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Abstract
We present a discretization of the potential volume integral equation (PVIE) for electro-
magnetic scattering by dielectric objects. The equations are written for the vector and
scalar potentials combined with the Lorenz gauge condition. The advantage of the poten-
tial formulation over the more conventional formulations, i.e., the field-, flux-, or current-
formulations, is that the potentials are continuous across material interfaces enabling the
use of fully continuous basis functions. The discretization with the fully continuous basis
functions leads to a better conditioned system matrix compared to those of the other for-
mulations discretized with the fully or partially discontinuous functions. Thus, it speeds
up the iterative solution. The method is accelerated with the pre-corrected fast Fourier
transform algorithm.

1 Introduction

Electromagnetic wave scattering by strongly inhomogenous objects is a common
problem arising from many different fields in science and engineering such as remote
sensing, astronomy, electromagnetic imaging, bioelectromagnetics, and metamaterials. The
volume-integral-equation (VIE) methods are typically applied for such problems. Strong
material contrasts including negative parameters, however, give rise to a major numerical
challenge because of an ill-conditioned matrix when the system is solved iteratively.

The VIE formulations can be written for the fields [Sun and Chew, 2009], flux den-
sities [Schaubert et al., 1984], polarization currents [Yurkin et al., 2010; Markkanen et al.,
2012a], and potentials [De Doncker, 2001; Chang and Lomakin, 2011]. The choice of the
formulation and the unknown allows us to construct several different VIE formulations
for dielectric scattering problems [Botha, 2006; Sun and Chew, 2009; Markkanen et al.,
2012b]. The choice also decides the type of basis and testing functions that should be
used in order to obtain a converging numerical solution. The basis and testing functions
should span the proper finite-dimensional function spaces [van Beurden and van Eijnd-
hoven, 2007, 2008].

The use of partially or fully discontinuous basis functions to discretize the VIEs
may introduce spurious solutions associated with the element boundaries due to the spread-
ing of the spectrum of the discretized system [Markkanen and Ylä-Oijala, 2016]. Particu-
larly, this may happen when the material parameter is negative. In the PVIE, however,
the unknown functions are fully continuous scalar and vector potentials which yields to
the spectrum without the artificial continuous part for objects with smooth boundaries as
demonstrated by Markkanen and Ylä-Oijala [2016].

In [De Doncker, 2001; DeDoncker, 2003], the PVIE was discretized with curvilin-
ear cubes in combination with the nodal Lagrange basis functions and the collocation
method. Later, Chang and Lomakin [2011] replaced the scalar potential equation in the
PVIE by the discretized version of the Lorenz gauge condition in order to remove the
singular surface integral equation. Both approaches, however, have shown some serious
accuracy problems when the domain is discretized with linear tetrahedral elements [Adil,
2013; Markkanen and Ylä-Oijala, 2016]. Finally, Markkanen [2016] showed that the ac-
curacy problems in the DeDoncker’s formulation arise from the properties of the discrete
basis functions in the tetrahedral mesh, i.e., the volume charge can be non-zero in an ele-
ment with a constant permittivity. The problem was solved by adding a term to the scalar
potential equation which was assumed to vanish in [De Doncker, 2001; DeDoncker, 2003].

In this paper, we study the properties of the PVIE formulation by Markkanen [2016].
We show that the collocation method leads to a robust discretization scheme that allows
for an efficient solution for sufficiently smooth dielectric scattering problems. The eigen-
value distribution of the system matrix corresponds almost exactly the theoretically pre-
dicted one. Albeit, the optimal convergence may not be achieved and spurious solutions
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may appear for objects with negative permittivities and sharp corners. This is because the
testing functions do not span the proper function space, i.e., the dual space of the range
space of the operator. These findings suggest that the PVIE is an attractive formulation
for the analysis of complex media but further studies are required to find the proper set
of testing functions. The rest of the paper is organized as follows. In Section 2, the PVIE
is derived and its low frequency spectral properties are investigated in Section 3. The dis-
cretization scheme and the precorrected-FFT (pFFT) acceleration technique are presented
in Sections 4 and 5, respectively. Numerical results are shown and discussed in Section 6,
and the paper is concluded in Section 7.

2 Potential formulation

Consider a time-harmonic electromagnetic scattering by a three-dimensional bounded
object D in a homogeneous background medium with the constant permittivity ε0 and
permeability µ0. The time factor e−iωt , where ω is the angular frequency, is assumed
and suppressed. We assume that the object D is isotropic with the position r dependent
relative permittivity function εr (r). The relative permability is restricted to unity, i.e.,
µr (r) = 1.

The electric E and magnetic H fields can be represented in terms of the vector A
and scalar V potentials as

E(r) = iωA(r) − ∇V (r), H(r) =
1
µ0
∇ × A(r). (1)

To define the potentials unambiguously, we apply the Lorenz gauge condition, namely

iω∇ · A(r) = −k2V (r). (2)

With the Lorenz gauge imposed, the vector and scalar potentials satisfy the vector and
scalar Helmholtz equations, i.e.,

∇2A(r) + k2A(r) = −µ0J(r), (3)

∇2V (r) + k2V (r) = −
ρ(r)
ε0

. (4)

The solutions for the vector and scalar Helmholtz equations in terms of the free-space
Green’s function G read as

A(r) = µ0

∫
D

G(r,r′)J(r′) dr′ (5)

and
V (r) =

1
ε0

∫
D

G(r,r′)ρ(r′) dr′, (6)

where J and ρ are the source current and charge densities, respectively.

To derive the potential formulation, we apply the volume-equivalence principle, i.e.,
the scatterer is removed and replaced by the equivalent current and charge densities de-
fined as

Jeq(r) = −iωε0(εr (r) − 1)E(r) (7)

ρeq(r) =
1

iω
∇ · Jeq(r). (8)

The equivalent current and charge densities are the sources for the scattered potentials
given by

As (r) = µ0

∫
D

G(r,r′)Jeq(r′) dr′ (9)

V s (r) =
1
ε0

∫
D

G(r,r′)ρeq(r′) dr′ (10)
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and the total potentials can be represented as a sum of the incident and scattered poten-
tials as

A(r) = Ainc(r) + As(r). (11)

V (r) = V inc(r) + V s(r). (12)

Substituting (9) into (11) and using the definition of the equivalent current, the integral
equation for the vector potential reads as

iωAinc(r) = iωA(r) − k2
∫
D

(εr (r′) − 1)(iωA(r′) − ∇′V (r′))G(r,r′) dr′. (13)

Taking the divergence of the above equation and using the Lorenz gauge (2), the equation
for the scalar potential yields

V inc(r) = V (r) + ∇ ·

∫
D

(εr (r′) − 1)(iωA(r′) − ∇′V (r′))G(r,r′) dr′. (14)

Next, we define the normalized vector potential Ã = iωA to improve numerical
balance of the unknowns. By moving the divergence operator inside the integral and using
∇G = −∇′G, yields




Ãinc(r) = Ã(r) − k2
∫
D

(εr (r′) − 1)(Ã(r′) − ∇′V (r′))G(r,r′) dr′

V inc(r) = V (r) +

∫
D

∇′ · [(εr (r′) − 1)(Ã(r′) − ∇′V (r′))]G(r,r′) dr′

−

∫
∂D

n(r′) · [(εr (r′) − 1)(Ã(r′) − ∇′V (r′))G(r,r′)] dr′.

(15)

The surface and volume integrals in the scalar potential equation correspond the
contributions of the surface and volume charges, respectively. It is worth noting that in
the discretized potential formulations [De Doncker, 2001; DeDoncker, 2003; Markkanen
and Ylä-Oijala, 2016], the volume integral in the scalar potential equation was assumed to
be zero inside each element and dropped out. This assumption, however, leads to a diverg-
ing numerical solution if the basis functions do not inherently satisfy the zero divergence
condition [Markkanen, 2016].

3 Essential spectrum

In this section, we analyze the spectral properties of the PVIE. The spectrum of a
bounded operator T is a set of complex-valued numbers λs such that λs I − T is not in-
vertible, where I is the identity operator. The spectrum of a continuous operator is related
to the eigenvelues of the discterized operator, i.e., the system matrix. Thus, understanding
the spectrum of the VIE operator is of interest not only in order to understand the reso-
nances associated with the given structure but also from the preconditioning point of view.
Moreover, the knowledge of the spectrum can be used to estimate the number of iterations
required to solve a given problem (See, e.g., [Yurkin, 2016] and references therein).

The spectrum of the operator can be decomposed into two parts. The essential spec-
trum is a closed subset of the spectrum which is stable under compact perturbations, and
the remaining part contains isolated eigenvalues and possible continuous part. We can find
the essential spectrum of the PVIE by removing all compact operators. First we write the
operator as a matrix form:

T =

(
I − k2V U

∇ · V I − ∇ · U

)
(16)
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where

V (A)(r) =

∫
D

(εr (r′) − 1)G(r,r′)A(r′) dr′, (17)

and

U (V )(r) =

∫
D

(εr (r′) − 1)G(r,r′)∇′V (r′) dr′. (18)

The operators V and U are bounded from H1 to H2, where H s refers to the standard
Sobolev spaces with s ∈ R, hence they are compact in H1 by the embedding theorem.

By removing the compact operators, the essential spectrum can be found by solving

det
�����

I − λ1I 0
∇ · V (I − ∇ · U ) − λ2I

�����
= (I − λ1I)((I − ∇ · U ) − λ2I) = 0. (19)

Therefore, the essential spectrum is the union of the essential spectra of the diagonal op-
erators in (16). It is clear that λ1 = 1 but finding λ2 values is more complicated. The
operator ∇ · U appears in acoustic scattering and it has been analyzed in [Costabel, 2015].
The essential spectrum corresponds to that of the double layer potential operator, which
can be written in the principal value sense as

∑
i

[
Ωr, i (r)

4π
(εr, i (r) − 1)V (r) + p.v.

∫
∂Di

(εr, i (r′) − 1)∂n′G(r,r′)V (r′) dr′
]
. (20)

Here, we have divided the domain D into the subdomains Di with constant permittivity
εr, i . The solid angle Ωr, i is the opening angle that the observation point r sees the do-
main Di , and ∂n corresponds the normal derivative. The principal value part is compact
on smooth surfaces and bounded on non-smooth surfaces. Thus, the spectrum spreads out
around the accumulation points related to the non-smooth parts. By adding the contri-
bution of the identity operator, the accumulation points of the essential spectrum of the
PVIE reads as

σe (εr, i ) = {1,1 +
Ωr, i

4π
(εr, i − 1)}. (21)

For homogeneous objects with smooth surfaces, only three accumulation points exist,
hence σe (εr ) = {1, 1

2 (εr + 1), εr }. For smooth surfaces Ωr, i = 2π and the accumula-
tion point is at 1

2 (εr + 1). The accumulation point at εr appears when the observation
point is inside a homogeneous domain because Ωr, i = 4π. Finally, we note that the essen-
tial spectrum of the PVIE is the same for other VIE formulations [Costabel et al., 2012;
Markkanen, 2014].

4 Discretization

The vector and scalar potential equations define bounded mappings given by

H1(R3)3 × H1(R3)1 → H1(R3)3

H1(R3)3 × H1(R3)1 → H1(R3)1,
(22)

where H1(R3)3 is the space of vector functions whose components are in H1(R3)1, and
H1(R3)1 is the space of continuous scalar functions. Since the material parameter (εr − 1)
vanishes outside the domain D, we can consider the PVIE on D. This is easy to verify
since if the potentials solves the PVIE on D they can be extended outside on D by the
same equation.

We discretize the unknowns by dividing the domain into tetrahedral elements and
expand the scalar potential with fully continuous basis functions except on the boundary
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∂D. The scalar potential is expanded by linear nodal basis functions Nn which span the
finite-dimensional space which is a subspace of H1(D)1 as

V ≈
∑
n

cnNn (23)

where cn are the unknown coefficients. On ∂D, nodal basis functions defined on the bound-
ary nodes are used. Furthermore, each component of the vector potential A is expanded
by the same functions as

Ax ≈
∑
n

xnNn

Ay ≈
∑
n

ynNn

Az ≈
∑
n

znNn .

(24)

This discretization of the unknowns results in 4Nnodes scalar equations in H1(D)
where Nnodes is the number of nodes in the tetrahedral mesh. We apply the projection
method with the symmetric L2 product to discretize the equations. Thus, to guarantee that
the solution converges in a proper norm the test functions should span the dual space of
H1(D). We discretize the equations with the collocation method and the Galerkin method.
In the collocation method, the test functions are distributions and it is typically applied for
problems with sufficiently smooth material parameter profiles. In the Galerkin method, the
test and basis functions are identical. Consequently, the test space is a small subspace of
the dual space of the range of the PVIE, and the convergence in the norm of the solution
cannot be guaranteed. Interestingly, in the case of acoustic surface integral equations in
H1/2, Ylä-Oijala et al. [2015] did not find any significant differences in accuracy when the
equations were discretized with H−1/2 and H1/2 conforming test functions.

Next, we write the elements of the resulting system matrix discretized by the Galerkin
and the collocation methods. By applying Galerkin’s technique where testing and basis
functions are identical, the elements of the system matrix can be written as

Zmn =

*....
,

Ax Ax 0 0 AxV
0 Ay Ay 0 AyV
0 0 Az Az AzV

V Ax V Ay V Az VV

+////
-

(25)

where

(Ai Aj )mn = êi · ê j

∫
Vm

NmNn dV − êi · ê j k2
∫
Vm

∫
Vn

(ε ′n − 1)NmN ′nG dV ′dV

(AiV )mn = êi · k2
∫
Vm

∫
Vn

(ε ′n − 1)Nm∇
′N ′nG dV ′dV

(V Aj )mn = −

∫
Vm

∫
∂Vn

n′ · ê j (ε ′n − 1)NmN ′nG dS′dV

+

∫
Vm

∫
Vn

(ε ′n − 1)ê j · Nm∇
′N ′nGdV ′dV

(VV )mn =

∫
Vm

NmNm dV +

∫
Vm

∫
∂Vn

n′ · (ε ′n − 1)Nm∇
′N ′nG dS′dV,

(26)

in which i and j obtain values x, y, and z. The collocation scheme is obtained by re-
placing the test functions Nm with the delta functions δmn ( δmn = 1 when m = n and
δmn = 0 when m , n). All singular integrals are evaluated with the singularity extraction
method Järvenpää et al. [2003].
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5 Acceleration with the FFT

The adaptive integral method (AIM) or precorrected-FFT algorithm (pFFT) [Bleszyn-
ski et al., 1996; Phillips and White, 1997] separates the computations of the near and far
field interactions. The near field interactions are directly computed by using (26) and the
far field interactions are approximated with the interpolation and the FFT.

First, the tetrahedral mesh is enclosed by a uniform auxiliary grid and the auxiliary
grid is divided into equi-sized cubes with the edge length δcube such that each cube con-
tains p3 grid points and few basis functions. In this paper we use order p = 3, i.e., each
cube has 27 interpolation nodes. Second, we compute and store 8 projection matrices. The
projection matrices are mappings from the primary basis functions in the tetrahedral mesh
into the auxiliary sources in the uniform grid. The projections are defined by requiring the
basis functions in a cube and the auxiliary sources related to the same cube to radiate the
same fields at given test points rt . The test points can be selected, e.g., on the surface of
a sphere or cube with radius/edgelength R whose center coincides with the center of the
cube. We have used a cube R = 4δcube with 98 evenly distributed points rt on the surface
of the cube. The number of test points rt should be larger than the number of interpola-
tion nodes p3.

The mapping from the grid sources to the test potentials can be defined as

Pt,l = G(rt ,rl ) (27)

where rl l = 1,2, ...,p3 are the positions of the grid points in a cube. Mappings from the
basis functions and their derivatives to the test potentials are given by

PA
t,n = −êi · ê j k2

∫
Vn

(εn − 1)NnG(rt ,r) dr

PdV
t,n = êi · k2

∫
Vn

(εn − 1)∇NnG(rt ,r) dr

PdA
t,n = −

∫
∂Vn

(εn − 1)n · ê j NnG(rt ,r) dr

+

∫
Vn

(εn − 1)ê j · ∇NnG(rt ,r) dr

PV
t,n =

∫
∂Vn

(εn − 1)n · ê j∇NnG(rt ,r) dr

(28)

Finally, we can define mappings from the basis functions to the grid sources by re-
quiring that they both radiate the same fields at test points, namely

ΠA
l,n

=
∑
k

P+
l, t P

A
t,n

ΠdV
l,n

=
∑
k

P+
l, t P

dV
t,n

ΠdA
l,n

=
∑
k

P+
l, t P

dA
t,n

ΠV
l,n

=
∑
k

P+
l, t P

V
t,n

(29)

in which P+
l, t

denotes the pseudo inverse of Pt,l .

The interpolation operator is defined as a mapping from the grid sources to the test-
ing functions, namely

Λm,l = (
∑
k

P+
l, t It,m )T (30)

where ()T denotes the transpose. For Galerkin’s method

It,m =

∫
Vm

NmG(rt ,r) dr, (31)
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and for the collocation
It,m = G(rt ,rm ) (32)

where rm is the collocation point.

A matrix-vector multiplication for the far-field part can be executed with the FFT
for each components separately as

axm = Λm,lF
−1

(
GF (ΠA,xx

l,n
xn + Π

dV ,x
l,n

cn )
)

aym = Λm,lF
−1

(
GF (ΠA,yy

l,n
yn + Π

dV ,y
l,n

cn )
)

azm = Λm,lF
−1

(
GF (ΠA,zz

l,n
zn + Π

dV ,z
l,n

cn )
)

acm = Λm,lF
−1

(
GF (ΠdA,x

l,n
xn + Π

dA,y
l,n

yn + Π
dA,z
l,n

zn + ΠV
l,n

cn )
)
,

(33)

in which F denotes the FFT, F −1 the inverse FFT, and G is the zero-padded Fourier
transformed Green’s function matrix related to the uniform grid.

Therefore we have computed the far-field interactions by 4 3D-FFTs and IFFTs in
addition to 14 sparse matrix-vector multiplications. It worth noting here that accelerat-
ing, e.g., the JVIE formulation [Markkanen et al., 2012a] with the pFFT requires 6 3D
FFTs and IFFTs instead of 4. The discretized JVIE is written for 3 current components
and their normal or rotated tangential traces resulting in 6 FFTs and IFFTs. Finally, since
the interpolations are not accurate in the near-zone, the interactions between basis function
in the near-zone (distance between basis functions < lnz ) are corrected by computing them
directly from (26).

6 Numerical results

In this section, we present various numerical examples to validate the method. The
algorithm has been implemented with modern Fortran language and the FFTW-3.3.6 li-
brary is used to compute the FFTs. Further, the code is parallelized with the openMPI. In
all computations, the near-zone distance is chosen to be lnz = 3.5δbox and δbox is se-
lected to be a mean edge length of the mesh. The order p = 3, i.e., each cube contains
p3 grid points. For numerical integration, the third order Gaussian quadrature for tetra-
hedral elements is applied with the singularity subtraction method in which one term is
subtracted from the kernel and integrated analytically. The generalized minimal residual
method GMRES(50) is used to solve the linear systems with tolerance 10−5 (L2-norm).

First, we study the convergence of the FFT-accelerated PVIE solution with respect
to the element size defined as a mean edge length of tetrahedral mesh. The error norms
are defined as follows:

The total solution error reads

errtot =
|
∑

v Ev · E∗v −
∑

v Emie
v · E∗,mie

v |∑
v Emie

v · E∗,mie
v

(34)

which is related to the total energy error of the system. Here, ()∗ denotes the complex
conjugate. The total energy error, however, does not tell anything about the error distribu-
tion, hence we are also interested in L1-norm of the error expressed as

errL1 =

∑
v |(Ev · E∗v − Emie

v · E∗,mie
v ) |∑

v Emie
v · E∗,mie

v

. (35)

A measure for the worst case error is provide by the L∞-norm

errL∞ =
maxv |(Ev · E∗v − Emie

v · E∗,mie
v ) |

maxv (Emie
v · E∗,mie

v )
. (36)
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We study the errors integrated over small equi-sized cubical elements rather than point-
wise errors. To compute these integrals, the scattering object is enclosed by a 60 × 60 ×
60 cubical array. The electric fields Ev , and Emie

v indicate the integrated field values over
a cube v in the array, computed by the PVIE and the analytical Mie solution, respectively.
Eight point integration rule is applied for each cube.

Fig. 1 shows the errors as functions of element size in the free space wavelengths
for a homogeneous sphere of size kr = 2.037 and εr = 5.0 + i1 computed with the col-
location method and the Galerkin method. The number of tetrahedral elements used in the
computations were 376,1120, 4357,15695,53441, and 139010. In this case both testing
procedures lead to almost identical L1 and L∞ error convergence behavior with respect
to the element size. The integrated error with the collocation method converges slightly
faster. We note that the collocation method is much faster since the calculation of the pre-
correction matrix is cheaper with the collocation than that of with the Galerkin method
approximately by a factor of 10. Moreover, the number of iterations required to solve the
system was 27 for the collocation and 53 for the Galerkin method. Time per iteration is
the same for both methods.
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Figure 1. Relative errors calculated by the PVIE with the collocation method (left) and the Galerkin

method (right) for a sphere kr = 2.037 and εr = 5.0 + i1.

Next example is a larger sphere. The size parameter kr = 10.186 and the permit-
tivity εr = 2.9 + i0.1. Fig. 2 displays relative errors for the collocation and the Galerkin
methods, respectively. The same meshes are used in the computations as in Fig. 1 with
one addition mesh containing 380000 elements. As opposed to the smaller sphere, the
convergence rate of the collocation method is slower than that of the Galerkin method
with large elements but the asymptotic convergence rate seems to be the same.

Based on the above results and several other examples we have studied, the collo-
cation method is favorable over Galerkin’s for problems involving small details or inho-
mogeneities. Galerkin’s method works better for large homogeneous or weakly inhomoge-
nous objects. In the rest of the paper we only consider the collocation method.

Let us consider scattering by a 20 × 20 × 20 cubical lattice of dielectric spheres.
The length of the unit cell edge is 3 in arbitrary units. The permittivity of each sphere
εr = 3 + i and the radius r = 1 (arb. units). Each sphere is discretized with 300 tetrahe-
dral elements giving in total 2.4M elements and 2.816M unknowns. The mean edgelength
equals 0.07λ. The incident planewave propagates along z-axis with the wavenumber k = 1
(arb. units)−1. Fig. 3 shows the computed S11 element of the Mueller matrix as a function
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Figure 2. Same as in Fig. 1 but for a sphere kr = 10.186 and εr = 2.9 + i0.1.

of scattering angle in the yz–plane. The reference results is computed semi-analytically
with the fast superposition T-matrix method (FaSTMM) [Markkanen and Yuffa, 2017]. Ex-
cellent agreement is observed also for the other Mueller matrix elements.

Scattering angle [deg]

0 30 60 90 120 150 180

S
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PVIE

Figure 3. Computed Mueller matrix element S11 of a cubical lattice of spheres with the PVIE and the

semi-analytical superposition T-matrix method. The scattering plane is the yz–plane and the forward scatter-

ing direction is at 0◦.

Next, we study materials with negative permittivities. Fig. 4 illustrates the extinction
cross sections (left) and the number of iterations (right) of a sphere discretized with 376
and 15695 linear tetrahedral elements as functions of the real part of the permittivity. The
imaginary part of the permittivity equals 0.01, and the size parameter equals 0.01.

For the ideal sphere, there is a static resonance at εr = −2 which is visible as a
spike in the extinction cross section. We observe that the PVIE finds the static resonance
if the discretization is dense enough. With coarser mesh the position of the spike has
shifted because of the discretized geometry considerably deviates from the ideal sphere.
The solid angles Ωr, i averaged over surface nodes equal 4.76 and 5.76 for the coarse and
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Figure 4. Computed extinction cross sections and the number of iterations as functions of the real part

of permittivity. The sphere of size kr=0.01 is discretized with 376 and 15695 linear tetrahedral elements.

The solid angle Ωr, i avaraged over the surface nodes equals 4.76 (376) and 5.76 (15695) corresponding the

unstable points around εr = −1.64 and εr = −1.18, respectively.

dense mesh, respectively. For the ideal sphere the solid angle should be 2π. From the
spectral analysis, we know that for the ideal sphere, the PVIE is not solvable at εr = −1.
Since the discretized PVIE is forced to be valid at the node points (collocation scheme),
which are not smooth, the unstable points depend on the mesh. Using (21) and the av-
eraged solid angles, we expect the unstable points to appear around εr = −1.64 and
εr = −1.18. This is clearly supported by the convergence rate of the iterative solution.
The eigenvalues for the same meshes in the case of εr = −2 + i0.01 are plotted in Fig.
5. We can see the accumulation points around the expected values as well as the isolated
eigenvalues that correspond the static resonance around zero.
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Figure 5. Computed eigenvalues of the system matrix for a dielectric (εr = −2 + i0.01) sphere of size

0.01 (dots). The sphere is discretized with 376 (top) and 15695 (bottom) tetrahedral elements. The expected

accumulation points of eigenvalues are computed from (21) using solid angles Ωr, i averaged over all surface

nodes (squares). The isolated eigenvalues associated to the static resonance are also visible around zero.
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Table 1. For a cube, the equation σe (Ωr , εr ) = 0 is satisfied with the arguments:

Ωr εr

Volume 4π 0
Surface 2π -1
Edge π -3
Corner π/2 -7

Next, we study the unstable solutions associated with the essential spectrum of a
cube. We expect to find the unstable solutions when the essential spectrum (21) has an
accumulation point at 0, i.e., σe (Ωr , εr ) = 0. The observation point can locate inside of
the cube (Ωr = 4π), on the flat surface (Ωr = 2π), on the edge (Ωr = π), or on the corner
(Ωr = π/2). Thus, we solve the equation σe (Ωr , εr ) = 0 for the permittivity in the cases
of the above mentioned solid angles. The permittivities are shown in table 1.

The permittivities in table 1 correspond to the unstable solutions, hence the system
matrix is not invertible for these values. In Fig. 6, the extinction cross section and the
number of iterations are plotted for a small cube (kl = 0.0162) as a function of permit-
tivity from 0 to -8 containing the unstable values. We have added a small imaginary part
Imεr = 0.01 to avoid theoretical instabilities. The cube is discretized with 4639 and 32307
elements.

We can see that the extinction cross section computed with the different meshes
deviate from each other. This is not surprising since the fields inside the cube can be
strongly localized or even singular near sharp corners and wedges. Thus, a fine mesh,
especially near corners and wedges, is needed to obtain an accurate solution providing
that the solution exists and is unique. We see several spikes in the extinction cross sec-
tion that are associated with the accumulation points and isolated eigenvalues. The spikes
at εr = −1,−3, and −7 may be artificial since the integral equation is not solvable for
these values, and the finite numerical accuracy of the method may spoil the solution near
these values. Specifically, the use of the collocation method may be responsible of these
spikes since the PVIE may not be satisfied in the proper function space. It is worth not-
ing that the resonance at εr = 0 is not excited by the planewave incidence, and as shown
in [Li and Chew, 2006] the conjugate gradient type iterative solvers converge if the right-
hand-side vector is not in the null-space of the matrix. The other spikes are the static res-
onances of a cube. Fuchs [1975] showed that there are six major static resonances be-
tween εr = −0.42, and εr = −3.68. However, as pointed out by Helsing and Perfekt
[2013], some of them may be artifacts due to insufficient resolution or unintended round-
ing of the corners. Be that as it may, there are no such things as infinitely sharp corners
or wedges described by the bulk permittivity in the physical world. Thus, rounding cor-
ners and wedges is a commonly used approach in the numerical analysis of non-smooth
plasmonic particles. See, e.g., [Wallén et al., 2010] and references therein.

Finally, it is of interest to look at the energy distribution of the solution near the ac-
cumulation points of the essential spectrum. In Fig. 7 we plot the absorbed power for the
small cubes (kl = 0.00162) with permittivitites εr = 0 + i0.01, (top left) εr = −1 + i0.01
(top right), εr = −3 + i0.01 (bottom left), and εr = −7 + i0.01 (bottom right). The cube
is discretized with 400k elements. We can see that the absorbed power is confined in the
geometrical entities (volume, surfaces, edges, corners) which give rise to the zero eigen-
values with the given permittivity. From the mathematical point of view, the PVIE is not
a Fredholm of index zero when the permittivity is 0, −1,−3, or −7. This means that the
inverse of the system matrix is not bounded, and consequently, the solution is not unique
or the energy is infinite. Fig. 7 shows the energy density is indeed very high at surfaces,
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Figure 6. The extinction cross section (left) and the number of iterations (right) as functions of permittivity

computed by the PVIE. The scatterer is a cube of size kl = 0.0162. The cube is discterized with 4639 (4k)

and 32307 (32k) tetrahedral elements.

wedges, and corners depending on the permittivity which implies that the energy may
not be bounded in these cases. This suggests that the solution obtained by the collocation
method may diverge near the accumulation points since the equation may not be satisfied
in H1. Thus, a set of testing functions in the dual space of the range, i.e., H−1, should be
used to discretize the PVIE in order to remove the artificial solutions.

7 Conclusions

We have studied the potential volume-integral-equation method for the electromag-
netic scattering analysis by dielectric objects. The formulation has two equations and two
unknowns: the vector and scalar potentials. The PVIE allows us to use fully continuous
basis functions which is favorable to the conditioning of the resulting system matrix.

We applied the collocation and Galerkin methods to discretize the system. For ob-
jects with smooth surfaces both schemes lead roughly to the same convergence rate of ac-
curacy whereas the collocation method is more stable. The eigenvalues of the system ma-
trix discretized with the collocation method coincide almost exactly with the theoretically
predicted values. This is in contrast to the standard volume-integral-equation formulations
where the eigenvalue spectra contain some artificial parts. Further, the eigenvalues are di-
rectly associated with the test functions which allows for building a simple scaling-based
preconditioner without complicated Helmholtz decomposition as in [Markkanen, 2014].

The numerical experiments and theoretical considerations, however, imply that nei-
ther of the testing schemes (collocation or Galerkin), is the most optimal. They can give
rise to spurious solution especially for non-smooth objects with negative permittivity.
Thus, constructing a proper set of testing function is an interesting topic for future re-
search.
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Figure 7. Absorbed power in a cube with εr = 0 + i0.01 (top left), εr = −1 + i0.01 (top right), εr = −3 +

i0.01 (bottom left), and εr = −7 + i0.01 (bottom right).
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