-

View metadata, citation and similar papers at core.ac.uk brought to you byj‘: CORE

provided by Helsingin yliopiston digitaalinen arkisto

DEPARTMENT OF COMPUTER SCIENCE
SERIES OF PUBLICATIONS A
REPORT A-1997-2

Structured Document Transformations

Greger Lindén

UNIVERSITY OF HELSINKI
FINLAND

https://core.ac.uk/display/146448483?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

DEPARTMENT OF COMPUTER SCIENCE
SERIES OF PUBLICATIONS A
REPORT A-1997-2

Structured Document Transformations

Greger Lindén

To be presented, with the permission of the Faculty of Science of
the Unwversity of Helsinki, for public criticism in the Auditorium
at the Department of Computer Science, Teollisuuskatu 23,
Helsinki, on June 18th, 1997, at 10 o’clock.

UNIVERSITY OF HELSINKI
FINLAND

Contact information

Postal address:
Department of Computer Science
P.O. Box 26 (Teollisuuskatu 23)
FIN-00014 University of Helsinki
Finland

Email address: postmaster@cs.Helsinki.FI (Internet)
URL: http://www.cs.Helsinki.FI/
Telephone: +358 9 708 51

Telefax: +358 9 708 44441

ISSN 1238-8645

ISBN 951-45-7766-3

Computing Reviews (1991) Classification: 1.7.2, D.3.4, F.4.2
Helsinki 1997

Helsinki University Printing House

Structured Document Transformations
Greger Lindén

Department of Computer Science
P.O. Box 26, FIN-00014 University of Helsinki, Finland
Greger.Linden@cs.helsinki.fi, http://www.cs.helsinki.fi/~linden/

PhD Thesis, Series of Publications A, Report A-1997-2
Helsinki, June 1997, 122 pages
ISSN 1238-8645, ISBN 951-45-7766-3

Abstract

We present two techniques for transforming structured documents. The
first technique, called TT-grammars, is based on earlier work by Keller et al.,
and has been extended to fit structured documents. TT-grammars assure
that the constructed transformation will produce only syntactically correct
output even if the source and target representations may be specified with
two unrelated context-free grammars. We present a transformation gener-
ator called ALCHEMIST which is based on TT-grammars. ALCHEMIST has
been extended with semantic actions in order to make it possible to build
full scale transformations. ALCHEMIST has been extensively used in a large
software project for building a bridge between two development environ-
ments. The second technique is a tree transformation method especially
targeted at sGML documents. The technique employs a transformation
language called TranSID, which is a declarative, high-level tree transfor-
mation language. TranSID does not require the user to specify a grammar
for the target representation but instead gives full programming power for
arbitrary tree modifications. Both ALCHEMIST and TranSID are fully op-
erational on UNIX platforms.

Computing Reviews (1991) Categories and Subject Descriptors:

1.7.2 Text processing: Document preparation

D.3.4 Programming languages: Processors

F.4.2 Mathematical Logic and Formal Languages: Grammars and Other
Rewriting Systems

General Terms:
Algorithms, Design

Additional Key Words and Phrases:
structured documents, tree transformation, sGML transformation

ii

Acknowledgements

I am most grateful to my advisor professor Heikki Mannila, for his support
and encouragement in my research. He introduced me to the research area
of structured documents and text databases and has provided me with
valuable guidance and insightful comments. I am very glad that he never
gave up on me during this long-lasting work.

The Department of Computer Science, headed by professor Martti Tien-
ari, has provided me with excellent working conditions. It has been an
inspiring and intriguing research environment for which I thank all my col-
leagues.

My special thanks to Heikki Mannila, Erja Nikunen and Pekka Kilpelii-
nen, who as members of the RATI project in the late eighties, awoke my
interest for structured documents. The knowledge achieved was put to
good use in later projects. Thanks also to Henry Tirri and Inkeri Verkamo
as well as to other members of the vITAL project. Together with Henry
and Inkeri we designed and implemented the ALCHEMIST system. Thanks
to Jukka-Pekka Vainio and Tomi Silander who helped programming the
system. Thanks to Jani Jaakkola and Pekka Kilpeldinen of the siD project
where we designed the TranSID system of which Jani made an excellent im-
plementation. Thanks also to the other members of the siD project, Helena
Ahonen, Barbara Heikkinen and Oskari Heinonen, for inspiring discussions.

I would also like to thank my friends, in particular Lars-Ake Olsson,
and my relatives for their support and encouragement. Where would I be
today without you?

The financial support of the Academy of Finland, the Technology Devel-
opment Center (TEKES), and the Helsinki Graduate School of Computer
Science and Engineering is gratefully acknowledged.

iii

v

Contents

1 Introduction
1.1 Structured documents and transformations
1.2 Transformation solutions
1.3 ALCHEMIST — a powerful transformation generator . . .
1.4 TranSID — an SGML transformer
1.5 Aim and organization of the thesis

2 Preliminaries
2.1 Context-free grammars
2.2 Parsetrees oo
2.3 Parsing
2.4 The Standard Generalized Markup Language

3 Transformation of structured documents
3.1 Syntax-directed translation and attribute grammars
3.2 Syntax-directed translation schemas
3.3 TT-grammars oo

4 The transformation generator ALCHEMIST
4.1 ALCHEMIST TT-grammars« . oo v ..
4.2 ALCHEMIST structure
4.3 ALCHEMIST use. o ...
4.3.1 Spell specification oL
4.3.2 Spell generation,
4.3.3 Spell compilation oo
4.3.4 Spell execution Lo
4.4 ALCHEMIST implementation

5 The SGML transformation language TranSID
5.1 Overall control and data model
5.2 Semi-formal semantics

25
26
28
31

vi

8

CONTENTS

5.3 TranSID transformations. 62
5.4 TranSID operatorso 67
5.5 TranSID implementation 69
Experience and evaluation 71
6.1 An ALCHEMIST interface between two development envi-
TONMENTS L e e 72
6.2 Other ALCHEMIST transformation applications 79
6.3 ALCHEMIST observations 80
6.4 TranSID applicationso L. 83
6.5 TranSID observations 85
6.6 Comparison between ALCHEMIST and TranSID 85
Related work 91
7.1 A multiple-view editor o o0 92
7.2 A structured document transformation generator 93
7.3 Other two-grammar systems 94
7.4 Other transformation systems 97
7.5 Summary of related systemso 98
Conclusion 103

References 109

Chapter 1

Introduction

Data transformations are important in many computer applications. De-
spite the efforts for standardization in many areas, the end user is often
at loss when it comes to the cooperation of commercial and custom-made
application tools. The user usually ends up with a large set of diverse tools,
such as editors, database tools, and formatters that are not compatible, or
if one subset of tools work together, the set of programs will often not work
with another set.

A commonly used solution is to employ another large set of ad hoc trans-
formation programs, conversion tools, source-to-source translators, specif-
teally tailored transformation generators and the like. Often the user is
forced to finish off a transformation from the format of one tool to another
manually without any other help than common sense. This usually applies
only to the expert user, as the end user long ago has rejected most of his
uncompatible tools and tries to get along with as few tools as possible.

A typical application area for data transformations is document prepa-
ration. Document preparation consists of the production and printing of
documents. Most document preparation systems contain a plethora of dif-
ferent tools, such as editors, spell checkers, formatters, etc. for producing
output on different media such as paper, screen, or CD-ROM. Commer-
cial document preparation systems try to be as independent as possible.
They contain features for formatting and printing within the preparation
system. Should the user, however, want to move a part of the documents
to another system, he/she soon realizes that font types, margin settings,
or even logical markup such as sections and bibliography list markup have
been be lost in the transformation.

Transformations are required not only in formatting. With the emer-
gence of the World Wide Web and Hypertext Markup Language (HTML),
we have seen a large need for transformations to and from HTML. HTML

2 1 INTRODUCTION

requires the user and HTML programmer to be one step more abstract in
preparing documents. The user has to mark up the document with ap-
propriate tags. In this way an HTML document can well be considered to
contain declarative markup, i.e., the user tells what he/she wants to see in
the browser (a section title or a list of items) instead of procedural markup
that specifies how they should be presented. The document conforming
to the HTML standard can be presented on different platforms and with
different browsers as long as the browsers understand the standard.

1.1 Structured documents and transformations

HTML documents are one example of structured documents [AFQ89b|. The
structured document model [AFQ89a| decomposes the document into log-
ical parts. Examples of structured documents are manuals, telephone di-
rectories, dictionaries, and computer programs. A structured document
may in fact be any document where there is more information than just
the text itself. This additional information is called the structure.! Com-
puter programs and structured documents follow a well-specified standard
of what is correct programming and what is not. Any structured document
can be specified with the sGML (Standard Generalized Markup Language)
[ISO86, Gol90| or the opa (Open Document Architecture) [ISO89] stan-
dards ensuring that the documents can be used on different platforms and
in different applications in a standard way.

Example 1.1 In Figure 1.1 we see an example of a structured document.
The document has been marked up with saGML and it also contains the doc-
ument type definition (DTD). The DTD is loosely based on the dictionary
description presented in [BBT92|. The document contents (the dictionary
entry for spaz) is based on an entry in the Oxford English Dictionary [Oxf96]
but has been slightly modified and shortened. We base many of the follow-
ing examples on this first one and shall therefore explain the example in
detail.

Our example dictionary contains entries of words where each entry con-
tains the headword, its pronunciation, part of speech, and etymology as well
as its separate senses. A sense contains a definition and possibly several
quotations each consisting of a date, author, work, and quotation text.

A structural component of a document is in SGML called an element.
The document type definition (DTD) that describes this document tells us

LA related view is that all documents have (implicit) structure, but in some documents
it has been marked explicitly [Mo194].

1.1 Structured documents and transformations

<!DOCTYPE Dictionary [
<!ELEMENT Dictionary (Entry)+>
<!ELEMENT Entry (HWGroup,Etymology?,
Sense+t)>
<!'ELEMENT HWGroup (Headword,Pronunciation,
PartofSpeech)>
<!ELEMENT Headword (#PCDATA) >
<!ELEMENT Pronunciation (#PCDATA) >
<!'ELEMENT PartofSpeech (#PCDATA) >
<!ELEMENT Etymology (#PCDATA)>
<!'ELEMENT Sense (Definition,Quotation+)>
<!ELEMENT Definition (#PCDATA) >
<!'ELEMENT Quotation (Date,Author?,Work,Text)>
<!ELEMENT Date (#PCDATA) >
<!ELEMENT Author (#PCDATA) >
<!ELEMENT Work (#PCDATA) >
<!ELEMENT Text (#PCDATA) >
1>
<Dictionary>
<Entry>
<HWGroup>

<Headword>spaz</Headword>
<Pronunciation>spaz</Pronunciation>
<PartofSpeech>n</PartofSpeech>
</HWGroup>
<Etymology>Abbreviation of spastic n.</Etymology>
<Sense>
<Definition>= spastic</Definition>
<Quotation>
<Date>1965</Date><Author>P. Kael</Author>
<Work>I lost it at the movies III. 259</Work>
<Text>The term that American teen-agers now use as
the opposite of ‘tough’ is ‘spaz’.</Text>
</Quotation>
<Quotation>
<Date>1975</Date><Author>M. Amis</Author>
<Work>Dead babies viii. 47</Work>
<Text>I know how long, you little spaz.</Text>
</Quotation>
</Sense>
</Entry>
</Dictionary>

Figure 1.1: An example of a structured document marked up with sGML.

4 1 INTRODUCTION

that an sGML document called Dictionary consists of one or more Entry
elements. FEach Entry element consists of a HiGroup element followed by
one or zero Etymology elements, followed by one or more Sense elements.
The plus symbol (+) in this description stands for one or more elements,
the question mark (?) for one or zero elements, and the comma (,) cate-
nates the elements. The #PCDATA element denotes the contents of elements
that do not (in this description) contain other elements but text only. We
describe sGML in more detail in Section 2.4.

The pTD is followed by the document instance where the text has been
marked with element names described in the DTD. Such marks are also
called tags. This particular instance contains one entry that consists of
one headword group, an etymology, and a sense. The sense contains one
definition and two quotations, etc. O

A structured document is not an end per se. For displaying, modifying,
extracting information, or printing we need to transform the document
into another representation. Even if the document has been marked up
with saML, the standard only specifies the syntax of the markup, not the
semantics of the document. As a matter of fact, this is the purpose of
SGML: to provide a standard way of marking a structured document in
declarative markup, not procedural. It is up to the document application
and the user to interpret the markup when transforming the document into
an appropriate format. This format may well be the proprietary format of a
commercial document preparation system, or it may be HTML for presenting
the document in an HTML browser.

We call this the paradigm of a logical document vs. document views.
Just as in database applications, the user may keep a logical document
corresponding to the database contents. When modifying or printing
the document, the user may choose between several views of the doc-
ument contents. He/She may choose to use different formatting com-
mands for printing on paper and on screen, respectively. The user may
also filter out certain information, e.g., choosing to print only section ti-
tles or bibliographic references. He/She may even choose to add infor-
mation to the document by allowing updatable views of the document.
Many document preparation systems provide multiple views of a document
[QV86, FS88, CH88, KLMN90, Bro91]|. Especially, these systems often
show a textual view and a formatted view of a document simultaneously.
The paradigm also usually requires inverse transformations. If the views
are updatable, transformations must be specified in both directions, from
the logical document to the document views and vice versa.

1.1 Structured documents and transformations 5

{\bf spaz} (spzz) {\em n.} [Abbreviation of spastic n.]
= spastic

\newline

{\bf 1965} {\sc P. Kael}

{\em I lost it at the movies III. 259}

The term that American teen-agers now use as the
opposite of ‘tough’ is ‘spaz’.

\newline

{\bf 1975} {\sc M. Amis} {\em Dead babies viii. 47}

I know how long, you little spaz.

Figure 1.2: An example of a textual view.

Example 1.2 In Figures 1.2 and 1.3, we see two views of the document
in Example 1.1. Figure 1.2 shows a view of the document where the saMm1L
tags have been removed and IWTEX [Lam86] formatting commands have
been inserted in the text. Figure 1.3 shows a formatted view produced by

IMTEX.

spaz (spaz) n. [Abbreviation of spastic
n.] = spastic

1965 P. KAEL [lost it at the movies II1.
259 The term that American teen-agers
now use as the opposite of ‘tough’is ‘spaz’.
1975 M. AMmi1s Dead babies viii. 471 know
how long, you little spaz.

Figure 1.3: An example of a formatted view.
O

Sometimes there is need for processing more than one document at a
time. The user may choose to combine several structured documents into
one, by transforming them to use the same structure. Such transformations
are needed especially in document assembly [AHHT96a, AHHT96b]|, where
the user needs to combine document fragments from different documents.
The assembled document is modified to conform to a certain structure and
can then be presented consistently on different media.

6 1 INTRODUCTION

1.2 Transformation solutions

As mentioned earlier, we are neither short of solutions in the general case
(any data transformation) nor in the specific document transformation case.
Many ad hoc transformations have been defined and implemented for some
of the problematic transformations mentioned above. For example, the
LaTeX2HTML and HTML2LaTeX [Dra96] set of transformation programs trans-
form between the BWTEX document preparation system [Lam86] and the
HTML format. Many commercial document preparation systems have simi-
lar extensions that allow the user to produce at least some non-proprietary
formats such as HTML and sGML. On the other hand, if no transformation
module is available for the needed transformation, the user may have to
build the transformation from scratch. This task is, however, often error-
prone. It may also be tedious as the final transformation module often
contains similar but complicated parts that the user have specified in other
transformations.

A convenient way to avoid these drawbacks is to use transformation gen-
erators. A transformation generator lets the user specify a transformation,
and the generator then produces program code for the corresponding trans-
formation module. Instead of building a transformation from scratch, the
user is able to produce a transformation of some specified representations.
Examples of typical parser generators are yacc [Joh75] and pccTs [PDC92].

These parser generators, also called compiler-compilers, tend to concen-
trate on the front-end of the transformation process. The user may specify
the input representation in great detail, ensuring that no incorrect docu-
ment is accepted by the transformation module. The input representation
is specified, e.g., using a context-free grammar (see Section 2.1) that re-
stricts the input documents over this certain grammar. On the other hand,
the output side or the back-end of the transformation may require much less
specification. It can be argued that this is the strong side of parser gen-
erators. The user may use any available instructions from the underlying
programming language when he/she defines the output of the transforma-
tion. This openness puts some special stress on the user to write correct
output instructions so that the transformation output actually follows the
expected syntax.

We will see that by using techniques from compiler-compiler theory it is
possible to build transformations for structured documents easily and with
less effort. Available parser generators require an input grammar of the
input document of a transformation. In most cases, structured documents
follow such grammars. saML documents even require such a document
type definition (DTD) to exist. Also several other document preparation

1.3 ALCHEMIST — a powerful transformation generator 7

systems use the grammar concept for defining the structure of the docu-
ments. Examples include publicly or commercially available systems such
as BWTEX [Lam&6] and Grif [QV86] and many research prototypes such as
HST [KLMN90| and Syndoc [KP91|. Applying then a strict front-end to
document transformation is not a problem. The input documents follow
a certain syntax and can be checked with a parser. All of these systems
have a more or less open back-end. For example, in the case of WTEX the
back-end has been specified before, while in the case of HST the user has
full control in its specification.

Many sGML transformation languages are based on the idea of a parser
with a well-specified front-end and an open back-end. In event-based lan-
guages such as OmniMark [Ex093] and CoST [Har93|, the user may specify
output actions to be performed for each event the parser encounters in the
input stream. In both cases, general SGML parsers are used at the front
end, producing a stream of events such as start section element and end
list element. This stream of events is called the element information struc-
ture set (EsIs) [Gol90]|. At each event, the user may specify how to process
the current document fragment, but already processed parts or yet unseen
parts are not accessible. Above all, there is no restriction on the output the
user may produce, and therefore also the transformations do not guarantee
that the output representation is correct.

Example 1.3 Figure 1.4 shows a small example of an event-based sGML
transformation language CoST [Har93]. Each sGML element has its own
rule, which states the actions to be taken when either a start or end tag,
or the contents of an element, is encountered in the input stream. This
transformation surrounds the headwords in the dictionary with the strings
{\bf and }. In CoST, the instruction puts automatically prints a newline
character where it is not explicitly prohibited by the nonewline instruction.

O

1.3 ALCHEMIST — a powerful transformation
generator

In this thesis we present a simple and powerful tool aLcuEMIST [TL94a,
LTV96] for specifying and generating transformations of structured docu-
ments. ALCHEMIST requires the user to specify both the input and output
document representations. The tool then generates transformation mod-
ules that accept only correct input documents and produce only correct
output documents according to the specifications. Like many other doc-

8 1 INTRODUCTION

element Entry {

start { puts stdout "" }
end { }

+

element HWGroup {
start { puts stdout "" }
end { }

¥

element Headword {
start { puts stdout "{\bf " nonewline }
end { puts stdout "}"}

+

TEXT { puts stdout $data nonewline }

Figure 1.4: An example of the event-based sGML transformation language

CoST.

ument transformation systems (e.g., HST [KLMN90|, 1ca [MBO93|, and
Syndoc [KP93, Kui96]), ALCHEMIST relies on context-free grammars for
representation specification. Unlike many systems, however, the represen-
tation grammars may be totally unrelated. The actual transformation is
specified based on these grammars.

ALCHEMIST adds some other properties to transformation generation as
well. Many transformations cannot be completely specified before-hand,
but require user interaction. With ALCHEMIST the user may specify where
and when and how he/she wants to interact in the generated transforma-
tion. ALCHEMIST is used mainly for producing transformations between
two different structured document representations without an explicit in-
termediate format between the representations. In a set of different rep-
resentations we have to specify a quadratic number of transformations to
be able to provide transformation between any arbitrary chosen represen-
tations. That is, if we have n different representations, we need to build
n(n — 1) or O(n?) different transformations to be able to transform any
representation into any other representation in the set. On the other hand,
if a canonical representation for the whole set is found, we will manage
with only 2n transformations. In that case there are two transformations

1.4 TranSID — an SGML transformer 9

for each representation, one transforming to the canonical representation
and one transforming from the canonical representation to the specific rep-
resentation. In the case of ALCHEMIST, we do not require explicit canonical
representations. Still there is no disadvantage because we have the choice
of defining one if it helps.

Example 1.4 Figure 1.5 shows an example of an ALCHEMIST transforma-
tion specification where both input and output specifications are required.
The specification specifies the same transformation as in Example 1.3, i.e.,
a transformation that surrounds the headwords in the dictionary with the
strings {\bf and } and ends each entry and each headword group with a
newline character. The input representation is specified on the left, the
corresponding output representation on the right. The figure gives the fla-
vor of an ALCHEMIST mapping. We give a more detailed description of the
notation in Chapter 3.

Entry -> Entry.Entry -> "\n"
HWGroup HWGroup.HWGroup
Etymology Etymology.Etymology
Senses Senses.Senses
HWGroup -> HWGroup . HWGroup ->
Headword “{\\bf " Headword.Headword
Pronunciation S
PartofSpeech Pronunciation.Pronunciation

PartofSpeech.PartofSpeech

Headword -> IDENTIFIER Headword.Headword ->
IDENTIFIER.IDENTIFIER

Figure 1.5: An example of an ALCHEMIST transformation specification.

a

ALCHEMIST is now fully operational in UNIX environments with both a
graphical and a textual interface.

1.4 TranSID — an SGML transformer

In addition to ALCHEMIST, we also present an SGML transformation lan-
guage called TranSID [JKL96a, JKL96b, JKL97|, which is based on tree

10 1 INTRODUCTION

transformations. TranSID requires a specification of the input representa-
tion, in the way that the input sGML document must have a DTD, but no
output DTD is used. TranSID contains normal tree transformation opera-
tions [JKL96b| and it has been extended with powerful string operations
and regular expressions [MPP+97].

Design goals of the TranSID language included declarativeness, simple-
ness and implementability with reasonable effort. Special features include
a bottom-up evaluation process and a possibility to restrain the transfor-
mation to the event-based strategy. The event-based or top-down strat-
egy is sufficient for simple formatting of the sGML document. Bottom-
up evaluation is a declarative way of defining some transformations that
would be awkward to define in a top-down manner. The TranSID lan-
guage also includes high level declarative commands that frees the user
from low-level programming. We have implemented an interpreter and an
evaluator for TranSID which are fully operational in Unix environments

[JKL96a, JKLI6b].

Example 1.5 Figure 1.6 shows an example of a TranSID program that
performs the same transformation as in Example 1.3. The two first rules
modify the document as in the earlier example. The last rule removes the
SGML tags from all other elements. |

transformation begin

ELEMENT "Entry"
BECOMES "\n", current.children ;

ELEMENT "HWGroup"
BECOMES "{\\bf ",

current.children.having(this.name == "Headword"),

II} n s

current.children.having(this.name !'= "Headword") ;
ELEMENT

BECOMES current.children ;

end

Figure 1.6: An example of a TranSID transformation specification.

1.5 Aim and organization of the thesis 11

Even if the two-grammar transformations implemented by ALCHEMIST
are a sort of ideal solution to the document transformation problem, there
are many transformations where the ALCHEMIST solution is quite compli-
cated. TranSID requires the user to specify only those parts of the doc-
ument that are modified. The part of the document that remains intact
does not have to be specified. Both systems require the user to specify the
source representation in a source grammar and DTD, respectively, but only
ALCHEMIST requires a target grammar as well. Therefore, only ALCHEMIST
can guarantee the correctness of the target. TranSID also lets the user
reference the complete input document during the transformation.

1.5 Aim and organization of the thesis

In this thesis, we aim to show the benefits of using TT-grammars in some
transformations, and the syntax-directed approach in others. We present
both ALCHEMIST and TranSID environments with examples. Qur empirical
experience shows that they complement each other, thereby covering most
transformation problems that arise in structured document management.

The rest of this thesis is organized as follows. In Section 2, we de-
fine some general concepts from compiler-compiler theory which form a
basis for our transformation systems. We also take a closer look at samMm1L
and its background. We give a general presentation of structured trans-
formations in Section 3 and present syntax-directed translations suitable
for document transformations as well as tree transformation grammars on
which ALCHEMIST transformations are based. We also briefly discuss event-
driven transformations which are common in the sGML case. In Section 4
we see how the tree transformation grammar technique was implemented in
ALCHEMIST, and in Section 5 we discuss the tree transformations of Tran-
SID. We report our experience and evaluation of ALCHEMIST and TranSID
in Section 6. Section 7 we give an overview of related work in the area of
structured document transformations and transformation generators. Fi-
nally, Section 8 is a short conclusion.

12

1 INTRODUCTION

Chapter 2

Preliminaries

The possible structure of a set of structured documents can be defined using
grammars. As we saw in the last chapter, séML documents are described
through document type definitions which are one kind of grammars. The
most important part in a grammar is a set of rules that describes very
exactly how to construct documents (or strings) that are allowed according
to the definition.

If we have an arbitrary document, we can then use parsing to compare
the document with a given grammar to check if it is consistent with the
grammar. Before parsing the document, we use lezical analysis to recog-
nize words, reserved words, formatting commands, etc., in the document.
Parsing constructs a parse tree from the document, a data structure, rep-
resenting the document.

Once the document has been parsed, we can begin its transformation.
A parsed document gives us more opportunities for transformation and
tells us more details about the document itself. For example, we see how
different sections of the document are related to each other structurally.
We can even use several different grammars for one single document type,
thereby achieving different structural views of one document.

Context-free grammars [Chob6| are frequently used in document man-
agement systems [BR84, CIV86, GT87, FQAS88, QV86, KLMN90, KP93,
Kui96|. Context-free grammars constitute a restricted set of all possible
grammars and are easier to process than general grammars [ASUS6|. In
this chapter, we define context-free grammars and we also briefly review
different parsing techniques for context-free grammars. Parsing is often
used as a front-end in a transformation. Such a transformation is called
a syntaz-directed translation because the reading and checking of the doc-
ument is directed by its syntax defined in a grammar. We shall look at
several syntax-directed translation methods that are suitable for document

13

14 2 PRELIMINARIES

transformation.

2.1 Context-free grammars

With the help of context-free grammars [Cho56] we can precisely define
the structure of the strings in a document, or the documents in a class.
Formally, a context-free grammar for a class of documents is a quadruple
G = (N,X,P,5), where N is a finite set of nonterminals, ¥ is a finite
set of terminals, P is a set of productions, and 5 is a special nonterminal
called the start symbol. The grammar G defines the language L(G') that
contains all possible sequences of terminals that are correct according to
the grammar G

The set of terminals contains all the symbols or tokens that may occur
in the document according to the grammar. As a matter of fact, any
document over a given grammar consists of a sequence of terminals of that
grammar. Also the sequence of zero terminals is a string called the empty
string and denoted ¢. The set of all possible terminal strings including the
empty string in X is denoted ¥*. Thereby we can say that any document
over the grammar G is in X*.

On the other hand, the nonterminals in N do not occur in the docu-
ments. They can be thought of as representing sets of sequences of terminals
in the language L((G'). Especially, the start symbol S represents all possible
sequences of terminals in the language. The sets of terminals and nonter-
minals together are called the vocabulary of the language. A sequence of
nonterminals and terminals is called a string. We denote the vocabulary
N UX by V and all possible strings over the grammar are denoted V.

The productions of the grammar tell us how to construct correct sen-
tences in the language L(G). A production is denoted A — a, where A is
a nonterminal and « is a string consisting of terminals and nonterminals,
i.e., A € N and o € V*. We call A the left hand side of the production
and « the right hand side of the production. The symbol — is the rewrite
symbol of the production.

The productions are used in the following way to construct sentences
in the language L(G). We start with the start symbol 5 and choose any
production S — « with the symbol S on its left hand side. We then
replace or rewrite the nonterminal S with the right hand side « of the
production. We continue by choosing any nonterminal A in & and replacing
it with the right hand side of a corresponding production 4 — 3. We
continue rewriting nonterminals until we are left with only terminals. These
cannot be rewritten because no terminal can occur on the left hand side

2.1 Context-free grammars 15

of a production. Every such rewrite step is called a derivation step and
is denoted by =-. The entire process from the start symbol S to the final
terminal string is called a derivation.

Formally, we have that the relation o = 3 holds if and only if there are
strings aq, ag, A, and ~, such that @« = a; Aas and § = ayyas and A — ~
is a production in the system. We also say that a derives 3. The reflexzive
transitive closure of the relation = is denoted by =-*. Thus a =* 3 holds if
and only if there are n > 1 strings v1, ..., 7, such that a« = v;, 8 = ~,, and
v; = Yi41 holds for every ¢ = 1,...,n — 1. Correspondingly, the transitive
closure of the relation = is denoted by =%, and a =1 3 holds if and only
if there are n > 2 strings 71, ..., v, such that « = 71, 8 = v, and v, = V441
holds for every ¢ = 1,...,n — 1. We say that a derives 3 in zero or more
steps if o =* 3 and that o derives (3 in one or more steps if a =% (.

In the following, we use italicized capital letters from the beginning of
the English alphabet and strings beginning with capital letters for nonter-
minals, e.g., A, B, Journal. Terminals are denoted by boldface strings, e.g.,
a, begin. For readability, we may surround terminals by quotation marks,
e.g.,’.” or “a”. Capital italicized letters from the end of the alphabet stand
for terminals or nonterminals, e.g., X, Y. The Greek letters a, 3, .. .denote
any string over V.

In the following example, we use a special kind of text terminals, de-
noted by the terminal TEXT. The TEXT terminal is in this case a string
consisting of any characters in the language. This is a useful abstraction.
When defining our context-free grammar we do not have to write out every
single possible string that may appear in our language. This simplifies our
grammar considerably.

Example 2.1 In Figure 2.1 we see an example of a context-free grammar
defining the dictionary document in Example 1.1. The context-free gram-
mar is very similar to the DTD in Example 1.1, but we have used recursive
productions instead of iteration symbols * and +. (It may be noted that an
SGML DTD is generally not a context-free grammar.)

A derivation that yields a sentence in the language of the context-free
grammar is shown in Figure 2.2. Fach derivation step replaces a nontermi-
nal with the right hand side of a production that has the nonterminal as its
left hand symbol. The derivation here has been made left to right, where
always the left-most nonterminal is rewritten.

O

16 2 PRELIMINARIES
Dictionary — FEntries Senses — Senses Sense
Entries — Fniries Entry Senses — Sense
Entries — FEntry Sense — Definition
Entry — HWGroup Quotations

Senses Quotations — Quotations
Entry — HWGroup Quotation
Etymology Quotations — Quotation
Senses Definition — TEXT
HWGroup — Headword Quotation — Date Work Text
Pronunciation Quotation — Date Author
PartofSpeech Work Text
Headword — TEXT Date — TEXT
Pronunciation — TEXT Author — TEXT
PartofSpeech ~ — n. |v. |a. Work — TEXT
Etymology — TEXT Text — TEXT

Figure 2.1: A context-free grammar.

2.2 Parse trees

One way to show how a sentence in a derivation was produced is to write out
every single step in the derivation. A more graphical way is to draw a parse
tree, showing how the nonterminals at each derivation step are replaced by
new strings. A parse tree is a special case of a tree. A tree consists of a
distinguished node n called the root of the tree and an ordered sequence of
k subtrees t1,15,...,1;, where k > 0. The subtrees are also trees. Denote
the root of tree t; by n;; then n is the parent of n; and nq,ng,...,ng the
children of n. The node n, the roots of t1,ts,...,1z, the roots of their
subtrees, etc., are called the nodes of the tree. Those nodes that have no
children are called leaves. All other nodes are interior nodes.

We may associate a label with each node in the tree. Given a context-
free grammar G' = (N, Y, P, 5), we have that a parse tree is a tree, where

[ASUSG6|:
1. The root is labeled by the start symbol.
2. Each leaf is labeled by a terminal or by e.

3. Each interior node is labeled by a nonterminal.

2.2 Parse trees 17

R R 0 R R SRR R At

b

Dictionary

Entries

Entry

HWGGroup Etymology Senses

Headword Pronunciation PartofSpeech Etymology Senses
spaz Pronunciation PartofSpeech Etymology Senses
spaz spaz PartofSpeech Etymology Senses

spaz spaz n. Ftymology Senses

spaz spzz n. Abbreviation of spastic n. Senses
spaz spzz n. Abbreviation of spastic n. Sense
spaz spaz n. Abbreviation of spastic n. Definition Quotations

spaz spaz n. Abbreviation of spastic n. = spastic Quotations
spaz sp®z n. Abbreviation of spastic n. = spastic 1965
P. Kael I lost it at the movies III. 259 The term that American
teen-agers now use as the opposite of ‘tough’ is ‘spaz’. 1975
M. Amis Dead babies viii. 47 Text

spaz sp®z n. Abbreviation of spastic n. = spastic 1965
P. Kael I lost it at the movies III. 259 The term that American
teen-agers now use as the opposite of ‘tough’ is ‘spaz’. 1975

M. Amis Dead babies viii. 47 I know how long, you little spaz.

Figure 2.2: Part of a derivation.

. If A is the nonterminal labeling some interior node m and Xy, X5,

..., X, are the labels of the children of that node from left to right,
then 4 — X;X5---X,, is a production of the grammar G. Here
X1,X9,..., X, stand for symbols that are either terminals or nonter-
minals. As a special case, if A — € is a production in P, then a node

labeled A may have a single child labeled €.

We say that the production A — X;Xs---X, has been expanded or

applied at node m. The leaves of the parse tree read from left to right form
the yield or the frontier of the tree that is the string generated or derived

from the nonterminal at the root of the parse tree. The grammar G is

unambiguous if for each terminal string there is at most one possible parse

tree.

Example 2.2 Figure 2.3 shows the parse tree of the derivation in Exam-
ple 2.1. The root is at the top and the leaves at the bottom of the picture.

18 2 PRELIMINARIES

The TEXT terminals have been replaced with the text from the derivation.
O

2.3 Parsing

Context-free grammars can be used to describe structured documents. We
can check that a document follows a certain grammar by constructing a
parse tree for the document. What we now need is an automatic way of
matching a document against a grammar. Such a method is called parsing.

Most parsing methods fall into two classes, called top-down and bottom-
up methods. These terms refer to the order in which the nodes in the trees
are constructed. In top-down methods we start with the start symbol and
build the tree downwards towards the leaves. In bottom-up methods we
start with the leaves and construct the internal nodes before reaching the
root.

Top-down parsing is a simpler method where the parser may be con-
structed manually. For example, a top-down method called recursive-
descent parsing executes recursive procedures to process the input. A form
of recursive-descent parsing is predictive parsing which uses the next in-
put symbol (the lookahead symbol) to choose which production is used
next. Every nonterminal has an associated procedure which is called when
the nonterminal is processed. We start with the start symbol and call its
associated procedure. First, the procedure chooses the production to ap-
ply at this stage of the input by reading the next input symbol. If there
are two such possible productions in the grammar, this method cannot be
used. Then the control is shifted to the procedures associated with the
right hand side symbols of the chosen production. If a nonterminal symbol
is processed, the corresponding procedure is called. If, on the other hand a
terminal is being processed, the next symbol is read from the input. If the
next input symbol does not match the symbol in the production an error
is reported.

Recursive descent parsing is considered simple and easy to understand,
but it can only be used for context-free grammars of a fairly restricted type
[ASUS6]. Bottom-up parsers can handle a larger class of grammars. One
such parsing method is shift-reduce parsing. Shift-reduce parsing constructs
the parse tree beginning with the leaves. The process tries to reduce the
input string to the start symbol. At each step a substring matching the
right hand side of a production is replaced by the left hand side symbol of
the production.

One general method of shift-reduce parsing is called LR(k) parsing

"¢°C 2In31 Ul UOIjeALIDP oY) Jo 991y asred oy, :¢'g 2andg

Dictionary
Entries
Entry
HWGroup Etymology Senses
Headword PartofSpeech Sense
Pronunciation |
Definition
spaz spaz n = spastic
Abbreviation
of spastic
n.

Susie €7

Quotations

— \

Quotations Quotation
- —7 \ "
Quotation Date Author Work Text

PR

Date Author Work

1965 P. Kael

Text

1975 M. Amis

Dead babies
viii. 47

I lost it at the
movies III. 259

The term that American teen-agers
now use as the opposite of ‘tough’
is ‘spaz’.

I know how long,
you little spaz.

61

20 2 PRELIMINARIES

[Knu65]. LrR(k) parsing needs to look ahead only k& symbols in the input to
be able to perform the parsing process. LR parsers can be constructed to
recognize almost all programming language constructs for which context-
free grammars can be written [ASU86|. It is, however, difficult to construct
an LR parser by hand. Fortunately there are several LR parser generators
available.

Again in both top-down and bottom-up parsing methods we define spe-
cial terminals, such as texts, identifiers and numbers. The parser treats
them as terminals. The lexical analysis, preceding the parsing and per-
formed by a scanner, recognizes the form of the strings in the input and
passes single tokens, e.g., IDENTIFIER, TEXT, and NUMBER, to the parser.

2.4 The Standard Generalized Markup Language

All documents have structure. By marking the structure explicitly in the
document, applications may take advantage of the structure as well as
the contents. By using a standard markup, the document becomes more
portable and there is a greater possibility to find tools for updating and
formatting the document [M6194] .

The Standard Generalized Markup Language (sGML, [ISO86]) is a meta-
language standard for defining markup languages. The markup language
defines a set of markup conventions used together for encoding texts. It
specifies what markup is allowed, what markup is required, how markup is
distinguished from text, and what the markup means [SMB93|.

sGML enforces descriptive markup which provides names to categorize
parts of a document. By contrast a procedural markup system defines what
processing is to be carried out at particular points in a document. With
descriptive markup the document can be processed by many different types
of software, each of which may modify or present the document in its own
way.

We saw an example of an sGML document in the previous section (Fig-
ure 1.1 on page 3). We here only briefly define the most central features
present in SGML. A structural component of a document is in sGML called
an element. Elements are explicitly marked in a document instance by a
start tag and an end tag containing the name of the element. For example,
in the previous document, the headword is marked as an element by the
start tag <HeadWord> and </HeadWord>. The text between the tags,i.e., in
this case spaz, is the content of the element. Elements may have properties
assigned to them in the form of attributes. Attributes are specified in the
start tag of an element, e.g., the notation <HeadWord Language=English>

2.4 The Standard Generalized Markup Language 21

states that the HeadWord element has an attribute Language with value
English. Documents may contain entities which reference external files,
e.g., pictures, or they may also be used as macros or abbreviations for
constant strings. Documents may also contain processing instructions that
hold application-dependent information.

A document instance must have a document type definition (DTD), i.e.,
a grammar describing the structure of the document. In the DTD, every
element is defined by its content model (or production) that shows which
other elements or data it may contain. Attributes and entities must also
be defined in the pTD. The DTD may be included in the same file as the
document instance, as is the case in Figure 1.1. The document instance and
the DTD may also reside in separate files. In the latter case the document
instance must contain a reference to the DTD.

A typical content model may be found in the example DTD in Figure 1.1:

<!ELEMENT Entry - - (HeadWordGroup, Etymology?, Senset)>

Here we have an element Entry which contains one HeadWordGroup element,
a possible Etymology element and one or more Sense elements. Tags may
be minimized, i.e., omitted, if the content model says so. This content
model states that both the start tag <Entry> and the end tag </Entry> are
required because the content model contains the characters “- -”. Either
the start tag or the end tag may be omitted if we specify “0 -” or “- 07,
respectively and both tags may be omitted if we have “0 0”7. Minimization
is mostly a technical detail to reduce the work of the author and the size of
the document instance. In the content model above, the group connector
comma , stands for consecutive components. There are two other group
connectors | and & (not present in this content model). Only one of the
components connected with | may occur. Components connected with &
may occur in any order. The occurrence indicators 7, + and * stand for an
optional occurrence, one or more occurrences, or zero or mMore Occurrences
of the component, respectively.

A complete sGML document contains an SGML prolog and a document
instance. The prolog may contain an SGML declaration describing basic
facts about the dialect of sGML being used, such as the character set, and
the length of identifiers. The prolog must contain a document type defini-
tion (DTD).

An SGML parser validates the document instance, i.e., checks if the
instance conforms to its DTD. An SGML parser takes an sGML document
as input and parses the instance according to the pTD. In the simple
case it only outputs whether the instance is correct. Usually, however, it
splits up the instance in an element information structure set (Esis, [Gol90,

22 2 PRELIMINARIES

Appendix B, Annex G]) which is a list of all the components of the instance,
e.g., tags, elements, attributes, etc., in the order they appear. The EsIS
output can more easily be processed by other applications.

Example 2.3 Figure 2.4 shows an example of a part of the ESis output of
the sGM1L parser nsgmls [Cla96] when it parses the document in Figure 1.1.
The nsgmls parser states that the document is valid by printing the letter
C at the end of the Esis output. In the EsIS output, the start and end of
elements is denoted by parentheses and the name of the element tag, e.g.,
(HEADWORD and)HEADWORD, respectively. The #PCDATA is preceded by a

dash, e.g., -spaz. O
(DICTIONARY (SENSE

(ENTRY (DEFINITION
(HEADWORDGROUP -= spastic
(HEADWORD)JDEFINITION

-spaz (QUOTATION
JHEADWORD (DATE
(PRONUNCIATION)DATE

-sp=z (AUTHOR
JPRONUNCIATION -P. Kael
(PARTOFSPEECH)AUTHOR

-n (WORK
)JPARTOFSPEECH -I lost it at the
JHEADWORDGROUP movies III. 259
(ETYMOLOGY JWORK
-Abbreviation of spastic n.

JETYMOLOGY

Figure 2.4: Part of the EsIs output of an SGML parser.

An sGML transformer or converter reads the output of an sGML parser
and makes specified modifications to the document instance. An event-
driven SGML transformerreads the Esis and processes the events as they are
entered. A tree-based SGML transformer may read the EsIS for constructing
an internal parse tree for further processing.

There is now a new standard for specifying the semantics of saML doc-
uments, called the Document Style Semantics and Specification Language
(DsssL) [ISO96]. This standard lets the user make exact specifications of
how certain structured sGML documents should be processed. The standard

2.4 The Standard Generalized Markup Language 23

contains separate languages for specifying document transformations and
formatting, and for structured searches in the documents. The first pro-
totypes based on the standard are beginning to emerge [Cla97]. A trans-
former /formatter based on DSSSL may produce any output format. The
only requirement is that it reads sGML documents and DSSSL specifications
and that it interprets the DSSSL specifications correctly.

Unfortunately, SGML is a very complex standard. This is perhaps the
reason why it has not been more widely accepted as a document standard.
For example, the possible complexity of sGML DTDs makes it very hard
to build efficient sGML parsers. Recently, an international expert group
has designed a subset of sGML called XML that lacks the drawbacks of full
sGML [BSM96|. There is hope that xML will become the de facto document
markup standard.

24

2 PRELIMINARIES

Chapter 3

Transformation of structured
documents

In the following we attribute the name source to the input side of our
transformations. We start with a source document described by a context-
free grammar, a source grammar (also called an input grammar). The
output of the transformation is a target document. Sometimes we also
describe the target document with another context-free grammar, a target
grammar (or output grammar). When parsing the source document, the
parser constructs a source parse tree. Sometimes we also build a target
parse tree before writing out the target document. As we have seen in the
previous chapter, we can use context-free grammars and parsers to define,
check, and modify structured documents. Before we go into these syntaz-
directed translations, we shall take a brief look on other techniques that
could be used in transforming structured documents.

The simplest transformation technique is string matching with string
replacing, where we define a transformation consisting of string patterns,
exact or approximate, and corresponding replacements. FExact matching
with replacement is available in most editors. Approximate matching with
replacement is not very common, but, e.g., in most UNIX operating system
we may use regular expressions for string matching and simple string re-
placement. String matching with replacement accounts for a large group
of text transformations, but when it comes to more complicated structural
modifications, e.g., swapping the order of document sections, this technique
is not sufficient.

By parsing we recognize not only the contents but also the structure
of the document. Syntax-directed translation techniques are based on this
fact. Usually, the output document is written at the time of parsing without
constructing an additional parse tree representing the output. Most parser

25

26 3 TRANSFORMATION OF STRUCTURED DOCUMENTS

generators are used to produce such transformation modules. The user
specifies the source document with a context-free grammar and the output
at each recognized substructure of the document. When the source doc-
ument is parsed, the target document is written at the same time. With
the help of attribute grammars [Knu68] we can perform syntax-directed
translation of this kind.

A more general transformation technique is based on subtree matching
and replacement. This technique is similar to the string-based one, but
before performing the transformation we need to parse the input to obtain
a parse tree which can be modified. The transformation is based on input
and output tree templates. When an input template is matched in the
parse tree, the matched nodes are replaced with the structure described
in the output pattern. Tree template matching can be performed rather
efficiently, especially when the underlying context-free grammar is known
[Kil92, KM95].

Some syntax-directed techniques require that we also define a target
grammar. This guarantees that the constructed target parse tree and the
target document are syntactically correct over the grammar. Examples of
these techniques are syntax-directed translation schemas [Iro61] and tree
transformation grammars |[KPPM84].

3.1 Syntax-directed translation and attribute
grammars

Syntax-directed translation is based on first recognizing the structure of
the document before performing the transformation. In the general case,
it does not mean that we have to build the source parse tree. The tar-
get document is output at parsing time which restricts the applicability of
the transformation. Still, this technique is used quite extensively in com-
mercial transformation languages. Often, though, the languages have been
extended with attributes, whereby it is more appropriate to say that they
are based on attribute grammars.

Example 3.1 Figure 3.1 shows an example of a syntax-directed transla-
tion defined with yacc. The specification contains three rules that surround
headwords within the strings {\bf and }, respectively, and print a new line
after each entry and headword group in the dictionary. |

All sGML transformation languages are based on syntax-directed trans-
lation. An sGML parser reads the SGML instance and returns, e.g., an output

3.1 Syntax-directed translation and attribute grammars 27

Entry: HWGroup Etymology Senses
{ printf("\n") } ;

HWGroup: Headword Pronunciation PartofSpeech
{ printf("\n") } ;

Headword: TEXT
{ printf("{\bf %s} ", yytext) } ;

Figure 3.1: An example of a part of a yacc specification.

in Esis form that is the base for further transformation. Both event-driven
transformations and tree-based transformations use sGML parsers. In a
tree-based transformation an internal structure is built based upon the
output of the parser. In some cases also event-based sGML transformations
may benefit from temporary constructs comparable to attribute grammars.

An attribute grammar (AG) [Knu68, LRS74] is a context-free grammar
where each production has associated with it a set of semantic rules of the
form b := f(¢1,...,¢,), where b and ¢; are variables or attributes and f is an
n-ary function. Translations are performed by parsing the source according
to the grammar, then evaluating the attributes at each node in the parse
tree giving a decorated tree. In a decorated tree, all attributes have values
that are consistent with their definition. Attributes can be evaluated top-
down or bottom-up, or through several passes [DJL88, Yel88|. Assuming
that we do allow functions with side effects, we may include output actions
or even tree construction operators and thereby obtain an attributed trans-
lation, typically used in program compiling. Attribute grammars are often
used as an underlying strategy when implementing higher level transforma-
tion techniques such as tree transformation grammars [KPPM84|. aGs are
somewhat tedious for using in ad hoc transformations, because it is again
up to the user to control that the produced output follows the intended
target grammar.

Example 3.2 Figure 3.2 shows an example of a syntax-directed transla-
tion with attributes. The specification is written in yacc. Every nontermi-
nal in the yacc specification is allowed one attribute, denoted $n, where n
=$,1,2,.... The symbol $$ denotes the attribute of the left hand side
nonterminal of the production, and $n the attribute of the nth symbol on
the right hand side. This short specification moves the headword terminal

28 3 TRANSFORMATION OF STRUCTURED DOCUMENTS

Entry: HWGroup Etymology Senses
{ printf("\n") ;
$$ = $1 3 ;

HWGroup: Headword Pronunciation PartofSpeech
{ printf("\n") ;
$$ = $1 3 ;

Headword: TEXT
{ printf("{\bf %s} ", yytext) ;
$$ = yytext } ;

Figure 3.2: An example of a yacc specification with attributes.

up to the Entry nonterminal, where it can be used, e.g., when traversing
the rest of the dictionary entry. O

3.2 Syntax-directed translation schemas

Neither syntax-directed translation nor attribute grammars require a tar-
get grammar. This means that there is a great stress on the user to
produce the correct output instructions in the specifications. A syntax-
directed translation schema (spTs) [Iro61, BF61, 1.S68|, however, requires
both a source grammar and a target grammar, even though the grammars
must be very similar for the schema to work. Syntax-directed translation
schemas (sDTs) have been used in several document transformation systems
[KLMN90, KP91, Kui96].

Formally, a syntaz-directed translation schema (SDTS) is a quintuple
T = (N,X,AR,S), where N is a finite set of nonterminal symbols, %
is a finite input alphabet, A is a finite output alphabet, R is a finite set
of rules of the foorm A — a,f, where a € (N UX)* and f € (N U A)*
and the nonterminals in § are a permutation of the nonterminals in «,
and S is a distinguished nonterminal called the start symbol [AU72|. In
each rule A — «,(we associate occurrences of the same nonterminals in
o and §. If a nonterminal appears only once in a and 3, respectively,
the association is obvious. Otherwise the nonterminals may be indexed to
denote the associations. Terminals occurring only in « or only in /3 are not
associated.

For the translation we define a translation step with the help of a trans-

3.2 Syntax-directed translation schemas 29

lation form. Firstly, the pair (5,5), where § is the start symbol, is a
translation form. Secondly, if (aAfS, &’ AB’) is a translation form where the
two nonterminals A are associated, and if A — ~,+"is a rule in R, then
also (ayf,a’y'3") is a translation form. The nonterminals in y and 4’ are
associated as they are in the rule, and nonterminals in «, o', 3, and 3’ are
associated as they were in the previous translation form.

The process of computing such a translation form from another form
we call a translation step. A translation step is denoted by the derivation
symbol =7. We also use =7} to denote the reflexive transitive closure,
a translation that consists of zero or more translation steps, and :>; to
denote the transitive closure, a translation that consists of one or more
translation steps. The translation defined by T', denoted 7(7"), is the set of
pairs [AUT2|

{(z, |(S,9)=7 (z,y), wherez € Y™ and y € A"}.

Informally, we say that y is the translation of x under spTs T or that
x is the translation of y.

Aho and Ullman give Algorithm 3.1 for performing a syntax-directed
translation according to an spTs [AUT72].

Algorithm 3.1 (Tree transformations via an sDTS)

Input. An sprs T = (N,X,A,R,S), with input grammar G, =
(N,X, P, 5), output grammar Gy = (N,A, P’ 5), and a derivation tree
D in G, with frontier in 3*.

Output. A derivation tree D' in Gy such that if # and y are the frontiers
of D and D', respectively, then (x,y) € 7(T).

Method.

1. Apply step 2, recursively, starting with the root of D.

2. Let this step be applied to node n. It will be the case that n is an
interior node of D. Let n have the children nq,...,ng.

a) Delete those of nq,...,ng that are leaves (i.e., have terminal or
? ? ?
e-labels, but that are not text terminals)

(b) Let the production of G5 represented by n and its direct descen-
dants be A — «. That is, A is the label of n and « is formed
by concatenating the labels of nq,...,n;. Choose some rule of
the form A — o, in R. Permute the remaining direct descen-
dants of n, if any, in accordance with the association between
the nonterminals of a and f.

30 3 TRANSFORMATION OF STRUCTURED DOCUMENTS

(c) Insert direct descendant leaves of n so that the labels of its direct
descendants form S.

(d) Apply step 2 to the direct descendants of n that are not leaves,
from left to right.

3. The resulting tree is D'.

a

Aho and Ullman also prove that if 2 and y are the frontiers of D and
D', respectively, in Algorithm 3.1, then (x,y) is in 7(T) [AU72] .

Example 3.3 Figure 3.3 shows an example of a syntax-directed transla-
tion schema. The schema defines a translation that removes the senses of a
dictionary entry, reorders the pronunciation and part of speech information
of a headword and inserts some constant strings for a IWTFpX document.
An spTs can also introduce new nonterminals, the contents of which will
remain empty as there is no way of specifying their structure.

Note that we treat text terminals as nonterminals. Text terminals may
be associated in the same way as nonterminals are. In this way, we assure
that the contents of the source document can be copied to the target docu-
ment. This is not strictly according to Algorithm 3.1 which always deletes
source terminals.

Entry — HWGroup Etymology Senses,

HWGroup Etymology
HAWGroup — Headword Pronunciation PartofSpeech,

{\bf Headword } PariofSpeech Pronunciation
Headword — TEXT, TEXT

Figure 3.3: An example of an sDTS.
O

Several restrictions and extensions have been defined for syntax-directed
translation schemas. By requiring that all associated nonterminals for every
rule A — a, 3 in R occur in the same order in a and 3, we obtain a simple
spTs [AU72]. With a simple spTs, we cannot change the order of the
document parts, we can only remove and insert terminals. Some extensions
allow that o and g contain different nonterminals that are not associated.
If a contains a nonterminal that is not present in 3, the corresponding
document part is removed. If § contains a nonterminal that is not present

3.3 TT-grammars 31

in «a, this part is added to the document (possibly with empty contents)
[KP93].

spTss have been extended with semantic rules [AU71, Bak78], predi-
cates that select a target production [PB78] or even small programs at-
tached to the rules [Shi84], but these extensions do not support the cor-
rectness of the output and we thereby lose the main advantage of using
SDTSs.

3.3 TT-grammars

Using an sDTS achieves our main goal for a transformation technique for
structured documents. The definition of a target grammar and its use in
the sDTS guarantees that the transformation produces only correct target
documents. On the other hand, an sSDTS is quite restricted. Firstly, the
source and target grammars must be very similar. They must contain
nonterminals with the same names, and there must a corresponding target
production for each source production. In the case where we start with
two document representations that have been defined with two arbitrary
grammars, we must first redefine one of the grammars to be able to define
an SDTS.

Secondly, an sDTS cannot add or remove levels of structure in the parse
trees. The transformation always works on one level in the source parse tree,
removing or adding terminals, and reordering the nonterminals. Sometimes
we need to remove or add levels of nodes when we want to introduce more
internal structure in our document or remove some structure. This is espe-
cially useful when the target document itself becomes a source document
of another transformation.

To solve these problems, we extend the spTss and introduce tree trans-
formation grammars or TT-grammars [KPPM84|. A TT-grammar is like an
spTs without the implicit associations between nonterminals in the rules.
On the contrary, the user must explicitly define these associations. This
means also that he/she can associate nonterminals with different names.
Additionally, TT-grammars work with as many node levels in the parse
trees as wanted.

A TT-grammar describes a relationship between a syntax tree over a
grammar (71 and a syntax tree over a grammar (3. Transformations can
be specified both ways, from trees over grammar G to trees over grammar
(G5 or vice versa, thus being especially suitable for purposes where two-way
transformations are common. Here we concentrate on one-way transforma-
tions from trees over a source grammar G5 to trees over a target grammar

32 3 TRANSFORMATION OF STRUCTURED DOCUMENTS

G';. The relationship is described by associating groups of productions in
Gs with groups of productions in G%. In addition one needs to associate
symbol occurrences in G5 with symbol occurrences in Gy.

Formally, a TT-grammar is a sextuplet (G, Gy, S5, St, PA, SA), where
G5 and Gy are the source and target grammars, respectively, S and 5; are
sets of source and target subgrammars, respectively, PA is a set of produc-
tion group associations, and SA a set of symbol associations. The source
and target grammars are context-free grammars. The source and target
subgrammars consist of subsets of the source and target grammars, re-
spectively. A production group association is a pair consisting of a source
subgrammar in S, and a target subgrammar in 5;. A symbol association re-
lates a symbol in a source subgrammar to a symbol in a target subgrammar
(within a certain production group association, or in separate production
group associations).

A source subgrammar must satisfy the following restrictions. First,
there must be a single start symbol. Second, every other symbol in the
subgrammar must be derivable from this start symbol. Source subgram-
mars specify subtree patterns to be matched against in the source tree;
the target subgrammars specify the subtrees that are to be constructed as
part of the target parse tree. A target subgrammar is not required to have
a single start symbol; it can have several, resulting in a forest of target
subtrees.

A TT-grammar may be viewed as generating subtrees in G from sub-
trees in G as follows. Let (pgs, pg:) and (pgl, pg;) be production group
associations, where pgs and pg. are source subgrammars and pg; and pg,
target subgrammars. The productions in pg: (pg;) are used to construct
target subtrees every time the productions in pg, (pg.) have been applied
(all of them) in the source tree. In Figure 3.4a, the application of the source
subgrammars has been denoted by two dashed triangles in the source tree.
Let two of the produced target subtrees correspond to the productions
A — aBp in pg; and B — v in pg; (Figure 3.4b). Assume also that both
target nodes labeled B are associated with the same source node p (denoted
by dotted lines between the source node p and the two nodes labeled B in
Figure 3.4). Then the two target subtrees are linked through B to form a
single target subtree (Figure 3.4c). Note that this technique is more general
than using input and output tree templates. In a subgrammar we may use
recursive productions and thereby describe more complicated tree patterns
than are possible with tree templates.

The algorithm for applying a TT-grammar transformation is given as
Algorithm 3.2.

3.3 TT-grammars 33

a) source tree b) target forest c) target (sub-)tree

Figure 3.4: Three phases in TT-grammar application..

Algorithm 3.2 (Tree transformations via a TT-grammar)

Input. A tr-grammar 17T = (G, Gy, S5, Sy, PA, SA), with source grammar
Gs = (N,X, P, 5), target grammar G; = (N, A, P',5"), and a derivation
tree D in G, with frontier in 3*.

Output. A derivation tree D' in Gy such that if # and y are the frontiers
of D and D', respectively, and y contains terminals only, then y is the TT-
grammar translation of . (But depending on how the transformation is
specified, we may also have a forest of trees, all over G.)

Method.

1. Apply step 2 to all nodes in tree D, starting with any nonterminal
node of D. When all nodes have been matched against source sub-
grammars goto step 3.

2. Let this step be applied to node n with label A. It will be the case
that n is an interior node of D.

(a) Choose a production group association pga = (pgs, pg¢) where
the source subgrammar pg, has start symbol A and where the

34 3 TRANSFORMATION OF STRUCTURED DOCUMENTS

tree structure denoted by the subgrammar matches the subtree
at node n. If there are no such production group association,
return to step 1.

(b) For every production B; — X, ---X;, in pg; construct a sepa-
rate target subtree with B; as its root and X;,..., X, as its

children.

(c) Let the symbol association set of the production group associ-
ation pga be sa. For every symbol association (sg,s;) in sa,
associate the symbols s, and s;, i.e., make an association be-
tween the instance of the symbol s, in the derivation tree D and
the instance of the symbol s; in some target subtree over the
production B; — X;, ...s;... X,

3. Apply step 4 to all root nodes of separate target subtrees created in
step 2. When no more subtrees can be linked go to step 5.

4. Let this step be applied to the root m of the target subtree st,,. Let
m have the label B and a symbol association to source node p.

(a) Find aleaf node nin any of the other target subtrees with label B
and an association to the same source node p. Let this subtree be
st,. Merge the subtrees st,, and st,, at the node n, i.e., replace
the leaf node n in subtree st, with the subtree st,,

5. If the result is a connected tree and all the leaves are terminals, it is
D'

O

We observe that Step 2 in the algorithm only constructs subtrees over

a subgrammar of G;. Thereby, if the result is one connected tree, the tree
must be over the target grammar G,.

Example 3.4 We shall define a TT-grammar for our dictionary document.
Our example transformation makes several transformations to the dictio-
nary that are not possible to define with an spTs. We shall print out only
headwords, their etymology, and their examples: additionally, parts have
been reordered and the text enhanced with constant strings. A possible
output of this word list view is the WX output in Figure 3.5.

To achieve this view we must transform the dictionary into the IWTEX
declarations of Figure 3.6

We see that we have discarded information about part of speech and
sense definitions, and reordered some other information. We also insert

3.3 TT-grammars 35

spaz (Abbreviation of spastic n.)

e [know how long, you little spaz. (M.
Amis, Dead babies viii. 47, 1975)

e The term that American teen-agers
now use as the opposite of ‘tough’
is ‘spaz’. (P. Kael, I lost it at the
movies III. 259, 1965)

Figure 3.5: A IXTEX view of the target document.

{\bf spaz} (Abbreviation of spastic n.)
\begin{itemize}
\item I know how long, you little spaz.
(M. Amis, Dead babies viii. 47, 1975)
\item The term that American teen-agers now use as
the opposite of ‘tough’ is ‘spaz’.
(P. Kael, I lost it at the movies III. 259, 1965)
\end{itemize}

Figure 3.6: An example target document.

new constant strings in the text. To do this, we modify the source parse
tree extensively. We specify this transformation by first describing the
source grammar of the dictionary and the target grammar of the word list,
and then by giving the rules of the mapping, rules that are based on both
grammars. The source grammar has already been given in Figure 2.1. The
target grammar is shown in Figure 3.7. Note especially that we have used
both source grammar nonterminals and new nonterminals. The mapping
does not restrict the use of nonterminals in the grammars as is the case in
an SDTS.

When parsing our source document, the dictionary, we achieve the parse
tree depicted in Figure 2.3 on page 19. The complete set of mapping rules

for this transformation is given in Figure 3.8 on page 40.

The first rule applies to the root of the source tree and states that
whenever we find a subtree as specified in the source subgrammar of the
rule in the source tree, we construct the subtrees defined in the target

36 3 TRANSFORMATION OF STRUCTURED DOCUMENTS

Wordlist — Words Eramples — Fzample
Words — Words Word Erample — Quotations
Words — Word Quotations — Quotation
Word — Headword Quotations
Etymology Quotations — Quotation
\begin{itemize} Quotation — \item Text (
Eramples Author Work
\end{itemize} Date)
Headword — {\bf TEXT} Date — TEXT
Etymology — (TEXT) Author — TEXT
Eramples — FEramples Work — TEXT
Erample Text — TEXT
Figure 3.7: An example target grammar.
subgrammar.
1 Document — Entries Document. Wordlist — Entries. Words

Symbol associations are denoted in the target subgrammars by
source__symbol.target symbol. In this case the rule matches a subtree at
the root of the source tree and constructs a target subtree as follows.

—_———— e o ————

The matched subtree is denoted by the dashed box, and the rule number is
stated in the top left corner of the box. The transformation constructs one
target subtree. Symbol associations are denoted in the figure by dotted
curves. Symbol associations between nonterminals, or nonterminals and

terminals are used for connecting separate target subtrees.
The following two rules map an iteration in the source on a similar
iteration in the target.

3.3 TT-grammars 37

2 Entries — Entries Entries(1). Words — Entries(2). Words
Entry
Entry. Word
3 FEntries — Entry Entries. Words — Entry. Word

Here several occurrences of the same nonterminal are distinguished by in-
dexing the occurrences. Rule 2 is never used in our example because such a
source subtree cannot be found in our source tree. However, rule 3 is used,
matching at the source subtree starting at node FEntries.

Dictionary e > Words
TR |
I Entries U UPPPRPER PR > Word
| | |
I Entry :

As a result, we now have two separate target subtrees. In the subtrees
there are two target nodes labeled Words associated with the same instance
of a source node Fniries, and the former and the new target subtrees are

linked into one subtree.
Wordlist

Words

Word

Rule number 4 contains a source subgrammar with several productions.

4 Entry — HWGroup Entry. Word — Headword. Headword
Etymology Etymology. Etymology
Senses \begin{itemize\
HWGroup — Headword Senses. Examples
Pronunciation \end{itemize}
PartofSpeech

PartofSpeech — n.

The transformation constructs a tree pattern from these productions with
the first nonterminal (Entry) as a root. Applying such a rule in an spTs
is not possible as an sDTS only associates productions not subgrammars.
Using the rule constructs a target tree where some of the information, such

38 3 TRANSFORMATION OF STRUCTURED DOCUMENTS

as the pronunciation and part of speech categorization, has been discarded.
Also, our transformation includes only entries where the PartofSpeech
element has been specified as a noun (n.). If our small dictionary con-
tained also verbs and adjectives, they would not be included in the target

document.
Entries
r--r—-———"~>"~>"~>~>""~>"~>""~>"™>"™>"™>"™>"™>"™™>""=>"77 |_ -
| Entry |
I T
I HWGroup Etymology Senses |
: ~ ™~ .- —|- Tf_‘l A
| Headword PartofSpeech : Sense . Word
I \ Pronunciation 1 // \
L—— 4’,.— -— -|- --7 r-=--- -4 Headword - Etymology Exzamples
spaz spaz Ln—: A 4 >
" " Abbreviation e . \begintitemize}
of spastic \end{itemize}

Again, we have two nodes in the target subtrees labeled Word that are
associated with the same instance of a source node labeled Entry. The two
target subtrees are connected to form a new tree as follows.

Wordlist

Words

Word

I

Headword Etymology Ezamples

\begin{itemize} \end{itemize}

As an example of text terminal mapping, we have rule 5

5 Headword — TEXT Headword. Headword — {\bf TEXT.TEXT }

which matches the source tree at node Headword. The transformation pro-
duces a similar target subtree where the identifier has been copied. Here,
we have the second reason for symbol associations demonstrated. Sym-
bol associations between terminals are used for copying the contents of the
terminal to the target side.

3.3 TT-grammars 39

HWGroup

| N~

—_————

> Headword

—_——— e e ——a

As a final example of rule application, we take a look at rule 12.

12 Quotation — Date Quotation. Quotation — Quotation.Item

Author Text. Text
Work (Author.Author ,
Tert Work. Work ,
Date.Date)
Quotation.Item — \item

This rule demonstrates the reordering power of the mapping. Logical parts
of the document are reordered at the same time as terminals and nonter-
minals are inserted in the target tree. We also see how one rule produces
several target subtrees to be linked later. This is not possible with an spTS.

Quotations
———————— - ===
:12 Quotation 2}: N : IS Quotation
L INT— e NSSS
: Date AuthormText :)Item Text(Authm%’ Date™)
Sl At~ i [NRORRE - A T A A A
1965 U ISR
P. Kael R S I S P IC
ITtem
7
\item

We have started the simulation of the transformation by traversing the
source tree in preorder. Note, however, that there is no restriction on the
order in which the rules are applied, as long as all rules that match in the
tree are used. The matching phase is performed first after which all the
produced target subtrees can be linked to form the target subtree.

The rest of the transformation is performed in a similar way. The
complete set of mapping rules is given in Figure 3.8. The figure reads

40

pga

10

11

12

13
14
15
16

3 TRANSFORMATION OF STRUCTURED DOCUMENTS

source subgmmma?“s

Document

Entries

Entries

Entry

HWdGroup

PartofSpeech

Headword
Etymology

Senses

Senses

Sense

Quotations

Quotations

Quotation

Date
Author
Work
Text

bl

L

Entries

Entries Entry

Entry

HWdGroup
Etymology
Senses
Headword
Pronunciation
PartofSpeech

n.

TEXT
TEXT

Senses Sense

Sense

Definition
Quotations

Quotations
Quotation

Quotation

Date
Author
Work
Text

TEXT
TEXT
TEXT
TEXT

target subgrammars

Document. Wordlist

Entries(1). Words

Entries. Words

Entry. Word

Headword. Headword
Etymology. Etymology

Senses. Examples

Senses. Examples

Sense.Example

Quotations(1).Quotations

Quotations. Quotations

Quotation.Quotation

Quotation.Item

Date.Date
Author.Author
Work. Work
Text. Text

bl

1

L

Entries. Words

Entries(2). Words
Entry. Word

Entry. Word

Headword. Headword
Etymology. Etymology
\begin{itemize}
Senses. Examples
\end{itemize}

{\bf TEXT.TEXT }
TEXT.TEXT

Senses. Examples
Sense.Example

Sense.Example

Quotations. Quotations

Quotation.Quotation
Quotations(2). Quotations

Quotation.Quotation

Quotation.Item
Text. Text

(Author.Author ,
Work. Work ,
Date.Date)
\item

TEXT.TEXT
TEXT.TEXT
TEXT.TEXT
TEXT.TEXT

Figure 3.8: A mapping between the grammars of Figures 2.1 and 3.7.

3.3 TT-grammars 41

as follows. Product group associations are numbered from 1 to 16. The
source subgrammar of a pga is given to the left and the corresponding
target subgrammar to the right. Symbol associations are shown in the
target subgrammars by connecting associated symbols with a period. All
together, the transformation produces 17 target subtrees that are linked
together through the symbol association to form the complete target tree
in Figure 3.9.

O

Above we have seen examples of how a parts of structured document can
be renamed, reordered, removed, or inserted, how levels of the document
tree can be suppressed or inserted, and how terminals are copied to the
new document. Unfortunately, there are transformations that require more
complex actions. This is also known in attribute grammars, where semantic
rules go beyond the syntactical transformations. We have extended TT-
grammars with semantic actions also in the ALCHEMIST system. The next
chapter considers this system.

‘901 osIed 198Ie) ¥ 16°¢ 2InSLq

Headword

{\bf spaz }

Wordlist

Words

Word

~

Etymology Ezamples
Ezample
\begin{itemize} Quotations \end{itemize}
Quotation Quotations
Item Text (Autho%) Quotation
\item Item Text (Autho%)
Abbreviation | | |
(of spastic) M. Amis 1975 \item P. Kael 1965
n.
Dead babies viii. I lost it at the
47 movies III. 259
I know how long, The term that American teen-agers
you little spaz. now use as the opposite of ‘tough’

is ‘spaz’.

4y

SINHIWNDO0d ddd4NLONdLS 40 NOILVINWHOJISNVYU], ¢

Chapter 4

The transformation generator

ALCHEMIST

As we have sen in the previous chapter, the notion of TT-grammars can
well be used in the implementation of a transformation generator for struc-
tured documents. One such example is the ssAGs transformation generator
[KPPMB84], but it only implements a subset of the TT-grammar technique.
In this chapter we present a transformation generator called ALCHEMIST
[TL94a, LTV96| which is based on the TT-grammar technique. ALCHEMIST
also provides a graphical interface for specifying transformations. Addi-
tionally, ALCHEMIST automatically generates the transformation code and
calls a compiler that links and compiles the code into an executable trans-
formation.

ALCHEMIST is similar to many other transformation generators such as
1ca [MBO93]. The motivation behind ALCHEMIST lies in the fact that we
wanted to provide a general transformation generator where the user does
not have to bother about the similarity of the source and target grammars.
Also, we wanted a generator that is equally suitable for producing transfor-
mations between structured documents as well as between other structured
representations such as computer programs and persistent representations
of data in computer applications. In this chapter we describe the struc-
ture and use of ALCHEMIST and also present its implementation. We de-
scribe the experience in its use and evaluation of the system in Chapter 6.
First, though, we take a look at the small differences in the ALCHEMIST
TT-grammars from those defined in Section 3.3.

43

44 4 THE TRANSFORMATION GENERATOR ALCHEMIST

4.1 ALCHEMIST TT-grammars

ALCHEMIST implements a subset of TT-grammars where multiple source
productions are allowed in a source subgrammar. This allows the user to
define more complex source subtree templates to be matched against in
the source parse tree. Instead of only removing and adding terminals and
reordering nonterminals in the source parse tree, the user can also add or
remove levels of internal nodes in the tree.

The general idea of a source subgrammar as a grammar has not though
been implemented in ALCHEMIST. This idea would allow the use and in-
terpretation of recursive productions in the source subgrammar to describe
arbitrarily big recursive subtrees to be matched against. This would defi-
nitely add to the transformational power of ALCHEMIST, but it seems that
this additional power is not worth the trouble. In the current version of
ALCHEMIST the source subgrammar corresponds to a connected tree sub-
structure to be matched against in the source parse tree. Also the indented
but semantically unclear symbol associations between symbols in different
production group associations have not been implemented in ALCHEMIST.
These associations might be used perhaps as a short cut in linking the tar-
get subtrees together at the end of the mapping but it is unclear to the
author how they are used in [KPPMB84]. These minor restrictions to the
TT-grammar technique in the implementation of ALCHEMIST do not much
decrease the power of the transformation generator.

In addition, several extensions have been made to the TT-grammars in
ALCHEMIST. Firstly, identifier copying from the source to the target has
been added. The user associates identifiers on both sides of the transforma-
tion (source and target) and assures that identifiers are correctly “brought
over” to the target side. Secondly, semantic actions have been added for
processing on the target side. The user can add semantic actions to check
for identifiers, perform computing, etc., in the transformation specification.
This makes the transformation as powerful as any programming language.
As a matter of fact, the language used in semantic action is a programming

language (C++).

4.2 ALCHEMIST structure

ALCHEMIST divides transformation construction into three phases: speci-
fication, generation, and compilation. Specification includes defining both
the source and target grammars as well as a mapping between the grammars
based on the TT-grammar technique. Generation produces programming

4.2 ALCHEMIST structure 45

code from the specifications and compilation the code of the executable
transformation module. ALCHEMIST contains interacting software modules
for all these phases (Figure 4.1). These modules have all been named with
concepts from the alchemy domain.

SPELLBOUND is the specification interface and contains only one tool, the
MAPPERTOOL, for specifying mappings. Grammars are given in text
files. The output of the specification phase consists of a source and a
target grammar, and a mapping between these two grammars.

SPELLTOOL comprises tools for generating the transformation code and
compiling it into an executable transformation module. It contains
the following modules:

SEER generates a parser from the source grammar. The source parser
reads source documents and builds the corresponding source
parse tree.

STONE generates a mapper from the mapping specification. The
source-to-target mapper transforms the source parse tree into
a target parse tree.

SWINDLER generates a target parser or unparser from the target
grammar. The target parser traverses the target parse tree and
writes its frontier, the target document, to a file.

COMPILER compiles and links the generated code into an executable
transformation.

SUBSTANCE is the interface for defining the internal parse tree structures.
Depending on the transformation applications, the user needs to use
parse trees of different complexity.

GLASS is the interface for defining user interface for user interaction when
the user needs to interact in some semi-automatic transformations.

GLASS and SUBSTANCE GENERATORS. There are two more modules gener-
ating transformation code: one for generating code for the internal
parse trees and one for generating the user interaction interface.

POT handles the storage of reusable components, such as grammars and
mapping specifications.

In Figure 4.1 we see a schema of the ALCHEMIST process and its in-
termediate and end results. All intermediate results, such as grammars,
code, etc, are stored persistently in files. Figure 4.1 shows implemented

46 4 THE TRANSFORMATION GENERATOR ALCHEMIST

transformation
problem problem
ys \ N~ o
S s
1 SPELLBOUND —SI—JBSTAN(;E\) (/ E}_LAETS)
specify (MAPPERTOOL) -2 __Z - -z
N
N N
|- Moo o NN X TIIII TN Ivom
| . .
., source mappin target I object Il user
description | pping 8) .
I| grammar grammar | structure | | interface !
e - _ o o oo O —— o ———
\ \
T T T TS T T TS

SUBSTANCE / N GLASS
generator \ ,generator

1 1 1
\7 \7 \Z

\“__.——’/ \‘§ —’/

Y A\
code | FtO parser | | OtO mapper | | OtF parser | | structure |

| interface

compile
PELLTOOL

transformation

module module

Figure 4.1: The ALCHEMIST environment.

components with unbroken lines and unfinished components with dashed
lines.

We want to make a clear distinction between the transformation con-
struction level (specification, generation, and compilation) and the execu-
tion level (of using the transformation). Therefore we name all the meta
level components of the construction level with capital letters: ALCHEMIST,
SPELLBOUND, etc. At the execution level, ALCHEMIST transformations are
called spells, and all components linked to the execution level (source docu-
ments, spells, internal implementation components) are written with small
letters.

The spell process, i.e., the data flow of an ALCHEMIST transformation, is
shown in Figure 4.2. A spell consists of three modules, a parser, a mapper,
and an unparser. The parser reads the source document and builds the
corresponding parse tree. The mapper transforms the parse tree into a

4.3 ALCHEMIST use 47

target parse tree, and the unparser writes the frontier of the target parse
tree into the target document. Again, the intermediate representations of
the document, the parse tree, may be saved persistently through spellpot.
In this way we are less dependent on memory size if the documents are
large.

spellpot |

parse

_ s/

|
|
|
source parse |
|

instancd

target
source
parse
tree

instancd

Figure 4.2: Data flow of a spell.

Between the construction level and the execution level lies APPRENTICE,
an interface for executing a set of spells. APPRENTICE provides a convenient
interface for selecting and starting the appropriate spell. The ALCHEMIST
environment is shown in Figure 4.3.

4.3 ALCHEMIST use

As mentioned earlier, ALCHEMIST divides the transformation or spell con-
struction into several phases. In this section we take a closer look at these
phases together with examples and see how ALCHEMIST implements the
TT-grammar technique (see also [LT95, LTV95al). The phases on the con-
struction level supported by ALCHEMIST are

1. the specification phase where the user specifies the transformation
with SPELLBOUND giving as results a source and a target grammar,
and a mapping between the grammars,

2. the generation phase where the user generates transformation code
with sPELLTOOL, and

3. the compilation phase where the user with the help of sPELLTOOL
calls the appropriate compiler for producing an executable spell.

Additionally, on the execution level, supported by ALCHEMIST we have

4. The execution phase where the user starts a spell with APPRENTICE.

48 4 THE TRANSFORMATION GENERATOR ALCHEMIST

SpellTool

Components:

-DWINDOW_INTERFACE -¢ spell.cc

CC -g -T/usr/fopenwin/include -DMAIN -DSWR4 -D__EXTERN_C__
~DWINDOW_INTERFACE -¢ init_sgrammar.cc

CC -g -Ifusr/openwin/include -DMAIN -DSWR4 -D__EXTERN_C__
-DWINDOW_INTERFACE -¢ mapper.cc

CC -g -T/usr/fopenwin/include -DMAIN -DSWR4 -D__EXTERN_C__
~DWINDOW_INTERFACE -¢ init_tgrammar.cc

Y

Figure 4.3: The ALCHEMIST environment.

4.3.1 Spell specification

The first construction phase includes grammar and mapping specification.
The user specifies both a source and a target grammar for the spell. A
mapping between the grammars is constructed based on the TT-grammar
technique.

Grammar specification

The source and target grammars are context-free grammars. The grammars
follow a very simple syntax. Nonterminals are any identifiers beginning
with a letter and followed by letters and/or numbers. A terminal is either
surrounded by double quotes or consists of a special terminal. A quotation
mark in a terminal is in itself surrounded by double quotes. A special
terminal is a source terminal or a target terminal. Source terminals are

4.3 ALCHEMIST use 49

IDENTIFIER An identifier, a letter followed by letters or numbers.

TEXT A string of text, application dependent.

NUMBER A number, a digit followed by digits (integers only).

STRING A string, any sequence of characters surrounded by double
quotes.

Target terminals are used for producing certain strings in the target
document, e.g., dates or binary numbers. The target terminals are

IDENTIFIER An identifier, a letter followed by letters or numbers.
NUMBER A number, a digit followed by digits (integers only).
BINARY_NUMBER A binary number, for producing a binary number.
IDENTIFIER[n] An identifer of length n.

NUMBER [n] A number of length n.

BINARY_NUMBER[n] A binary number of length n.

STRING A string surrounded by double quotes.

CHAR[n] The ASCII character with number n.

NULL [m] Produces m NULL characters.

CURRENT_DATE The current date in the format YYMMDD.
CURRENT_TIME The current time in the format HHMMSS.
INCLUDE_FILE Inserts the contents of the file which is given as the

next (terminal) symbol after INCLUDE_FILE.

The production rewrite symbol is denoted by ->. Iterations are specified
with recursive productions. Disjunctions are specified by giving several
productions with the same nonterminal on the left hand side. The gram-
mar syntax is very simple and specification can be made with an ordinary
text editor. Figure 4.4 shows an example of an ALCHEMIST grammar cor-
responding to the DTD in Example 1.1 on page 2.

When actually used in spell specification, the source and target gram-
mars are loaded into the grammar windows of the MapPPERTOOL (Fig-
ure 4.5).

Mapping specification

The mapping connects the source and target grammars together based on
the TT-grammar technique. As expected this is the most complicated part
of a spell specification. The mapping is specified through MAPPERTOOL
(Figure 4.6).

Production group associations are specified in the main window of
MAPPERTOOL (Figure 4.6). The user opens up the source and target
grammars in separate windows and selects the appropriate production into

50 4 THE TRANSFORMATION GENERATOR ALCHEMIST

Dictionary -> "<Dictionary>" Entries "</Dictionary>";

Entries -> Entries Entry ;

Entries -> Entry ;

Entry -> "<Entry>'" HWGroup Etymology Senses
"</Entry>" ;

HWGroup -> "<HWGroup>" Headword Pronunciation
PartofSpeech "</HWGroup>" ;

Headword -> "<Headword>" TEXT '"</Headword>" ;

Pronunciation -> "<Pronunciation>" TEXT "</Pronunciation>" ;

PartofSpeech -> "<PartofSpeech>" "n." "</PartofSpeech>" ;

PartofSpeech -> "<PartofSpeech>" "v." "</PartofSpeech>" ;

PartofSpeech -> "<PartofSpeech>" "a." "</PartofSpeech>" ;

Etymology -> "<Etymology>" TEXT "</Etymology>" ;

Senses -> Senses Sense ;

Senses -> Sense ;

Sense -> "<Sense>'" Definition Quotations '"</Sense>";

Quotations -> Quotations Quotation ;

Quotations -> Quotation ;

Definition -> "<Definition>" TEXT "</Definition>" ;

Quotation -> "<Quotation>" Date Author Work Text
"</Quotation>" ;

Date -> "<Date>" TEXT "</Date>" ;

Author -> "<Author>" TEXT '"</Author>" ;

Work -> "<Work>" TEXT "</Work>" ;

Text -> "<Text>" TEXT "</Text>" ;

Figure 4.4: An example of an ALCHEMIST grammar.

source and target subgrammars. The source subgrammar must contain one
single start symbol from which all other symbols are derivable. By default,
the left hand side of the first production in this group is considered as the
start symbol of the source subgrammar. When the user has specified the
subgrammars, he/she connects them forming a production group associa-
tion. A subgrammar may be used in several group associations.

Symbol associations are specified in the symbol association window
(Figure 4.7). The window shows all the nonterminal symbols and special
terminals corresponding to the current production group association in the
MAPPERTOOL main window. The user makes symbol associations by se-
lecting source and target symbols. Several symbol may be chosen at a
time.

4.3 ALCHEMIST use 51

— Source grammar: |

Source grammar... Insert production +

Dictionary —> Entries

Entries —> Entries Entry

Entries —> Entry

Entry —> HeadwordCroup Senses
Entry == HeadwordGroup Etymology Senses
HeadwordGroup —= Headword Pronunciation PartefSpeech
Headword —> TEXT

Pronunciation —=> TEXT

PartofSpeech — "n."

PartofSpeech —> "v."

PartofSpeech —> "a."

Etymology —> TEXT

Senses —> Senses Sense

Senses —» Sense

Sense —> Definition Quotations
Quotations —> Quotations Quotation
Quotations —> Quotation

Definition —> TEXT

Quotation —> Date Work Text
Quotation —> Date Author Weork Text
Date —> TEXT

Author —> TEXT

Work —> TEXT

Text == TEXT

Figure 4.5: An ALCHEMIST grammar in the source grammar window of
MAPPERTOOL.

Semantic actions are specified by selecting a target symbol and specify-
ing the action in the semantic actions window (Figure 4.8). An action can
be performed before or after a target symbol is processed by the mapper of
the spell. An action before processing the symbol may make modifications
to the symbol, like capitalizing, etc. An action after processing may insert
the symbol in a symbol table.

4.3.2 Spell generation

The second phase of spell construction includes generating the spell code
from the spell specification. In principle, code generation is independent
of the programming language but in this special case ALCHEMIST generates
C++ code as the semantic actions are written in this language. Code
generation is performed with the help of spELLTOOL (Figure 4.9).

For each subspecification, the user needs to generate a spell module.
SEER and generates a parser from the source grammar, STONE generates a
mapper from the mapping specification, and SWINDLER generates an un-
parser from the target grammar. Following the ALCHEMIST design prin-

52 4 THE TRANSFORMATION GENERATOR ALCHEMIST

Wordlist => Words

Words —> Words Word

Words —> Word

Weord —> Headword Etymology "\\beain{itemize}" Examples "\\endiitemize3"

MapperTool

Figure 4.6: MAPPERTOOL for specifying production group associations.

ciples of storing any intermediate result persistently, the code may be in-
spected and even modified (but on the user’s own risk). In this way, the
user may tailor the transformation to very specific needs not describable
with SPELLBOUND.

4.3.3 Spell compilation

The third phase of spell construction includes compiling and linking the
spell code into an executable module. This phase includes default com-
ponents like a spell user interface and connections to object management.
Compiling is also performed with the help of spELLTOOL (Figure 4.10).
The user has several options. He/She can choose to compile a spell
with a graphical user interface or a textual interface. He/She can also limit
the compilation to the source parser which is very convenient for testing
purposes. In this way the user can convince himself that the grammar is
correct before continuing with the rest of the spell specification. By using
the target grammar as a source grammar, the user can also produce a parser

4.3 ALCHEMIST use 53

— Symbol assoclatlons: PGA I

Source symbol: Target symbols:

=

Entry Word =
HeadwordGroup [Headword

= =

LY

Etymaology b Etymology
Senses Examples
HeadwordGroup

Pronunciation
PartofSpeech
PartofSpeech

Associations;

SA—0: Entry <—> Word

SA-1: Headword <—> Headword
SA—2! Etymaology <—> Etymology
SA-3: Senses <—> Examples

4] |

=

Connect | Disconnect semantic Actions,

Figure 4.7: The MAPPERTOOL window for specifying symbol associations.

I userfprnduced_strw‘nq will be copied to the TEXT terminal */ !

F* n opoints to the current node (Headword) in the source parse tree */ :J
-

/¥ copy string from source parse tree to variable®/
strepyiuser_produced_string, (char *) n-»>child{1)->terminal_string(J);

/¥ modify string, capw‘tah‘ze *F

far Chelpind=1; helpindex < strlen{user_produced_stringl; helpindex++)
user_produced_string[helpindex] = topupper(user_produced_string[helpindex])

a

Figure 4.8: The MAPPERTOOL window for specifying semantic actions.

4 THE TRANSFORMATION GENERATOR ALCHEMIST

Spell:

Components:

TRoRel T mdanr ce /Sof
one/fs/1inden/vital/Softu a
enerated_files 4. (Goup a level)
FtO Parser generated. CISGML
24 productions
17 nonterninals [strdocz.grm
4 terninals [strdec3s.arm
[(strdeceutgrm

kalamos>

Name: strdocgrim,

Figure 4.9: sPELLTOOL for generating spell code.

Spell:

SpeliTool

Components:

"trans_spell_stubs.cc™, Tine 1823: warning:
"trans_spell_stubs.cc", line 1912: warning:
"trans_spell_stubs.cc”, 1ine 2002: warning:
CC -g -Ifusrfopenwindinclude -DMAIN -DSVR4 -D
~DWINDOW_INTERFACE -« trans_spell_ui.cc

CC -g -T/usr/openwin/include -DMAIN -DSVR4 -D
-DWINDOW_INTERFACE -c user_defined.cc

@

Figure 4.10: sPELLTOOL for compiling a spell.

4.3 ALCHEMIST use 55

for this grammar.

4.3.4 Spell execution

When all of the phases in spell construction have been performed, the
spell is ready to be executed. If the user has constructed a spell with a
graphical interface (Figure 4.11), he/she can either start the spell through
APPRENTICE (Figure 4.12) or in a command window. The user writes
the file names of the source and target documents in the graphical spell
interface. He/She may open the source document to check that the correct
document has been chosen. Also the target document may be opened
after the transformation. The spell interface shows the percentage of the
completed transformation process. For debugging and tracing reasons, the
user can select the amount of debugging messages. A higher trace level gives
the user a better chance to follow the distinct phases of the transformation.

*‘ Source flle: strdoc.Input — Target flle: stidoc.output
<Dictionary> iwbf spazd (Abbreviation of spastic n.) j
<Entry> ‘beginiitenize}
<HeadwordGroup> “item I know how long, you little spaz.
<Headword>spaz</Headword> (M. Anis, Dead babies wiii. 47, 1975) =i
<Pronunciation>spez</Pronunciation> “item The tern that American teen-agers now use as
<PartofSpeechsn</PartofSpeechs the opposite of ‘tough’ is “spaz’.
vieadu G g : (P. Kael, T Tost it at the movies I1T. 259, 1965)
<Etymology>fbbreviation of spastic n.</Etymology> vend{itemize}
<Senser
<Definition>= spastic</Definition:
<Quotation>
<Date>1965</Date>
<futhor>P. Kael</Author>
<Work>I Tost it at the movies III. 259</Work>
<Text>The term that Americal teen-agers now use as t
opposite of “tough” is “spaz”. ¢/Text»
</Quatation>
<Quotation>
<Date»1975¢/Date>
<Author>M. Anis</Author>
<Work>Dead babies wiii. 47</Work>
<Text>I know how long, you 1ittle spaz. </Text>
</Quotation>
</Sense>
</Entry>
B |
Source file: strdoc.input Qpen
Target file: strdocoutput, e
Tracing: ©| level 1 Transformation compoenents..,
Done: ——
0 100 (St)
=]
a|
-
=
=

Figure 4.11: An example of a spell interface.

In addition to the above mentioned spell components, the user may
also include pre- and postprocessing commands in a spell. A preprocessing
command is performed on the source document before it is parsed, while
a postprocessing command is performed on the target document before it

56 4 THE TRANSFORMATION GENERATOR ALCHEMIST

— APPRENTICE - |
Transformation:

=l
Constant length identifiers -
Constant length numbers =
Dates and times 1
Include files
Name lists
Name lists {(semantic action)
Name lists (postprocessing)
[new spall
new parser only

=

Start |

Figure 4.12: APPRENTICE provides a start up interface to a set of spells.

is written to a file. Pre- and postprocessing commands can contain avail-
able UNIX level commands and applications. Preprocessing commands are
especially useful for simplifying the source document by removing parts
unnecessary for the transformation and perhaps streamlining similar parts.
Preprocessing may simplify the source grammar extensively and thereby
also the mapping specification. Postprocessing, on the other hand, is suit-
able for making simple conversions like translating the target document
into the appropriate platform format (e.g., PC or uNIX). Pre- and post-
processing commands can also be used for creating macro spells by linking
several spells together. Pre- and postprocessing commands are defined in
the Transformation components window of the spell (Figure 4.13).
The complete spell (Figure 4.14) then can consist of

o preprocessing commands to be performed on the source document
before it is parsed,

e a source parser that reads the source document and builds the corre-
sponding source tree,

e a source-to-target mapper that traverses the source parse tree and
constructs the corresponding target parse tree according to the TT-
grammar technique,

4.4 ALCHEMIST implementation 57

Transtormatlon components

Figure 4.13: Spell components to be included in the spell.

e a target parser or unparser that writes out the frontier of the target
parse tree, and finally

o postprocessing commands performed before the target document is
written to a file.

Pre- and postprocessing are optional as is the mapping phase. If the map-
ping phase is missing, the source tree is copied directly to the target tree.

4.4 ALCHEMIST implementation

The architecture of ALCHEMIST has been kept as open as possible. All sub-
components of ALCHEMIST run also stand-alone without the unifying frame-
work. For example, the user may want to use only MAPPERTOOL without
the other ALCHEMIST tools, or he/she may want to produce a stand-alone
parser with SEER and may do so without the help of the sPELLTOOL. On the
execution level, all spells run stand-alone without the need of APPRENTICE.

The implementation has been done in C+4++ through object-oriented
programming. yacc and lex are used in SEER to generate the source
parser, but all other ALCHEMIST components including the mapper gen-
erator SWINDLER has been implemented from scratch. ALCHEMIST with

H8 4 THE TRANSFORMATION GENERATOR ALCHEMIST

source target
instance linstance
pre- P m e —m e — - o a post-
process spellpot | process
|

|
|
pro- parse | parse |unpro-
cessed | ——— —— | cessed
source source ! target
parse

Figure 4.14: Data flow of a spell.

components consist of about 15 000 lines of C++ code. Typical spells
contain about 9000 lines of C++ or more depending on the size of the
grammars and the mapping. The majority of these 9000 lines are default
code lines for interface and predefined semantic actions like symbol table
checking. ALCHEMIST and its spells run under the Solaris 2.x and CDE
operating system on Sparc machines.

Spells can be compiled with several C++ compilers. We have used both
the AT&T C++ compiler and the Gnu g++ compiler. Spells can easily be
extended with the C++ programming language without changing the file
structure of the generated code. A C++ file for user defined procedures
has been included.

ALCHEMIST is fully operational in the way as has been explained in
this chapter. ALCHEMIST has been extensively used for building transfor-
mations, especially for providing an interface between two development
environments [LV95].

Chapter 5

The SGML transformation
language TranSID

The TranSID language is a tree-based transformation language [JKL96a,
JKL96b, JKL97|. The language is targeted at sGML transformations, but
the underlying technique is independent of the representation format. The
transformation has full access to the entire parse tree of the sGML docu-
ment. Design goals of the language included declarativeness, simpleness and
implementability with reasonable effort. Special features include a bottom-
up evaluation process and the possibility to restrain the transformation to
the event-based strategy. The event-based top-down strategy is sufficient
for simple formatting of the saML document. Bottom-up evaluation is a
declarative way of defining some transformations that would be awkward
to define in a top-down manner. The TranSID language also includes high
level declarative commands that frees the user from low-level programming.
We have implemented an interpreter and an evaluator for TranSID, which
are fully operational in UNIX environments [JKL96a, JKLI6b].

The Document Style Semantics and Specification Language Standard
(DSSSL, [ISO96]) defines a related transformation language. DSSSL is,
however, quite complex as it covers both tree transformation and docu-
ment formatting. TranSID is mainly concerned with tree transformation
even if some simple formatting is possible. Above all, we have strived to
make TranSID a simple, declarative language that is easy to use. Simple
transformations should be easy to specify!

In this chapter we present the TranSID language and its implementa-
tion. We start by giving a short explanation of the data model and the
evaluation strategy of TranSID and then give some examples of its use. We
present the language through examples. We conclude by giving an overview
of the implementation.

59

60 5 THE SGML TRANSFORMATION LANGUAGE TRANSID

5.1 Overall control and data model

The transformation process in the TranSID language is similar to the grove
transformation process of the DSSSL standard [ISO96] and also to the spell
process of ALCHEMIST. The basic environment consists of an sGML parser,
a TranSID parser, a transformer and a linearizer (Figure 5.1).

SGML - R tree
source = —>» DGML :our(c‘e) —_ trans- —_—> ttarg(e‘t)
doc(s) parser ree(s former ree(s

!

Internal
rule base

T

TranSID
parser

—> linearizer —> ;argeft
oc(s)

import transformation linearization
declarations rules rules

TranSID program

Figure 5.1: The TranSID transformation process

A TranSID transformation starts by parsing an sGML document in-
stance and constructing an internal document tree. We use the SP parser
[Cla96] for parsing the document.

The tree transformation is specified in a TranSID program that is parsed
by its own parser. An internal rule base is formed of the TranSID pro-
gram. It may contain rules for transformation and linearization as well
as some import declarations. The import declarations guide the sGML
parser in building the source tree. The transformation is performed by the
tree transformer which traverses the constructed parse tree and applies the
transformation rules to build a corresponding target representation tree.
The linearizer may still perform minor conversions to the target tree. It
may output the target tree as an sSGML document, or some other specified
output, e.g., a stripped (of tags) ASCII version or a HTML document. There
may also be several input and output documents.

5.2 Semi-formal semantics

We present a semi-formal syntax and semantics for TranSID transforma-
tions. These definitions describe the overall semantics of TranSID, i.e., how

5.2 Semi-formal semantics 61

a TranSID program specifies a mapping from source trees (or forests) to
target trees (or forests). The following description is adapted from [JKLIT|.

During a TranSID execution there is always a current node at the focus
of control. Intuitively, the current node is the node that is being trans-
formed. The evaluation proceeds bottom-up: the descendants of the cur-
rent node belong to the result forest, but its siblings and ancestors are in
the source tree (Figure 5.2).

A TranSID program P is a sequence of transformation rules
(R1,...,Rk), where each rule R; is a pair (S;,7;) consisting of a source
clause S; and a target clause T;. The source clause is a predicate on the
subtree rooted by the current node. If source clause §; is satisfied by the
node, we say that the corresponding rule R; matches the subtree rooted by
the current node. The result of a rule R; on a tree 1" is denoted by R;(1),
and it means the forest resulting by applying the target clause 7; on T.
This application may include insertions of new structures and selection
and combination of tree components relative to the root of T'.

Let P = (R1,...,Ry) be a TranSID program. We denote the result of
applying P on a tree or a forest 7' by P(T'), and define it as follows:

1. If T'is a tree that matches no rule in P, then P(7) =T.

2. Otherwise, if T' = a(T1,...,T,) is a tree with the root element labeled
a and with a forest of immediate subtrees (T1,...,T},), and R; is the
first rule in P that matches

a(P(Ty,...,T,)) , (5.1)

then
P(T) =Ri(a(P(Ty,...,T,))) . (5.2)

3. T is aforest (T1,...,T,), then P(T) = (P(T1),..., P(T,)), i.e., the
result is obtained by concatenating the result of applying program P
on each of the trees in the forest. If 7" is an empty forest, then P(T')
is also an empty forest.

Equations (5.1) and (5.2) mean that the current subtree is transformed
after its subtrees have been transformed, i.e., the evaluation proceeds
bottom-up. The rules are chosen in the order they appear. We want to
stress that there is no evaluation order defined between nodes at the same
level in the tree. For example, leaf level nodes (data) may be evaluated in
an arbitrary order or even in parallel.

62 5 THE SGML TRANSFORMATION LANGUAGE TRANSID

® source e target
I
l

/l\ ...////

o o
|
[
|
!
!

current) L. \0
origin I\ 7\

source forest target forest

Figure 5.2: Source and target forests of a transformation process. Reach-
able structures from the current node are marked with solid lines, un-
reachable or yet uncreated ones with dashed lines.

5.3 TranSID transformations

We present the basic components of the TranSID language through small
examples. By a TranSID transformation we denote the process described
in the previous section consisting of parsing, transforming and linearizing
one or several input SGML document instances.

A transformation program consists of transformation rules. A transfor-
mation rule consists of a source clause and a target clause. A source clause
locates a node in the source tree. The node can be located by name and/or
additional conditions that refer to any part of the source tree. During the
transformation, the source tree is traversed in a bottom-up way. For each
node, the rule base is checked for a rule with a matching source clause.
When a rule is found, the actions specified in the target clause are per-
formed. A target clause describes how the located node is replaced by a
target forest.

A transformation rule then has the following format.

Node type Node name or *
WHEN condition
BECOMES sequence of new subtrees ;

5.3 TranSID transformations 63

Any node type in the tree, such as an element or an attribute is first
recognized by a node clause and further tested for a condition. These
two lines constitute the source clause. If the condition holds, the node is
replaced in the result tree by a forest of trees (actually a list of nodes)
specified in the target clause beginning with BECOMES. For example, the
following two rules

ELEMENT "Entry"

WHEN current.descendants.having(this.name ==
"PartofSpeech") .children.find("n.")

BECOMES <"Noun_Entry'>{current.children} ;

ELEMENT "Entry"

WHEN not current.descendants.having(this.name ==
"PartofSpeech") .children.find("n.")

BECOMES null ;

prunes an SGML document and includes only entries that in their Partof
Speech element contain the string “n.”. The node clause of the first rule

ELEMENT "Entry"

locates Entry elements but only when the condition

current.descendants.having(this.name ==
"PartofSpeech") .children.find("n.")

holds. The condition is stated as an orientation expression. An orientation
expression consists of locators separated by dots (“.”). The first locator
must always be absolute, i.e., point to a certain node in the tree. In the
above expression, the locator current is absolute and points to the node
that is being transformed. All other locators in an orientation expression
must be relative, i.e., relative to the node or nodes indicated by the absolute
locator. In the above expression, the relative locator descendants locates
the subelements of the current node.

The evaluation of the expression proceeds from left to right. Every loca-
tor returns a list of nodes that are used as input for the next locator in the
expression. In this sense TranSID expressions resemble expressions in the
MetaMorphosis transformation language [MID95], which was an important
source of inspiration for the design of TranSID. The relative locator having
selects the nodes that satisfy the condition expressed as a parameter of the

64 5 THE SGML TRANSFORMATION LANGUAGE TRANSID

having locator. In this case, the having condition contains an orientation
expression and a constant string. The locator this refers here to the de-
scendants of the current node, one at a time. The property operator name
locates the name of the descendant elements and the entire condition checks
whether the found name equals the constant string PartofSpeech. Only
elements that satisfy this condition are used as input for the next locator
which locates the children of the PartofSpeech elements. In this case, we
agssume them to be text strings #PCDATA in sGML. The string operator
find locates only the text elements that contain the string “n.”.
The source clause of the rule above matches sections like

<Entry>
<HWGroup>
<Headword>spaz</Headword>
<Pronunciation>spaz</Pronunciation>
<PartofSpeech>n.</PartofSpeech>
</HWGroup>

</Entry>

but it does not match entries that do not contain the string “n.” in the
PartofSpeech element. Those entries are matched by the second rule be-
cause it contains the same condition negated by the Boolean operator not.

The target clauses of the rules are different as well. The target clause
of the first rule constructs new elements named Noun_Entry. The name of
the new element is stated between angle brackets. The contents of the new
element is stated as a list between braces. The contents is deduced by the
orientation expression that locates and copies all the subelements of the
current node as new contents for the new Noun_Entry element. Intuitively,
the meaning of the first rule is then to locate Entry elements with the
string “n.” in their PartofSpeech subelement and to replace these Entry
elements with Noun_Entry elements that contain the same subelements as
the original Entry elements. The second rule removes all Entry elements
that do not satisfy the condition of the first rule (and thereby satisfy the
condition of the second rule). Replacement of the elements by the empty
list null effectively removes them from the result.

When the above two rules are applied to the above entry using TranSID,
the result is

5.3 TranSID transformations 65

<Noun_Entry>
<HWGroup>
<Headword>spaz</Headword>
<Pronunciation>spaz</Pronunciation>
<PartofSpeech>n.</PartofSpeech>
</HWGroup>

</Noun_Entry>

with entries that are not nouns removed.

The transformation may not only modify elements but also their at-
tributes. The following rule shows an example of removing an element and
inserting its contents as an attribute value in an element.

ELEMENT "Entry"
BECOMES <"Entry" PoS = current.descendants.
having(this.name == "PartofSpeech").children>{
<"HWGroup'>{
current.children.having(this.name !=
"PartofSpeech")
+s
current.children.having(this.name !=
"HWGroup")
Y

The rule locates Entry elements and replaces them with corresponding
elements where the contents of their PartofSpeech element has been added
as the value of the attribute PoS. In the example above we get the following
result.

<Noun_Entry PoS ="n.">
<HWGroup>
<Headword>spaz</Headword>
<Pronunciation>spaz</Pronunciation>
</HWGroup>

</Noun_Entry>

Finally, we have the transformation described in Section 1.1, which
turns the dictionary entry into a WIEX formatted version in Example 1.2.
Specifying this transformation with the TranSID language, we get the fol-
lowing program.

66 5 THE SGML TRANSFORMATION LANGUAGE TRANSID

transformation begin

ELEMENT "Headword"
BECOMES "{\\bf ", current.children, "} " ;

ELEMENT "Pronounciation"
BECOMES "(", current.children, ") " ;

ELEMENT "PartofSpeech"
BECOMES "{\\em ", current.children, "} " ;

ELEMENT "Etymology"
BECOMES "{\\em ", current.children, "} " ;

ELEMENT "Definition"
BECOMES current.children, "\n", "\\newline", "\n" ;

ELEMENT "Quotation'
BECOMES current.children, "\n", "\\newline", "\n" ;

ELEMENT "Year"
BECOMES "{\\bf ", current.children, "} " ;

ELEMENT "Author"
BECOMES "{\\sc ", current.children, "} " ;

ELEMENT "Work"
BECOMES "{\\em ", current.children, "} " ;

ELEMENT *
BECOMES current.children

end

Here we can use extensively the default rules of TranSID. If there is no
rule given for a certain element, the element is just copied to the target.
However, in this program we have the asterisk rule that matches all elements
but only if the previous rules do not match. The asterisk rule (the last
rule) removes the sGML tags and copies only the contents to the target
All other rules remove tags in addition to inserting constant strings around
the element contents. The result of the transformation performed on the

5.4 TranSID operators 67

example SGML document can be seen in Figure 1.2 on page 5.

5.4 TranSID operators

The only data type of the TranSID language is a list of nodes. A list can
also be empty. TranSID uses the concept of polymorphic lists. A node
can be an sGML element, a #PCDATA element, a processing instruction,
an attribute, or a string. A node is equivalent to a singleton list. An
element node can have both attributes and children. The attributes of an
element have the element node as their parent, but no ordering between
them is defined. Strings, integers and boolean values are special cases of
lists. In a conditional expression, an empty list is interpreted as false, and
a non-empty list is interpreted as true.

Therefore all TranSID operators operate on lists. TranSID programs
may use a variety of tree transformation operators, string operators, regular
expressions, etc. The idea is to have a declarative, quite complete set of tree
transformation operators that may be used in a transformation modifying
the sGML trees. Nodes in the sGML tree may be located by the reserved
words of the node clause, like ELEMENT, ENTITY, PI, ATTRIBUTE, DATA, NODE.
Here, ELEMENT locates elements, ENTITY entities, PI processing instructions,
ATTRIBUTE attributes, and DATA #PCDATA (and also other data). NODE
locates any type of nodes. All these reserved words must be succeeded by
a node name or the asterisk * which stands for any name.

Absolute locators are null, source, current, these, and this. The
locator null is used for removing nodes as in the example above, while
source locates the root of all the source trees, and current the node that
is being transformed. The locators these and this refer to nodes that are
being processed all or one at a time in conditions, or in the map and glue
operators described below.

Relative locators produce a new set of nodes from a node list. There
are positional locators like elements, entities, attributes, and pi that
locate the various subcomponents of an element. The locator children
locates all the children (elements, entities, attributes, and processing in-
structions) of its input nodes, whereas descendants locates all of their
descendants. Consequently, ancestors locate all the ancestors of the in-
put nodes up to the root of the tree. Other positional locators are left,
right, and siblings, which locate the left, the right or all the siblings of
the input nodes. On the other hand, locators previous and next returns
the previous or next nodes in postorder, respectively, and predecessors
and successors locates all previous or succeeding nodes in postorder, re-

68 5 THE SGML TRANSFORMATION LANGUAGE TRANSID

spectively. The locator parent locates the parent of the input nodes while
data returns the data, only.

Quite related locators are the filtering locators first, first(n),
having(Condition), last, last(n), and sublist(n;m). The locators
first and first(n) locate the first or first n nodes of the input nodes; last
and last(n) the last or last n nodes. The expression having(Condition)
tests the input nodes for a condition and locates only those that satisfy
the condition. The condition may be an arbitrary orientation expression
that references any part of the sGML trees. The locator sublist(n;m) lo-
cates a specified subset of the input nodes. The parameters of sublist are
interpreted similarly to the dimension specifications in the HyTime stan-
dard [ISO92], which allows nodes to be located relative to either end of the
list. Assume that m and n are positive integer values. Then the sublist
operator locates nodes in a list as follows.

sublist(m, n) Select n elements starting at element m from the
beginning of the list

sublist(-m,-n) Select melements starting at element m+n-1 from
the end of the list

sublist(m,-n) Select middle elements starting at element m
from the beginning of the list and ending at the
element n from the end of the list

sublist(-m,n) Select n elements starting at element m from the
end of the list

The application operators glue, and map are two very strong operators.
The operator map (Condition; Construction of target subtrees) performs the
actions for every single node that satisfy the condition. The operator
glue(Condition; Condition; Construction of target subtrees) groups nodes
together if the nodes satisfy the first condition but not the second and per-
forms the action specified in the third parameter. The located nodes may
be referenced by the absolute locator these.

Nodes may be tested for properties. The operator name locates the
name of an element, attribute or entity, while attribute (Attribute name)
locates a certain attribute of an element. The locator siblingnum returns
the order number of the node among its siblings, and samenum the order
number of the node amongs siblings with the same name. The locator
count counts the number of the nodes in a node list.

Several other operations have been included into the TranSID language.
String operations and regular expressionsinclude ordinary string operations

5.5 TranSID implementation 69

such as comparison, catenation and search, as well as more sophisticated
operations based on regular expressions for string matching and replace-
ment. As an example consider the following rule.

DATA *

WHERE current.data.matches(" definila-z]+")

BECOMES matches_replace("fa=(S[A-Z] [A-Z]IL)" ->
"the standard ", %a) ;

This rule replaces four-letter upper-case strings beginning with the let-
ter S and ending with L by the string the standard followed by the
located string. For example, the strings SGML and SMDL are replaced
with the standard SGML and the standard SMDL, respectively, but only
if the #PCDATA element contains a word beginning with defini, like
definition or defining. There are also operations for searching and
matching strings, for simple testing if a string contains only letters or dig-
its or both, for converting capital to small letters and vice versa and for
extracting file names and url components from strings.

5.5 TranSID implementation

The TranSID evaluation environment has been implemented in C and C++
and has been tested to run in the Linux, Solaris, and AIX environments.
The environment consists of the SP saM1L parser [Cla96], a TranSID parser
implemented with yacc and lex, and an evaluator and a linearizer both
implemented in C. All modules are independent and may call each other
recursively. The source code of the current version contains about 15 000
lines of code.

The implementation is fairly straight-forward. TranSID maintains an
internal tree database for managing the sGML trees. Memory usage might
therefore be high. This bottleneck is solved by using sharing structures,
i.e., using references instead of copies of tree nodes.

70

5 THE SGML TRANSFORMATION LANGUAGE TRANSID

Chapter 6

Experience and evaluation

In this chapter we describe the experience we have gained in using AL-
CHEMIST and TranSID. We start by describing different applications built
by ALCHEMIST, and then move on to applications of TranSID. We finish by
making comparisons between the two systems.

ALCHEMIST has been developed during several years as a part of a
project called viTar [SMR93|. The VITAL project defined and implemented
a methodology for building knowledge-based software systems. We have
had numerous possibilities of testing and evaluating ALCHEMIST in this
project. Especially, we have received feedback from other project partners,
which we have been able to take into account in developing ALCHEMIST
further.

The main ALCHEMIST application until now is the VITAL bridge
[LTV95b| we built between the viTAL workbench [DMW93] and a com-
mercial computer-aided software engineering (CASE) tool FOUNDATION by
Andersen Consulting [And93a|. The viTaL workbench consists of several
knowledge-based software development tools, such as knowledge acquisition
and conceptual modelling tools. The CASE tool has similar components for
defining concepts such as entity relationship modelling and data flow dia-
grammers. In an ideal KBS development environment the user should be
able to use KBS tools for building KBs specific parts of a software system,
and CASE tools for building traditional parts such as user interfaces. For
achieving this we built bridges, i.e., spells, between tool representations,
between a conceptual modelling tool in the viTAL workbench and several
corresponding tools in the CASE environment. The user may freely change
environments depending on the development task. Here we should note
that all underlying persistent representations are considered as structured
documents. Therefore, ALCHEMIST is highly suitable in building transfor-
mations between the representations.

71

72 6 EXPERIENCE AND EVALUATION

ALCHEMIST has also been used in another bridge from the viTAL work-
bench. We have also built a spell from a hierarchy laddering tool called
ALTO [MRI0] to C++. The user specifies a graphical hierarchy of concepts
with attributes in ALTO and can automatically transform the hierarchy
into C++ definitions, which provides an easy and fast way of producing a
consistent set of C++ class and object descriptions.

Additionally, we have experimented with some smaller applications. As
our first case we built a spell between a simplified version of an entity-
relationship model representation and a relational database system. In the
beginning this spell was purely syntactical but we soon learned that we
needed also semantic actions to be able to complete the spell specification.

Our experience gained from TranSID is not so extensive as TranSID
mainly has been designed and developed during the last two years. We
have used TranSID in usual saML transformations, such as transformations
between sGML and BTFX and sGML and HTML. The experience shows that,
especially, when the transformations are simple, also the transformation
specifications are very simple. Also, the relative declarativeness of TranSID
helps the user in writing simple and understandable programs.

In this chapter we present some ALCHEMIST and TranSID applications,
sometimes with the help of examples and see what lessons we learned from
their implementation. Often we could use feedback from one transforma-
tion when building the next. In some occasions, we had to introduce new
features into the systems to be able to solve more complicated problems.
We start with ALCHEMIST and its the main application, the interface be-
tween the two development environments, and then to the smaller applica-
tions. We also briefly note some lessons we learned in spell generation and
give some evaluation of ALCHEMIST and its appropriateness for document
transformations. Thereafter we take a look at TranSID applications and
compare the usefulness of TranSID with ALCHEMIST.

6.1 An ALCHEMIST interface between two de-
velopment environments

The viTaL workbench [DMW93| contains a set of tools for constructing a
knowledge-based software system. The workbench is based on the VITAL
methodology for building such systems [SMR93|. The workbench contains
tools for knowledge acquisition and modeling as well as system design and
visualization. On the other hand, the FOUNDATION CASE tools contains
tools for software design such as different conceptual modeling tools and
tools for defining user interfaces [And93b].

An ALCHEMIST interface between two development environments 73

There are several reasons for the bridge between the two development
environments [Ver94|. Firstly, one of the design principles of the viTAL
workbench was openness. The user of the workbench should be able to
import as well as export design schemas and models to and from the work-
bench. Especially, the user may want to use a special tool for providing a
certain component of the system he/she is building. We do not, of course,
provide spells from and to all external tools, but the user can use AL-
CHEMIST to build a new interface for some additional tool. Secondly, the
VITAL workbench is a specialized environment for building knowledge-based
systems and thereby concentrates on KBS properties. On the other hand,
general CASE environments usually contain quite sophisticated tools and
techniques for typical software components such as user interfaces, data
structure planning, etc. The VITAL methodology expects and depends on
the user to use other external tools as well for building KBS systems.

For the bridge between the viTAL workbench and the FOUNDATION CASE
tool, we finally chose some very specific tools to interface [LV95]|. In the
VITAL workbench we chose the Operationalizable Conceptual Modelling
Language (ocML) editor and in FOUNDATION we chose several diagram
tools, such as an entity-relationship diagram tool, a data flow diagram tool,
a procedure diagram tool and a data objects specifier tool. Interfacing on
the conceptual modeling level seems most appropriate, as this level contains
well-defined specifications without going into implementation details. The
OCML editor lets the user specify a knowledge-based system with the help of
domain, task and model diagrams. A domain diagram describes concepts,
their instances, attributes and relationships, as well as relations between the
concepts. A task diagram describes a certain problem solution containing
processes and data elements. The diagram may contain sequential and
choice tasks, and tasks may be recursive. In overall, a task diagram gives a
graphical view of a knowledge-based program, and the diagram also works
as a visualization of the program. The model diagram collects certain
domain and task diagrams that together describe a certain problem and its
solution.

The FOUNDATION Design environment contains, among other tools, an
entity-relationship diagrammer for drawing entity relationship diagrams,
a data flow diagrammer for data flows and a procedure diagrammer for
describing the solution process of a problem (Figures 6.1 and 6.2). The
data objects specifier lets the user describe data objects, their types and
relations in table format. The entity relationship diagram contains entity
and relationships types. Entity types may also have attributes. A data flow
diagram contains data collections and processes and their connections. A

74 6 EXPERIENCE AND EVALUATION

procedure diagram shows in what order the processes and subprocesses of
the data flow diagram are executed. It may contain iterative processes and
conditional clauses [And93a].

OCML FOUNDATION

lab lab
member member
----- -]

eva i thomas_d

eva i thomas_d

Domain Diagram Entity-Relationship Diagram

Figure 6.1: An example transformations from an 0cML domain diagram to
an FOUNDATION ER diagram.

In our cAsSE bridge we chose to interface the 0cML domain diagrams
with entity relationship diagrams because of their close resemblance. Both
describe concepts and their relations and properties. The concepts are also
transformed into a data object table maintained by FOUNDATION. We can
say that there is a one-to-one connection in both cases as the ocML domain
diagrams are completely represented in both entity relationship diagrams
and data object tables. There was however, no close relative of the ocML
task diagrams in the FOUNDATION environment. Therefore, we chose to
interface task diagrams with two FOUNDATION diagrams types, the data
flow diagrams and the procedure diagrams. The data flow of the task
diagrams are transformed into FOUNDATION data flow diagrams and the
process is transformed into procedure diagrams.

The bridge between the environments was implemented only in one di-
rection, from the viTAL workbench to the FOUNDATION environment. It
was obvious that the need in this direction was greater. The user could
first start by specifying and building knowledge-based parts of the sys-
tem and then completely change environment and finish the system in the
FOUNDATION environment [VL.94].

The spells included in the vITAL bridge between the workbench and the
FOUNDATION CASE tool are [LMQ195, LQV95]

An ALCHEMIST interface between two development environments 75

FOUNDATION

OCML

|
,
| N
, ! \
,
allocation order current !
1

Data Flow Diagram

N - Chooserole
- Actionl
(IF roles_left?true)
OR
- Action2
(ELSE roles_|eft? false)

Task Diagram N\
+ Allocation

Procedure Diagram

Figure 6.2: Transformations from ocML task diagrams to FOUNDATION.

e DOM2ERD, a spell for transforming ocML domain diagrams into
FOUNDATION Design entity-relationship diagrams,

e DOM20BIJS, a spell for transforming ocML domain diagrams into
FOUNDATION tables of data objects,

® TASK2DFD, a spell for transforming ocML task diagrams into FOUN-
DATION Design data flow diagrams, and

® TASK2PD, a spell for transforming ocML task diagrams into FOUNDA-
TION Design procedure diagrams.

In Figures 6.1 and 6.2 (from [LTV96]), we see examples of the graphical
representations of the transformations performed by the spells DOM2ERD,
TASK2DFD, and TASK2PD. The ocML digrams describe a simple room al-
location problem called Sisyphus [Lin92] where a set of laboratory workers
should be assigned rooms in an office building. There are, however, several
restrictions that say, e.g., that secretaries should be placed near the man-
ager, and that a manager should get the biggest office. These restrictions

76 6 EXPERIENCE AND EVALUATION

are solved in the ocM1L editor in the VITAL workbench. The Figures 6.1
and 6.2, show how simplified diagrams are transformed into diagrams of
the FOUNDATION CASE tool. The DOM20BIS spell is straightforward and
not shown here.

All the diagrams and tables involved in the spells have a persistent
representation based on either text files or binary number files. The ocML
persistent representation is written in Lisp, where some additional features
have been included for representing coordinates of the graphical figures
of the diagrams (Figure 6.3). The FOUNDATION representations are more
complex. Information may only be imported into the CASE tool through
special import files and their graphical representations. Data flow and
procedure diagrams are therefore represented by two different files each, one
text file for the logical objects and one binary number file for the graphical
outlook of the diagram (Figure 6.3). These two files must, naturally be
consistent with each other, i.e., contain the same objects in the same order.
However, both graphical and logical information is represented in the same
import file for entity-relationship diagrams. Also data objects are specified
in one import file

These restrictions put some more strain on the bridge implementation.
The DOM2ERD and DOM20BIJs spells only produce one file each for every
transformation. The TASK2DFD and TASK2PD spells, though, must pro-
duce both a text file and a binary number file for each transformation.
This problem was solved by producing a combined file as a result that was
divided with a postprocessing command in the ALCHEMIST spell.

Figure 6.4 shows an example of a complex mapping rule in the speci-
fication of the TASK2DFD spells. The source subgrammar identifies a task
diagram task and its name. The target subgrammar contains the definition
of a data flow process where the task name is copied several times into the
constructed process.

The problem list that had to be solved in the spells is quite extensive
[VL95], ranging from simple identifier modifications and checking to global
computation of object order and numbers. We saw that ALCHEMIST was
very suitable for handling local transformations, where one source object
corresponds to one or several task objects. All identifier requirements could
be met through semantic actions. For example, identifiers in FOUNDATION
had to be unique, while in 0OCML a name could appear several times in
different contexts. More difficult problems to solve where the global com-
putation needed for the binary number files (the graphical files). These
files had to contain information about how many symbols the diagrams
contained. Each object also had to have its unique order number, the only

An ALCHEMIST interface between two development environments

OCML task diagram:

;53 -*- Mode: Lisp, Design Task Layer; Package: DL -*-

(dale:defgraphics dale:coordinates

dale: :subtask (choose-role (130 130 210 180)
actionl (305 225 385 275)
allocation (248 16 328 66)...)

dale::choice (roles_left? (502 117 582 167)...)

(def-task choose-role
(Cl:::] allocation dale::kldesign-data-link dale::role-alias))
((:rule-iteration-type . :try-once)
(:represented-as :rules choose-rolel choose-role2 choose-role3)
(:inter-diag-alias)))

(def-choice-task roles_left?
((false action2 dale::kldesign-f-control-link dale::subtask)
(true actionl dale::kldesign-t-control-link dale::subtask)) NIL)

(def-role order

((Cl:::] choose-role dale::kldesign-data-link dale::subtask))
((:represented-as :relation role-order)
(:inter-diag-alias)))

FND data flow diagram, logical file: FND data flow diagram, graphical file:

HEADER . F F 0 R M X X X
0 . U 050 049 052 032 032 032 032
2DEDFDIAG 1 ... J B B 032 032 032 032 032
2DEDFDIAG 2sisyphus 032 032 032 032 032 032 032 032
2DEPROCSS 1

2DEPROCSS 2CHOOSE-ROLE D A T 4 032 F L 0
. W o032 D I A G R 4
2DEEXTENT 1 ... M 032 045 064

2DEEXTENT 20RDER .

. 001 000 D F S Y M 032
3DEDFDIAGDEPROCSS3 ... 032 032 046 D W B 028 000
3DEDFDIAGDEPROCSS4sisyphus .

. 0000100000 ACR 001 032 001 020 000 003 000 000
CHOOSE-ROLE 000 000 000 000 D R D 0
. C D 0 C 126 052 045 059
3DEDFDIAGDEEXTENT3 ... 071 034 103 059 000 000 000 000
3DEDFDIAGDEEXTENT4sisyphus 000 000 000 000 000 000 000 000

. 0000100000 ACR ORDER 000 000 000 000 000 000 000 000

000 000 000 000 018 000 4 L
L 0 C A T I 0 N
013

Figure 6.3: Different representations formats in the vIiTAL bridge.

78 6 EXPERIENCE AND EVALUATION

OCML task diagram source production group:

Task -> "(" "def-subtask" Task_Name Links Attributes ")"
Task_Name ->
OCML_IDENTIFIER ;

FOUNDATION data flow diagram target production group:

Task.Entity_procss_data_record ->

12" "DEPROCSS'" " " 02" Task_Name.Part_entity_id
"0000100000" " " "ACR " " non oo "
" oo R oo o Lo RN " "00225"
"000100000000" " " UTACRA" "+0001" '"+0000"
"DEPROCSS" Task_Name.ENTITY_ID " " Task.PRC_TYPE
"0000+000" "OQ" " N" "YITAL +" CURRENT_DATE

"VITAL +" CURRENT_DATE "+" CURRENT_TIME " "
"+000000" '"+000000" "+0+0+0+0+0"
Task_Name.ENTITY_SHORT_DESC "E"
Task_Name.Short_description "\n"

Task.PRC_TYPE ->
nou

Task_Name .ENTITY_ID -> IDENTIFIER[32] ;
/* semantic action */
symbol_table.insert(OCML_IDENTIFIER) ;
task_name = symbol_table.get_FND_id(OCML_IDENTIFIER):
set_i1d(IDENTIFIER[32], task_name) ;
/* end semantic action */

Task_Name.Part_entity_id -> IDENTIFIER[32] ;

/* semantic action */
set_i1d(IDENTIFIER[32], task_name) ;
/* end semantic action */

Task_Name .ENTITY_SHORT_DESC -> IDENTIFIER[32] ;
/* semantic action */
set_i1d(IDENTIFIER[32], task_name) ;

/* end semantic action */

Task_Name.Short_description -> IDENTIFIER[25] ;
/* semantic action */
set_id(IDENTIFIER[25], task_name) ;

/* end semantic action */

Figure 6.4: A oCML source subgrammar and a FOUNDATION target sub-
grammar with appropriate semantic actions attached.

6.2 Other ALCHEMIST transformation applications 79

Spell Source Target Mapping
productions productions rules
logical graphical
DOMZERD 85 71 35
DOMZ20BJS 85 81 10
TASKZ2DFD 80 49 61 37
TASKZ2PD 80 17 37 13

Table 6.1: Number of productions and rules in the spell specifications of
the VITAL bridge.

label through which it could be referenced. These problems were solved
by using semantic actions directly implemented in the underlying program-
ming language.

The sizes of the spell specifications are shown in Table 6.1. In this
bridge implementation, it was especially convenient to use ALCHEMIST as we
could reuse grammars and mappings already defined, saving a lot of work.
In all cases, the source grammars were quite large, 85 and 80 productions,
respectively. The number of productions were reduced from about 120 with
the help of a suitable preprocessing command that simplified the source
representation. The task grammars contained from 50 to 80 productions;
the logical and graphical representations were usually quite distinct and
required two separate grammars. From the number of mapping rules, we
can also conclude that two of the mappings were more extensive than the
other two. On the other hand, especially the TASK2PD spell required quite
a lot of global computation which does not show in the number of mapping
rules.

6.2 Other ALCHEMIST transformation applica-
tions

Even if the cASE bridge was the most extensive generation of spells with
ALCHEMIST in the VITAL project, we used ALCHEMIST also in some other
spells within the project. Among others, we defined and implemented a
spell ArTo2c++ from a laddering tool called aArro [MRI0] to C++ def-
initions [TL94b]. With arTo, which is part of the VITAL workbench, the
user may draw conceptual hierarchies of the problem domain. In a hier-
archy, a concept may have subconcepts and there may be instances of a

&0 6 EXPERIENCE AND EVALUATION

concept. A concept may also have attributes that are inherited by subcon-
cepts. The hierarchy can be used as the object model of a C++ program.
Concepts correspond to classes, attributes to class attributes, and instances
to objects. The spell ALT02C++ transformed these concept hierarchies to
the corresponding C++ definitions. This spell was half implemented with
ALCHEMIST, half by hand. We used the gained experience in developing
ALCHEMIST further. Among other things we saw that we had to include
semantic actions in the spell specification. For example, the ALTO tool did
not make any difference between inherited attributes and local attributes.
Therefore, we had to check with a semantic action if an attribute had been
defined in a superclass every time it appeared in a class definition. If it had
been defined, we did not have to define it again, otherwise it was defined
for the first time in this class description.

Outside the VITAL project, we also defined and implemented a spell from
a simplified entity-relationship model to a relational database language.
The spell translated a textual representation of an ER model into sQL that
declared the corresponding relational tables in the database language. In
this spell as well we needed to use semantic actions to perform part of the
transformation.

Several other toy examples were solved with ALCHEMIST. Especially,
we learned the need for pre- and postprocessing of files. We implemented
some simple sGML transformers, reading sGML documents and outputting
formatted versions of the documents. In these cases we had to redefine the
SGML DTDs into ALCHEMIST source grammars which is quite straightfor-
ward, e.g., the sGML content model corresponds to the right hand side of
a production. Only iterations in the DTDs must be slightly modified and
expressed through recursive productions.

6.3 ALCHEMIST observations

During the use and testing of ALCHEMIST in the VITAL project and outside
the project, we obtained information about the usefulness of ALCHEMIST.
Some of this experience also helped us in the development of ALCHEMIST
suggesting further functionalities to be included in the system.

Above all, we were impressed with the generality of the system. Our
spells ranged from simple syntactic ones to very complex, large and detailed
ones. We were able to use ALCHEMIST in building them all. The high level
of abstraction made it easier to make changes in the specifications, es-
pecially when the underlying representations changed. The implemented
spells were fast enough, usually much faster than, e.g., reading the per-

6.3 ALCHEMIST observations 81

sistent representations into the tools that were interfaced. Of course, we
also encountered a number of problems, all of which were solved during the
development.

The possibility of specification reuse was well appreciated. In the bridge
between the vITAL workbench and the FOUNDATION CASE tool, we built sev-
eral spells that were based on the same representations. For example, we
were able to reuse the grammar of the domain diagrams from the DOM2ERD
when building the DOM20BJs spell. Even if the target representations of-
ten differed, we were able to reuse certain functionalities and procedures
previously defined in another spell.

By separating the specification from the implementation, we were able
to update our spells easily and quickly when the underlying representations
were changed. During spell development, the vVITAL workbench was still
being constructed, and we had to take into account the changes in the
persistent representation of the ocML editor.

By using a strategy for developing some spells on the side of ALCHEMIST
itself, we were able to use immediate feedback in improving ALCHEMIST.
When building the AtT02¢++ spell, we did many things by hand. In the
DOM2ERD spell, we only had to add some semantic actions manually. In
the TASK2DFD spell, adding of the semantic actions was already included
in the specification phase. Most of the user defined routines for semantic
checking, etc., were developed alongside the spells and are now provided
with the current version of ALCHEMIST.

Naturally, we also encountered some problems and shortcomings in the
use of ALCHEMIST. Defining the grammars of the involved representations
can be a difficult task. The user needs to know something about context-
free grammars and their use. Qur tool representations were so complicated
that the first tries of defining grammars were rather unsuccessful. By in-
cluding preprocessing of the source files, we were able to simplify the gram-
mars so that they became unambiguous. At the beginning we even had
problems with the capability of yacc and lex; the parser generator just
could not handle our large grammars.

Building the grammars from scratch was a tedious task. We had only a
few details about the representations, and often the descriptions were not
quite correct. The first phase of the spell specifications usually went into a
trial-and-error approach of testing the tools to see what kind of persistent
representations they used. Only through a very concentrated detailed work
were we able to describe the representations exactly. The descriptions of
the four spells of the viTAL bridge take about 180 pages [LQV95]! On
the other hand, when the representations had been elucidated, building

&2 6 EXPERIENCE AND EVALUATION

the transformations with ALCHEMIST was a more straightforward thing.
Instead of months we were soon down to weeks and days for implementing
a particular spell.

As has been mentioned earlier, ALCHEMIST may not be the best tool
for building transformations that contain a lot of global computing. AL-
CHEMIST seems to be very suitable for transformations where a source ob-
ject transforms into one or several target objects. This was very much the
case in the VITAL bridge. FOUNDATION representations were much more
complex and often some declarations had to be repeated several times for
a certain object. For example, drawing a relationship in the FOUNDATION
entity-relationship diagrams required that the logical relationship as well as
the graphical object had been defined. Additionally, the FOUNDATION per-
sistent representation required both logical definitions about which entity
types were connected to the relationship and graphical definitions about
where and how the relationship was drawn in the diagram. Therefore a
simple ocML relationship (an arrow between a concept and its subconcept)
was translated into siz different relationship definitions on the FOUNDATION
side. With ALCHEMIST these multiple definitions cause no problems as the
target side may be specified with a subgrammar that constructs several
separate target subtrees.

On the other hand, the TASK2PD spell required that most of the target
document was specified in the graphical file. The logical file only contained
the name of the procedure diagram, while all other procedure names and
structures as well as the object positions were specified in the graphical
file. All graphical objects were indexed with a running number that was
thereafter the only way to reference the objects in the file. The solution
to this spell required some extra data structures for maintaining indices
that were not available in ALCHEMIST. Still, as the user is allowed to define
his or her own procedures as well as including procedure calls as semantic
actions, the problem could be solved.

The performance of the spells was in all cases acceptable. Without
direct comparison with hand-made transformations, we still believe that
our ALCHEMIST spells work with satisfactory speed. In all our test cases,
spell execution took less than two minutes to perform while importing the
diagrams into the FOUNDATION environment could take as much as five min-
utes. The biggest diagrams we used contained about 50 graphical objects;
more objects tended to obscure the diagram and would not be sensible.

In the performance we noticed that at least in the viTAL bridge the
transformation time was linear to the size of the source documents (Fig-
ure 6.5). As the spells were mainly concerned with local transformations,

6.4 TranSID applications 83

120

100

0 | | | | | | |
0 5 10 15 20 25 30 35 40
Source (kB)

Figure 6.5: Effect of source file size to spell execution time, the TASK2DFD
spell.

we seldom had to traverse the entire source document to produce a cer-
tain target object. This was not the case in all our test spells. Especially
the ALTO2C++ spell execution time was proportional to the square of the
source document size. This relation is due to a (too) simple mechanism
for checking whether attributes have been defined before by traversing the
entire source document for each attribute.

We run the test spells on a Sparc workstation. A typical source file
of about 5 kB and about 20 graphical objects was transformed in about
10 seconds into a target file almost 10 times its original size. The biggest
source files were about 10 kB containing about 50 graphical symbols. For
testing reasons we also used some bigger source files of up to 40 kB but they
contained so many objects that their usefulness was suspect (Figure 6.6).

6.4 TranSID applications

TranSID has been developed mainly during the past two years and we have
not gained as much experience from its use as in ALCHEMIST’s case. Dur-
ing its design and implementation TranSID has been tested in usual sGML

84 6 EXPERIENCE AND EVALUATION

200
150 | .
Target 100 L |
(kB) import file
50 .
graphical file
0 | ! ! ! ! !
0 5 10 15 20 25 30 35 40

Source (kB)

Figure 6.6: Effect of source file size to target file sizes, the TASK2DFD spell.

transformations such as the generation of WIEX and HTML from SGML in-
stances. We have also gained experience in the use of TranSID from a
project implementing document assembly [AHHT96a, AHHT96b]|. In doc-
ument assembly, new documents are constructed from a pool of documents.
TranSID is used to locate and streamline document fragments and to form
a new SGML document.

A typical example is the TranSID reference manual, which was written
in sGML and transformed both into HTML and ITEX!. In Figure 6.7 we see
the beginning of the reference manual in sGML. The DTD (not shown here)
is very simple, containing only very basic elements corresponding fairly well
to WTEX commands. Also references, both backwards and forwards, have
been coded in SGML.

In Figure 6.8 we see one of the rules in the TranSID program. It con-
structs a table of contents with links to the corresponding sections. This is
quite a complicated rule which shows the power of the TranSID language.
We shall give a short explanation of the rule. The main purpose of the rule
is to construct the main page of the reference manual with a table of con-

!This transformation was designed and implemented by Jani Jaakkola in September
1996.

6.5 TranSID observations 85

tents. Lines 6-7 of Figure 6.8 tell us that the element TSDOC is replaced with
an HTML element. Lines 8-9 assign the document title to the local variable
maintitle with the set operator, but the null operator at the end of the
expressions prevents it from being copied to the result (yet). The variable
is used later in the rule to include the document title in HTML TITLE and
H1 elements. Line 12 shows how TranSID may produce an element as a
string, and line 13 how it produces an element as a structure node.

Further on in the rule, lines 20-22 make a list of TITLEs of SECTION
elements. The list items function as links as well to the corresponding sec-
tions. Lines 23-28 perform the same transformation for subsection titles.
Both section and subsection titles are preceded with their respective num-
bers computed by TranSID. Finally, after the table of contents, we have
the main content of the document included by line 31.

The resulting HTML files when presented in Netscape is shown in Fig-
ure 6.9.

6.5 TranSID observations

Compared to other sGML transformers we have found TranSID both easy
to use and eflicient. We shall give some approximate numbers to help the
reader understand how fast and efficient TranSID is. In the TranSID appli-
cation presented in the previous section, the complete TranSID reference
file in sGML is about 33 kB (1100 lines) and the corresponding DTD about
800 bytes (38 lines) (i.e., very small). The resulting set of HTML files is
about 44 kB (1320 lines) and the TranSID script transforming the sGML
instance is about 3.5 kB (175 lines). Part of the script is shown in Fig-
ure 6.8. The transformation takes about 3 seconds on a 133 MHz Pentium
machine running Linux. The transformation uses about 14 400 nodes for
the sGML trees and the peak memory use was about 1.1 MB.

The high use of memory is perhaps the main drawback of TranSID.
Internal representations are constructed both for the source and the target,
even though many nodes could be shared as they are not modified in the
transformation.

6.6 Comparison between ALCHEMIST and
TranSID

As we saw earlier, the strong points of ALCHEMIST were its generality, high
level of abstraction, and spell reuse, as well as producing very maintainable
transformations. TranSID is not in this sense as general as ALCHEMIST as it

86 6 EXPERIENCE AND EVALUATION

<!DOCTYPE TSDOC SYSTEM '"tsdoc.dtd"
-- TranSID reference manual, last update for V0.018 16.9.96 --
>
<TSDOC>
<title>&tsid; reference manual</title>

<SECTION>
<title>General</TITLE>
<ssect>
<title>Running &tsid; programs </title>
<para>&tsid; is invoked as follows</para>
<code>
Transid [options] [transformation program] [SGML files]
</code>
<para>The options include</para>
<dlist>
<d>-q</d><1li>Do not output the target document</1i>
<d>-D [debug level]</d><1li> Switch debugging level.
Valid levels are 1-7 where level 7 produces globs
of debugging output and level 1 produces output
only when &tsid; panics.</1i>
<d>-L [debug section]</d><1i> Debug a certain
section of &tsid; program. Section may be a
C-source file or a section marked with C-preprocessor
macros.</1i>
</dlist>
</ssect>

<Ssect>
<title>Syntax</title>
<para>
&tsid has C++ like comments. Comments include sections
started with /* and ended with */ and
sections started by // and ended with a newline.
</para>

Figure 6.7: The beginning of the TranSID reference manual in SGML.

6.6 Comparison between ALCHEMIST and TranSID 87

1 // One rule in a TranSID program that generates HTML frames
2 // for transid SGML documentation Version 0.018

3

4 transformation begin

5

6 element "TSDOC" becomes

7 <"HTML"> {

8 (current.origin.children.having(this.name=="TITLE")

9 .children) .set(maintitle) .null,

10 <"HEAD"> {<"TITLE"> { "TranSID documentation: ",

11 maintitle }},

12 U"<BASE TARGET=\"kanveesi\">",

13 <"BODY" "BGCOLOR"="bfdfbf'> {

14 <"H1"> { maintitle }, <"H2"> { "Table of contents" },
15 <"UL"> {

16 current.origin.children

17 .having(this.name=="SECTION") .map(TRUE;

18 (thisnum) .set(numi) .null,

19 ("sectframe-",numi, " .html#" ,numi) .set(1link) .null,
20 <"A" YHREF"=(1link)> {<"LI"> {numt," ",

21 this.children.having(this.name=="TITLE").
22 children}},

23 this.children.having(this.name=="SSECT") .children
24 .having(this.name=="TITLE") .set(titles) .null,
25 <"UL"> {titles.map(TRUE;

26 <"A" YHREF'"=(link,".",thisnum)> {

27 <"LI"> {numi,".",thisnum," ",

28 this.children}})}

29)

30 },

31 current.children, <"HR'">,

32 <"I"> { "Automatically generated from ", "SGML source",
33 " by ", <"A" "HREF"="./doc2frames.trs">

34 {"doc2frames.trs script"}, "\n" }

35 }

36 }s

37 end

Figure 6.8: One rule in the transcript converting SGML documentation into
HTMI with frames.

88 6 EXPERIENCE AND EVALUATION

4‘ Netscape: TranSID documentation | 5 |J

File Edit View Go Bookmarks Optionz Direclory Window Help

Locafion: |}xttp:]!www .cs.Helsinki Fl/researchfratiftransid/docs/mainframe. html

Whal's Hew | What's Cool| Handbaok| Het Search | Het Direstory| Software|

TranSID reference HEXT
manual
1 General
Table of contents
1.1 Running TranSID ANLS
»] General preE
< L1 Running TranSID programs Tran$1D is invoked as follows
< L2 Syntax
® 2 Datatypes Transid [optiocns] [transformation program] [SGML files]

< 2.1 Type conversions
< 2.2 Converting list to string
< 2.3 Converting list to inteser The options inchide
< 2.4 Converting list to boolean
» 3 Expressions » Do not output the target document
< 3.1 Constants Switch debugging level, Valid levels are 1-7 swwhere level 7 produces globs of
< 3.2 Example of constant list = debugging output and level 1 produces output only wwhen TranSID panics,
< 3.3 Creafting tree structures » Debug a certain secton of TranSID program, Section may be a C—source file or
< 34 Examples of TranSID a secton marked swith C-preprocessor macros,
Expressions
» 4 Transformations -
< 4.1 Queries _ . - : v
o 12 e based transformations D) [debug Switch debugging level. ¥alid levels are 1-7 where level 7
o 43 Carrent node. level] produces globs of debugging output and level 1 produces cutput
< 44 Symtax of TranS[D only when TranSID panics.
transformation specification
© 4.5 Examples of transformation —L [debug Debug a certain section of TranSID program. Section may be a
specifications section] C—source file or a section marked with C—preprocessor macros.
» 5 Absolute orientations
© 5.1 current

Do not cutput the target document

o 52 nall 1.2 Syntax
O 5.3 source
< 54 these TranSI1D has C++ like comments. Comments include sections started wwith o+ =

and ended with *f and sections started by # and ended with a newline,

» 5 Cperators
© 6.1 Precedence

o 5% gunr;‘at:nnaleun N . ¥ Note thatin TranSID functions the startine parenthesis must be placed rght

fal T EJJ

TranSID iz case insensitive. Extra whitespace is ignored.

Figure 6.9: The TranSID reference manual transformed into HTML frames.

is mainly intended for sGML transformations. TranSID could be extended
however to handle all kinds of structured documents (and their represen-
tation grammars) as the transformation mechanism in itself is based on
tree transformation; the transformation is performed between the internal
representations of the documents. Reading and writing SGML is just an
additional feature of the system.

DTDs may be just as complicated or even more complicated than the
ALCHEMIST grammars. However, often they are provided with the input
and the user does not have to construct them himself. ALCHEMIST also
requires the user to construct a target grammar. The ALCHEMIST trans-
formation process itself guarantees that only targets that are syntactically
correct are constructed. TranSID, however, does not require a target DTD.

6.6 Comparison between ALCHEMIST and TranSID 89

Therefore the target may be syntactically incorrect compared to a DTD the
user had in mind when he specified the transformation.

The transformation specification differs greatly in the systems. AL-
CHEMIST, based on TT-grammars, requires the user to explicitly specify
which structures correspond to each other in the source and target repre-
sentations. This leads to a somewhat tedious transformation specification
in the cases when the modifications are minor; the user must also include
structures that do not change. The default rule in ALCHEMIST is to remove
all parts that are not included in the specification. In TranSID, the default
rule is to copy all parts that are not included in the rules. Therefore, the
user only specifies rules for document parts that are modified. This leads to
simple programs for simple modifications, while complicated modifications
can require complicated programs.

TranSID is also more suitable for global transformations where docu-
ment parts may depend on any other part in the document. This is due to
the fact that both the source tree and part of the target tree are accessible
during the entire transformation. As we also saw in the example trans-
formations of ALCHEMIST, TranSID is, of course, more suitable for saML
transformations, especially when more complicated features of the sGML
standards are used.

90

6 EXPERIENCE AND EVALUATION

Chapter 7

Related work

Document transformations have mostly been solved with tailored transfor-
mations for two particular representations. This has led to a huge amount
of small transformation modules that solve one particular problem but
that are unsuitable for other problems. Not very many transformation
generators that could be used to solve general transformations have been
built. In this chapter we take a look at some transformation generators
and tree transformation systems that are suitable for building transforma-
tions between structured documents. For extensive, if somewhat outdated
bibliographies on the manipulation of structured documents, we refer to
[F'SS82, And86, vVWS86, Fur92] and [KN94|.

We concentrate on systems based on two grammars, a source grammar
and target grammar, where the user is actually required to define both the
source and target representations.

Multiple view editors are typical applications for transformations of
structured documents. A multiple-view editor is able to show at least two
different views of a document. For example, it may show a textual version
and formatted version. Depending on the system, the user may be allowed
to modify only one particular view, or he/she may be allowed to make up-
dates in any document view. A typical feature in these systems is that all
other views are updated either automatically or on demand, when one view
is modified.

We start by presenting more thoroughly a multiple view editor called
HST based on syntax-directed translation schemas, and a transformation
generator called 1CA that is used especially for sGML document transforma-
tions. We continue with an overview of several other systems based on two
grammars, both from the fields of structured documents and compiler gen-
eration. We also present some SGML transformation languages and other
multiple-view editors. Finally, we give a summary of the different transfor-

91

92 7 RELATED WORK

mation systems.

7.1 A multiple-view editor

The Helsinki Structured Text Database System (#ST) [KLMN90] is an en-
vironment for reading, writing, and querying structured documents. The
system provides multiple views of a document in a graphical interface. The
logical document is described through a context-free grammar. The user
needs at least one view to be able to read and/or modify a logical docu-
ment. A view is described through an annotated grammar, where the user
may modify the logical grammar according to the rules of a syntax-directed
translation schema: he/she may remove or add terminals, and reorder the
nonterminals. The user may also remove or add nonterminals.

Some documents are easier to write and modify in a structured view,
while others best benefit from a simple textual view. The HST system lets
the user make modifications in any view; the modifications are automat-
ically updated in the other open views. Updates are performed through
syntax-directed translation from the modified view to the logical docu-
ment, and from there to all other open views. Therefore, a view definition
describes not only view computation from the logical document to a view,
but also the inverse transformation [NM89, Nik90] of the view to the logical
document.

The modification of a view leads to quite an extensive process of updates
in the system (Figure 7.1). The modified view is first parsed. Then the view
parse tree is inverted into the logical document, i.e., it is transformed via
the view definition back to the logical document. Other opened views are
updated from the logical document through their view definitions and the
frontier of the new view trees are shown as the updated views. This process
has also been incrementalized in HST. In such a process only modified parts
of a view are parsed and translated [Lin93|.

modified| PATS€ invert compute UNParse | ypdated
view view view view view
tree 2

Figure 7.1: Modifications in a view lead to an update of the logical docu-
ment and other open views in the HST system.

7.2 A structured document transformation generator 93

HST is a typical example of a multiple-view editor, where the user may
modify any open view. HST is, however, able to show only textual views of
a document, not a pretty-printed formatted version. The main strength of
the system lies in the simpleness of the syntax-directed translation schemas.
The user only needs to define one view, and the logical document is auto-
matically transformed into the view and vice versa.

The main difference to ALCHEMIST is that HST is based on sDTss while
ALCHEMIST is based on TT-grammars. Therefore, the source and target
grammars in HST are variations of the same grammar, with the same non-
terminals, possibly in different order. ALCHEMIST, on the other hand, han-
dles arbitrary different grammars. The main advantage with HST is, that
it also defines the inverse transformations of a transformation. ALCHEMIST
produces only one-way transformations, even if the inverse transformation
may be defined by swapping the source and target grammars.

7.2 A structured document transformation gen-
erator

The Integrated Chameleon Architecture (1ca) [MKNS89, MBO93, MOB94|
is a transformation generator that consists of several tools for building
transformations. 1CA relies on the definition of an intermediate represen-
tation that always lies between the source and target representations. The
user defines only one grammar for the intermediate representation; the
source and target representations are described by reordering the nonter-
minals in this grammar. Therefore, the transformation specification is very
application dependent as all representations must be described by very
similar grammars.

An 1cA transformation is divided into several subtransformations (Fig-
ure 7.2). The user may also have to preprocess the source document. All
internal representations in ICA are based on sGML. In order to be able to
parse the source document, the user has to insert sGML tags, and some-
times replace other tags so that he/she achieves a fully braced document,
i.e., all logical documents parts are marked with a start tag and an end tag.
This process called retagging is supported by a special tagging tool. In this
phase, however, it may well be that the user already solves several mapping
problems. After the document has been retagged, it is translated into an
intermediate representation according to the intermediate grammar, there-
after the intermediate representation is translated to an sGML document
corresponding to the target, and finally the target sGML document is output
as the target document with additional modifications to remove the sGML

94 7 RELATED WORK

tags. Mapping the general intermediate document to the target document
is automated so that the user never sees the target sSGML document.

map map

spec spec target

_— _—

to gen target to gen Hocument)
SGML

source
Hocument

Figure 7.2: Transformation process of an 1CA transformation.

As Figure 7.2 shows, the 1cA transformation process is very similar to
the one of HsT. The intermediate document corresponds to the logical doc-
ument in HST, while the specific SGML documents correspond to views. As
a matter of fact, 1ICA may be considered to be based on spTss as well. By
using an intermediate representation, 1ICA reduces the number of transfor-
mations needed to fully interface a set of representations. When including
a new representation, the user only needs to define two transformations,
one to the intermediate representation and one from it to the specific rep-
resentation. Thereby he/she can transform from the new representation to
any other representation in the set.

The main difference to ALCHEMIST is again due to the different under-
lying transformation techniques. I1CA is based on sDTSs and requires the
user to define an intermediate representation. ALCHEMIST allows arbitrary
grammars. The user may define an intermediate representation with AL-
CHEMIST as well and thereby achieve the apparent advantage of ICA. 1CA
uses SGML for all internal representations of a document and saves them in
temporary files during the transformation. ALCHEMIST relies on the parse
trees which are kept in main memory only. ALCHEMIST could, however,
be enhanced with the possibility of writing and reading the parse trees in
sGML format.

7.3 Other two-grammar systems

We have seen examples of two-grammar systems above, systems that are
either targeted at document preparation or document transformation. In
this chapter we present some further systems that are based on a source and
a grammar. Here, we do not, however, try to categorize the systems; many
of them could well be both document preparation systems and document

7.3 Other two-grammar systems 95

transformation systems. For another description of document transforma-
tion systems based on two grammars, see [KP95, Kui96].

The Syntax and Semantics Analysis and Generation System (SSAGS)
[PKP*82, Pay88| is based on TT-grammars just as ALCHEMIST. SSAGS
implements two subsets of TT-grammars. A dual grammar translation
scheme (DGTS) [KPPM84]| restricts source subgrammars to single produc-
tions, where left hand side symbols may be associated only with left hand
side symbols in the target subgrammar within the same production group
association. A DGTs corresponds to a syntax-directed translation scheme.
Somewhat more general is the single input production — explicitly qualified
(siPEQ) TT-grammar [KPPMS84|. The siPEQ TT-grammar is also restricted
to single production source subgrammars, but symbol associations may be
established between any source and target symbols. A SIPEQ TT-grammar
corresponds to ordered attribute grammars [Kas80]. The implementation
of the siPEQ TT-grammar also includes a simple case statement for choos-
ing between target subgrammars, a copy instruction for multiplying target
subtrees, and pseudoproductions for simplifying symbol associations. sSAGS
has been used, among other things, in implementing an interface between
the programming languages Ada and DIANA [PKPMS&3].

Chiba and Kyojima [CK95]| use syntax-directed tree translation to per-
form structured document transformations. They encode trees into strings
and then perform syntax-directed translation on the strings. This approach
is more powerful than sDTss because it permits suppression and insertion of
tree levels, e.g., a new level of nodes may be introduced at an intermediate
node level in the parse tree. The syntax-directed tree translation technique
does not, however, support transformations dependent on the contents.

The Turing Extender Language (TXL) [CHP88b, Cor90| has been de-
signed for providing extensions to existing programming languages. TXL
transforms programs in a language into dialects of the language where new
language features have been inserted or a different notation is used. A TXL
transformation consists of three submodules. The parser is based on the
base language grammar, but takes notion also of the differing target lan-
guage features, the transformer transforms a parse tree according to some
semantic rules, and the deparser writes out the target program. The trans-
formation is done using a general purpose tree pattern matching algorithm.
In short, the transformer generates a parse tree over the base language from
the dialect language parse tree. In order to maintain the structural integrity
of the parse tree, the replacement subtree is reparsed before being added
to the main tree.

siMON [FW93] is a system for restructuring documents that uses an

96 7 RELATED WORK

intermediate representation in the transformation. SIMON requires a source
grammar, a target grammar and a higher-order attribute grammar (HAG).
SIMON uses an extra pair of trees for describing the source and target parse
trees in canonical form. The HAG is used for describing transformations
between the parse trees and these canonical trees called a basic tree and
a consistent tree, respectively. The actual transformation is performed
through attribute evaluation in the basic tree giving as a result an evaluated
consistent tree. The transformation process is thereby augmented with two
additional phases, transformation from the source tree to a basic tree, and
transformation from the consistent tree to the result tree. The HAG is
specified manually.

The Grif environment [QV86, QVB8&6a, QVB86b, FQASS] is an inter-
active system for editing structured documents. It is a structure-oriented
editor which guides the user in accordance with the structure of the docu-
ment. The user defines a structure schema that corresponds to the generic
logical structure of a document. A view of the document is defined as a
presentation schema, where the user describes the conversion rules that
transform the document into a view. The transformation can both remove
certain parts from a document and reorder elements in the document. A
modification in a view propagates to other views. Grif recognizes the con-
straints between the modified part and other views, and updates can be
done incrementally [QV87].

The Syndoc system [KP91] is based on spTss. The user may insert
formatting details into a logical document. The user may add or delete
terminals and reorder nonterminals. In an extended version of the system
[KP93, Kui96], the user may also add or delete nonterminals as well as
rename nonterminals through simple semantic actions.

The pedtnt system [Fur86, Fur87a, FQASS| is a testbed for the pre-
sentation and manipulation of structured documents. The system is based
on context-free grammars and allows the user to define transformations be-
tween different presentations [F'S88|. The documents are described through
a generic logical grammar. The transformation method lets the user alter
the grammar by defining a set of grammar modification rules to alter the
productions. The system also requires the user to specify how the transfor-
mation between the documents of the two grammars are performed. In an
extended version, the system has been augmented with attributes to give
the logical grammar a flair of attribute grammars [Fur87b].

The Scrimshaw language [Arn93| lets the user define simple queries and
transformations on a structured document. The rules consist of a matching
part and a construction part. The transformation process matches some

7.4 Other transformation systems 97

substructures in the parse tree, assigns some of the structure to variables,
which then are used in the output rules that describe how the matched
pattern is replaced. This language is more suited for simple transformations
as the complete grammar of the structure is always given in one rule.

7.4 Other transformation systems

In the field of saML, quite a few transformation languages have been de-
signed. Many of these languages have been designed as back-ends to sGML
parsers. An SGML parser parses an SGML document according to the cor-
responding document type definition (DTD). Often, the parser does not
construct a parse tree, but returns only the Esis output [Gol90, Appendix
B, Annex GJ, a list of tokens in the source like the start and end tags, or
data elements. Languages that are based on such parsers, like OmniMark
[Ex093] and CoST [Har93|, work as syntax-directed translators. The user
may add actions to be taken at any token but he/she may usually not refer
(without difficulty) to any other part in the source. Especially, it is difficult
to make references to yet unparsed document parts. The Metamorphosis
system [MID95] instead, builds the parse tree of the saML document. The
user specifies how each node in the parse tree should be modified and is
allowed some more extensive references to the tree. Also Balise [Ber96]
provides tree based transformations as an option. The user may choose
between an event-driven or a tree-based approach. He/She must, however,
explicitly state when he/she want the transformation to construct an in-
ternal parse (sub)tree of the source. None of these languages use a target
grammar or support correct target syntax. If, however, the target is also an
SGML document instance, the user may validate the instance against either
the source instance DTD (if the changes have been minor), or an explicit
target DTD that the user has constructed separately from the transforma-
tion.

Multiple-view editors provide several views of an underlying document.
When the user modifies one view, the other open views are updated, often
through some syntax-directed translation technique. Some systems also
concentrate on dynamic transformations, where the target structure is not
known before transformation time. This problem arises in syntax-directed
editors when the user decides to move a document part to another place
within the document. If the structure of the part is not allowed in the new
place, the part must be transformed dynamically to fit in.

Janus [CKST81, CBGT82| was one of the first two-view text pro-
cessing system. It provides the user with two views of a document

98 7 RELATED WORK

on two different screens. Other multiple-view editors are the VQRIEX
[CCH86, Che88, CH88, CHMS&S8| document preparation system showing
both textual and formatted versions of TEX documents [Knu87], and Lilac
[Bro88, Bro91|. The Sam system [Tri81] was one of the first two-view
editors for graphical pictures. It combines graphics and a layout lan-
guage; the user can edit a picture in two views. Other two-view edi-
tors for graphical pictures are Juno [Nel85] and Tweedle [Ase87]. Quill
[CHL*88, CHP8R8a, Cha88, Lun88, Cha90] supports full integration of var-
ious sorts of graphical editing together with text editing. Multiple views
have also been implemented in program development environments, two
of them being PECAN environment [Rei83] and the Synthesizer Generator
[RT89.

Editing structured documents require dynamic translations of document
parts. When the user moves or copies a document part to another place, the
part must be transformed according to the structure of the target position.
For example, Cole and Brown [CB90, CB92] have studied this problem and
recognized several problems like validating the structured document dur-
ing creation and editing, dealing with incomplete and temporarily incorrect
structures, and identifying allowable structure edits. Akpotsui, Quint, and
Roisin [AQ92, AQR93, Akp93| have developed some solutions to this prob-
lem by identifying the kind of transformations needed in structured editing.
Note that the source and the target grammars are in this case the same
grammar. Dynamic transformations are needed when a document part is
transformed to satisfy a different subgrammar of the document grammar.

There are several other tree transformation systems based on single
grammars (see, e.g., |Gra92, LMW88, LMW091, Hec88|). However powerful
these systems are, they can, of course, not support the correct target syntax.

7.5 Summary of related systems

Some of the most important features of structured document transforma-
tion systems based on two grammars have been collected in Table 7.1.
We have divided the table into three sections. The first section lists for-
mal transformation techniques and ranges from the most simple one (or
least powerful) simple spTss to more powerful ones like TT-grammars and
attribute grammars. The second section lists particular transformation
systems and the third section some sGML transformation systems. The
systems are listed in alphabetical order, preceded by ALCHEMIST and Tran-
SID, respectively.

Most listed techniques and systems require both a source grammar and

7.5 Summary of related systems 99

a target grammar. Systems requiring a source grammar are marked with a
bullet in the first column (SG). In some cases, the system does not require
a target grammar, but the user may specify one and use it as a support
when specifying the transformation. In the second column (TG) we mark
those systems that require a target grammar with a bullet and those that
can use an optional target grammar with a circle.

The third column (MAP) denotes the mapping formalism. The mapping
is usually based on a formal technique such as syntax-directed translation
(spT), attribute grammars (AG), or TT-grammars (TT). In some cases,
the mapping may rely on simple tree pattern matching and replacement
(patt). In the case of sGML transformers, they are either mainly event-
based (event) or tree-based (tree). See Section 3 for a presentation of the
different techniques.

Even if the system requires the user to define a target grammar, the user
may have to explicitly define what operations transform a source instance
into a target instance over the target grammar. In this case, we do not
consider the system to support correct target syntax as it is up to the user
to specify the transformation steps. In the fourth column (TC) we mark
those systems supporting correct target representations with a bullet.

Given a source grammar and a target grammar, some translation
schemata may be constructed automatically (auto) or semiautomatically
with some user interaction (semi). Others must be constructed manually
(man). This feature is marked in the fifth column (Gen).

In the sixth column (D/S) we denote if the systems support dynamic
or static transformations. If the target representation is chosen run-time,
e.g., in a structured editor when one object is moved to a new spot, the
transformation is considered dynamic (D). Then there can be an arbitrary
number of target grammars. Transformations where there is a finite previ-
ously defined set of target grammars are considered static ().

Possible modifications in the source parse trees are denoted in the
columns labeled Modifications: A/D, R, T. Column 7 (A/D) describes sys-
tems that allow additions and deletions of nonterminals between the source
and target grammars, column 8 (R) denotes reordering of nonterminals in
the grammars, and column 9 (T') denotes addition and deletion of tree lev-
els in the transformation. Adding or deleting nonterminals help the user
form more simple or complicated views of a document, e.g., a stand-alone
table of contents. Reordering nonterminals allows transformations where
the document parts are reordered. Finally, addition and deletion of tree
levels profoundly modifies the target parse tree and also lets the user specify
more complicated tree patterns to be matched against in the source tree.

100

7 RELATED WORK

System SG | TG | MAP | TC | GEN | D/S
Transformation techniques

simp SDTS o o SDT e | semi | D/S
SDTS o o SDT e | semi | D/S
ESDTS . . SDT - | semi | D/S
pred sDTs . . AG - ? D/S
SSDT . . AG - | semi | D/S
PSSDT . . AG - | semi | D/S
GSDT . . AG - | semi | D/S
AG . o AG - | semi | D/S
ACG . o ACG o7 | auto S
TT-grammar . . TT . man S
General transformers

ALCHEMIST . . TT . man S
DGTS . . SDT . semi S
Grif . o AGT - | auto | D/S
HST . . SDT . semi S
ICA . . SDT . semi S
pedtnt . . ? — | man S
Scrimshaw . o patt - man S
SDTT . . SDT . man S
STMON . . AG - ? S
SIPEQ ° ° TT* ° seml S
Syndoc ° e | ESDTS | e man S
T-gen . - patt — | man S
TXL ° patt " S
SGML transformers

TranSID . - tree - man S
Balise . - tree - man S
CoST . - event - man S
MetaMorphosis | e - tree - man S
OmniMark . - event - man S
e — yes, — — no, 7 — unknown, * — restricted/simplified

o — optional

SG Source grammar
TG Target grammar
MAP Mapping formalism
TC Target correctness

GEN Generation of transfor-
mation: automatic, manual,
or semiautomatic

D/S Dynamic vs. Static
transformation

Table 7.1: Properties of some syntax-directed transformation systems and
techniques.

7.5 Summary of related systems 101

System Modifications | ID | SA | Useful
A/D|R|T reference
Transformation techniques
simp SDTS - - =1 e | — | [AUT2]
SDTS ' o | — | o - AU72
ESDTS . o | — | o | o | [KP93
pred sDTS ° o | o | o e | [PB78]
SSDT . o | o | o [Shig4]
PSSDT . o | o | o Shig4]
GSDT o o o | o AUTI]
AG ° o | o ° ° DJL8g]
ACG o o | 7 | o | — ||GG8Y
TT-grammar . o o | o o | [KPPMB&4]
General transformers
ALCHEMIST o o o | o e | [LTVI6]
DGTS . o | — | o7 | — | [KPPM84]
Grif ° o | 7 ° ° QV86]
HST o o | — | o | — | [KLMNY(]
ICA o o | — | o | — | [MBO93]
pedtnt o o | o FS88]
Scrimshaw o o o | o e | [Arn93]
SDTT o o | e | — | — | [CK95
SIMON o o o | o o | [FW93]
SIPEQ . o | — | o7 | — | [KPPM84]
Syndoc o o | — | o | o | [KP93]
T-gen o o | — | o o | [Gra9]l]
TXL ° o | o ° ° CHP88b]
SGML transformers
TranSID ° o | o | o ° JKIL96a]
Balise o o o | o e | [Ber96]
CoST ° o | o | o ° Har93]
MetaMorphosis . o o | o o | [MID95]
OmniMark o o o | o o | [Ex093]
e — yes, —— no, 7 — unknown, * — restricted /simplified
AD Addition/deletion of T Addition/deletion
nonterminals of tree levels
R Reordering of nonterminals ID Identifier mapping

SA semantic actions

Table 7.1: Continued.

102 7 RELATED WORK

Most systems copy identifier-like tokens from the source side to the
target side. This a natural feature of the transformation. The user does
not only expect the parse trees to be modified, he/she also wants the frontier
of the source tree to be copied, perhaps with modifications, to the target
tree. Systems allowing this feature are denoted in column 10 (ID). Identifier
copying can also be performed with semantic actions denoted in column 11
(SA). Semantic actions are also used for other transformation computing,
symbol table checking, etc.

The last column of the table lists the main reference to the technique or
the system. In the case of transformation techniques, we have usually listed
a good introduction to the subject, not perhaps the first reference. For such
references, we refer to Chapter 3. In the table, we have listed also some
techniques that have not been further explained in Chapter 3. These in-
clude predicate syntax-directed translation schemas (pred spTs), semantic
syntax-directed translation (sspT), programmed semantic syntax-directed
translation (PsspT), generalized syntax-directed translation (GspT)), and
attribute coupled grammars (AcG). They are all extended techniques of
syntax-directed translation or attribute grammars. For other references to
the transformation systems, we refer to Sections 7.1-7.4.

The transformation techniques based on syntax-directed translation
schemas are all fairly similar. They differ mainly in the allowed modifi-
cations. The techniques based on attribute grammars are more powerful,
but even if they allow the definition of a target grammar, they do not guar-
antee that the target syntax is correct as do the sDTSs and the TT-grammar
technique.

The general transformation systems are a more heterogeneous group.
Some of them require a target grammar that is based on the source gram-
mar. ALCHEMIST is here the only exception allowing unrelated source and
target grammars. They also differ in the allowed operations; in this sense
we consider ALCHEMIST to be the strongest system, while the others only
contain a part of the operations. Choosing a suitable system for a transfor-
mation is, though, highly dependent on the transformation. We hope that
this part of the table will help the user in finding an appropriate system.

The saML transformation systems are clearly divided into two groups:
event-based systems and tree-based systems. Otherwise the systems are
fairly similar. The tree-based systems TranSID and Balise differ in the
transformation evaluation order. The tree-based transformation of Balise
is performed top-down while TranSID performs it bottom-up.

Chapter 8

Conclusion

Transformations of structured documents can be implemented in several
ways. We believe that requiring the user to specify both the input and
the output supports the construction of correct transformation modules.
We have presented different syntax-directed techniques that are suitable
for document transformation. In the field of compiler generation, we find
the theory and techniques that can be used in transformation implemen-
tation. Syntax-directed translation schemas are a simple technique that
requires the user to describe his document representations through similar
grammars. The power of the transformations is limited to adding and re-
moving terminals, and reordering of the document parts. In an extended
version of syntax-directed translation schemas we also have the possibility
of removing document parts or including new document fragments. At-
tribute grammars can be used to obtain a more general transformation
technique. The transformation still requires a source grammar to ensure
that the source document is correct, but often the back-end of these trans-
formations is open. The user may include any output instructions and the
technique does not assure that the output follows a certain grammar.

A transformation technique based on TT-grammars is more general than
the usual syntax-directed translation schemas. A TT-grammar requires the
user to specify both a source grammar and target grammar, describing the
source and target documents, respectively. The grammars, however, can
be widely different. The user therefore explicitly describes in a mapping
specification how the grammars relate to each other. Despite the manual
effort, the technique gives a simple way of defining a transformation between
two arbitrary representations. It also ensures that the produced output is
syntactically correct with respect to the target grammar.

Our contribution has been to extend TT-grammars and, based on these
extensions to implement a general transformation generator called AL-

103

104 8 CONCLUSION

CHEMIST. As an antipole to TT-grammars, we have also designed and
implemented an saML transformer called TranSID.

In the case of ALCHEMIST, we have described a transformation algo-
rithm based on TT-grammars. Our extensions to the technique include the
possibility of using semantic actions in the mapping specification, identifier
copying from the source to the target side, and the possibility to let the user
interact in the transformation. The transformation generator ALCHEMIST
implements all these extensions. ALCHEMIST has a graphical user interface
for specifying and generating transformation modules. Especially, the user
may specify the TT-grammar mappings with a point and click user interface.
ALCHEMIST generates transformation code on demand that is compiled into
executable transformations called spells. All code is saved in files that the
user may inspect and modify for specifically tailored transformations. Both
ALCHEMIST and its spells are fully operational on a UNIX platform.

ALCHEMIST has been designed and implemented within a large software
project. The generator has been extensively tested and used to build an
interface between a KBs development environment and a commercial CASE
tool. Experience has shown the usefulness of ALCHEMIST, especially the
importance of its high level of abstractness. ALCHEMIST has been used also
by other partners in the software project. Transformations are specified
moderately fast if only the underlying representations have been described
exactly. Performance of both ALCHEMIST and its spells have been found
acceptable. In all implemented cases, spells have been found fast enough
to satisfy the user’s need.

We have experienced only some minor shortcomings. First, the TT-
grammar technique requires a moderate understanding of grammars, parse
trees, and parsing techniques. On the other hand, so do all other syntax-
directed translation techniques. Second, building a grammar may be a very
tedious task if an exact description of the representation is not available.
Again this applies to all syntax-directed techniques. Third, ALCHEMIST is
also not suitable for all kinds of transformations, especially transformations
that require a lot of global computation, since they are not easily described
with TT-grammars. Again, global computation may be included in semantic
actions described by using programs written in C++.

We have reviewed several related transformation systems that are based
on syntax-directed translation schemas. These systems guarantee that the
output of the generated transformation is syntactically correct, but often
the system has limited transformational power. On the other, more gen-
eral systems based on attribute grammars, allow arbitrary output which, of
course, cannot be guaranteed to be correct. In ALCHEMIST, we combine tar-

105

get correctness with a more general approach to specifying transformations.
In this way, ALCHEMIST combines the best features of other techniques.

ALCHEMIST could be further enhanced in several ways. One extension
would be to allow semistructural transformations. A semistructural trans-
formation takes the document structure into account but does not require
full specification of source and target representations. The user specifies
only document parts that should be transformed; the rest of the docu-
ment is copied to the target side as default. A semistructural technique is
actually a tree pattern matching and replacement technique more than a
syntax-directed technique. By specifying patterns with subgrammars (as
in ALCHEMIST) we could achieve a more general technique.

Incremental transformations would be another useful extension. When
a document is retransformed, the transformation would only need to make
updates in an old target document corresponding to the modified parts in
the source document. This would improve the performance of the transfor-
mation and reduce execution time. Incremental updates, however, require
extensive data structures and procedures for maintaining data and pointers
to modified and updated parts, and they have been omitted from the cur-
rent version of ALCHEMIST. In order to fully take advantage of incremental-
ity, all transformation phases in a spell process should be incrementalized.
An incremental solution includes not only incremental parsing, translation,
and unparsing, but also incremental pre- and postprocessing [Lin93].

The sGML interface of ALCHEMIST is currently rather limited. The user
has to convert manually SGML DTDs into ALCHEMIST source grammars to be
able to perform sGML transformations. In an extended version, ALCHEMIST
could perform this conversion by itself. Another solution would be to have
ALCHEMIST read SGML DTDs directly. Direct understanding of DTDs would
require more substantial modifications to ALCHEMIST, as ALCHEMIST is
based on LR parsing while DTDs are more suitable for top-down parsing
[BK94]. On the other hand, it would be simple to extend ALCHEMIST
to read and to write its internal documents as SGML documents, just as
is done in the 1cA transformation generator. The user would receive a
handy intermediate representation, easily portable to any SGML system.
At the same time, the user would be provided with persistent user readable
representations of the internal structure. Of course, an ALCHEMIST spell
may produce such a representation as its target document, as well.

ALCHEMIST is now based on Lk parsing. A useful extension would in-
clude LL parsing as well with grammar extensions such as iterations in-
stead of recursive productions. Many available representation definitions
have been given in an LL grammar like fashion, and they would then be

106 8 CONCLUSION

more easily adopted in an ALCHEMIST specification. FExtending ALCHEMIST
with LL parsing would, however, require extensive modifications to the TT-
grammar technique.

Sometimes it would be useful to be able to trace target document parts
to their corresponding source document parts. In a complex transforma-
tion, especially in tool representation transformations, it would be conve-
nient to see the link between a target object and a source object. Including
a tracing technique in the spell would also help in building and debugging
the transformation. Another useful feature would be two-way transfor-
mations. ALCHEMIST generates only one-way transformations, but in some
cases it would be possible to automatically generate the inverse transforma-
tion. We have made preliminary plans to include both tracing and inverse
transformations in ALCHEMIST.

All suggested extensions are under consideration for future work on
ALCHEMIST. ALCHEMIST is at the moment fully operational but still more
of a prototype than a commercial product. ALCHEMIST would also need to
be evaluated more thoroughly.

The TranSID language is mainly intended for sGML transformations.
The language has been designed with the help of real world problems pro-
vided by commercial partners. Also TranSID has been implemented in a
research and development project. Performance of TranSID is acceptable
even if high main memory use is a significant drawback.

TranSID does not require as high expertise as ALCHEMIST in specifying
the transformations. However, basic knowledge of saM1L is required as well
as some understanding of the evaluation order or TranSID transformations.
Usually, and fortunately, DTDs are readily provided with saML documents,
which makes the task for the user a bit easier.

TranSID requires the user to specify only parts of the documents that
are to be modified. This makes small transformations simple to specify. On
the other hand, TranSID does not use a target grammar or DTD and there-
fore does not check that the target is syntactically correct. Validation must
be performed with an external sGML parser and possibly a user-constructed
new target DTD.

Extensions to TranSID in the future contain an optimization of main
memory usage, and global indexing of sentences and words.

An ideal transformation system would combine the best features of both
the ALCHEMIST and TranSID systems. For example, it should compute the
mapping automatically based on only the source and target specifications.
It is an open problem, though, to what extent a mapping can be computed
from two context-free grammars (or DTDs). The ideal system would also let

107

the user reference any part of the source documents in the transformation
specification. Additionally such a system would keep the transformation
specification work to a minimum; only the parts that change should require
specification.

108 8 CONCLUSION

References

[ACMS4|

[ACMSS]

[AFQ89a]

[AFQ89b)

[AHH964a]

[AHH+96D)

[Akp93]

[And86]

ACM. Proceedings of the ACM SIGPLAN °84 Symposium on
Compiler Construction, SIGPLAN Notices 19(6), Montreal,
Canada, New York, 1984. ACM.

ACM. Proceedings of the ACM Conference on Document Pro-
cessing Systems, Santa Fe, New Mezico, New York, 1988.
ACM.

J. André, R. Furuta, and V. Quint. By way of an introduc-
tion. Structured documents: What and why? In André et al.
[AFQ89b], pages 1-6.

J. André, R. Furuta, and V. Quint, editors. Structured docu-
ments. The Cambridge Series on Electronic Publishing. Cam-
bridge University Press, Cambridge, 1989.

H. Ahonen, B. Heikkinen, O. Heinonen, J. Jaakkola,
P. Kilpeldinen, G. Lindén, and H. Mannila. Intelligent assem-
bly of structured documents. Report C-1996-40, Department
of Computer Science, University of Helsinki, Finland, 1996.

H. Ahonen, B. Heikkinen, O. Heinonen, J. Jaakkola,
P. Kilpeldinen, G. Lindén, and H. Mannila. Constructing tai-
lored SGML documents. In J. Saarela, editor, Proceedings of
SGML Finland 1996, pages 106-116, Helsinki, 1996. SGML
Users” Group Finland.

E. K. A. Akpotsui. Transformations de types dans les systémes
d’édition de documents structurés. PhD thesis, L’Institut Na-

tional Polytechnique de Grenoble, France, 1993.

J. André. Manipulation de documents: bibliographie. T.S5.1.
— Techniques et Sciences Informatiques, 5(4):363-365, July —
August 1986.

109

110

[And93a]

[And93b]

[AQ92]

[AQR93)|

[Arn93|

[Ase87]

[ASUS6]

[AUT1]

[AUT2|

[Bak78]

[BBT92]

REFERENCES

Andersen Consulting. FOUNDATION Application Develop-
ment, Version 2.0, 1993.

Andersen Consulting. FOUNDATION Design, Analyze Appli-
cation Requirements, Version 2.0, 1993.

E. K. A. Akpotsui and V. Quint. Type transformation in struc-
tured editing systems. In C. Vanoirbeek and G. Coray, editors,
EP92 — Proceedings of FElectronic Publishing, 92, Interna-
tional Conference on Flectronic Publishing, Document Manip-
ulation, and Typography, Swiss Federal Institute of Technol-
ogy, Lausanne, Switzerland, The Cambridge Series on Elec-
tronic Publishing, pages 27-41, Cambridge, 1992. Cambridge
University Press.

E. K. A. Akpotsui, V. Quint, and C. Roisin. Type modelling
for document transformation in structured editing systems.
Technical report, INRIA, France, 1993.

D. S. Arnon. Scrimshaw: A language for document queries
and transformations. In Hiiser et al. [HMQ93], pages 385-396.

P. J. Asente. Fditing Graphical Objects Using Procedural Rep-
resentations. PhD thesis, Technical report No. CSL-TR-87-
343, Computer Systems Laboratory, Stanford University, USA,
1987.

A. V. Aho, R. Sethi, and J. D. Ullman. Compilers. Principles,
Techniques and Tools. Addison-Wesley, Reading, 1986.

A. V. Aho and J. D. Ullman. Translations of context-free
grammars. Information and Control, 19:439-475, 1971.

A.V.Aho and J. D. Ullman. The theory of parsing, translation
and compiling, Volume I: Parsing. Prentice-Hall, Englewood

Cliffs, 1972.

B. S. Baker. Generalized syntax directed translation, tree
transducers, and linear space. SIAM Journal of Computing,
7(3):376-391, 1978.

G. E. Blake, T. Bray, and F. W. Tompa. Shortening the OED:
Experience with a grammar-defined database. ACM Transac-
tions on Information Systems, 10(3):213-232, 1992.

REFERENCES 111

[Ber96]

[BF61]

[BK4|

[BR84]

[Bro&8|

[Bro91]

[BSM96]

[CBYO]

[CB92]

[CBG+82]

[CCHS6]

Berger-Levrault/AIS. Balise Reference Manual, Release 3,
1996.

M. P. Barnett and R. P. Futrelle. Syntactic analysis by digital
computer. Communications of the ACM, 5(10):515-526, 1961.

A. Briiggemann-Klein. Compiler-construction tools and
techniques for SGML parsers: Difficulties and solu-
tions. To appear in Flectronic Publishing - Origina-

tion, Dissemination and Design. Available from URL:
ftp://ftp.informatik.uni-freiburg.de/documents/
reports/.index.html, 1994.

F. Bancilhon and P. Richard. Managing texts and facts in
a mixed database environment. In G. Gardarin and E. Ge-
lenbe, editors, New Applications of Data Bases, pages 87-107.
Academic Press, 1984.

K. P. Brooks. A two-view document editor with user-definable
document structure. Technical Report No. 33, Digital Systems
Research Center, USA, 1988.

K. P. Brooks. Lilac: A two-view document editor. IEEE Com-
puter, 24(6):7-19, 1991.

T. Bray and C. M. Speerberg-McQueen. Extensible Markup
Language (XML). URL: http://www.w3.org/ pub/WWW/TR/
WD-xm1-961114.html, 1996. Draft.

F. Cole and H. Brown. Editing structured documents with
classes. Technical Report No. 73, Computing Laboratory, Uni-
versity of Kent at Canterbury, UK, 1990.

F. Cole and H. Brown. Editing structured documents — prob-
lems and solutions. FElectronic Publishing — Origination, Dis-
semination and Design, 5(4):209-216, 1992.

D. D. Chamberlin, O. P. Bertrand, M. J. Goodfellow, J. C.
King, D. R. Slutz, S. J. P. Todd, and B. W. Wade. JANUS:
An interactive document formatter based on declarative tags.
IBM Systems Journal, 21(3):250-271, 1982.

P. Chen, J. Coker, and M. A. Harrison. The VQRIEX document
preparation environment. In Désarménien [Dés86], pages 45—
55.

112

[CHSS]

[Cha88]

[Cha90]

[Che&8|

[CHL*88]

[CHMSS]

[Chob6]

[CHP88a]

[CHPSSb]

[CIVS6]

REFERENCES

P. Chen and M. A. Harrison. Multiple representation docu-
ment development. IEEE Computer, 21(1):15-31, 1988.

D. D. Chamberlin. An adaptation of dataflow methods for
WYSIWYG document processing. In Proceedings of the ACM
Conference on Document Processing Systems, Santa Fe, New
Mezico [ACMSS|, pages 101-109.

D. D. Chamberlin. Managing properties in a system of coop-
erating editors. In Furuta [Fur90]|, pages 31-46.

P. Chen. A Multiple-representation Paradigm for Document
Development. PhD thesis, Report No. UCB/CSD 88/436,
Computer Science Division, University of California, Berkeley,

USA, 1988.

D. D. Chamberlin, H. F. Hasselmeier, A. W. Luniewski, D. P.
Paris, B. W. Wade, and M. L. Zolliker. Quill: An extensible
system for editing documents of mixed type. In Proceedings of
the 21st Hawaii International Conference on System Sciences,
Kailu-Kona, USA, pages 317-325, Los Alamitos, 1988. IEEE
Computer Society Press.

P. Chen, M. A. Harrison, and I. Minakata. Incremental
document formatting. In Proceedings of the ACM Confer-

ence on Document Processing Systems, Santa Fe, New Mezico
[ACMSS|, pages 93-100.

N. Chomsky. Three models for the description of language.
IRFE Transactions on Information Control,2(3):113-124,1956.

D. D. Chamberlin, H. F. Hasselmeier, and D. P. Paris. Defin-
ing document styles for WYSIWYG processing. In van Vliet
[vV88|, pages 121-137.

J. R. Cordy, C. D. Halpern, and E. Promislow. TXL: A
rapid prototyping system for programming language dialects.
In Proceedings of the 1988 IEFE International Conference on
Computer Languages, Miami Beach, USA, pages 280-285, Los
Alamitos, 1988. IEEE Computer Society Press.

G. Coray, R. Ingold, and C. Vanoirbeek. Defining document
styles for WYSIWYG processing. In van Vliet [vV86], pages
154-170.

REFERENCES 113

[CK95]

[CKS*81]

[Cla96]

[Cla97]

[Cor90]

[Déss6]

[DJL8S]

[DMW93]

[Dra96]

[Ex093]

K. Chiba and M. Kyojima. Document transformation based
on syntax-directed tree translation. FElectronic Publishing —
Origination, Dissemination and Design, 8(1):15-29, 1995.

D. D. Chamberlin, J. C. King, D. R. Slutz, S. J. P. Todd, and
B. W. Wade. JANUS: An interactive system for document
composition. In Proceedings of the ACM SIGPLAN SIGOA
Symposium on Text Manipulation, Portland, USA, ACM SI1G-
PLAN Notices 16(6), pages 82-91, New York, 1981. ACM,
ACM.

J. Clark. SP, An SGML System Confining to International
Standard ISO 8879 — Standard Generalized Markup Lan-
guage, 1996. URL: http//www.jclark.com/sp/.

J. Clark. Jade — James’ DSSSL engine, 1997. URL:
http://www.jclark.com/jade/.

J. R. Cordy. Specification and automatic prototype imple-
mentation of polymorphic objects in TURING using the TXL
processor. In Proceedings of the 1990 IFEFE International Con-
ference on Computer Languages, New Orleans, USA, pages
145-154, Los Alamitos, 1990. IEEE Computer Society Press.

J. Désarménien, editor. TgX for Scientific Documentation.
Number 236 in Lecture Notes in Computer Science. Springer-
Verlag, Berlin, 1986.

P. Deransart, M. Jourdan, and B. Lorho, editors. Attribute
Grammars. Definitions, Systems and Bibliography. Lecture
Notes in Computer Science 323. Springer-Verlag, Berlin, 1988.

J. Domingue, E. Motta, and S. Watt. The emerging VITAL
workbench. In N. Aussenac, G. Boy, B. Gaines, M. Linster,
J.-G. Ganascia, and Y. Kodratoff, editors, Knowledge Acqui-
sition for Knowledge-Based Systems, Tth European Knowledge
Acquisition Workshop, FKAW ’93, pages 320 — 339, Berlin,
1993. Springer-Verlag.

N. Drakos. All about LaTeX2HTML. URL: http://cbl.
leeds.ac.uk/nikos/tex2html/doc/latex2html/
latex2html.html, 1996.

Exoterica Corporation. OmniMark Programmer’s Guide, 1993.

114

[FQASS]

[FS88]

[F$S82]

[Fur86]

[Fur87al

[Fur87h]

[Fur90]

[Fur92]

[FW93]

[GG84]

[Gol90]

REFERENCES

R. Furuta, V. Quint, and J. André. Interactively editing struc-
tured documents. Flectronic Publishing — Origination, Dis-
semination and Design, 1(1):9-44, 1988.

R. Furuta and P. D. Stotts. Specifying structured document
transformations. In van Vliet [vV88], pages 109-120.

R. Furuta, J. Scofield, and A. Shaw. Document formatting sys-
tems: Survey, concepts, and issues. ACM Computing Surveys,
14(3):417-472, 1982.

R. Furuta. An integrated, but not exact-representation, edi-
tor/formatter. In van Vliet [vV86], pages 246-259.

R. Furuta. Complexity in structured documents: User inter-
face issues. In J. J. H. Miller, editor, Protext IV Proceedings of
the Fourth International Conference on Text Processing Sys-
tems, Boston, USA, pages 7-22, Dublin, 1987. Boole Press.

R. Furuta. A grammar for representing documents. Techni-
cal Report UMIACS-TR-87-67 or CS-TR-1959, Department of
Computer Science, Institute for Advanced Computer Studies,
University of Maryland, USA, 1987.

R. Furuta, editor. EP90 — Proceedings of the International
Conference on Flectronic Publishing, Document Manipulation
& Typography, Gaithersburg, Maryland, The Cambridge Se-
ries on Electronic Publishing, Cambridge, 1990. Cambridge
University Press.

R. Furuta. Important papers in the history of document prepa-
ration systems: basic sources. FElectronic Publishing — Origi-
nation, Dissemination and Design, 5(1):19-44, 1992.

A. Feng and T. Wakayama. SIMON: A grammar-based trans-
formation system for structured documents. In Hiiser et al.
[HMQ93|, pages 361-372.

H. Ganzinger and R. Giegerich. Attribute coupled gram-
mars. In Proceedings of the ACM SIGPLAN °84 Symposium on
Compiler Construction, SIGPLAN Notices 19(6), Montreal,
Canada [ACM84|, pages 157-170.

C. F. Goldfarb. The SGML Handbook. Oxford University
Press, Oxford, 1990.

REFERENCES 115

[Gra9gl]

|Gra92]

[GTST]

[Har93]

[Hec88|

[HMQ93]

[Tro61]

[1SO86]

[1S089]

[15092]

J. O. Graver. T-gen user’s guide. Technical Report SERC-
TR-50-F, Software Engineering Research Center, University
of Florida, USA, 1991.

J. O. Graver. T-gen: a string-to-object translator generator.
Journal of Object-oriented Programming, 5(5):35-42, 1992.

G. H. Gonnet and . W. Tompa. Mind your grammar: A new
approach to modelling text. In P. M. Stocker, W. Kent, and
P. Hammersley, editors, Proceedings of the Thirteenth Inter-
national Conference on Very Large Databases, Brighton, Fng-
land, pages 339 — 346, Los Altos, 1987. Morgan Kaufmann.

K. Harbo. CoST Version 0.2 — Copenhagen SGML Tool. Tech-
nical report, Department of Computer Science & Furomath
Center, University of Copenhagen, 1993.

R. Heckmann. A functional language for the specification of
complex tree transformations. In H. Ganzinger, editor, Pro-
ceedings of the 2nd Furopean Symposium on Programming
(ESOP ’88), Nancy, France, number 300 in Lecture Notes
in Computer Science, pages 175-190, Berlin, 1988. Springer-
Verlag.

C. Hiiser, W. Mohr, and V. Quint, editors. KP9/ — Proceedings
of the Fifth International Conference on Electronic Publishing,
Document Manipulation & Typography, Darmstadt, Germany,

April 1994, FElectronic Publishing — Origination, Dissemina-
tion and Design, 6(4), Chichester, 1993. Wiley.

E. T. Irons. A syntax directed compiler for ALGOL 60. Com-
munications of the ACM, 4(1):51-55, 1961.

ISO — International Standards Organization. Information Pro-
cessing — Text and Office Systems — Standard Generalized
Markup Language (SGML), ISO 8879, 1986.

ISO — International Standards Organization. Information Pro-
cessing — Text and Office Systems — Office Document Archi-
tecture (ODA) and Interchange Format, 1SO 8613, 1989.

ISO — International Standards Organization and IEC — Inter-
national Electrotechnical Commission. Information Technol-
ogy — Hypermedia — Time-based Structuring Language (Hy-
Time), ISO/IEC DIS 10744, 1992.

116

[1S096]

[TKL96a]

[TKLIGH]

[JKL97]

[Joh75]

[Kas80]

[Kil92]

[KLMN90]

[KMO95]

[KNO4]

REFERENCES

ISO — International Standards Organization and IEC — Inter-
national Electrotechnical Commission. Information technology
— Processing Languages — Document Style Semantics and Spec-

ification Language (DSSSL) ISO/IEC DIS 10179, 1996.

J. Jaakkola, P. Kilpelidinen, and G. Lindén. TranSID: A lan-
guage for transforming SGMIL documents. Technical report,
Department of Computer Science, University of Helsinki, 1996.

J. Jaakkola, P. Kilpeldinen, and G. Lindén. TranSID reference
manual. Technical report, Department of Computer Science,
University of Helsinki, 1996.

J. Jaakkola, P. Kilpeldinen, and G. Lindén. TranSID:
An SGML tree transformation language. In J. Paakki,
editor, The Fifth Symposium on Programming Languages
and Software Tools, Jyviskyld, Finland, pages T2-83,
1997. Available as Technical report C-1997-37, Depart-
ment of Computer Science, University of Helsinki, URL:
http://ftp.cs.helsinki.fi/pub/Reports/.

S. C. Johnson. Yacc — yet another compiler compiler. Tech-
nical Report Computer Science Technical Report No. 32, AT
& T Bell Laboratories, Murray Hill, USA, 1975.

U. Kastens. Ordered attributed grammars. Acta Informatica,
13:229-256, 1980.

P. Kilpeldinen. Tree Matching Problems with Applications to
Structured Text Databases. PhD thesis, Report A-1992-6, De-
partment of Computer Science, University of Helsinki, 1992.

P. Kilpeldinen, G. Lindén, H. Mannila, and E. Nikunen. A
structured document database system. In Furuta [Fur90|,
pages 139-151.

P. Kilpelidinen and H. Mannila. Ordered and unordered tree
inclusion. STAM Journal on Computing, 24(2):340 - 356, 1995.

E. Kuikka and E. Nikunen. Rakenteisten tekstien
kisittelyjdrjestelmistd (Processing systems for structured
texts, in Finnish). Report A/1994/4, Department of
Computer Science and Applied Mathematics, Univer-
sity of Kuopio, Finland, 1994. A summary and the

REFERENCES 117

[Knu65|

[Knu68|

[Knu87]

[KP91]

[KP93]

[KP95]

[KPPM84]

[Kui96]

[Lam86]

[Lin92]

system descriptions are available in FEnglish at URL
http://www.cs.uku.fi/“kuikka/systems.html.

D. E. Knuth. On the translation of languages from left to
right. Information and Control, 8(6):607-639, 1965.

D. E. Knuth. Semantics of context-free languages. Mathe-
matical Systems Theory, 2(2):127-145, 1968. Correction in
Mathematical Systems Theory, 5(1):95-96, March 1971.

D. E. Knuth. The TgpXbook. Addison-Wesley, Reading, 1987.

E. Kuikka and M. Penttonen. Designing a syntax-directed
text processing system. In K. Koskimies and K.-J. Riihi,
editors, Proceedings of the Second Symposium on Programming
Languages and Software Tools, Pirkkala, Finland, Technical
Report A-1991-5, pages 191-204, Finland, 1991. University of
Tampere.

E. Kuikka and M. Penttonen. Transformation of structured
documents with the use of grammar. In Hiiser et al. [HMQ93],
pages 373-383.

E. Kuikka and M. Penttonen. Transformation of structured
documents. Flectronic Publishing — Origination, Dissemina-
tion and Design, 8(4), 1995. To be published; the number 4
issue of volume 8 has not yet been published in June 1997.

S. E. Keller, J. A. Perkins, T. F. Payton, and S. P. Mardinly.
Tree transformation techniques and experiences. In Pro-
ceedings of the ACM SIGPLAN °8 Symposium on Compiler
Construction, SIGPLAN Notices 19(6), Montreal, Canada
[ACM84], pages 190-201.

E. Kuikka. Processing of Structured Documents Using a
Syntaz-Directed Approach. PhD thesis, Publications C, De-
partment of Computer Science and Applied Mathematics, Uni-
versity of Kuopio, 1996.

L. Lamport. A Document Preparation system. BTEX User’s
Guide & Reference Manual. Addison-Wesley, Reading, 1986.

M. Linster. Sisyphus’91l, Part 2: Comparison of different
knowledge engineering approaches each based upon models of

118

[Lin93]

[LMQ+95]

[LMWSS]

[LMWO1]

[LQV95]

[LRST74]

[LS68]

[LT95]

REFERENCES

problem-solving. In M. Linster, editor, Sisyphus 92: Models
of Problem Solving, Arbeitspapiere der GMD 663, pages 1 —
5. Gesellschaft fiir Mathematik und Datenverarbeitung MBH,
1992.

G. Lindén. Incemental updates in structured documents. Phil.
Lic. Thesis, Report C-1993-19, Department of Computer Sci-
ence, University of Helsinki, Finland, 1993.

G. Lindén, L. Montero, J. M. Quesada, H. Tirri, and A. L.
Verkamo. OCML to FND — CASE integration trans-
formations, Technical description. Deliverable T444/DS/1,
ESPRIT-II Project 5365 VITAL, 1995.

P. Lipps, U. Méncke, and R. Wilhelm. OPTRAN - a lan-
guage/system for the specification of program transformations:
System overview and experiences. In D. Hammer, editor, Pro-
ceedings of the 2nd Workshop on Compiler Compilers and High
Speed Compilation (CCHSC), Berlin, Germany, number 371
in Lecture Notes in Computer Science (LNCS), pages 52-65,
Berlin, 1988. Springer-Verlag.

P. Lipps, U. Moncke, and R. Wilhelm. An overview of the OP-
TRAN system. In H. Alblas and B. Melichar, editors, Proceed-
ings of the International Summer School on Attribute Gram-
mars, Applications and System (SAGA), Prague, Czechoslo-
vakia, number 545 in Lecture Notes in Computer Science,
pages 505-506, Berlin, 1991. Springer-Verlag.

G. Lindén, J. M. Quesada, and A. I. Verkamo. OCML to FND
— CASE integration transformations, User’s guide. Deliver-
able T444/DS /2, ESPRIT-II Project 5365 VITAL, 1995.

P. M. Lewis, D. J. Rosenkrantz, and R. E. Stearns. At-
tributed translations. Journal of Computer and System Sci-
ences, 9(3):279-307, 1974.

P. M. Lewis and R. E. Stearns. Syntax-directed transduction.
Journal of the ACM, 15(3):465-488, 1968.

G. Lindén and H. Tirri. ALCHEMIST — The handbook. Ver-
sion 1.08. Deliverable T416/DS/2, ESPRIT-II Project 5365
VITAL, 1995.

REFERENCES 119

[LTV95al

[LTV95b]

[LTV96]

[Lun&8|

[LV95)

[MBO93]

[MID95]

[MKNS89]

[MOB94]

[M6194]

[MPP+97]

G. Lindén, H. Tirri, and A. I. Verkamo. ALCHEMIST: A
general purpose transformation generator. Technical Report
C-1995-43, Department of Computer Science, University of
Helsinki, Finland, 1995.

G. Lindén, H. Tirri, and A. I. Verkamo. The VITAL trans-
formation assistant. In A. Rouge, editor, VITAL Project Fi-
nal Report, Chapter 4. Deliverable SYSECA /DD71.5, ESPRIT
Project 5365 VITAL, 1995.

G. Lindén, H. Tirri, and A. I. Verkamo. ALCHEMIST: A gen-
eral purpose transformation generator. Software — Practice
and Fzrperience, 26(6):653-675, 1996.

A. W. Luniewski. Intent-based page modelling using blocks in
the Quill document editor. In van Vliet [vV88], pages 205-221.

G. Lindén and A. I. Verkamo. An interface between differ-
ent software development environments. In Proceedings of the
Tenth Annual Knowledge Based Software Fngineering Confer-
ence (KBSE '95), Boston, USA, pages 79-87, Los Alamitos,
1995. IEEE Computer Society Press.

S. A. Mamrak, J. Barnes, and C. S. O’Connell. Benefits of au-
tomating data translation. IEFE Software, 10(4):82-88, 1993.

MID /Information Logistics Group GmbH. MetaMorphosis
Reference Manual, 1995.

S. A. Mamrak, M. J. Kaelbling, C. K. Nicholas, and M. Share.
Chameleon: A system for solving the data-translation prob-
lem. IEEFE Transactions on Software Engineering, 15(9):1090-
1108, sep 1989.

S. A. Mamrak, C. S. O’Connell, and J. Barnes. Integrated
Chameleon Architecture. Prentice Hall, Englewood Cliffs,
USA, 1994.

A. Mosller. SGML — en introduktion till Standard Generalized
Markup Language. Studentlitteratur, Lund, 1994.

O.-P. Mahlamiki, K. Paasiala, S. Pienimiki, T. Sarajisto, and
J. Sievdnen. SGML-muunnoskielen toteutus (Implementation
of an SGML transformation language, in Finnish). Project

120

[MR90]

[Nel85]

[Nik90]

[NM89]

[Oxf96]

[Pay8s]

[PB78]

[PDC92

[PKP+82]

REFERENCES

work report, Department of Computer Science, University of
Helsinki, 1997.

N. Major and H. Reichgelt. ALTO — An automated laddering
tool. In B. Wielinga, J. Boose, B. Gaines, G. Schrieber, and
M. van Someren, editors, Current Trends in Knowedge Ac-
quisition, Volume 8 of Frontiers in Artificial Intelligence and
Applications. 10S Press, Amsterdam, 1990.

G. Nelson. Juno, a constraint-based graphics systems. In
SIGGRAPH 85 Conference Proceedings, SIGGRAPH Com-
puter Graphics 19(3), San Fransisco, USA, pages 235-243,
New York, 1985. ACM.

E. Nikunen. Views in structured text databases. Phil. Lic.
Thesis, Report C-1990-60, Department of Computer Science,
University of Helsinki, Finland, 1990.

E. Nikunen and H. Mannila. Defining and inverting textual
views of structured texts. In T. Gyiméthy, editor, Proceed-
ings of the First Finnish-Hungarian Workshop Symposium on
Programming Languages and Software Tools, Szeged, Hungary,
pages 108-120, Szeged, 1989. Research Group on the Theory
of Automata, Hungarian Academy of Sciences.

The Oxford English Dictionary Online, 1996. URL:
http://www.oed.com/.

T. F. Payton. SSAGS. In Deransart et al. [DJL88], pages
125-127.

A. Pyster and H. W. Buttelmann. Semantic-syntax-directed
translation. Information and Control, 36:320-361, 1978.

T. J. Parr, H. G. Dietz, and W. E. Cohen. PCCTS reference
manual, Version 1.0. ACM SIGPLAN Notices, 27(2):88-165,
1992.

T. F. Payton, S. Keller, J. A. Perkins, S. Rowan, and S. P.
Mardinly. SSAGS: A syntax and semantics analysis and gen-
eration system. In Proceedings of the IEEE Computer Society’s
Sizth International Computer Software and Applications Con-
ference (COMPSAC ’82), Chicago, USA, pages 424-432, Los
Alamitos, 1982. IEEE Computer Society Press.

REFERENCES 121

[PKPMS3]

[QV&6]

[QVs7]

[QVBS&6al

[QVBS6b]

[Rei83]

[RTS9)]

[Shis4]

[SMBO3]

[SMRO3]

[TL94a|

T. F. Payton, S. Keller, J. A. Perkins, and S. P. Mardinly.
The DIANA interfacer. In P. J. L. Wallis, editor, Proceedings
of the Workshop on Ada Software Tools Interfaces, Bath, UK,
number 180 in Lecture Notes in Computer Sciences, pages 88—
103, Berlin, 1983. Springer-Verlag.

V. Quint and I. Vatton. GRIF: An interactive system for struc-
tured document manipulation. In van Vliet [vV86], pages 200—
213.

V. Quint and I. Vatton. An abstract model for interactive
pictures. In H.-J. Bullinger and B. Shackel, editors, Human
Computer Interaction — INTERACT 87, pages 643-647, Am-
sterdam, 1987. IFIP, Elsevier Science Publishers.

V. Quint, I. Vatton, and H. Bedor. Grif: An interactive envi-
ronment for TEX. In Désarménien [Dés86], pages 145-158.

V. Quint, I. Vatton, and H. Bedor. Le systéme Grif. T.5.1
— Technique et Science Informatiques, 5(4):337-341, July —
August 1986.

S. T. Reiss. PECAN: Program development systems that sup-
port multiple views. Technical Report CS-83-29, Brown Uni-
versity, 1983.

T. Reps and T. Teitelbaum. The Synthesizer Generator. A
System for Constructing Language-Based Fditors. Springer-
Verlag, 1989.

Q. Y. Shi. Semantic-syntax-directed translation and its appli-
cation to image processing. Information Sciences, 32:75-90,
1984.

C. M. Speerberg-McQueen and L. Burnard, editors. Guidelines
for Electronic Text Fncoding and Interchange, Chapter 2: A
Gentle Introduction to SGML. Text Encoding Initiative (TEI),
Chicago, 1993. Draft Version 2.

N. Shadbolt, E. Motta, and A. Rouge. Constructing
knowledge-based systems. IEEE Software, 10(6):34-39, 1993.

H. Tirri and G. Lindén. ALCHEMIST — an object-oriented
tool to build transformations between heterogeneous data rep-
resentations. In Proceedings of the Twenty-Seventh Annual

122

| TL94b]

[Tri81]

[Ver94|

[V1.94]

[VL95]

[VV86]

[vV8S8]

[VVWS&6]

[Yel88]

REFERENCES

Hawaii International Conference on System Sciences (HICSS
’94), Volume II: Software Technology, pages 226-235, Los
Alamitos, 1994. IEEE Computer Society Press.

H. Tirri and G. Lindén. VITAL transformation approach. De-
liverable UH/DD415, ESPRIT-II Project 5365 VITAL, 1994.

S. Trimberger. Combining graphics and a layout language
in a single interactive system. In Proceedings of the 18th
ACM/IEEFE Design Automation Conference, Nashville, USA,
pages 234-239, Los Alamitos, 1981. IEEE Computer Science
Press.

A. 1. Verkamo. Cooperation of KBS development environ-
ments and CASE environments. In Proceedings of the Sixzth
International Conference on Software Fngineering and Know-
ledge Engineering (SEKE °94), Jurmala, Latvia, pages 358
365, Skokie, USA, 1994. Knowledge Systems Institute.

A. 1. Verkamo and G. Lindén. CASE tool interface. Internal
deliverable UH/T443/1D003, ESPRIT-II Project 5365 VITAL,
1994.

A. 1. Verkamo and G. Lindén. Problems in interfacing tools
of different development environments. In Proceedings of the
Seventh International Conference on Software Fngineering and
Knowledge Engineering (SEKE 95), Rockville, USA, pages
429-437, Skokie, 1995. Knowledge Systems Institute.

J. C. van Vliet, editor. EP86 — Proceedings of the Interna-
tional Conference on Text Processing and Document Manipu-
lation, Nottingham, UK, British Computer Society Workshop
Series, Cambridge, 1986. Cambridge University Press.

J. C. van Vliet, editor. EP88 — Proceedings of the Interna-
tional Conference on Document Manipulation, and Typogra-
phy, Nice, France, The Cambridge Series on Electronic Pub-
lishing, Cambridge, 1988. Cambridge University Press.

H. van Vliet and J. B. Warmer. An annotated biography on
document processing. In van Vliet [vV86], pages 261-277.

D. M. Yellin. Attribute Grammar Inversion and Source-to-
Source Translation. Lecture Notes in Computer Science 302.
Springer-Verlag, Berlin, 1988.

ISSN 1238-8645
ISBN 951-45-7766-3
Helsinki 1997

Helsinki University Printing House

