat-93

tering characteristics and compare the results to those obtained using the STMM. In Sect.94

5, we close the work with conclusions and future prospects.95

2 Scattering theory96

2.1 Spherical particles97

Consider incident electromagnetic plane wave field in free space with wavelength98

λ and wave number k = 2π/λ. For a spherical particle with size parameter x = ka99

(a is radius) and complex refractive index m isolated in free space, the extinction, scat-100

tering, and absorption cross sections (respectively σe, σs, and σa) and efficiencies (qe,101

qs, and qa) are [17]102

qe =
σe
πa2

=
2

x2

∞∑
l=1

(2l + 1)Re(al + bl),

qs =
σs
πa2

=
2

x2

∞∑
l=1

(2l + 1)(|al|2 + |bl|2),

qa =
σa
πa2

= qe − qs. (1)

Here al and bl are the vector spherical harmonics coefficients of the scattered electromag-103

netic field:104

al =
mψl(mx)ψ′l(x)− ψl(x)ψ′l(mx)

mψl(mx)ξ′l(x)− ξl(x)ψ′l(mx)
,

bl =
ψl(mx)ψ′l(x)−mψl(x)ψ′l(mx)

ψl(mx)ξ′l(x)−mξl(x)ψ′l(mx)
, (2)
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where ψl and ξl are Riccati-Bessel functions and strictly related to the spherical Bessel105

and Hankel functions jl and h
(1)
l ,106

ψl(x) = xjl(x),

ξl(x) = xh
(1)
l (x). (3)

The single-scattering albedo is107

ω̃ =
qs
qe

=
σs
σe
. (4)

The scattering matrix S and the normalized scattering phase matrix P for spher-108

ical particles are (superscript LM for Lorenz-Mie)109

SLM =
k2σs
4π

PLM,

PLM =
2

x2qs


|S‖ ‖|2 + |S⊥⊥|2 |S‖ ‖|2 − |S⊥⊥|2 0 0
|S‖ ‖|2 − |S⊥⊥|2 |S‖ ‖|2 + |S⊥⊥|2 0 0

0 0 Re(S∗⊥⊥S‖ ‖) Im(S∗⊥⊥S‖ ‖)
0 0 −Im(S∗⊥⊥S‖ ‖) Re(S∗⊥⊥S‖ ‖)

 ,

∫
4π

dΩ

4π
PLM
11 (Ω) = 1,

(5)

where the amplitude scattering matrix elements S⊥⊥ and S‖ ‖ are110

S⊥⊥ =

∞∑
l=1

2l + 1

l(l + 1)

[
al
dP 1

l (cos θ)

dθ
+ bl

1

sin θ
P 1
l (cos θ)

]
,

S‖ ‖ =

∞∑
l=1

2l + 1

l(l + 1)

[
al

1

sin θ
P 1
l (cos θ) + bl

dP 1
l (cos θ)

dθ

]
, (6)

and P 1
l are associated Legendre functions.111

2.2 Superposition T -matrix method117

Consider electromagnetic scattering by a system of multiple non-intersecting spheres118

in the frequency domain using the Maxwell equations. The scattering problem can be119

solved by applying the superposition principle, i.e., the total scattered field Es can be120

represented as a sum of partially scattered fields Es
i from each sphere:121

Es =

N∑
i=1

Es
i , (7)

in which N is the number of spheres. The partial fields are expanded with the spheri-122

cal vector wave functions Mν expressed with respect to the origin of the ith sphere as123

Es
i ≈

∑
ν

aνi Mν , (8)

where ai are the scattering coefficients and ν is the multi-index ν = {n,m, k} with n =124

1, ..., N, m = −n, ..., n, and k = 1, 2. The scattering equations in coefficient space125

can be expressed as126

ascai = Tia
inc
i + Ti

N∑
j=1,j 6=i

(S|R)jia
sca
j for all i = 1, ..., N (9)
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size kR

α

ninc

nsca

monomer
size ka

Figure 1. Discrete spherical random medium of equal-sized spherical particles. The phase

angle α denotes the angle between the source of illumination (in the direction −ninc) and the

observer (nsca) as seen from the object. The scattering angle is θ = π − α. The size parameters

of the random medium and of the particles are kR and ka, respectively. Finally, k = 2π/λ is

the wave number and λ is the wavelength.

112

113

114

115

116

where Ti is the T -matrix of the ith sphere and (S|R)ji is the translation matrix that trans-127

lates the coefficients ascaj of the scattered field by sphere j into the incoming coef-128

ficients of sphere i [18].129

The scattering equations (9) are solved iteratively by the Generalized Minimum130

Residual method (GMRES). The matrix-vector multiplication, required in each itera-131

tion step, is accelerated by the Fast Multipole Method (FMM) [19; 20]. In our imple-132

mentation (FaSTMM, [2]), the so-called rotation → axial translation → inverse rotation133

technique is used with recursive computations of the axial translation [21] and rotation134

coefficients [22].135

2.3 Scattering by discrete random media136

Consider next a finite, spherical medium (radius R, size parameter X = kR) of137

randomly distributed spherical particles with a volume density of v (Fig. 1). The finite138

medium is assumed to be located in free space and an RT-CB solution is searched for139

the extinction, scattering, and absorption characteristics of the medium. It is here pos-140

tulated that the incoherent extinction, scattering, and absorption characteristics for a141

volume element of the medium are needed as input for the numerical method.142

In order to proceed, we utilize the spherical geometry once more: consider a spher-143

ical volume element (radius R0, size parameter X0 = kR0) completely within the ran-144

dom medium. We assign a spherical particle to the volume element if the particle cen-145

ter is located within the element. We envisage that the volume density is approximately146

balanced by the omission of particles intersecting the volume element but with their cen-147

ters nevertheless outside the volume element. Furthermore, for the time being, we omit148

any surface effects arising from the volume element intersecting the boundary of the ran-149

dom medium.150

Due to the stochastic nature of the random medium, the number and location of151

the spherical particles within the volume element will vary both as a function of the el-152
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ement location in the random-medium realization and from one random-medium real-153

ization to another.154

Let us derive the ensemble-averaged incoherent extinction, scattering,155

and absorption coefficients of the volume element. We write the ensemble-156

averaged first moment of the field scattered by the volume element (the mean157

or coherent scattered field) as158

Es,c(r) = 〈Es(r)〉 = lim
n→∞

1

n

n∑
i=1

Es
i(r), (10)

where n is the number of volume-element realizations, and Es
i is the scattered field from159

volume-element realization i.160

The incoherent scattered field from volume-element realization i is then obtained161

by subtracting the coherent scattered field from the scattered field of the realization,162

Es,ic
i (r) = Es

i(r)−Es,c(r). (11)

Consequently, the first moment of the incoherent scattered field vanishes,163

〈Es,ic(r)〉 ≡ 0, (12)

and the second moment of the incoherent scattered field equals164

〈|Es,ic(r)|2〉 = 〈|Es(r)|2〉 − |Es,c(r)|2. (13)

Within the present framework, the second moment of the scattered field thus165

equals the sum of the second moment of the incoherent field and the abso-166

lute value of the coherent field squared.167

In the first-order approximation, the scattered far field of volume-element realiza-168

tion i at distance r is the sum of the free-space scattered fields of the Ni identical spher-169

ical particles with scattering amplitude As located at rj (j = 1, . . . , Ni):170

Es
i(r) =

Ni∑
j=1

Es
ij(rj) =

exp(ikr)

−ikr
As

Ni∑
j=1

exp(iq · rj),

q = ki − ks, (14)

where ki = kez and ks denote the wave vectors of the incident and scattered fields, re-171

spectively.172

The coherent scattered far field is thus the ensemble average173

Es,c(r) =
exp(ikr)

−ikr
As lim

n→∞

1

n

n∑
i=1

Ni∑
j=1

exp(iq · r(i)j ), (15)

where r
(i)
j denotes the location of particle j for the realization i. The incoherent far field174

of a single realization follows from Eqs. 11, 14, and 15.175

We can improve the convergence of ensemble-averaging with the help of analyti-176

cal averaging over orientations. For the coherent scattered field, instead of averaging as177

in Eq. 15, we average as follows:178

Es,c(r) =
exp(ikr)

−ikr
As lim

n→∞

1

n

n∑
i=1

Ni∑
j=1

sin qr
(i)
j

qr
(i)
j

,

q = |q| = 2k sin
1

2
θ. (16)
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Similarly, for the squared scattered far field, we obtain ([23], see also the Rayleigh-Gans179

treatment in [24])180

|Es(r)|2 =
1

k2r2
|As|2 lim

n→∞

1

n

n∑
i=1

Ni∑
j=1

Ni∑
k=1

sin q|r(i)j − r
(i)
k |

q|r(i)j − r
(i)
k |

. (17)

It now follows that the ensemble-averaged incoherent scattering matrix of the vol-181

ume element is a pure Mueller matrix obtained by multiplying the Mie scattering ma-182

trix in Eq. 5 by a function H(θ),183

Sic
0 (θ) = H(θ)SLM(θ),

H(θ) = F (θ)−G(θ),

F (θ) = lim
n→∞

1

n

n∑
i=1

Ni∑
j=1

Ni∑
k=1

sin q|r(i)j − r
(i)
k |

q|r(i)j − r
(i)
k |

,

G(θ) =

∣∣∣∣∣∣ lim
n→∞

1

n

n∑
i=1

Ni∑
j=1

sin qr
(i)
j

qr
(i)
j

∣∣∣∣∣∣
2

, (18)

where F (θ) is the well-known form factor. Furthermore, we can assign a diagonal inco-184

herent amplitude scattering matrix for the volume element,185

Sic
⊥⊥,0(θ) =

√
H(θ)S⊥⊥(θ),

Sic
‖ ‖,0((θ) =

√
H(θ)S‖ ‖(θ). (19)

The ensemble-averaged incoherent scattering cross section of the volume element186

results from187

σic
s,0 =

1

k2r2

∫
4π

dΩ Sic
0,11(θ), (20)

and, consequently, the incoherent scattering coefficient is188

κics =
σic
s,0

V0
, V0 =

4π

3
R3

0. (21)

The incoherent absorption cross section of the volume element as well as the incoher-189

ent absorption coefficient scale with the help of the incoherent scattering cross sec-190

tion and the cross sections of the spherical particle,191

σic
a,0 =

σic
s,0

σs
σa, κica =

σic
a,0

V0
. (22)

The incoherent extinction cross section and coefficient are192

σic
e,0 = σic

s,0 + σic
a,0, κice =

σic
e,0

V0
. (23)

and the mean free extinction path length is193

` =
1

κe,ic
. (24)

Finally, the single-scattering albedo of the volume element equals194

ω̃ic =
σic
s,0

σic
e,0

. (25)

As for the scattering and absorption characteristics of the discrete random medium,195

we denote the scattering phase matrix by P and the spherical albedo equaling the in-196

coherent single-scattering albedo by AS.197
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Figure 2. Lorenz-Mie scattering matrix elements SLM
11 (top left), −SLM

21 /SLM
11 (top right),

SLM
33 /SLM

11 (bottom left), and SLM
34 /SLM

11 (bottom right) as a function of the scattering angle

θ for the ice (blue line, Case I) and silicate cases (red line, Case II): Case I, size parameter x = 2,

refractive index m = 1.31; Case II: x = 1.76, m = 1.50.

198

199

200

201

3 Numerical methods202

3.1 Average volume-element characteristics203

The volume-element scattering, absorption, and extinction characteristics are com-204

puted with the help of ensemble-averaging over realizations of randomly distributed spher-205

ical particles in a predefined volume element. We generate the sample volume elements206

as follows. First, we draw the number of particles from the Poisson distribution with the207

help of the mean number of particles N0 = vX3
0/x

3 in the volume element. Second, we208

place the spherical volume element in the center of a cubic cell that is the unit cell of209

a periodically continued random medium of particles. The edgelength of the cubic cell210

is taken to be large enough (with mean number of particles > 16N0) so that no arti-211

ficial disturbances follow for the particle distribution within the spherical volume element.212

Third, we generate particles within the cubic cell until the given number of particles are213

obtained within the spherical volume element. Fourth, it is clear that the number of par-214

ticles in a spherical volume element containing finite-sized particles does not obey the215

Poisson distribution. At the final stage, we repeat the aforedescribed procedure with a216

realistic particle-number variance that we describe later in this section.217

Consider next the convergence characteristics of ensemble-averaging for218

the functions F (θ) and G(θ) in Eq. 18. The convergence depends strongly on219

the scattering angle. This is due to the phase factor exp(iq · r), where q = |q| =220

2k sin 1
2θ varies strongly with the scattering angle. For each scattering angle, we face av-221

eraging with a specific apparent wavelength λ/(2 sin 1
2θ). This apparent wavelength ob-222

tains the value of λ/2 in the exact backscattering direction θ = 180◦, rising to λ at θ =223
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60◦, further to 10λ at θ ≈ 5.73◦, and reaching infinity in the exact forward scattering224

direction.225

It is thus to be expected that, in the backscattering hemisphere, sufficiently accu-226

rate results are obtained for small spherical volume elements from size parameters of roughly227

kR0 = 10 upwards. On the contrary, for θ = 15◦, even kR0 = 40 does not always suf-228

fice. Clearly, a violation of the requirement that the volume-element size must be smaller229

than the mean free path length of incoherent extinction can easily result. In the forward230

scattering direction, the results nevertheless follow analytically, since the phase factors231

reduce to unity.232

If the incoherent extinction, scattering, and absorption characteristics were inde-233

pendent of the volume-element size, we would be able to move forward to the actual RT-234

CB computations. There are, however, significant differences in the scattering coefficients235

as well as the scattering matrix element S11 obtained using different volume elements.236

The differences arise from the challenges in the forward-scattering hemipshere described237

above.238

In order to obtain unambiguous incoherent input characteristics for the RT-CB code,239

we proceed as follows. First, we start by defining the size parameters of the spherical par-240

ticle and the spherical volume element x and X0, as well as the volume density of par-241

ticles v. Second, we generate sample volume elements of spherical particles as described242

above. Third, we compute and store the scattered far field and its absolute value squared243

from the spherical volume of particles. Here we speed up the convergence with the help244

of analytical averaging over orientation for both the scattered far field and its value squared.245

Fourth, we repeat the aforedescribed steps for a large number of realizations of spher-246

ical volumes of particles. Fifth, we repeat the entire computation for a number247

of volume-element size parameters, typically X0 = 10, 15, 20, and 40.248

Finally, we repeat the entire analysis iteratively with a particle-number variance249

lowered from the nominal Poisson value until smooth and convergent, maximally invari-250

ant incoherent characteristics are obtained for the volume elements near the forward scat-251

tering direction. This is a regularization procedure and the true numbers of particles in252

the volume elements of an infinite discrete random medium do not necessarily conform253

to the statistics imposed here. The procedure allows us to define extinction, scattering,254

and absorption characteristics as per volume on a range of sizes slightly above the wave-255

length scale. The procedure further underscores how critically important is the actual256

number distribution of particles in the volume element.257

3.2 Radiative-transfer coherent-backscattering method264

The RT-CB method has been developed originally for homogeneous, finite and semi-265

infinite plane-parallel media of spherical scatterers [4]. In what follows, we focus on the266

RT-CB computation in a spherical discrete random medium filled with scatterers ([25;267

5; 26]). The spherical geometry is attractive due to several reasons. For example, it has268

allowed Videen and Muinonen [26] to study light-scattering evolution from single par-269

ticles to a regolith by gradually increasing the size of the medium towards macroscopic270

scales. For another example, it has allowed detailed comparisons between the RT-CB271

method and the STMM method [5].272

An essential feature of the numerical RT-CB technique is the a priori selection of273

scattering directions for updating Stokes parameters during the Monte Carlo radiative-274

transfer computation, thus avoiding the collection of rays into finite bins. Fixed angles275

allow for the computation of electromagnetic phase differences and thus the coherent-276

backscattering effect. In the technique, there are two sets of fixed angles. First, the radiative-277

transfer set utilizes Gauss-Legendre abscissae and weights for the phase angle [27] and278
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Figure 3. Volume-element incoherent scattering phase matrix element P ic
0,11 (scattering phase

function) for Case I (ice) for varying volume elements (thin red lines) as a function of the

scattering angle. The phase function has been normalized to yield the incoherent scattering

coefficient κic
s /k upon integration over the solid angle. Also depicted is the final phase function

(thick black line) obtained by regularizing the variance for the number of particles.

258

259

260

261

262

uniform spacing for the azimuthal angle. Second, the radiative-transfer coherent-backscattering279

set can be chosen to cover any angular domain desired.280

For the RT-CB set, the following angular scheme is incorporated. The azimuthal281

angle is uniformly spaced with 8 angles: in general, the number must be a multiple of282

8 in order for the azimuthal angle grid to be utilized in the symmetry relations making283

the computation efficient. The phase angle (or backscattering angle) currently takes284

on 51 values between α = 0.0◦ and α = 180.0◦ with a concentration of angles near285

the backscattering direction.286

In the generation of new interaction directions, the scattering angle is generated287

by using the cumulative distribution function based on the Mueller element288

P ic
0,11. Then the Kepler equation is solved using the Newton method for the azimuthal289

scattering angle. Within the media, due to constant updating of the Stokes parameters290

of scattered light, the generation of directions is coupled with the generation of the path291

lengths, confining the subsequent scattering processes into the scattering medium.292

Since the original numerical method [4], three main changes have been introduced293

to make the method more robust and accurate [25; 26]. First, whereas the original method294

makes use of the reciprocity relation of electromagnetic scattering in the computation295

of the coherent-backscattering contribution in the exact backscattering direction, the present296

method utilizes scattering amplitude matrices directly and allows for the reciprocity re-297

lation to be used as a measure of computational accuracy.298
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Figure 4. As in Fig. 3 for Case II (silicate).263

Second, symmetry relations are utilized to improve the numerical convergence of299

the angular scattering patterns, in particular, in the case of spherical media. There are300

six incident polarization states that need to be traced in order to obtain the correspond-301

ing contributions to the scattering matrix of the spherical medium. In the optimized method,302

one Markov chain of scatterings is computed in the case of linear polarization and an-303

other one in the case of circular polarization. The three remaining linear-polarization304

chains follow, after proper mapping, from the one computed. Analogously, the one re-305

maining circular-polarization chain follows from the one computed. The improvement306

of the convergence is substantial and the numerical results have been verified against those307

from the original method.308

Third, the finite size of the volume element is accounted for probabilistically. When309

interaction distances smaller than the volume-element diameter are generated, that is,310

when the current and the trial next volume-element appear to overlap, we draw a uni-311

form random deviate within u ∈]0, 1[ and reject the interaction distance if312

u <
∆V

V0
, (26)

where ∆V denotes intersectional volume of the two elements. In the case of rejection,313

we repeat the generation of the distance (together with the direction)314

4 First results with discussion315

In what follows, we will compare RT-CB results with those obtained by using the316

Superposition T -matrix method [2; 1] for a spherical medium (Fig. 1) with size param-317

eter X = kR = 40 with varying volume density v. For the STMM method, the sam-318

ple discrete media have been generated using Poisson statistics with the mean number319

of particles also describing the variance in the number of particles. We point out that,320
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with the RT-CB comparison in mind, what actual distribution one should incorporate321

for the STMM computations is a nontrivial question.322

In terms of composition, we consider two cases of discrete random media composed323

of equal-sized, non-absorbing spherical particles. In the first case (ice, Case I), the size324

parameter is x = 2 and the refractive index is m = 1.31. In the second case (silicate,325

Case II), the size parameter is x = 1.76 and the refractive index is m = 1.50. Figure326

2 shows the scattering phase matrix elements for the two spherical particles as a func-327

tion of the scattering angle. These specific kinds of particles have been studied earlier328

in, e.g., [5], in the context of coherent backscattering by sparse discrete random media.329

In particular, there is no significant negative polarization in either case (Fig. 2).330

We now compute the incoherent volume-element extinction, scattering, and absorp-331

tion characteristics. As we consider non-absorbing particles, we are merely concerned332

with the scattering characteristics, and the incoherent extinction and scattering coeffi-333

cients coincide. Figures 3 and 4 illustrate the incoherent volume-element scattering phase334

matrix element P ic
0,11 as a function of volume-element size parameter, normalized so as335

to yield the incoherent scattering coefficient κics /k upon integration over the full solid an-336

gle. Notice that the other matrix elements, expressed as ratios P ic
0,ij/P

ic
0,11, equal those337

illustrated in Fig. 2 for the spherical particles.338

We have repeated the computation of (κics /k)P ic
0,11/(4π) for the size parameters339

X0 = kR0 = 10, 15, 20, and 40 for altogether eight volume densities. For Case I, we340

assume v = 3.125%, 6.25%, 12.5%, or 25%, corresponding to the mean number of par-341

ticles of 250, 500, 1000, and 2000, respectively. For Case II, we assume the same mean342

number of particles, resulting in the volume densities v = 2.130%, 4.259%, 8.518%, or343

17.037%. In comparison to our earlier study [5], we have thus added the cases of 1000344

and 2000 particles, raising the volume density clearly beyond the validity domain of clas-345

sical radiative transfer.346

Figures 3 and 4 show, first, that the normalized phase functions are in excellent347

agreement across a wide range of scattering angles from the backscattering hemisphere348

towards forward scattering. Second, they show the challenges near the forward-scattering349

direction: a persistent diffraction-like feature appears in all cases. Third, Figures 3 and350

4 show that the regularization method relying on downsizing the variance successfully351

removes the diffraction-like feature. Fourth, for both Cases I and II, the normalized phase352

function tends to saturate near the forward scattering direction with increasing volume353

density. Simultaneously, the phase function tends to rise near the backward scattering354

direction. In conclusion, we can utilize an unambiguous volume-element incoherent scat-355

tering phase matrix in RT-CB computations. In detail, we have derived this scattering356

phase matrix using X0 = 15 and downsizing the variance with the help of the first-round357

result using X0 = 20 (enforcing the forward-direction value to be equal to the first-round358

result at θ = 10◦).359

With the incoherent input parameters in order, we can turn to the RT-CB com-368

putation for the discrete spherical random media of spherical particles. Figures 5 and369

6 show the results for Cases I and II and certain key numbers are collected in Table 1.370

For sparse media studied earlier by Muinonen et al. [5] using the RT-CB method with371

the Lorenz-Mie scattering characteristics as input, the agreement with the STMM re-372

sults is here even better. We recall that the dense-media RT-CB incorporates a prob-373

abilistic treatment for overlapping volume elements, when generating the next interac-374

tion point. There is no counterpart in the RT-CB with independent scattering: account-375

ing for the spherical particle size would cause a negligible effect on the angular scatter-376

ing characteristics.377

For the cases of dense media, the RT-CB with incoherent input characteristics works378

perhaps surprisingly well, considering that only first-order input is utilized. There are379
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Figure 5. Scattering phase matrix elements ASP11 and −P21/P11 for spherical discrete ran-

dom media (size parameter kR = 40, varying volume density v) of spherical particles as a

function of the phase angle α. We show the results for Case I (ice with size parameter x = 2

and refractive index m = 1.31) as computed using the RT-CB (solid line) and the Superposition

T -matrix methods (dashed line). Also shown are the RT-only results (dotted line). AS denotes

the spherical albedo of the random medium, allowing for absolute comparison between the two

methods.

360

361

362

363

364

365

366
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Figure 6. As in Fig. 5 for Case II (silicate) with x = 1.76 and m = 1.50.367
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Table 1. The volume densities v, dimensionless incoherent scattering mean free path lengths

k` and coefficients κic
s /k, as well as the resulting spherical albedos AS, geometric albedos p, and

enhancement factors ζ for the cases studied.

407

408

409

Case I, Ice v k` κics /k(10−2) AS p(%) ζ

0.03125 155.80 0.64184 0.29 0.68 1.34
0.06250 83.869 1.1923 0.46 1.79 1.54
0.12500 50.953 1.9626 0.62 4.89 1.70
0.25000 39.487 2.5325 0.71 11.16 1.76

Case II, Silicate

0.02130 97.726 1.0233 0.41 1.49 1.60
0.04259 51.181 1.9539 0.62 4.49 1.77
0.08518 29.540 3.3852 0.79 11.44 1.85
0.17037 20.128 4.9683 0.88 22.92 1.86

deviations between the RT-CB and STMM results in the negative polarization branch,380

but these differences may be due to the fact that the discrete medium statistics for gen-381

erating the STMM results are bound to differ from the corresponding statistics for the382

RT-CB results. The two most important statistical parameters of the discrete random383

medium are the mean and variance of the number of particles in the medium.384

Table 1 shows the evolution of the incoherent extinction mean free path length and385

incoherent extinction coefficient for Cases I and II as a function of the volume density.386

It also shows how the incoherent spherical albedo, geometric albedo, and backscatter-387

ing enchancement factor of the discrete random medium evolve with the volume density.388

For both cases, the enhancement factor shows saturation towards the highest volume density—389

the saturation is stronger for the silicate case where the mean free path lengths are shorter.390

We note that, for X0 = 40, the volume-element size equals the size of the spher-391

ical random medium itself. Furthermore, for X0 = 40 in Cases I and II as392

well as for X0 = 20 in Case II, the volume-element size is close to or exceeds393

the resulting incoherent extinction mean free path length. In spite of the ev-394

ident violation against the validity criterions (see Sect. 1), we have included395

these cases in the analysis, too, as they allow for the formal mapping of the396

mean free path length with increasing volume-element size.397

The first results suggest that there is a collective incoherent polarization effect for398

phase angles larger than about 90◦ (Figs. 5 and 6, bottom right): there is a tendency399

for the exact computation to yield more positive polarization than what results from the400

RT-CB computation. This unknown phenomenon can be due to bisphere resonances sim-401

ilar to those verified for circular polarization in the backscattering direction by Virkki402

et al. [28]. The phenomenon can also be related to the fact that independent orders of403

scattering must fail to describe the full scattered field for grazing angles of emergence404

(see, e.g., [29; 30]). Studying the ultimate cause for the phenomenon is, however, beyond405

the scope of the present study.406

5 Conclusions410

We have studied multiple scattering by finite discrete random media of spherical411

particles using the radiative-transfer coherent-backscattering method. By introducting412

first-order incoherent interaction between the incident field and the volume element, we413

have successfully extended the RT-CB method to dense random media markedly beyond414

the validity regime of classical radiative transfer.415
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There are a number of questions arising on the basis of the present study. First,416

all the current example computations have concerned non-absorbing spherical particles417

with low to moderately high refractice indices. It remains to be studied where the lim-418

its of the first-order incoherent treatment exactly are, a task that can be assessed with419

the help of the Superposition T -matrix method. Second, it is our near-term plan to re-420

place the first-order incoherent interaction with a rigorous treatment, again, using T -matrices.421

Finally, third, we intend to incorporate nonspherical particles and extend the numeri-422

cal methods accordingly.423
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