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1,2-epoxyhexane                                                                                                       EH 

Anionic ring opening polymerization                                                                                                    AROP 

Critical micellisation temperature                                                                                CMT 

Cu (I) catalyzed Azide Alkyne Cycloaddition reaction                                           CuAAC 

Di (ethylene glycol) methyl ether methacrylate                                      DEGMA 

Dichloromethane                                                                                              DCM 

Differential Scanning Calorimetry                                                                                                 DSC         

Dimethyl sulfoxide                                                                                              DMSO 

Dimethylformamide                                                                                               DMF                      

Ethoxyethyl glycidyl ether                                                                              EEGE 

Ethyl glycidyl ether                                                                                                 EGE 

Ethylene oxide                                                                                                     EO 

Ethylene-diamine-tetraacetic acid                                                                                  EDTA 

Fourier-transform Infrared Spectroscopy                                                                       FT-IR 

Gel permeation chromatography                                                                                 GPC 

Glycidyl methyl ether                                                                                                                GME 

Hyaluronic acid                                                                                                                              HA      

Lower critical solution temperature                                                                                         LCST 

Micro Differential Scanning Calorimetry                                            Micro-DSC 

N,N,N’,N’’,N’’-penta-methyl-diethylene-triamine                                                                 PMDETA 

N,N-diisopropyl ethanolamine glycidyl ether                                                                        DEGE 

Nuclear Magnetic Resonance Spectroscopy                                                                                           NMR 

Oligo (ethylene glycol) methacrylate                                                                                             OEGMA 

Poly (2-glucosyloxyethyl methacrylate)                                                                                  PGEMA 

Poly (allyl glycidyl ether)                                                                             PAGE  

Poly (Ethylene oxide)                                                                                                  PEO 

Poly (N-isopropylacrylamide)                                                                             PNIPAM 

Poly (Propylene oxide)                                                                                     PPO 

Polyacrylic acid                                                                                                  PAA 
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I. Literature Part 

1. Introduction 

Thermo-responsive hydrogels gain much attention as biomaterials for instance in drug 

delivery and tissue engineering. [1, 2]  

A popular thermo-responsive polymer is for example poly(N-isopropylacrylamide) 

(PNIPAM).[3] This material shows lower critical solution temperature (LCST) in water and 

the phase transition temperatures are hardly influenced by changes in concentration, pH, or 

ionic strength. Therefore it is a good candidates to be used as thermo-responsive biomaterials 

in biological environments.[4] Controlled polymerization methods are utilized for producing 

this polymers for instance by ionic or controlled radical polymerization.[5-7] 

PGME used in this study is biocompatible and water soluble, and has similar properties 

compared to PNIPAM.[8]  However it gained less attention by chemists in the past due to 

the low reactivity compared to other glycidyl ether derivatives. However, a monomer 

activation method AROP found to be a good approach.[9] It would be a good attempt for 

adventuring new biomaterial now.  

Hyaluronic acid (HA) is widely investigated for medical application due to its 

biodegradation and biocompatibility. For example, crosslinked HA-based composite 

hydrogels have been used as sustained release drug delivery systems.[10] Furthermore, HA 

is a natural component of eye tissue which could serve as a potential drug delivery system 

for many ocular diseases. [11] 

The main purpose of the study was to produce a HA-graft-poly(GME) based hydrogel, which 

can be used as thermo-responsive biomaterial in a range of applications.   
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2. Thermo-responsive Polymers 

2.1 General review of Thermo-responsive Polymers  

Stimuli-responsive polymers are a class of functional polymers with large variety of 

applications.[2, 12] Stimuli-responsive polymers can have phase transition triggered by for 

instance the change of temperature, pH, concentration of CO2 and light, especially in 

aqueous solution.[13] 

Stimuli-responsive polymers are used in controlled release technologies and drug delivery 

systems. Many of these polymers are able to carry drug molecules, encapsulated for example 

in self-assembled polymeric micelles and hydrogels.[14] Compared to the normal medical 

therapy using free anti-cancer agent, they may have significantly higher effectiveness and 

lower cytotoxicity to healthy cells since drugs can be surrounded by polymers and targeted 

to the target cell.[15] 

There are several methods that can drive the response of polymers, but polymers exhibiting 

temperature responsiveness are the most studied among stimuli-responsive polymers, since 

changing temperature is relatively easier than that of pH, redox and concentration of CO2.  

Furthermore, human body temperature is stable compared to the pH, which varies greatly in 

different organs and tissues. 

Plenty of polymers are thermo-responsive. The following Figure.1 shows some examples, 

first category is natural polymers for example methylcellulose.[13] PNIPAM, poly(ethylene 

oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) (PEO/PPO/PEO) block copolymers 

are the examples of  synthetic polymers.[13] 
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Figure.1 Examples of natural and synthetic thermo-responsive polymers 
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2.2 Principle of Thermo-responsive Polymers  

The temperature, at which the polymer solution phase separates, is called critical solution 

temperature (CST). As it shows below in Figure.2, temperature leads to the formation of 

phase transitions with different polymer concentrations and LCST is the minimum 

temperature of the coexistence curve of two phases in the phase diagram. 

In contrast, a polymer with upper critical solution temperature (UCST) shows the opposite 

tendency. UCST is the maximum temperature of the coexistence curve. It is insoluble below 

UCST and when the temperature rises above UCST, it would be soluble.  

 

Figure.2 Phase diagram for binary mixtures exhibiting LCST or UCST 

Figure.3 shows the polymers with lower critical solution temperature (LCST) are soluble 

and the polymer chains are relaxed and conformational extended coils in micro perspective 

below the LCST. Above the LCST, the coils collapse and the polymers become insoluble.[3]  
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Interaction forces can be the main mechanism that explain the phenomenon of phase 

transition. There are three kinds of interactions in polymer solution: polymer and polymer, 

polymer and solvent molecular, solvent molecules themselves. Below the LCST, hydrogen 

bonding between polymer and water molecule make it dissolve. After heating, interaction 

between polymer and solvent molecule decreases and intramolecular interactions increases. 

The liberation of solvent molecules gives rise to the entropy increasing.[16] The type of the 

forces among the intramolecular interactions could be Van-der Waals forces, hydrophobic 

interaction and hydrogen bonding. [17] 

 

Figure.3 Behavior of LCST-type polymers in solution 
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2.3 Applications of Thermo-responsive Polymers  

Thermo-responsive hydrogels are liquids at certain temperature, and form a gel after being 

adjusted to another temperature. Polymers with LCST have been more studied for producing 

such hydrogels than those with UCST, especially in drug delivery systems. 

Since the polymers are intended for use in the human body, they should respond close to 

body temperature.[13] From this point of view, there are a lot of research on PNIPAM which 

has LCST at 32oC, leading to rapid phase transition and high volumetric collapse.[18] 

PNIPAM has been applied in the field of drug delivery, tissue engineering and in vitro cell 

cultures and in the maintenance of specific cell properties. [19] 

PNIPAM is mostly produced by radical polymerization. In order to get more possible 

functional applications in various fields, copolymerization and grafting reactions are utilized. 

For example poly(N-isopropylacrylamide-co-butylmethacrylate) (structure see Figure.3) 

was used as a liposome carrier for delivery of doxorubicin, showing enhanced drug release 

in response to temperature fluctuation. In addition, Poly (N-isopropylacrylamide-co-

butylmethacrylate) is recommended because of lower cytotoxicity. [20] 

  

Figure.3 Structure of Poly (N-isopropylacrylamide-co-butylmethacrylate) 
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2.3.1 Thermo-responsive Block copolymers 

Thermo-responsive block copolymers can self-assemble into polymeric micelles, which can 

be useful for drug delivery and release. Another used strategy is to use tri-block polymers 

consisting of hydrophobic cores that can encapsulate drug molecules and thermo-responsive 

hydrophilic block shells that are soluble. For example, Poloxamers, also known as Pluronic® 

produced by BASF, are composed of a central hydrophobic chain of poly(propylene oxide) 

flanked by two hydrophilic chains of poly(ethylene oxide). [13] The following Figure.4 

shows the mechanism of PEO-PPO-PEO micellisation. The PPO block chains are soluble 

when the temperatures is below the critical micellisation temperature (CMT) of the 

copolymer. The aggregation number and volume fraction of the micelles as well as the hard-

sphere (PPO block) increased with increasing temperature. When volume fraction 

(φm) >0.53 with high enough concentration, PEO-PPO-PEO block copolymer can form gel. 

[21] It can be utilized as drug delivery system with drug molecules encapsulated in the 

hydrophobic core of the micelles as well as sustained drug release system in some case that 

the drugs in the core would be released slowly consequently. [22, 23] 

 

Figure.4 Mechanism of Thermo-responsive PEO-PPO-PEO copolymer 
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2.3.2 Thermo-responsive polymer grafted polysaccharides  

There are plenty of studies on the polysaccharides grafting by polymers with LCST which 

can produce hydrogel used in bio-applications. For example, PNIPAM grafted dextran 

hydrogel, HA-g-poly (DEGMA-co-OEGMA) [24-26] and also what has been produced in 

this experiment, poly (GME-co-EH)-grafted HA. These products are soluble below the 

LCST of the synthetic polymers. At temperatures above the LCST, the polymer grafts would 

be hydrophobic and the hydrophobic interaction between the grafts would lead to 

micellisation or gelation that can be applied in drug delivery system.[27] 

Some drugs combine with this kind of hydrogel are able to be released slowly and with 

constant rate. The diameter and interaction of particle and size and properties of 

corresponding  hydrogel network are rather important since if the size of hydrogel network 

(matrix) unit is much bigger than drug diameter, the elongation of drug releasing cannot be 

achieved.[13]  

Figure.5 shows that intra-chain entanglements give rise to the aggregation of grafting chains. 

In addition, the balance of intra- and inter-chain entanglements plays an important role on 

gel network formation. If inter-chain entanglements are favored, the volume of gel network 

shrinks. The volume will not change, if there is a balance between inter-and intra-chains 

entanglements. 
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A:aggregation
(mainly intra-chains entanglements)

B:gel network
(balance of intra- and inter-chain entanglements)

C:gel network
(mainly inter-chain entanglements)  

Figure.5 Inter-or intra-chain entanglements effect on micelle and gel network 
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3. Hyaluronic Acid  

Hyaluronic acid (HA) is a natural polysaccharide composed of N-acetyl glucosamine and D-

glucuronic acid as a repeating units. It is widely found in connective tissue, epithelial tissue, 

and vitreous of the eye tissue as well as the component of extracellular matrix. [28] 

3.1 Hyaluronic acid bio-applications 

Since HA is a component of synovial fluid, it can be used in clinical practice for treating 

osteoarthritis. The lack of joint lubricant causes osteoarthritis and the extra injectable HA 

can improve the condition. In addition, HA may reduce the symptoms of knee osteoarthritis 

by various mechanisms such as inhibition of chondrodegradative enzymes and synthesis of 

chondrocytes. [29, 30] 

Grafting with different polymers on the polysaccharide chains is an efficient approach to 

functionalize them. Two examples are shown in Figure.6. Polyacrylic acid (PAA) grafted 

HA (HA-g-PAA) shows a slower degradation than that of unmodified HA since grafted PAA 

generates steric hindrance so that can prolong the time HA-g-PAA stay in human body for 

more medical applications. In addition, hydrogen bonding was disturbed which lead to the 

decreases of viscosity and make injection easier. PAA was detached by hydrolysis and 

enzymatic degradation by lipase and it has been already tested subcutaneously and 

intraperitoneally. It is supposed to be used in drug delivery in the peritoneum. HA cannot 

form the insoluble calcium salt itself [31] while the binding between grafted PAA and Ca2+ 

will form insoluble salt immediately. From the micro-view, PAA changes from a random 

coil to a compact spherical shape like pearl-necklace. In addition, it has been assumed that 

if the HA was partially modified by PAA, few hydrophobic functional polymer grafts will 

make it possible to form gel-like insoluble salts.[32]  
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Figure.6 Examples of functional polymers grafted Hyaluronic Acid 

 

Moreover, functional HA-graft copolymers have been reported for controlled release and 

targeted drug delivery systems for instance in anti-cancer therapy.[15] [28] Hyaluronic acid-

cysteamine-polylactic-co-glycolic acid (HA-SS-PLGA) was produced via HA backbone 

grafted by PLGA with coupling reaction in water-oil-water nano-emulsion. The formed 

micelles were able to encapsulate common chemotherapy drugs like doxorubicin (DOX) and 

cyclopamine (CYC) and to deliver them directly to the cancer stem cell. As a result, it does 

less harm to the healthy body tissue and present better effectiveness.[33]  
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3.2 Click chemistry in Hyaluronic acid bio-applications 

The “Click Chemistry” was first introduced by Dr. Sharpless’s group in 1999[34] and later 

defined as a group of reactions that are modular, wide in scope, with high yields, simple 

reaction conditions, and easy purification.[35, 36] Briefly there are reliable one-step 

coupling reactions based on functional groups between two molecules A and B with the 

advantage of being highly selective as well as water and oxygen tolerant.[35, 37] A scheme 

can be seen from Figure. 7.  It has already been used in many pharmacological applications.   

 

Figure.7 Scheme of Azide-Alkyne click chemistry reaction 

The most common example of click reactions is the Cu (I) catalyzed Azide-Alkyne 

Cycloaddition reaction (CuAAC), which is also utilized in this study. There are also some 

other reactions, such as thiol based reactions, which have also been widely used.[38] In this 

case, HA chains have been pretreated to be alkyne-functionalized.[39] The grafting polymer 

has an azide head group and can be “clicked” on the HA chains with the reaction between 

alkyne and azide.  
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4. Ring Opening Polymerization 

Among cyclic ethers, three-membered ring epoxides (with the few exceptions of four-

membered ring oxetanes) are the only ones that can be polymerized by an anionic or a related 

nucleophilic polymerization mechanism. Other cyclic ethers with more carbon members can 

be polymerized by a cationic or electrophilic ring-opening mechanism. [40] 

Ring opening polymerization (ROP) is the most important synthesis method for polyethers. 

1,2-alkylene oxide and glycidyl ether with different substituent can be polymerized via ROP 

and especially anionic ring opening polymerization (AROP). [41]  

Ring opening polymerization systems often require totally dry system, active catalyst to 

enable strict control. As for anionic ring opening polymerization, no hydroxyl group can 

exist in the system otherwise the chain transfer will occur which cause termination of 

polymerization.  

4.1 Conventional Anionic Ring Opening Polymerization  

Conventional AROP is widely used in the precise polymerization, when narrow 

polydispersity and high molar mass are required, the mechanism of nucleophilic attack of 

propagating chain end to monomer can be learnt easily. Polymerization of poly (glycidyl 

ether) is shown as an example, the process of conventional AROP can be divided into several 

steps as most polymerization procedures which is illustrated in the following Figure.8. It 

involves initiation, propagation and termination (chain transfer).[8, 42] 

Nucleophilic initiators can be alkoxides for instance. Monomers like EO or other three 

membered cyclic ether have an electrophilic carbon atom according to the highly electron-

withdrawing neighbor oxygen atom. The initiation occurs by the nucleophilic attack of 

initiator to the electrophilic carbon atom and a new propagating intermediate is formed. The 

new nucleophilic species will attack the carbon atom in another monomer and repeat this 

procedure until the monomers are used up. 

The termination is always achieved by the chain transfer reaction instead of the theoretical 

termination step, though it is shown below as well. As a result, this chain transfer reaction 

give rise to the broader polydispersity and some oligomers.[8] 
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Figure.8 Mechanism of poly (glycidyl ether) produced by conventional AROP 
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4.2 Monomer Activated Anionic Ring Opening Polymerization  

Conventional AROP always yields broad polydispersity of polymers, because of side 

reactions such as chain transfer in alkali metal anionic polymerization. In addition, 

copolymerization of different functional epoxide monomers via conventional AROP was 

shown to give gradient comonomer composition in copolymers.[8] As a result, monomer 

activated AROP first reported by Billouard in 2004 [43] has gained lots of interest presently. 

It has been already used in many ring opening copolymerizations including copolymers of 

glycidyl ether derivatives. [8] 

Tetraalkylammonium or tetraalkylphosphonium halides (onium salts) replace the alkali 

metal initiators and triisobutylaluminum (i-Bu3Al) is used as activator. The aluminate 

species ensures propagation in the AlR3/onium systems as it selectively activates the 

monomer.[40] As 1 equivalent of AlR3 forms a complex with the initiator, more AlR3 

(AlR3/initiator > 1) is needed to activate the monomer[42]. The proper ratio depends on the 

employed monomers and target degree of polymerization.[8, 9, 42] 

Here is the mechanism of AROP of glycidyl ether derivatives (Figure.9).  
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Figure.9 Mechanism of onium salts activated AROP of poly (glycidyl ether) 

As for the drawback, metal element in the triisobutylaluminum may cause contamination to 

environment. There are still some challenges for developing environmental friendly system 

design. A good example has been reported that metal-free phosphazene base t-BuP4 catalyst 

used in Glycidyl Phenyl Ether (GPE) polymerization.[44] 
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5. Glycidyl Methyl Ether based copolymer 

Glycidyl methyl ether is a type of functional epoxide monomer that polymerizes to give a 

polyethylene oxide backbone with pendant methyl ether groups.[42, 45] Different glycidyl 

ethers have been studied, such as poly(allyl glycidyl ether) (PAGE) and propargyl glycidyl 

ether (PGE) [27, 46]. Some of them were block copolymerized to form micelles while some 

were random copolymerized.[8, 27] The scheme and of copolymerization and the structure 

of poly(GME-EH) are shown in the Figure. 10. 

 

Figure.10 Scheme of copolymerization and structure of poly(GME-EH) 

Glycidyl methyl ether (GME) is a kind of commercial and low-cost glycidyl ether polymer 

with highly biocompatibility.[8] It gains a lot of attractions due to the advantage of 

remarkable solubility in water in room temperature as well. It has been used for protein 

repellent coatings and drug delivery systems. [9] The poly (GME) exhibit thermo-responsive 

property with LCST at 57.7oC.[8] However for biomedical applications a transition 

temperature closer to body temperature would be favorable. Unlike block copolymerization 

which is normally applied in production of self-assembled functional polymers, random 

copolymerization is a general approach to adjust the phase transition temperature to a desired 

target temperature for designated applications.[8]  Random copolymers form thermo-

responsive aggregates when they reach the CST, while block copolymers form micelles. [47] 
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The Figure.11 below shows the differences between these two copolymers when they are 

heated above LCST. The copolymerization strategies will be mentioned in the following 

section. 

 

Figure.11 The different behavior of Random copolymer and Block copolymer at T > LCST 

Since 1,2-epoxy hexane (EH) has low water-solubility,[48] it can be used for 

copolymerization and adjust the LCST of GME based copolymer, the structure see Figure. 

12 a. Unlike ethyl glycidyl ether (EGE), which was also used for copolymerizing with GME 

(Figure. 12 b) by Heinen et al., [8] EH has longer alkyl group which gives more hydrophobic 

property than EGE with alkyl ether substitution so that it could be more efficient and less 

EH may be needed to adjust the LCST of GME based random poly(GME-co-EH). Therefore 

EH is a comparably better attempt. 

As for the reactivity ratio in copolymerization, the previous researches offer some references. 

Ethoxyethyl glycidyl ether (EEGE) and ethylene oxide (EO) and copolymer (Figure. 12 c) 

was synthesized by Herzberger et al. [47] and they found that reactivity ratios of EEGE and 

EO are close to r = 1. Reactivity ratio describes how much monomer A and B eager to 

polymerize with themselves or copolymerize with another monomer. If the 

reactivity r1r2 approaches one, each radical has no preference, random copolymer will be 

achieved. Ethylene oxide (EO) and N,N-diisopropyl ethanolamine glycidyl ether (DEGE) 
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copolymer poly (EO-co-DEGE) (Figure. 12 d) as well as  allyl glycidyl ether (AGE) and 

DEGE copolymer poly (AGE-co-DEGE) (Figure. 12 e) were produced by Lee et al. [49], 

which are both random copolymer with reactivity ratios close to 1 and rDEGE*rEO≈1. In 

addition, the bulky substituents hardly show the influence on the reactivity ratio of poly 

glycidyl ether. [47, 49, 50] Although EH has longer alkyl substituents compare to EO and 

reactivity ratios is unknown, random copolymerization could be tried and later NMR 

examination would give the results. 
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Figure.12 The structures of several glycidyl ether derivatives copolymer 
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II. Experimental 

1. The aim of research  

The aim of the research was to produce the thermo-responsive hydrogel of HA (hyaluronic 

acid) grafted with GME (Glycidyl methyl ether)-EH (Epoxy hexane) random copolymer 

shown in Figure.13.  

The thermo-responsive hydrogel was aimed to be used as drug delivery material with 

biocompatibility and the phase transfer temperature of main component GME (about 60 °C) 

was to be adjusted to around body temperature by copolymerization with hydrophobic EH 

monomer. According to the thermo-responsive property of the copolymer poly-(GME-EH), 

the copolymer chains should collapse when they are heated above phase transition 

temperature, and inter-and intra-chain forces between grafted copolymers would lead to 

gelation of the Hyaluronic acid based product. The structures of product and the gelation 

processing can be seen from the following Figure.13. 
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Figure.13 Intended structure of final product and process of gelation 
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2. Materials 

Glycidyl methyl ether (GME, >85%, TCI, M=88.11) and 1,2-epoxyhexane (EH, >96%, TCI 

M=100.16) need to be purified in following steps: Molecular sieves (Ø 3 Å) equal to ~10 

weight % of the monomer were dried in 350 °C oven overnight then cooled down to room 

temperature in a desiccator and moved to a round bottomed flask. Monomer was refluxed with 

calcium hydride overnight and distilled under water pump vacuum. The purified monomers 

were stored with 3Å sieves (10 wt%) in the flask in the freezer until use. 

Toluene was used as the solvent for initiator and it was firstly purified by refluxing with 

calcium hydride overnight then distilled (boiling point=110oC) under argon. The solvent was 

stored over 3Å sieves (10 wt%) at room temperature and DMF was stored with 4Å sieves 

(10 wt%) at room temperature.    

Water used in all syntheses had been distilled. Chloroform, dichloromethane (DCM) and 

methanol were obtained from Fisher Scientific and acetone, dimethyl sulfoxide (DMSO), hexane 

and tetrahydrofuran (THF) from Sigma Aldrich. All the solvents used for synthesis were of 

HPLC grade and used as received. 

NMR solvents were obtained from Euriso-Top. Purity of deuterated chloroform was 99.80 % D 

and of deuterium oxide was 99.96 % D. 

Tetraoctylammonium bromide (NOct4Br, Sigma Aldrich, 98%) was used as initiator which 

was dried in vacuum then solubilized into dried toluene with the concentration of 0.3mol/L 

and stored in the fridge. 

Triisobutylaluminum (i-Bu3Al, Sigma Aldrich, 25wt% 1.0M in toluene), N,N,N’,N’’,N’’-

pentamethyldiethylenetriamine (PMDETA), sodium azide (Sigma Aldrich, >99%), 

ethylenediaminetetraacetic acid (EDTA, Sigma Aldrich). 

Hyaluronic acid propargyl ester (DS=17%; M(RU)=404.03g/mol, c≈3g/L) were used as 

received.  
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Flasks were silanized by following steps: A 25 ml 2-necked flask and stir bar were carefully 

washed, rinsed with acetone and dried in oven. The stir bar was inserted into the flask and 

both were cooled to room temperature. The flask was fully filled with dichloromethane, then 

8 drops of triethylamine (98.0 %, Fluka Analytical) were added, followed by 10 drops of 

dichlorodimethylsilane (99.5 %).The flasks with solution were left at room temperature 

under stirring overnight. The solution was discarded, the flasks rinsed with dichloromethane 

3 times and dried in an oven until needed.  
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3. Synthesis 

3.1 Synthesis of Poly-(GME-EH) with -Br-end group 

Thermo-responsive copolymer poly-(GME-EH) was synthesized using tetraoctylammonium 

bromide as initiator and triisobutylaluminum as catalyst with various ratios of GME and EH 

monomers. The polymerization scheme is showed above as Figure.10. 

The silanized flasks used for anionic polymerization were flame dried, filled with argon and 

weighted in room temperature. GME (84.4%-90.9% in feed), EH (9.1%-15.6% in feed) and 

toluene (total monomer concentration 4 mol/L) were added by syringe sequentially. The 

amount of initiator solution (Noct4-Br in dried toluene) and catalyst (triisobutylaluminum) 

was adjusted to different targeting DP with the fixed ratio 1/5. 

n(GME)+n(EH)  /  n (Noct4-Br) = DPtheo 

The flask was cooled in the ice bath to 0oC and Noct4-Br and triisobutylaluminum were 

added drop by drop sequentially under argon. The reaction mixture was stirred at 0 °C for 

30 min, then transferred into an oil bath at 60oC. The mixture was stirred overnight (18h-

22.5h). To stop the reaction, 1 ml methanol was added into the flask for termination. The 

completion of the reaction was confirmed by 1H NMR by disappearance of the epoxide ring 

protons between 3.30 and 2.50 ppm. The flask was washed by chloroform. The product 

mixed with chloroform was dropped in to cool diethyl ether and residual 

triisobutylaluminum was precipitated and filtered off. Rotary evaporator was used for 

removing solvent (DCM, chloroform and methanol). A yellowish viscous product was 

obtained and stored in the freezer. The yield was close to quantitative in all cases. 

To remove residual initiator salt, the polymer was precipitated in pentane. Therefore, the 

polymer was dissolved in dichloromethane and added to 350ml pentane under stirring. The 

pure polymer was collected by centrifugation (Sigma Laboratory Centrifuge, 2K1SC). Since 

the precipitation was difficult to control, most of products were lost. The average yield was 

less than 20% but pure polymers were shown obtained by NMR. 
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3.2 Substitution of bromide end group 

 

Figure.14 Substitution of bromide end group 

The substitution reaction can be seen above in Figure.14. Copolymer poly-(GME-EH) (pol3 

457.2 mg) was dried in vacuum to remove water before the substitution reaction. The poly-

(GME-EH) was added in a dried clean flask under argon. DMF (4.3 ml) as solvent was 

injected into the flask by syringe and sodium azide (18.9 mg, 6eq. compared to the amount 

of bromide) was added. The flask was immersed into an oil bath at 60 oC and stirred 

overnight. DMF was removed by rotary evaporation (70oC, 50kpa) and the residue was 

diluted with dichloromethane and water. NaCl was added into the two-phase solution. The 

organic phase was extracted 3 times with aqueous NaCl and collected. Organic phase then 

was dried with anhydrous magnesium sulfate, filtered and evaporated to obtain colorless oil-

like product. The yield was 434.4mg (91.2%). 
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3.3 Grafting polymer with HA by Click Chemistry 

 

Figure.15 Scheme of grafting reaction by click chemistry 
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The scheme of click chemistry can be seen in Figure.15. HA-propargyl ester (27.6 mg, 

DS=17%; M (RU) =404.03g/mol, c≈3g/L) was weighted in the dried clean flask. Copolymer 

poly-(GME-EH) (Pol3 313.7 mg) was dissolved in 2.5ml water first. The solution was added 

to HA and the mixture was cooled in ice bath. 7.5ml DMSO was added drop by drop under 

stirring. The mixture was degassed by 3 freeze-pump-thaw cycles. Copper (I) bromide (3.5 

mg, 2.0eq, M=143.45g/mol) in 1 ml DMSO was added into the solution. PMDETA (0.5µL, 

0.2eq, M=173.30g/mol, ρ=0.83g/ml) was added via automatic pipette under Argon. The 

reaction mixture was stirred over 48 hours at room temperature under Argon and protected 

from light. Resulting solution was dialyzed against 0.01mM EDTAaq, 0.1M NaClaq and 

water for 2.5 hours and 3 times respectively, following by lyophilization to give the final 

product. The yield was 55.8 mg (16.3%). 
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4. Characterization 

4.1 Nuclear Magnetic Resonance (NMR) Spectroscopy  

1H-NMR and 13C-NMR spectra were recorded by the Bruker Avance III. Chemical shifts 

(δ) are given in ppm. 1H-NMR was used to determine the purity of monomers, conversions 

of the reactions, LCST and compositions of copolymers.   

4.2 Gel permeation chromatography (GPC) 

In addition, the molar mass and PDI of copolymer poly-(GME-EH) were determined by the 

GPC using THF as the eluent containing 1% toluene and molar masses calculated against 

polystyrene standards (Scientific Polymer Products, Inc.). Separation was achieved by 

Waters Styragel Guard Column, Styragel HR1, HR2, and HR4 columns. HA-grafted poly-

(GME-EH) were measured in 0.1 M aqueous sodium nitrate (NaNO3) containing 3% 

acetonitrile and molar masses calculated against polyethylene oxide standards (PSS Polymer 

Standards Service). The column set consisted of a TOSOH Guard column PWXL, TSK gel 

G3000 PWXL, G5000 PWXL, and G6000 PWXL.[51] 

4.3  Fourier-transform Infrared (FT-IR) Spectroscopy  

IR spectra were recorded by the PerkinElmer Spectrum One ATR-spectrometer at room 

temperature. Spectra were used to determine the structural features of the products for 

example presence of azide-groups.  

4.4  Turbidimetry  

Phase transfer of the thermo-responsive block was determined by the JASCO J-8145 CD-

spectrometer.  

The turbidity recorded in distilled and deuterated water with sample concentration of 10g/L, 

heating from 5°C to 80°C and back to 5 °C with a heating rate of 1 °C/min. 
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4.5  Micro-Calorimetry  

Micro-DSC were recorded by the MicroCal DSC Instruments with VPViewer 2000 DSC 

software. The Spectra were used to determine the phase transition temperature of the thermo-

responsive polymers with high thermo-sensitivity.  

The sample with concentration of 10g/L were placed in instrument pans and equilibrated at 

5oC for 30 minutes before heating it from 5oC to 95oC and cooled to 5°C with different 

heating rate at 90K/ h, 60K/ h, 45K/ h, 30K/ h respectively. The first test with heating rate 

of 90K/ h was repeated twice to ensure the accuracy.  

4.6  Rheology  

The sample used for final product rheology test was dissolved in distilled water with 

concentration of 100g/L. TA Advanced Rheometer-2000 was used for temperature and 

frequency sweeps. The sample was heated from 20oC to 40oC with the heating rate of 

1oC/min at a strain of 1% respectively. 
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III. Results and discussion 

1. Synthesis of Poly-(GME-EH) with -Br-end group  

The poly-(GME-EH) random copolymers were synthesized by anionic polymerization with 

the molar feed of GME from 84.4% to 90.9 %. Several copolymer samples were produced 

to test the proper phase transition temperature around body temperature (35oC-40oC). The 

first polymerization (Pol1) failed since the initiator tetrabutyl azide did not dissolve in the 

toluene solvent and showed obvious phase separation. The initiator was changed to 

tetraoctylammonium bromide, which can be dissolved in toluene. Pol2 was produced by low 

conversion (about 50%) with the low initiator / catalyst ratio of 2. The proper ratio was 5 

since excess i-Bu3Al was needed to form complex to active the monomer to the growing 

chain. [52] Sequences of different monomer feed in Poly-(GME-EH) copolymer were 

obtained with a conversion of 100% as it shows in Table.1.  

Toluene was forgotten to be added in Pol3 and Pol4 accidently. Pol5 contained residual 

initiator salt since the solution was turbid below phase transition temperature and the residue 

was removed by precipitation which has been proven to be efficient.[8] The Pol5 was pure 

afterwards but the yield was quite low. The GPC data of Pol5 was unfortunately missing 

since there was no sample left before GPC examination.  

The missing Pol6, Pol7 and Pol8 in table 1 failed to polymerize because of the invalid 

initiator solution. The long storage time made initiator form crystals in the toluene and rather 

hard to dissolve again which gave rise to the failure. 

The molecular weight distributions were measured with GPC calibrated with polystyrene 

standards. As PS has larger hydrodynamic volume in THF compare to poly (GME-EH). GPC 

gives smaller than the real molecular weights.[53] The PDI can however be compared 

between different samples. GPC of poly(GME-co-EO) by Müller et al. [9] however used 

PEG as the standard which has much more similar structure with poly(GME-EH) and should 

give more realistic values.  



- 38 - 

 

The molecular weights of Pol3 and Pol4 were much lower than the theoretical values. Also 

the PDI of Pol3 and Pol4 were 1.60 and 1.57, respectively, which are not expected for a 

supposedly controlled polymerization. The reason is that the solvent was forgotten to be 

added so that the monomer concentration of Pol3 and Pol4 were quite high, representing 

40.5 mol/L and 41.8mol/L respectively. After monomer concentration was corrected back 

to 4 mol/L, the molecular weights of Pol9 and Pol10 were closer to the theoretical one and 

the PDI was narrower than Pol3 and Pol4. A high concentration of monomer gives rise to an 

increasing polymerization rate and a gel-like high viscosity solution formed immediately 

after catalyst was added and the polymerization was not controlled. Diluted monomer 

solution bring better control over polymerization. [54] [8] 

Table 1 shows that Pol3 and Pol4 have similar GME content corresponding to the monomer 

feed. However, in Pol5, Pol9 and Pol10, GME content in the copolymers are much lower 

than that in their monomer feeds. The only difference can be found is the monomer 

concentration of the feed mixture for these two groups of copolymers. Pol5, Pol9 and Pol10 

were made with monomer concentration of 4 mol/L. Almost no reports show the trend like 

this: the conversion of polymerization is nearly 100%, but glycidyl ether content in 

copolymer is much lower than that in feeds. By contrast, other reported glycidyl ether 

copolymers did not have such deviation.[8, 9, 50, 55] There is no proper explanation to be 

found for this result at the moment and it should be solved out in future study. However the 

mistakes by operation can be considered as a possibility. 
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Table 1: Sequence of Poly-(GME-EH) copolymers with different GME composition 

Name 

GME 
feed 

mol% 

GME 
NMR 

mol% 
 C.feed/ 
mol /L t/ h Yield / mg DPtheo 

Mn,theo / 
g / mol 

Mn,GPC/ g 
/ mol PDI 

Pol3 84,4 82.0 40,5 22,5 808,5 322 29 000 17800 1,60 

Pol4 90,9 88,2 41,8 18 1715,2 325 28700 18300 1,57 

Pol5 83,9 76,0 4,00 18,5 1109,0 98 8800 - - 

Pol9 86,6 80,7 4,00 20 2000,2 101 9100 6100 1,16 

Pol10 87.0 73.9 4,00 20 630,6 197 17000 12500 1,33 

 

The success of copolymerization was further demonstrated by comparison of 1H-NMR data 

of GME, EH and Poly(GME-EH)(Figure.16). The protons from monomers and copolymer 

are numbered. The protons from epoxy hexane marked as 2, 3, 4 in the scheme correspond 

to the broadened signals between 1.18-1.57 ppm in Figure.16. The signals marked as 5-10 

at 3.35-3.75 ppm appeared in the Poly-(GME-EH) spectra. Methyl group on number 10 in 

GME and Poly-(GME-EH) spectra showed sharp peak at 3.35-3.40 ppm. The protons of the 

methyl group of epoxy-hexane were barely influenced by polymerization and showed sharp 

signals in both EH and Poly-(GME-EH) spectra at 0.9 ppm. In addition, measurement 

conversion samples showed 100% of conversion. 



- 40 - 

 

i-Bu3Al

1.0oC

2.60oC

+

O

O

O

O
O H

O

Br mn

1
2

34

5
6

7
8

9

10

1

10

Noct4-Br

 

 
Figure.16 comparison of 1H-NMR data of EH (top), GME (middle) and GME-EH-Pol 

(bottom) 
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2. Phase transition temperature determination 

The phase transition temperature of Poly-(GME-EH)s was measured by three methods, 

turbidity measurements, microcalorimetry and variable temperature NMR. 

2.1 Phase transition temperature determined via NMR 

The sample Pol3 was used for phase transition temperature measurement by NMR. The 

sample was heated from 1oC to 55oC with rate of 1oC/ min. Figure.17 shows the NMR 

spectrum of Pol3 measured during the heating process. 

According to the assignment in Figure.17, the methyl group 1 from EH is visible in D2O and 

remains unchanged with increasing temperature, which means the structure of copolymer is 

not blocky but rather random. Also the EH does not influence so much on copolymer 

conformation except phase transition temperature. In addition, the amount of EH in the 

copolymer is small which make the change even more invisible. The weakening and 

broadening peak 5-10 indicate the conformational change of copolymer chain, with 

incomplete collapse.  

 

Figure. 17 NMR spectrum of Pol3 measured at 1oC and 55oC 
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The ether methyl group of GME, marked as No.10 shows obvious changes a shown in 

Figure.18. The sharp peak in 3.281 ppm transfers gradually to 3.218 ppm and it broadens in 

shape at 55oC after heating. This shows that the copolymer chain collapses when the solution 

reaches the phase transition temperature and the side group (ether methyl group of GME) 

collapse so that the signal decreases and shifts to lower ppm since the chemical environment 

changed. The transferring is however gradually without obvious change between any two 

temperature lines. It means that there is no sharp transition. 

 
 

 
Figure.18 Detailed NMR spectrum of ether methyl group in Pol3 under heating procedure 

from 1oC to 55oC 
 

As it can be seen in Figure.19, D2O peaks were integrated as 1 in both 1oC and 55oC 

spectrum.  The peaks of ether methyl group was found to transfer and broaden after heating 

from 1oC to 55oC. The integration at the peak of ether methyl group increased from 2.429 to 

3.161 which illustrated the broadening so that the collapse of copolymer chain was 

determined. 
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Figure.19 Integrated NMR spectrum of ether methyl group in Pol3 of 1oC and 55oC 
 

 

1oC 
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Since the transition was too weak to observe directly from Figure.18.  Figure.20 below 

shows the value of signals at 3.281ppm divided by that at 3.218ppm. The ratio decreases 

with the temperature increasing and the curve showed a sudden turn at around 14oC which 

indicates the copolymer chain started to collapse. The transition temperature of 14oC 

obtained by this method is very different from the temperature obtained from two methods 

that would be discussed below. 

 
Figure.20 The ratio of signal intensity at 3.281ppm divided by that at 3.218ppm 
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2.2 Phase transition temperature determined via turbidity 

measurements 

The turbidity measurements of Pol3 and Pol4 a shown in Figure.21. The samples were 

heated from 5°C to 80°C, back to 5 °C and repeating the heating procedure with a heating 

rate of 1 °C/min. The phase transition temperature of Poly(GME) is hardly influenced by the 

molecular weight.[56] While the phase transition temperature is strongly affected by the 

GME-content of the copolymer. [55, 57] 

The Table.2 shows the phase transition temperature response to the GME content and the 

turbidity curves are plotted in the Figure.21. The dotted line represented Pol4 with higher 

GME content (88.2%) than the Pol3 (solid line) with 82.0% of GME in copolymer. The 

phase transition temperature of Pol3 was 28 oC, which was lower than that of Pol4 (49oC) as 

expected. The phase transition temperature of Poly-(GME-EH) depends on the amount of 

GME in the copolymer and higher percentage of GME gave rise to the higher phase 

transition temperature. The hydrophobic comonomer EH was aimed to adjust the LCST of 

the copolymer with random structure. Such dependency on the composition of the 

comonomer feed was also found in random copolymers of various of vinylbenzylethers as 

comonomers with different phase transition temperatures produced by Weiss et al. [58] as 

well as random copolymers of 2-(2-methoxyethoxy)ethyl methacrylate (MEO2MA) and 

oligo(ethylene glycol) methacrylate (OEGMA) produced by Lutz et al. [59]. According to 

random copolymer poly (GME-EGE) reported by Heinen et al.  [8], ethyl glycidyl ether was 

used for copolymerization instead of EH. The copolymer with 1:3 (GME: EGE) showed 

phase transition temperature at 16oC and the phase transition temperature was 45oC with 3:1 

(GME: EGE) . Compared to the phase transition temperature of 28 oC given by 82% GME 

content in this experiment, more EGE is needed to decrease the phase transition temperature 

than EH. This EH has more hydrophobic alkyl substitute compared with EGE with ether 

group. Thus the more hydrophobic the comonomer is, more efficient it would be.  
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Figure.21 Turbidity of Pol3 and Pol4 measured by CD-Spectrometer with 10g/L in water 
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Hysteresis was observed when heating (black and blue line) and cooling (red line) curves 

were compared. The process is reversible since the second heating and first heating curve 

have similar shape, but the system reacts slowly on cooling process. Normally 

intramolecular hydrogen bonding of polymers in the collapsed state cause the hysteresis 

phenomenon, for instance in PNIPAM.[59] The similar Poly (GME-co-EGE) copolymers 

show almost no hysteresis within one heating–cooling cycle. [57] From Figure.22 it can be 

seen that Pol 4 with higher GME content shows greater hysteresis phenomenon. The reason 

is still unknown that why the result was different to the previous reports. 

 

 
Figure.22 Variation of phase transition temperature influenced by the percentage of GME 

 

 

Table.2 GME content in 
polymer and their phase 
transition temperature 

Pol3 Pol4 PGME 

Percentage of GME 82.0% 88.2% 100% 

Phase transition 
temperature 

28oC 49oC 57.7oC[8] 
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However, compared to the transition temperature of Pol3 obtained from NMR which is 14oC, 

the phase transition temperature from turbidity measurements was much higher at 28oC. 

According to the NMR spectrum, the copolymer does not collapse completely and the 

transition is not sharp. This thermo-responsive copolymer is thus quite different compared 

to the other materials in literature. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



- 49 - 

 

2.3 Phase transition temperature determined via calorimetry 

Micro-DSC was used for examination on Pol3, based on the measurement of differences in 

heat capacity between a sample and a reference cell. The reference samples were water and 

deuterated water. The concentration of Pol3 solution was 10g/L, the same as in the turbidity 

measurements. Since deuterated water was used in NMR test, it was also used in Micro-DSC 

examination in order to exclude the big difference between turbidity and NMR results. From 

the curves, a visible but weak transition was obtained at around 38oC. In addition, lower 

heating rate make transition happen earlier since the polymer chains had longer response 

time when absorbing the heat from environment. It can be seen from Figure.24 that 

deuterated solvent hardly influence the phase transition temperature of Pol3. It shows a 

similar curve shape compared to the Figure.23. The curve with lower heating rate also shows 

slightly lower phase transition temperature and higher enthalpy of transition, the same as 

that in water.  

However, the peak at phase transition temperature of Pol3 in deuterated water is more visible 

than that in water which means higher enthalpy during phase transition. The explanation for 

the phenomenon is different polymer−solvent interactions caused by the isotopic effect. 

Heavier deuterium water gives stronger hydrogen bonding than normal water.[60] More 

energy needed when D2O molecules leave the polymer chains during the phase transition. 

Moreover the phase transition temperature in D2O is lower than in H2O at around 36oC. 

There is another report that  poly(2-iso-propyl-2-oxazoline)  tested by sensitive DSC also 

shows similar trend.[16] 

Some previous reports about PNIPAM give opposite result, the LCST of PNIPAM in D2O 

is about 0.7oC higher than in H2O.[61] This effect only perceptible when concentration is 

high enough.[62]  Thus, it cannot be the resolution in this case. The explanation of slightly 

lower phase transition temperature in D2O remains unanswered.  
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Figure.23 Pol3 phase transition temperature measurement by Micro-DSC with different 

heating rates (in water with 10g/L) 

  

Figure.24 Pol3 phase transition temperature measurement by Micro-DSC with different 

heating rates (in deuterated water with 10g/L) 
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The results obtained from above three examined methods are different. The phase transition 

temperature tested by NMR was the lowest at around 14oC next to the one tested by turbidity 

at 28 oC, and Micro-DSC at 36oC to 38oC. It has been reported that pre-aggregation of 

polymer segments can be observed by NMR spectroscopy well before a macroscopic 

aggregation or visible phase transition is detected by turbidimetry test. [17] 

The results obtained by turbidity test and Micro-DSC have less difference compared to that 

from NMR and the change of turbidity is visible so that they are trustable. The phase 

transition temperature is around 28-35oC which is suitable for the biomedical application 

that can be continued with substitution to hydrogel production. 
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3. Substitution of bromide 

The bromide in copolymer of poly-(GME-EH) was substituted by azide from sodium azide. 

Substituted Pol3 and Pol5 was examined by FTIR as it shows in Figure.25. There was no 

peak at 2100 cm-1 in Pol3, which represents the azide group. Pol5 was tested as well and the 

peak at 2100 cm-1 demonstrated the existence of azide group. The same synthetic procedures 

were used in Pol3 and Pol5 substitution reactions so the reason why the azide group in Pol3 

was invisible may be that Pol3 has three times larger DP than Pol5 (see Table.1). The 

polymer chain was so long that the amount of end azide group was tiny and therefore 

invisible in FTIR. Unfortunately the following click reaction cannot be proven due to the 

unknown azide group. 

Figure.25 IR spectrum of azide substituted Pol3 and Pol5 

100 
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4. Grafting of Hyaluronic acid 

Pol3 was used for HA grafting by click chemistry. The alkyne group of HA-propargyl ester 

reacted with the azide group on Pol3 in presence of Copper (I).  

Pol3, HA and HA-Pol3 clicked NMR spectrum are compared in Figure.26. The NMR shows 

signals of both components (HA and PGME-EH). However, it cannot be proven whether the 

dialysis purification was successful or not. Thus the success of the coupling reaction could 

not be determined. 

 

Figure.26 Comparison of NMR spectra of Pol3, HA and HA-Pol3 
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The gel forming phenomenon was expected when HA-Pol3 was heated above LSCT, but 

there was no viscosity increase during rheology measurement. Temperature sweep test by 

rheometer was conducted from 20oC to 40oC with hate rate of 1oC/min. The results of 

temperature dependent sweep test are shown in Figure 27. The storage modulus G’ and loss 

modulus G’’ decreased when the temperature increase, and storage modulus G’ curve falls 

faster than loss modulus G’’ which means that the viscosity of HA-Pol3 decrease in this 

process. As a result, no gel forming phenomenon was observed in the temperature sweep 

experiment. [63] 

 

Figure.27 Temperature dependent sweep test by rheometer 
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Frequency sweep test by rheometer was performed at 40oC with 1% strain. The value of 

storage modulus G’ is lower than loss modulus G’’ in low frequency, and both of G’ and G’’ 

increase with increasing frequency, while G’ increases faster than G’’. There is an 

intersection during frequency sweep test. The curves follow the typical behavior of unlinked 

polymers that G’ is bigger than G’’ before they crossover and G’ is smaller than G’’ after 

that.  The frequency sweep test also gives the result that gel formation failed.   

 

Figure.28 Frequency dependent sweep test by rheometer at 40 °C 
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The failure of gelation is most likely due to the failure of click chemistry. The chosen sample, 

Pol3, does not necessarily have azide functionalities and the PDI is broad due to absence of 

solvent during polymerization. As was mentioned above, whether the dialysis process is 

successful is unknown, so that the copolymer maybe not be grafted on the hyaluronic acid 

chains, but mixed together instead. Thus, no gel forming during the heating due to the 

unqualified composite structure. On the other hand, rigid polymer chains, such as HA, give 

rise to highly efficient coupling since alkyne moieties are exposed in the reaction mixture 

and can easier react with azide groups. [36] The poly-(GME-EH) copolymer chain however 

is a flexible coil with only one azide head group, which would weaken the reaction efficiency. 

Moreover, the NMR spectrum shows a continuous chain collapse during the heating process 

instead of a sharp turn like PNIPAM. The polymer could be partially collapsed during the 

coupling reaction even though the reaction temperature (room temperature) is under the 

LCST tested by tubidimetry. Other reasons for the failure of gelation could be low grafting 

density or the incomplete collapse of poly-(GEM-EH) leading to the inter-chain hydrophobic 

interactions not being strong enough to form a gel. 
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IV. Conclusion 

The aim of the research was to obtain a hydrogel based on hyaluronic acid, grafted with 

thermo-responsive copolymer, poly (GME-EH). Anionic ring opening polymerization was 

successfully used in GME and EH random copolymerization. The purification required for 

removing the catalyst residue by precipitation and collecting via centrifugation gave low 

yield.  The broad dispersity of products (Pol3 and Pol4) due to the absence of solvent in the 

synthesis indicate the significance of the solvent. Moreover, the choice of broad sample Pol3 

might be one of the aspects that lead to final failure. 

The difference between phase transition temperatures tested by various methods are quite 

large. It has been reported that the differences do exist due to the different mechanism and 

measuring scales. For example, NMR spectrometer gives insights of thermo-responsive 

behavior at molecular level. However turbidimetry is based on visible transmittance and thus 

macroscopic changes. Several measuring methods should be utilized based on different 

angles and scales to give a more complete picture of the thermo-responsive behavior of 

polymers.  

Click chemistry in this experiment could not be proven directly. The failure of gelation in 

the following step can be associated with the non-grafted polymer or low grafting density or 

with the uncomplete collapse of PGME and resulting weak hydrophobic inter-chain 

interactions.  
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Future research 

Since one of the possible reason lead to failure is the poor copolymer sample. More series 

of poly (GME-EH) with different chain length and better PDI would be polymerized. More 

studies on the grafting reaction with HA should be done. Various length of P(GME-EH) and 

grafting density on HA could be tried and characterize the products properly to find out if 

the gelation is possible. 

Furthermore, other hydrophobic monomers for example ally glycidyl ether can be chosen 

for adjusting LCST of PGME and same characterization method should be utilized. It is 

interesting to observe a new monomer which has similar property as EH even better than 

that. There are some possibilities that a new hydrophobic monomer has similar reactivity 

ratio as GME which give random copolymer and adjust the LCST efficiently. Even give 

more obvious collapse during phase transition which may lead to easier gelation after being 

grafted on hyaluronic acid chains. 
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