
Department of Computer ScienceSeries of Publications AReport A-1997-2
Structured Document Transformations

Greger Lindén

University of HelsinkiFinland

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Helsingin yliopiston digitaalinen arkisto

https://core.ac.uk/display/146448483?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Department of Computer ScienceSeries of Publications AReport A-1997-2
Structured Document TransformationsGreger LindénTo be presented, with the permission of the Faculty of Science ofthe University of Helsinki, for public criticism in the Auditoriumat the Department of Computer Science, Teollisuuskatu 23,Helsinki, on June 18th, 1997, at 10 o'clock.

University of HelsinkiFinland

Contact informationPostal address:Department of Computer ScienceP.O. Box 26 (Teollisuuskatu 23)FIN-00014 University of HelsinkiFinlandEmail address: postmaster@cs.Helsinki.FI (Internet)URL: http://www.cs.Helsinki.FI/Telephone: +358 9 708 51Telefax: +358 9 708 44441
ISSN 1238-8645ISBN 951-45-7766-3Computing Reviews (1991) Classi�cation: I.7.2, D.3.4, F.4.2Helsinki 1997Helsinki University Printing House

Structured Document TransformationsGreger LindénDepartment of Computer ScienceP.O. Box 26, FIN-00014 University of Helsinki, FinlandGreger.Linden@cs.helsinki.�, http://www.cs.helsinki.�/�linden/PhD Thesis, Series of Publications A, Report A-1997-2Helsinki, June 1997, 122 pagesISSN 1238-8645, ISBN 951-45-7766-3AbstractWe present two techniques for transforming structured documents. The�rst technique, called tt-grammars, is based on earlier work by Keller et al.,and has been extended to �t structured documents. tt-grammars assurethat the constructed transformation will produce only syntactically correctoutput even if the source and target representations may be speci�ed withtwo unrelated context-free grammars. We present a transformation gener-ator called alchemist which is based on tt-grammars. alchemist hasbeen extended with semantic actions in order to make it possible to buildfull scale transformations. alchemist has been extensively used in a largesoftware project for building a bridge between two development environ-ments. The second technique is a tree transformation method especiallytargeted at sgml documents. The technique employs a transformationlanguage called TranSID, which is a declarative, high-level tree transfor-mation language. TranSID does not require the user to specify a grammarfor the target representation but instead gives full programming power forarbitrary tree modi�cations. Both alchemist and TranSID are fully op-erational on unix platforms.Computing Reviews (1991) Categories and Subject Descriptors:I.7.2 Text processing: Document preparationD.3.4 Programming languages: ProcessorsF.4.2 Mathematical Logic and Formal Languages: Grammars and OtherRewriting SystemsGeneral Terms:Algorithms, Design i

Additional Key Words and Phrases:structured documents, tree transformation, sgml transformation

ii

AcknowledgementsI am most grateful to my advisor professor Heikki Mannila, for his supportand encouragement in my research. He introduced me to the research areaof structured documents and text databases and has provided me withvaluable guidance and insightful comments. I am very glad that he nevergave up on me during this long-lasting work.The Department of Computer Science, headed by professor Martti Tien-ari, has provided me with excellent working conditions. It has been aninspiring and intriguing research environment for which I thank all my col-leagues.My special thanks to Heikki Mannila, Erja Nikunen and Pekka Kilpeläi-nen, who as members of the rati project in the late eighties, awoke myinterest for structured documents. The knowledge achieved was put togood use in later projects. Thanks also to Henry Tirri and Inkeri Verkamoas well as to other members of the vital project. Together with Henryand Inkeri we designed and implemented the alchemist system. Thanksto Jukka-Pekka Vainio and Tomi Silander who helped programming thesystem. Thanks to Jani Jaakkola and Pekka Kilpeläinen of the sid projectwhere we designed the TranSID system of which Jani made an excellent im-plementation. Thanks also to the other members of the sid project, HelenaAhonen, Barbara Heikkinen and Oskari Heinonen, for inspiring discussions.I would also like to thank my friends, in particular Lars-Åke Olsson,and my relatives for their support and encouragement. Where would I betoday without you?The �nancial support of the Academy of Finland, the Technology Devel-opment Center (TEKES), and the Helsinki Graduate School of ComputerScience and Engineering is gratefully acknowledged.
iii

iv

Contents1 Introduction 11.1 Structured documents and transformations : : : : : : : : : 21.2 Transformation solutions : 61.3 ALCHEMIST � a powerful transformation generator : : : 71.4 TranSID � an SGML transformer : : : : : : : : : : : : : : 91.5 Aim and organization of the thesis : : : : : : : : : : : : : : 112 Preliminaries 132.1 Context-free grammars : 142.2 Parse trees : 162.3 Parsing : 182.4 The Standard Generalized Markup Language : : : : : : : : 203 Transformation of structured documents 253.1 Syntax-directed translation and attribute grammars : : : : 263.2 Syntax-directed translation schemas : : : : : : : : : : : : : 283.3 TT-grammars : 314 The transformation generator ALCHEMIST 434.1 ALCHEMIST tt-grammars : : : : : : : : : : : : : : : : : : 444.2 ALCHEMIST structure : 444.3 ALCHEMIST use : 474.3.1 Spell speci�cation : : : : : : : : : : : : : : : : : : : 484.3.2 Spell generation : 514.3.3 Spell compilation : 524.3.4 Spell execution : 554.4 ALCHEMIST implementation : : : : : : : : : : : : : : : : : 575 The SGML transformation language TranSID 595.1 Overall control and data model : : : : : : : : : : : : : : : : 605.2 Semi-formal semantics : 60v

vi Contents5.3 TranSID transformations : 625.4 TranSID operators : 675.5 TranSID implementation : 696 Experience and evaluation 716.1 An ALCHEMIST interface between two development envi-ronments : 726.2 Other ALCHEMIST transformation applications : : : : : : 796.3 ALCHEMIST observations : : : : : : : : : : : : : : : : : : 806.4 TranSID applications : 836.5 TranSID observations : 856.6 Comparison between ALCHEMIST and TranSID : : : : : : 857 Related work 917.1 A multiple-view editor : 927.2 A structured document transformation generator : : : : : : 937.3 Other two-grammar systems : : : : : : : : : : : : : : : : : : 947.4 Other transformation systems : : : : : : : : : : : : : : : : : 977.5 Summary of related systems : : : : : : : : : : : : : : : : : : 988 Conclusion 103References 109

Chapter 1IntroductionData transformations are important in many computer applications. De-spite the e�orts for standardization in many areas, the end user is oftenat loss when it comes to the cooperation of commercial and custom-madeapplication tools. The user usually ends up with a large set of diverse tools,such as editors, database tools, and formatters that are not compatible, orif one subset of tools work together, the set of programs will often not workwith another set.A commonly used solution is to employ another large set of ad hoc trans-formation programs, conversion tools, source-to-source translators, specif-ically tailored transformation generators and the like. Often the user isforced to �nish o� a transformation from the format of one tool to anothermanually without any other help than common sense. This usually appliesonly to the expert user, as the end user long ago has rejected most of hisuncompatible tools and tries to get along with as few tools as possible.A typical application area for data transformations is document prepa-ration. Document preparation consists of the production and printing ofdocuments. Most document preparation systems contain a plethora of dif-ferent tools, such as editors, spell checkers, formatters, etc. for producingoutput on di�erent media such as paper, screen, or CD-ROM. Commer-cial document preparation systems try to be as independent as possible.They contain features for formatting and printing within the preparationsystem. Should the user, however, want to move a part of the documentsto another system, he/she soon realizes that font types, margin settings,or even logical markup such as sections and bibliography list markup havebeen be lost in the transformation.Transformations are required not only in formatting. With the emer-gence of the World Wide Web and Hypertext Markup Language (html),we have seen a large need for transformations to and from html. html1

2 1 Introductionrequires the user and html programmer to be one step more abstract inpreparing documents. The user has to mark up the document with ap-propriate tags. In this way an html document can well be considered tocontain declarative markup, i.e., the user tells what he/she wants to see inthe browser (a section title or a list of items) instead of procedural markupthat speci�es how they should be presented. The document conformingto the html standard can be presented on di�erent platforms and withdi�erent browsers as long as the browsers understand the standard.1.1 Structured documents and transformationshtml documents are one example of structured documents [AFQ89b]. Thestructured document model [AFQ89a] decomposes the document into log-ical parts. Examples of structured documents are manuals, telephone di-rectories, dictionaries, and computer programs. A structured documentmay in fact be any document where there is more information than justthe text itself. This additional information is called the structure.1 Com-puter programs and structured documents follow a well-speci�ed standardof what is correct programming and what is not. Any structured documentcan be speci�ed with the sgml (Standard Generalized Markup Language)[ISO86, Gol90] or the oda (Open Document Architecture) [ISO89] stan-dards ensuring that the documents can be used on di�erent platforms andin di�erent applications in a standard way.Example 1.1 In Figure 1.1 we see an example of a structured document.The document has been marked up with sgml and it also contains the doc-ument type de�nition (dtd). The dtd is loosely based on the dictionarydescription presented in [BBT92]. The document contents (the dictionaryentry for spaz) is based on an entry in the Oxford English Dictionary [Oxf96]but has been slightly modi�ed and shortened. We base many of the follow-ing examples on this �rst one and shall therefore explain the example indetail.Our example dictionary contains entries of words where each entry con-tains the headword, its pronunciation, part of speech, and etymology as wellas its separate senses. A sense contains a de�nition and possibly severalquotations each consisting of a date, author, work, and quotation text.A structural component of a document is in sgml called an element.The document type de�nition (dtd) that describes this document tells us1A related view is that all documents have (implicit) structure, but in some documentsit has been marked explicitly [Möl94].

1.1 Structured documents and transformations 3<!DOCTYPE Dictionary [<!ELEMENT Dictionary - - (Entry)+><!ELEMENT Entry - - (HWGroup,Etymology?,Sense+)><!ELEMENT HWGroup - - (Headword,Pronunciation,PartofSpeech)><!ELEMENT Headword - - (#PCDATA)><!ELEMENT Pronunciation - - (#PCDATA)><!ELEMENT PartofSpeech - - (#PCDATA)><!ELEMENT Etymology - - (#PCDATA)><!ELEMENT Sense - - (Definition,Quotation+)><!ELEMENT Definition - - (#PCDATA)><!ELEMENT Quotation - - (Date,Author?,Work,Text)><!ELEMENT Date - - (#PCDATA)><!ELEMENT Author - - (#PCDATA)><!ELEMENT Work - - (#PCDATA)><!ELEMENT Text - - (#PCDATA)>]><Dictionary><Entry><HWGroup><Headword>spaz</Headword><Pronunciation>spæz</Pronunciation><PartofSpeech>n</PartofSpeech></HWGroup><Etymology>Abbreviation of spastic n.</Etymology><Sense><Definition>= spastic</Definition><Quotation><Date>1965</Date><Author>P. Kael</Author><Work>I lost it at the movies III. 259</Work><Text>The term that American teen-agers now use asthe opposite of `tough' is `spaz'.</Text></Quotation><Quotation><Date>1975</Date><Author>M. Amis</Author><Work>Dead babies viii. 47</Work><Text>I know how long, you little spaz.</Text></Quotation></Sense></Entry></Dictionary>Figure 1.1: An example of a structured document marked up with sgml.

4 1 Introductionthat an sgml document called Dictionary consists of one or more Entryelements. Each Entry element consists of a HWGroup element followed byone or zero Etymology elements, followed by one or more Sense elements.The plus symbol (+) in this description stands for one or more elements,the question mark (?) for one or zero elements, and the comma (,) cate-nates the elements. The #PCDATA element denotes the contents of elementsthat do not (in this description) contain other elements but text only. Wedescribe sgml in more detail in Section 2.4.The dtd is followed by the document instance where the text has beenmarked with element names described in the dtd. Such marks are alsocalled tags. This particular instance contains one entry that consists ofone headword group, an etymology, and a sense. The sense contains onede�nition and two quotations, etc. 2A structured document is not an end per se. For displaying, modifying,extracting information, or printing we need to transform the documentinto another representation. Even if the document has been marked upwith sgml, the standard only speci�es the syntax of the markup, not thesemantics of the document. As a matter of fact, this is the purpose ofsgml: to provide a standard way of marking a structured document indeclarative markup, not procedural. It is up to the document applicationand the user to interpret the markup when transforming the document intoan appropriate format. This format may well be the proprietary format of acommercial document preparation system, or it may be html for presentingthe document in an html browser.We call this the paradigm of a logical document vs. document views.Just as in database applications, the user may keep a logical documentcorresponding to the database contents. When modifying or printingthe document, the user may choose between several views of the doc-ument contents. He/She may choose to use di�erent formatting com-mands for printing on paper and on screen, respectively. The user mayalso �lter out certain information, e.g., choosing to print only section ti-tles or bibliographic references. He/She may even choose to add infor-mation to the document by allowing updatable views of the document.Many document preparation systems provide multiple views of a document[QV86, FS88, CH88, KLMN90, Bro91]. Especially, these systems oftenshow a textual view and a formatted view of a document simultaneously.The paradigm also usually requires inverse transformations. If the viewsare updatable, transformations must be speci�ed in both directions, fromthe logical document to the document views and vice versa.

1.1 Structured documents and transformations 5{\bf spaz} (spæz) {\em n.} [Abbreviation of spastic n.]= spastic\newline{\bf 1965} {\sc P. Kael}{\em I lost it at the movies III. 259}The term that American teen-agers now use as theopposite of `tough' is `spaz'.\newline{\bf 1975} {\sc M. Amis} {\em Dead babies viii. 47}I know how long, you little spaz.Figure 1.2: An example of a textual view.Example 1.2 In Figures 1.2 and 1.3, we see two views of the documentin Example 1.1. Figure 1.2 shows a view of the document where the sgmltags have been removed and LATEX [Lam86] formatting commands havebeen inserted in the text. Figure 1.3 shows a formatted view produced byLATEX. spaz (spæz) n. [Abbreviation of spasticn.] = spastic1965 P. Kael I lost it at the movies III.259 The term that American teen-agersnow use as the opposite of `tough' is `spaz'.1975M. AmisDead babies viii. 47 I knowhow long, you little spaz.Figure 1.3: An example of a formatted view. 2Sometimes there is need for processing more than one document at atime. The user may choose to combine several structured documents intoone, by transforming them to use the same structure. Such transformationsare needed especially in document assembly [AHH+96a, AHH+96b], wherethe user needs to combine document fragments from di�erent documents.The assembled document is modi�ed to conform to a certain structure andcan then be presented consistently on di�erent media.

6 1 Introduction1.2 Transformation solutionsAs mentioned earlier, we are neither short of solutions in the general case(any data transformation) nor in the speci�c document transformation case.Many ad hoc transformations have been de�ned and implemented for someof the problematic transformations mentioned above. For example, theLaTeX2HTML and HTML2LaTeX [Dra96] set of transformation programs trans-form between the LATEX document preparation system [Lam86] and thehtml format. Many commercial document preparation systems have simi-lar extensions that allow the user to produce at least some non-proprietaryformats such as html and sgml. On the other hand, if no transformationmodule is available for the needed transformation, the user may have tobuild the transformation from scratch. This task is, however, often error-prone. It may also be tedious as the �nal transformation module oftencontains similar but complicated parts that the user have speci�ed in othertransformations.A convenient way to avoid these drawbacks is to use transformation gen-erators. A transformation generator lets the user specify a transformation,and the generator then produces program code for the corresponding trans-formation module. Instead of building a transformation from scratch, theuser is able to produce a transformation of some speci�ed representations.Examples of typical parser generators are yacc [Joh75] and pccts [PDC92].These parser generators, also called compiler-compilers, tend to concen-trate on the front-end of the transformation process. The user may specifythe input representation in great detail, ensuring that no incorrect docu-ment is accepted by the transformation module. The input representationis speci�ed, e.g., using a context-free grammar (see Section 2.1) that re-stricts the input documents over this certain grammar. On the other hand,the output side or the back-end of the transformation may require much lessspeci�cation. It can be argued that this is the strong side of parser gen-erators. The user may use any available instructions from the underlyingprogramming language when he/she de�nes the output of the transforma-tion. This openness puts some special stress on the user to write correctoutput instructions so that the transformation output actually follows theexpected syntax.We will see that by using techniques from compiler-compiler theory it ispossible to build transformations for structured documents easily and withless e�ort. Available parser generators require an input grammar of theinput document of a transformation. In most cases, structured documentsfollow such grammars. sgml documents even require such a documenttype de�nition (dtd) to exist. Also several other document preparation

1.3 ALCHEMIST � a powerful transformation generator 7systems use the grammar concept for de�ning the structure of the docu-ments. Examples include publicly or commercially available systems suchas LATEX [Lam86] and Grif [QV86] and many research prototypes such ashst [KLMN90] and Syndoc [KP91]. Applying then a strict front-end todocument transformation is not a problem. The input documents followa certain syntax and can be checked with a parser. All of these systemshave a more or less open back-end. For example, in the case of LATEX theback-end has been speci�ed before, while in the case of hst the user hasfull control in its speci�cation.Many sgml transformation languages are based on the idea of a parserwith a well-speci�ed front-end and an open back-end. In event-based lan-guages such as OmniMark [Exo93] and CoST [Har93], the user may specifyoutput actions to be performed for each event the parser encounters in theinput stream. In both cases, general sgml parsers are used at the frontend, producing a stream of events such as start section element and endlist element. This stream of events is called the element information struc-ture set (esis) [Gol90]. At each event, the user may specify how to processthe current document fragment, but already processed parts or yet unseenparts are not accessible. Above all, there is no restriction on the output theuser may produce, and therefore also the transformations do not guaranteethat the output representation is correct.Example 1.3 Figure 1.4 shows a small example of an event-based sgmltransformation language CoST [Har93]. Each sgml element has its ownrule, which states the actions to be taken when either a start or end tag,or the contents of an element, is encountered in the input stream. Thistransformation surrounds the headwords in the dictionary with the strings{\bf and }. In CoST, the instruction puts automatically prints a newlinecharacter where it is not explicitly prohibited by the nonewline instruction.21.3 ALCHEMIST � a powerful transformationgeneratorIn this thesis we present a simple and powerful tool alchemist [TL94a,LTV96] for specifying and generating transformations of structured docu-ments. alchemist requires the user to specify both the input and outputdocument representations. The tool then generates transformation mod-ules that accept only correct input documents and produce only correctoutput documents according to the speci�cations. Like many other doc-

8 1 Introductionelement Entry {start { puts stdout "" }end { }}element HWGroup {start { puts stdout "" }end { }}element Headword {start { puts stdout "{\bf " nonewline }end { puts stdout "}"}}TEXT { puts stdout $data nonewline }Figure 1.4: An example of the event-based sgml transformation languageCoST.ument transformation systems (e.g., hst [KLMN90], ica [MBO93], andSyndoc [KP93, Kui96]), alchemist relies on context-free grammars forrepresentation speci�cation. Unlike many systems, however, the represen-tation grammars may be totally unrelated. The actual transformation isspeci�ed based on these grammars.alchemist adds some other properties to transformation generation aswell. Many transformations cannot be completely speci�ed before-hand,but require user interaction. With alchemist the user may specify whereand when and how he/she wants to interact in the generated transforma-tion. alchemist is used mainly for producing transformations betweentwo di�erent structured document representations without an explicit in-termediate format between the representations. In a set of di�erent rep-resentations we have to specify a quadratic number of transformations tobe able to provide transformation between any arbitrary chosen represen-tations. That is, if we have n di�erent representations, we need to buildn(n � 1) or O(n2) di�erent transformations to be able to transform anyrepresentation into any other representation in the set. On the other hand,if a canonical representation for the whole set is found, we will managewith only 2n transformations. In that case there are two transformations

1.4 TranSID � an SGML transformer 9for each representation, one transforming to the canonical representationand one transforming from the canonical representation to the speci�c rep-resentation. In the case of alchemist, we do not require explicit canonicalrepresentations. Still there is no disadvantage because we have the choiceof de�ning one if it helps.Example 1.4 Figure 1.5 shows an example of an alchemist transforma-tion speci�cation where both input and output speci�cations are required.The speci�cation speci�es the same transformation as in Example 1.3, i.e.,a transformation that surrounds the headwords in the dictionary with thestrings {\bf and } and ends each entry and each headword group with anewline character. The input representation is speci�ed on the left, thecorresponding output representation on the right. The �gure gives the �a-vor of an alchemist mapping. We give a more detailed description of thenotation in Chapter 3.Entry -> Entry.Entry -> "\n"HWGroup HWGroup.HWGroupEtymology Etymology.EtymologySenses Senses.SensesHWGroup -> HWGroup.HWGroup ->Headword "{\\bf " Headword.HeadwordPronunciation "} "PartofSpeech Pronunciation.PronunciationPartofSpeech.PartofSpeechHeadword -> IDENTIFIER Headword.Headword ->IDENTIFIER.IDENTIFIERFigure 1.5: An example of an alchemist transformation speci�cation.2alchemist is now fully operational in unix environments with both agraphical and a textual interface.1.4 TranSID � an SGML transformerIn addition to alchemist, we also present an sgml transformation lan-guage called TranSID [JKL96a, JKL96b, JKL97], which is based on tree

10 1 Introductiontransformations. TranSID requires a speci�cation of the input representa-tion, in the way that the input sgml document must have a dtd, but nooutput dtd is used. TranSID contains normal tree transformation opera-tions [JKL96b] and it has been extended with powerful string operationsand regular expressions [MPP+97].Design goals of the TranSID language included declarativeness, simple-ness and implementability with reasonable e�ort. Special features includea bottom-up evaluation process and a possibility to restrain the transfor-mation to the event-based strategy. The event-based or top-down strat-egy is su�cient for simple formatting of the sgml document. Bottom-up evaluation is a declarative way of de�ning some transformations thatwould be awkward to de�ne in a top-down manner. The TranSID lan-guage also includes high level declarative commands that frees the userfrom low-level programming. We have implemented an interpreter and anevaluator for TranSID which are fully operational in Unix environments[JKL96a, JKL96b].Example 1.5 Figure 1.6 shows an example of a TranSID program thatperforms the same transformation as in Example 1.3. The two �rst rulesmodify the document as in the earlier example. The last rule removes thesgml tags from all other elements. 2transformation beginELEMENT "Entry"BECOMES "\n", current.children ;ELEMENT "HWGroup"BECOMES "{\\bf ",current.children.having(this.name == "Headword"),"} ",current.children.having(this.name != "Headword");ELEMENT *BECOMES current.children ;endFigure 1.6: An example of a TranSID transformation speci�cation.

1.5 Aim and organization of the thesis 11Even if the two-grammar transformations implemented by alchemistare a sort of ideal solution to the document transformation problem, thereare many transformations where the alchemist solution is quite compli-cated. TranSID requires the user to specify only those parts of the doc-ument that are modi�ed. The part of the document that remains intactdoes not have to be speci�ed. Both systems require the user to specify thesource representation in a source grammar and dtd, respectively, but onlyalchemist requires a target grammar as well. Therefore, only alchemistcan guarantee the correctness of the target. TranSID also lets the userreference the complete input document during the transformation.1.5 Aim and organization of the thesisIn this thesis, we aim to show the bene�ts of using tt-grammars in sometransformations, and the syntax-directed approach in others. We presentboth alchemist and TranSID environments with examples. Our empiricalexperience shows that they complement each other, thereby covering mosttransformation problems that arise in structured document management.The rest of this thesis is organized as follows. In Section 2, we de-�ne some general concepts from compiler-compiler theory which form abasis for our transformation systems. We also take a closer look at sgmland its background. We give a general presentation of structured trans-formations in Section 3 and present syntax-directed translations suitablefor document transformations as well as tree transformation grammars onwhich alchemist transformations are based. We also brie�y discuss event-driven transformations which are common in the sgml case. In Section 4we see how the tree transformation grammar technique was implemented inalchemist, and in Section 5 we discuss the tree transformations of Tran-SID. We report our experience and evaluation of alchemist and TranSIDin Section 6. Section 7 we give an overview of related work in the area ofstructured document transformations and transformation generators. Fi-nally, Section 8 is a short conclusion.

12 1 Introduction

Chapter 2PreliminariesThe possible structure of a set of structured documents can be de�ned usinggrammars. As we saw in the last chapter, sgml documents are describedthrough document type de�nitions which are one kind of grammars. Themost important part in a grammar is a set of rules that describes veryexactly how to construct documents (or strings) that are allowed accordingto the de�nition.If we have an arbitrary document, we can then use parsing to comparethe document with a given grammar to check if it is consistent with thegrammar. Before parsing the document, we use lexical analysis to recog-nize words, reserved words, formatting commands, etc., in the document.Parsing constructs a parse tree from the document, a data structure, rep-resenting the document.Once the document has been parsed, we can begin its transformation.A parsed document gives us more opportunities for transformation andtells us more details about the document itself. For example, we see howdi�erent sections of the document are related to each other structurally.We can even use several di�erent grammars for one single document type,thereby achieving di�erent structural views of one document.Context-free grammars [Cho56] are frequently used in document man-agement systems [BR84, CIV86, GT87, FQA88, QV86, KLMN90, KP93,Kui96]. Context-free grammars constitute a restricted set of all possiblegrammars and are easier to process than general grammars [ASU86]. Inthis chapter, we de�ne context-free grammars and we also brie�y reviewdi�erent parsing techniques for context-free grammars. Parsing is oftenused as a front-end in a transformation. Such a transformation is calleda syntax-directed translation because the reading and checking of the doc-ument is directed by its syntax de�ned in a grammar. We shall look atseveral syntax-directed translation methods that are suitable for document13

14 2 Preliminariestransformation.2.1 Context-free grammarsWith the help of context-free grammars [Cho56] we can precisely de�nethe structure of the strings in a document, or the documents in a class.Formally, a context-free grammar for a class of documents is a quadrupleG = (N;�; P; S), where N is a �nite set of nonterminals, � is a �niteset of terminals, P is a set of productions, and S is a special nonterminalcalled the start symbol. The grammar G de�nes the language L(G) thatcontains all possible sequences of terminals that are correct according tothe grammar G.The set of terminals contains all the symbols or tokens that may occurin the document according to the grammar. As a matter of fact, anydocument over a given grammar consists of a sequence of terminals of thatgrammar. Also the sequence of zero terminals is a string called the emptystring and denoted �. The set of all possible terminal strings including theempty string in � is denoted ��. Thereby we can say that any documentover the grammar G is in ��.On the other hand, the nonterminals in N do not occur in the docu-ments. They can be thought of as representing sets of sequences of terminalsin the language L(G). Especially, the start symbol S represents all possiblesequences of terminals in the language. The sets of terminals and nonter-minals together are called the vocabulary of the language. A sequence ofnonterminals and terminals is called a string. We denote the vocabularyN [� by V and all possible strings over the grammar are denoted V �.The productions of the grammar tell us how to construct correct sen-tences in the language L(G). A production is denoted A ! �, where A isa nonterminal and � is a string consisting of terminals and nonterminals,i.e., A 2 N and � 2 V �. We call A the left hand side of the productionand � the right hand side of the production. The symbol ! is the rewritesymbol of the production.The productions are used in the following way to construct sentencesin the language L(G). We start with the start symbol S and choose anyproduction S ! � with the symbol S on its left hand side. We thenreplace or rewrite the nonterminal S with the right hand side � of theproduction. We continue by choosing any nonterminal A in � and replacingit with the right hand side � of a corresponding production A ! �. Wecontinue rewriting nonterminals until we are left with only terminals. Thesecannot be rewritten because no terminal can occur on the left hand side

2.1 Context-free grammars 15of a production. Every such rewrite step is called a derivation step andis denoted by). The entire process from the start symbol S to the �nalterminal string is called a derivation.Formally, we have that the relation �) � holds if and only if there arestrings �1, �2, A, and
, such that � = �1A�2 and � = �1
�2 and A!
is a production in the system. We also say that � derives �. The re�exivetransitive closure of the relation) is denoted by)�. Thus �)� � holds ifand only if there are n � 1 strings
1; : : : ;
n such that � =
1, � =
n and
i)
i+1 holds for every i = 1; : : : ; n� 1. Correspondingly, the transitiveclosure of the relation) is denoted by)+, and �)+ � holds if and onlyif there are n � 2 strings
1; : : : ;
n such that � =
1, � =
n and
i)
i+1holds for every i = 1; : : : ; n� 1. We say that � derives � in zero or moresteps if �)� � and that � derives � in one or more steps if �)+ �.In the following, we use italicized capital letters from the beginning ofthe English alphabet and strings beginning with capital letters for nonter-minals, e.g., A, B, Journal. Terminals are denoted by boldface strings, e.g.,a, begin. For readability, we may surround terminals by quotation marks,e.g., '.' or �a�. Capital italicized letters from the end of the alphabet standfor terminals or nonterminals, e.g., X, Y. The Greek letters �, �, : : :denoteany string over V .In the following example, we use a special kind of text terminals, de-noted by the terminal TEXT. The TEXT terminal is in this case a stringconsisting of any characters in the language. This is a useful abstraction.When de�ning our context-free grammar we do not have to write out everysingle possible string that may appear in our language. This simpli�es ourgrammar considerably.Example 2.1 In Figure 2.1 we see an example of a context-free grammarde�ning the dictionary document in Example 1.1. The context-free gram-mar is very similar to the dtd in Example 1.1, but we have used recursiveproductions instead of iteration symbols * and +. (It may be noted that ansgml dtd is generally not a context-free grammar.)A derivation that yields a sentence in the language of the context-freegrammar is shown in Figure 2.2. Each derivation step replaces a nontermi-nal with the right hand side of a production that has the nonterminal as itsleft hand symbol. The derivation here has been made left to right, wherealways the left-most nonterminal is rewritten. 2

16 2 PreliminariesDictionary ! Entries Senses ! Senses SenseEntries ! Entries Entry Senses ! SenseEntries ! Entry Sense ! De�nitionEntry ! HWGroup QuotationsSenses Quotations ! QuotationsEntry ! HWGroup QuotationEtymology Quotations ! QuotationSenses De�nition ! TEXTHWGroup ! Headword Quotation ! Date Work TextPronunciation Quotation ! Date AuthorPartofSpeech Work TextHeadword ! TEXT Date ! TEXTPronunciation ! TEXT Author ! TEXTPartofSpeech ! n. j v. j a. Work ! TEXTEtymology ! TEXT Text ! TEXTFigure 2.1: A context-free grammar.2.2 Parse treesOne way to show how a sentence in a derivation was produced is to write outevery single step in the derivation. A more graphical way is to draw a parsetree, showing how the nonterminals at each derivation step are replaced bynew strings. A parse tree is a special case of a tree. A tree consists of adistinguished node n called the root of the tree and an ordered sequence ofk subtrees t1; t2; : : : ; tk, where k � 0. The subtrees are also trees. Denotethe root of tree ti by ni; then n is the parent of ni and n1; n2; : : : ; nk thechildren of n. The node n, the roots of t1; t2; : : : ; tk, the roots of theirsubtrees, etc., are called the nodes of the tree. Those nodes that have nochildren are called leaves. All other nodes are interior nodes.We may associate a label with each node in the tree. Given a context-free grammar G = (N;�; P; S), we have that a parse tree is a tree, where[ASU86]:1. The root is labeled by the start symbol.2. Each leaf is labeled by a terminal or by �.3. Each interior node is labeled by a nonterminal.

2.2 Parse trees 17Dictionary) Entries) Entry) HWGroup Etymology Senses) Headword Pronunciation PartofSpeech Etymology Senses) spaz Pronunciation PartofSpeech Etymology Senses) spaz spæz PartofSpeech Etymology Senses) spaz spæz n. Etymology Senses) spaz spæz n. Abbreviation of spastic n. Senses) spaz spæz n. Abbreviation of spastic n. Sense) spaz spæz n. Abbreviation of spastic n. De�nition Quotations) spaz spæz n. Abbreviation of spastic n. = spastic Quotations)...) spaz spæz n. Abbreviation of spastic n. = spastic 1965P. Kael I lost it at the movies III. 259 The term that Americanteen-agers now use as the opposite of `tough' is `spaz'. 1975M. Amis Dead babies viii. 47 Text) spaz spæz n. Abbreviation of spastic n. = spastic 1965P. Kael I lost it at the movies III. 259 The term that Americanteen-agers now use as the opposite of `tough' is `spaz'. 1975M. Amis Dead babies viii. 47 I know how long, you little spaz.Figure 2.2: Part of a derivation.4. If A is the nonterminal labeling some interior node m and X1, X2,: : :, Xn are the labels of the children of that node from left to right,then A ! X1X2 � � �Xn is a production of the grammar G. HereX1; X2; : : : ; Xn stand for symbols that are either terminals or nonter-minals. As a special case, if A! � is a production in P , then a nodelabeled A may have a single child labeled �.We say that the production A ! X1X2 � � �Xn has been expanded orapplied at node m. The leaves of the parse tree read from left to right formthe yield or the frontier of the tree that is the string generated or derivedfrom the nonterminal at the root of the parse tree. The grammar G isunambiguous if for each terminal string there is at most one possible parsetree.Example 2.2 Figure 2.3 shows the parse tree of the derivation in Exam-ple 2.1. The root is at the top and the leaves at the bottom of the picture.

18 2 PreliminariesThe TEXT terminals have been replaced with the text from the derivation.22.3 ParsingContext-free grammars can be used to describe structured documents. Wecan check that a document follows a certain grammar by constructing aparse tree for the document. What we now need is an automatic way ofmatching a document against a grammar. Such a method is called parsing.Most parsing methods fall into two classes, called top-down and bottom-up methods. These terms refer to the order in which the nodes in the treesare constructed. In top-down methods we start with the start symbol andbuild the tree downwards towards the leaves. In bottom-up methods westart with the leaves and construct the internal nodes before reaching theroot.Top-down parsing is a simpler method where the parser may be con-structed manually. For example, a top-down method called recursive-descent parsing executes recursive procedures to process the input. A formof recursive-descent parsing is predictive parsing which uses the next in-put symbol (the lookahead symbol) to choose which production is usednext. Every nonterminal has an associated procedure which is called whenthe nonterminal is processed. We start with the start symbol and call itsassociated procedure. First, the procedure chooses the production to ap-ply at this stage of the input by reading the next input symbol. If thereare two such possible productions in the grammar, this method cannot beused. Then the control is shifted to the procedures associated with theright hand side symbols of the chosen production. If a nonterminal symbolis processed, the corresponding procedure is called. If, on the other hand aterminal is being processed, the next symbol is read from the input. If thenext input symbol does not match the symbol in the production an erroris reported.Recursive descent parsing is considered simple and easy to understand,but it can only be used for context-free grammars of a fairly restricted type[ASU86]. Bottom-up parsers can handle a larger class of grammars. Onesuch parsing method is shift-reduce parsing. Shift-reduce parsing constructsthe parse tree beginning with the leaves. The process tries to reduce theinput string to the start symbol. At each step a substring matching theright hand side of a production is replaced by the left hand side symbol ofthe production.One general method of shift-reduce parsing is called lr(k) parsing

2.3Parsing
19

DictionaryEntriesEntryHWGroup Etymology SensesHeadwordPronunciationPartofSpeech SenseDe�nition QuotationsQuotations QuotationQuotation Date Author Work TextDate Author Work Textspaz spæz n Abbreviationof spasticn. = spastic 1965 P. KaelI lost it at themovies III. 259The term that American teen-agersnow use as the opposite of `tough'is `spaz'. 1975 M. AmisDead babiesviii. 47I know how long,you little spaz.

Figure2.3:TheparsetreeofthederivationinFigure2.2.

20 2 Preliminaries[Knu65]. lr(k) parsing needs to look ahead only k symbols in the input tobe able to perform the parsing process. lr parsers can be constructed torecognize almost all programming language constructs for which context-free grammars can be written [ASU86]. It is, however, di�cult to constructan lr parser by hand. Fortunately there are several lr parser generatorsavailable.Again in both top-down and bottom-up parsing methods we de�ne spe-cial terminals, such as texts, identi�ers and numbers. The parser treatsthem as terminals. The lexical analysis, preceding the parsing and per-formed by a scanner, recognizes the form of the strings in the input andpasses single tokens, e.g., IDENTIFIER, TEXT, and NUMBER, to the parser.2.4 The Standard Generalized Markup LanguageAll documents have structure. By marking the structure explicitly in thedocument, applications may take advantage of the structure as well asthe contents. By using a standard markup, the document becomes moreportable and there is a greater possibility to �nd tools for updating andformatting the document [Möl94] .The Standard Generalized Markup Language (sgml, [ISO86]) is a meta-language standard for de�ning markup languages. The markup languagede�nes a set of markup conventions used together for encoding texts. Itspeci�es what markup is allowed, what markup is required, how markup isdistinguished from text, and what the markup means [SMB93].sgml enforces descriptive markup which provides names to categorizeparts of a document. By contrast a procedural markup system de�nes whatprocessing is to be carried out at particular points in a document. Withdescriptive markup the document can be processed by many di�erent typesof software, each of which may modify or present the document in its ownway.We saw an example of an sgml document in the previous section (Fig-ure 1.1 on page 3). We here only brie�y de�ne the most central featurespresent in sgml. A structural component of a document is in sgml calledan element. Elements are explicitly marked in a document instance by astart tag and an end tag containing the name of the element. For example,in the previous document, the headword is marked as an element by thestart tag <HeadWord> and </HeadWord>. The text between the tags, i.e., inthis case spaz, is the content of the element. Elements may have propertiesassigned to them in the form of attributes. Attributes are speci�ed in thestart tag of an element, e.g., the notation <HeadWord Language=English>

2.4 The Standard Generalized Markup Language 21states that the HeadWord element has an attribute Language with valueEnglish. Documents may contain entities which reference external �les,e.g., pictures, or they may also be used as macros or abbreviations forconstant strings. Documents may also contain processing instructions thathold application-dependent information.A document instance must have a document type de�nition (dtd), i.e.,a grammar describing the structure of the document. In the dtd, everyelement is de�ned by its content model (or production) that shows whichother elements or data it may contain. Attributes and entities must alsobe de�ned in the dtd. The dtd may be included in the same �le as thedocument instance, as is the case in Figure 1.1. The document instance andthe dtd may also reside in separate �les. In the latter case the documentinstance must contain a reference to the dtd.A typical content model may be found in the example dtd in Figure 1.1:<!ELEMENT Entry - - (HeadWordGroup, Etymology?, Sense+)>Here we have an element Entry which contains one HeadWordGroup element,a possible Etymology element and one or more Sense elements. Tags maybe minimized, i.e., omitted, if the content model says so. This contentmodel states that both the start tag <Entry> and the end tag </Entry> arerequired because the content model contains the characters �- -�. Eitherthe start tag or the end tag may be omitted if we specify �O -� or �- O�,respectively and both tags may be omitted if we have �O O�. Minimizationis mostly a technical detail to reduce the work of the author and the size ofthe document instance. In the content model above, the group connectorcomma , stands for consecutive components. There are two other groupconnectors | and & (not present in this content model). Only one of thecomponents connected with | may occur. Components connected with &may occur in any order. The occurrence indicators ?, + and * stand for anoptional occurrence, one or more occurrences, or zero or more occurrencesof the component, respectively.A complete sgml document contains an sgml prolog and a documentinstance. The prolog may contain an sgml declaration describing basicfacts about the dialect of sgml being used, such as the character set, andthe length of identi�ers. The prolog must contain a document type de�ni-tion (dtd).An sgml parser validates the document instance, i.e., checks if theinstance conforms to its dtd. An sgml parser takes an sgml documentas input and parses the instance according to the dtd. In the simplecase it only outputs whether the instance is correct. Usually, however, itsplits up the instance in an element information structure set (esis, [Gol90,

22 2 PreliminariesAppendix B, Annex G]) which is a list of all the components of the instance,e.g., tags, elements, attributes, etc., in the order they appear. The esisoutput can more easily be processed by other applications.Example 2.3 Figure 2.4 shows an example of a part of the esis output ofthe sgml parser nsgmls [Cla96] when it parses the document in Figure 1.1.The nsgmls parser states that the document is valid by printing the letterC at the end of the esis output. In the esis output, the start and end ofelements is denoted by parentheses and the name of the element tag, e.g.,(HEADWORD and)HEADWORD, respectively. The #PCDATA is preceded by adash, e.g., -spaz. 2(DICTIONARY (SENSE(ENTRY (DEFINITION(HEADWORDGROUP -= spastic(HEADWORD)DEFINITION-spaz (QUOTATION)HEADWORD (DATE(PRONUNCIATION)DATE-spæz (AUTHOR)PRONUNCIATION -P. Kael(PARTOFSPEECH)AUTHOR-n (WORK)PARTOFSPEECH -I lost it at the)HEADWORDGROUP movies III. 259(ETYMOLOGY)WORK-Abbreviation of spastic n. .)ETYMOLOGY .CFigure 2.4: Part of the esis output of an sgml parser.An sgml transformer or converter reads the output of an sgml parserand makes speci�ed modi�cations to the document instance. An event-driven sgml transformer reads the esis and processes the events as they areentered. A tree-based sgml transformer may read the esis for constructingan internal parse tree for further processing.There is now a new standard for specifying the semantics of sgml doc-uments, called the Document Style Semantics and Speci�cation Language(dsssl) [ISO96]. This standard lets the user make exact speci�cations ofhow certain structured sgml documents should be processed. The standard

2.4 The Standard Generalized Markup Language 23contains separate languages for specifying document transformations andformatting, and for structured searches in the documents. The �rst pro-totypes based on the standard are beginning to emerge [Cla97]. A trans-former/formatter based on dsssl may produce any output format. Theonly requirement is that it reads sgml documents and dsssl speci�cationsand that it interprets the dsssl speci�cations correctly.Unfortunately, sgml is a very complex standard. This is perhaps thereason why it has not been more widely accepted as a document standard.For example, the possible complexity of sgml dtds makes it very hardto build e�cient sgml parsers. Recently, an international expert grouphas designed a subset of sgml called xml that lacks the drawbacks of fullsgml [BSM96]. There is hope that xml will become the de facto documentmarkup standard.

24 2 Preliminaries

Chapter 3Transformation of structureddocumentsIn the following we attribute the name source to the input side of ourtransformations. We start with a source document described by a context-free grammar, a source grammar (also called an input grammar). Theoutput of the transformation is a target document. Sometimes we alsodescribe the target document with another context-free grammar, a targetgrammar (or output grammar). When parsing the source document, theparser constructs a source parse tree. Sometimes we also build a targetparse tree before writing out the target document. As we have seen in theprevious chapter, we can use context-free grammars and parsers to de�ne,check, and modify structured documents. Before we go into these syntax-directed translations, we shall take a brief look on other techniques thatcould be used in transforming structured documents.The simplest transformation technique is string matching with stringreplacing, where we de�ne a transformation consisting of string patterns,exact or approximate, and corresponding replacements. Exact matchingwith replacement is available in most editors. Approximate matching withreplacement is not very common, but, e.g., in most unix operating systemwe may use regular expressions for string matching and simple string re-placement. String matching with replacement accounts for a large groupof text transformations, but when it comes to more complicated structuralmodi�cations, e.g., swapping the order of document sections, this techniqueis not su�cient.By parsing we recognize not only the contents but also the structureof the document. Syntax-directed translation techniques are based on thisfact. Usually, the output document is written at the time of parsing withoutconstructing an additional parse tree representing the output. Most parser25

26 3 Transformation of structured documentsgenerators are used to produce such transformation modules. The userspeci�es the source document with a context-free grammar and the outputat each recognized substructure of the document. When the source doc-ument is parsed, the target document is written at the same time. Withthe help of attribute grammars [Knu68] we can perform syntax-directedtranslation of this kind.A more general transformation technique is based on subtree matchingand replacement. This technique is similar to the string-based one, butbefore performing the transformation we need to parse the input to obtaina parse tree which can be modi�ed. The transformation is based on inputand output tree templates. When an input template is matched in theparse tree, the matched nodes are replaced with the structure describedin the output pattern. Tree template matching can be performed rathere�ciently, especially when the underlying context-free grammar is known[Kil92, KM95].Some syntax-directed techniques require that we also de�ne a targetgrammar. This guarantees that the constructed target parse tree and thetarget document are syntactically correct over the grammar. Examples ofthese techniques are syntax-directed translation schemas [Iro61] and treetransformation grammars [KPPM84].3.1 Syntax-directed translation and attributegrammarsSyntax-directed translation is based on �rst recognizing the structure ofthe document before performing the transformation. In the general case,it does not mean that we have to build the source parse tree. The tar-get document is output at parsing time which restricts the applicability ofthe transformation. Still, this technique is used quite extensively in com-mercial transformation languages. Often, though, the languages have beenextended with attributes, whereby it is more appropriate to say that theyare based on attribute grammars.Example 3.1 Figure 3.1 shows an example of a syntax-directed transla-tion de�ned with yacc. The speci�cation contains three rules that surroundheadwords within the strings {\bf and }, respectively, and print a new lineafter each entry and headword group in the dictionary. 2All sgml transformation languages are based on syntax-directed trans-lation. An sgml parser reads the sgml instance and returns, e.g., an output

3.1 Syntax-directed translation and attribute grammars 27Entry: HWGroup Etymology Senses{ printf("\n") } ;HWGroup: Headword Pronunciation PartofSpeech{ printf("\n") } ;Headword: TEXT{ printf("{\bf %s} ", yytext) } ;Figure 3.1: An example of a part of a yacc speci�cation.in esis form that is the base for further transformation. Both event-driventransformations and tree-based transformations use sgml parsers. In atree-based transformation an internal structure is built based upon theoutput of the parser. In some cases also event-based sgml transformationsmay bene�t from temporary constructs comparable to attribute grammars.An attribute grammar (ag) [Knu68, LRS74] is a context-free grammarwhere each production has associated with it a set of semantic rules of theform b := f(c1; : : : ; cn), where b and ci are variables or attributes and f is ann-ary function. Translations are performed by parsing the source accordingto the grammar, then evaluating the attributes at each node in the parsetree giving a decorated tree. In a decorated tree, all attributes have valuesthat are consistent with their de�nition. Attributes can be evaluated top-down or bottom-up, or through several passes [DJL88, Yel88]. Assumingthat we do allow functions with side e�ects, we may include output actionsor even tree construction operators and thereby obtain an attributed trans-lation, typically used in program compiling. Attribute grammars are oftenused as an underlying strategy when implementing higher level transforma-tion techniques such as tree transformation grammars [KPPM84]. ags aresomewhat tedious for using in ad hoc transformations, because it is againup to the user to control that the produced output follows the intendedtarget grammar.Example 3.2 Figure 3.2 shows an example of a syntax-directed transla-tion with attributes. The speci�cation is written in yacc. Every nontermi-nal in the yacc speci�cation is allowed one attribute, denoted $n, where n= $, 1, 2, : : : . The symbol $$ denotes the attribute of the left hand sidenonterminal of the production, and $n the attribute of the nth symbol onthe right hand side. This short speci�cation moves the headword terminal

28 3 Transformation of structured documentsEntry: HWGroup Etymology Senses{ printf("\n") ;$$ = $1 } ;HWGroup: Headword Pronunciation PartofSpeech{ printf("\n") ;$$ = $1 } ;Headword: TEXT{ printf("{\bf %s} ", yytext) ;$$ = yytext } ;Figure 3.2: An example of a yacc speci�cation with attributes.up to the Entry nonterminal, where it can be used, e.g., when traversingthe rest of the dictionary entry. 23.2 Syntax-directed translation schemasNeither syntax-directed translation nor attribute grammars require a tar-get grammar. This means that there is a great stress on the user toproduce the correct output instructions in the speci�cations. A syntax-directed translation schema (sdts) [Iro61, BF61, LS68], however, requiresboth a source grammar and a target grammar, even though the grammarsmust be very similar for the schema to work. Syntax-directed translationschemas (sdts) have been used in several document transformation systems[KLMN90, KP91, Kui96].Formally, a syntax-directed translation schema (sdts) is a quintupleT = (N;�;�;R; S), where N is a �nite set of nonterminal symbols, �is a �nite input alphabet, � is a �nite output alphabet, R is a �nite setof rules of the form A ! �; �, where � 2 (N [�)� and � 2 (N [�)�and the nonterminals in � are a permutation of the nonterminals in �,and S is a distinguished nonterminal called the start symbol [AU72]. Ineach rule A ! �; � we associate occurrences of the same nonterminals in� and �. If a nonterminal appears only once in � and �, respectively,the association is obvious. Otherwise the nonterminals may be indexed todenote the associations. Terminals occurring only in � or only in � are notassociated.For the translation we de�ne a translation step with the help of a trans-

3.2 Syntax-directed translation schemas 29lation form. Firstly, the pair (S; S), where S is the start symbol, is atranslation form. Secondly, if (�A�; �0A�0) is a translation form where thetwo nonterminals A are associated, and if A !
;
 0 is a rule in R, thenalso (�
�; �0
 0�0) is a translation form. The nonterminals in
 and
0 areassociated as they are in the rule, and nonterminals in �, �0, �, and �0 areassociated as they were in the previous translation form.The process of computing such a translation form from another formwe call a translation step. A translation step is denoted by the derivationsymbol)T . We also use)�T to denote the re�exive transitive closure,a translation that consists of zero or more translation steps, and)+T todenote the transitive closure, a translation that consists of one or moretranslation steps. The translation de�ned by T , denoted �(T), is the set ofpairs [AU72]f(x ; y)j(S ; S))�T (x ; y); where x 2 �� and y 2 ��g:Informally, we say that y is the translation of x under sdts T or thatx is the translation of y.Aho and Ullman give Algorithm 3.1 for performing a syntax-directedtranslation according to an sdts [AU72].Algorithm 3.1 (Tree transformations via an sdts)Input. An sdts T = (N;�;�; R; S), with input grammar Gs =(N;�; P; S), output grammar Gt = (N;�; P 0; S), and a derivation treeD in Gs, with frontier in ��.Output. A derivation tree D0 in Gt such that if x and y are the frontiersof D and D0, respectively, then (x; y) 2 �(T).Method.1. Apply step 2, recursively, starting with the root of D.2. Let this step be applied to node n. It will be the case that n is aninterior node of D. Let n have the children n1; : : : ; nk.(a) Delete those of n1; : : : ; nk that are leaves (i.e., have terminal or�-labels, but that are not text terminals)(b) Let the production of Gs represented by n and its direct descen-dants be A ! �. That is, A is the label of n and � is formedby concatenating the labels of n1; : : : ; nk. Choose some rule ofthe form A ! �; � in R. Permute the remaining direct descen-dants of n, if any, in accordance with the association betweenthe nonterminals of � and �.

30 3 Transformation of structured documents(c) Insert direct descendant leaves of n so that the labels of its directdescendants form �.(d) Apply step 2 to the direct descendants of n that are not leaves,from left to right.3. The resulting tree is D0. 2Aho and Ullman also prove that if x and y are the frontiers of D andD0, respectively, in Algorithm 3.1, then (x; y) is in �(T) [AU72] .Example 3.3 Figure 3.3 shows an example of a syntax-directed transla-tion schema. The schema de�nes a translation that removes the senses of adictionary entry, reorders the pronunciation and part of speech informationof a headword and inserts some constant strings for a LATEX document.An sdts can also introduce new nonterminals, the contents of which willremain empty as there is no way of specifying their structure.Note that we treat text terminals as nonterminals. Text terminals maybe associated in the same way as nonterminals are. In this way, we assurethat the contents of the source document can be copied to the target docu-ment. This is not strictly according to Algorithm 3.1 which always deletessource terminals.Entry ! HWGroup Etymology Senses,HWGroup EtymologyHWGroup ! Headword Pronunciation PartofSpeech,{nbf Headword } PartofSpeech PronunciationHeadword ! TEXT, TEXTFigure 3.3: An example of an sdts. 2Several restrictions and extensions have been de�ned for syntax-directedtranslation schemas. By requiring that all associated nonterminals for everyrule A! �; � in R occur in the same order in � and �, we obtain a simplesdts [AU72]. With a simple sdts, we cannot change the order of thedocument parts, we can only remove and insert terminals. Some extensionsallow that � and � contain di�erent nonterminals that are not associated.If � contains a nonterminal that is not present in �, the correspondingdocument part is removed. If � contains a nonterminal that is not present

3.3 TT-grammars 31in �, this part is added to the document (possibly with empty contents)[KP93].sdtss have been extended with semantic rules [AU71, Bak78], predi-cates that select a target production [PB78] or even small programs at-tached to the rules [Shi84], but these extensions do not support the cor-rectness of the output and we thereby lose the main advantage of usingsdtss.3.3 TT-grammarsUsing an sdts achieves our main goal for a transformation technique forstructured documents. The de�nition of a target grammar and its use inthe sdts guarantees that the transformation produces only correct targetdocuments. On the other hand, an sdts is quite restricted. Firstly, thesource and target grammars must be very similar. They must containnonterminals with the same names, and there must a corresponding targetproduction for each source production. In the case where we start withtwo document representations that have been de�ned with two arbitrarygrammars, we must �rst rede�ne one of the grammars to be able to de�nean sdts.Secondly, an sdts cannot add or remove levels of structure in the parsetrees. The transformation always works on one level in the source parse tree,removing or adding terminals, and reordering the nonterminals. Sometimeswe need to remove or add levels of nodes when we want to introduce moreinternal structure in our document or remove some structure. This is espe-cially useful when the target document itself becomes a source documentof another transformation.To solve these problems, we extend the sdtss and introduce tree trans-formation grammars or tt-grammars [KPPM84]. A tt-grammar is like ansdts without the implicit associations between nonterminals in the rules.On the contrary, the user must explicitly de�ne these associations. Thismeans also that he/she can associate nonterminals with di�erent names.Additionally, tt-grammars work with as many node levels in the parsetrees as wanted.A tt-grammar describes a relationship between a syntax tree over agrammar G1 and a syntax tree over a grammar G2. Transformations canbe speci�ed both ways, from trees over grammar G1 to trees over grammarG2 or vice versa, thus being especially suitable for purposes where two-waytransformations are common. Here we concentrate on one-way transforma-tions from trees over a source grammar Gs to trees over a target grammar

32 3 Transformation of structured documentsGt. The relationship is described by associating groups of productions inGs with groups of productions in Gt. In addition one needs to associatesymbol occurrences in Gs with symbol occurrences in Gt.Formally, a tt-grammar is a sextuplet (Gs , Gt, Ss, St, PA, SA), whereGs and Gt are the source and target grammars, respectively, Ss and St aresets of source and target subgrammars, respectively, PA is a set of produc-tion group associations, and SA a set of symbol associations. The sourceand target grammars are context-free grammars. The source and targetsubgrammars consist of subsets of the source and target grammars, re-spectively. A production group association is a pair consisting of a sourcesubgrammar in Ss and a target subgrammar in St. A symbol association re-lates a symbol in a source subgrammar to a symbol in a target subgrammar(within a certain production group association, or in separate productiongroup associations).A source subgrammar must satisfy the following restrictions. First,there must be a single start symbol. Second, every other symbol in thesubgrammar must be derivable from this start symbol. Source subgram-mars specify subtree patterns to be matched against in the source tree;the target subgrammars specify the subtrees that are to be constructed aspart of the target parse tree. A target subgrammar is not required to havea single start symbol; it can have several, resulting in a forest of targetsubtrees.A tt-grammar may be viewed as generating subtrees in Gt from sub-trees in Gs as follows. Let (pgs; pgt) and (pg 0s; pg 0t) be production groupassociations, where pgs and pg0s are source subgrammars and pgt and pg0ttarget subgrammars. The productions in pgt (pg0t) are used to constructtarget subtrees every time the productions in pgs (pg0s) have been applied(all of them) in the source tree. In Figure 3.4a, the application of the sourcesubgrammars has been denoted by two dashed triangles in the source tree.Let two of the produced target subtrees correspond to the productionsA ! �B� in pgt and B !
 in pg0t (Figure 3.4b). Assume also that bothtarget nodes labeled B are associated with the same source node p (denotedby dotted lines between the source node p and the two nodes labeled B inFigure 3.4). Then the two target subtrees are linked through B to form asingle target subtree (Figure 3.4c). Note that this technique is more generalthan using input and output tree templates. In a subgrammar we may userecursive productions and thereby describe more complicated tree patternsthan are possible with tree templates.The algorithm for applying a tt-grammar transformation is given asAlgorithm 3.2.

3.3 TT-grammars 33
a) source tree b) target forest c) target (sub-)tree

AB� �p B
 AB� �
Figure 3.4: Three phases in tt-grammar application..Algorithm 3.2 (Tree transformations via a tt-grammar)Input. A tt-grammar TT = (Gs ;Gt ; Ss; St ;PA; SA), with source grammarGs = (N;�; P; S), target grammar Gt = (N;�; P 0; S 0), and a derivationtree D in Gs, with frontier in ��.Output. A derivation tree D0 in Gt such that if x and y are the frontiersof D and D0, respectively, and y contains terminals only, then y is the tt-grammar translation of x. (But depending on how the transformation isspeci�ed, we may also have a forest of trees, all over Gt.)Method.1. Apply step 2 to all nodes in tree D, starting with any nonterminalnode of D. When all nodes have been matched against source sub-grammars goto step 3.2. Let this step be applied to node n with label A. It will be the casethat n is an interior node of D.(a) Choose a production group association pga = (pgs; pgt) wherethe source subgrammar pgs has start symbol A and where the

34 3 Transformation of structured documentstree structure denoted by the subgrammar matches the subtreeat node n. If there are no such production group association,return to step 1.(b) For every production Bj ! Xj1 � � �Xjk in pgt construct a sepa-rate target subtree with Bj as its root and Xj1 ; : : : ; Xjk as itschildren.(c) Let the symbol association set of the production group associ-ation pga be sa. For every symbol association (ss; st) in sa,associate the symbols ss and st, i.e., make an association be-tween the instance of the symbol ss in the derivation tree D andthe instance of the symbol st in some target subtree over theproduction Bj ! Xj1 : : :st : : :Xjk3. Apply step 4 to all root nodes of separate target subtrees created instep 2. When no more subtrees can be linked go to step 5.4. Let this step be applied to the root m of the target subtree stm. Letm have the label B and a symbol association to source node p.(a) Find a leaf node n in any of the other target subtrees with label Band an association to the same source node p. Let this subtree bestn. Merge the subtrees stm and stn at the node n, i.e., replacethe leaf node n in subtree stn with the subtree stm5. If the result is a connected tree and all the leaves are terminals, it isD0. 2We observe that Step 2 in the algorithm only constructs subtrees overa subgrammar of Gt. Thereby, if the result is one connected tree, the treemust be over the target grammar Gt.Example 3.4 We shall de�ne a tt-grammar for our dictionary document.Our example transformation makes several transformations to the dictio-nary that are not possible to de�ne with an sdts. We shall print out onlyheadwords, their etymology, and their examples: additionally, parts havebeen reordered and the text enhanced with constant strings. A possibleoutput of this word list view is the LATEX output in Figure 3.5.To achieve this view we must transform the dictionary into the LATEXdeclarations of Figure 3.6We see that we have discarded information about part of speech andsense de�nitions, and reordered some other information. We also insert

3.3 TT-grammars 35spaz (Abbreviation of spastic n.)� I know how long, you little spaz. (M.Amis, Dead babies viii. 47, 1975)� The term that American teen-agersnow use as the opposite of `tough'is `spaz'. (P. Kael, I lost it at themovies III. 259, 1965)Figure 3.5: A LATEX view of the target document.{\bf spaz} (Abbreviation of spastic n.)\begin{itemize}\item I know how long, you little spaz.(M. Amis, Dead babies viii. 47, 1975)\item The term that American teen-agers now use asthe opposite of `tough' is `spaz'.(P. Kael, I lost it at the movies III. 259, 1965)\end{itemize}Figure 3.6: An example target document.new constant strings in the text. To do this, we modify the source parsetree extensively. We specify this transformation by �rst describing thesource grammar of the dictionary and the target grammar of the word list,and then by giving the rules of the mapping, rules that are based on bothgrammars. The source grammar has already been given in Figure 2.1. Thetarget grammar is shown in Figure 3.7. Note especially that we have usedboth source grammar nonterminals and new nonterminals. The mappingdoes not restrict the use of nonterminals in the grammars as is the case inan sdts.When parsing our source document, the dictionary, we achieve the parsetree depicted in Figure 2.3 on page 19. The complete set of mapping rulesfor this transformation is given in Figure 3.8 on page 40.The �rst rule applies to the root of the source tree and states thatwhenever we �nd a subtree as speci�ed in the source subgrammar of therule in the source tree, we construct the subtrees de�ned in the target

36 3 Transformation of structured documentsWordlist ! Words Examples ! ExampleWords ! Words Word Example ! QuotationsWords ! Word Quotations ! QuotationWord ! Headword QuotationsEtymology Quotations ! Quotationnbegin{itemize} Quotation ! nitem Text (Examples Author Worknend{itemize} Date)Headword ! {nbf TEXT } Date ! TEXTEtymology ! (TEXT) Author ! TEXTExamples ! Examples Work ! TEXTExample Text ! TEXTFigure 3.7: An example target grammar.subgrammar.1 Document ! Entries Document.Wordlist ! Entries.WordsSymbol associations are denoted in the target subgrammars bysource_symbol.target_symbol. In this case the rule matches a subtree atthe root of the source tree and constructs a target subtree as follows.DictionaryEntries: : : WordlistWords1The matched subtree is denoted by the dashed box, and the rule number isstated in the top left corner of the box. The transformation constructs onetarget subtree. Symbol associations are denoted in the �gure by dottedcurves. Symbol associations between nonterminals, or nonterminals andterminals are used for connecting separate target subtrees.The following two rules map an iteration in the source on a similariteration in the target.

3.3 TT-grammars 372 Entries ! EntriesEntry Entries(1).Words ! Entries(2).WordsEntry.Word3 Entries ! Entry Entries.Words ! Entry.WordHere several occurrences of the same nonterminal are distinguished by in-dexing the occurrences. Rule 2 is never used in our example because such asource subtree cannot be found in our source tree. However, rule 3 is used,matching at the source subtree starting at node Entries.DictionaryEntriesEntry: : : : : : : : : WordsWord3As a result, we now have two separate target subtrees. In the subtreesthere are two target nodes labeled Words associated with the same instanceof a source node Entries, and the former and the new target subtrees arelinked into one subtree. WordlistWordsWordRule number 4 contains a source subgrammar with several productions.4 Entry ! HWGroup Entry.Word ! Headword.HeadwordEtymology Etymology.EtymologySenses \begin{itemize\HWGroup ! Headword Senses.ExamplesPronunciation \end{itemize}PartofSpeechPartofSpeech ! n.The transformation constructs a tree pattern from these productions withthe �rst nonterminal (Entry) as a root. Applying such a rule in an sdtsis not possible as an sdts only associates productions not subgrammars.Using the rule constructs a target tree where some of the information, such

38 3 Transformation of structured documentsas the pronunciation and part of speech categorization, has been discarded.Also, our transformation includes only entries where the PartofSpeechelement has been speci�ed as a noun (n.). If our small dictionary con-tained also verbs and adjectives, they would not be included in the targetdocument. EntriesEntryHWGroup Etymology SensesHeadwordPronunciationPartofSpeech Sensespaz spæz n Abbreviationof spasticn.4 WordHeadword Etymology Examplesnbegin{itemize}nend{itemize}Again, we have two nodes in the target subtrees labeled Word that areassociated with the same instance of a source node labeled Entry. The twotarget subtrees are connected to form a new tree as follows.WordlistWordsWordHeadword Etymology Examplesnbegin{itemize} nend{itemize}As an example of text terminal mapping, we have rule 55 Headword ! TEXT Headword.Headword ! {\bf TEXT.TEXT }which matches the source tree at node Headword. The transformation pro-duces a similar target subtree where the identi�er has been copied. Here,we have the second reason for symbol associations demonstrated. Sym-bol associations between terminals are used for copying the contents of theterminal to the target side.

3.3 TT-grammars 39HWGroupHeadword: : : : : :spaz Headwordspaz5As a �nal example of rule application, we take a look at rule 12.12 Quotation ! Date Quotation.Quotation ! Quotation.ItemAuthor Text.TextWork (Author.Author ,Text Work.Work ,Date.Date)Quotation.Item ! \itemThis rule demonstrates the reordering power of the mapping. Logical partsof the document are reordered at the same time as terminals and nonter-minals are inserted in the target tree. We also see how one rule producesseveral target subtrees to be linked later. This is not possible with an sdts.QuotationsQuotationDate Author Work Text1965 P. Kael : : : : : :12 QuotationItem Text Author Work Date(, ,)ItemnitemWe have started the simulation of the transformation by traversing thesource tree in preorder. Note, however, that there is no restriction on theorder in which the rules are applied, as long as all rules that match in thetree are used. The matching phase is performed �rst after which all theproduced target subtrees can be linked to form the target subtree.The rest of the transformation is performed in a similar way. Thecomplete set of mapping rules is given in Figure 3.8. The �gure reads

40 3 Transformation of structured documentspga source subgrammars target subgrammars1 Document ! Entries Document.Wordlist ! Entries.Words2 Entries ! Entries Entry Entries(1).Words ! Entries(2).WordsEntry.Word3 Entries ! Entry Entries.Words ! Entry.Word4 Entry ! HWGroup Entry.Word ! Headword.HeadwordEtymology Etymology.EtymologySenses nbegin{itemize}HWGroup ! Headword Senses.ExamplesPronunciation nend{itemize}PartofSpeechPartofSpeech ! n.5 Headword ! TEXT Headword.Headword ! {nbf TEXT.TEXT }6 Etymology ! TEXT Etymology.Etymology ! TEXT.TEXT7 Senses ! Senses Sense Senses.Examples ! Senses.ExamplesSense.Example8 Senses ! Sense Senses.Examples ! Sense.Example9 Sense ! De�nition Sense.Example ! Quotations.QuotationsQuotations10 Quotations ! Quotations Quotations(1).Quotations ! Quotation.QuotationQuotation Quotations(2).Quotations11 Quotations ! Quotation Quotations.Quotations ! Quotation.Quotation12 Quotation ! Date Quotation.Quotation ! Quotation.ItemAuthor Text.TextWork (Author.Author ,Text Work.Work ,Date.Date)Quotation.Item ! nitem13 Date ! TEXT Date.Date ! TEXT.TEXT14 Author ! TEXT Author.Author ! TEXT.TEXT15 Work ! TEXT Work.Work ! TEXT.TEXT16 Text ! TEXT Text.Text ! TEXT.TEXTFigure 3.8: A mapping between the grammars of Figures 2.1 and 3.7.

3.3 TT-grammars 41as follows. Product group associations are numbered from 1 to 16. Thesource subgrammar of a pga is given to the left and the correspondingtarget subgrammar to the right. Symbol associations are shown in thetarget subgrammars by connecting associated symbols with a period. Alltogether, the transformation produces 17 target subtrees that are linkedtogether through the symbol association to form the complete target treein Figure 3.9. 2Above we have seen examples of how a parts of structured document canbe renamed, reordered, removed, or inserted, how levels of the documenttree can be suppressed or inserted, and how terminals are copied to thenew document. Unfortunately, there are transformations that require morecomplex actions. This is also known in attribute grammars, where semanticrules go beyond the syntactical transformations. We have extended tt-grammars with semantic actions also in the alchemist system. The nextchapter considers this system.

423Transformationofstructureddocuments

WordlistWordsWordHeadword Etymology Examples Example Quotations QuotationsQuotation QuotationItem Text Author Work Date Item Text Author Work Date{nbf spaz } (Abbreviationof spasticn.)nbegin{itemize}nitemI know how long,you little spaz.(M. Amis ,Dead babies viii.47 , 1975) nitemThe term that American teen-agersnow use as the opposite of `tough'is `spaz'. (P. Kael ,I lost it at themovies III. 259, 1965)nend{itemize}Figure3.9:Atargetparsetree.

Chapter 4The transformation generatorALCHEMISTAs we have sen in the previous chapter, the notion of tt-grammars canwell be used in the implementation of a transformation generator for struc-tured documents. One such example is the ssags transformation generator[KPPM84], but it only implements a subset of the tt-grammar technique.In this chapter we present a transformation generator called alchemist[TL94a, LTV96] which is based on the tt-grammar technique. alchemistalso provides a graphical interface for specifying transformations. Addi-tionally, alchemist automatically generates the transformation code andcalls a compiler that links and compiles the code into an executable trans-formation.alchemist is similar to many other transformation generators such asica [MBO93]. The motivation behind alchemist lies in the fact that wewanted to provide a general transformation generator where the user doesnot have to bother about the similarity of the source and target grammars.Also, we wanted a generator that is equally suitable for producing transfor-mations between structured documents as well as between other structuredrepresentations such as computer programs and persistent representationsof data in computer applications. In this chapter we describe the struc-ture and use of alchemist and also present its implementation. We de-scribe the experience in its use and evaluation of the system in Chapter 6.First, though, we take a look at the small di�erences in the alchemisttt-grammars from those de�ned in Section 3.3.43

44 4 The transformation generator ALCHEMIST4.1 ALCHEMIST tt-grammarsalchemist implements a subset of tt-grammars where multiple sourceproductions are allowed in a source subgrammar. This allows the user tode�ne more complex source subtree templates to be matched against inthe source parse tree. Instead of only removing and adding terminals andreordering nonterminals in the source parse tree, the user can also add orremove levels of internal nodes in the tree.The general idea of a source subgrammar as a grammar has not thoughbeen implemented in alchemist. This idea would allow the use and in-terpretation of recursive productions in the source subgrammar to describearbitrarily big recursive subtrees to be matched against. This would de�-nitely add to the transformational power of alchemist, but it seems thatthis additional power is not worth the trouble. In the current version ofalchemist the source subgrammar corresponds to a connected tree sub-structure to be matched against in the source parse tree. Also the indentedbut semantically unclear symbol associations between symbols in di�erentproduction group associations have not been implemented in alchemist.These associations might be used perhaps as a short cut in linking the tar-get subtrees together at the end of the mapping but it is unclear to theauthor how they are used in [KPPM84]. These minor restrictions to thett-grammar technique in the implementation of alchemist do not muchdecrease the power of the transformation generator.In addition, several extensions have been made to the tt-grammars inalchemist. Firstly, identi�er copying from the source to the target hasbeen added. The user associates identi�ers on both sides of the transforma-tion (source and target) and assures that identi�ers are correctly �broughtover� to the target side. Secondly, semantic actions have been added forprocessing on the target side. The user can add semantic actions to checkfor identi�ers, perform computing, etc., in the transformation speci�cation.This makes the transformation as powerful as any programming language.As a matter of fact, the language used in semantic action is a programminglanguage (C++).4.2 ALCHEMIST structurealchemist divides transformation construction into three phases: speci-�cation, generation, and compilation. Speci�cation includes de�ning boththe source and target grammars as well as a mapping between the grammarsbased on the tt-grammar technique. Generation produces programming

4.2 ALCHEMIST structure 45code from the speci�cations and compilation the code of the executabletransformation module. alchemist contains interacting software modulesfor all these phases (Figure 4.1). These modules have all been named withconcepts from the alchemy domain.spellbound is the speci�cation interface and contains only one tool, themappertool, for specifying mappings. Grammars are given in text�les. The output of the speci�cation phase consists of a source and atarget grammar, and a mapping between these two grammars.spelltool comprises tools for generating the transformation code andcompiling it into an executable transformation module. It containsthe following modules:seer generates a parser from the source grammar. The source parserreads source documents and builds the corresponding sourceparse tree.stone generates a mapper from the mapping speci�cation. Thesource-to-target mapper transforms the source parse tree intoa target parse tree.swindler generates a target parser or unparser from the targetgrammar. The target parser traverses the target parse tree andwrites its frontier, the target document, to a �le.compiler compiles and links the generated code into an executabletransformation.substance is the interface for de�ning the internal parse tree structures.Depending on the transformation applications, the user needs to useparse trees of di�erent complexity.glass is the interface for de�ning user interface for user interaction whenthe user needs to interact in some semi-automatic transformations.glass and substance generators. There are two more modules gener-ating transformation code: one for generating code for the internalparse trees and one for generating the user interaction interface.pot handles the storage of reusable components, such as grammars andmapping speci�cations.In Figure 4.1 we see a schema of the alchemist process and its in-termediate and end results. All intermediate results, such as grammars,code, etc, are stored persistently in �les. Figure 4.1 shows implemented

46 4 The transformation generator ALCHEMISTtransformationproblemspellbound(mappertool) glasssubstancesourcegrammar mapping targetgrammar objectstructure userinterfacepotseer stone swindler substancegenerator glassgeneratorFtO parser OtO mapper OtF parser structure interfacecompilerspelltool transformationmodule
problemspecifydescriptiongeneratecodecompilemodule Figure 4.1: The alchemist environment.components with unbroken lines and un�nished components with dashedlines.We want to make a clear distinction between the transformation con-struction level (speci�cation, generation, and compilation) and the execu-tion level (of using the transformation). Therefore we name all the metalevel components of the construction level with capital letters: alchemist,spellbound, etc. At the execution level, alchemist transformations arecalled spells, and all components linked to the execution level (source docu-ments, spells, internal implementation components) are written with smallletters.The spell process, i.e., the data �ow of an alchemist transformation, isshown in Figure 4.2. A spell consists of three modules, a parser, a mapper,and an unparser. The parser reads the source document and builds thecorresponding parse tree. The mapper transforms the parse tree into a

4.3 ALCHEMIST use 47target parse tree, and the unparser writes the frontier of the target parsetree into the target document. Again, the intermediate representations ofthe document, the parse tree, may be saved persistently through spellpot.In this way we are less dependent on memory size if the documents arelarge.sourceinstance -parse ������ AAAAAAsourceparsetree -map spellpot������ AAAAAAtargetparsetree -parse targetinstanceFigure 4.2: Data �ow of a spell.Between the construction level and the execution level lies apprentice,an interface for executing a set of spells. apprentice provides a convenientinterface for selecting and starting the appropriate spell. The alchemistenvironment is shown in Figure 4.3.4.3 ALCHEMIST useAs mentioned earlier, alchemist divides the transformation or spell con-struction into several phases. In this section we take a closer look at thesephases together with examples and see how alchemist implements thett-grammar technique (see also [LT95, LTV95a]). The phases on the con-struction level supported by alchemist are1. the speci�cation phase where the user speci�es the transformationwith spellbound giving as results a source and a target grammar,and a mapping between the grammars,2. the generation phase where the user generates transformation codewith spelltool, and3. the compilation phase where the user with the help of spelltoolcalls the appropriate compiler for producing an executable spell.Additionally, on the execution level, supported by alchemist we have4. The execution phase where the user starts a spell with apprentice.

48 4 The transformation generator ALCHEMIST

Figure 4.3: The alchemist environment.4.3.1 Spell speci�cationThe �rst construction phase includes grammar and mapping speci�cation.The user speci�es both a source and a target grammar for the spell. Amapping between the grammars is constructed based on the tt-grammartechnique.Grammar speci�cationThe source and target grammars are context-free grammars. The grammarsfollow a very simple syntax. Nonterminals are any identi�ers beginningwith a letter and followed by letters and/or numbers. A terminal is eithersurrounded by double quotes or consists of a special terminal. A quotationmark in a terminal is in itself surrounded by double quotes. A specialterminal is a source terminal or a target terminal. Source terminals are

4.3 ALCHEMIST use 49IDENTIFIER An identi�er, a letter followed by letters or numbers.TEXT A string of text, application dependent.NUMBER A number, a digit followed by digits (integers only).STRING A string, any sequence of characters surrounded by doublequotes.Target terminals are used for producing certain strings in the targetdocument, e.g., dates or binary numbers. The target terminals areIDENTIFIER An identi�er, a letter followed by letters or numbers.NUMBER A number, a digit followed by digits (integers only).BINARY_NUMBER A binary number, for producing a binary number.IDENTIFIER[n] An identifer of length n.NUMBER[n] A number of length n.BINARY_NUMBER[n] A binary number of length n.STRING A string surrounded by double quotes.CHAR[n] The ASCII character with number n.NULL[m] Produces m NULL characters.CURRENT_DATE The current date in the format YYMMDD.CURRENT_TIME The current time in the format HHMMSS.INCLUDE_FILE Inserts the contents of the �le which is given as thenext (terminal) symbol after INCLUDE_FILE.The production rewrite symbol is denoted by ->. Iterations are speci�edwith recursive productions. Disjunctions are speci�ed by giving severalproductions with the same nonterminal on the left hand side. The gram-mar syntax is very simple and speci�cation can be made with an ordinarytext editor. Figure 4.4 shows an example of an alchemist grammar cor-responding to the dtd in Example 1.1 on page 2.When actually used in spell speci�cation, the source and target gram-mars are loaded into the grammar windows of the mappertool (Fig-ure 4.5).Mapping speci�cationThe mapping connects the source and target grammars together based onthe tt-grammar technique. As expected this is the most complicated partof a spell speci�cation. The mapping is speci�ed through mappertool(Figure 4.6).Production group associations are speci�ed in the main window ofmappertool (Figure 4.6). The user opens up the source and targetgrammars in separate windows and selects the appropriate production into

50 4 The transformation generator ALCHEMISTDictionary -> "<Dictionary>" Entries "</Dictionary>";Entries -> Entries Entry ;Entries -> Entry ;Entry -> "<Entry>" HWGroup Etymology Senses"</Entry>" ;HWGroup -> "<HWGroup>" Headword PronunciationPartofSpeech "</HWGroup>" ;Headword -> "<Headword>" TEXT "</Headword>" ;Pronunciation -> "<Pronunciation>" TEXT "</Pronunciation>" ;PartofSpeech -> "<PartofSpeech>" "n." "</PartofSpeech>" ;PartofSpeech -> "<PartofSpeech>" "v." "</PartofSpeech>" ;PartofSpeech -> "<PartofSpeech>" "a." "</PartofSpeech>" ;Etymology -> "<Etymology>" TEXT "</Etymology>" ;Senses -> Senses Sense ;Senses -> Sense ;Sense -> "<Sense>" Definition Quotations "</Sense>";Quotations -> Quotations Quotation ;Quotations -> Quotation ;Definition -> "<Definition>" TEXT "</Definition>" ;Quotation -> "<Quotation>" Date Author Work Text"</Quotation>" ;Date -> "<Date>" TEXT "</Date>" ;Author -> "<Author>" TEXT "</Author>" ;Work -> "<Work>" TEXT "</Work>" ;Text -> "<Text>" TEXT "</Text>" ;Figure 4.4: An example of an alchemist grammar.source and target subgrammars. The source subgrammar must contain onesingle start symbol from which all other symbols are derivable. By default,the left hand side of the �rst production in this group is considered as thestart symbol of the source subgrammar. When the user has speci�ed thesubgrammars, he/she connects them forming a production group associa-tion. A subgrammar may be used in several group associations.Symbol associations are speci�ed in the symbol association window(Figure 4.7). The window shows all the nonterminal symbols and specialterminals corresponding to the current production group association in themappertool main window. The user makes symbol associations by se-lecting source and target symbols. Several symbol may be chosen at atime.

4.3 ALCHEMIST use 51
Figure 4.5: An alchemist grammar in the source grammar window ofmappertool.Semantic actions are speci�ed by selecting a target symbol and specify-ing the action in the semantic actions window (Figure 4.8). An action canbe performed before or after a target symbol is processed by the mapper ofthe spell. An action before processing the symbol may make modi�cationsto the symbol, like capitalizing, etc. An action after processing may insertthe symbol in a symbol table.4.3.2 Spell generationThe second phase of spell construction includes generating the spell codefrom the spell speci�cation. In principle, code generation is independentof the programming language but in this special case alchemist generatesC++ code as the semantic actions are written in this language. Codegeneration is performed with the help of spelltool (Figure 4.9).For each subspeci�cation, the user needs to generate a spell module.seer and generates a parser from the source grammar, stone generates amapper from the mapping speci�cation, and swindler generates an un-parser from the target grammar. Following the alchemist design prin-

52 4 The transformation generator ALCHEMIST

Figure 4.6: mappertool for specifying production group associations.ciples of storing any intermediate result persistently, the code may be in-spected and even modi�ed (but on the user's own risk). In this way, theuser may tailor the transformation to very speci�c needs not describablewith spellbound.4.3.3 Spell compilationThe third phase of spell construction includes compiling and linking thespell code into an executable module. This phase includes default com-ponents like a spell user interface and connections to object management.Compiling is also performed with the help of spelltool (Figure 4.10).The user has several options. He/She can choose to compile a spellwith a graphical user interface or a textual interface. He/She can also limitthe compilation to the source parser which is very convenient for testingpurposes. In this way the user can convince himself that the grammar iscorrect before continuing with the rest of the spell speci�cation. By usingthe target grammar as a source grammar, the user can also produce a parser

4.3 ALCHEMIST use 53

Figure 4.7: The mappertool window for specifying symbol associations.
Figure 4.8: The mappertool window for specifying semantic actions.

54 4 The transformation generator ALCHEMIST

Figure 4.9: spelltool for generating spell code.
Figure 4.10: spelltool for compiling a spell.

4.3 ALCHEMIST use 55for this grammar.4.3.4 Spell executionWhen all of the phases in spell construction have been performed, thespell is ready to be executed. If the user has constructed a spell with agraphical interface (Figure 4.11), he/she can either start the spell throughapprentice (Figure 4.12) or in a command window. The user writesthe �le names of the source and target documents in the graphical spellinterface. He/She may open the source document to check that the correctdocument has been chosen. Also the target document may be openedafter the transformation. The spell interface shows the percentage of thecompleted transformation process. For debugging and tracing reasons, theuser can select the amount of debugging messages. A higher trace level givesthe user a better chance to follow the distinct phases of the transformation.
Figure 4.11: An example of a spell interface.In addition to the above mentioned spell components, the user mayalso include pre- and postprocessing commands in a spell. A preprocessingcommand is performed on the source document before it is parsed, whilea postprocessing command is performed on the target document before it

56 4 The transformation generator ALCHEMIST
Figure 4.12: apprentice provides a start up interface to a set of spells.is written to a �le. Pre- and postprocessing commands can contain avail-able unix level commands and applications. Preprocessing commands areespecially useful for simplifying the source document by removing partsunnecessary for the transformation and perhaps streamlining similar parts.Preprocessing may simplify the source grammar extensively and therebyalso the mapping speci�cation. Postprocessing, on the other hand, is suit-able for making simple conversions like translating the target documentinto the appropriate platform format (e.g., PC or unix). Pre- and post-processing commands can also be used for creating macro spells by linkingseveral spells together. Pre- and postprocessing commands are de�ned inthe Transformation components window of the spell (Figure 4.13).The complete spell (Figure 4.14) then can consist of� preprocessing commands to be performed on the source documentbefore it is parsed,� a source parser that reads the source document and builds the corre-sponding source tree,� a source-to-target mapper that traverses the source parse tree andconstructs the corresponding target parse tree according to the tt-grammar technique,

4.4 ALCHEMIST implementation 57
Figure 4.13: Spell components to be included in the spell.� a target parser or unparser that writes out the frontier of the targetparse tree, and �nally� postprocessing commands performed before the target document iswritten to a �le.Pre- and postprocessing are optional as is the mapping phase. If the map-ping phase is missing, the source tree is copied directly to the target tree.4.4 ALCHEMIST implementationThe architecture of alchemist has been kept as open as possible. All sub-components of alchemist run also stand-alone without the unifying frame-work. For example, the user may want to use only mappertool withoutthe other alchemist tools, or he/she may want to produce a stand-aloneparser with seer and may do so without the help of the spelltool. On theexecution level, all spells run stand-alone without the need of apprentice.The implementation has been done in C++ through object-orientedprogramming. yacc and lex are used in seer to generate the sourceparser, but all other alchemist components including the mapper gen-erator swindler has been implemented from scratch. alchemist with

58 4 The transformation generator ALCHEMISTsourceinstance?pre-processpro-cessedsource -parse ������ AAAAAAsourceparsetree -map spellpot������ AAAAAAtargetparsetree -parse unpro-cessedtarget6post-processtargetinstance
Figure 4.14: Data �ow of a spell.components consist of about 15 000 lines of C++ code. Typical spellscontain about 9000 lines of C++ or more depending on the size of thegrammars and the mapping. The majority of these 9000 lines are defaultcode lines for interface and prede�ned semantic actions like symbol tablechecking. alchemist and its spells run under the Solaris 2.x and CDEoperating system on Sparc machines.Spells can be compiled with several C++ compilers. We have used boththe at&t C++ compiler and the Gnu g++ compiler. Spells can easily beextended with the C++ programming language without changing the �lestructure of the generated code. A C++ �le for user de�ned procedureshas been included.alchemist is fully operational in the way as has been explained inthis chapter. alchemist has been extensively used for building transfor-mations, especially for providing an interface between two developmentenvironments [LV95].

Chapter 5The SGML transformationlanguage TranSIDThe TranSID language is a tree-based transformation language [JKL96a,JKL96b, JKL97]. The language is targeted at sgml transformations, butthe underlying technique is independent of the representation format. Thetransformation has full access to the entire parse tree of the sgml docu-ment. Design goals of the language included declarativeness, simpleness andimplementability with reasonable e�ort. Special features include a bottom-up evaluation process and the possibility to restrain the transformation tothe event-based strategy. The event-based top-down strategy is su�cientfor simple formatting of the sgml document. Bottom-up evaluation is adeclarative way of de�ning some transformations that would be awkwardto de�ne in a top-down manner. The TranSID language also includes highlevel declarative commands that frees the user from low-level programming.We have implemented an interpreter and an evaluator for TranSID, whichare fully operational in unix environments [JKL96a, JKL96b].The Document Style Semantics and Speci�cation Language Standard(DSSSL, [ISO96]) de�nes a related transformation language. DSSSL is,however, quite complex as it covers both tree transformation and docu-ment formatting. TranSID is mainly concerned with tree transformationeven if some simple formatting is possible. Above all, we have strived tomake TranSID a simple, declarative language that is easy to use. Simpletransformations should be easy to specify!In this chapter we present the TranSID language and its implementa-tion. We start by giving a short explanation of the data model and theevaluation strategy of TranSID and then give some examples of its use. Wepresent the language through examples. We conclude by giving an overviewof the implementation. 59

60 5 The SGML transformation language TranSID5.1 Overall control and data modelThe transformation process in the TranSID language is similar to the grovetransformation process of the DSSSL standard [ISO96] and also to the spellprocess of alchemist. The basic environment consists of an sgml parser,a TranSID parser, a transformer and a linearizer (Figure 5.1).SGMLsourcedoc(s) SGMLparser sourcetree(s) treetrans-former targettree(s) linearizer targetdoc(s)Internalrule baseTranSIDparserimportdeclarations transformationrules linearizationrulesTranSID programFigure 5.1: The TranSID transformation processA TranSID transformation starts by parsing an sgml document in-stance and constructing an internal document tree. We use the SP parser[Cla96] for parsing the document.The tree transformation is speci�ed in a TranSID program that is parsedby its own parser. An internal rule base is formed of the TranSID pro-gram. It may contain rules for transformation and linearization as wellas some import declarations. The import declarations guide the sgmlparser in building the source tree. The transformation is performed by thetree transformer which traverses the constructed parse tree and applies thetransformation rules to build a corresponding target representation tree.The linearizer may still perform minor conversions to the target tree. Itmay output the target tree as an sgml document, or some other speci�edoutput, e.g., a stripped (of tags) ASCII version or a html document. Theremay also be several input and output documents.5.2 Semi-formal semanticsWe present a semi-formal syntax and semantics for TranSID transforma-tions. These de�nitions describe the overall semantics of TranSID, i.e., how

5.2 Semi-formal semantics 61a TranSID program speci�es a mapping from source trees (or forests) totarget trees (or forests). The following description is adapted from [JKL97].During a TranSID execution there is always a current node at the focusof control. Intuitively, the current node is the node that is being trans-formed. The evaluation proceeds bottom-up: the descendants of the cur-rent node belong to the result forest, but its siblings and ancestors are inthe source tree (Figure 5.2).A TranSID program P is a sequence of transformation rules(R1; : : : ;Rk), where each rule Ri is a pair (Si; T i) consisting of a sourceclause Si and a target clause T i. The source clause is a predicate on thesubtree rooted by the current node. If source clause Si is satis�ed by thenode, we say that the corresponding rule Ri matches the subtree rooted bythe current node. The result of a rule Ri on a tree T is denoted by Ri(T),and it means the forest resulting by applying the target clause Ti on T .This application may include insertions of new structures and selectionand combination of tree components relative to the root of T .Let P = (R1; : : : ;Rm) be a TranSID program. We denote the result ofapplying P on a tree or a forest T by P(T), and de�ne it as follows:1. If T is a tree that matches no rule in P , then P(T) = T .2. Otherwise, if T = a(T1; : : : ; Tn) is a tree with the root element labeleda and with a forest of immediate subtrees (T1; : : : ; Tn), and Ri is the�rst rule in P that matchesa(P(T1; : : : ; Tn)) ; (5.1)then P(T) = Ri(a(P(T1; : : : ; Tn))) : (5.2)3. If T is a forest (T1; : : : ; Tn), then P(T) = (P(T1); : : : ;P(Tn)), i.e., theresult is obtained by concatenating the result of applying program Pon each of the trees in the forest. If T is an empty forest, then P(T)is also an empty forest.Equations (5.1) and (5.2) mean that the current subtree is transformedafter its subtrees have been transformed, i.e., the evaluation proceedsbottom-up. The rules are chosen in the order they appear. We want tostress that there is no evaluation order de�ned between nodes at the samelevel in the tree. For example, leaf level nodes (data) may be evaluated inan arbitrary order or even in parallel.

62 5 The SGML transformation language TranSID
source forest target forest

sourcecurrent.origin: : : ... : : : targetcurrent: : : ... : : :
Figure 5.2: Source and target forests of a transformation process. Reach-able structures from the current node are marked with solid lines, un-reachable or yet uncreated ones with dashed lines.5.3 TranSID transformationsWe present the basic components of the TranSID language through smallexamples. By a TranSID transformation we denote the process describedin the previous section consisting of parsing, transforming and linearizingone or several input sgml document instances.A transformation program consists of transformation rules. A transfor-mation rule consists of a source clause and a target clause. A source clauselocates a node in the source tree. The node can be located by name and/oradditional conditions that refer to any part of the source tree. During thetransformation, the source tree is traversed in a bottom-up way. For eachnode, the rule base is checked for a rule with a matching source clause.When a rule is found, the actions speci�ed in the target clause are per-formed. A target clause describes how the located node is replaced by atarget forest.A transformation rule then has the following format.Node type Node name or *WHEN conditionBECOMES sequence of new subtrees ;

5.3 TranSID transformations 63Any node type in the tree, such as an element or an attribute is �rstrecognized by a node clause and further tested for a condition. Thesetwo lines constitute the source clause. If the condition holds, the node isreplaced in the result tree by a forest of trees (actually a list of nodes)speci�ed in the target clause beginning with BECOMES. For example, thefollowing two rulesELEMENT "Entry"WHEN current.descendants.having(this.name =="PartofSpeech").children.find("n.")BECOMES <"Noun_Entry">{current.children} ;ELEMENT "Entry"WHEN not current.descendants.having(this.name =="PartofSpeech").children.find("n.")BECOMES null ;prunes an sgml document and includes only entries that in their PartofSpeech element contain the string �n.�. The node clause of the �rst ruleELEMENT "Entry"locates Entry elements but only when the conditioncurrent.descendants.having(this.name =="PartofSpeech").children.find("n.")holds. The condition is stated as an orientation expression. An orientationexpression consists of locators separated by dots (�.�). The �rst locatormust always be absolute, i.e., point to a certain node in the tree. In theabove expression, the locator current is absolute and points to the nodethat is being transformed. All other locators in an orientation expressionmust be relative, i.e., relative to the node or nodes indicated by the absolutelocator. In the above expression, the relative locator descendants locatesthe subelements of the current node.The evaluation of the expression proceeds from left to right. Every loca-tor returns a list of nodes that are used as input for the next locator in theexpression. In this sense TranSID expressions resemble expressions in theMetaMorphosis transformation language [MID95], which was an importantsource of inspiration for the design of TranSID. The relative locator havingselects the nodes that satisfy the condition expressed as a parameter of the

64 5 The SGML transformation language TranSIDhaving locator. In this case, the having condition contains an orientationexpression and a constant string. The locator this refers here to the de-scendants of the current node, one at a time. The property operator namelocates the name of the descendant elements and the entire condition checkswhether the found name equals the constant string PartofSpeech. Onlyelements that satisfy this condition are used as input for the next locatorwhich locates the children of the PartofSpeech elements. In this case, weassume them to be text strings #PCDATA in sgml. The string operatorfind locates only the text elements that contain the string �n.�.The source clause of the rule above matches sections like...<Entry> <HWGroup><Headword>spaz</Headword><Pronunciation>spæz</Pronunciation><PartofSpeech>n.</PartofSpeech></HWGroup>...</Entry>...but it does not match entries that do not contain the string �n.� in thePartofSpeech element. Those entries are matched by the second rule be-cause it contains the same condition negated by the Boolean operator not.The target clauses of the rules are di�erent as well. The target clauseof the �rst rule constructs new elements named Noun_Entry. The name ofthe new element is stated between angle brackets. The contents of the newelement is stated as a list between braces. The contents is deduced by theorientation expression that locates and copies all the subelements of thecurrent node as new contents for the new Noun_Entry element. Intuitively,the meaning of the �rst rule is then to locate Entry elements with thestring �n.� in their PartofSpeech subelement and to replace these Entryelements with Noun_Entry elements that contain the same subelements asthe original Entry elements. The second rule removes all Entry elementsthat do not satisfy the condition of the �rst rule (and thereby satisfy thecondition of the second rule). Replacement of the elements by the emptylist null e�ectively removes them from the result.When the above two rules are applied to the above entry using TranSID,the result is

5.3 TranSID transformations 65<Noun_Entry><HWGroup><Headword>spaz</Headword><Pronunciation>spæz</Pronunciation><PartofSpeech>n.</PartofSpeech></HWGroup>...</Noun_Entry>with entries that are not nouns removed.The transformation may not only modify elements but also their at-tributes. The following rule shows an example of removing an element andinserting its contents as an attribute value in an element.ELEMENT "Entry"BECOMES <"Entry" PoS = current.descendants.having(this.name == "PartofSpeech").children>{<"HWGroup">{current.children.having(this.name !="PartofSpeech")},current.children.having(this.name !="HWGroup")} ;The rule locates Entry elements and replaces them with correspondingelements where the contents of their PartofSpeech element has been addedas the value of the attribute PoS. In the example above we get the followingresult.<Noun_Entry PoS ="n."><HWGroup><Headword>spaz</Headword><Pronunciation>spæz</Pronunciation></HWGroup>...</Noun_Entry>Finally, we have the transformation described in Section 1.1, whichturns the dictionary entry into a LATEX formatted version in Example 1.2.Specifying this transformation with the TranSID language, we get the fol-lowing program.

66 5 The SGML transformation language TranSIDtransformation beginELEMENT "Headword"BECOMES "{\\bf ", current.children, "} " ;ELEMENT "Pronounciation"BECOMES "(", current.children, ") " ;ELEMENT "PartofSpeech"BECOMES "{\\em ", current.children, "} " ;ELEMENT "Etymology"BECOMES "{\\em ", current.children, "} " ;ELEMENT "Definition"BECOMES current.children, "\n", "\\newline", "\n" ;ELEMENT "Quotation"BECOMES current.children, "\n", "\\newline", "\n" ;ELEMENT "Year"BECOMES "{\\bf ", current.children, "} " ;ELEMENT "Author"BECOMES "{\\sc ", current.children, "} " ;ELEMENT "Work"BECOMES "{\\em ", current.children, "} " ;ELEMENT *BECOMES current.childrenendHere we can use extensively the default rules of TranSID. If there is norule given for a certain element, the element is just copied to the target.However, in this programwe have the asterisk rule that matches all elementsbut only if the previous rules do not match. The asterisk rule (the lastrule) removes the sgml tags and copies only the contents to the target.All other rules remove tags in addition to inserting constant strings aroundthe element contents. The result of the transformation performed on the

5.4 TranSID operators 67example sgml document can be seen in Figure 1.2 on page 5.5.4 TranSID operatorsThe only data type of the TranSID language is a list of nodes. A list canalso be empty. TranSID uses the concept of polymorphic lists. A nodecan be an sgml element, a #PCDATA element, a processing instruction,an attribute, or a string. A node is equivalent to a singleton list. Anelement node can have both attributes and children. The attributes of anelement have the element node as their parent, but no ordering betweenthem is de�ned. Strings, integers and boolean values are special cases oflists. In a conditional expression, an empty list is interpreted as false, anda non-empty list is interpreted as true.Therefore all TranSID operators operate on lists. TranSID programsmay use a variety of tree transformation operators, string operators, regularexpressions, etc. The idea is to have a declarative, quite complete set of treetransformation operators that may be used in a transformation modifyingthe sgml trees. Nodes in the sgml tree may be located by the reservedwords of the node clause, like ELEMENT, ENTITY, PI, ATTRIBUTE, DATA, NODE.Here, ELEMENT locates elements, ENTITY entities, PI processing instructions,ATTRIBUTE attributes, and DATA #PCDATA (and also other data). NODElocates any type of nodes. All these reserved words must be succeeded bya node name or the asterisk * which stands for any name.Absolute locators are null, source, current, these, and this. Thelocator null is used for removing nodes as in the example above, whilesource locates the root of all the source trees, and current the node thatis being transformed. The locators these and this refer to nodes that arebeing processed all or one at a time in conditions, or in the map and glueoperators described below.Relative locators produce a new set of nodes from a node list. Thereare positional locators like elements, entities, attributes, and pi thatlocate the various subcomponents of an element. The locator childrenlocates all the children (elements, entities, attributes, and processing in-structions) of its input nodes, whereas descendants locates all of theirdescendants. Consequently, ancestors locate all the ancestors of the in-put nodes up to the root of the tree. Other positional locators are left,right, and siblings, which locate the left, the right or all the siblings ofthe input nodes. On the other hand, locators previous and next returnsthe previous or next nodes in postorder, respectively, and predecessorsand successors locates all previous or succeeding nodes in postorder, re-

68 5 The SGML transformation language TranSIDspectively. The locator parent locates the parent of the input nodes whiledata returns the data, only.Quite related locators are the �ltering locators first, first(n),having(Condition), last, last(n), and sublist(n;m). The locatorsfirst and first(n) locate the �rst or �rst n nodes of the input nodes; lastand last(n) the last or last n nodes. The expression having(Condition)tests the input nodes for a condition and locates only those that satisfythe condition. The condition may be an arbitrary orientation expressionthat references any part of the sgml trees. The locator sublist(n;m) lo-cates a speci�ed subset of the input nodes. The parameters of sublist areinterpreted similarly to the dimension speci�cations in the HyTime stan-dard [ISO92], which allows nodes to be located relative to either end of thelist. Assume that m and n are positive integer values. Then the sublistoperator locates nodes in a list as follows.sublist(m, n) Select n elements starting at element m from thebeginning of the listsublist(-m,-n) Select m elements starting at element m+n-1 fromthe end of the listsublist(m,-n) Select middle elements starting at element mfrom the beginning of the list and ending at theelement n from the end of the listsublist(-m,n) Select n elements starting at element m from theend of the listThe application operators glue, and map are two very strong operators.The operator map(Condition;Construction of target subtrees) performs theactions for every single node that satisfy the condition. The operatorglue(Condition;Condition;Construction of target subtrees) groups nodestogether if the nodes satisfy the �rst condition but not the second and per-forms the action speci�ed in the third parameter. The located nodes maybe referenced by the absolute locator these.Nodes may be tested for properties. The operator name locates thename of an element, attribute or entity, while attribute(Attribute name)locates a certain attribute of an element. The locator siblingnum returnsthe order number of the node among its siblings, and samenum the ordernumber of the node amongs siblings with the same name. The locatorcount counts the number of the nodes in a node list.Several other operations have been included into the TranSID language.String operations and regular expressions include ordinary string operations

5.5 TranSID implementation 69such as comparison, catenation and search, as well as more sophisticatedoperations based on regular expressions for string matching and replace-ment. As an example consider the following rule.DATA *WHERE current.data.matches(" defini[a-z]+")BECOMES matches_replace("%a=(S[A-Z][A-Z]L)" ->"the standard ", %a) ;This rule replaces four-letter upper-case strings beginning with the let-ter S and ending with L by the string the standard followed by thelocated string. For example, the strings SGML and SMDL are replacedwith the standard SGML and the standard SMDL, respectively, but onlyif the #PCDATA element contains a word beginning with defini, likedefinition or defining. There are also operations for searching andmatching strings, for simple testing if a string contains only letters or dig-its or both, for converting capital to small letters and vice versa and forextracting �le names and url components from strings.5.5 TranSID implementationThe TranSID evaluation environment has been implemented in C and C++and has been tested to run in the Linux, Solaris, and AIX environments.The environment consists of the SP sgml parser [Cla96], a TranSID parserimplemented with yacc and lex, and an evaluator and a linearizer bothimplemented in C. All modules are independent and may call each otherrecursively. The source code of the current version contains about 15 000lines of code.The implementation is fairly straight-forward. TranSID maintains aninternal tree database for managing the sgml trees. Memory usage mighttherefore be high. This bottleneck is solved by using sharing structures,i.e., using references instead of copies of tree nodes.

70 5 The SGML transformation language TranSID

Chapter 6Experience and evaluationIn this chapter we describe the experience we have gained in using al-chemist and TranSID. We start by describing di�erent applications builtby alchemist, and then move on to applications of TranSID. We �nish bymaking comparisons between the two systems.alchemist has been developed during several years as a part of aproject called vital [SMR93]. The vital project de�ned and implementeda methodology for building knowledge-based software systems. We havehad numerous possibilities of testing and evaluating alchemist in thisproject. Especially, we have received feedback from other project partners,which we have been able to take into account in developing alchemistfurther.The main alchemist application until now is the vital bridge[LTV95b] we built between the vital workbench [DMW93] and a com-mercial computer-aided software engineering (case) tool foundation byAndersen Consulting [And93a]. The vital workbench consists of severalknowledge-based software development tools, such as knowledge acquisitionand conceptual modelling tools. The case tool has similar components forde�ning concepts such as entity relationship modelling and data �ow dia-grammers. In an ideal kbs development environment the user should beable to use kbs tools for building kbs speci�c parts of a software system,and case tools for building traditional parts such as user interfaces. Forachieving this we built bridges, i.e., spells, between tool representations,between a conceptual modelling tool in the vital workbench and severalcorresponding tools in the case environment. The user may freely changeenvironments depending on the development task. Here we should notethat all underlying persistent representations are considered as structureddocuments. Therefore, alchemist is highly suitable in building transfor-mations between the representations.71

72 6 Experience and evaluationalchemist has also been used in another bridge from the vital work-bench. We have also built a spell from a hierarchy laddering tool calledalto [MR90] to C++. The user speci�es a graphical hierarchy of conceptswith attributes in alto and can automatically transform the hierarchyinto C++ de�nitions, which provides an easy and fast way of producing aconsistent set of C++ class and object descriptions.Additionally, we have experimented with some smaller applications. Asour �rst case we built a spell between a simpli�ed version of an entity-relationship model representation and a relational database system. In thebeginning this spell was purely syntactical but we soon learned that weneeded also semantic actions to be able to complete the spell speci�cation.Our experience gained from TranSID is not so extensive as TranSIDmainly has been designed and developed during the last two years. Wehave used TranSID in usual sgml transformations, such as transformationsbetween sgml and LATEX and sgml and html. The experience shows that,especially, when the transformations are simple, also the transformationspeci�cations are very simple. Also, the relative declarativeness of TranSIDhelps the user in writing simple and understandable programs.In this chapter we present some alchemist and TranSID applications,sometimes with the help of examples and see what lessons we learned fromtheir implementation. Often we could use feedback from one transforma-tion when building the next. In some occasions, we had to introduce newfeatures into the systems to be able to solve more complicated problems.We start with alchemist and its the main application, the interface be-tween the two development environments, and then to the smaller applica-tions. We also brie�y note some lessons we learned in spell generation andgive some evaluation of alchemist and its appropriateness for documenttransformations. Thereafter we take a look at TranSID applications andcompare the usefulness of TranSID with alchemist.6.1 An ALCHEMIST interface between two de-velopment environmentsThe vital workbench [DMW93] contains a set of tools for constructing aknowledge-based software system. The workbench is based on the vitalmethodology for building such systems [SMR93]. The workbench containstools for knowledge acquisition and modeling as well as system design andvisualization. On the other hand, the foundation case tools containstools for software design such as di�erent conceptual modeling tools andtools for de�ning user interfaces [And93b].

An alchemist interface between two development environments 73There are several reasons for the bridge between the two developmentenvironments [Ver94]. Firstly, one of the design principles of the vitalworkbench was openness. The user of the workbench should be able toimport as well as export design schemas and models to and from the work-bench. Especially, the user may want to use a special tool for providing acertain component of the system he/she is building. We do not, of course,provide spells from and to all external tools, but the user can use al-chemist to build a new interface for some additional tool. Secondly, thevital workbench is a specialized environment for building knowledge-basedsystems and thereby concentrates on kbs properties. On the other hand,general case environments usually contain quite sophisticated tools andtechniques for typical software components such as user interfaces, datastructure planning, etc. The vital methodology expects and depends onthe user to use other external tools as well for building kbs systems.For the bridge between the vital workbench and the foundation casetool, we �nally chose some very speci�c tools to interface [LV95]. In thevital workbench we chose the Operationalizable Conceptual ModellingLanguage (ocml) editor and in foundation we chose several diagramtools, such as an entity-relationship diagram tool, a data �ow diagram tool,a procedure diagram tool and a data objects speci�er tool. Interfacing onthe conceptual modeling level seems most appropriate, as this level containswell-de�ned speci�cations without going into implementation details. Theocml editor lets the user specify a knowledge-based system with the help ofdomain, task and model diagrams. A domain diagram describes concepts,their instances, attributes and relationships, as well as relations between theconcepts. A task diagram describes a certain problem solution containingprocesses and data elements. The diagram may contain sequential andchoice tasks, and tasks may be recursive. In overall, a task diagram gives agraphical view of a knowledge-based program, and the diagram also worksas a visualization of the program. The model diagram collects certaindomain and task diagrams that together describe a certain problem and itssolution.The foundation Design environment contains, among other tools, anentity-relationship diagrammer for drawing entity relationship diagrams,a data �ow diagrammer for data �ows and a procedure diagrammer fordescribing the solution process of a problem (Figures 6.1 and 6.2). Thedata objects speci�er lets the user describe data objects, their types andrelations in table format. The entity relationship diagram contains entityand relationships types. Entity types may also have attributes. A data �owdiagram contains data collections and processes and their connections. A

74 6 Experience and evaluationprocedure diagram shows in what order the processes and subprocesses ofthe data �ow diagram are executed. It may contain iterative processes andconditional clauses [And93a].
thomas_d

researcher

eva_i

manager

member
lab_

eva_i

manager

thomas_d

researcher

member
lab_

Domain Diagram

OCML

Entity-Relationship Diagram

FOUNDATION

Figure 6.1: An example transformations from an ocml domain diagram toan foundation er diagram.In our case bridge we chose to interface the ocml domain diagramswith entity relationship diagrams because of their close resemblance. Bothdescribe concepts and their relations and properties. The concepts are alsotransformed into a data object table maintained by foundation. We cansay that there is a one-to-one connection in both cases as the ocml domaindiagrams are completely represented in both entity relationship diagramsand data object tables. There was however, no close relative of the ocmltask diagrams in the foundation environment. Therefore, we chose tointerface task diagrams with two foundation diagrams types, the data�ow diagrams and the procedure diagrams. The data �ow of the taskdiagrams are transformed into foundation data �ow diagrams and theprocess is transformed into procedure diagrams.The bridge between the environments was implemented only in one di-rection, from the vital workbench to the foundation environment. Itwas obvious that the need in this direction was greater. The user could�rst start by specifying and building knowledge-based parts of the sys-tem and then completely change environment and �nish the system in thefoundation environment [VL94].The spells included in the vital bridge between the workbench and thefoundation case tool are [LMQ+95, LQV95]

An alchemist interface between two development environments 75
action2order

action1

current

role
choose roles_left?

allocation

true

false

OCML

Task Diagram
+ Allocation

- Action1

 OR

- Action2

- Choose role

 (IF roles_left? true)

 (ELSE roles_left? false)

Procedure Diagram

currentorder action2

action1

tion
alloca

left?
roles_choose

role

true

false

Data Flow Diagram

FOUNDATION

Figure 6.2: Transformations from ocml task diagrams to foundation.� dom2erd, a spell for transforming ocml domain diagrams intofoundation Design entity-relationship diagrams,� dom2objs, a spell for transforming ocml domain diagrams intofoundation tables of data objects,� task2dfd, a spell for transforming ocml task diagrams into foun-dation Design data �ow diagrams, and� task2pd, a spell for transforming ocml task diagrams into founda-tion Design procedure diagrams.In Figures 6.1 and 6.2 (from [LTV96]), we see examples of the graphicalrepresentations of the transformations performed by the spells dom2erd,task2dfd, and task2pd. The ocml digrams describe a simple room al-location problem called Sisyphus [Lin92] where a set of laboratory workersshould be assigned rooms in an o�ce building. There are, however, severalrestrictions that say, e.g., that secretaries should be placed near the man-ager, and that a manager should get the biggest o�ce. These restrictions

76 6 Experience and evaluationare solved in the ocml editor in the vital workbench. The Figures 6.1and 6.2, show how simpli�ed diagrams are transformed into diagrams ofthe foundation case tool. The dom2objs spell is straightforward andnot shown here.All the diagrams and tables involved in the spells have a persistentrepresentation based on either text �les or binary number �les. The ocmlpersistent representation is written in Lisp, where some additional featureshave been included for representing coordinates of the graphical �guresof the diagrams (Figure 6.3). The foundation representations are morecomplex. Information may only be imported into the case tool throughspecial import �les and their graphical representations. Data �ow andprocedure diagrams are therefore represented by two di�erent �les each, onetext �le for the logical objects and one binary number �le for the graphicaloutlook of the diagram (Figure 6.3). These two �les must, naturally beconsistent with each other, i.e., contain the same objects in the same order.However, both graphical and logical information is represented in the sameimport �le for entity-relationship diagrams. Also data objects are speci�edin one import �leThese restrictions put some more strain on the bridge implementation.The dom2erd and dom2objs spells only produce one �le each for everytransformation. The task2dfd and task2pd spells, though, must pro-duce both a text �le and a binary number �le for each transformation.This problem was solved by producing a combined �le as a result that wasdivided with a postprocessing command in the alchemist spell.Figure 6.4 shows an example of a complex mapping rule in the speci-�cation of the task2dfd spells. The source subgrammar identi�es a taskdiagram task and its name. The target subgrammar contains the de�nitionof a data �ow process where the task name is copied several times into theconstructed process.The problem list that had to be solved in the spells is quite extensive[VL95], ranging from simple identi�er modi�cations and checking to globalcomputation of object order and numbers. We saw that alchemist wasvery suitable for handling local transformations, where one source objectcorresponds to one or several task objects. All identi�er requirements couldbe met through semantic actions. For example, identi�ers in foundationhad to be unique, while in ocml a name could appear several times indi�erent contexts. More di�cult problems to solve where the global com-putation needed for the binary number �les (the graphical �les). These�les had to contain information about how many symbols the diagramscontained. Each object also had to have its unique order number, the only

An alchemist interface between two development environments 77OCML task diagram:;;; -*- Mode: Lisp, Design Task Layer; Package: DL -*-(dale:defgraphics dale:coordinatesdale::subtask (choose-role (130 130 210 180)action1 (305 225 385 275)allocation (248 16 328 66)...)dale::choice (roles_left? (502 117 582 167)...)(def-task choose-role((|:::| allocation dale::kldesign-data-link dale::role-alias))((:rule-iteration-type . :try-once)(:represented-as :rules choose-role1 choose-role2 choose-role3)(:inter-diag-alias)))(def-choice-task roles_left?((false action2 dale::kldesign-f-control-link dale::subtask)(true action1 dale::kldesign-t-control-link dale::subtask)) NIL)(def-role order((|:::| choose-role dale::kldesign-data-link dale::subtask))((:represented-as :relation role-order)(:inter-diag-alias)))...fnd data �ow diagram, logical �le:HEADER ...0 ...2DEDFDIAG 1 ...2DEDFDIAG 2sisyphus2DEPROCSS 1 ...2DEPROCSS 2CHOOSE-ROLE...2DEEXTENT 1 ...2DEEXTENT 2ORDER...3DEDFDIAGDEPROCSS3 ...3DEDFDIAGDEPROCSS4sisyphus... 0000100000 ACRCHOOSE-ROLE...3DEDFDIAGDEEXTENT3 ...3DEDFDIAGDEEXTENT4sisyphus... 0000100000 ACR ORDER...
fnd data �ow diagram, graphical �le:F F O R M X X XU 050 049 052 032 032 032 032J B B 032 032 032 032 032032 032 032 032 032 032 032 032...D A T A 032 F L OW 032 D I A G R AM 032 045 064...001 000 D F S Y M 032032 032 046 D W B 028 000...001 032 001 020 000 003 000 000000 000 000 000 D R D OC D O C 126 052 045 059071 034 103 059 000 000 000 000000 000 000 000 000 000 000 000000 000 000 000 000 000 000 000000 000 000 000 018 000 A LL O C A T I O N013...Figure 6.3: Di�erent representations formats in the vital bridge.

78 6 Experience and evaluationOCML task diagram source production group:Task -> "(" "def-subtask" Task_Name Links Attributes ")" ;Task_Name ->OCML_IDENTIFIER ;FOUNDATION data �ow diagram target production group:Task.Entity_procss_data_record ->"2" "DEPROCSS" " " "2" Task_Name.Part_entity_id"0000100000" " " "ACR " " " " " " "" " " " " " "00001" " " "00225""000100000000" " " "ACRA" "+0001" "+0000""DEPROCSS" Task_Name.ENTITY_ID " " Task.PRC_TYPE"0000+000" "0" " N" "VITAL +" CURRENT_DATE"VITAL +" CURRENT_DATE "+" CURRENT_TIME " ""+000000" "+000000" "+0+0+0+0+0"Task_Name.ENTITY_SHORT_DESC "E"Task_Name.Short_description "\n" ;Task.PRC_TYPE ->"2" ;Task_Name.ENTITY_ID -> IDENTIFIER[32] ;/* semantic action */symbol_table.insert(OCML_IDENTIFIER) ;task_name = symbol_table.get_FND_id(OCML_IDENTIFIER):set_id(IDENTIFIER[32], task_name) ;/* end semantic action */Task_Name.Part_entity_id -> IDENTIFIER[32] ;/* semantic action */set_id(IDENTIFIER[32], task_name) ;/* end semantic action */Task_Name.ENTITY_SHORT_DESC -> IDENTIFIER[32] ;/* semantic action */set_id(IDENTIFIER[32], task_name) ;/* end semantic action */Task_Name.Short_description -> IDENTIFIER[25] ;/* semantic action */set_id(IDENTIFIER[25], task_name) ;/* end semantic action */Figure 6.4: A ocml source subgrammar and a foundation target sub-grammar with appropriate semantic actions attached.

6.2 Other ALCHEMIST transformation applications 79Spell Source Target Mappingproductions productions ruleslogical graphicaldom2erd 85 71 35dom2objs 85 81 10task2dfd 80 49 61 37task2pd 80 17 37 13Table 6.1: Number of productions and rules in the spell speci�cations ofthe vital bridge.label through which it could be referenced. These problems were solvedby using semantic actions directly implemented in the underlying program-ming language.The sizes of the spell speci�cations are shown in Table 6.1. In thisbridge implementation, it was especially convenient to use alchemist as wecould reuse grammars and mappings already de�ned, saving a lot of work.In all cases, the source grammars were quite large, 85 and 80 productions,respectively. The number of productions were reduced from about 120 withthe help of a suitable preprocessing command that simpli�ed the sourcerepresentation. The task grammars contained from 50 to 80 productions;the logical and graphical representations were usually quite distinct andrequired two separate grammars. From the number of mapping rules, wecan also conclude that two of the mappings were more extensive than theother two. On the other hand, especially the task2pd spell required quitea lot of global computation which does not show in the number of mappingrules.6.2 Other ALCHEMIST transformation applica-tionsEven if the case bridge was the most extensive generation of spells withalchemist in the vital project, we used alchemist also in some otherspells within the project. Among others, we de�ned and implemented aspell alto2c++ from a laddering tool called alto [MR90] to C++ def-initions [TL94b]. With alto, which is part of the vital workbench, theuser may draw conceptual hierarchies of the problem domain. In a hier-archy, a concept may have subconcepts and there may be instances of a

80 6 Experience and evaluationconcept. A concept may also have attributes that are inherited by subcon-cepts. The hierarchy can be used as the object model of a C++ program.Concepts correspond to classes, attributes to class attributes, and instancesto objects. The spell alto2c++ transformed these concept hierarchies tothe corresponding C++ de�nitions. This spell was half implemented withalchemist, half by hand. We used the gained experience in developingalchemist further. Among other things we saw that we had to includesemantic actions in the spell speci�cation. For example, the alto tool didnot make any di�erence between inherited attributes and local attributes.Therefore, we had to check with a semantic action if an attribute had beende�ned in a superclass every time it appeared in a class de�nition. If it hadbeen de�ned, we did not have to de�ne it again, otherwise it was de�nedfor the �rst time in this class description.Outside the vital project, we also de�ned and implemented a spell froma simpli�ed entity-relationship model to a relational database language.The spell translated a textual representation of an ER model into sql thatdeclared the corresponding relational tables in the database language. Inthis spell as well we needed to use semantic actions to perform part of thetransformation.Several other toy examples were solved with alchemist. Especially,we learned the need for pre- and postprocessing of �les. We implementedsome simple sgml transformers, reading sgml documents and outputtingformatted versions of the documents. In these cases we had to rede�ne thesgml dtds into alchemist source grammars which is quite straightfor-ward, e.g., the sgml content model corresponds to the right hand side ofa production. Only iterations in the dtds must be slightly modi�ed andexpressed through recursive productions.6.3 ALCHEMIST observationsDuring the use and testing of alchemist in the vital project and outsidethe project, we obtained information about the usefulness of alchemist.Some of this experience also helped us in the development of alchemistsuggesting further functionalities to be included in the system.Above all, we were impressed with the generality of the system. Ourspells ranged from simple syntactic ones to very complex, large and detailedones. We were able to use alchemist in building them all. The high levelof abstraction made it easier to make changes in the speci�cations, es-pecially when the underlying representations changed. The implementedspells were fast enough, usually much faster than, e.g., reading the per-

6.3 ALCHEMIST observations 81sistent representations into the tools that were interfaced. Of course, wealso encountered a number of problems, all of which were solved during thedevelopment.The possibility of speci�cation reuse was well appreciated. In the bridgebetween the vital workbench and the foundation case tool, we built sev-eral spells that were based on the same representations. For example, wewere able to reuse the grammar of the domain diagrams from the dom2erdwhen building the dom2objs spell. Even if the target representations of-ten di�ered, we were able to reuse certain functionalities and procedurespreviously de�ned in another spell.By separating the speci�cation from the implementation, we were ableto update our spells easily and quickly when the underlying representationswere changed. During spell development, the vital workbench was stillbeing constructed, and we had to take into account the changes in thepersistent representation of the ocml editor.By using a strategy for developing some spells on the side of alchemistitself, we were able to use immediate feedback in improving alchemist.When building the alto2c++ spell, we did many things by hand. In thedom2erd spell, we only had to add some semantic actions manually. Inthe task2dfd spell, adding of the semantic actions was already includedin the speci�cation phase. Most of the user de�ned routines for semanticchecking, etc., were developed alongside the spells and are now providedwith the current version of alchemist.Naturally, we also encountered some problems and shortcomings in theuse of alchemist. De�ning the grammars of the involved representationscan be a di�cult task. The user needs to know something about context-free grammars and their use. Our tool representations were so complicatedthat the �rst tries of de�ning grammars were rather unsuccessful. By in-cluding preprocessing of the source �les, we were able to simplify the gram-mars so that they became unambiguous. At the beginning we even hadproblems with the capability of yacc and lex; the parser generator justcould not handle our large grammars.Building the grammars from scratch was a tedious task. We had only afew details about the representations, and often the descriptions were notquite correct. The �rst phase of the spell speci�cations usually went into atrial-and-error approach of testing the tools to see what kind of persistentrepresentations they used. Only through a very concentrated detailed workwere we able to describe the representations exactly. The descriptions ofthe four spells of the vital bridge take about 180 pages [LQV95]! Onthe other hand, when the representations had been elucidated, building

82 6 Experience and evaluationthe transformations with alchemist was a more straightforward thing.Instead of months we were soon down to weeks and days for implementinga particular spell.As has been mentioned earlier, alchemist may not be the best toolfor building transformations that contain a lot of global computing. al-chemist seems to be very suitable for transformations where a source ob-ject transforms into one or several target objects. This was very much thecase in the vital bridge. foundation representations were much morecomplex and often some declarations had to be repeated several times fora certain object. For example, drawing a relationship in the foundationentity-relationship diagrams required that the logical relationship as well asthe graphical object had been de�ned. Additionally, the foundation per-sistent representation required both logical de�nitions about which entitytypes were connected to the relationship and graphical de�nitions aboutwhere and how the relationship was drawn in the diagram. Therefore asimple ocml relationship (an arrow between a concept and its subconcept)was translated into six di�erent relationship de�nitions on the foundationside. With alchemist these multiple de�nitions cause no problems as thetarget side may be speci�ed with a subgrammar that constructs severalseparate target subtrees.On the other hand, the task2pd spell required that most of the targetdocument was speci�ed in the graphical �le. The logical �le only containedthe name of the procedure diagram, while all other procedure names andstructures as well as the object positions were speci�ed in the graphical�le. All graphical objects were indexed with a running number that wasthereafter the only way to reference the objects in the �le. The solutionto this spell required some extra data structures for maintaining indicesthat were not available in alchemist. Still, as the user is allowed to de�nehis or her own procedures as well as including procedure calls as semanticactions, the problem could be solved.The performance of the spells was in all cases acceptable. Withoutdirect comparison with hand-made transformations, we still believe thatour alchemist spells work with satisfactory speed. In all our test cases,spell execution took less than two minutes to perform while importing thediagrams into the foundation environment could take as much as �ve min-utes. The biggest diagrams we used contained about 50 graphical objects;more objects tended to obscure the diagram and would not be sensible.In the performance we noticed that at least in the vital bridge thetransformation time was linear to the size of the source documents (Fig-ure 6.5). As the spells were mainly concerned with local transformations,

6.4 TranSID applications 83
0204060

80100120
0 5 10 15 20 25 30 35 40Time(s) Source (kB)rrr rrrrrrrr r r r rr r r r

Figure 6.5: E�ect of source �le size to spell execution time, the task2dfdspell.we seldom had to traverse the entire source document to produce a cer-tain target object. This was not the case in all our test spells. Especiallythe alto2c++ spell execution time was proportional to the square of thesource document size. This relation is due to a (too) simple mechanismfor checking whether attributes have been de�ned before by traversing theentire source document for each attribute.We run the test spells on a Sparc workstation. A typical source �leof about 5 kB and about 20 graphical objects was transformed in about10 seconds into a target �le almost 10 times its original size. The biggestsource �les were about 10 kB containing about 50 graphical symbols. Fortesting reasons we also used some bigger source �les of up to 40 kB but theycontained so many objects that their usefulness was suspect (Figure 6.6).6.4 TranSID applicationsTranSID has been developed mainly during the past two years and we havenot gained as much experience from its use as in alchemist's case. Dur-ing its design and implementation TranSID has been tested in usual sgml

84 6 Experience and evaluation
050100150200
0 5 10 15 20 25 30 35 40Target(kB) Source (kB)import �legraphical �lerrr rrrrrrrr r r r rr r r r
rrr rrrrrrrr r r r rr r r rFigure 6.6: E�ect of source �le size to target �le sizes, the task2dfd spell.transformations such as the generation of LATEX and html from sgml in-stances. We have also gained experience in the use of TranSID from aproject implementing document assembly [AHH+96a, AHH+96b]. In doc-ument assembly, new documents are constructed from a pool of documents.TranSID is used to locate and streamline document fragments and to forma new sgml document.A typical example is the TranSID reference manual, which was writtenin sgml and transformed both into html and LATEX1. In Figure 6.7 we seethe beginning of the reference manual in sgml. The dtd (not shown here)is very simple, containing only very basic elements corresponding fairly wellto LATEX commands. Also references, both backwards and forwards, havebeen coded in sgml.In Figure 6.8 we see one of the rules in the TranSID program. It con-structs a table of contents with links to the corresponding sections. This isquite a complicated rule which shows the power of the TranSID language.We shall give a short explanation of the rule. The main purpose of the ruleis to construct the main page of the reference manual with a table of con-1This transformation was designed and implemented by Jani Jaakkola in September1996.

6.5 TranSID observations 85tents. Lines 6-7 of Figure 6.8 tell us that the element TSDOC is replaced withan HTML element. Lines 8-9 assign the document title to the local variablemaintitle with the set operator, but the null operator at the end of theexpressions prevents it from being copied to the result (yet). The variableis used later in the rule to include the document title in html TITLE andH1 elements. Line 12 shows how TranSID may produce an element as astring, and line 13 how it produces an element as a structure node.Further on in the rule, lines 20-22 make a list of TITLEs of SECTIONelements. The list items function as links as well to the corresponding sec-tions. Lines 23-28 perform the same transformation for subsection titles.Both section and subsection titles are preceded with their respective num-bers computed by TranSID. Finally, after the table of contents, we havethe main content of the document included by line 31.The resulting html �les when presented in Netscape is shown in Fig-ure 6.9.6.5 TranSID observationsCompared to other sgml transformers we have found TranSID both easyto use and e�cient. We shall give some approximate numbers to help thereader understand how fast and e�cient TranSID is. In the TranSID appli-cation presented in the previous section, the complete TranSID reference�le in sgml is about 33 kB (1100 lines) and the corresponding dtd about800 bytes (38 lines) (i.e., very small). The resulting set of html �les isabout 44 kB (1320 lines) and the TranSID script transforming the sgmlinstance is about 3.5 kB (175 lines). Part of the script is shown in Fig-ure 6.8. The transformation takes about 3 seconds on a 133 MHz Pentiummachine running Linux. The transformation uses about 14 400 nodes forthe sgml trees and the peak memory use was about 1.1 MB.The high use of memory is perhaps the main drawback of TranSID.Internal representations are constructed both for the source and the target,even though many nodes could be shared as they are not modi�ed in thetransformation.6.6 Comparison between ALCHEMIST andTranSIDAs we saw earlier, the strong points of alchemist were its generality, highlevel of abstraction, and spell reuse, as well as producing very maintainabletransformations. TranSID is not in this sense as general as alchemist as it

86 6 Experience and evaluation<!DOCTYPE TSDOC SYSTEM "tsdoc.dtd"-- TranSID reference manual, last update for V0.018 16.9.96 --><TSDOC><title>&tsid; reference manual</title><SECTION><title>General</TITLE><ssect><title>Running &tsid; programs </title><para>&tsid; is invoked as follows</para><code>Transid [options] [transformation program] [SGML files]</code><para>The options include</para><dlist><d>-q</d>Do not output the target document<d>-D [debug level]</d> Switch debugging level.Valid levels are 1-7 where level 7 produces globsof debugging output and level 1 produces outputonly when &tsid; panics.<d>-L [debug section]</d> Debug a certainsection of &tsid; program. Section may be aC-source file or a section marked with C-preprocessormacros.</dlist></ssect><Ssect><title>Syntax</title><para>&tsid has C++ like comments. Comments include sectionsstarted with /* and ended with */ andsections started by // and ended with a newline.</para>Figure 6.7: The beginning of the TranSID reference manual in sgml.

6.6 Comparison between ALCHEMIST and TranSID 871 // One rule in a TranSID program that generates HTML frames2 // for transid SGML documentation Version 0.01834 transformation begin56 element "TSDOC" becomes7 <"HTML"> {8 (current.origin.children.having(this.name=="TITLE")9 .children).set(maintitle).null,10 <"HEAD"> {<"TITLE"> { "TranSID documentation: ",11 maintitle }},12 "<BASE TARGET=\"kanveesi\">",13 <"BODY" "BGCOLOR"="bfdfbf"> {14 <"H1"> { maintitle }, <"H2"> { "Table of contents" },15 <"UL"> {16 current.origin.children17 .having(this.name=="SECTION").map(TRUE;18 (thisnum).set(num1).null,19 ("sectframe-",num1,".html#",num1).set(link).null,20 <"A" "HREF"=(link)> {<"LI"> {num1," ",21 this.children.having(this.name=="TITLE").22 children}},23 this.children.having(this.name=="SSECT").children24 .having(this.name=="TITLE").set(titles).null,25 <"UL"> {titles.map(TRUE;26 <"A" "HREF"=(link,".",thisnum)> {27 <"LI"> {num1,".",thisnum," ",28 this.children}})}29)30 },31 current.children, <"HR">,32 <"I"> { "Automatically generated from ", "SGML source",33 " by ", <"A" "HREF"="./doc2frames.trs">34 {"doc2frames.trs script"}, "\n" }35 }36 };37 endFigure 6.8: One rule in the transcript converting sgml documentation intohtml with frames.

88 6 Experience and evaluation

Figure 6.9: The TranSID reference manual transformed into html frames.is mainly intended for sgml transformations. TranSID could be extendedhowever to handle all kinds of structured documents (and their represen-tation grammars) as the transformation mechanism in itself is based ontree transformation; the transformation is performed between the internalrepresentations of the documents. Reading and writing sgml is just anadditional feature of the system.dtds may be just as complicated or even more complicated than thealchemist grammars. However, often they are provided with the inputand the user does not have to construct them himself. alchemist alsorequires the user to construct a target grammar. The alchemist trans-formation process itself guarantees that only targets that are syntacticallycorrect are constructed. TranSID, however, does not require a target dtd.

6.6 Comparison between ALCHEMIST and TranSID 89Therefore the target may be syntactically incorrect compared to a dtd theuser had in mind when he speci�ed the transformation.The transformation speci�cation di�ers greatly in the systems. al-chemist, based on tt-grammars, requires the user to explicitly specifywhich structures correspond to each other in the source and target repre-sentations. This leads to a somewhat tedious transformation speci�cationin the cases when the modi�cations are minor; the user must also includestructures that do not change. The default rule in alchemist is to removeall parts that are not included in the speci�cation. In TranSID, the defaultrule is to copy all parts that are not included in the rules. Therefore, theuser only speci�es rules for document parts that are modi�ed. This leads tosimple programs for simple modi�cations, while complicated modi�cationscan require complicated programs.TranSID is also more suitable for global transformations where docu-ment parts may depend on any other part in the document. This is due tothe fact that both the source tree and part of the target tree are accessibleduring the entire transformation. As we also saw in the example trans-formations of alchemist, TranSID is, of course, more suitable for sgmltransformations, especially when more complicated features of the sgmlstandards are used.

90 6 Experience and evaluation

Chapter 7Related workDocument transformations have mostly been solved with tailored transfor-mations for two particular representations. This has led to a huge amountof small transformation modules that solve one particular problem butthat are unsuitable for other problems. Not very many transformationgenerators that could be used to solve general transformations have beenbuilt. In this chapter we take a look at some transformation generatorsand tree transformation systems that are suitable for building transforma-tions between structured documents. For extensive, if somewhat outdatedbibliographies on the manipulation of structured documents, we refer to[FSS82, And86, vVW86, Fur92] and [KN94].We concentrate on systems based on two grammars, a source grammarand target grammar, where the user is actually required to de�ne both thesource and target representations.Multiple view editors are typical applications for transformations ofstructured documents. A multiple-view editor is able to show at least twodi�erent views of a document. For example, it may show a textual versionand formatted version. Depending on the system, the user may be allowedto modify only one particular view, or he/she may be allowed to make up-dates in any document view. A typical feature in these systems is that allother views are updated either automatically or on demand, when one viewis modi�ed.We start by presenting more thoroughly a multiple view editor calledhst based on syntax-directed translation schemas, and a transformationgenerator called ica that is used especially for sgml document transforma-tions. We continue with an overview of several other systems based on twogrammars, both from the �elds of structured documents and compiler gen-eration. We also present some sgml transformation languages and othermultiple-view editors. Finally, we give a summary of the di�erent transfor-91

92 7 Related workmation systems.7.1 A multiple-view editorThe Helsinki Structured Text Database System (hst) [KLMN90] is an en-vironment for reading, writing, and querying structured documents. Thesystem provides multiple views of a document in a graphical interface. Thelogical document is described through a context-free grammar. The userneeds at least one view to be able to read and/or modify a logical docu-ment. A view is described through an annotated grammar, where the usermay modify the logical grammar according to the rules of a syntax-directedtranslation schema: he/she may remove or add terminals, and reorder thenonterminals. The user may also remove or add nonterminals.Some documents are easier to write and modify in a structured view,while others best bene�t from a simple textual view. The hst system letsthe user make modi�cations in any view; the modi�cations are automat-ically updated in the other open views. Updates are performed throughsyntax-directed translation from the modi�ed view to the logical docu-ment, and from there to all other open views. Therefore, a view de�nitiondescribes not only view computation from the logical document to a view,but also the inverse transformation [NM89, Nik90] of the view to the logicaldocument.The modi�cation of a view leads to quite an extensive process of updatesin the system (Figure 7.1). The modi�ed view is �rst parsed. Then the viewparse tree is inverted into the logical document, i.e., it is transformed viathe view de�nition back to the logical document. Other opened views areupdated from the logical document through their view de�nitions and thefrontier of the new view trees are shown as the updated views. This processhas also been incrementalized in hst. In such a process only modi�ed partsof a view are parsed and translated [Lin93].modi�edview -parse������ AAAAAAviewtree 1 -invertview ������ AAAAAAlogicaldocument -computeview ������ AAAAAAviewtree 2 -unparse updatedviewFigure 7.1: Modi�cations in a view lead to an update of the logical docu-ment and other open views in the hst system.

7.2 A structured document transformation generator 93hst is a typical example of a multiple-view editor, where the user maymodify any open view. hst is, however, able to show only textual views ofa document, not a pretty-printed formatted version. The main strength ofthe system lies in the simpleness of the syntax-directed translation schemas.The user only needs to de�ne one view, and the logical document is auto-matically transformed into the view and vice versa.The main di�erence to alchemist is that hst is based on sdtss whilealchemist is based on tt-grammars. Therefore, the source and targetgrammars in hst are variations of the same grammar, with the same non-terminals, possibly in di�erent order. alchemist, on the other hand, han-dles arbitrary di�erent grammars. The main advantage with hst is, thatit also de�nes the inverse transformations of a transformation. alchemistproduces only one-way transformations, even if the inverse transformationmay be de�ned by swapping the source and target grammars.7.2 A structured document transformation gen-eratorThe Integrated Chameleon Architecture (ica) [MKNS89, MBO93, MOB94]is a transformation generator that consists of several tools for buildingtransformations. ica relies on the de�nition of an intermediate represen-tation that always lies between the source and target representations. Theuser de�nes only one grammar for the intermediate representation; thesource and target representations are described by reordering the nonter-minals in this grammar. Therefore, the transformation speci�cation is veryapplication dependent as all representations must be described by verysimilar grammars.An ica transformation is divided into several subtransformations (Fig-ure 7.2). The user may also have to preprocess the source document. Allinternal representations in ica are based on sgml. In order to be able toparse the source document, the user has to insert sgml tags, and some-times replace other tags so that he/she achieves a fully braced document,i.e., all logical documents parts are marked with a start tag and an end tag.This process called retagging is supported by a special tagging tool. In thisphase, however, it may well be that the user already solves several mappingproblems. After the document has been retagged, it is translated into anintermediate representation according to the intermediate grammar, there-after the intermediate representation is translated to an sgml documentcorresponding to the target, and �nally the target sgml document is outputas the target document with additional modi�cations to remove the sgml

94 7 Related worktags. Mapping the general intermediate document to the target documentis automated so that the user never sees the target sgml document.sourcedocument -modifytags ������ AAAAAAretaggedsgml -mapgen tospec ������ AAAAAAgeneralintermediatesgml -mapspecto gen������ AAAAAAtargetsgml -mapspecto gen targetdocumentFigure 7.2: Transformation process of an ica transformation.As Figure 7.2 shows, the ica transformation process is very similar tothe one of hst. The intermediate document corresponds to the logical doc-ument in hst, while the speci�c sgml documents correspond to views. Asa matter of fact, ica may be considered to be based on sdtss as well. Byusing an intermediate representation, ica reduces the number of transfor-mations needed to fully interface a set of representations. When includinga new representation, the user only needs to de�ne two transformations,one to the intermediate representation and one from it to the speci�c rep-resentation. Thereby he/she can transform from the new representation toany other representation in the set.The main di�erence to alchemist is again due to the di�erent under-lying transformation techniques. ica is based on sdtss and requires theuser to de�ne an intermediate representation. alchemist allows arbitrarygrammars. The user may de�ne an intermediate representation with al-chemist as well and thereby achieve the apparent advantage of ica. icauses sgml for all internal representations of a document and saves them intemporary �les during the transformation. alchemist relies on the parsetrees which are kept in main memory only. alchemist could, however,be enhanced with the possibility of writing and reading the parse trees insgml format.7.3 Other two-grammar systemsWe have seen examples of two-grammar systems above, systems that areeither targeted at document preparation or document transformation. Inthis chapter we present some further systems that are based on a source anda grammar. Here, we do not, however, try to categorize the systems; manyof them could well be both document preparation systems and document

7.3 Other two-grammar systems 95transformation systems. For another description of document transforma-tion systems based on two grammars, see [KP95, Kui96].The Syntax and Semantics Analysis and Generation System (ssags)[PKP+82, Pay88] is based on tt-grammars just as alchemist. ssagsimplements two subsets of tt-grammars. A dual grammar translationscheme (dgts) [KPPM84] restricts source subgrammars to single produc-tions, where left hand side symbols may be associated only with left handside symbols in the target subgrammar within the same production groupassociation. A dgts corresponds to a syntax-directed translation scheme.Somewhat more general is the single input production � explicitly quali�ed(sipeq) tt-grammar [KPPM84]. The sipeq tt-grammar is also restrictedto single production source subgrammars, but symbol associations may beestablished between any source and target symbols. A sipeq tt-grammarcorresponds to ordered attribute grammars [Kas80]. The implementationof the sipeq tt-grammar also includes a simple case statement for choos-ing between target subgrammars, a copy instruction for multiplying targetsubtrees, and pseudoproductions for simplifying symbol associations. ssagshas been used, among other things, in implementing an interface betweenthe programming languages Ada and DIANA [PKPM83].Chiba and Kyojima [CK95] use syntax-directed tree translation to per-form structured document transformations. They encode trees into stringsand then perform syntax-directed translation on the strings. This approachis more powerful than sdtss because it permits suppression and insertion oftree levels, e.g., a new level of nodes may be introduced at an intermediatenode level in the parse tree. The syntax-directed tree translation techniquedoes not, however, support transformations dependent on the contents.The Turing Extender Language (txl) [CHP88b, Cor90] has been de-signed for providing extensions to existing programming languages. txltransforms programs in a language into dialects of the language where newlanguage features have been inserted or a di�erent notation is used. A txltransformation consists of three submodules. The parser is based on thebase language grammar, but takes notion also of the di�ering target lan-guage features, the transformer transforms a parse tree according to somesemantic rules, and the deparser writes out the target program. The trans-formation is done using a general purpose tree pattern matching algorithm.In short, the transformer generates a parse tree over the base language fromthe dialect language parse tree. In order to maintain the structural integrityof the parse tree, the replacement subtree is reparsed before being addedto the main tree.simon [FW93] is a system for restructuring documents that uses an

96 7 Related workintermediate representation in the transformation. simon requires a sourcegrammar, a target grammar and a higher-order attribute grammar (hag).simon uses an extra pair of trees for describing the source and target parsetrees in canonical form. The hag is used for describing transformationsbetween the parse trees and these canonical trees called a basic tree anda consistent tree, respectively. The actual transformation is performedthrough attribute evaluation in the basic tree giving as a result an evaluatedconsistent tree. The transformation process is thereby augmented with twoadditional phases, transformation from the source tree to a basic tree, andtransformation from the consistent tree to the result tree. The hag isspeci�ed manually.The Grif environment [QV86, QVB86a, QVB86b, FQA88] is an inter-active system for editing structured documents. It is a structure-orientededitor which guides the user in accordance with the structure of the docu-ment. The user de�nes a structure schema that corresponds to the genericlogical structure of a document. A view of the document is de�ned as apresentation schema, where the user describes the conversion rules thattransform the document into a view. The transformation can both removecertain parts from a document and reorder elements in the document. Amodi�cation in a view propagates to other views. Grif recognizes the con-straints between the modi�ed part and other views, and updates can bedone incrementally [QV87].The Syndoc system [KP91] is based on sdtss. The user may insertformatting details into a logical document. The user may add or deleteterminals and reorder nonterminals. In an extended version of the system[KP93, Kui96], the user may also add or delete nonterminals as well asrename nonterminals through simple semantic actions.The pedtnt system [Fur86, Fur87a, FQA88] is a testbed for the pre-sentation and manipulation of structured documents. The system is basedon context-free grammars and allows the user to de�ne transformations be-tween di�erent presentations [FS88]. The documents are described througha generic logical grammar. The transformation method lets the user alterthe grammar by de�ning a set of grammar modi�cation rules to alter theproductions. The system also requires the user to specify how the transfor-mation between the documents of the two grammars are performed. In anextended version, the system has been augmented with attributes to givethe logical grammar a �air of attribute grammars [Fur87b].The Scrimshaw language [Arn93] lets the user de�ne simple queries andtransformations on a structured document. The rules consist of a matchingpart and a construction part. The transformation process matches some

7.4 Other transformation systems 97substructures in the parse tree, assigns some of the structure to variables,which then are used in the output rules that describe how the matchedpattern is replaced. This language is more suited for simple transformationsas the complete grammar of the structure is always given in one rule.7.4 Other transformation systemsIn the �eld of sgml, quite a few transformation languages have been de-signed. Many of these languages have been designed as back-ends to sgmlparsers. An sgml parser parses an sgml document according to the cor-responding document type de�nition (dtd). Often, the parser does notconstruct a parse tree, but returns only the esis output [Gol90, AppendixB, Annex G], a list of tokens in the source like the start and end tags, ordata elements. Languages that are based on such parsers, like OmniMark[Exo93] and CoST [Har93], work as syntax-directed translators. The usermay add actions to be taken at any token but he/she may usually not refer(without di�culty) to any other part in the source. Especially, it is di�cultto make references to yet unparsed document parts. The Metamorphosissystem [MID95] instead, builds the parse tree of the sgml document. Theuser speci�es how each node in the parse tree should be modi�ed and isallowed some more extensive references to the tree. Also Balise [Ber96]provides tree based transformations as an option. The user may choosebetween an event-driven or a tree-based approach. He/She must, however,explicitly state when he/she want the transformation to construct an in-ternal parse (sub)tree of the source. None of these languages use a targetgrammar or support correct target syntax. If, however, the target is also ansgml document instance, the user may validate the instance against eitherthe source instance dtd (if the changes have been minor), or an explicittarget dtd that the user has constructed separately from the transforma-tion.Multiple-view editors provide several views of an underlying document.When the user modi�es one view, the other open views are updated, oftenthrough some syntax-directed translation technique. Some systems alsoconcentrate on dynamic transformations, where the target structure is notknown before transformation time. This problem arises in syntax-directededitors when the user decides to move a document part to another placewithin the document. If the structure of the part is not allowed in the newplace, the part must be transformed dynamically to �t in.Janus [CKS+81, CBG+82] was one of the �rst two-view text pro-cessing system. It provides the user with two views of a document

98 7 Related workon two di�erent screens. Other multiple-view editors are the VORTEX[CCH86, Che88, CH88, CHM88] document preparation system showingboth textual and formatted versions of TEX documents [Knu87], and Lilac[Bro88, Bro91]. The Sam system [Tri81] was one of the �rst two-vieweditors for graphical pictures. It combines graphics and a layout lan-guage; the user can edit a picture in two views. Other two-view edi-tors for graphical pictures are Juno [Nel85] and Tweedle [Ase87]. Quill[CHL+88, CHP88a, Cha88, Lun88, Cha90] supports full integration of var-ious sorts of graphical editing together with text editing. Multiple viewshave also been implemented in program development environments, twoof them being pecan environment [Rei83] and the Synthesizer Generator[RT89].Editing structured documents require dynamic translations of documentparts. When the user moves or copies a document part to another place, thepart must be transformed according to the structure of the target position.For example, Cole and Brown [CB90, CB92] have studied this problem andrecognized several problems like validating the structured document dur-ing creation and editing, dealing with incomplete and temporarily incorrectstructures, and identifying allowable structure edits. Akpotsui, Quint, andRoisin [AQ92, AQR93, Akp93] have developed some solutions to this prob-lem by identifying the kind of transformations needed in structured editing.Note that the source and the target grammars are in this case the samegrammar. Dynamic transformations are needed when a document part istransformed to satisfy a di�erent subgrammar of the document grammar.There are several other tree transformation systems based on singlegrammars (see, e.g., [Gra92, LMW88, LMW91, Hec88]). However powerfulthese systems are, they can, of course, not support the correct target syntax.7.5 Summary of related systemsSome of the most important features of structured document transforma-tion systems based on two grammars have been collected in Table 7.1.We have divided the table into three sections. The �rst section lists for-mal transformation techniques and ranges from the most simple one (orleast powerful) simple sdtss to more powerful ones like tt-grammars andattribute grammars. The second section lists particular transformationsystems and the third section some sgml transformation systems. Thesystems are listed in alphabetical order, preceded by alchemist and Tran-SID, respectively.Most listed techniques and systems require both a source grammar and

7.5 Summary of related systems 99a target grammar. Systems requiring a source grammar are marked with abullet in the �rst column (SG). In some cases, the system does not requirea target grammar, but the user may specify one and use it as a supportwhen specifying the transformation. In the second column (TG) we markthose systems that require a target grammar with a bullet and those thatcan use an optional target grammar with a circle.The third column (MAP) denotes the mapping formalism. The mappingis usually based on a formal technique such as syntax-directed translation(sdt), attribute grammars (ag), or tt-grammars (tt). In some cases,the mapping may rely on simple tree pattern matching and replacement(patt). In the case of sgml transformers, they are either mainly event-based (event) or tree-based (tree). See Section 3 for a presentation of thedi�erent techniques.Even if the system requires the user to de�ne a target grammar, the usermay have to explicitly de�ne what operations transform a source instanceinto a target instance over the target grammar. In this case, we do notconsider the system to support correct target syntax as it is up to the userto specify the transformation steps. In the fourth column (TC) we markthose systems supporting correct target representations with a bullet.Given a source grammar and a target grammar, some translationschemata may be constructed automatically (auto) or semiautomaticallywith some user interaction (semi). Others must be constructed manually(man). This feature is marked in the �fth column (Gen).In the sixth column (D/S) we denote if the systems support dynamicor static transformations. If the target representation is chosen run-time,e.g., in a structured editor when one object is moved to a new spot, thetransformation is considered dynamic (D). Then there can be an arbitrarynumber of target grammars. Transformations where there is a �nite previ-ously de�ned set of target grammars are considered static (S).Possible modi�cations in the source parse trees are denoted in thecolumns labeled Modi�cations: A/D, R, T. Column 7 (A/D) describes sys-tems that allow additions and deletions of nonterminals between the sourceand target grammars, column 8 (R) denotes reordering of nonterminals inthe grammars, and column 9 (T) denotes addition and deletion of tree lev-els in the transformation. Adding or deleting nonterminals help the userform more simple or complicated views of a document, e.g., a stand-alonetable of contents. Reordering nonterminals allows transformations wherethe document parts are reordered. Finally, addition and deletion of treelevels profoundly modi�es the target parse tree and also lets the user specifymore complicated tree patterns to be matched against in the source tree.

100 7 Related workSystem SG TG MAP TC GEN D/STransformation techniquessimp sdts � � sdt � semi D/Ssdts � � sdt � semi D/Sesdts � � sdt � semi D/Spred sdts � � ag � ? D/Sssdt � � ag � semi D/Spssdt � � ag � semi D/Sgsdt � � ag � semi D/Sag � � ag � semi D/Sacg � � acg �? auto Stt-grammar � � tt � man SGeneral transformersalchemist � � tt � man Sdgts � � sdt � semi SGrif � � ag? � auto D/Shst � � sdt � semi Sica � � sdt � semi Spedtnt � � ? � man SScrimshaw � � patt � man Ssdtt � � sdt � man Ssimon � � ag � ? Ssipeq � � tt� � semi SSyndoc � � esdts � man St-gen � � patt � man Stxl � � patt �� Ssgml transformersTranSID � � tree � man SBalise � � tree � man SCoST � � event � man SMetaMorphosis � � tree � man SOmniMark � � event � man S� � yes, � � no, ? � unknown, � � restricted/simpli�ed� � optionalSG Source grammar GEN Generation of transfor-TG Target grammar mation: automatic, manual,MAP Mapping formalism or semiautomaticTC Target correctness D/S Dynamic vs. StatictransformationTable 7.1: Properties of some syntax-directed transformation systems andtechniques.

7.5 Summary of related systems 101System Modi�cations ID SA UsefulA/D R T referenceTransformation techniquessimp sdts � � � � � [AU72]sdts �� � � � � [AU72]esdts � � � � �� [KP93]pred sdts � � � � � [PB78]ssdt � � � � � [Shi84]pssdt � � � � � [Shi84]gsdt � � � � � [AU71]ag � � � � � [DJL88]acg � � ? � � [GG84]tt-grammar � � � � � [KPPM84]General transformersalchemist � � � � � [LTV96]dgts � � � �? � [KPPM84]Grif � � ? � � [QV86]hst � � � � � [KLMN90]ica � � � � � [MBO93]pedtnt � � � � � [FS88]Scrimshaw � � � � � [Arn93]sdtt � � � � � [CK95]simon � � � � � [FW93]sipeq � � � �? � [KPPM84]Syndoc � � � � �� [KP93]t-gen � � � � � [Gra91]txl � � � � � [CHP88b]sgml transformersTranSID � � � � � [JKL96a]Balise � � � � � [Ber96]CoST � � � � � [Har93]MetaMorphosis � � � � � [MID95]OmniMark � � � � � [Exo93]� � yes, � � no, ? � unknown, � � restricted/simpli�edAD Addition/deletion of T Addition/deletionnonterminals of tree levelsR Reordering of nonterminals ID Identi�er mappingSA semantic actionsTable 7.1: Continued.

102 7 Related workMost systems copy identi�er-like tokens from the source side to thetarget side. This a natural feature of the transformation. The user doesnot only expect the parse trees to be modi�ed, he/she also wants the frontierof the source tree to be copied, perhaps with modi�cations, to the targettree. Systems allowing this feature are denoted in column 10 (ID). Identi�ercopying can also be performed with semantic actions denoted in column 11(SA). Semantic actions are also used for other transformation computing,symbol table checking, etc.The last column of the table lists the main reference to the technique orthe system. In the case of transformation techniques, we have usually listeda good introduction to the subject, not perhaps the �rst reference. For suchreferences, we refer to Chapter 3. In the table, we have listed also sometechniques that have not been further explained in Chapter 3. These in-clude predicate syntax-directed translation schemas (pred sdts), semanticsyntax-directed translation (ssdt), programmed semantic syntax-directedtranslation (pssdt), generalized syntax-directed translation (gsdt)), andattribute coupled grammars (acg). They are all extended techniques ofsyntax-directed translation or attribute grammars. For other references tothe transformation systems, we refer to Sections 7.1�7.4.The transformation techniques based on syntax-directed translationschemas are all fairly similar. They di�er mainly in the allowed modi�-cations. The techniques based on attribute grammars are more powerful,but even if they allow the de�nition of a target grammar, they do not guar-antee that the target syntax is correct as do the sdtss and the tt-grammartechnique.The general transformation systems are a more heterogeneous group.Some of them require a target grammar that is based on the source gram-mar. alchemist is here the only exception allowing unrelated source andtarget grammars. They also di�er in the allowed operations; in this sensewe consider alchemist to be the strongest system, while the others onlycontain a part of the operations. Choosing a suitable system for a transfor-mation is, though, highly dependent on the transformation. We hope thatthis part of the table will help the user in �nding an appropriate system.The sgml transformation systems are clearly divided into two groups:event-based systems and tree-based systems. Otherwise the systems arefairly similar. The tree-based systems TranSID and Balise di�er in thetransformation evaluation order. The tree-based transformation of Baliseis performed top-down while TranSID performs it bottom-up.

Chapter 8ConclusionTransformations of structured documents can be implemented in severalways. We believe that requiring the user to specify both the input andthe output supports the construction of correct transformation modules.We have presented di�erent syntax-directed techniques that are suitablefor document transformation. In the �eld of compiler generation, we �ndthe theory and techniques that can be used in transformation implemen-tation. Syntax-directed translation schemas are a simple technique thatrequires the user to describe his document representations through similargrammars. The power of the transformations is limited to adding and re-moving terminals, and reordering of the document parts. In an extendedversion of syntax-directed translation schemas we also have the possibilityof removing document parts or including new document fragments. At-tribute grammars can be used to obtain a more general transformationtechnique. The transformation still requires a source grammar to ensurethat the source document is correct, but often the back-end of these trans-formations is open. The user may include any output instructions and thetechnique does not assure that the output follows a certain grammar.A transformation technique based on tt-grammars is more general thanthe usual syntax-directed translation schemas. A tt-grammar requires theuser to specify both a source grammar and target grammar, describing thesource and target documents, respectively. The grammars, however, canbe widely di�erent. The user therefore explicitly describes in a mappingspeci�cation how the grammars relate to each other. Despite the manuale�ort, the technique gives a simple way of de�ning a transformation betweentwo arbitrary representations. It also ensures that the produced output issyntactically correct with respect to the target grammar.Our contribution has been to extend tt-grammars and, based on theseextensions to implement a general transformation generator called al-103

104 8 Conclusionchemist. As an antipole to tt-grammars, we have also designed andimplemented an sgml transformer called TranSID.In the case of alchemist, we have described a transformation algo-rithm based on tt-grammars. Our extensions to the technique include thepossibility of using semantic actions in the mapping speci�cation, identi�ercopying from the source to the target side, and the possibility to let the userinteract in the transformation. The transformation generator alchemistimplements all these extensions. alchemist has a graphical user interfacefor specifying and generating transformation modules. Especially, the usermay specify the tt-grammarmappings with a point and click user interface.alchemist generates transformation code on demand that is compiled intoexecutable transformations called spells. All code is saved in �les that theuser may inspect and modify for speci�cally tailored transformations. Bothalchemist and its spells are fully operational on a unix platform.alchemist has been designed and implemented within a large softwareproject. The generator has been extensively tested and used to build aninterface between a kbs development environment and a commercial casetool. Experience has shown the usefulness of alchemist, especially theimportance of its high level of abstractness. alchemist has been used alsoby other partners in the software project. Transformations are speci�edmoderately fast if only the underlying representations have been describedexactly. Performance of both alchemist and its spells have been foundacceptable. In all implemented cases, spells have been found fast enoughto satisfy the user's need.We have experienced only some minor shortcomings. First, the tt-grammar technique requires a moderate understanding of grammars, parsetrees, and parsing techniques. On the other hand, so do all other syntax-directed translation techniques. Second, building a grammar may be a verytedious task if an exact description of the representation is not available.Again this applies to all syntax-directed techniques. Third, alchemist isalso not suitable for all kinds of transformations, especially transformationsthat require a lot of global computation, since they are not easily describedwith tt-grammars. Again, global computation may be included in semanticactions described by using programs written in C++.We have reviewed several related transformation systems that are basedon syntax-directed translation schemas. These systems guarantee that theoutput of the generated transformation is syntactically correct, but oftenthe system has limited transformational power. On the other, more gen-eral systems based on attribute grammars, allow arbitrary output which, ofcourse, cannot be guaranteed to be correct. In alchemist, we combine tar-

105get correctness with a more general approach to specifying transformations.In this way, alchemist combines the best features of other techniques.alchemist could be further enhanced in several ways. One extensionwould be to allow semistructural transformations. A semistructural trans-formation takes the document structure into account but does not requirefull speci�cation of source and target representations. The user speci�esonly document parts that should be transformed; the rest of the docu-ment is copied to the target side as default. A semistructural technique isactually a tree pattern matching and replacement technique more than asyntax-directed technique. By specifying patterns with subgrammars (asin alchemist) we could achieve a more general technique.Incremental transformations would be another useful extension. Whena document is retransformed, the transformation would only need to makeupdates in an old target document corresponding to the modi�ed parts inthe source document. This would improve the performance of the transfor-mation and reduce execution time. Incremental updates, however, requireextensive data structures and procedures for maintaining data and pointersto modi�ed and updated parts, and they have been omitted from the cur-rent version of alchemist. In order to fully take advantage of incremental-ity, all transformation phases in a spell process should be incrementalized.An incremental solution includes not only incremental parsing, translation,and unparsing, but also incremental pre- and postprocessing [Lin93].The sgml interface of alchemist is currently rather limited. The userhas to convert manually sgml dtds into alchemist source grammars to beable to perform sgml transformations. In an extended version, alchemistcould perform this conversion by itself. Another solution would be to havealchemist read sgml dtds directly. Direct understanding of dtds wouldrequire more substantial modi�cations to alchemist, as alchemist isbased on lr parsing while dtds are more suitable for top-down parsing[BK94]. On the other hand, it would be simple to extend alchemistto read and to write its internal documents as sgml documents, just asis done in the ica transformation generator. The user would receive ahandy intermediate representation, easily portable to any sgml system.At the same time, the user would be provided with persistent user readablerepresentations of the internal structure. Of course, an alchemist spellmay produce such a representation as its target document, as well.alchemist is now based on lr parsing. A useful extension would in-clude ll parsing as well with grammar extensions such as iterations in-stead of recursive productions. Many available representation de�nitionshave been given in an ll grammar like fashion, and they would then be

106 8 Conclusionmore easily adopted in an alchemist speci�cation. Extending alchemistwith ll parsing would, however, require extensive modi�cations to the tt-grammar technique.Sometimes it would be useful to be able to trace target document partsto their corresponding source document parts. In a complex transforma-tion, especially in tool representation transformations, it would be conve-nient to see the link between a target object and a source object. Includinga tracing technique in the spell would also help in building and debuggingthe transformation. Another useful feature would be two-way transfor-mations. alchemist generates only one-way transformations, but in somecases it would be possible to automatically generate the inverse transforma-tion. We have made preliminary plans to include both tracing and inversetransformations in alchemist.All suggested extensions are under consideration for future work onalchemist. alchemist is at the moment fully operational but still moreof a prototype than a commercial product. alchemist would also need tobe evaluated more thoroughly.The TranSID language is mainly intended for sgml transformations.The language has been designed with the help of real world problems pro-vided by commercial partners. Also TranSID has been implemented in aresearch and development project. Performance of TranSID is acceptableeven if high main memory use is a signi�cant drawback.TranSID does not require as high expertise as alchemist in specifyingthe transformations. However, basic knowledge of sgml is required as wellas some understanding of the evaluation order or TranSID transformations.Usually, and fortunately, dtds are readily provided with sgml documents,which makes the task for the user a bit easier.TranSID requires the user to specify only parts of the documents thatare to be modi�ed. This makes small transformations simple to specify. Onthe other hand, TranSID does not use a target grammar or dtd and there-fore does not check that the target is syntactically correct. Validation mustbe performed with an external sgml parser and possibly a user-constructednew target dtd.Extensions to TranSID in the future contain an optimization of mainmemory usage, and global indexing of sentences and words.An ideal transformation system would combine the best features of boththe alchemist and TranSID systems. For example, it should compute themapping automatically based on only the source and target speci�cations.It is an open problem, though, to what extent a mapping can be computedfrom two context-free grammars (or dtds). The ideal system would also let

107the user reference any part of the source documents in the transformationspeci�cation. Additionally such a system would keep the transformationspeci�cation work to a minimum; only the parts that change should requirespeci�cation.

108 8 Conclusion

References[ACM84] ACM. Proceedings of the ACM SIGPLAN '84 Symposium onCompiler Construction, SIGPLAN Notices 19(6), Montreal,Canada, New York, 1984. ACM.[ACM88] ACM. Proceedings of the ACM Conference on Document Pro-cessing Systems, Santa Fe, New Mexico, New York, 1988.ACM.[AFQ89a] J. André, R. Furuta, and V. Quint. By way of an introduc-tion. Structured documents: What and why? In André et al.[AFQ89b], pages 1�6.[AFQ89b] J. André, R. Furuta, and V. Quint, editors. Structured docu-ments. The Cambridge Series on Electronic Publishing. Cam-bridge University Press, Cambridge, 1989.[AHH+96a] H. Ahonen, B. Heikkinen, O. Heinonen, J. Jaakkola,P. Kilpeläinen, G. Lindén, and H. Mannila. Intelligent assem-bly of structured documents. Report C�1996�40, Departmentof Computer Science, University of Helsinki, Finland, 1996.[AHH+96b] H. Ahonen, B. Heikkinen, O. Heinonen, J. Jaakkola,P. Kilpeläinen, G. Lindén, and H. Mannila. Constructing tai-lored SGML documents. In J. Saarela, editor, Proceedings ofSGML Finland 1996, pages 106�116, Helsinki, 1996. SGMLUsers' Group Finland.[Akp93] E. K. A. Akpotsui. Transformations de types dans les systémesd'édition de documents structurés. PhD thesis, L'Institut Na-tional Polytechnique de Grenoble, France, 1993.[And86] J. André. Manipulation de documents: bibliographie. T.S.I.� Techniques et Sciences Informatiques, 5(4):363�365, July �August 1986. 109

110 References[And93a] Andersen Consulting. FOUNDATION Application Develop-ment, Version 2.0, 1993.[And93b] Andersen Consulting. FOUNDATION Design, Analyze Appli-cation Requirements, Version 2.0, 1993.[AQ92] E. K. A. Akpotsui and V. Quint. Type transformation in struc-tured editing systems. In C. Vanoirbeek and G. Coray, editors,EP92 � Proceedings of Electronic Publishing, '92, Interna-tional Conference on Electronic Publishing, Document Manip-ulation, and Typography, Swiss Federal Institute of Technol-ogy, Lausanne, Switzerland, The Cambridge Series on Elec-tronic Publishing, pages 27�41, Cambridge, 1992. CambridgeUniversity Press.[AQR93] E. K. A. Akpotsui, V. Quint, and C. Roisin. Type modellingfor document transformation in structured editing systems.Technical report, INRIA, France, 1993.[Arn93] D. S. Arnon. Scrimshaw: A language for document queriesand transformations. In Hüser et al. [HMQ93], pages 385�396.[Ase87] P. J. Asente. Editing Graphical Objects Using Procedural Rep-resentations. PhD thesis, Technical report No. CSL-TR-87-343, Computer Systems Laboratory, Stanford University, USA,1987.[ASU86] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers. Principles,Techniques and Tools. Addison-Wesley, Reading, 1986.[AU71] A. V. Aho and J. D. Ullman. Translations of context-freegrammars. Information and Control, 19:439�475, 1971.[AU72] A. V. Aho and J. D. Ullman. The theory of parsing, translationand compiling, Volume I: Parsing. Prentice-Hall, EnglewoodCli�s, 1972.[Bak78] B. S. Baker. Generalized syntax directed translation, treetransducers, and linear space. SIAM Journal of Computing,7(3):376�391, 1978.[BBT92] G. E. Blake, T. Bray, and F. W. Tompa. Shortening the OED:Experience with a grammar-de�ned database. ACM Transac-tions on Information Systems, 10(3):213�232, 1992.

References 111[Ber96] Berger-Levrault/AIS. Balise Reference Manual, Release 3,1996.[BF61] M. P. Barnett and R. P. Futrelle. Syntactic analysis by digitalcomputer. Communications of the ACM, 5(10):515�526, 1961.[BK94] A. Brüggemann-Klein. Compiler-construction tools andtechniques for SGML parsers: Di�culties and solu-tions. To appear in Electronic Publishing � Origina-tion, Dissemination and Design. Available from URL:ftp://ftp.informatik.uni-freiburg.de/documents/reports/.index.html, 1994.[BR84] F. Bancilhon and P. Richard. Managing texts and facts ina mixed database environment. In G. Gardarin and E. Ge-lenbe, editors, New Applications of Data Bases, pages 87�107.Academic Press, 1984.[Bro88] K. P. Brooks. A two-view document editor with user-de�nabledocument structure. Technical Report No. 33, Digital SystemsResearch Center, USA, 1988.[Bro91] K. P. Brooks. Lilac: A two-view document editor. IEEE Com-puter, 24(6):7�19, 1991.[BSM96] T. Bray and C. M. Speerberg-McQueen. Extensible MarkupLanguage (XML). URL: http://www.w3.org/ pub/WWW/TR/WD-xml-961114.html, 1996. Draft.[CB90] F. Cole and H. Brown. Editing structured documents withclasses. Technical Report No. 73, Computing Laboratory, Uni-versity of Kent at Canterbury, UK, 1990.[CB92] F. Cole and H. Brown. Editing structured documents � prob-lems and solutions. Electronic Publishing � Origination, Dis-semination and Design, 5(4):209�216, 1992.[CBG+82] D. D. Chamberlin, O. P. Bertrand, M. J. Goodfellow, J. C.King, D. R. Slutz, S. J. P. Todd, and B. W. Wade. JANUS:An interactive document formatter based on declarative tags.IBM Systems Journal, 21(3):250�271, 1982.[CCH86] P. Chen, J. Coker, and M. A. Harrison. The VORTEX documentpreparation environment. In Désarménien [Dés86], pages 45�55.

112 References[CH88] P. Chen and M. A. Harrison. Multiple representation docu-ment development. IEEE Computer, 21(1):15�31, 1988.[Cha88] D. D. Chamberlin. An adaptation of data�ow methods forWYSIWYG document processing. In Proceedings of the ACMConference on Document Processing Systems, Santa Fe, NewMexico [ACM88], pages 101�109.[Cha90] D. D. Chamberlin. Managing properties in a system of coop-erating editors. In Furuta [Fur90], pages 31�46.[Che88] P. Chen. A Multiple-representation Paradigm for DocumentDevelopment. PhD thesis, Report No. UCB/CSD 88/436,Computer Science Division, University of California, Berkeley,USA, 1988.[CHL+88] D. D. Chamberlin, H. F. Hasselmeier, A. W. Luniewski, D. P.Paris, B. W. Wade, and M. L. Zolliker. Quill: An extensiblesystem for editing documents of mixed type. In Proceedings ofthe 21st Hawaii International Conference on System Sciences,Kailu-Kona, USA, pages 317�325, Los Alamitos, 1988. IEEEComputer Society Press.[CHM88] P. Chen, M. A. Harrison, and I. Minakata. Incrementaldocument formatting. In Proceedings of the ACM Confer-ence on Document Processing Systems, Santa Fe, New Mexico[ACM88], pages 93�100.[Cho56] N. Chomsky. Three models for the description of language.IRE Transactions on Information Control, 2(3):113�124, 1956.[CHP88a] D. D. Chamberlin, H. F. Hasselmeier, and D. P. Paris. De�n-ing document styles for WYSIWYG processing. In van Vliet[vV88], pages 121�137.[CHP88b] J. R. Cordy, C. D. Halpern, and E. Promislow. TXL: Arapid prototyping system for programming language dialects.In Proceedings of the 1988 IEEE International Conference onComputer Languages, Miami Beach, USA, pages 280�285, LosAlamitos, 1988. IEEE Computer Society Press.[CIV86] G. Coray, R. Ingold, and C. Vanoirbeek. De�ning documentstyles for WYSIWYG processing. In van Vliet [vV86], pages154�170.

References 113[CK95] K. Chiba and M. Kyojima. Document transformation basedon syntax-directed tree translation. Electronic Publishing �Origination, Dissemination and Design, 8(1):15�29, 1995.[CKS+81] D. D. Chamberlin, J. C. King, D. R. Slutz, S. J. P. Todd, andB. W. Wade. JANUS: An interactive system for documentcomposition. In Proceedings of the ACM SIGPLAN SIGOASymposium on Text Manipulation, Portland, USA, ACM SIG-PLAN Notices 16(6), pages 82�91, New York, 1981. ACM,ACM.[Cla96] J. Clark. SP, An SGML System Con�ning to InternationalStandard ISO 8879 � Standard Generalized Markup Lan-guage, 1996. URL: http//www.jclark.com/sp/.[Cla97] J. Clark. Jade � James' DSSSL engine, 1997. URL:http://www.jclark.com/jade/.[Cor90] J. R. Cordy. Speci�cation and automatic prototype imple-mentation of polymorphic objects in TURING using the TXLprocessor. In Proceedings of the 1990 IEEE International Con-ference on Computer Languages, New Orleans, USA, pages145�154, Los Alamitos, 1990. IEEE Computer Society Press.[Dés86] J. Désarménien, editor. TEX for Scienti�c Documentation.Number 236 in Lecture Notes in Computer Science. Springer-Verlag, Berlin, 1986.[DJL88] P. Deransart, M. Jourdan, and B. Lorho, editors. AttributeGrammars. De�nitions, Systems and Bibliography. LectureNotes in Computer Science 323. Springer-Verlag, Berlin, 1988.[DMW93] J. Domingue, E. Motta, and S. Watt. The emerging VITALworkbench. In N. Aussenac, G. Boy, B. Gaines, M. Linster,J.-G. Ganascia, and Y. Kodrato�, editors, Knowledge Acqui-sition for Knowledge-Based Systems, 7th European KnowledgeAcquisition Workshop, EKAW '93, pages 320 � 339, Berlin,1993. Springer-Verlag.[Dra96] N. Drakos. All about LaTeX2HTML. URL: http://cbl.leeds.ac.uk/nikos/tex2html/doc/latex2html/latex2html.html, 1996.[Exo93] Exoterica Corporation. OmniMark Programmer's Guide, 1993.

114 References[FQA88] R. Furuta, V. Quint, and J. André. Interactively editing struc-tured documents. Electronic Publishing � Origination, Dis-semination and Design, 1(1):9�44, 1988.[FS88] R. Furuta and P. D. Stotts. Specifying structured documenttransformations. In van Vliet [vV88], pages 109�120.[FSS82] R. Furuta, J. Sco�eld, and A. Shaw. Document formatting sys-tems: Survey, concepts, and issues. ACM Computing Surveys,14(3):417�472, 1982.[Fur86] R. Furuta. An integrated, but not exact-representation, edi-tor/formatter. In van Vliet [vV86], pages 246�259.[Fur87a] R. Furuta. Complexity in structured documents: User inter-face issues. In J. J. H. Miller, editor, Protext IV Proceedings ofthe Fourth International Conference on Text Processing Sys-tems, Boston, USA, pages 7�22, Dublin, 1987. Boole Press.[Fur87b] R. Furuta. A grammar for representing documents. Techni-cal Report UMIACS-TR-87-67 or CS-TR-1959, Department ofComputer Science, Institute for Advanced Computer Studies,University of Maryland, USA, 1987.[Fur90] R. Furuta, editor. EP90 � Proceedings of the InternationalConference on Electronic Publishing, Document Manipulation& Typography, Gaithersburg, Maryland, The Cambridge Se-ries on Electronic Publishing, Cambridge, 1990. CambridgeUniversity Press.[Fur92] R. Furuta. Important papers in the history of document prepa-ration systems: basic sources. Electronic Publishing � Origi-nation, Dissemination and Design, 5(1):19�44, 1992.[FW93] A. Feng and T. Wakayama. SIMON: A grammar-based trans-formation system for structured documents. In Hüser et al.[HMQ93], pages 361�372.[GG84] H. Ganzinger and R. Giegerich. Attribute coupled gram-mars. In Proceedings of the ACM SIGPLAN '84 Symposium onCompiler Construction, SIGPLAN Notices 19(6), Montreal,Canada [ACM84], pages 157�170.[Gol90] C. F. Goldfarb. The SGML Handbook. Oxford UniversityPress, Oxford, 1990.

References 115[Gra91] J. O. Graver. T-gen user's guide. Technical Report SERC-TR-50-F, Software Engineering Research Center, Universityof Florida, USA, 1991.[Gra92] J. O. Graver. T-gen: a string-to-object translator generator.Journal of Object-oriented Programming, 5(5):35�42, 1992.[GT87] G. H. Gonnet and F. W. Tompa. Mind your grammar: A newapproach to modelling text. In P. M. Stocker, W. Kent, andP. Hammersley, editors, Proceedings of the Thirteenth Inter-national Conference on Very Large Databases, Brighton, Eng-land, pages 339 � 346, Los Altos, 1987. Morgan Kaufmann.[Har93] K. Harbo. CoST Version 0.2 � Copenhagen SGML Tool. Tech-nical report, Department of Computer Science & EuromathCenter, University of Copenhagen, 1993.[Hec88] R. Heckmann. A functional language for the speci�cation ofcomplex tree transformations. In H. Ganzinger, editor, Pro-ceedings of the 2nd European Symposium on Programming(ESOP '88), Nancy, France, number 300 in Lecture Notesin Computer Science, pages 175�190, Berlin, 1988. Springer-Verlag.[HMQ93] C. Hüser, W. Möhr, and V. Quint, editors. EP94 �Proceedingsof the Fifth International Conference on Electronic Publishing,Document Manipulation & Typography, Darmstadt, Germany,April 1994, Electronic Publishing � Origination, Dissemina-tion and Design, 6(4), Chichester, 1993. Wiley.[Iro61] E. T. Irons. A syntax directed compiler for ALGOL 60. Com-munications of the ACM, 4(1):51�55, 1961.[ISO86] ISO � International Standards Organization. Information Pro-cessing � Text and O�ce Systems � Standard GeneralizedMarkup Language (SGML), ISO 8879, 1986.[ISO89] ISO � International Standards Organization. Information Pro-cessing � Text and O�ce Systems � O�ce Document Archi-tecture (ODA) and Interchange Format, ISO 8613, 1989.[ISO92] ISO � International Standards Organization and IEC � Inter-national Electrotechnical Commission. Information Technol-ogy � Hypermedia � Time-based Structuring Language (Hy-Time), ISO/IEC DIS 10744, 1992.

116 References[ISO96] ISO � International Standards Organization and IEC � Inter-national Electrotechnical Commission. Information technology� Processing Languages � Document Style Semantics and Spec-i�cation Language (DSSSL) ISO/IEC DIS 10179, 1996.[JKL96a] J. Jaakkola, P. Kilpeläinen, and G. Lindén. TranSID: A lan-guage for transforming SGML documents. Technical report,Department of Computer Science, University of Helsinki, 1996.[JKL96b] J. Jaakkola, P. Kilpeläinen, and G. Lindén. TranSID referencemanual. Technical report, Department of Computer Science,University of Helsinki, 1996.[JKL97] J. Jaakkola, P. Kilpeläinen, and G. Lindén. TranSID:An SGML tree transformation language. In J. Paakki,editor, The Fifth Symposium on Programming Languagesand Software Tools, Jyväskylä, Finland, pages 72�83,1997. Available as Technical report C�1997-37, Depart-ment of Computer Science, University of Helsinki, URL:http://ftp.cs.helsinki.fi/pub/Reports/.[Joh75] S. C. Johnson. Yacc � yet another compiler compiler. Tech-nical Report Computer Science Technical Report No. 32, AT& T Bell Laboratories, Murray Hill, USA, 1975.[Kas80] U. Kastens. Ordered attributed grammars. Acta Informatica,13:229�256, 1980.[Kil92] P. Kilpeläinen. Tree Matching Problems with Applications toStructured Text Databases. PhD thesis, Report A�1992�6, De-partment of Computer Science, University of Helsinki, 1992.[KLMN90] P. Kilpeläinen, G. Lindén, H. Mannila, and E. Nikunen. Astructured document database system. In Furuta [Fur90],pages 139�151.[KM95] P. Kilpeläinen and H. Mannila. Ordered and unordered treeinclusion. SIAM Journal on Computing, 24(2):340 � 356, 1995.[KN94] E. Kuikka and E. Nikunen. Rakenteisten tekstienkäsittelyjärjestelmistä (Processing systems for structuredtexts, in Finnish). Report A/1994/4, Department ofComputer Science and Applied Mathematics, Univer-sity of Kuopio, Finland, 1994. A summary and the

References 117system descriptions are available in English at URLhttp://www.cs.uku.fi/~kuikka/systems.html.[Knu65] D. E. Knuth. On the translation of languages from left toright. Information and Control, 8(6):607�639, 1965.[Knu68] D. E. Knuth. Semantics of context-free languages. Mathe-matical Systems Theory, 2(2):127�145, 1968. Correction inMathematical Systems Theory, 5(1):95�96, March 1971.[Knu87] D. E. Knuth. The TEXbook. Addison-Wesley, Reading, 1987.[KP91] E. Kuikka and M. Penttonen. Designing a syntax-directedtext processing system. In K. Koskimies and K.-J. Räihä,editors, Proceedings of the Second Symposium on ProgrammingLanguages and Software Tools, Pirkkala, Finland, TechnicalReport A�1991�5, pages 191�204, Finland, 1991. University ofTampere.[KP93] E. Kuikka and M. Penttonen. Transformation of structureddocuments with the use of grammar. In Hüser et al. [HMQ93],pages 373�383.[KP95] E. Kuikka and M. Penttonen. Transformation of structureddocuments. Electronic Publishing � Origination, Dissemina-tion and Design, 8(4), 1995. To be published; the number 4issue of volume 8 has not yet been published in June 1997.[KPPM84] S. E. Keller, J. A. Perkins, T. F. Payton, and S. P. Mardinly.Tree transformation techniques and experiences. In Pro-ceedings of the ACM SIGPLAN '84 Symposium on CompilerConstruction, SIGPLAN Notices 19(6), Montreal, Canada[ACM84], pages 190�201.[Kui96] E. Kuikka. Processing of Structured Documents Using aSyntax-Directed Approach. PhD thesis, Publications C, De-partment of Computer Science and Applied Mathematics, Uni-versity of Kuopio, 1996.[Lam86] L. Lamport. A Document Preparation system. LATEX User'sGuide & Reference Manual. Addison-Wesley, Reading, 1986.[Lin92] M. Linster. Sisyphus'91, Part 2: Comparison of di�erentknowledge engineering approaches each based upon models of

118 Referencesproblem-solving. In M. Linster, editor, Sisyphus '92: Modelsof Problem Solving, Arbeitspapiere der GMD 663, pages 1 �5. Gesellschaft für Mathematik und Datenverarbeitung MBH,1992.[Lin93] G. Lindén. Incemental updates in structured documents. Phil.Lic. Thesis, Report C-1993-19, Department of Computer Sci-ence, University of Helsinki, Finland, 1993.[LMQ+95] G. Lindén, L. Montero, J. M. Quesada, H. Tirri, and A. I.Verkamo. OCML to FND � CASE integration trans-formations, Technical description. Deliverable T444/DS/1,ESPRIT-II Project 5365 VITAL, 1995.[LMW88] P. Lipps, U. Möncke, and R. Wilhelm. OPTRAN � a lan-guage/system for the speci�cation of program transformations:System overview and experiences. In D. Hammer, editor, Pro-ceedings of the 2nd Workshop on Compiler Compilers and HighSpeed Compilation (CCHSC), Berlin, Germany, number 371in Lecture Notes in Computer Science (LNCS), pages 52�65,Berlin, 1988. Springer-Verlag.[LMW91] P. Lipps, U. Möncke, and R. Wilhelm. An overview of the OP-TRAN system. In H. Alblas and B. Melichar, editors, Proceed-ings of the International Summer School on Attribute Gram-mars, Applications and System (SAGA), Prague, Czechoslo-vakia, number 545 in Lecture Notes in Computer Science,pages 505�506, Berlin, 1991. Springer-Verlag.[LQV95] G. Lindén, J. M. Quesada, and A. I. Verkamo. OCML to FND� CASE integration transformations, User's guide. Deliver-able T444/DS/2, ESPRIT-II Project 5365 VITAL, 1995.[LRS74] P. M. Lewis, D. J. Rosenkrantz, and R. E. Stearns. At-tributed translations. Journal of Computer and System Sci-ences, 9(3):279�307, 1974.[LS68] P. M. Lewis and R. E. Stearns. Syntax-directed transduction.Journal of the ACM, 15(3):465�488, 1968.[LT95] G. Lindén and H. Tirri. ALCHEMIST � The handbook. Ver-sion 1.08. Deliverable T416/DS/2, ESPRIT-II Project 5365VITAL, 1995.

References 119[LTV95a] G. Lindén, H. Tirri, and A. I. Verkamo. ALCHEMIST: Ageneral purpose transformation generator. Technical ReportC�1995�43, Department of Computer Science, University ofHelsinki, Finland, 1995.[LTV95b] G. Lindén, H. Tirri, and A. I. Verkamo. The VITAL trans-formation assistant. In A. Rouge, editor, VITAL Project Fi-nal Report, Chapter 4. Deliverable SYSECA/DD71.5, ESPRITProject 5365 VITAL, 1995.[LTV96] G. Lindén, H. Tirri, and A. I. Verkamo. ALCHEMIST: A gen-eral purpose transformation generator. Software � Practiceand Experience, 26(6):653�675, 1996.[Lun88] A. W. Luniewski. Intent-based page modelling using blocks inthe Quill document editor. In van Vliet [vV88], pages 205�221.[LV95] G. Lindén and A. I. Verkamo. An interface between di�er-ent software development environments. In Proceedings of theTenth Annual Knowledge Based Software Engineering Confer-ence (KBSE '95), Boston, USA, pages 79�87, Los Alamitos,1995. IEEE Computer Society Press.[MBO93] S. A. Mamrak, J. Barnes, and C. S. O'Connell. Bene�ts of au-tomating data translation. IEEE Software, 10(4):82�88, 1993.[MID95] MID/Information Logistics Group GmbH. MetaMorphosisReference Manual, 1995.[MKNS89] S. A. Mamrak, M. J. Kaelbling, C. K. Nicholas, and M. Share.Chameleon: A system for solving the data-translation prob-lem. IEEE Transactions on Software Engineering, 15(9):1090�1108, sep 1989.[MOB94] S. A. Mamrak, C. S. O'Connell, and J. Barnes. IntegratedChameleon Architecture. Prentice Hall, Englewood Cli�s,USA, 1994.[Möl94] A. Möller. SGML � en introduktion till Standard GeneralizedMarkup Language. Studentlitteratur, Lund, 1994.[MPP+97] O.-P. Mahlamäki, K. Paasiala, S. Pienimäki, T. Sarajisto, andJ. Sievänen. SGML-muunnoskielen toteutus (Implementationof an SGML transformation language, in Finnish). Project

120 Referenceswork report, Department of Computer Science, University ofHelsinki, 1997.[MR90] N. Major and H. Reichgelt. ALTO � An automated ladderingtool. In B. Wielinga, J. Boose, B. Gaines, G. Schrieber, andM. van Someren, editors, Current Trends in Knowedge Ac-quisition, Volume 8 of Frontiers in Arti�cial Intelligence andApplications. IOS Press, Amsterdam, 1990.[Nel85] G. Nelson. Juno, a constraint-based graphics systems. InSIGGRAPH '85 Conference Proceedings, SIGGRAPH Com-puter Graphics 19(3), San Fransisco, USA, pages 235�243,New York, 1985. ACM.[Nik90] E. Nikunen. Views in structured text databases. Phil. Lic.Thesis, Report C-1990-60, Department of Computer Science,University of Helsinki, Finland, 1990.[NM89] E. Nikunen and H. Mannila. De�ning and inverting textualviews of structured texts. In T. Gyimóthy, editor, Proceed-ings of the First Finnish-Hungarian Workshop Symposium onProgramming Languages and Software Tools, Szeged, Hungary,pages 108�120, Szeged, 1989. Research Group on the Theoryof Automata, Hungarian Academy of Sciences.[Oxf96] The Oxford English Dictionary Online, 1996. URL:http://www.oed.com/.[Pay88] T. F. Payton. SSAGS. In Deransart et al. [DJL88], pages125�127.[PB78] A. Pyster and H. W. Buttelmann. Semantic-syntax-directedtranslation. Information and Control, 36:320�361, 1978.[PDC92] T. J. Parr, H. G. Dietz, and W. E. Cohen. PCCTS referencemanual, Version 1.0. ACM SIGPLAN Notices, 27(2):88�165,1992.[PKP+82] T. F. Payton, S. Keller, J. A. Perkins, S. Rowan, and S. P.Mardinly. SSAGS: A syntax and semantics analysis and gen-eration system. In Proceedings of the IEEE Computer Society'sSixth International Computer Software and Applications Con-ference (COMPSAC '82), Chicago, USA, pages 424�432, LosAlamitos, 1982. IEEE Computer Society Press.

References 121[PKPM83] T. F. Payton, S. Keller, J. A. Perkins, and S. P. Mardinly.The DIANA interfacer. In P. J. L. Wallis, editor, Proceedingsof the Workshop on Ada Software Tools Interfaces, Bath, UK,number 180 in Lecture Notes in Computer Sciences, pages 88�103, Berlin, 1983. Springer-Verlag.[QV86] V. Quint and I. Vatton. GRIF: An interactive system for struc-tured document manipulation. In van Vliet [vV86], pages 200�213.[QV87] V. Quint and I. Vatton. An abstract model for interactivepictures. In H.-J. Bullinger and B. Shackel, editors, HumanComputer Interaction � INTERACT '87, pages 643�647, Am-sterdam, 1987. IFIP, Elsevier Science Publishers.[QVB86a] V. Quint, I. Vatton, and H. Bedor. Grif: An interactive envi-ronment for TEX. In Désarménien [Dés86], pages 145�158.[QVB86b] V. Quint, I. Vatton, and H. Bedor. Le système Grif. T.S.I� Technique et Science Informatiques, 5(4):337�341, July �August 1986.[Rei83] S. T. Reiss. PECAN: Program development systems that sup-port multiple views. Technical Report CS�83�29, Brown Uni-versity, 1983.[RT89] T. Reps and T. Teitelbaum. The Synthesizer Generator. ASystem for Constructing Language-Based Editors. Springer-Verlag, 1989.[Shi84] Q. Y. Shi. Semantic-syntax-directed translation and its appli-cation to image processing. Information Sciences, 32:75�90,1984.[SMB93] C. M. Speerberg-McQueen and L. Burnard, editors. Guidelinesfor Electronic Text Encoding and Interchange, Chapter 2: AGentle Introduction to SGML. Text Encoding Initiative (TEI),Chicago, 1993. Draft Version 2.[SMR93] N. Shadbolt, E. Motta, and A. Rouge. Constructingknowledge-based systems. IEEE Software, 10(6):34�39, 1993.[TL94a] H. Tirri and G. Lindén. ALCHEMIST � an object-orientedtool to build transformations between heterogeneous data rep-resentations. In Proceedings of the Twenty-Seventh Annual

122 ReferencesHawaii International Conference on System Sciences (HICSS'94), Volume II: Software Technology, pages 226�235, LosAlamitos, 1994. IEEE Computer Society Press.[TL94b] H. Tirri and G. Lindén. VITAL transformation approach. De-liverable UH/DD415, ESPRIT-II Project 5365 VITAL, 1994.[Tri81] S. Trimberger. Combining graphics and a layout languagein a single interactive system. In Proceedings of the 18thACM/IEEE Design Automation Conference, Nashville, USA,pages 234�239, Los Alamitos, 1981. IEEE Computer SciencePress.[Ver94] A. I. Verkamo. Cooperation of KBS development environ-ments and CASE environments. In Proceedings of the SixthInternational Conference on Software Engineering and Know-ledge Engineering (SEKE '94), Jurmala, Latvia, pages 358�365, Skokie, USA, 1994. Knowledge Systems Institute.[VL94] A. I. Verkamo and G. Lindén. CASE tool interface. Internaldeliverable UH/T443/ID003, ESPRIT-II Project 5365 VITAL,1994.[VL95] A. I. Verkamo and G. Lindén. Problems in interfacing toolsof di�erent development environments. In Proceedings of theSeventh International Conference on Software Engineering andKnowledge Engineering (SEKE '95), Rockville, USA, pages429�437, Skokie, 1995. Knowledge Systems Institute.[vV86] J. C. van Vliet, editor. EP86 � Proceedings of the Interna-tional Conference on Text Processing and Document Manipu-lation, Nottingham, UK, British Computer Society WorkshopSeries, Cambridge, 1986. Cambridge University Press.[vV88] J. C. van Vliet, editor. EP88 � Proceedings of the Interna-tional Conference on Document Manipulation, and Typogra-phy, Nice, France, The Cambridge Series on Electronic Pub-lishing, Cambridge, 1988. Cambridge University Press.[vVW86] H. van Vliet and J. B. Warmer. An annotated biography ondocument processing. In van Vliet [vV86], pages 261�277.[Yel88] D. M. Yellin. Attribute Grammar Inversion and Source-to-Source Translation. Lecture Notes in Computer Science 302.Springer-Verlag, Berlin, 1988.

ISSN 1238-8645ISBN 951-45-7766-3Helsinki 1997Helsinki University Printing House

