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FI-00014 University of Helsinki
Finland

Email address: postmaster@cs.helsinki.fi
URL: http://www.cs.Helsinki.fi/
Telephone: +358 9 1911, telefax: +358 9 191 51120

Copyright c© 2012 Pekka Parviainen
ISSN 1238-8645
ISBN 978-952-10-7573-5 (paperback)
ISBN 978-952-10-7574-2 (PDF)
Computing Reviews (1998) Classification: G.3, F.2.1, F.2.3, I.2.6
Helsinki 2012
Unigrafia



Algorithms for Exact Structure Discovery in Bayesian

Networks

Pekka Parviainen

Department of Computer Science
P.O. Box 68, FI-00014 University of Helsinki, Finland
pekka.parviainen@cs.helsinki.fi
http://www.cs.helsinki.fi/u/pjparvia/

PhD Thesis, Series of Publications A, Report A-2012-1
Helsinki, January 2012, 132 pages
ISSN 1238-8645
ISBN 978-952-10-7573-5 (paperback)
ISBN 978-952-10-7574-2 (PDF)

Abstract

Bayesian networks are compact, flexible, and interpretable representations
of a joint distribution. When the network structure is unknown but there
are observational data at hand, one can try to learn the network structure.
This is called structure discovery. This thesis contributes to two areas of
structure discovery in Bayesian networks: space–time tradeoffs and learning
ancestor relations.

The fastest exact algorithms for structure discovery in Bayesian networks
are based on dynamic programming and use excessive amounts of space.
Motivated by the space usage, several schemes for trading space against
time are presented. These schemes are presented in a general setting for
a class of computational problems called permutation problems; structure
discovery in Bayesian networks is seen as a challenging variant of the per-
mutation problems. The main contribution in the area of the space–time
tradeoffs is the partial order approach, in which the standard dynamic pro-
gramming algorithm is extended to run over partial orders. In particular, a
certain family of partial orders called parallel bucket orders is considered.
A partial order scheme that provably yields an optimal space–time tradeoff
within parallel bucket orders is presented. Also practical issues concerning
parallel bucket orders are discussed.

Learning ancestor relations, that is, directed paths between nodes, is mo-
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tivated by the need for robust summaries of the network structures when
there are unobserved nodes at work. Ancestor relations are nonmodular
features and hence learning them is more difficult than modular features.
A dynamic programming algorithm is presented for computing posterior
probabilities of ancestor relations exactly. Empirical tests suggest that an-
cestor relations can be learned from observational data almost as accurately
as arcs even in the presence of unobserved nodes.

Computing Reviews (1998) Categories and Subject
Descriptors:
G.3 [Probability and Statistics] Multivariate Statistics
F.2.1 [Analysis of Algorithms and Problem Complexity] Numerical

Algorithms and Problems - Computation of transforms
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Chapter 1

Introduction

Bayesian networks [83] are a widely-used class of probabilistic graphical
models. A Bayesian network consists of two components: a directed acyclic
graph (DAG) that expresses the conditional independence relations between
random variables and conditional probability distributions associated with
each variable. Nodes of the DAG correspond to variables and arcs express
dependencies between variables.

A Bayesian network representation of a joint distribution is advanta-
geous because it is compact, flexible, and interpretable. A Bayesian net-
work representation exploits the conditional independencies among vari-
ables and provides a compact representation of the joint probability distri-
bution. This is beneficial as in general the number of parameters in a joint
probability distribution over a variable set grows exponentially with respect
to the number of variables and thus storing the parameter values becomes
infeasible even with a moderate number of variables. Since a Bayesian
network represents the full joint distribution, it allows one to perform any
inference task. Thus, it is a flexible representation. Furthermore, the struc-
ture of a Bayesian network, that is, the DAG, can be easily visualized and
may uncover some important characteristics of the domain, especially if the
arcs are interpreted to be causal, or in the other words, direct cause-effect
relations. To illustrate the interpretability of a DAG, consider Figure 1.1
that shows a DAG describing factors affecting the weight of a guinea pig.
This DAG has some historical value as it is an adaptation of the struc-
tural equation model presented by Sewall Wright in 1921 [110], which, to
our best knowledge, was among the first graphical models used to model
dependencies between variables. For example, an arc from node “Weight
at birth” to node “Weight at 33 days” indicates that the weight at birth
directly affects the weight at 33 days.

1



2 1 Introduction

Figure 1.1: A directed acyclic graph (DAG) illustrating the interrelations
among the factors which determine the weight of guinea pigs at birth and
at weaning (33 days) [110].

In recent decades, Bayesian networks have garnered vast interest from
different domains and they have a multitude of diverse applications. Early
applications were often expert systems for medical diagnosis such as
Pathfinder [49]. Bayesian networks are widely used, for example, in biol-
ogy, where applications vary from bioinformatical problems like analyzing
gene expression data [40, 53] to ecological applications like modeling the
population of polar bears [2] and analyzing the effectiveness of different oil
combating strategies in the Gulf of Finland [51]. Bayesian networks have
been applied also in other fields like business and industry.

How can one find a good Bayesian network model for a phenomenon?
An immediate attempt would be to let a domain expert construct the
model. However, this approach is often infeasible because either the con-
struction requires too much time and effort to be practical, or the phe-
nomenon to be modeled is not known well enough to warrant modeling
by hand. Fortunately, if an expert cannot construct a model, but one has
access to a set of observations from the nodes of interest, one can attempt
to learn a Bayesian network from data. From the machine learning point
of view, the question is, how can one learn such a model accurately and
with feasible computational resources?

Learning of a Bayesian network is usually conducted in two phases.
First, one learns the structure of the network and then one learns the
parameters of the conditional distributions. The learning of the structure,
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or in other words, structure discovery, is the more challenging and thus
more interesting phase.

There are two rather distinct approaches to structure discovery in
Bayesian networks. The constraint-based approach [84, 99, 100, 109] relies
on testing independencies and dependencies between variables and con-
structing a DAG that represents these relations. The score-based approach
[19, 47], on the other hand, is based on assigning each DAG a score accord-
ing to how well the DAG fits to the data. Compared to the constraint-based
approach, the score-based approach benefits from being able to assess the
uncertainty in the results, to incorporate prior knowledge and to combine
several models. The constraint-based approach, however, enables princi-
pled and computationally feasible handling of unobserved variables. For a
more thorough comparison of the approaches, see, for example, texts by
Heckerman et al. [48] or Neapolitan [75, p. 617–624].

Structure discovery in Bayesian networks is a host of several interesting
problem variants. In the optimal structure discovery (Osd) problem the
goal is to find a DAG that is a “best” representation of the data. In the
constraint-based approach this means that the DAG explains the depen-
dencies and independencies in the data. In the score-based approach, on
the other hand, one tries to find a DAG that maximizes the score. However,
it is not always necessary or even preferable to try to infer a single optimal
DAG. The score-based approach allows one to take a so-called Bayesian
approach [39, 65] and report posterior probabilities of structural features.
There are several types of structural features. Computing posterior proba-
bilities of modular features, such as arcs, constitutes the feature probability
(Fp) problem. Further, one may compute posterior probabilities of ances-
tor relations, that is, directed paths between two nodes. In this thesis, we
concentrate on the score-based approach, which allows one to take advan-
tage of different problem variants.

All the aforementioned problems are similar in the sense that (under
some usual modularity assumptions) the score or the posterior probabil-
ity of a DAG decomposes into local terms. However, one also has to take
into account a global constraint, namely acyclicity. Further, the difference
between modular features and ancestor relations is that modular features
are local but ancestor relations are global properties of a DAG. The out-
line of the Osd and Fp problems is similar to several classic combinatorial
problems like traveling salesman (Tsp): One has local costs (or scores) and
one wants to find an optimal solution under some global constraint. It
turns out that Osd, Fp, and Tsp can be formulated in such a way that
the global constraint is handled by maximizing or summing over permu-
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tations of nodes. Thus, such problems are members of a broad class of
computational problems called permutation problems. Although the score
of a DAG is constructed from local scores, the global constraint makes
the structure discovery problems computationally challenging. For exam-
ple, given the data and a consistent scoring criterion1, finding an optimal
Bayesian network is an NP-hard problem [14, 17] even in the case of find-
ing an optimal DAG among some classes of simple DAGs such as polytrees
[22] or path graphs [74]2. Also the feature probability variant seems to be
similarly presumably hard, though a formal proof is missing. The hardness
of the structure discovery problems has prompted active development of
various heuristics. Common approaches include greedy equivalence search
[16], max-min hill climbing [107], Markov chain Monte Carlo (MCMC)
[32, 39, 45, 72] and genetic algorithms [68].

Although structure discovery in Bayesian networks is hard, it is pos-
sible to solve structure discovery problems in small and moderate-sized
networks exactly. Compared to the heuristics, exact algorithms that are
guaranteed to find an optimal solution offer some benefits. As there is
no (extra) uncertainty about the quality of the results, the user may con-
centrate on modeling the domain and interpreting the results. The ben-
efits and theoretical interest have motivated the development of several
exact score-based algorithms for structure discovery in Bayesian networks.
Most of these algorithms deploy dynamic programming across node sets
[27, 62, 65, 73, 78, 79, 86, 96, 98, 103, 112] and run in O∗(2n) time and
space (under some usual modularity assumptions), where n is the number
of nodes. The O∗(·) notation is used throughout this thesis to hide factors
polynomial in n. Recently, some new approaches, based on branch-and-
bound [24, 25, 33] and linear programming [21, 54] have been introduced.
These new methods are often fast in a good case, but we do not know
whether they are as fast as dynamic programming in the worst case.

In this thesis, we study exact dynamic programming algorithms. Tradi-
tionally such exponential-time algorithms have been considered unsatisfac-
tory. However, not all exponential algorithms are useless in practice and as
is the case with Bayesian networks, it is often possible to solve moderate-
sized problem instances. Besides, for NP-hard problems there is no hope
for (worst-case) polynomial time algorithms unless P equals NP. This has
motivated lots of research in exponential algorithms; see, for example, a
recent textbook by Fomin and Kratsch [35].

1A scoring criterion is consistent if it is maximized by the “true” network structure
when the size of the data approaches infinity.

2As an exception, an optimal Bayesian tree can be found in polynomial time [18].
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Although both the time and the space requirement of the dynamic pro-
gramming algorithms grow exponentially in n, the space requirement is the
bottleneck in practice. Modern desktop computers usually have a few giga-
bytes of main memory, which enables the learning of networks of about 25
nodes with running times of a few hours. The state-of-the-art implemen-
tation by Silander and Myllymäki [96] uses the hard disk to store a part
of the results. For a network of 29 nodes it consumes almost 100 gigabytes
of space, while the running time is only about ten hours. For a 32-node
network the space requirement is already almost 800 gigabytes. Therefore,
in order to learn larger networks, reducing the space requirement is the top
priority. Unfortunately, reducing the space requirement without increasing
the time requirement seems to be a difficult task. This observation moti-
vates the first research question in this thesis: How can one trade space
against time efficiently in structure discovery in Bayesian networks?

To answer the previous question, the first contribution of this thesis
is about space–time tradeoff schemes for structure discovery in Bayesian
networks. We present algorithmic schemes based on dynamic programming
for trading space against time for permutation problems in general; the
schemes are then adapted for the Osd and Fp problems. We introduce
a partial order approach on which we base most of our schemes. We also
investigate the practicality of our approach by applying it with a particular
family of partial orders called parallel bucket orders. It turns out that
our schemes allow learning of larger networks than the previous dynamic
programming algorithms. Furthermore, our schemes are easily parallelized.

Another research question in this thesis is motivated by the need of
handling unobserved variables. In real life, we often encounter datasets in
which the observed nodes are affected by some unobserved ones. However,
although the score-based methods, especially the Bayesian ones, are flexible
and are able to take into account all the prior knowledge, unobserved vari-
ables pose a computational problem for score-based methods. Often one
either refuses to make any causal conclusions about the DAG or one ignores
the possibility of unobserved nodes altogether and accepts an unquantified
risk of erroneous claims. Therefore, we are interested in features that are
preserved in the presence of unobserved nodes. The questions are: What
kind of features are preserved when there are unobserved variables in play?
How can one compute posterior probabilities of these features?

To answer the previous questions, we consider learning ancestor rela-
tions. One often interprets the arcs of a Bayesian network as causal cause–
effect relationships. Thus, the existence of a path from node s to node
t can be interpreted as s being either a direct or an indirect cause of t.
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Compared to the arc probabilities, the path probabilities yield information
also about indirect causes and hence they can be more interesting. In the
ancestor relations problem, the goal is to output the posterior probability
that there is a directed path between two given nodes.

Current exact Bayesian algorithms [39, 65] are able to compute posterior
probabilities of modular features like arcs; however, they cannot handle
the more challenging nonmodular features such as ancestor relations. The
second main contribution of this thesis is a Bayesian averaging algorithm for
learning ancestor relations; as far as we know, it is the first non-trivial exact
algorithm for computing posterior probabilities of nonmodular features.
We also test the algorithm in practice. The empirical results suggest that
ancestor relations can be learned almost as well as single arcs.

Overview of the thesis. A formal treatment on Bayesian networks,
the basics of permutation problems and a dynamic programming algorithm
are given in Chapter 2. Important concepts related to space–time tradeoffs
and two simple algorithmic schemes are presented in Chapter 3. Then we
introduce the partial order approach in general (Chapter 4) and for parallel
bucket orders in particular (Chapter 5). An algorithm for and empirical
results about learning ancestor relations are presented in Chapter 6. We
end this thesis with a discussion in Chapter 7.

Relation to the author’s prior work. Parts of the results concerning
space–time tradeoffs (Chapters 3–5) have been published in the following
three articles:

[64] Mikko Koivisto and Pekka Parviainen. A Space–Time Tradeoff
for Permutation Problems. Proceedings of the 21st Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA), 2010.

[80] Pekka Parviainen and Mikko Koivisto. Exact Structure Discovery
in Bayesian Networks with Less Space. Proceedings of the 25th
Conference on Uncertainty in Artificial Intelligence (UAI), 2009.

[81] Pekka Parviainen and Mikko Koivisto. Bayesian Structure Discov-
ery in Bayesian Networks with Less Space. Proceedings of the 13th
International Conference on Artificial Intelligence and Statistics
(AISTATS), 2010.

The results concerning learning ancestor relations (Chapter 6) have
been published in the following article:

[82] Pekka Parviainen and Mikko Koivisto. Ancestor Relations in the
Presence of Unobserved Variables. Proceedings of the European
Conference on Machine Learning and Principles and Practice of
Knowledge Discovery in Databases (ECML PKDD), 2011.



Chapter 2

Preliminaries

Let us begin this chapter with a formal introduction to Bayesian networks.
Further, we introduce permutation problems in general and formulate the
Osd and Fp problems as permutation problems. We end this chapter by
presenting a basic dynamic programming algorithm for solving permutation
problems. The algorithm is extended in later chapters to work in limited
space. Dynamic programming also serves as a basis for the development of
an algorithm for the ancestor relation problem.

2.1 Bayesian Networks

In this section, we focus on the aspects of Bayesian networks that are
needed in this thesis; for a more thorough treatment, see, for example,
recent textbooks by Koller and Friedman [66] or Neapolitan [75]. We also
define three different computational problems related to structure discovery
in Bayesian networks: the Osd problem, the Fp problem, and the ancestor
relation problem.

2.1.1 Bayesian Network Representation

A Bayesian network consists of two parts: the structure and the parame-
ters. The structure is represented by a directed acyclic graph (DAG) and
the parameters determine the conditional probability distributions for each
node.

A DAG is a pair (N,A), where N is the node set and A ⊆ N × N is
the arc set. Note that a DAG is acyclic, that is, the arcs in A do not form
directed cycles. A node u is said to be a parent of a node v if the arc set
contains an arc from u to v, that is, uv ∈ A. The set of the parents of v
are denoted by Av. If u is a parent of v then v is a child of u. Further, a

7



8 2 Preliminaries

node u is said to be an ancestor of a node v in a DAG (N,A) if there is
a directed path from u to v in A; denoted u; v. If u is an ancestor of v,
then v is a descendant of u. When there is no ambiguity about the node
set, we identify a DAG by its arc set. The cardinality of N is denoted by
n.

Each node v corresponds to a random variable and the DAG expresses
conditional independence assumptions between variables. Random vari-
ables u and v are said to be conditionally independent given a set S consist-
ing of random variables if Pr(u, v|S) = Pr(u|S)Pr(v|S). A DAG represents
a joint distribution of the random variables if the joint distribution satisfies
the Markov condition, that is, every variable is conditionally independent
of its non-descendants given its parents. Now it remains to specify one such
distribution. This can be done using local conditional probability distribu-
tions (CPD) which specify the distribution of a random variable given the
variables corresponding to its parents Av. CPDs are usually taken from
a parametrized class of probability distributions, like discrete or Gaussian
distributions. Thus, the CPD of variable v is determined by its parameters
θv; the type and the number of parameters is specified by the particular
class of probability distributions. The parameters of a Bayesian network
are denoted by θ and it consists of the parameters of each CPD. Finally, a
Bayesian network is a pair (A, θ).

Example 1. Let us consider a company whose employees have a ten-
dency to be late to work. The company conducts a study on the factors
which affect being late to work. Figure 2.1 shows a Bayesian network, that
summarizes the findings. Generally, the people who are not on time at
work have either overslept or their bus has been late. The main reason for
oversleeping is forgetting to set the alarm. Let us use the shorthands a,
b, o, and t, for nodes “Alarm on?”, “Bus Late?”, “Overslept?”, and “In
Time?”, respectively.

For example, let us compute the probability that a person is
at work on time when he has forgotten to set the alarm, that is,
Pr(t = yes|a = no) = Pr(t = yes, a = no)/Pr(a = no). To compute
probabilities Pr(t = yes, a = no) and Pr(a = no) we need to marginal-
ize out the variables whose values are not fixed. To this end, we get
Pr(t = yes, a = no) = 0.1 × 0.9 × 0.2 × 0.1 + 0.1 × 0.9 × 0.8 × 0.3 + 0.1 ×
0.1× 0.2× 0.2 + 0.1× 0.1× 0.8× 0.9 = 0.031 and Pr(a = no) = 0.1, thus
Pr(t = yes|a = no) = 0.031/0.1 = 0.31. In words, if a person has forgotten
to set his alarm clock there is a 31 percent chance that he is at work on
time. 3
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Figure 2.1: A Bayesian network illustrating factors affecting being late to
work. Each node is associated with a conditional probability table which
determines the probabilities of different values of the particular variable
(columns) given each configuration of the values of its parents (rows).

The compactness of the Bayesian network representation can be il-
lustrated by comparing the number of parameters needed with the joint
distribution factorized according to a Bayesian network structure to the
non-factorized joint distribution1. To this end, let us consider discrete
variables and let rv be the number of distinct values of variable v.
The conditional distribution associated with node v is determined by
(rv − 1)

∏

u∈Av
ru parameters and thus the joint distribution can be rep-

resented with
∑

v∈N (rv − 1)
∏

u∈Av
ru parameters. On the other hand,

without a factorization one needs
∏

v∈N rv − 1 parameters. For example,
consider the joint distribution of 10 binary variables. Without a factoriza-
tion one needs 210−1 = 1023 parameters. However, if the joint distribution
can be represented by a Bayesian network with maximum indegree 3, the
number of parameters needed is less than 10× 23 = 80.

The likelihood of a Bayesian network, that is, the probability of data
given a Bayesian network reflects how well the Bayesian network fits to
the data. The data D are an n × m-matrix, where the rows are associ-
ated with the nodes. Each node v is associated with m random variables
Dv1, Dv2, . . . , Dvm, which constitute the vth row, Dv of D. The m columns
are often treated as observations, each column corresponding to one ob-
servation; observations are assumed to be independent and identically dis-
tributed. Given the data D on the node set N , the likelihood of a Bayesian

1The latter case is equivalent to factorization according to a complete DAG.



10 2 Preliminaries

network (A, θ) can be factorized according to the DAG A as follows:

Pr(D|A, θ) =
m
∏

i=1

Pr(D·i|A, θ) =
m
∏

i=1

∏

v∈N

Pr(Dvi|DAvi, Av, θv).

The term Pr(Dvi|DAvi, Av, θv) is called a local likelihood.
Sometimes the Bayesian network is unobserved or unknown to the mod-

eler and one wants to learn it from the data. In Bayesian approach, one
first sets up a full probability model, that is, a joint probability distribution
of all observed and unobserved variables and then calculates the posterior
distribution of the unobserved variables given the observed ones [43]. Thus,
the unknown values, the DAG A and the parameters θ, can be included as
variables in the probability model. To this end, we have a joint probability
distribution of the data, the DAG, and the parameters. Based on the chain
rule of probability calculus, the joint probability distribution factorizes as

Pr(D,A, θ) = Pr(A)Pr(θ|A)Pr(D|A, θ).

The terms Pr(A) and Pr(θ|A) are called a structure prior and a parameter
prior, respectively. Next, we will discuss common assumptions concerning
the priors.

Consider the structure prior Pr(A). In the Bayesian approach, a prior
distribution reflects the beliefs of the modeler about uncertainty of the value
of a variable. For a structure prior, one commonly assumes a modular prior
[95, 96, 105], which often enables convenient computation. A prior Pr(A)
is modular if it can be written as Pr(A) =

∏

v∈N qv(Av), where qv is a
nonnegative function. A common modular prior is the uniform prior over
all DAGs, that is, qv(Av) ∝ 1. In some cases using a modular prior in
structure discovery, however, can lead to a significant increase in running
time as we will see in Section 2.3.2.

Sometimes it is more convenient to assume an order-modular prior [39,
65]2. To this end, we introduce a new random variable, linear order L on

2We note that an order-modular prior often assigns different probabilities to the dif-
ferent members of a Markov equivalence class and favors networks that have several
topological orderings. Although many researchers (see, for example, Silander [95] or
Tian and He [105]) seem to consider the uniform prior as the default or “true” prior,
from the Bayesian point of view assuming an order-modular prior is neither an advan-
tage nor a disadvantage, besides the computational advantage. Indeed, an order-modular
prior may sometimes better reflect the modeler’s subjective beliefs. One should also no-
tice that generally we are only able to learn structures up to a Markov equivalence class
and the uniform prior over DAGs is not uniform over equivalence classes as pointed by
Friedman and Koller [39]. For a more thorough discussion about different priors, see, for
example, Angelopoulos and Cussens [3].
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N and define a joint prior of L and a DAG A, Pr(L,A). A linear order L
on base-set N is a subset of N × N such that for all x, y, z ∈ N it holds
that

1. xx ∈ L (reflexivity),

2. xy ∈ L and yx ∈ L imply x = y (antisymmetry),

3. xy ∈ L and yz ∈ L imply xz ∈ L (transitivity), and

4. xy ∈ L or yx ∈ L (totality).

If xy ∈ L we say that x precedes y. We write Lv for the set of nodes that
precede v in L and say that L and A are compatible if Av ⊆ Lv for all v,
that is, L is a topological ordering of A. The joint prior is defined as

Pr(L,A) =

{

0 if L is not compatible with A,
∏

v∈N ρv(Lv)qv(Av) otherwise,

where ρv and qv are nonnegative functions. The prior Pr(A) is obtained
by marginalizing the joint prior over linear orders, that is,

Pr(A) =
∑

L

Pr(L,A).

Note that if ρv(Lv) and qv(Av) are constant functions then the prior prob-
ability of a DAG is proportional to the number of its topological orderings.

Often one wants to restrict the number of possible parent sets of a node.
To this end, one can specify a set of possible parent sets, Fv, for each node
v. To guarantee that Pr(A) = 0 if Av /∈ Fv for some v, it is sufficient
(for both modular and order-modular priors) to specify that qv(Av) = 0 if
Av /∈ Fv. We will return to handling parent sets in Section 3.2.1.

The parameter prior Pr(θ|A) determines the probability of the param-
eters given a DAG. It is usually assumed (see, for example, Friedman and
Koller [39]) that the prior admits global parameter independence, that is,
Pr(θ|A) =

∏

v∈N Pr(θv|A) and parameter modularity, that is, given two
DAGs A and A′ in which Av = A′

v, then Pr(θv|A) = Pr(θv|A′). Com-
bining global parameter independence and parameter modularity yields
Pr(θ|A) = ∏

v∈N Pr(θv|Av).

As we in this thesis are concerned with structure discovery in Bayesian
networks, the parameters of the conditional probability distributions play
merely a role of nuisance variables. To this end, we integrate the parameters
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out and obtain marginal likelihood Pr(D|A) of A. Heckerman et al. [47]3

show that if the parameter prior satisfies global parameter independence
and parameter modularity then

Pr(D|A) =

∫

θ
Pr(D|A, θ)Pr(θ|A, )dθ

=
∏

v∈N

∫

θv

m
∏

i=1

Pr(Dvi|DAvi, Av, θv)Pr(θv|Av)dθv

=
∏

v∈N

Pr(Dv|DAv , Av).

We call Pr(Dv|DAv , Av) the local marginal likelihood. The local marginal
likelihood expresses how well the data on the node set Av ∪{v} fit to some
class of conditional probability distributions specified by the modeler. For
discrete variables, a common choice is to use a Bayesian score [13, 19, 47],
which has a closed-form expression.

In the Bayesian approach, we are interested in the posterior probability
Pr(A|D) of the DAG A given the data D, that is,

Pr(A|D) =
Pr(D|A)Pr(A)

Pr(D)
,

where Pr(D) is the marginal probability of the data. When the data D
are given, the posterior probability is proportional to the unnormalized
posterior density, that is, Pr(A|D) ∝ Pr(D|A)Pr(A). Thus, assuming a
modular structure prior

Pr(A|D) ∝
∏

v∈N

Pr(Dv|DAv , Av)qv(Av).

Often it is convenient to operate with the logarithm of the unnormalized
posterior. To this end, we define the score of a DAG as

s(A) =
∑

v∈N

sv(Av),

where sv(Av) = logPr(Dv|DAv , Av) + log qv(Av) is called a local score.

3Actually, Heckerman et al. [47] derive the existence of the parameters θ given which
the data columns are conditionally independent from the assumption of (infinitely) ex-
changeable data; an interested reader may refer to, for example, Bernardo [7] for more
information about this alternative route to establish a fully specified (Bayesian network)
model.
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A function that assigns the score to a DAG based on the data is called
a scoring criterion. A scoring criterion that factorizes according to the
underlying DAG is said to be decomposable. For our purposes the scoring
criterion can be considered a black-box function, as long as it is decompos-
able.

Next, we consider the causal interpretation of a Bayesian network. A
Bayesian network is called causal if the arcs are interpreted as direct cause–
effect relations, that is, an arc from node u to node v denotes that u is a
direct cause of v. When a Bayesian network serves only as a representation
of a probability distribution, knowing the causal relations does not add any
value. From the knowledge discovery point of view, however, all information
about causal relations between variables can be highly interesting. To this
end, we discuss the concept of identifiability that describes to what extent
one can learn the structure of a causal Bayesian network from observational
data.

To consider identifiability, it is essential to define Markov equivalence.
Two DAGs are said to be Markov equivalent if they describe the same set
of conditional independence statements. To see whether two DAGs are
Markov equivalent, we need to define a skeleton and a v-structure. The
skeleton of a DAG A is an undirected graph that is obtained by replacing
all directed arcs uv ∈ A with undirected edges between u and v. Nodes s, t,
and u form a v-structure in a DAG if there is an arc from s to u and from t
to u and there is no arc between s and t. It is well-known that two networks
belong to the same Markov equivalence class if and only if they have the
same skeleton and the same set of v-structures [109]. A scoring criterion is
said to be score equivalent if two Markov equivalent DAGs always have the
same score. Thus, a score-equivalent score cannot distinguish two Markov
equivalent DAGs based on observational data only, that is, the DAGs are
nonidentifiable. This is often desired when a DAG is primarily interpreted
as a set of independence constraints of some distribution. Using a score-
equivalent score we are able to learn Markov equivalence classes but the
most likely network within a class is determined by the prior. There are
also non-score equivalent scores. A notable example is K2 score [19] which
is said to yield good results in practice despite the lack of score equivalence
[15].

Due to nonidentifiability, causal Bayesian networks cannot usually be
learned from observational data4. However, if we are able to intervene on

4Full causal models can be learned, however, if the assumptions are suitable for that
purpose. For example, linear causal models with non-Gaussian noise with no undeter-
mined parameters can be learned from observational data; see, for example, Shimizu et
al. [94].
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some variables, that is, to set them to user-specified values, we can infer the
directions of arcs whose direction is not specified in the particular Markov
equivalence class. It is also possible to infer causal relations by averaging
over all DAGs; see the feature probability problem and the ancestor relation
problem defined in the next section.

The following example illustrates the Markov equivalence.

Example 2. Consider the structure of the Bayesian network in
Figure 2.1. The DAG has one v-structure which consists of nodes b, o,
and t (t in the middle). The DAG is Markov equivalent with the DAG
{bt, oa, ot} (and with no other DAG). Note that if the arcs are inter-
preted to be causal, the DAGs {bt, ao, ot} and {bt, oa, ot} are not equivalent
as a is a cause of o in the former one but o is a cause of a in the latter one. 3

2.1.2 Computational Problems

We will subsequently tackle three different structure discovery problems.
To this end, it is essential to formally define the problems.

A key task in the score-based approach is to find a maximum-a-
posteriori (MAP) DAG, or equivalently, a DAG that maximizes the score.
For our purposes it is convenient to define two variants of this problem with
slightly different inputs. We will discuss the issues concerning the explicit
and implicit input in detail in Section 3.2.1. Here Fv is the set of possible
parent sets of node v.

Definition 2.1 (Optimal structure discovery (Osd) problem with
explicit input) Given the values of local score sv(Y ) for v ∈ N and
Y ∈ Fv, compute maxA s(A), where A runs through the DAGs on N .

Definition 2.2 (Optimal structure discovery (Osd) problem with
implicit input) Given the data D on nodes N and a decomposable scoring
criterion sv(Y ), which evaluates to 0 if Y /∈ Fv, compute maxA s(A), where
A runs through the DAGs on N .

Remark that in Osd the goal is to compute the score of an optimal
DAG. In practice we are often more interested in an optimal DAG itself.
It turns out (see Section 2.3.1) that an optimal DAG can be constructed
with essentially no extra computational burden.

Another remark is that the scoring criterion does not have to be based
on the local marginal likelihood. The Osd problem remains reasonable
even if a scoring criterion does not conveniently admit a structure prior.
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For example, maximum likelihood, minimum description length [88], and
Bayesian information criterion (BIC) [93] can be used as the scoring crite-
rion.

The size of the search space of Osd, that is, the number of DAGs on n
nodes, grows superexponentially with respect to n [89]: Later we will see
that, thanks to the decomposable score, Osd can be solved significantly
faster than by an exhaustive search.

Choosing just one DAG, even if it is optimal, can seem quite arbitrary:
often there are several almost equally probable DAGs and with large node
sets, even the most probable DAGs tend to be very improbable. To circum-
vent this problem, one can, for example, take an average over k best DAGs
[106]. Another possibility is to find useful summarizations of the DAGs. To
this end, one can take a full Bayesian model averaging approach (see, for
example, Hoeting et al. [52]) and compute posterior probabilities of fea-
tures of interest from the data. For Bayesian networks, natural candidates
for such a summary feature are subgraphs, like arcs.

We associate such a structural feature f with an indicator function f(A)
which evaluates to 1 if A has the feature f and 0 otherwise. For compu-
tational convenience, it is often practical to consider modular features. A
feature f is modular if the indicator function factorizes as

f(A) =
∏

v∈N

fv(Av),

where fv(Av) is a local indicator function. Note that modular features are
local in the sense that for the presence of a modular feature, it is necessary
and sufficient that n independent local conditions hold. For example, the
indicator for an arc uv is represented by letting fv(Av) = 1 if u ∈ Av and
fv(Av) = 0 otherwise and fw(Aw) = 1 for all w 6= v and all Aw. For
another example, the indicator for a v-structure with arcs from nodes s
and t to a node u is represented by letting fu(Au) = 1 if s, t ∈ Au and
fu(Au) = 0 otherwise and fs(As) = 1 if t /∈ As and fs(As) = 0 otherwise
and ft(At) = 1 if s /∈ At and ft(At) = 0 otherwise and fw(Aw) = 1 for all
other nodes w and all Aw.

Consider the computation of the posterior probability of a modular
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feature. We notice that Pr(f |D) = Pr(f,D)/Pr(D) and

Pr(f,D) =
∑

A

Pr(f,D|A)Pr(A)

=
∑

A

Pr(f |A)Pr(D|A)Pr(A)

=
∑

A

f(A)Pr(D|A)Pr(A). (2.1)

Here, the first equality is by the law of total probability, the second one by
the independence of f and D given A and the third one by the fact that
Pr(f |A) = f(A).

Recall that the marginal likelihood Pr(D|A) decomposes into local
terms Pr(Dv|DAv , Av) whose values can be computed from the data ef-
ficiently. Furthermore, for computational convenience (see Section 2.3.2)
we assume here an order-modular structure prior. Now we are ready to
define two variants of the feature probability problem.

Definition 2.3 (Feature probability (Fp) problem with explicit in-
put) Given the values of local likelihood Pr(Dv|DAv , Av) for v ∈ N and
Av ∈ Fv, an order-modular structure prior Pr(A) and a modular structural
feature f , compute the posterior probability Pr(f |D).

Definition 2.4 (Feature probability (Fp) problem with im-
plicit input) Given the data D on nodes N , local marginal likelihoods
Pr(Dv|DAv , Av), an order-modular structure prior Pr(A) and a modular
structural feature f , compute the posterior probability Pr(f |D).

The ancestor relation problem, that is, computing the posterior of a
directed path between two nodes is an extension of the Fp problem to non-
modular features, namely ancestor relations. The non-modularity means
that the indicator function f(A) of a non-modular feature does not factorize
into a product of local indicator functions. The problem is defined as
follows.

Definition 2.5 (Ancestor relation problem) Given the data D on
nodes N , a local likelihood function Pr(Dv|DAv , Av), an order-modular
structure prior Pr(A) and an ancestor relation u; v, u, v ∈ N , compute
the posterior probability Pr(u;v|D).
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2.2 Permutation Problems

Consider the Osd problem. The goal is to find a maximum of the sum
of local scores under a global acyclicity constraint. To guarantee that the
DAG is acyclic, one may fix a linear order and for each node choose the best
parent set from the preceding nodes. To solve the Osd problem one has to
consider all the linear orders on the nodes. Next, we introduce a class of
computational problems called permutation problems, which are similar to
the Osd problem in the sense that they can be solved in a similar fashion.

For another example of permutation problems, consider the traveling
salesman problem (Tsp). In Tsp, a traveling salesman is given n cities and
he tries to find the shortest route that visits every city exactly once and
returns to the starting point. Every route can be seen as a permutation of
the cities, that is, the order in which the cities are visited determines the
route. The total length of the route, or the cost of the permutation, can be
decomposed to a sum of local costs: the cost of moving from the ith city to
the (i + 1)th city is the distance between those particular cities. Now the
problem is essentially to minimize the cost over the permutations of cities.
It is well-known that Tsp can be solved using a dynamic programming
algorithm [6, 50]; we will return to dynamic programming in Section 2.3.

More generally, we define a class of problems called permutation or se-
quencing problems which ask for a permutation on a n-element set that
minimizes a given cost function. The cost function decomposes into local
terms, where the local cost of an element depends only on the preceding
elements. Besides Tsp, examples of such a problems include the feedback
arc set problem, the cutwidth problem, the treewidth problem, and the
scheduling problem. In Section 2.3 we will show that all permutation prob-
lems can be solved using a generic dynamic programming algorithm.

Some of the aforementioned permutation problems are not minimiza-
tion problems. Therefore, it is convenient to present the permutation prob-
lems in a more general setting. To this end, we start by introducing a
commutative semiring; for more, see, for example, Aji and McEliece [1] or
Koivisto [61]. Recall that a binary operation ◦ on set R is associative if
(x ◦ y) ◦ z = x ◦ (y ◦ z) for all x, y, z ∈ R and commutative if x ◦ y = y ◦ x
for all x, y ∈ R.

A commutative semiring is a set R together with two binary operations
⊕ and ⊙ called addition and multiplication, which satisfy the following
axioms:

1. The operation ⊕ is associative and commutative, and there is an ad-
ditive identity element called “0” or zero element such that s ⊕ 0 = s
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for all s ∈ R.

2. The operation ⊙ is associative and commutative, and there is a mul-
tiplicative identity called “1” or one-element such that s ⊙ 1 = s for
all s ∈ R.

3. The distributive law holds, that is, for all s, t, u ∈ R,

(s⊙ t)⊕ (s⊙ u) = s⊙ (t⊕ u).

The semiring is denoted as a triple (R,⊕,⊙).
We can clearly see that ordinary addition and multiplication on real

numbers form a commutative semiring. Another example of a semiring is
the min–sum semiring on non-negative numbers, that is, ([0,∞),min,+),
in which the Tsp problem was defined. Minimization is associative and
commutative and it has a zero-element ∞ such that min(s,∞) = s for
all s ∈ [0,∞). Addition is associative and commutative and it has a one-
element 0 such that s + 0 = s for all s ∈ [0,∞). Finally, the distributive
law holds as min(s+ t, s+ u) = s+min(t, u) for all s, t, u ∈ [0,∞).

The semiring (R, ⊕, ⊙) is idempotent if for all x ∈ R, x ⊕ x = x.
For example, semirings in which the ⊕ operation is maximization or mini-
mization are idempotent semirings. We also note that the Osd problem is
defined in an idempotent semiring.

Let us return to formulating a permutation problem. A permutation
σ(M) of an m-element set M is a sequence σ1σ2 · · ·σm, where σi ∈M and
σi 6= σj if i 6= j. When there is no ambiguity about the set M , we denote
a permutation by σ. Sometimes it is convenient to represent a linear order
as a permutation. A permutation σ and a linear order L on set M are
in a one-to-one relationship if and only if it holds that σiσj ∈ L if and
only if i ≤ j. We can clearly see that for every permutation there exists a
corresponding linear order. Therefore, we use the terms permutation and
linear order interchangeably and choose whichever is more convenient.

A permutation problem is defined in an arbitrary semiring. To this end,
assume that the problem is defined in a semiring (R,⊕,⊙). We assume that
the cost c(σ) of a permutation σ decomposes into a product of n local costs:

c(σ) =

n
⊙

j=1

c
(

{σ1, σ2, . . . , σj}, σj−d+1 · · ·σj−1σj
)

.

The local cost of the jth elements depends on the sequence of d preceding
elements and, possibly the set of all the j preceding elements. Here, if
d > j we read σj−d+1 · · ·σj−1σj as σ1 · · ·σj−1σj , and if d = 0 the sequence
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is void. A void sequence is denoted by ∅. We note that the local costs are
specified by the problem input, which is some data on set N . The input
can be, for example, a graph or a data matrix. In permutation problems,
the task is to compute the sum

⊕

σ

c(σ),

where σ runs over the permutations of N . We note that permutation
problems are so-called sum-product problems. For a constant d ≥ 0, we
call any problem of this form a permutation problem of degree d. We are
especially interested in permutation problems, whose local cost function
can be evaluated in polynomial time with respect to the size of the input.
These problems are called polynomial local time permutation problems.

Next, we present some examples of polynomial local time permutation
problems. A reader who is interested in permutation problems may refer to
Fomin and Kratsch [35] though their definition of a permutation problem
differs slightly from the one presented above.

The traveling salesman problem (Tsp). The traveling salesman
problem is a permutation problem of degree 2 in the min–sum semiring on
real numbers, with c(Y, v) = 0 for |Y | = 1, and c(Y, uv), for |Y | > 1, equal-
ing the weight of edge uv in the input graph with vertex set N , indifferent
of Y . Strictly speaking, this computes the weight of the minimum weight of
the Hamiltonian paths, not cycles. This can be fixed by adding the weight
of the edge from v to the starting node to local costs c(N, v) for all nodes
v.

The feedback arc set problem (Feedback). Given a directed graph
A, find the size (or weight) of the smallest (or lightest) arc set A′ such that
A \ A′ is acyclic. The feedback arc set problem is a permutation problem
of degree 1 in the min–sum semiring, with c(Y, v) equaling the number (or
total weight) of arcs from Y \ {v} to v in the input graph.

The cutwidth problem (Cutwidth). Given an undirected graph
G = (V,E) and a linear order L, the cutwidth of the linear order is the
maximum number of arcs that a line inserted between two consecutive
nodes cuts. The cutwidth of graph G is the minimum cutwidth over all
possible linear orders. The cutwidth problem is a permutation problem of
degree 0 in the min–max semiring, with c(Y ) equaling the number of edges
with one endpoint in Y and another in V \ Y .

The treewidth problem (Treewidth). A tree decomposition of an
undirected graph G = (V,E) is a pair (T,X) where X = {X1, X2, . . . , Xk}
is a family of subsets of V and T is a tree whose nodes are the subsets Xi

such that (i)
⋃

iXi = V , (ii) if uv ∈ E, then u ∈ Xi and v ∈ Xi for at least
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one i, and (iii) if v ∈ Xi and v ∈ Xj , then v is also a member of every set
along the path between Xi and Xj . The width of a tree decomposition is
the size of the largest set Xi minus one. The treewidth of a graph G is the
smallest width over all of its tree decompositions. The treewidth problem
is a permutation problem of degree 1 in the min–max semiring, with c(Y, v)
equaling the number of vertices in V \Y that have a neighbor in the unique
component of the induced subgraph G[Y ] containing v; see, for example,
Bodlaender et al. [11].

The scheduling problem (Scheduling). Given n jobs J1, J2, . . . , Jn
such that the execution of job Ji takes time ti, there is an associated cost
di(t) for finishing job Ji at time t, the jobs are executed on a single machine
and the execution of a job cannot be interrupted until it is finished, the task
is to find the order of jobs that minimizes the total cost. The scheduling
problem5 is a permutation problem of degree 1 in the min–sum semiring,
with cost c(Y, v) equaling dv(t), where t =

∑

u∈Y tu.

In all the presented problems, the local costs can be computed efficiently,
that is, in polynomial time. However, finding the globally optimal permu-
tation is more difficult. In summary, Tsp [41], Feedback [56], Cutwidth

[42], Treewidth [4], and Scheduling [70] are all NP-hard.

It should be noted that the formulation of a polynomial local time per-
mutation problem is quite loose and does not require that a permutation
problem has anything to do with the cost of a permutation. Especially, it
is possible to formulate a problem in a such way that one local cost func-
tion solves the problem and the others do nothing. Thus, all problems,
which can be solved in polynomial time for example, can also be formu-
lated as polynomial local time permutation problems. However, all time
bounds that we will present are exponential and hence they are not partic-
ularly interesting for problems that are known to be solvable in polynomial
time. The results hold, of course, for the “easier” permutation problems,
too. Thus, we hope that whenever we consider polynomial local time per-
mutation problems, the reader perceives them as problems such as Tsp,
Feedback, Treewidth, Cutwidth, and Scheduling, which all have a
natural interpretation for the cost of a permutation.

As the permutation problems operate in semirings, it is convenient to
analyze their time and space requirements in terms of semiring operations.
The time requirement is the total number of semiring additions and mul-
tiplications needed during the execution of an algorithm. The space re-
quirement is the maximum number of values stored at any point during

5This problem is sometimes also called sequencing problem. This is not to be confused
with the alternative name of the permutation problem.
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execution. It is also convenient to assume that the local costs are either
given or they can be computed in polynomial time and space using a black-
box function whenever needed. This holds for all of the aforementioned
problems. Next, we will formulate the Osd and Fp problems as permu-
tation problems. We will later see that they are permutation problems
with a local cost, whose computation can take exponential time. We will
also shortly discuss the ancestor relation problem although we do not know
whether it can be efficiently formulated as a permutation problem.

2.2.1 The Osd Problem

Recall that in the Osd problem the goal is to maximize the sum

s(A) =
∑

v∈N

sv(Av),

where A runs over the DAGs on N .

Next, we formulate the Osd problem as a permutation problem. We
notice that due to the acyclicity every DAG has at least one node, called
a sink, that has no outgoing arcs. Thus, the nodes of every DAG A can be
topologically ordered, that is, if uv ∈ A, then u precedes v. In particular,
an optimal DAG can be topologically ordered. Given a topological order L
of A, node v is a sink of the subgraph induced by the set Lv. Thus, given a
permutation (or linear order) σ, the score of an optimal DAG compatible
with σ can be found by choosing for each node the best parents from its
predecessors (excluding the node itself)6. To this end, define

ŝv(Y ) = max
X⊆Y

sv(X). (2.2)

Intuitively, ŝv(Y ) is the highest local score when the parents of a node v
are chosen from Y . Now, the score of an optimal DAG compatible with
σ can be written as s(σ) =

∑n
j=1 ŝσj

(

{σ1, σ2, . . . , σj−1}
)

. The score of an
optimal DAG can be found by maximizing the sum of local scores over all
orders, that is, by computing maxσ s(σ); in Section 2.3 we will show how
to construct the DAG that maximizes the score. We observe the following.

Observation 2.6 The Osd problem is a permutation problem of degree 1
in a max–sum semiring.

6Note that by the definition of a linear order, every node precedes itself. However,
due to the acyclicity constraint, a node cannot be its own parent.
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2.2.2 The Fp Problem

In the Fp problem the goal is to compute the posterior probability of
a modular feature f given data D, that is, Pr(f |D). To this end, it is
essential to compute the joint probability Pr(f,D). We notice that

Pr(f,D) =
∑

A

f(A)Pr(D|A)Pr(A)

=
∑

A

∑

L⊇A

f(A)Pr(D|A)Pr(L,A)

=
∑

L

∑

A⊆L

∏

v∈N

fv(Av)Pr(Dv|DAv , Av)ρv(Lv)qv(Av)

=
∑

L

∏

v∈N

ρv(Lv)
∑

Av⊆Lv

fv(Av)Pr(Dv|DAv , Av)qv(Av).(2.3)

Here, the first equality is the equation (2.1), the second equality holds by
the definition of an order-modular prior and by the fact that an order-
modular prior vanishes when the DAG is not compatible with the order,
the third one by the decomposability of the likelihood, the modularity of
the feature and the prior, and the commutativeness of the addition, and
the fourth one by distributiveness of multiplication over addition.

Now, let us define a local score β for each v and Av as

βv(Av) = fv(Av)Pr(Dv|DAv , Av)qv(Av).

Further, for each v and set Lv we define a sum

αv(Lv) = ρv(Lv)
∑

Av⊆Lv

βv(Av).

The sum on the right is known as the zeta transform7 of βv. We will
return to the computation of the zeta transform in Section 2.3.2. Now, we
are ready to express the Pr(f,D) as

Pr(f,D) =
∑

L

∏

v∈N

αv(Lv) , (2.4)

where αv(Lv) depends only on the set of preceding nodes. To finalize the
computation of Pr(f |D), we notice that the probability Pr(D) can be
computed like Pr(f,D) but the feature f is a trivial indicator function
that evaluates everywhere as 1. Based on the equation (2.4), we observe
the following.

7In some papers the zeta transform is referred to as the Möbius transform. In this
thesis, however, we use the terminology by Rota [90].
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Observation 2.7 The Fp problem is a permutation problem of degree 1
in a sum–product semiring.

2.2.3 The Ancestor Relation Problem

Unlike the Osd and Fp problems, we are not aware of any efficient way
to formulate the ancestor relation problem as a permutation problem, even
with an order-modular prior. The difference compared to Osd and Fp is
the fact that the indicator function for an ancestor relation, which is a non-
modular feature, cannot be factorized as simply as the indicator function
of a modular feature.

2.3 Dynamic Programming

Next, we present a standard way to solve a permutation problem. A näıve
algorithm would go through all different permutations one by one and thus
taking time proportional to n!. However, we can do much better than that:
a dynamic programming algorithm that goes through all 2n node subsets
will do. Such algorithms have been known for decades for permutation
problems such as Tsp [6, 50], Feedback [69] and Treewidth [4] and
recently such dynamic programming techniques have been shown to work
also for Osd [78, 96, 98] and Fp [65].

Let us consider TSP on cities N . Let w(u, v) be the distance from a city
u to a city v. Without any loss of generality, we can choose a city s ∈ N
to be the starting point of the route. We define g(Y, v) for all Y ⊆ N \ {s}
and v ∈ Y to be the length of the shortest route from s to v via all cities
in Y . Now g(Y, v) can be computed by dynamic programming according
to the following recurrences:

g(Y, v) = w(s, v) if |Y | = 1,

g(Y, v) = min
u∈Y \{v}

{

g(Y \ {v}, u) + w(u, v)
}

if 1 < |Y | < n− 1,

g(Y, v) = min
u∈Y \{v}

{

g(Y \ {v}, u) + w(u, v) + w(v, s)
}

if |Y | = n− 1.

The first equation clearly holds for routes with one stage. Then we start
building routes with more stages. For every set Y and a city v we find a city
u, the second last city in the route, that minimizes the total route length
(the second equation). Finally, in the third equation we add the distance
from the last city to the starting point. The length of the shortest tour is
the minimum of g(N, v) over v ∈ N .
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The algorithm computes and stores the route lengths for each subsets
Y and a city v ∈ Y , that is, for O(n2n) pairs (Y, v). For each pair the
computation takes O(n) time. Thus, the total time and space requirements
of the algorithm are O(n22n) and O(n2n), respectively.

The dynamic programming algorithm can be generalized to permutation
problems in general. Let σ(Y ) denote a permutation of elements in the set
Y . In what follows we use the shorthand l = |Y |. For any Y ⊆ N and
distinct elements v1, v2, . . . , vd−1 ∈ Y we define g(Y, vd−1 · · · v2v1) as

g(Y, vd−1 · · · v2v1) =
⊕

σ(Y )
σl−d+2···σl−1σl=vd−1···v2v1

l
⊙

j=1

c({σ1, σ2, . . . , σj}, σj−d+1 · · ·σj−1σj). (2.5)

Note that the summation is over all permutations of the elements in Y
ending with vd−1 · · · v2v1. Further, the sum of c(σ) over all permutations σ
equals

⊕

v1,v2,...,vd−1∈N

vi 6=vj if i 6=j

g(N, vd−1 · · · v2v1).

Because multiplication distributes over addition in a semiring, we get the
following dynamic programming equations. For permutation problems of
degree 0, we have

g(∅) = 1

g(Y ) =
⊕

u∈Y

g(Y \ {u})⊙ c(Y ) for l ≥ 1.

A straightforward dynamic programming algorithm computes the sum in
O(n2n) time and O(2n) space.

For permutation problems of degree d > 0, we have

g(∅, ∅) = 1,

g(Y, vd−1 · · · v2v1) =
⊕

vd∈Y \{v1,v2,...,vd−1}

g(Y \ {v1}, vdvd−1 · · · v2)

⊙c(Y, vdvd−1 · · · v2v1) for l ≥ 1,

where the latter recurrence is computed for all nonempty Y ⊆ N and vi ∈ Y
with vi 6= vj if i 6= j. This yields a straightforward dynamic programming
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algorithm that computes g(N, vd−1 · · · v2v1) for all v1, v2, . . . , vd−1 ∈ N with
vi 6= vj if i 6= j and hence the sum of c(σ) over all permutations on N , in
O∗(2n) time and space.

The polynomial factors in the time requirement depend on two things:
the degree of the permutation problem and the time requirement of comput-
ing the local costs. For each set Y , there is at most

(

l
d−1

)

(d−1)! = O(ld−1)
different sequences vd−1 · · · v2v1 and thus g(Y, vd−1 · · · v2v1) is computed
and stored for at most O(nd−1) times per set. As the computation of
g(Y, vd−1 · · · v2v1) for a given set and sequence takes O(n) time, the poly-
nomial factor for a permutation problem of degree d > 0, while counting
semiring operations, is O(nd) for time and O(nd−1) for space. The following
theorems summarize the bounds for time and space.

Theorem 2.8 Permutation problems of degree d can be solved in O(nd
′
2n)

time and O(nd
′−12n) space, where d′ = max{1, d}, assuming that the local

costs are precomputed and can be evaluated in constant time.

Theorem 2.9 Polynomial local time permutation problems of degree d,
where d is a constant, can be solved in O∗(2n) time and space.

These bounds are the best we know for most of the classical permutation
problems we presented in Section 2.2. As an exception, Fomin and Villanger
[36] have presented an algorithm for Treewidth that runs in O∗(1.7549n)
time and space.

Next, we will consider the Osd and Fp problems. Here, the differ-
ence compared to the polynomial local time permutation problems is that
the computation of local costs can take up to exponential time. We will
show, however, that compared to the polynomial local time permutation
problems the computation of local costs in Osd and Fp increases the time
requirement only by a factor linear in n.

2.3.1 The Osd Problem

The dynamic programming algorithm for permutation problems in general
applies to the Osd problem: we go through all the node sets tabulating
the intermediate results for the sets of the first i nodes of the order, for i =
0, 1, . . . , n. Let ŝv(Y ) be the score of the best parent set of a node v when its
parents have to be chosen from the set Y ⊆ N \{v}; see the equation (2.2).
We define g(∅) = 0 and for nonempty sets Y ⊆ N recursively

g(Y ) = max
v∈Y

{

g(Y \ {v}) + ŝv(Y \ {v})
}

. (2.6)
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In words, g(Y \ {v})+ ŝv(Y \ {v}) is the maximum score of the DAGs on a
node set Y when a node v is the sink, that is, the parents of v are selected
from Y \ {v}.

We notice that the näıve computation of ŝv(Y ) for a fixed Y and v re-
quires O(2|Y |) basic operations. Thus, the total number of basic operations
for computing ŝv(Y ) for all Y is proportional to n

∑n−1
k=0

(

n−1
k

)

2k = n3n−1

(the equality holds by the binomial theorem; see the equation (A.1) in
Appendix A), which is larger than the O∗(2n) required by the dynamic
programming algorithm given precomputed local scores. However, the fol-
lowing observation, which states that the best parent set of v chosen from
Y is either Y itself or the best parent set chosen from Y \ {u} for some
u ∈ Y , helps us to reduce the time requirement.

Lemma 2.10 (Ott and Miyano [79]) If v ∈ N and Y ⊆ N \ {v}, then

ŝv(Y ) = max
{

sv(Y ),max
u∈Y

ŝv(Y \ {u})
}

.

Proof. By the definition of ŝv(Y ), maxu∈Y ŝv(Y \{u}) equals the maximum
over the union of 2Y \{v} where v runs over the elements in Y . We observe
that now ŝv(Y ) equals the maximum over the union Y and

⋃

v∈Y 2Y \{v},
which is the maximum over 2Y . This, for one, is the definition of ŝv(Y ).

Using this recurrence8, the computation of ŝv(Y ) for a fixed v and Y
takes no more than n comparisons, yielding the total time requirement
O(n22n) and the total space requirement O(n2n) for computing ŝv(Y ) for
all v and Y .

Assuming that the values ŝv(Y ) have been computed and stored, the
value g(N) can be computed in O(n2n) time and O(2n) space. Thereby,
the total time and space requirements of the algorithm are O(n22n) and
O(n2n), respectively. This is almost optimal since the input, that is, the
local scores, might already contain n2n−1 values.

If all the intermediate results are kept in memory, the space require-
ment of the previous algorithm is O(n2n). However, we notice that the
computation of g(Y ) and ŝv(Y ) requires results only from the sets of size
|Y | − 1. Therefore, we can compute both functions simultaneously, and
proceed levelwise, that is, increasing cardinality of Y . While computing

scores at level ℓ we need to keep values for only O
(

(

n
ℓ

)

+
(

n
ℓ−1

)

)

sets in

memory. This reduces the space requirement to O(
√
n2n) [6, 79].

8Another way to compute the values of ŝv would be to use a generalized version of
Yates’s algorithm; see, for example, Koivisto [61] and Koivisto and Sood [65].
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Above, we computed the score of an optimal DAG. Next, we show
how to find the DAG itself. The construction of an optimal DAG is quite
straightforward; see Algorithm 1. In algorithm descriptions, we use the
bracket notation to emphasize the program variables that are used while
running the algorithm, that is, for example ŝv[Y ] corresponds to the target
value ŝv(Y ). We also assume that the argmax operation returns a single
arbitrary element that maximizes the expression in question. First, when
computing ŝv[Y ] for sets Y ⊆ N\{v}, for every v and Y we keep track of the
best parent set of v when the parents are chosen from Y , that is, bpsv[Y \
{v}] = argmaxX⊆Y sv(X). Further, while computing the recurrence (2.6)
we keep track of the sink nodes. Once we have found the score of an optimal
network we construct the corresponding DAG A by backtracking. First, we
initialize the DAG A on node set N to be an empty graph. We start by
setting Y ← N and find the sink v of Y . Then we assign the parent set
bpsv[Y \ {v}] to node v in graph A. Then we move the set Y ← N \ {v}
and find its set and the corresponding best parent set. We continue this
kind of procedure until we reach the empty set. At this point, the DAG A
is an optimal DAG.

Algorithm 1 Dynamic programming for Osd.

Input: Local scores sv(Y ) for all v ∈ N and Y ⊆ N \ {v}.
Output: An optimal DAG A.
1: for all Y ⊆ N in increasing cardinality do
2: for all v ∈ Y do
3: ŝv[Y ]← max

{

sv(Y ),maxu∈Y ŝv[Y \ {u}]
}

.

4: bpsv[Y ]← argmax
{

sv(Y ),maxu∈Y ŝv[Y \ {u}]
}

.

5: end for
6: g[Y ]← maxv∈Y

{

g[Y \ {v}] + ŝv[Y \ {v}]
}

.

7: sink[Y ]← argmaxv∈Y

{

g[Y \ {v}] + ŝv[Y \ {v}]
}

.

8: end for
9: A is an empty graph.

10: Y ← N
11: while Y 6= ∅ do
12: v ← sink[Y ]
13: Add arcs from bpsv[Y \ {v}] to v to A.
14: Y ← Y \ {v}.
15: end while
16: return A
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2.3.2 The Fp Problem

The probability Pr(f,D) given the values of αv(Y ) can be computed
straightforwardly by dynamic programming in similar fashion as for Osd:
we define the recurrence g(∅) = 1 and

g(Y ) =
∑

v∈Y

g(Y \ {v})αv(Y \ {v}) (2.7)

for every nonempty set Y ⊆ N . Finally, g(N) equals Pr(f,D). Here, g is
called a forward function as it computes the contribution of the set Y to
the target probability assuming that Y are the first |Y | nodes in the order.
Later in Section 4.4.2 we will introduce a related backward function.

The difficulty lies in the computation of αv(Y ). As it is a sum over all
subsets of Y , the computation for fixed v and Y takes O(2|Y |) time and the
total time for all Y is O(n3n). However, this can be computed faster as we
notice that αv is essentially the zeta transform of βv and there is a known
fast algorithm for zeta transform; next, we will discuss the algorithm.

Let h be a function from the subsets of an n-element set N to the real
numbers. The zeta transform of h is another function (hζ) defined by

(hζ)(Y ) =
∑

X⊆Y

h(X), Y ⊆ N.

Next, we will show that given h, the zeta transform for all Y ⊆ N can
be computed in O(n2n) time and O(2n) space. The fast zeta transform
algorithm is based on an idea presented by Yates in 1937 [111], restated by
Knuth [59] and later rediscovered at least by Kennes and Smets [57, 58].
The fast zeta transform has been used to develop faster algorithms for
several combinatorial problems such as graph coloring [63] and Steiner tree
[76] and combinatorial tools like the fast subset convolution [9].

Algorithm 2 computes the zeta transform over N . Here we assume,
without any loss of generality that N = {1, 2, . . . , n}. The idea of the
algorithm is to conduct the “big” zeta transform in n phases doing one
“little” transform at a time.

Theorem 2.11 Algorithm 2 works correctly.

Proof. We show by induction on j that the computed function satisfies

hj(Y ) =
∑

X∈(Y )j

h(X),
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Algorithm 2 The fast zeta transform.

Input: h(X) for X ⊆ N .
Output: (hζ)(Y ) for Y ⊆ N .
1: for Y ⊆ N do
2: Let h0(Y )← h(Y ).
3: end for
4: for j ← 1, . . . , n do
5: for Y ⊆ N do
6: if j ∈ Y then
7: Let hj(Y )← hj−1(Y ) + hj−1(Y \ {j}).
8: else
9: Let hj(Y )← hj−1(Y ).

10: end if
11: end for
12: end for
13: return Zeta transforms hn(Y ) for all Y ⊆ N .

where we use the shorthand

(Y )j={X ⊆ Y : Y ∩ {j + 1, j + 2, . . . , n} ⊆ X};

This will suffice, since (Y )n consists of the subsets of Y .

We proceed by induction on j and the size of the set Y . (i) Trivially
(Y )0 = {Y }. Therefore, h0(Y ) = h(Y ) =

∑

X∈(Y )0
h(X), as claimed. (ii)

Assume then that hj−1(Y ) =
∑

X∈(Y )j−1
h(X).

First, consider the case j /∈ Y . Now (Y )j = (Y )j−1 because Y ∩ {j +
1, j+2, . . . , n} = Y ∩{j, j+1, . . . , n}. Thus hj(Y ) = hj−1(Y ), as correctly
computed at line 9.

Second, consider the case j ∈ Y . To prove the correctness of line 7, it
suffices, by the induction assumption, to show that (Y )j−1 and (Y \{j})j−1

are disjoint and their union is (Y )j . To this end, it suffices to observe that
(Y )j−1 consists of all subsets X ⊇ Y ∩{j, j+1, . . . , n} of Y that do contain
j, whereas (Y \ {j})j−1 consists of all subsets X ⊇ Y ∩ {j, j + 1, . . . , n} of
Y that do not contain j.

The following example illustrates the fast zeta transform.

Example 3. The fast zeta transform of a function g(Y ) for subsets of
N = {1, 2, 3} is illustrated in Figure 2.2. Each column corresponds to
a subset of N and the boxes correspond to the values of hj . The first
row corresponds to the initialization of the values h0(Y ) to g(Y ) and the



30 2 Preliminaries

other rows to the computations of hj for j = 1, 2, 3. At each phase the
value of hj for a set Y is obtained by summing the values that correspond
to the tails of the arcs pointing to hj(Y ). The bottom line contains the
values hn(Y ), that is, the zeta transform of g at Y . Figure 2.2 shows that
there is exactly one directed path from each subset of Y to Y , that is, all
subsets contribute to the sum exactly once. Also there is no directed path
to Y from any set that is not a subset of Y , thus only the subsets of Y
contribute to the sum. 3

{} 1 2 3 12 13 23 123

{} 1 2 3 12 13 23 123

Phase I:
1

Phase II:
2

Phase III:
3

Figure 2.2: The fast zeta transform on the set N = {1, 2, 3}.

It should be noted that the recurrence (2.7) applies only when we have
an order-modular prior for the structure. There are dynamic programming
algorithms that compute posterior probabilities of structural features with
uniform prior over DAGs [55, 105] but their time requirement is O∗(3n).
The extra time required is due to the fact that the algorithms use inclusion-
exclusion to prevent the same DAG from contributing to the sum more than
once.



Chapter 3

Space–Time Tradeoffs

We continue with an introduction to space–time tradeoffs in learning the
structure of Bayesian networks. First, we introduce two simple schemes,
namely the two-bucket scheme and the divide-and-conquer scheme, for per-
mutation problems in general. Then, we adapt these schemes for Osd and
Fp. We end this chapter by defining the notion “optimality” of a scheme
in terms of the time–space product.

3.1 Permutation Problems

In this section, we introduce two schemes to solve permutation problems
with less space. Both schemes work under an assumption that the local
costs can be evaluated in polynomial time. These schemes are later in
Section 3.2 adapted for structure discovery problems, where the evaluation
of local costs can take exponential time.

3.1.1 Two-Bucket Scheme

The two-bucket scheme is a simple scheme to solve permutation problems in
less than O∗(2n) space. The scheme is based on an idea to guess the s first
elements of the linear order and solve the subproblems for the first s and the
last n− s elements independently. More formally, this approach is justified
by the following observation. Fix an integer n/2 ≤ s ≤ n. Now, there
exists a partition of N to N0 and N1 such that N0 are the first s elements
in a linear order and N1 are the last n − s elements. For simplicity, we
assume that n−s ≥ d, where d is the degree of the permutation problem in
question. We use a shorthand l = |Y |. We also assume that whenever the
notation v1, . . . , vd ∈ X is used, vi 6= vj if i 6= j. Based on the observation,

31
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one can solve a permutation problem by trying out all possible partitions
{N0, N1} and solving the recurrences g0(∅, ∅) = 1,

g0(Y, vd−1 · · · v2v1) =
⊕

vd∈Y \{v1,...,vd−1}

{

g0(Y \ {v1}, vdvd−1 · · · v2)

⊙c(Y, vdvd−1 · · · v2v1)
}

, (3.1)

for ∅ ⊂ Y ⊆ N0, v1, v2, . . . , vd−1 ∈ Y ,

g1(Y, vd−1 · · · v2v1) =
⊕

vd∈N0\{v2,...,vd−1}

{

g0(N0, vdvd−1 · · · v2)

⊙c(N0 ∪ Y, vdvd−1 · · · v2v1)
}

, (3.2)

for Y ⊆ N1, l = 1, v1 ∈ Y , v2, v3, . . . , vd−1 ∈ N0,

g1(Y, vd−1 · · · v2v1) =
⊕

vd∈N0\{vl+1,...,vd−1}

{

g1(Y \ {v1}, vdvd−1 · · · v2)

⊙c(N0 ∪ Y, vdvd−1 · · · v2v1)
}

, (3.3)

for Y ⊆ N1, 1 < l < d, vl+1, . . . , vd−1 ∈ N0, v1, . . . , vl ∈ Y and

g1(Y, vd−1 · · · v2v1) =
⊕

vd∈Y \{v1,...,vd−1}

{

g1(Y \ {v1}, vdvd−1 · · · v2)

⊙c(N0 ∪ Y, vdvd−1 · · · v2v1)
}

, (3.4)

for Y ⊆ N1, l ≥ d, and v1, v2, . . . , vd−1 ∈ N1; the total cost is
obtained as the sum g(N) = ⊕v1,...,vd−1∈N1g

′
1(N1, vd−1 · · · v2v1), where

g′1(N1, vd−1 · · · v2v1) is the sum of g1(N1, vd−1 · · · v2v1) over all partitions
{N0, N1}. Here, the recurrence g0 is of the same form as standard dynamic
programming. The recurrence g1, however, differs from the standard form.
In the recurrences (3.2) and (3.3) part of the sequence vd−1 · · · v2v1 consists
of items from the set N0. The recurrence g1 does not have a value for
an empty set; instead in the recurrence (3.2) one takes the values from a
suitable g0(N0, vd−1 · · · v2v1).

Let us analyze the time and space requirement of the algorithm. We no-
tice that the two subproblems are independent given the partition {N0, N1},
and thus can be solved separately. Assuming the local costs can be com-
puted in polynomial time, applying the exact dynamic programming algo-
rithm from Section 2.3 solves the first subproblem, that is, computes g0
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in O∗(2s) time and space. Similarly, the second subproblem, that is, the
values of g1 are computed in O∗(2n−s) time and space. There are

(

n
s

)

dif-
ferent partitions {N0, N1} and thus in total the problem can be solved in
O∗(

(

n
s

)

2s) time and O∗(2s) space. We get the following bounds for time
and space.

Theorem 3.1 Polynomial local time permutation problems of bounded de-
gree can be solved in O∗(

(

n
s

)

2s) time and O∗(2s) space.

Next, we present some examples of these bounds for different values of
s. For example, setting s = (4/5)n yields O∗(2.872n) time and O∗(1.742n)
space. On the other hand, setting s = (3/5)n yields O∗(2.972n) time and
O∗(1.516n) space.

3.1.2 Divide and Conquer Scheme

We further develop the partitioning idea from the previous section by ap-
plying it recursively. This scheme is based on a divide-and-conquer ap-
proach introduced by Savitch [91]. The approach has later been applied
to TSP [8, 46] and other problems [11, 108]. In what follows, we loosely
follow the presentation by Fomin and Kratsch [35] although we present the
divide-and-conquer scheme in a far more general form.

Here the idea is to create subproblems using the partitioning idea of the
two-bucket scheme and solve the subproblems by applying the partitioning
idea again. Assume that we have a partition {N0, N1} where all elements
in N0 precede all elements in N1. Now N0 can be partitioned to {N00, N01}
and N1 to {N10, N11} such that all elements in N00 precede all elements in
N01 and all elements in N10 precede all elements in N11. We define function
g(N1, N0, wd−1 · · ·w2w1, vd−1 · · · v2v1) to be the score over all permutations
on N1 ending with vd−1 · · · v2v1 given that exactly the elements of N0 pre-
cede N1 and wd−1 · · ·w2w1 is the sequence of d − 1 last nodes in N0. The
function g(N1, N0, wd−1 · · ·w2w1, vd−1 · · · v2v1) equals to the sum of

⊕

x1,x2,...,xd−1∈N10

g(N10, N0, w1w2 · · ·wd−1, xd−1 · · ·x2x1)

⊙g(N11, N0 ∪N10, xd−1 · · ·x2x1, vd−1 · · · v2v1)

over all partitions {N10, N11}. In this section, assume that whenever
the notation v1, . . . , vl ∈ X is used, vi 6= vj if i 6= j; we also use a
shorthand l = |Y |. The permutation problem is solved by computing
⊕

v1,v2,...,vd−1∈N
g(N, ∅, ∅, vd−1 · · · v2v1). In general one can apply the re-

cursion to depth t and then solve the subproblems by dynamic program-
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ming. The value g(N1, N0, wd−1 · · ·w2w1, vd−1 · · · v2v1) can be computed
by dynamic programming recurrence g′(∅, ∅) = 1 and

g′(Y, vd−1 · · · v2v1) = g′(Y \ {v1}, vl · · · v3v2)
⊙c(Y ∪N0, wd−l−1 · · ·w2w1vl · · · v2v1)

for nonempty Y ⊆ N1 with l < d and v1, . . . , vl ∈ Y and

g′(Y, vd−1 · · · v2v1) =
⊕

vd∈Y \{v1,v2,...,vd−1}

g′(Y \ {v1}, vdvd−1 · · · v3v2)

⊙c(Y ∪N0, vdvd−1 · · · v2v1)
for Y ⊆ N1 with l ≥ d and v1, v2, . . . , vd+1 ∈ Y . The value
g′(N1, vd−1 · · · v2v1) equals to g(N1, N0, wd−1 · · ·w2w1, vd−1 · · · v2v1).

For an analysis of the time and space requirements, it is convenient
to assume a balanced scheme: in every step of the recursion, the element
set in question is partitioned into two sets of about equal size. Further,
for simplicity we assume that the number of elements, n, is a power of
2. Then, at depth t ≥ 0 of the recursion, the element set of each sub-
problem is of size s = n/2t. The value of g can be computed using the
recurrence g′ in O∗(2s) time and space. For every set of size s, there is at
most

(

s
s/2

)

≤ 2s−1 possible partitions (the inequality holds by a well-known

bound; see the inequality (A.2) in Appendix A). For each partition of size
s, the recurrence g(N1, N0, wd−1 · · ·w2w1, vd−1 · · · v2v1) is called at most
2
(

s
d−1

)

(d − 1)! ≤ 2sd−1(d − 1)! times. Thus, the recurrences are called at

most nd−1(d−1)!2n(n/2)d−1(d−1)!2n/2(n/4)d−1(d−1)!2n/4 · · · (2s)d−1(d−
1)!22s = (nt/2t)(d − 1)!t22n−2s times. As the recursion depth is at most
log n, we get the following.

Theorem 3.2 Polynomial local time permutation problems of degree d
can be solved in O∗(22n−sn(d−1)(logn−log s)(d−1)!logn−log s) time and O∗(2s)
space for any s = n/2, n/4, n/8, . . . , 1.

As a theoretically interesting special case with a polynomial space re-
quirement we have the following.

Corollary 3.3 Polynomial local time permutation problems of degree d
can be solved in O∗(4nn(d−1) logn(d− 1)!logn) time and polynomial space.

3.2 Structure Discovery in Bayesian Networks

So far, we assumed that the local costs can always be evaluated in polyno-
mial time. This is not, however, the case with the Osd and Fp problems.
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Luckily, it turns out that one can, under some assumptions about possible
parent sets, overcome the complications caused by the computation of the
local score and solve both Osd and Fp using the two-bucket and divide-
and-conquer schemes. To this end, it is essential to be precise about the
input of these problems. Therefore, we first discuss the handling of the
parent set with limited space.

3.2.1 On Handling Parent Sets with Limited Space

For a rigorous treatment of the structure discovery problems with limited
space, we need to be explicit about the input of the problem, that is,
the local scores sv(Av) for Osd and βv(Av) for Fp. It is convenient to
assume that the scores are nonzero (in the corresponding semiring) only
for a family of possible parent sets denoted by Fv; elsewhere we define that
sv(Av) = −∞ and βv(Av) = 0. Note that the zero scores are a direct
consequence of setting the structure prior to zero when Av /∈ Fv as we did
in Section 2.1.1.

The space requirement of the structure discovery problems is affected by
the fact whether the input is represented explicitly or implicitly. In the for-
mer case, we assume that the input consists of a list of tuples (v,Av, sv(Av))
or (v,Av, βv(Av)). This enables finding the local score for a given pair
(v,Av) in O(n) time1. However, the size of the input is

∑

v |Fv|, which is
going to be a lower bound of the space requirement for our algorithms. In
the latter case, we assume that data is kept in memory as a n×m matrix,
where n is the number of nodes and m is the number of observations, and
the local scores are computed anew in δ(n) time whenever needed. Al-
though it is often reasonable to assume that δ(n) is polynomial in n, this
approach is usually slow in practice and therefore mainly of theoretical in-
terest. It should be noticed that although we present δ(n) as a function
of n it actually depends also on the number of samples in the data, m. In
practice, m can be fairly large compared to n and cause the constant factor
to be large as well. In this thesis we concentrate on the explicit input but
consider the implicit input, too.

We are particularly interested in possible parent set families Fv that
are downward-closed, that is, closed with respect to inclusion: if Y ∈ Fv

and X ⊆ Y then X ∈ Fv. Natural examples of such families in Bayesian
network context are (a) sets of at most size k for a fixed k and (b) sets
that are subsets of given candidate parents [39, 86]. A useful property

1If the local scores are stored in n arrays (one for each v ∈ N) in lexicographic
order, the set Av can be found using binary search in O(log |Fv|) time. As |Fv| ≤ 2n−1,
log |Fv| ≤ log 2n−1 = (n− 1) log 2 = O(n).
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of the downward-closed set families is that their members can be listed
in (nearly) linear time. We will later make use of the following, slightly
stronger observation. Define a set interval from X to Y as [X,Y ] = {Z ⊆
Y : X ⊆ Z}.

Proposition 3.4 Given a set N , a downward closed family F ⊆ 2N ,
whose membership can be determined in τ(n) time, and sets X and Y with
X ⊆ Y ⊆ N , the members of F∩[X,Y ] can be listed in O(|F∩[X,Y ]|nτ(n))
time.

Proof. If X /∈ F , then none of its superset is in F . Otherwise, we can
list the members of F in increasing cardinality. Let Fℓ consist of the sets
Z ∈ F satisfying X ⊆ Z ⊆ Y and |Z| = ℓ. We go through all Z ∈ Fℓ in
lexicographic order and for every u ∈ Y \ Z such that u is larger than the
maximal element of Z \X (in lexicographic order) we test whether Z ∪{u}
is a member of F , and add it to Fℓ+1 if it satisfies the condition. We notice
that no member of F is listed more than once, and for every member of F ,
the membership in F is tested no more than n − 1 times. Therefore, the
total time requirement is O(|F ∩ [X,Y ]|nτ(n)).

If F consists of the parent sets of cardinality of most k and we proceed
levelwise as in the proof of Proposition 3.4, we always know the cardinality
of sets in each level. In other words, the membership in F can be determined
in constant time, which implies the following.

Proposition 3.5 Given a set N , a family F ⊆ 2N that consists of all sets
of cardinality at most k, and sets X and Y with X ⊆ Y ⊆ N , the members
of F ∩ [X,Y ] can be listed in O(|F ∩ [X,Y ]|n) time.

3.2.2 The Osd Problem

We are ready to adapt the two-bucket scheme and the divide-and-conquer
scheme for the Osd problem. The recurrences are mostly in the same
form as for the permutation problems in general but the computation of
the local scores differs. Also, here it is convenient to formulate the two-
bucket scheme with two completely independent recurrences. Based on the
recurrences (3.1) and (3.2), one can find the score of an optimal DAG Â by
trying out all possible partitions {N0, N1} and solving the recurrences

g0(Y ) = max
v∈Y

{

g0(Y \ {v}) + ŝv(Y \ {v})
}

, (3.5)
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for ∅ ⊂ Y ⊆ N0 with g0(∅) = 0, and

g1(Y ) = max
v∈Y

{

g1(Y \ {v}) + ŝv(N0 ∪ Y \ {v})
}

, (3.6)

for ∅ ⊂ Y ⊆ N1 with g1(∅) = 0, where ŝv(Y \ {v}) is the highest score
of a node v and its parents when the parents are chosen from Y \ {v};
see the equation (2.2). The score of Â is obtained as the maximum of
g0(N0) + g1(N1) over all partitions {N0, N1}.

Next, we analyze the time and space requirement of the algorithm. Here
the difference compared to some other permutation problems of degree 1,
like Feedback, Treewidth, and Scheduling, is that the evaluation of
the local score, ŝv(Y ), can take exponential time. Let us first consider the
explicit input.

The two subproblems, g0 and g1, are independent given the partition
{N0, N1}, and thus can be solved separately. Applying the exact dynamic
programming algorithm from Section 2.3.1 solves the first subproblem, that
is, computes g0 in O(2sn2) time and O(2sn) space. We note that evaluating
a local score sv(Y ) now takes O(n) time. This, however, does not affect
the total time requirement of the recurrence in Lemma 2.10.

Computation of g1 is slightly more complicated, since evaluating the
ŝv(N0∪Y ) requires the consideration of all possible subsets of N0 as parents
of v, in addition to a subset from Y \{v}. To this end, for all X1 ⊆ N1 \{v}
we write

s′v(X1) = max{sv(X) : X ∩N1 = X1, X ∈ Fv}. (3.7)

The scores s′v(X1) for all X1 ⊆ N1 can be computed using Algorithm 3.

Algorithm 3 Compute s′v(X1).

Input: Scores sv(X) for all X ∈ Fv.
Output: s′v[X1] for all X1 ⊆ N1.
1: for X1 ⊆ N1 do
2: s′v[X1]← −∞
3: end for
4: for X ∈ Fv do
5: X1 ← X ∩N1

6: s′v[X1]← max{s′v[X1], sv(X)}
7: end for
8: return s′v[X1] for all X1 ⊆ N1

Observe that the loop in line 1 is executed 2n−s times. Listing the sets
X ∈ Fv required in line 4 takes O(Fnτ(n)), where F is the size of Fv
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and the membership in Fv can be evaluated in τ(n) time. The loop in
line 4 is executed F times. The lines 5 and 6 can be computed in O(n)
time yielding the total time requirement O((Fτ(n)+2n−s)n). Now because
ŝv(N0∪X1) = maxY⊆X1 s

′
v(Y ), the exact dynamic programming algorithm

again applies to computing g1, running in O((Fτ(n)+2n−s)n2+2n−sn2) =
O((Fτ(n) + 2n−s)n2) time and O(2n−sn) space in total. Because there are
(

n
s

)

different partitions {N0, N1}, we get the following result.

Proposition 3.6 The Osd problem with explicit input can be solved in
O(

(

n
s

)

(2s+Fτ(n))n2) time and O((2s+F )n) space for any s = n/2, n/2+
1, . . . , n provided that each node has at most F possible parent sets, which
form a downward-closed set family, and the membership in the possible
parent sets can be evaluated in τ(n) time.

Now consider the case with implicit input. The only time that the
local scores are needed is the computation of s′v(X1). In this case the
time requirement of Algorithm 3 is O((Fτ(n)δ(n) + 2n−s)n) yielding the
following result.

Proposition 3.7 The Osd problem with implicit input can be solved in
O(

(

n
s

)

(2s + Fτ(n)δ(n))n2) time and O(2sn) space for any s = n/2, n/2 +
1, . . . , n provided that each node has at most F possible parent sets, which
form a downward-closed set family, the membership in the possible parent
sets can be evaluated in τ(n) time and a local score can be computed from
data in δ(n) time.

Let us consider the divide-and-conquer scheme. Osd is a permutation
problem of degree 1 and thus the sequences are void. Thus, g(N1, N0) is
the sum of

max
{

g(N10, N0) + g(N11, N0 +N10)
}

over all partitions {N10, N11}, where N0 consist of the nodes preceding N1.
One can apply the recursion to depth t and then solve the remaining prob-
lem g(N1, N0) by the dynamic programming recurrence in which g′(∅) = 0
and

g′(Y ) = max
v∈Y

{

g′(Y \ {v}) + ŝv((Y \ {v}) ∪N0)
}

for nonempty Y ⊆ N1. The Osd problem for node set N is solved by
computing g(N, ∅).

The analysis of the time and space requirements follows the same pat-
tern as in Section 3.1.2. Here, however, we have to include the input in our
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analysis. Again, assume a balanced scheme and that the number of nodes,
n, is a power of 2. Then, at depth t ≥ 0 of the recursion, the node set
of each subproblem is of size s = n/2t. Therefore, each subproblem can
be solved in O∗(2s) time and space, assuming that the number of possible
parent sets for each variable is polynomial in n. More precisely, assum-
ing explicit input, if every node has at most F possible parent sets, which
form a downward-closed set family, and the membership in the possible
parent sets can be evaluated in τ(n) time, a subproblem can be solved in
O((2sn+Fτ(n))n) time and O((2s+F )n) space. Because each subproblem
of size 2s is divided into 2

(

2s
s

)

≤ 22s subproblems of size s, the total number

of subproblems of size s to be solved is at most 2n2n/22n/4 · · · 22s = 22n−2s.
We get the following bounds.

Theorem 3.8 The Osd problem with explicit input can be solved in
O(22n−2s(2s + Fτ(n))n2) time and O((2s + F )n) space for any s =
n/2, n/4, n/8, . . . , 1, provided that each node has at most F possible par-
ent sets, which form a downward-closed set family, and the membership in
the possible parent sets can be evaluated in τ(n) time.

Corollary 3.9 The Osd problem with explicit input can be solved in
O(4nnk+2τ(n)) time and O(nk+1) space, provided that each node has at
most O(nk) possible parent sets, which form a downward-closed set family,
and the membership in the possible parent sets can be evaluated in τ(n)
time.

Since the divide-and-conquer scheme handles the local scores the same
way as the two-bucket scheme, we get the following result for the implicit
input.

Theorem 3.10 The Osd problem with implicit input can be solved
in O(22n−2s(2s + Fτ(n)δ(n))n2) time and O(2sn) space for any s =
n/2, n/4, n/8, . . . , 1, provided that each node has at most F possible par-
ent sets, which form a downward-closed set family, the membership in the
possible parent sets can be evaluated in τ(n) time and a local score can be
computed from data in δ(n) time.

The results in this section apply particularly in the scenario in which the
number of parents is bounded. If we want to lift this condition, the running
time grows substantially. Indeed, the number of possible parent sets can be
2n−1 yielding the total time requirement O(23n−sn2). By setting s = 1, we
get a theoretically interesting (but in practice quite useless) algorithm that
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solves the Osd problem without any restrictions on parent sets in O(8nn2)
time and polynomial space.

3.2.3 The Fp Problem

The Fp problem admits the two-bucket scheme and the divide-and-conquer
scheme in a similar fashion as the Osd problem. Let us analyze the two-
bucket scheme. Now we consider all possible partitions {N0, N1} of N and
have the recurrences

g0(Y ) =
∑

v∈Y

g0(Y \ {v})αv(Y \ {v}), (3.8)

for ∅ ⊂ Y ⊆ N0 with g0(∅) = 1, and

g1(Y ) =
∑

v∈Y

g1(Y \ {v})αv((Y \ {v}) ∪N0), (3.9)

for ∅ ⊂ Y ⊆ N1 with g1(∅) = 1; the score is obtained as the sum of
g0(N0)g1(N1) over all partitions {N0, N1}.

The values of αv(Z) for Z ⊆ N0 can be computed by the standard fast
zeta transform algorithm. For sets N0 ⊆ Z ⊆ N , however, we need to do
some minor modifications. To this end, for all X1 ⊆ N1 \ {v} we write

α′
v(X1) =

∑

X∈Fv

X∩N1=X1

βv(X),

which is analogous to the equation (3.7). The values α′
v(X1) for allX1 ⊆ N1

can be computed by Algorithm 4, which is a modified version of Algo-
rithm 3. The values of αv(X1) for X1 ⊆ N1 are obtained by computing the
zeta transform of α′

v(X1) over N1.

A straightforward application of the presented techniques enables solv-
ing the Fp problem using the divide-and-conquer scheme. As the same
argumentation applies for both Osd and Fp, we summarize the time and
space bounds yielded by the two-bucket scheme and the divide-and-conquer
scheme as follows.

Theorem 3.11 The bounds presented in Proposition 3.6, Proposition 3.7,
Theorem 3.8, Corollary 3.9, and Theorem 3.10 hold for the Fp problem if
the word Osd is replaced by Fp.
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Algorithm 4 Compute α′
v(X1).

Input: Scores βv(X) for all X ∈ Fv.
Output: α′

v(X1) for all X1 ⊆ N1.
1: for X1 ⊆ N1 do
2: α′

v[X1]← 0
3: end for
4: for X ∈ Fv do
5: X1 ← X ∩N1

6: α′
v[X1]← α′

v[X1] + βv(X)
7: end for
8: return α′

v[X1] for all X1 ⊆ N1

3.3 Time–Space Product

So far, we have obtained several different time and space bounds for per-
mutation problems. Recall that the dynamic programming algorithm runs
in O∗(2n) time and space. The two-bucket scheme yields different time and
space requirements depending on the parameter s. For example, setting
s = (4/5)n yields O∗(2.872n) time and O∗(1.742n) space. On the other
hand, setting s = (3/5)n yields O∗(2.972n) time and O∗(1.516n) space.
Also the divide-and-conquer scheme yields several different time and space
bounds. For example, Corollary 3.3 yields O∗(4n) time and polynomial
space. Setting s = n/4 yields O∗(3.364n) time and O∗(1.190n) space. But
how good or efficient are these bounds?

In order to analyze the “goodness” or “efficiency” of a space–time trade-
off, we need a measure, preferably one that summarizes the efficiency into
a single number. As a candidate for such a measure we consider the time–
space product which we define as follows.

Definition 3.12 (Time–space product.) The time–space product of
an algorithm with the time requirement O∗(Tn) and the space requirement
O∗(Sn) is the infimum of

θ = TS.

Later in Section 4.2 we extend this definition to handle the partial order
schemes that will be presented in Chapter 4. We notice that this kind of
efficiency measure is sensible only for exponential time algorithms as all
polynomial time (and space) algorithms have the time–space product 1.

Our base case is the dynamic programming algorithm running in O∗(2n)
time and space yielding the time–space product 4 and we will compare the
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space–time tradeoff schemes to this number. Intuitively, if an algorithm
yields a time–space product less than 4, then whenever the space require-
ment (compared to the base case) is halved, the time requirement less than
doubles.

The divide-and-conquer scheme also has time–space product 4 as it
yields the bounds O∗(22n−s) for time and O∗(2s) for space. The two-bucket
scheme, however, generally yields larger time–space products. Setting s =
(4/5)n yields O∗(2.872n) time, O∗(1.742n) space, and time–space product 5.
On the other hand, setting s = (3/5)n yields O∗(2.972n) time, O∗(1.516n)
space, and time–space product 4.51. In general, this approach yields a
smooth time–space tradeoff for space bounds from O∗(2n/2) to O∗(2n).
However, this is not the end of the story. In Chapter 4 we will generalize
the two-bucket scheme and obtain time–space products smaller than 4.



Chapter 4

The Partial Order Approach

Linear orders have been a key ingredient in many algorithms for score-
based structure discovery in Bayesian networks. Cooper and Herskovits
[19] observed that given a linear order and allowing the nodes to have at
most a constant number of parents, an optimal structure can be found in
polynomial time. Unfortunately, in practice we usually do not know the
correct order and we have to resort to other means. Linear orders have
been employed in several heuristic algorithms. For example, Friedman and
Koller [39] found out that an MCMC sampler that works in the space of
linear orders mixes considerably faster than the one that works directly with
the structures. Further, Teyssier and Koller [104] introduced an algorithm
that searches an optimal ordering using greedy hill-climbing. Also the exact
dynamic programming algorithms (Section 2.3) work in the space of linear
orders.

In this chapter we present a partial order approach for permutation
problems in general and for structure discovery in Bayesian networks in
particular. The partial order approach can be viewed as an extension of
the dynamic programming method in Section 2.3. It is also a generalization
of the two-bucket scheme. We present a “sparse” dynamic programming
algorithm that solves the structure discovery problems over DAGs that are
compatible with a given partial order. The idea is to consider a family
of partial orders that together cover all linear orders and solve the sub-
problem for each partial order separately. In the end, the results from the
subproblems are combined to get a solution to the original problem.

We begin this chapter by presenting dynamic programming over partial
orders for permutation problems in general. Then, we accommodate the
algorithm to solve the Osd and Fp problems. In this chapter we present
our results for partial orders in general; later in Chapter 5 we consider
theoretical and practical issues concerning the choice of partial orders.

43
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4.1 Partial Orders

In this section we introduce the partial order terminology needed in this
thesis. For a more thorough representation of partial orders we refer the
reader to Davey and Priestley [23].

A partial order P on a base-set M is a subset of M ×M such that for
all x, y, z ∈M it holds that

1. xx ∈ P (reflexivity),

2. xy ∈ P and yx ∈ P imply y = x (antisymmetry), and

3. xy ∈ P and yz ∈ P imply xz ∈ P (transitivity).

If xy ∈ P we say that x precedes y. A partial order P is a linear order if in
addition xy ∈ P or yx ∈ P for all x, y ∈M (totality).

A linear order Q is a linear extension of a partial order P if P ⊆ Q.
Recall that every permutation is in a one-to-one relationship with a linear
order. Thus, we say that a permutation σ is a linear extension of a partial
order P if the linear order corresponding to σ is a linear extension of P .
For our purposes, it is useful to define the trivial order P on M as the
“diagonal” partial order {xx : x ∈ M}. For a set Y ⊆ M , an induced
partial order P [Y ] is the partial order P ∩ Y × Y .

A DAG A and a partial order P are said to be compatible with each
other if there exists a partial order Q such that P ⊆ Q and A ⊆ Q. In other
words, some topological ordering of A is a linear extension of the partial
order.

A set P is a partial order family—or a POF for short—onN if P consists
of partial orders on N . Next, we define two types of POFs that will play a
key role in our partial order approach.

Definition 4.1 (Cover) A POF P on N is a cover of, or covers, the
linear orders on N if every linear order on N is a linear extension of at
least one partial order in P.

Definition 4.2 (Exact cover) A POF P on N is an exact cover of, or
exactly covers, the linear orders on N if every linear order on N is a linear
extension of exactly one partial order in P.

An ideal (or a down-set, in operations research also a feasible set) of a
partial order P is a set of elements that can “begin” some linear extension
of P . Formally, an ideal I of a partial order P is a subset of elements such
that y ∈ I and xy ∈ P implies x ∈ I. Another ideal I ′ of P is called a



4.2 Dynamic Programming over Partial Orders 45

subideal of I if I ′ ⊆ I. Analogically, an ideal I ′ is a superideal of I if I ⊆ I ′.
We denote by I(P ) the set of all the ideals of the partial order P .

Sometimes one wants to visualize the aforementioned concepts. Recall
that a partially ordered set (poset) is a setM associated with a partial order
P on M . It can be illustrated by a Hasse diagram. In a Hasse diagram
every x ∈ M is depicted by a point p(x) in the Euclidean plane. Points
p(x) and p(y), x 6= y, are connected to each other by an edge if x directly
precedes y, that is, xy ∈ P and there is no z ∈ M , x 6= z 6= y such that
xz ∈ P and zy ∈ P . The points are laid out in a way that if xy ∈ P then
p(x) is located lower than p(y) in the diagram.

The ideals of a partial order can be illustrated by a subset lattice. A
lattice is a partially ordered set where for every pair of elements there exists
a least upper bound (join) and a greatest lower bound (meet). If ideals are
ordered by⊆-relation, then ∪ is a join-operation and ∩ is a meet-operation1.
The subset lattice can be illustrated by a Hasse diagram; see Example 4.

The following example illustrates these concepts.

Example 4. Recall Example 1 with an employee who tends to be
late. For an illustration of these concepts, consider the partial order
P = {aa, ab, ao, bb, bo, oo, tt} on the base-set M = {a, b, o, t}. A Hasse
diagram of P is shown in Figure 4.1(a). The set of ideals I(P ) consists of
nine sets: ∅, {a}, {b}, {a, b}, {a, o}, {b, t}, {a, b, o}, {a, b, t}, and {a, b, o, t};
note that, for example, {o} is not an ideal, because node a always precedes
node o, and therefore o cannot be the first node in any linear extension of P .
Subset lattices induced by the trivial order and P are shown in Figure 4.2.

Consider a DAG A = {ao, bt, ot} on N = {a, b, o, t} shown in Fig-
ure 4.1(b). The DAG A is compatible with the partial order P because
by setting Q = P , we have A ⊆ Q and P ⊆ Q. The partial order P
has 4 linear extensions: abot, abto, atbo, and tabo. A permutation abot
corresponds to a linear order Q = {aa, ab, ao, at, bb, bo, bt, oo, ot, tt} and
A ⊆ Q and therefore A is compatible with P . 3

4.2 Dynamic Programming over Partial Orders

The early development of the dynamic programming algorithms that ac-
commodate information about partial orders was motivated by the opera-

1Join and meet operations mean that if X,Y ∈ I(P ) then both X ∪ Y ∈ I(P ) and
X ∩ Y ∈ I(P ).
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b

o

a

t

t

b

oa

(a) (b)

Figure 4.1: (a) A Hasse diagram of the partial order P =
{aa, ab, ao, bb, bo, oo, tt}. (b) A DAG with N = {a, b, o, t} and A =
{ao, bt, ot}.
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Figure 4.2: Subset lattices of the ideals of (a) the trivial order on N =
{a, b, o, t} and (b) the partial order P = {aa, ab, ao, bb, bo, oo, tt}.

tions research community’s need to solve scheduling problems with prece-
dence constraints, that is, when the jobs must be scheduled according to
some partial order. Baker and Schrage [5, 92] introduced a labeling scheme
to reduce the number of states in the dynamic programming. Later, Lawler
[71] further developed Baker’s and Schrage’s work and gave an algorithm
that solves a precedence-constrained scheduling problem in time and space
proportional to the number of ideals of the partial order determined by the
precedence constraints.

Next, we further develop the ideas by Baker, Schrage, and Lawler and
generalize the dynamic programming algorithm presented in Section 2.3
to compute the sum of costs over all linear extensions of a given partial
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order P on N . In what follows we use a shorthand l = |Y |. For any ideal
Y ∈ I(P ) and elements v1, v2 . . . , vd−1 ∈ Y , vi 6= vk if i 6= k, define

gP (Y, vd−1 · · · v2v1) =
⊕

σ

l
⊙

j=1

c({σ1, σ2, . . . , σj}, σj−d+1 · · ·σj−1σj),

where the summation is over all linear extensions σ of the induced partial
order P [Y ] with σl−d+2 · · ·σl−1σl = vd−1 · · · v2v1. Here, if d > j we read
σj−d+1 · · ·σj−1σj as σ1 · · ·σj−1σj , and if d = 0 the sequence is void. Note
that if P is a trivial order, then gP equals the g defined in the equation (2.5).

Consider gP (Y, vd−1 · · · v2v1). If Y \{v1} is not an ideal of P , then P [Y ]
does not have any linear extensions with v1 as the last element. Thus, the
sum is empty and gP (Y, vd−1 · · · v2v1) = 0. Similarly, if Y \ {v1, v2, . . . , vk}
for k ≤ d − 1 is not an ideal of P then gP (Y, vd−1 · · · v2v1) = 0. Suppose
therefore that Y \{v1, v2, . . . , vk} is an ideal of P for all k ≤ d−1. Then, any
linear extension σ of P [Y ] with σl−d+1 · · ·σl−1σl = vd−1 · · · v2v1 determines
a linear extension σ′ = σ(Y \ {v1, v2, . . . , vd−1}) of P [Y \ {v1, v2, . . . , vd−1}]
with some vd = σ′l−d+1. Thus, the recurrence takes the form

gP (∅, ∅) = 1 , (4.1)

gP (Y, vd−1 · · · v2v1) =
⊕

vd∈Y \{v1,v2,...vd−1}

gP (Y \ {v1}, vdvd−1 · · · v2)

⊙c(Y, vdvd−1 · · · v2v1) (4.2)

for Y \ {v1, v2, . . . , vk} ∈ I(P ) for 0 ≤ k ≤ d, and l ≥ 1. That is, the
formulas are the same as in the basic version but applied only for ideals Y
of P where vk ∈ Y is a maximal element of Y \ {v1, v2, . . . , vk−1}. We get
the following result.

Theorem 4.3 For any partial order P on N it holds

⊕

v1,v2,...,vd−1∈N

vi 6=vk if i 6=k

gP (N, vd−1 · · · v2v1) =
⊕

σP

c(σP ),

where σP runs over linear extensions of P and c(σP ) =
⊙n

j=1c({σP1 , σP2 , . . . , σPj }, σPj−d+1 · · ·σPj−1σ
P
j ).

Proof. We show by induction on the size of Y that
⊕

v1,v2,...,vd−1∈Y
gP (Y, vd−1 · · · v2v1) equals the sum of costs c(σ(Y ))

over the linear extensions of P [Y ], assuming Y is an ideal of P .
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First, consider an arbitrary singleton {v1} ∈ I(P ). Clearly, there is ex-
actly one permutation on {v1} and it is compatible with P [{v1}] = {v1v1};
the score of the permutation is 1⊕c({v1}, v1) = c({v1}, v1). This is precisely
what the recurrence (4.2) gives.

Suppose then that the recurrence (4.2) holds for all proper subideals
of an ideal Y ⊆ N . Without any loss of generality, assume Y = N for
notational convenience. Now, write

⊕

σ∈P [N ]

c(σ) =
⊕

σ∈P [N ]

n
⊙

j=1

c({σ1, σ2, . . . , σj}, σj−d+1 · · ·σj−1σj)

=
⊕

v1,v2,...,vd−1∈N

⊕

vd∈N\{v1,v2,...,vd−1}

{

c(N, vdvd−1 · · · v2v1)

⊙
⊕

σ′∈P [N\{v1}]

σ′
j−d+2···σ

′
j−1σ

′
j=vdvd−1···v2

n−1
⊙

j=1

c({σ1, σ2, . . . , σj}, σd−1 · · ·σj−1σj)
}

=
⊕

v1,v2,...,vd−1∈N

⊕

vd∈N\{v1,v2,...,vd−1}

{

c(N, vdvd−1 · · · v2v1)

⊙gP [N\{v1}](N \ {v1}, vdvd−1 · · · v3v2)
}

=
⊕

v1,v2,...,vd−1∈N

gP (N, vd−1 · · · v2v1).

The first identity holds by the definitions of linear extension and decom-
posability; the second one by the distributive law and the fact that some
elements vd, vd−1, . . . , v2, v1 are the last d elements in permutation σ; the
third one by the induction step; the fourth one by the definition of gP and
the fact that gP (Y ) = gP [Y ](Y ) for Y ∈ I(P ), since clearly a subset X of
Y is an ideal of P if and only if X is an ideal of P [Y ].

By applying recurrences (4.1) and (4.2) we get the following.

Proposition 4.4 The sum of costs c(σ) over all linear extensions σ of a
given partial order P on N can be computed in O∗(|I(P )|) time and space
assuming that the local costs can be evaluated in polynomial time.

To extend the sum over all linear orders, we generally need to consider
more than one partial order. Recall Definition 4.2 which states that a POF
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P exactly covers all linear orders on N if every linear order is a linear
extension of exactly one partial order in P. Given such an exact cover, the
sum over all linear orders can be computed by simply computing the sum
separately for each partial order and finally taking the sum over the |P|
results. We get the following theorem.

Theorem 4.5 If P is a POF that exactly covers the linear orders on N ,
then

⊕

P∈P

⊕

v1,v2,...,vd−1∈N

gP (N, vd−1 · · · v2v1) =
⊕

σ

c(σ),

where σ runs through all linear orders on N .

Proof. It suffices to note that

⊕

P∈P

⊕

v1,v2,...,vd−1∈N

gP (N, vd−1 · · · v2v1) =
⊕

P∈P

⊕

σP

c(σP ) =
⊕

σ

c(σ),

where σP runs over the linear extensions of P . Here the first equality holds
by Theorem 4.3 and the second one by the definition of an exact cover
(Definition 4.2).

Thus, by Proposition 4.4 and Theorem 4.5 we have the following.

Proposition 4.6 Let P be a family of partial orders that exactly covers the
linear orders on N . Then any polynomial local time permutations problem
can be solved in O∗(

∑

P∈P |I(P )|) time and O∗(maxP∈P |I(P )|) space.

Note that if the problem is defined in an idempotent semiring, P does
not have to be an exact cover. Any P that covers all linear orders will do.
However, it is not known whether there exists a (non-exact) cover P such
that the time requirement

∑

P∈P |I(P )| is smaller than the time require-
ment of every exact cover whose space requirement equals maxP∈P |I(P )|.

Now that we know how to compute the time and space requirements
of dynamic programming over partial orders given a POF, we extend the
time–space product to this setting. The time–space product of a POF P
on N is defined as the nth root of the product

θ(P) =
(

∑

P∈P

|I(P )|
)(

max
P∈P
|I(P )|

)

. (4.3)

Moreover, we define the time–space product of a bounded degree permuta-
tion problem to be the infimum of the time–space product of all algorithms
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that solve the problem in question. To upper bound the time–space prod-
uct of the bounded degree permutation problems, consider a sequence of
partial order families (Pn) such that each Pn exactly covers the linear or-
ders on {1, 2, . . . , n}. Then the time–space product of the bounded degree
permutation problem is at most limn θ(Pn)1/n (supposing the limit exists).

4.3 The Osd Problem

The dynamic programming over partial orders can be applied straight-
forwardly to the Osd problem since Osd is a permutation problem. By
adapting the dynamic programming recurrences from the previous section,
we define function gP by gP (∅) = 0 and for nonempty Y ∈ I(P ) recursively:

gP (Y ) = max
v∈Y

Y \{v}∈I(P )

{

gP (Y \ {v}) + ŝv(Y \ {v})
}

, (4.4)

where ŝv(Y \{v}) is the highest local score when the parents of v are chosen
from Y \ {v}. It follows by Theorem 4.3 that gP (N) equals the maximum
score over the DAGs compatible with P . The DAG that maximizes the
score can be constructed using an adapted version of Algorithm 1. Now,
given a POF P that covers the linear orders on N , the Osd problem can
be solved by computing maxP∈P g

P (N).
By Proposition 4.4, the dynamic programming algorithm evaluates the

function gP along the recurrence (4.4) in O∗(|I(P )|) time and space, pro-
vided that the values ŝv(Y \{v}) are precomputed. However, the computa-
tion of ŝv(Y \{v}) is a problem of its own. In Section 2.3.1 we were able to
use Lemma 2.10 and compute ŝv(Y \ {v}) for all Y ⊆ N in essentially the
same time as needed for solving Osd given the values ŝv(Y \ {v}). Here,
however, the task is more involved due to the need to use only a limited
amount of space. We will show that under some mild conditions, the values
ŝv(Y \{v}) can be computed in O∗(|I(P )|) time and space. First, however,
consider a näıve computation where ŝv(Y \{v}) given the values sv(Y \{v})
is computed from scratch for each Y ⊆ N . We get the following.

Lemma 4.7 Given a partial order P on N and scores sv(Y \ {v}) for
v ∈ N and Y \{v} ∈ Fv, a DAG A that is compatible with P and maximizes
the score s(A), can be found in O(nFτ(n)|I(P )|) time and O(n(F+|I(P )|))
space, provided that each node has at most F possible parent sets, which
form a downward-closed family, and the membership in the possible parent
sets can be evaluated in τ(n) time.

Now combined with Theorem 4.5, this gives the following summary.
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Proposition 4.8 Given a POF P that covers the linear orders on N and
explicit input, the Osd problem can be solved in O(nFτ(n)

∑

P∈P |I(P )|)
time and O(n(F + maxP∈P |I(P )|)) space, provided that each node has at
most F possible parent sets, which form a downward-closed family, and the
membership in the possible parent sets can be evaluated in τ(n) time.

However, we would like to improve the time and space bounds. Espe-
cially, we would like to remove the multiplicative factor F—which can be
as large as 2n−1—from the running time bound, like we did in Section 2.3.1
with Lemma 2.10 by reusing the scores computed earlier. Unfortunately,
Lemma 2.10 does not apply directly in our general setting. However, under
some general assumptions that bound the number of possible parent sets,
the multiplicative factor can be turned into an additive factor. Next we
address this issue by generalizing the idea of Lemma 2.10.

The idea is to arrange the computation of the recurrence (4.4) in such a
way that some of the values of ŝv(Y \{v}), the scores of the best parent set
chosen from Y \{v}, may be reused. An immediate attempt would be to do
dynamic programming described in Lemma 2.10 and keep only two levels
in memory at any given time, but this seems to take space proportional
to 2n/

√
n for each v [79]. Luckily, it turns out that we can use a sparse

dynamic programming variant that is explained next.
The key insight is the following observation, which is stated in plain

combinatorial terms.

Lemma 4.9 Let X and Y be sets with X ⊆ Y . Let

A = [X,Y ],

B = {Z ⊆ Y : x /∈ Z for some x ∈ X}.

Then (i) 2Y = A ∪ B and (ii) B =
⋃

x∈X 2Y \{x}.

Proof. (i) “⊇” is obvious. So, consider “⊆”: Let Z ⊆ Y : If X ⊆ Z, then
Z ∈ A. Otherwise, there exists x ∈ X such that x /∈ Z, hence Z ∈ B.

(ii) By definition, Z ∈ B if and only if Z ⊆ Y \ {x} for some x ∈ X.

Intuitively, A consists of the subsets of Y that contain X. The set B, on
the other hand, consists of the subsets of Y that do not contain all elements
of X. Lemma 4.9(i) states that every subset of Y either contains X or does
not contain X. Further, Lemma 4.9(ii) states that each subset of Y that
does not contain X is a subset of at least one Y \ {x} with x ∈ X.

In terms of the set functions sv and ŝv, for an arbitrary v, the above
lemma amounts to the following generalization of Lemma 2.10.
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Lemma 4.10 Let X and Y be subsets of N \ {v} with X ⊆ Y . Then

ŝv(Y ) = max
{

max
X⊆Z⊆Y

sv(Z),max
u∈X

ŝv(Y \ {u})
}

.

Proof. By Lemma 4.9(ii) and the definition of ŝv, the maximum of
sv(Z) given Z ∈ ⋃

x∈X 2Y \{x} equals maxu∈X ŝv(Y \ {u}). Further, by
Lemma 4.9(i), the larger of maxX⊆Z⊆Y sv(Z) and maxu∈X ŝv(Y \ {u})
equals maxV⊆Y sv(V ), which is the definition of ŝv(Y ).

In words, Lemma 4.10 states that the maximum score for v given that
its parents are chosen from Y is the maximum of the maximum over parent
sets that contain X and the maximum over the parent sets that do not
contain X. Note that Lemma 2.10 is a special case of Lemma 4.10, with
X = Y .

Lemma 4.10 leaves us the freedom to choose a suitable node subset X
for each set of interest Y . How to make the choice is guided by the fact that
in the evaluation of gP , the values of ŝv(Y ) are needed only for sets Y that
belong to I(P ); in what follows we consider P ∈ P fixed. By storing the
values ŝv(Y ) only for sets Y ∈ I(P ), we adhere to the space requirement
(up to a polynomial factor) already needed for storing gP (Y ) for Y ∈ I(P ).
Thus, the goal is to choose X such that Y \ {u} ∈ I(P ) for all u ∈ X. To
this end, let X consist of all such nodes in Y that have no strictly larger
node in Y (with respect to P ), that is, X consists of maximal elements of
Y . Accordingly, for Y ∈ I(P ) define the set

Y̌ = {u ∈ Y : uv /∈ P for all v ∈ Y \ {u}}.
Furthermore, define the tail of Y (with respect to P ) as the interval

TY = [Y̌ , Y ].

The sets Y̌ and Y are called the bottom and the top of TY , respectively.
Example 5. Let us elucidate the concept of tails. Suppose we are given
a set N = {a, b, o, t} and a partial order P = {aa, ab, ao, bb, bo, oo, tt}.
Now, all ideals of P and their tails are shown in Figure 4.3. Consider,
for example, a set Y = {a, b, o, t}. The elements o and t do not have any
strictly larger element in Y , and thus Y̌ = {o, t}. The tail TY consists of
the sets {o, t}, {a, o, t}, {b, o, t}, and {a, b, o, t}; TY is colored in orange in
Figure 4.3. 3

The next two lemmas show that Y̌ indeed has the desired property (in
a maximal sense), and that the tails of different ideals are pairwise disjoint
and thus partition the subsets of N .
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Figure 4.3: The tails of the ideals of a partial order P =
{aa, ab, ao, bb, bo, oo, tt} on N = {a, b, o, t}. Subsets of N that are sur-
rounded by solid lines are ideals of P and subset with dashed lines are not
ideals. An ideal and its tail are colored in the same color.

Lemma 4.11 Let Y ∈ I(P ) and u ∈ Y . Then Y \{u} ∈ I(P ) if and only
if u ∈ Y̌ .

Proof. “If”: Let u ∈ Y̌ . Let st ∈ P . By the definition of I(P ) we need to
show that t ∈ Y \ {u} implies s ∈ Y \ {u}. So, suppose t ∈ Y \ {u}, hence
t ∈ Y . Now, since Y ∈ I(P ), we must have s ∈ Y . It remains to show that
s 6= u. But this holds because ut /∈ P by the definition of Y̌ .

“Only if”: Let u /∈ Y̌ . Then we have uv ∈ P for some v ∈ Y \ {u}. But
u /∈ Y \ {u} and v ∈ Y \ {u}, implying Y \ {u} /∈ I(P ) by the definition of
I(P ).

Lemma 4.12 Let Y and Y ′ be two distinct sets in I(P ). Then the tails
of Y and Y ′ are disjoint.

Proof. Suppose to the contrary that Z ∈ TY ∩ TY ′ . By symmetry we may
assume that Y \ Y ′ contains an element w. Thus w /∈ Z, because Z ⊆ Y ′.
Because Y̌ ⊆ Z, we have w /∈ Y̌ . By definition of Y̌ we conclude that
for every u ∈ Y \ Y̌ there exists v ∈ Y̌ such that uv ∈ P . Therefore, in
particular there exists v ∈ Y̌ such that wv ∈ P . Since w /∈ Y ′ and Y ′ is
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an ideal of P it follows by definition of an ideal that v /∈ Y ′. On the other
hand, v ∈ Y̌ and Y̌ ⊆ Z ⊆ Y ′ implies that v ∈ Y ′: contradiction.

The results of the previous lemmas are illustrated in Figure 4.3. Indeed,
every subset of N = {a, b, o, t} is covered by the tails (Lemma 4.11) and
the tails are disjoint (Lemma 4.12).

As a remark, notice that in the recurrence (3.7) the maximization is
over the tail of X1 with respect to partial order P = {xy ∈ N × N : x =
y or (x ∈ N0 and y ∈ N1)}. Thus, in Section 3.2.2 we actually employed
Lemma 4.10.

We now merge the ingredients given above into an algorithm for evalu-
ating gP using the recurrence (4.4), for fixed P ∈ P. In Algorithm 5 below,
gP [Y ] and ŝv[Y ] denote program variables that correspond to the respec-
tive target values gP (Y ) and ŝv(Y ) to be computed. Also, recall that Fv

denotes the family of possible parent sets for node v.

Algorithm 5 Compute gP .

Input: Partial order P , local scores sv(Y ) for all v and Y ∈ Fv.
Output: Maximum score of a DAG compatible with P .
1: gP [∅]← 0.
2: for all v ∈ N do
3: ŝv[∅]← sv(∅).
4: end for
5: for all Y ∈ I(P ), in increasing order of cardinality do

6: gP [Y ]← maxv∈Y̌

{

gP [Y \ {v}] + ŝv[Y \ {v}]
}

.

7: for all v ∈ N do
8: ŝv[Y ]← max

{

maxZ∈TY ∩Fv sv(Z),maxu∈Y̌ ŝv[Y \ {u}]
}

.

9: end for
10: end for

Lemma 4.13 Algorithm 5 correctly computes gP , that is, gP [Y ] = gP (Y )
for all Y ∈ I(P ).

Proof. By the definition of gP in the recurrence (4.4) and by Lemma 4.10 it
suffices to notice that, by Lemma 4.11, the condition “v ∈ Y and Y \ {v} ∈
I(P )” is equivalent to “v ∈ Y̌ ”, given that Y ∈ I(P ). Note that maximizing
over TY ∩Fv is maximizing over TY , since, by convention, sv(Z) = −∞ for
Z /∈ Fv.

Given a POF P that covers the linear orders on N , the Osd problem
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can be solved by running Algorithm 5 for each P ∈ P. The time and space
requirements are bounded as follows.

Theorem 4.14 Given a POF P that covers the linear orders on N
and explicit input, the Osd problem can be solved in O

([
∑

P∈P(|I(P )| +
Fτ(n))

]

n2
)

time and O
([

maxP∈P |I(P )|+ F
]

n
)

space, provided that each
node has at most F possible parent sets, which form a downward-closed
family, and the membership in the possible parent sets can be evaluated in
τ(n) time.

Proof. By Theorem 4.5 and Lemma 4.13 it suffices to run Algorithm 5 for
each P ∈ P.

The time requirement of Algorithm 5 is dominated by the for-loop on
line 5. Given Y , the set Y̌ can be constructed in O(n2) time by removing
from Y each element that has a successor in Y . Thus, the contribution of
line 6 in the total time requirement is O(|I(P )|n2).

We then analyze the time requirement of the line 8, for fixed v. By
Proposition 3.4, the maximization of the local scores over TY ∩ Fv can
be done in O(|TY ∩ Fv|nτ(n)) time. Since, by Lemma 4.12, families TY
are disjoint for different Y ∈ I(P ), the total contribution to the time
requirement is proportional to |Fv| ≤ F , for each v. Because the loop in
line 7 is executed |I(P )| times and line 8 n times for every execution of
line 7, the total time requirement of line 8 is O(|I(P )|n2 + Fτ(n)n2).

Combining the time bounds of lines 6 and 8 and summing over all
members of P yields the bound O([

∑

P∈P(|I(P )|+ Fτ(n))]n2).

The space requirement for a given partial order P is O(|I(P )|n), since,
by Lemma 4.11, the values gP [Y ] and ŝv[Y ] are needed only for Y ∈ I(P ).
Therefore, the total space requirement is O([maxP∈P |I(P )|+ F ]n).

Notice that the results above apply to any POF P that covers the linear
orders on N . Later in Chapter 5 we will address the issue of choosing an
“efficient” POF. It should also be noted that if the number of possible
parent sets F is larger than |I(P )|, the space requirement is dominated by
the input size. Thus, when |I(P )| is small and one wants to use at most
O∗(|I(P )|) space, it is essential to restrict the number of possible parent
sets; we will discuss this issue in more detail in Section 5.4. Another way
to address this issue is to solve the Osd problem with implicit input. We
see that the results in Theorem 4.14 are easily adapted for implicit input
by adding the factor δ(n) whenever a local score is needed and removing
the size of the input from the space requirement. We get the following.
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Theorem 4.15 Given a POF P that covers the linear orders on N
and implicit input, the Osd problem can be solved in O

([
∑

P∈P(|I(P )| +
Fδ(n)τ(n))

]

n2
)

time and O
([

maxP∈P |I(P )|
]

n
)

space, provided that each
node has at most F possible parent sets, which form a downward-closed
family, the membership in the possible parent sets can be evaluated in τ(n)
time and a local score can be computed from data in δ(n) time.

4.4 The Fp Problem

We continue with dynamic programming over partial orders by adapting
it to the Fp problem. Adapting the dynamic programming algorithm can
be done straightforwardly in similar fashion as for the Osd problem in the
previous section. Computing the local scores in limited space is, however,
a more complicated task.

Given a partial order P we get a recursion gP (∅) = 1 and for every
nonempty ideal Y of P , let

gP (Y ) =
∑

v∈Y :Y \{v}∈I(P )

αv(Y \ {v})gP (Y \ {v}),

where αv(Y \ {v}) is the zeta transform of the local scores βv(Y \ {v}).
Given an exact cover P, by Theorem 4.5 the Fp problem can be solved by
computing

∑

P∈P g
P (N).

The following theorem summarizes the time and space bounds for Fp.
Note that in the proof of the theorem we will use a result about computation
of a fast sparse zeta transform; this result will be proved in Section 4.4.1.

Theorem 4.16 Given a POF P that exactly covers the linear orders on
N and explicit input, the Fp problem can be solved in O

(
∑

P∈P

[

|I(P )|+
Fτ(n)

]

n2
)

time and O
([

maxP∈P |I(P )| + F
]

n
)

space, provided that each
node has a nonzero score in at most F parent sets, which form a downward-
closed family, and the membership in the possible parent sets can be evalu-
ated in τ(n) time.

Proof. Suppose we precompute the values αv(Y \ {v}), for Y ∈ I(P ). By
Theorem 4.20, the fast sparse zeta transform computes αv(Y \ {v}) for a
fixed v and for all Y ∈ I(P ) in O((|I(P )|+Fτ(n))n) time and O(|I(P )|+F )
space, provided that each node has a nonzero score in at most F parent
sets, which form a downward-closed family and a membership on the family
can be determined in τ(n) time. Thus, computing and storing values of
αv(Y \ {v}) for all v ∈ N and Y ∈ I(P ) requires O((|I(P )| + Fτ(n))n2)
time and O((|I(P )|+ F )n) space in total.
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By Proposition 4.4, gP can be computed in O∗(|I(P )|) time and space
given that local scores can be evaluated in polynomial time. Since the local
scores are precomputed and can be accessed in constant time, computation
of gP (N) takes O(n|I(P )|) time and O(|I(P )|) space. Thus, combining
these time and space requirements with the time required to precompute
the values αv(Y \{v}), we have the time and space requirements O((|I(P )|+
Fτ(n))n2) and O((|I(P )|+ F )n), respectively.

The gP (N) has to be computed for all P ∈ P. Thus, in total
the problem can be solved in O(

∑

P∈P [|I(P )| + Fτ(n)]n2) time and
O([maxP∈P |I(P )|+ F ]n) space.

This theorem states the time and space requirement of computing the
posterior probability of any fixed arc set. Later, in Section 4.4.2, we will
show that the posterior probabilities of all n(n− 1) arcs can be computed
simultaneously without increasing the time and space requirement (more
than a small constant).

4.4.1 Fast Sparse Zeta Transform

Motivated by Theorem 4.16, we consider a sparse zeta transform, in which
the values of the zeta transform (hζ)(Y ) are needed only for the ideals of a
partial order P . The goal is to compute the zeta transform for all Y ∈ I(P )
in time proportional to n|I(P )|. In general, this is not possible as h(X),
X ⊆ N might already have 2n different values. However, we will show that
the goal can be achieved assuming h(X) is nonzero on at most |I(P )| sets,
which form a downward-closed family.

Previously, there has been some work on zeta transforms in a sparse
setting. Koivisto [62] has shown that k-truncated zeta transform [65], that
is, a zeta transform in which only sets of size k or less contribute to the
sum, can be computed in O(k2n) time. As the time requirement is still
proportional to 2n, this approach is not feasible for our purposes. Further,
Björklund et al. [10] have shown that a zeta transform for sets belonging
to a set family F of subsets of N can be computed using a trimmed zeta
transform algorithm in O∗(|↑F|) time, where ↑F is the upper closure of F ,
that is, ↑F consists of the supersets of the members of F . Unfortunately,
∅ is an ideal of any P , which yields the size of 2n for the upper closure of
the set of ideals of any partial order P .

Since the existing methods are not feasible for our purposes, we present
a fast sparse zeta transform algorithm, which evaluates the zeta transform
only at the ideals of the given partial order. Note, that this generalization
subsumes the fast zeta transform algorithm when P is the trivial partial
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order {xx : x ∈ N}. The fast sparse zeta transform algorithm consists of
two nested summations. The outer summation works on ideals Y ∈ I(P )
and the inner summation gathers the terms needed for each Y .

We split the zeta transform in nested summations as follows. Let

h′(Y ) =
∑

X∈TY

h(X) , Y ∈ I(P ).

Then, by Lemmas 4.11 and 4.12,

(hζ)(Y ) =
∑

X⊆Y :X∈I(P )

h′(X)

for all Y ∈ I(P ). Accordingly, we will compute (hζ) in two phases. First,
given h we evaluate h′ at all ideals of P ; second, given h′ we evaluate (hζ)
at all ideals of P . The first phase is computationally straightforward as the
tails TY are disjoint, and thus h′(Y ) can be computed independently for
each Y . The second phase is less straightforward.

To compute the second phase, we modify Algorithm 2. A natural at-
tempt to modify the fast zeta transform to operate on ideals of a given
partial order P would be to change the for-loop at line 5 to run over sets
Y ∈ I(P ) and the condition at line 6 to form “j ∈ Y and Y \ {j} ∈ I(P )”.
However, the next example shows that this modification is not sufficient to
guarantee the correct result.

Example 6. Consider a set N = {1, 2, 3} and a partial order
P = {11, 22, 32, 33}. The set of ideals I(P ) consists of the sets ∅, {1}, {3},
{1, 3}, {2, 3}, and {1, 2, 3}. Figure 4.4 shows the computations conducted
by a zeta transform algorithm modified as described in the previous
paragraph. We can see that the result is incorrect. Clearly, ∅ and {1} are
subsets of {1, 2, 3} but the values βv(∅) and βv({1}) do not contribute to
αv({1, 2, 3}) (There is no directed path from the boxes corresponding to
sets ∅ and {1} at the topmost level to the box corresponding to {1, 2, 3}
at the bottommost level). Further, the value βv(∅) does not contribute to
αv({2, 3}). 3

The previous example confirms that we need to further modify Algo-
rithm 2. Fortunately, a simple trick renders the algorithm to work correctly.
While Algorithm 2 splits the transform into a sequence of n transforms in
an arbitrary order, here we need a particular order. To this end, let σ be a
permutation on N such that if σiσj ∈ P then i < j; in other words, σ is a
linear extension of P . Now the fast sparse zeta transform can be computed
by Algorithm 6.
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Figure 4.4: Incorrect sparse zeta transform given partial order P =
{11, 22, 32, 33}.

Lemma 4.17 Algorithm 6 works correctly.

Proof. Assume that σ is a linear extension of P . We show by induction on
j that if Y is an ideal of P , then the computed function satisfies

hj(Y ) =
∑

X∈(Y )j

h′(X),

where we use the shorthand

(Y )j={I ∈ I(P ) : Y ∩ {σj+1, σj+2, . . . , σn} ⊆ I ⊆ Y };

This will suffice, since (Y )n consists of all the subideals of Y .
We proceed by induction on j and the size of the ideal Y . (i) Trivially

(Y )0 = {Y }. Therefore, h0(Y ) = h′(Y ) =
∑

X∈(Y )0
h′(X), as claimed. (ii)

Assume then that hj−1(Y ) =
∑

X∈(Y )j−1
h′(X).

First, consider the case σj /∈ Y̌ . Now, if σj /∈ Y , then (Y )j = (Y )j−1

because Y ∩ {σj+1, . . . , σn} = Y ∩ {σj , . . . , σn}. Thus hj(Y ) = hj−1(Y ), as
correctly computed at line 10.

If, on the other hand, σj ∈ Y , then σj /∈ Y̌ implies that σj is not
maximal in Y . This means that there exists another maximal element
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Algorithm 6 The fast sparse zeta transform.

Input: partial order P , h′(X) for X ∈ I(P ).
Output: (hζ)(Y ) for Y ∈ I(P ).
1: Find a permutation σ that is a linear extension of P
2: for Y ∈ I(P ) do
3: h0[Y ]← h′(Y ).
4: end for
5: for j ← 1, . . . , n do
6: for Y ∈ I(P ) do
7: if σj ∈ Y̌ then
8: hj [Y ]← hj−1[Y ] + hj−1[Y \ {σj}].
9: else

10: hj [Y ]← hj−1[Y ].
11: end if
12: end for
13: end for
14: return hn[Y ] for all Y ∈ I(P ).

σi ∈ Y̌ with σjσi ∈ P . Because σ is a linear extension of P , we have j < i.
Now suppose (Y )j contains an ideal I that is not contained in (Y )j−1. Then
it must be that σj 6∈ I. However, σi ∈ I because σi ∈ Y and i > j. This is
a contradiction, for σjσi ∈ P and I is an ideal. Thus (Y )j = (Y )j−1, and
so hj(Y ) = hj−1(Y ), as correctly computed at line 10.

Second, consider the case σj ∈ Y̌ , thus σj ∈ Y . Then Y \ {σj} is
an ideal. To prove the correctness of line 8, it suffices, by the induction
assumption, to show that (Y )j−1 and (Y \ {σj})j−1 are disjoint and their
union is (Y )j . To this end, it suffices to observe that (Y )j−1 consists of
all subideals I ⊇ Y ∩ {σj , σj+1, . . . , σn} of Y that do contain σj , whereas
(Y \ {σj})j−1 consists of all subideals I ⊇ (Y \ {σj})∩{σj , σj+1, . . . , σn} of
Y that do not contain σj .

The following example illustrates Algorithm 6.

Example 7. Let us again consider a set N = {1, 2, 3} and a partial order
P = {11, 22, 32, 33}. Figure 4.5 shows the summation when the sparse zeta
transform is computed by Algorithm 6. The figure clearly shows that, for
any ideals X ⊆ Y , there is exactly one directed path from the input value
of X to the output level of Y . This means that each subideal contributes
to the summation on its superideal exactly once and that the algorithm
works correctly. 3
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Figure 4.5: The fast sparse zeta transform given partial order P =
{11, 22, 32, 33} computed by Algorithm 6.

Let us analyze the time and space requirement of Algorithm 6 under
the assumption that the values of the input function can be accessed in
constant time. At line 1, the permutation σ can be found by topologically
sorting the DAG P \{xx : x ∈ N}. Topological sorting can be done in O(n2)
time [60, p. 261–268]. The for-loop at lines 2-4 can clearly be computed in
O(|I(P )|) time. In the for-loop starting at line 6, at most |I(P )| additions
and substitutions are performed in each of the n phases. Assuming that
the evaluation of σj ∈ Y̌ given Y̌ can be done in constant time, we get the
total time requirement is O(n|I(P )|). However, constructing Y̌ for all sets
Y ∈ I(P ) seems to take O(n|I(P )|) time in total. Next we show that the
sets Y̌ do not have to be constructed explicitly.

To this end, for every σj define the set

Vj = {v ∈ N : σjv ∈ P and u ∈ N such that σju ∈ P and uv ∈ P
does not exists}.

Intuitively, Vj consists of the nodes that are “one step larger” than σj .
The sets Vj can be constructed straightforwardly. First, one computes the
transitive reduction2 of the DAG obtained from P by removing self-loops.

2The transitive reduction of a DAG A is the minimal DAG A′ such that the transi-
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Then, the set Vj consists of the children of j in the transitive reduction.
The transitive reduction of a DAG can be determined in O(n2) time [97].
Given the transitive reduction, each Vj can be determined in O(n) time
and thus Vj for all j ∈ N can be computed in O(n2) time (and space).

Notice that σj ∈ Y̌ for Y ∈ I(P ) if and only if σj ∈ Y and v /∈ Y for
any v ∈ Vj . We conclude that to determine σj ∈ Y̌ it is sufficient to do at
most |Vj | + 1 set membership tests, that is, for each ideal Y we first test
whether σj ∈ Y and if the answer is affirmative we test whether v /∈ Y
for all v ∈ Vj in some predetermined order. Once we find a negative test
we stop as we know that σj /∈ Y̌ ; if all tests are affirmative, we know that
σj ∈ Y̌ . Unfortunately, |Vj | can be as large as n−1 and thus we could need
O(n) tests. Next lemma shows that on average we need at most a constant
number of tests per ideal.

Lemma 4.18 Given a partial order P on N , σj ∈ N and the set Vj, a
test whether σj ∈ Y̌ can be tested for all Y ∈ I(P ) in O(|I(P )|) time.

Proof. More than one set membership test is needed only for ideals Y that
contain σj and all of its predecessors in P ; denote the set of σj and all of its
predecessors byWσj

. So let us consider ideals Y ∈ I(P ) such thatWσj
⊆ Y .

Let the sequence v1v2 . . . v|Vj |, where vi ∈ Vj , be the order, in which the
tests on members of Vj are conducted. Next we show by induction on the
members of the sequence that the probability of a negative test result given
the previous tests are positive is at least 1/2 for each test. Now if Y with
Wσj

⊆ Y is an ideal, then also Y ∪ {v1} is an ideal. We also note that if
Y ∪X, v1 /∈ X is an ideal, then also Y ∪X∪{v1} is an ideal. Therefore, the
test on v1 is negative at for at least half of the considered sets. Now suppose
that tests for i first members of V have been affirmative, that is, we are
considering ideals Y such that Wσj

⊆ Y ⊆ N \ {v1, v2, . . . , vi}. Again, if Y
is an ideal then also Y ∪ {vi+1} is an ideal and the test on vi+1 is negative
for at least half of the considered sets. Thus, for sets Wσj

⊆ Y we have to

conduct on average at most
∑|Vj |

i=1 i(1/2)
i < (1/2)/(1 − 1/2)2 = 2 tests on

members of Vj . Thus, in total we conduct at most 3|I(P )| set membership
tests.

The following theorem summarizes the bounds for the time and space
requirement.

tive closure of A equals to the transitive closure of A′. For finite DAGs, the transitive
reduction is unique.
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Theorem 4.19 Algorithm 6 evaluates the sparse zeta transform on a par-
tial order P in O(|I(P )|n) time and O(|I(P )|) space assuming that the
values h′(Y ) for Y ∈ I(P ) can be evaluated in constant time.

Let us now analyze the time requirement of the first phase, that is,
computing h′(Y ) given a partial order P for all Y ∈ I(P ). In the first
phase, h is evaluated on every subset of N if no assumptions are made.
However, assume that h vanishes, that is, equals zero at all sets that are
not in F , where F is some downward-closed set family with F sets. Then
by Proposition 3.4, we can compute the first phase in O(Fnτ(n)) time.
Thus the total running time is determined by the larger of the two bounds
as follows.

Theorem 4.20 Suppose h(X) vanishes if X /∈ F , where F is a downward-
closed set family with at most F members and a membership of F can be
determined in τ(n) time. Then the zeta transform (hζ)(Y ) can be computed
for all ideals Y of a partial order P in O((|I(P )| + Fτ(n))n) time and
O(|I(P )|+ F ) space.

Note that if F consists of sets of size at most k the time requirement

becomes O
(

(|I(P )|+∑k
i=0

(

n
i

)

)n
)

.

We end this section by considering a “dual” of the above-described
restricted zeta transform. This transform turns out to be handy in Sec-
tion 4.4.2. Let P be a partial order on N and h a function from subsets of
N to reals. We define the up-zeta transform of h by

(gζ ′)(Y ) =
∑

X⊇Y

g(X) , Y ⊆ N.

The following lemma shows that the computation of the up-zeta trans-
form reduces to the computation of the ordinary zeta transform. We denote
by X̄ = N \X for any X ⊆ N .

Lemma 4.21 Given a set function h,

(hζ)(Y ) = (gζ ′)(Ȳ ),

where g is defined by g(Ȳ ) = h(Y ).
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Proof. It suffices to notice that

(hζ)(Y ) =
∑

X⊆Y

h(X)

=
∑

X⊆Y

g(N \X)

=
∑

X⊇N\Y

g(X)

= (gζ ′)(Ȳ ).

The first identity holds by the definition of the zeta transform; the second
by the definition of g; the third one by the fact that X is a superset of
N \Y if and only if N \X is a subset of Y ; the fourth one by the definitions
of the up-zeta transform and X̄.

Further, we define the sparse up-zeta transform of h by

(gζ
′P )(Y ) =

∑

X⊇Y :X∈I(P )

g(X) , Y ⊆ N.

In words, the summation is over the superideals of Y . Note that (gζ
′P )(Y )

is defined also for sets Y that are not ideals of P . To compute the sparse
up-zeta transform, we define a set

Ŷ = {x ∈ N : xy ∈ P for some y ∈ Y }.

The following lemma shows that Ŷ is an ideal and that the sparse up-zeta
transform of Y equals the sparse up-zeta transform of Ŷ .

Lemma 4.22 Given a partial order P , (i) the set Ŷ is an ideal of P and
(ii) (gζ

′P )(Y ) = (gζ
′P )(Ŷ ).

Proof. (i) By the definition of an ideal, y ∈ Ŷ and xy ∈ P implies x ∈ Ŷ .
Assume that such a y exists. If y ∈ Y , then by the definition of Ŷ , indeed
x ∈ Ŷ . On the other hand, if y /∈ Y then, by transitivity and the definition
of Ŷ , there exists z ∈ Y such that yz ∈ P and xz ∈ P which implies that
x ∈ Ŷ .

(ii) It is sufficient to show that ifX ⊇ Y is an ideal of P , then necessarily
X ⊇ Ŷ . Suppose on the contrary that there exists X ∈ I(P ) with Y ⊆
X ⊂ Ŷ . Then, by the definition of an ideal, y ∈ Y and xy ∈ P implies that
x ∈ X; but this is the definition of Ŷ : contradiction. We conclude that
(gζ

′P )(Y ) = (gζ
′P )(Ŷ ).
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Note that Ŷ = X for all Y ∈ TX . By Lemma 4.22, it is sufficient to
compute (gζ

′P ) over the ideals of P only.

The fast sparse up-zeta transform is analogous to the fast sparse
(down-)zeta transform. Rather than modifying the construction we re-
sort to the notion of “complementary symmetry”. To this end, we denote
by P̄ = {xy : yx ∈ P} for any partial order P on N . We get the following
lemma.

Lemma 4.23 X is an ideal of P if and only if X̄ is an ideal of P̄ .

Proof. “If”: Suppose on the contrary that X̄ is an ideal of P̄ but X is not
an ideal of P . Now by the definition of an ideal, there must exist x ∈ X
such that yx ∈ P and y /∈ X. But by the definitions of X̄ and P̄ , y ∈ X̄,
xy ∈ P̄ and x /∈ X̄, that is, X̄ is not an ideal of P̄ : contradiction.

“Only if”: Suppose on the contrary that X is an ideal of P but X̄ is not
an ideal of P̄ . Now by the definition of an ideal, there must exist x ∈ X̄
such that yx ∈ P̄ and y /∈ X̄. But by the definitions of X̄ and P̄ , y ∈ X,
xy ∈ P and x /∈ X, that is, X is not an ideal of P : contradiction.

The following theorem states the fast sparse up-zeta transform can be
computed with the fast sparse (down-)zeta transform.

Theorem 4.24 Given a set function g and a partial order P , (gζ
′P )(Y ) =

hn[N \ Ŷ ], where hn[N \ Ŷ ] is the output of Algorithm 6 ran with a input
consisting of a partial order P̄ and h′(Y ) = g(N \ Y ) for Y ∈ I(P̄ ).

Proof. By Lemma 4.17, hn[N \Y ] is the sum of the values g(N \Y ) over the
subideals of N \ Y with respect to a partial order P̄ . By Lemmas 4.21 and
4.23, the sum of the values g(N \Y ) over the subideals of N \Y with respect
to a partial order P̄ equals the sparse up-zeta transform of g evaluated at
Ŷ . Finally, by Lemma 4.22(ii), the sparse up-zeta transform of g evaluated
at Ŷ equals (gζ

′P )(Y ).

4.4.2 Posterior Probabilities of All Arcs

In Section 4.4 we showed how to compute the posterior probability of any
arc set. Maybe the most important arc sets are single arcs as it is of-
ten handy to present the posterior probabilities for all n(n − 1) arcs. A
straightforward method would compute the probabilities independently for
every arc. However, a faster forward–backward algorithm [62] avoids the
multiplicative factor n(n − 1) in running time altogether. Next, we adapt
the forward–backward algorithm to run with limited space.
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Let P be a partial order on N . Recall that a forward function gP

satisfies the recurrence gP (∅) = 1 and

gP (Y ) =
∑

v∈Y :Y \{v}∈I(P )

αv(Y \ {v})gP (Y \ {v}),

where Y is an ideal of P . Analogously, we define a backward function bP

by bP (∅) = 1 and

bP (X) =
∑

v∈X:N\(X\{v})∈I(P )

αv(N \X)bP (X \ {v}),

where X is nonempty and N \X is an ideal of P . Intuitively, the backward
function computes the contribution of the nodes in X given that they are
the |X| last nodes in the order. Then we combine the forward and backward
functions into

γPv (Av) =
∑

Y

qv(Y )gP (Y )bP (N \ Y \ {v}),

where Av is a subset of N \ {v} and Y runs over all ideals of P with
Av ⊆ Y ⊆ N \ {v}. In words, if a node v has parents Av, then γv(Av)
computes the contribution of the other nodes. Naturally, a node set Y ⊇ Av

must precede v and then the rest N \ Y \ {v} must follow v.
We now express the marginal posterior probability of an arc uv as a

weighted average of terms γPv (Av). To this end, we observe that

∑

L⊇P

∏

t∈N

αt(Lt) =
∑

Av⊆N\{v}

βv(Av)γ
P
v (Av).

We observe that βv(Av)γ
P
v (Av) is the contribution of all DAGs compatible

with P in which Av (and no one else) are the parents of v. Thus, if P is a
POF that exactly covers the linear orders on N , then, by the equation (2.4),
the joint probability of data D and a feature f can be written as

Pr(D, f) =
∑

P∈P

∑

Av⊆N\{v}

βv(Av)γ
P
v (Av). (4.5)

Notice that under this assumption, the choice of an arc uv affects only the
terms βv(Av). Clearly, βv(Av) is nonzero only when u ∈ Av. The terms
γPv (Av) can thus be precomputed assuming the trivial feature f ≡ 1.

Let us analyze the time requirement of the computation of the posterior
probabilities of arcs using the equation (4.5). First, note that for a fixed
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partial order P , the values αv(Y \{v}) for all nodes v and ideals Y \{v} of P
can be computed using the fast sparse zeta transform in O(n2|I(P )|) time.
Second, note that the forward and backward functions can be computed
using a straightforward recursion in O(n|I(P )|) time. Third, the values
of γPv (Y ) for a fixed v and all ideals Y of P can be computed using the
fast sparse up-zeta transform in O(n|I(P )|) time and thus for all v in
O(n2|I(P )|) time. Finally, given set Y , set Ŷ can be computed in O(n2)
time and thus given the values γPv (Y ) for all ideals Y of P , the inner
sum in equation (4.5) can be computed in O(Fτ(n)n2) time assuming that
the score βv(Av) vanishes if Av /∈ Fv. Thus, for fixed P , the total time
requirement is O(n2|I(P )|) provided that F ≤ I|(P )|. Clearly all steps can
be computed in O(n|I(P )|) space. Next theorem concludes the previous
analysis.

Theorem 4.25 Given a POF P that exactly covers the linear orders on
N and explicit input, the Fp problem for all arc features can be solved in
O(n2τ(n)

∑

P∈P |I(P )|) time and O(nmaxP∈P |I(P )|) space, provided that
the local score βv(Av) vanishes for all Av /∈ Fv, Fv consists of at most F
sets, which form a downward-closed family, the membership in Fv can be
evaluated in τ(n) time and F ≤ |I(P )| for all v ∈ N and P ∈ P.

Recall that Theorem 4.16 stated that the posterior probability of any
modular structural feature (including a single arc) can be computed in
O(n2τ(n)

∑

P∈P |I(P )|) time and O(n2
∑

P∈P |I(P )|) space; thus the pos-
terior probability of all n(n − 1) arcs can be computed in essentially the
same time and space as the posterior probability of a single arc.
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Chapter 5

Parallel Bucket Orders

In the previous chapter we presented the partial order approach for solving
permutation problems. The time and space requirements were presented
in terms of the size of a POF P and the number of ideals of partial orders
P ∈ P. In order to trade space against time “efficiently”, the choice of P
plays a crucial role. In this chapter we address this issue and concentrate
on a particular class of partial orders called parallel bucket orders.

We start this chapter by introducing a simple example of parallel bucket
orders called a pairwise scheme. The idea of the pairwise scheme is to
choose p distinct pairs of elements and fix a linear order within each pair.
The pairwise scheme illustrates many characteristics of the parallel bucket
orders and hence seems to be an intuitively good starting point for our
investigation of parallel bucket order schemes. Then in Section 5.2 we
formally define parallel bucket orders and give some elementary results.
In Section 5.3 we present a certain parallel bucket scheme which we call
the 13 ∗ 13 scheme and show that it yields an optimal time–space product
(among parallel bucket orders). Finally, we investigate the prospects of the
parallel bucket orders in practice in Section 5.4.

5.1 Pairwise Scheme

Formally, the pairwise scheme is represented as follows. Pick 2p ≤ n distinct
elements u1, u2, . . . , up, v1, v2, . . . , vp ∈ N and fix a partial order P such
that either uivi ∈ P or viui ∈ P for all 1 ≤ i ≤ p. For an analysis of
the number of ideals, consider a fixed partial order P such that uv ∈ P .
A set containing neither u nor v, a set containing u but not v, and a set
containing both u and v can be ideals of P . However, no set that contains
v but not u can be an ideal of P . As all p pairs are independent and any

69
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subset of the remaining n − 2p elements can be part of an ideal, the total
number of ideals is 3p2n−2p. Further, we note that for each linear order L
either uivi ∈ L or viui ∈ L for all i. To cover the linear orders on N we need
to consider combinations for each pair, that is, in total 2p different partial
orders. These results can be summarized in the following proposition.

Proposition 5.1 Polynomial local time permutation problems of bounded
degree can be solved in O∗(2n(3/2)p) time and O∗(2n(3/4)p) space, where
p = 0, 1, . . . , n/2.

Next, we will consider the Osd and Fp problems. Based on Theo-
rems 4.14 and 4.16, we conclude as follows.

Proposition 5.2 Given explicit input, both the Osd problem and the Fp

problem can be solved in O([2n(3/2)p + Fτ(n)]n2) time and O([2n(3/4)p +
F ]n) space, where p = 0, 1, . . . , n/2, provided that each node has at most F
possible parent sets, which form a downward-closed family, and the mem-
bership in the possible parent sets can be evaluated in τ(n) time.

In order to guarantee that the number of possible parent sets does not
dominate the time and space requirement we need to restrict the number
of possible parent sets. By allowing at most k parents for each node, each
node has at most

∑k
i=0

(

n−1
i

)

possible parent sets. It is well-known (see

inequality (A.3) in Appendix A) that
∑µn

i=0

(

n−1
i

)

≤ 2H(µ)n, where H(µ) is
the binary entropy function and µ ≤ 1/2. Now we compare this bound to
the space requirement 3p2n−2p in the most stringent case, at p = n/2. We
solve µ in 2H(µ)n ≤ 3n/2, which is equivalent to H(µ)n ≤ (n/2) log2 3, that
is, H(µ) ≤ (1/2) log2 3. Solving the inequality numerically yields µ ≤ 0.238.
We summarize as follows.

Proposition 5.3 Given explicit input, both the Osd problem and the Fp

problem can be solved in O([2n(3/2)p]n2) time and O([2n(3/4)p]n) space,
where p = 0, 1, . . . , n/2, provided that each node has at most 0.238n parents.

The following example illustrates the pairwise scheme. Here it is conve-
nient to measure the time and space requirements in terms of the number
of ideals.

Example 8. Again, consider node set N = {a, b, o, t}. Now we can have
the pairwise scheme with either one or two pairs. Figure 5.1 shows exam-
ples of partial orders on N with a linear order for (a) one pair (p = 1) and
(b) two pairs (p = 2) fixed. The corresponding subset lattices are shown in
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Figure 5.2. Recall that when dynamic programming over the trivial order
which is equivalent to the standard dynamic programming algorithm, we
get the time and space requirement of 16 (sets); see Figure 4.2(a). For the
pairwise scheme with one fixed pair, we get 12 ideals and thus the space
requirement 12; see Figure 5.2(a). As we need to consider 2 such partial
orders to cover the linear orders, the total time requirement is 24. For the
pairwise scheme with two pairs, we get 9 ideals; see Figure 5.2(b). The
cover size is 2× 2 = 4 and thus the total time requirement is 36. 3

b

t

a

o

b

t

a

o

(a) (b)

Figure 5.1: Hasse diagrams of partial orders (a) P1 = {aa, bb, bt, oo, tt} and
(b) P2 = {aa, ao, bb, bt, oo, tt}.
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Figure 5.2: Lattices of the ideals of partial orders (a) P1 = {aa, bb, bt, oo, tt}
and (b) P2 = {aa, ao, bb, bt, oo, tt}.

The time–space product of the pairwise scheme is θ =
(2n(3/2)p2n(3/4)p)1/n = 4(9/8)p/n. We see that the time–space product
is the smaller the less space is saved, that is, when p is small. However,
the term (9/8)p/n is always at least 1 and thus the time–space product
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is always at least 4. The time–space product of the pairwise scheme is
maximized when p = n/2; the maximum is 4(9/8)1/2 ≈ 4.2426 and thus
the time–space product is always lower than 4.243. Next we generalize
the pairwise scheme and show that the time–space product can be further
lowered.

5.2 Parallel Bucket Orders: An Introduction

We will consider parallel bucket orders which are defined as follows. A
partial order P is a parallel composition of partial orders P1, P2, . . . , Pk if
the Pi are pairwise disjoint and their union is P , that is, {P1, P2, . . . , Pk} is
a partition of P . Given P , the partition becomes unique if each component
Pi is required to be connected, that is, Pi does not further partition into
two nonempty partial orders. A partial order P is a series composition of
partial orders P1 and P2 if uv ∈ P if and only if uv ∈ P1, uv ∈ P2, or u ∈ P1

and v ∈ P2. A partial order B on a base-set M is a bucket order if M can
be partitioned into nonempty sets B1, B2, . . . , Bℓ, called buckets, such that
xy ∈ B if and only if x = y or x ∈ Bi and y ∈ Bj for some i < j; the bucket
sequence is unique. The bucket order is denoted by B = B1B2 . . . Bℓ and
is said to be of length ℓ and type |B1| ∗ |B2| ∗ · · · ∗ |Bℓ|. A partial order P
is a parallel bucket order if P is a parallel composition of bucket orders.

Example 9. We have already seen several bucket orders and paral-
lel bucket orders. For example, a linear order is a bucket order with n
buckets of size 1. The partial orders induced by the two-bucket scheme
(Section 3.1.1) are bucket orders with two buckets whose sizes are s and
n− s. Also the trivial order is a bucket order; all elements are in the same
bucket. The pairwise scheme introduced in the previous section operates
on parallel bucket orders; every pair is a bucket order with two buckets,
each of size 1.

Further, Figure 5.3 shows Hasse diagrams of the bucket order
B = {a}{b, c}{d} and the parallel composition of bucket orders
Q1 = {h, i}{a, b} and Q2 = {j}{e, f, g}{c, d}. A parallel bucket or-
der can be illustrated by a Hasse diagram, in which parallel compositions
do not share any lines and the nodes inside each bucket are placed in
parallel on one level and a line is drawn between every pair of nodes in
consecutive levels. 3

Bucket orders and parallel bucket orders are a special case of series–
parallel partial orders. Indeed, the order on each single bucket is a trivial
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b c

a

d a b c d

h

e f g

i j

(a) (b)

Figure 5.3: (a) A bucket order B = {a}{b, c}{d} and (b) a parallel com-
position P of bucket orders B1 = {h, i}{a, b} and B2 = {j}{e, f, g}{c, d}.

order, which is a parallel composition of singletons. Further, each bucket
order is a series composition of buckets. Finally, parallel bucket orders
are parallel compositions of bucket orders. Simple rules are known for
calculating the number of ideals of a series–parallel partial order; see, for
example, Equations 3.1 and 3.2 in Steiner [102] and references therein. The
following two lemmas are mere applications of these rules.

Lemma 5.4 The number of ideals of a bucket order B = B1B2 . . . Bℓ is
given by |I(B)| = 1− ℓ+ 2|B1| + 2|B2| + · · ·+ 2|Bℓ|.

Lemma 5.5 Let P be the parallel composition of partial orders
P1, P2, . . . , Pk. Then the number of ideals of P is given by |I(P )| =
|I(P1)||I(P2)| · · · |I(Pk)|.

To construct a POF that exactly covers the linear orders on N and
consists of parallel bucket orders, we introduce a notion of reordering. We
say that two bucket orders are reorderings of each other if they have the
same base-set and are of the same type (and length). Further, we say that
two parallel bucket orders are reorderings of each other if their connected
components can be labeled as P1, P2, . . . , Pk and Q1, Q2, . . . , Qk such that
Pi is a reordering of Qi for all i. If P is a parallel bucket order, we denote
by P(P ) the family of the partial orders that are reorderings of P . We call
P(P ) the equivalence class of P (with respect to the reordering relation1).

1The reordering relation is an equivalence relation as it is obviously reflexive, sym-
metric and transitive.
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Next, we show that P(P ) exactly covers the linear orders on N .

Lemma 5.6 Let P be a parallel bucket order. Then P(P ) exactly covers
the linear orders on the base-set of P .

Proof. Let P1, P2, . . . , Pk be the connected components of P with base-sets
N1, N2, . . . , Nk, respectively. Let σ = σ1σ2 · · ·σn be a linear order on the
base-set of P . It suffices to show that there is a unique partial order Q
equivalent to P such that σ is an extension of Q.

For each i = 1, 2, . . . , k, we construct a bucket order Qi on Ni as follows.
Let m1 ∗m2 ∗ · · · ∗mℓ be the type of Pi. For j = 1, 2, . . . , ℓ denote sj =
m1+m2+ · · ·+mj , s0 = 0 and m = sℓ. Let σ

′ = σ′1σ
′
2 · · ·σ′m be the induced

order σ[Ni]. Now, let Qi = C1C2 · · ·Cℓ with Cj = {σ′t : sj−1 < t ≤ sj}.
Note that, on one hand, σ′ is an extension of Qi, and on the other hand,
any other reordering of Qi must contain a pair xy with yx ∈ σ′. Thus, Qi

is unique.
Finally, let Q be the parallel composition of the bucket orders Qi. Note

that σ is an extension of Q, since if xy ∈ Q then xy ∈ Qi for some i, and
hence, xy ∈ σ.

By basic combinatorial arguments we find the number of reorderings of
a given parallel bucket order:

Lemma 5.7 The number of reorderings of a bucket order of type m1∗m2∗
· · · ∗mℓ is given by (m1 +m2 + · · ·+mℓ)!/(m1!m2! · · ·mℓ!).

Lemma 5.8 The number of reorderings of the parallel composition of
bucket orders P1, P2, . . . , Pk is given by p1p2 · · · pk, where pi is the num-
ber of reorderings of Pi.

When P is a parallel composition of p bucket orders of typem1∗m2∗· · ·∗
mℓ we find it convenient to denote the POF P(P ) by (m1 ∗m2 ∗ · · · ∗mℓ)

p;
this notation is explicit about the combinatorial structure of the POF while
ignoring the arbitrariness of the labeling of the elements of N . When the
size of the base-set, n, is clear from the context, we may extend the notation
(m1 ∗ m2 ∗ · · · ∗ mℓ)

p to refer to a family P(P ), where P is the parallel
composition of p bucket orders of type (m1 ∗m2 ∗ · · · ∗mℓ)

p and one trivial
order on the remaining n− (m1 +m2 + · · ·+mℓ)p elements.

Example 10. Consider the bucket order B = {a}{b, c}{d} from the
previous example. By Lemma 5.4 it has 1 − 3 + 21 + 22 + 21 = 6 ideals.
Further, B generates an exact cover which by Lemma 5.7 consists of (1 +
2 + 1)!/(1!2!1!) = 12 reorderings.
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Next, consider the parallel composition P of bucket orders
P1 = {h, i}{a, b} and P2 = {j}{e, f, g}{c, d}. Bucket order P1 has
1− 2 + 22 + 22 = 7 and P2 has 1− 3 + 21 + 23 + 22 = 12 ideals. Thus, by
Lemma 5.5, P has 7 × 12 = 84 ideals. Bucket order P1 has 4!/(2!2!) = 6
and P2 has 6!/(1!3!2!) = 60 reorderings and thus, by Lemma 5.8, P has in
total 6× 60 = 360 reorderings. 3

Equipped with Lemmas 5.4–5.8, we can calculate the time–space prod-
uct of the equivalence class of any parallel bucket order. Let P be a parallel
composition of bucket orders P1, P2, . . . , Pk. Then we have

∑

Q∈P(P )

|I(Q)| = |P(P )||I(P )| =
k
∏

i=1

|P(Pi)||I(Pi)|,

max
Q∈P(P )

|I(Q)| = |I(P )| =
k
∏

i=1

|I(Pi)|,

and thus

θ(P(P )) = |P(P )||I(P )|2 =
k
∏

i=1

|P(Pi)||I(Pi)|2.

By a parallel bucket order scheme we refer to a set of reorderings of some
parallel bucket order, parameterized by one or more parameters. When the
size of the base-set, n, is the only parameter, the scheme is degenerate, being
just a sequence of POFs, (Pn), that induces a single algorithm for permu-
tation problems, with some asymptotic time and space complexity bounds.
A scheme becomes more interesting when there are additional free param-
eters, varying the values of which yields, respectively, varying asymptotic
time and space complexity bounds. An example of such a bucket order
scheme is the two-bucket scheme of Section 3.1.1, which corresponds to
POFs (s ∗ (n− s))1; here, the size of the first bucket, s, parameterizes the
scheme. Other examples are the pairwise scheme, corresponding to POFs
(1 ∗ 1)p, with p as the parameter, and the generalized two-bucket scheme
defined by POFs (⌈m/2⌉ ∗ ⌊m/2⌋)⌊n/m⌋, with m as the parameter. In the
sequel we will identify a bucket order scheme with the form of the corre-
sponding POFs; for example, we may talk about the scheme (5 ∗ 5)p.

In the next section, we will find the parallel bucket order scheme that
is optimal with respect to the time–space product.
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5.3 On Optimal Time–Space Product

We continue our search for “efficient” POFs by showing that one can achieve
a time–space product less than 4 by using parallel bucket orders. As we
have seen in the previous section, there is a closed-form expression for the
time–space product of the equivalence class of a parallel bucket order. Thus,
one can numerically show that out of all parallel bucket order schemes, the
13 ∗ 13 scheme, that is, the scheme corresponding to a POF (13 ∗ 13)⌊n/26⌋
yields an optimal time–space product. Next, we will prove this.

For natural numbers n and k with 26k ≤ n, use a shorthand Pn,k for a
scheme corresponding to a POF (13 ∗ 13)k. We get the following result.

Theorem 5.9 Polynomial local time permutation problems can be solved
in O∗((2κ1/26)n) time and O∗((2λ1/26)n) space, where

κ =

(

26

13

)

(214 − 1)
/

226 < 2.539055× 103 ,

λ = (214 − 1)
/

226 < 2.441258× 10−4 .

Proof. By Proposition 4.6, permutation problems can be solved in
O∗(

∑

P∈P |I(P )|) time and O∗(maxP∈P |I(P )|) space, where P is an exact
cover. By Lemma 5.6, the equivalence class of a parallel bucket order is an
exact cover and thus Pn,k is an exact cover.

By applying Lemmas 5.4 and 5.5 for Pn,k, we get maxQ∈Pn,k
|I(Q)| =

λk2n and further applying Lemmas 5.7 and 5.8 we get
∑

Q∈Pn,k
|I(Q)| =

κk2n.

Moreover, set k = ⌊n/26⌋. Notice that κ⌊n/26⌋2n ≤ κn/262n = (2κ1/26)n

and thus permutation problems can be solved in O∗((2κ1/26)n) time. Fur-
thermore, notice that for any ǫ > 0, we have λ⌊n/26⌋2n ≤ λn/26−12n =
(λ1/26λ−1/n)n2n < (2λ1/26)n + ǫ for sufficiently large n and therefore per-
mutation problems can be solved in O∗((2λ1/26)n) space.

We note that the time and space requirements in the previous theorem
are O∗(2.71n) and O∗(1.46n), respectively, yielding the time–space product
less than 3.9272. This time–space product is lower than the time–space
products of the schemes presented earlier. This is also the first time that
we encounter a time–space product less than 4. We summarize the time–
space product by the following theorem that is immediate by Theorem 5.9.

Theorem 5.10 Polynomial local time permutation problems have a par-
allel bucket order scheme with a time–space product 4(κλ)1/26 < 3.93.
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Let us show that the 13∗13 scheme (Theorems 5.9 and 5.10) is optimal
in the sense that it minimizes the time–space product within the class
of all parallel bucket order schemes. To get started, let P be a parallel
composition of k bucket orders on N = {1, 2, . . . , n}. To lower-bound the
product θ(P(P )), define ψ(m) as the minimum of |P(B)||I(B)|2 over all
bucket orders B on m elements. Before we calculate ψ(m) below, we first
note the bound

θ(P(P )) ≥
k
∏

i=1

ψ(|Nk|)

≥ min
{

ψ(m)n/m : m = 1, 2, . . . , n
}

. (5.1)

Here the first inequality follows by the definitions of θ(P(P )) and ψ and
the second by ψ(m) > 0 and the following elementary observation.

Lemma 5.11 Let s1, s2, . . . , sk ≥ 1 be numbers that sum up to s, and
let φ(r) > 0 for any r. Then φ(s1)φ(s2) · · ·φ(sk) ≥ min

{

φ(si)
s/si : i =

1, 2, . . . , k
}

.

Proof. Suppose the contrary. Then
∏

i φ(si) is less than φ(sj)
s/sj for all

j = 1, 2, . . . , k and thus
∏

i φ(si)
sj is less than φ(sj)

s for all j = 1, 2, . . . , k.
Taking products on both sides yields the contradiction that

∏

j

∏

i φ(si)
sj =

∏

i φ(si)
s is less than

∏

j φ(sj)
s.

As ψ(m)1/m lower bounds the time–space product of any bucket or-
der on m elements, it remains to calculate ψ(m) and show that ψ(m)1/m

is minimized at m = 26. We begin by calculating |P(B)||I(B)|2 for a
bucket order B = B1B2 · · ·Bℓ. If each Bj consists of mj elements, then
|P(B)||I(B)|2 is given by

θ(m1,m2, . . . ,mℓ) =
(m1 +m2 + · · ·+mℓ)!

m1!m2! · · ·mℓ!

×(1− ℓ+ 2m1 + 2m2 + · · ·+ 2mℓ)2 .

We next show that θ(m1,m2, . . . ,mℓ) is minimized subject to m1 +m2 +
· · · + mℓ = m either at ℓ = 1 with m1 = m or at ℓ = 2 with
m1 = ⌈m/2⌉ and m2 = ⌊m/2⌋; this will allow us to express ψ(m) as
min{4n, θ(⌈m/2⌉, ⌊m/2⌋)}.

We consider first the case ℓ = 2 and show that θ(m1,m2) is minimized
when m1 and m2 are as close to each other as possible, formalized in the
following “balancing lemma”.
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Lemma 5.12 If m1 and m2 are positive integers with m1+m2 = m, then
θ(m1,m2) ≥ θ(⌈m/2⌉, ⌊m/2⌋).

Proof. We consider even and odd values of m separately.
Suppose m = 2a is even. Let c ≤ a − 1 be a positive integer. We will

show that θ(a+ c, a− c)/θ(a, a) ≥ 1. To this end, observe first that

(2a+c + 2a−c − 1)/(2a + 2a − 1) ≥ 2c−1.

Thus,

θ(a+ c, a− c)
θ(a, a)

≥ a!a!

(a+ c)!(a− c)! 4
c−1 =: ρ(a, c) .

Next, note that ρ(a, c) grows with a for any fixed c; to see this, observe
that the ratio ρ(a, c)/ρ(a−1, c) equals a2/[(a+ c)(a− c)] > 1 for 0 < c < a.
Thus, for any fixed c it would suffice to show that ρ(c+1, c) ≥ 1. What we,
in fact, can do is to show that ρ(c+1, c) grows with c and that ρ(3, 2) > 1,
which leaves the case c = 1 open for a moment. Here, the former claim is
proven by

ρ(c+ 1, c)

ρ(c, c− 1)
=

4(c+ 1)2

(2c+ 1)2c
>

4(c+ 1)2

(2c+ 2)2
= 1 ,

and the latter claim by calculation: ρ(3, 2) = 6/5 > 1. Finally, the case of
c = 1 is handled by

θ(a+ 1, a− 1)

θ(a, a)
=

a

a+ 1

(5 · 2a−1 − 1

4 · 2a−1 − 1

)2

>
2

2 + 1

(5

4

)2

=
50

48
> 1 .

Suppose then that m = 2a+1 is odd. Again, let c ≤ a− 1 be a positive
integer. To show that θ(a+ 1+ c, a− c)/θ(a+ 1, a) ≥ 1 we will repeat the
line of argumentation given above for even m. Observe

(2a+1+c + 2a−c − 1)/(2a+1 + 2a − 1) ≥ 2c+1/3 .

Thus,

θ(a+ 1 + c, a− c)
θ(a+ 1, a)

≥ (a+ 1)!a!

(a+ 1 + c)!(a− c)!
4c+1

9

=: ρ′(a, c) .
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Next, note that ρ′(a, c) grows with a for any fixed c; to see this, observe
that the ratio ρ′(a, c)/ρ′(a− 1, c) equals (a+1)a/[(a+1+ c)(a− c)] > 1 for
0 < c < a. Thus, for any fixed c it would suffice to show that ρ′(c+1, c) ≥ 1.
What we, in fact, can do is to show that ρ′(c+ 1, c) grows with c and that
ρ′(3, 2) > 1, which leaves the case c = 1 open for a moment. Here, the
former claim is proved by

ρ′(c+ 1, c)

ρ′(c, c− 1)
=

4(c+ 2)(c+ 1)

(2c+ 2)(2c+ 1)
>

4(c+ 2)(c+ 1)

(2c+ 4)(2c+ 2)
= 1 ,

and the latter by calculation: ρ′(3, 2) = 64/45 > 1. Finally, the case of
c = 1 is handled by

θ(a+ 2, a− 1)

θ(a+ 1, a)
=

a

a+ 2

(9 · 2a−1 − 1

6 · 2a−1 − 1

)2

>
2

2 + 2

(3

2

)2

=
18

16
> 1 .

At first glance, one might think that the uniform distribution should
minimize θ(m1,m2, . . . ,mℓ) also for ℓ > 2. However, this is in fact not
the case. A counter-example is θ(3, 3, 3) ≈ 4.536 > 4.421 ≈ θ(4, 4, 1).
Therefore, the proof technique we used for Lemma 5.12 or other convexity
arguments seems not applicable. Instead, we are able to prove the following
“shortening lemma”, which states that for any bucket order of length ℓ+1 ≥
3 there is another bucket order of length ℓ ≥ 2 that yields a smaller time–
space product.

Lemma 5.13 Let ℓ ≥ 2 and let m1 ≥ m2 ≥ · · · ≥ mℓ+1 ≥ 0 and c1 ≥ c2 ≥
· · · ≥ cℓ ≥ 0 be integers such that mℓ+1 = c1 + c2 + · · ·+ cℓ and c1− cℓ ≤ 1.
Then θ(m1,m2, . . . ,mℓ+1) > θ(m1 + c1,m2 + c2, . . . ,mℓ + cℓ).

Proof. Put ai := mi + ci for i = 1, 2, . . . , ℓ. Also, denote b := mℓ+1 for
brevity. We will show that θ(a1, a2, . . . , aℓ)/θ(m1,m2, . . . ,mℓ, b) < 1.

We begin with the case b = 1. Then it suffices to show that

θ(m1 + 1,m2, . . . ,mℓ)

θ(m1,m2, . . . ,mℓ, 1)
=

1

m1 + 1

(

2m1+1 + 2m2 + · · ·+ 2mℓ + 1− ℓ
2m1 + 2m2 + · · ·+ 2mℓ + 2− ℓ

)2

< 1 .

To see that this holds, we consider a few cases to show that the squared
term is always less than m1 + 1. Because the squared term is always less
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than 4, we are done for m1 ≥ 3. Now, if m1 = 2, then the squared term is
at most [(23 + 21 − 1)/(22 + 21 + 21 − 2)]2 = (9/6)2 = 9/4 < 3. Finally, if
m1 = 1, then the squared term is at most [(22+21−1)/(21+21+21−2)]2 =
(5/4)2 = 25/16 < 2.

Then, for any b ≥ 1, we notice the bound

m1!m2! · · ·mℓ!b!

a1!a2! · · · aℓ!
≤ b!

(b+ 1)b
(5.2)

that holds because the denominator contains the factorials in the numera-
tor, except for b!, plus b other terms all greater or equal to b+ 1.

Next suppose 2 ≤ b ≤ ℓ. Under this assumption ai = mi + 1 for
i = 1, 2, . . . , b and ai = mi for i = b+ 1, b+ 2, . . . , ℓ. So we find that

2a1 + 2a2 + · · ·+ 2aℓ + 1− ℓ ≤ 2
(

2m1 + 2m2 + · · ·+ 2mℓ + 2b − ℓ
)

. (5.3)

To see this, subtract the terms on the left from the ones on the right to get

2mb+1 + 2mb+2 + · · ·+ 2mℓ + 2b+1 − ℓ− 1 ≥ (ℓ− b+ 2)2b − ℓ− 1 ≥ 0 .

Here the last inequality follows because (ℓ − b + 2)2b clearly grows with b
for 2 ≤ b ≤ ℓ, and at b = 2 we have ℓ22 ≥ ℓ+ 1, which holds for all ℓ > 1.
Combining the bounds (5.2) and (5.3) yields

θ(a1, a2, . . . , aℓ)

θ(m1,m2, . . . ,mℓ, b)
≤ 22b!

(b+ 1)b
≤ 4b!

(b+ 1)b
< 1

for b ≥ 2, since (4 ·2!)/(2+1)2 = 8/9 and it is easy to verify that 4b!/(b+1)b

decreases when b grows.
It remains to consider the case b > ℓ. We will first examine the cases

b = 3 and b = 4, and then the remaining case b ≥ 5.
Suppose b = 3; hence, ℓ = 2. Thus a1 = m1 + 2 and a2 = m2 + 1, and

so

θ(a1, a2)

θ(m1,m2, b)
=

3!

(m1 + 2)(m1 + 1)(m2 + 1)

(

2m1+2 + 2m2+1 − 1

2m1 + 2m2 + 23 − 2

)2

.

Now, if m1 = 3, then m2 = 3, and the above ratio evaluates to
6/80(47/22)2 < 1. Otherwise m1 ≥ 4, and the ratio can be bounded
from above by 6/(6 · 5 · 4)42 = 4/5 < 1.

Next suppose b = 4. This means ai ≤ mi + 2 for all i = 1, 2, . . . , ℓ.
Using the bound (5.2) yields

θ(a1, a2, . . . , aℓ)

θ(m1,m2, . . . ,mℓ, b)
≤ 42 · 4!

(4 + 1)4
=

384

625
< 1 .
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Finally, suppose b ≥ 5. Observe ai ≤ mi + ⌈b/ℓ⌉ ≤ mi + (b+ ℓ− 1)/ℓ ≤
mi + (b+ 1)/2. Thus,

2a1 + 2a2 + · · ·+ 2aℓ + 1− ℓ
≤ 2(b+1)/2

(

2m1 + 2m2 + · · ·+ 2mℓ + 2b − ℓ
)

; (5.4)

note that 2b − ℓ is positive, since b > ℓ. Combining the bounds (5.2) and
(5.4) yields

θ(a1, a2, . . . , aℓ)

θ(m1,m2, . . . ,mℓ, b)
≤ 2b+1b!

(b+ 1)b
< 1 .

Here the last inequality follows because at b = 5 we have 25+15!/(5+1)5 =
80/81 < 1 and because this bound decreases when b grows. To verify the
latter claim, observe that the bound at b divided by the bound at b − 1
equals 2[b/(b+ 1)]b ≤ 2[(b+ 1)/b]e−1 ≤ 8/(3e) < 1 for any b ≥ 3.

Combining the shortening lemma (Lemma 5.13) with the balancing
lemma (Lemma 5.12) immediately yields the following summary.

Lemma 5.14 Let m ≥ 1 be an integer. Then ψ(m) equals the smaller of
θ(m) = 4m and θ(⌈m/2⌉, ⌊m/2⌋).

We are now ready to show that the time–space product of the 13 ∗ 13
scheme is the smallest one can achieve with parallel compositions of bucket
orders.

Theorem 5.15 (Lower bound) Let P be a parallel composition of bucket
orders on {1, 2, . . . , n}. Then the time–space product θ(P(P ))1/n is at least
4(κλ)1/26 ≥ 3.9271, where κ and λ are as defined in Theorem 5.9.

Proof. By the bound (5.1), it suffices to show that ψ(m)1/m is minimized
at m = 26. By calculation with a computer, using Lemma 5.14, we find
that this is indeed the case when 1 ≤ m ≤ 149 (results not shown).

It remains to show that ψ(m)1/m ≥ ψ(26)1/26 = 3.9271 . . . for all m ≥
150. Because this clearly holds if ψ(m) = θ(m), we may, by Lemma 5.14,
without any loss in generality assume ψ(m) = θ(⌈m/2⌉, ⌊m/2⌋). To this

end, define υ(m) :=
(

m
⌊m/2⌋

)1/m
and observe

ψ(m)1/m = υ(m)
(

2⌈m/2⌉ + 2⌊m/2⌋ − 1
)2/m

≥ υ(m)
(

2m/2+1 − 1
)2/m

≥ 2υ(m) .
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Next we show that υ(m) grows with m, by proving υ(2a−1)/υ(2a) ≤ 1
and υ(2a)/υ(2a + 1) ≤ 1 for any a = 1, 2, . . . (actually, for any m ≥ 150
would do). The former is shown by

(

υ(2a− 1)

υ(2a)

)2a−1

=

(

2a

a

)
1
2a a

2a
≤

(

22a
)

1
2a 1

2
= 1 ;

the latter is shown by

(

υ(2a)

υ(2a+ 1)

)2a+1

=

(

2a

a

)
1
2a a+ 1

2a+ 1

≤
(22a

e

)
1
2a 1

2

(

1 +
1

2a+ 1

)

≤ e−
1
2a e

1
2a+1

< e0 = 1 ,

where the first inequality holds for a ≥ 2, whereas in the case a = 1 we
replace e by 2 and obtain the bound 2

√
2/3 < 1.

Now it suffices to verify that 2υ(150) = 3.92778 . . . > 3.9271.

The previous results can be adapted to solve the structure discovery
problems in Bayesian networks. Combining Theorems 4.14, 4.16 and 5.9
yields the following theorem.

Theorem 5.16 Given explicit input, the Osd problem and the Fp prob-
lem can be solved in O(2.71nn2τ(n)) time and O(1.46nn) space provided
that each node has at most O(1.45n) possible parent sets, which form a
downward-closed set family, and the membership in the possible parent sets
can be evaluated in τ(n) time.

Finding an optimal partial order scheme in general is an interesting
question. While both the number of ideals and the number of the reorder-
ings of a parallel bucket order admit closed-form formulas, this is not the
case in general. Both computing the number of ideals [26] and the num-
ber of linear extensions [12]2 are #P-complete problems. So far it remains
an open problem whether the 13 ∗ 13 scheme is the optimal partial order
scheme. We have implemented a script and computed the number of ideals
and the number of linear extensions for all possible partial orders up to 8
elements. For all numbers of elements n from 2 to 8, the balanced scheme

2The n! divided by the number of linear extensions sets a lower bound for the size of
the cover.
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described in Lemma 5.12 is optimal. Therefore, we present the following
conjecture that states that the 13∗13 scheme is actually an optimal partial
order scheme.

Conjecture 5.17 The time–space product of a POF P on N is at least
4(κλ)1/26.

5.4 Parallel Bucket Orders in Practice

In the previous section we showed that out of all possible parallel bucket
order schemes, the (13 ∗ 13)⌊n/26⌋ scheme minimizes the time–space prod-
uct. Unfortunately, the practical value of this result is rather limited. To
see this, we recall Theorem 5.9 which shows that permutation problems
can be solved using the (13 ∗ 13)⌊n/26⌋ scheme in O∗((2κ1/26)n) time and
O∗((2λ1/26)n) space, where κ > 2.539054 × 103 and λ < 2.441258 × 10−4.
In words, the (13 ∗ 13)⌊n/26⌋ scheme reduces the space requirement at least
by factor 4000 but the time requirement increases at least by factor 2500,
which renders the time requirement the bottleneck in practice.

In practice, we usually have a fixed amount of memory available, which
sets a strict limit to the space usage. Therefore, we want to solve the
problem in a given space as fast as possible. Lemma 5.12 shows that for
bucket orders on a base-set of size m, a balanced bucket order (buckets are
about the same size) with two buckets gives the best tradeoff. Table 5.1
shows the time and space requirements of the POFs (⌊m/2⌋, ⌈m/2⌉)⌊n/m⌋

in the range 1 ≤ m ≤ 40. Notice that when m < 13, both the space
requirement and the time–space product decrease whenever m increases.
Beyond that point both the space requirement and the time–space product
decrease for even m. The results suggest that in practice one should choose
the smallest m that gives a small enough space requirement. We also notice
that the time–space product form ≥ 10 is always less than 4. This suggests
that even these “suboptimal” schemes can yield good tradeoffs.

In what follows, we present time and space bounds for solving the Osd

and Fp problems. Naturally, the same upper bounds hold also for all the
polynomial local time permutation problems of degree 1. However, the
structure discovery problems are more challenging as one needs to han-
dle the possibly exponential-sized input. Next, we consider a scenario in
which the number of parallel bucket orders, p, is between 0 and ⌊n/m⌋.
A POF (⌊m/2⌋, ⌈m/2⌉)p consists of

(

m
⌊m/2⌋

)p
partial orders, each of which

has 2n−mp(2⌈m/2⌉ + 2⌊m/2⌋ − 1)p ideals. Now plugging these numbers into
Theorems 4.14, 4.15 and 4.16, we get the following time and space bounds.
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Table 5.1: Time and space requirement and time–space product of (⌊m/2⌋∗
⌈m/2⌉)⌊n/m⌋ schemes for 1 ≤ m ≤ 40. The optimal tradeoff is shown in
bold font.

m T S TS m T S TS

1 2.0000 2.0000 4.0000 21 2.6930 1.4658 3.9472
2 2.4495 1.7321 4.2427 22 2.6918 1.4595 3.9285
3 2.4663 1.7100 4.2172 23 2.6995 1.4613 3.9445
4 2.5458 1.6266 4.1409 24 2.6981 1.4557 3.9275
5 2.5603 1.6154 4.1358 25 2.7054 1.4574 3.9428
6 2.5874 1.5705 4.0633 26 2.7039 1.4525 3.9271
7 2.6009 1.5651 4.0705 27 2.7107 1.4542 3.9417
8 2.6126 1.5362 4.0131 28 2.7091 1.4497 3.9272
9 2.6253 1.5339 4.0268 29 2.7154 1.4514 3.9411
10 2.6308 1.5134 3.9812 30 2.7138 1.4473 3.9276
11 2.6427 1.5129 3.9979 31 2.7198 1.4490 3.9408
12 2.6452 1.4974 3.9608 32 2.7181 1.4452 3.9282
13 2.6563 1.4979 3.9787 33 2.7238 1.4469 3.9408
14 2.6573 1.4856 3.9476 34 2.7221 1.4434 3.9289
15 2.6676 1.4867 3.9658 35 2.7275 1.4450 3.9410
16 2.6677 1.4767 3.9392 36 2.7258 1.4418 3.9298
17 2.6773 1.4781 3.9571 37 2.7309 1.4433 3.9413
18 2.6767 1.4697 3.9338 38 2.7292 1.4403 3.9307
19 2.6856 1.4713 3.9512 39 2.7340 1.4418 3.9418
20 2.6847 1.4641 3.9305 40 2.7323 1.4390 3.9316

Theorem 5.18 Given explicit input, the Osd and the Fp problem can be

solved in O
(

[(

m
⌊m/2⌋

)

(I + Fτ(n))
]

n2
)

time and O(
[

I + F
]

n) space, where

I = 2n−mp(2⌈m/2⌉+2⌊m/2⌋−1)p, for anym = 2, . . . , n and p = 0, . . . , ⌊n/m⌋,
provided that each node has at most F possible parent sets, which form a
downward-closed family, and the membership in the possible parent sets can
be evaluated in τ(n) time.

Theorem 5.19 Given implicit input, the Osd and the Fp problem can

be solved in O
(

[(

m
⌊m/2⌋

)

(I + Fτ(n)δ(n))
]

n2
)

time and O(In) space, where

I = 2n−mp(2⌈m/2⌉+2⌊m/2⌋−1)p, for anym = 2, . . . , n and p = 0, . . . , ⌊n/m⌋,
provided that each node has at most F possible parent sets, which form a
downward-closed family, the membership in the possible parent sets can be
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evaluated in τ(n) time and a local score can be computed from data in δ(n)
time.

We observe that the number of ideals, I, dominates both the time and
the space requirements, as long as the size of input, F is not too large.
Generally, the number of ideals grows exponentially with n and thus we
can in practice handle an exponential number of possible parent sets with
essentially no extra cost. Next, we take a closer look at this issue and allow
the number of possible parents to grow linearly with n. Formally, let the
maximum indegree be k = µn, with some slope µ ≤ 1/2. The interesting
question is how large µ can be be still guaranteeing that the size of the
input does not dominate the time requirement.

Next, we present a bound for µ. The argumentation follows the same
pattern as in Section 5.1. We notice that the slope depends on the scheme
that is used. For a moment, let us focus on the (⌊m/2⌋ ∗ ⌈m/2⌉)⌊n/m⌋

scheme, and for simplicity assume that m is even and n is divisible by m.
For any fixed m, we bound the largest slope by µm in similar fashion as
in Section 5.1 for the pairwise scheme. We observe that, by the inequal-
ity (A.3) in Appendix A, the number of possible parent sets

∑µmn
i=0

(

n−1
i

)

is bounded from above by 2H(µm)n, where H is the binary entropy func-
tion. On the other hand, every member of a POF (m/2 ∗ m/2)n/m has
((2m/2+1− 1)1/m)n ideals. Thus, the number of ideals dominates the space
and time requirements if 2H(µm)n ≤ ((2m/2+1 − 1)1/m)n; or equivalently,
H(µm) ≤ (1/m) log2(2

m/2+1 − 1). By solving this inequality numerically,
we get a bound for µm. Table 5.2 shows the µm for each even m ≤ 26.

Table 5.2: Bounds on the maximum indegree slopes for the (m/2∗m/2)n/m
schemes.

m µm m µm m µm
2 0.238 12 0.139 20 0.127
4 0.190 14 0.135 22 0.125
6 0.167 16 0.131 24 0.124
8 0.153 18 0.129 26 0.123
10 0.145

Since each member of the (m/2∗m/2)n/m scheme has as many or fewer
ideals than each member of the (m/2 ∗ m/2)p scheme, for p ≤ n/m, we
have the following characterization.
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Corollary 5.20 Given explicit input, the Osd and the Fp problem can be
solved in O(

(

m
m/2

)

In2) time and O(In) space, where I = 2n−mp(2m/2+1 −
1)p, for any p = 0, 1, 2, . . . , ⌊n/m⌋ and m = 2, 4, 6, . . . , 26, provided that
each node has at most µmn parents, with µm as given in Table 5.2.

We note that given that each node has at most µmn parents, the number
of ideals dominates the input size and both the Osd and the Fp problem
with both explicit and implicit input can be solved in the same space (within
a constant factor). We further note that in this case explicit input seems
superior as the time usage is, in practice, considerably lower as there is no
need to recompute local scores.

To get a grasp of the bounds for the slope, consider, for example, a
30-node DAG. Now, the maximum indegree can be set to ⌊0.238× 30⌋ = 7
for the (1 ∗ 1)p scheme (the pairwise scheme) and to ⌊0.139 × 30⌋ = 4 for
the (6 ∗ 6)p scheme. A larger maximum indegree may render the size of
the input to dominate the running time. In Section 5.4.2 we will show that
these bounds are only slightly conservative.

5.4.1 Parallelization

All the schemes presented so far are easily parallelized onto several proces-
sors each with its own memory. This is due to the fact that computations
for every P ∈ P are independent of each other and hence each partial order
can be considered separately. For example, the two-bucket scheme (Sec-
tion 3.1.1) can be parallelized onto

(

n
s

)

processors. The divide-and-conquer
scheme (Section 3.1.2) can be parallelized onto

(

n
n/2

)

processors. If the re-
cursion is applied several times the execution at each level can be further
parallelized.

The (⌊m/2⌋, ⌈m/2⌉)p schemes can obviously be parallelized onto
(

m
⌊m/2⌋

)p
processors. Furthermore, considering the Osd problem, the opti-

mal local scores in lines 7–9 in Algorithm 5 can be precomputed, that is,
not merging with the computation of the score of an optimal network in
line 8– in parallel for each n nodes as in the Silander–Myllymäki implemen-
tation [96]. Thus, in total this amounts to parallelization onto

(

m
⌊m/2⌋

)p
n

processors. This parallelization is efficient in the sense that the running
time decreases by the same factor that the number of parallel processors
increases. By Corollary 5.20, ignoring factors polynomial in n, the run-
ning time per processors becomes O((2m/2+1 − 1)p/m2n−mp) (under the
conditions of Corollary 5.20) which is exponentially less than 2n when p
grows. This can be verified by noticing that (2m/2+1 − 1)p/m2n−mp ≤
(2m/2+1)p/m2n−mp = 2p/2+p/m2n−mp = 2n−(m−(m+2)/(2m))p. When m ≥ 2,
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the expression decreases whenever p grows.

5.4.2 Empirical Results

So far we have analyzed the asymptotic time and space requirements of
parallel bucket orders. Although the asymptotic bounds are interesting,
they do not necessarily match the bounds in practice with small input.
Therefore, an empirical study on the running times and space usage of
parallel bucket orders was conducted.

The dynamic programming algorithm over parallel bucket orders for the
Osd problem was implemented in the C++ language. The Osd problem
was chosen as it allows the investigations related to the number of possible
parent sets. The Fp problem was not considered as its behavior is similar
to the Osd problem, and thus the second algorithm would not have added
value to the current investigation. The implementation is not optimized,
and so the empirical results should be viewed as a mere proof of concept3.
The implementation was tested using the (⌊m/2⌋, ⌈m/2⌉)p scheme varying
the number of nodes n, bucket order sizes m and the number of parallel
bucket orders p. The experiments were run on Intel Xeon R5540 processors,
each with 32 GB of RAM. In all experiments explicit input was used, that
is, the local scores were taken as given, so computing them is not included
in the running time estimates.

First, the running time for the limit of 16 GB of memory was examined,
letting the number of nodes n vary from 25 to 34, with maximum indegree
set to 3. First, the smallest bucket order size m that yields a memory
requirement of 16 GB or less was estimated. Then Algorithm 5 was run for
ten partial orders in a POF (⌈m/2⌉, ⌊m/2⌋)1 and the average of the running
times was computed; finally, the average was multiplied by the size of the
POF to get an estimate of the total running time; see Table 5.3. We observe
that, as expected, the time requirement grows rapidly with n: An optimal
25-node DAG can be found in about 25 minutes. Already 30-node DAGs
require over 16 days of CPU time. And 34-node DAGs become feasible only
with large-scale parallelization: with 1000 processors an optimal network
can be found in about 6 days.

Next, consider how different schemes affect the running times and the
space usage in practice. Two specializations of the generalized bucket or-
der scheme (⌈m/2⌉ ∗ ⌊m/2⌋)p were chosen for the analysis: the practical
scheme, where p = 1, and the pairwise scheme, where m = 2. The re-

3The Silander–Myllymäki implementation [96] is about five times faster when the
algorithms were run on the same setting, that is, the algorithm for dynamic programming
over partial orders is given just the trivial partial order on the nodes.
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Table 5.3: Running times for a varying number of nodes when space is
limited to 16 GB. Columns: n = the number of nodes, p = the number of
parallel bucket orders, m = the size of the balanced bucket order, Time =
running time (in CPU hours) per one partial order, PO = the number of
partial orders to cover all linear orders, TT = total running time (in CPU
hours).

n p m Time PO TT

25 0 0 0.42 1 0.42
26 1 3 0.44 3 1.34
27 1 5 0.49 10 4.9
28 1 8 0.35 70 24.8
29 1 10 0.39 252 97.7
30 1 12 0.43 924 394
31 1 14 0.49 3432 1671
32 1 16 0.53 12 870 6784
33 1 18 0.83 48 620 40 332
34 1 20 0.78 184 756 144 930

sults are shown in Tables 5.4 and 5.5. As expected, the practical scheme
yields a clearly better space–time tradeoff than the pairwise scheme. This
is perhaps even more clearly pronounced in Figure 5.4, which shows the em-
pirical tradeoffs in the space–time plane along with the analytical bounds
(Theorem 5.9, Proposition 5.3); here the empirical results were normal-
ized as follows. Each empirical time and space requirement was divided,
respectively, by the empirical time and space requirement of the basic dy-
namic programming algorithm (the case of the trivial order) and the 26th
root of the ratio, multiplied by 2, was taken as the normalized value. The
analytical bounds were normalized analogously. We see that, in general,
the empirical and analytical bounds seem to be in a good agreement, the
analytical bounds being slightly conservative for medium m (the practical
scheme) and medium p (the pairwise scheme).

Also the influence of the maximum indegree k on various characteristics
of the implementation was investigated. To this end, the (degenerate)
scheme (10 ∗ 10)1 with n = 20 nodes was analyzed, varying k from 1 to
8. For interpretation of the results, shown in Table 5.6, it is useful to
note that the partial orders in question have 2047 ideals. For comparison,
the (worst-case) input size is 1160 for k = 3 and 5036 for k = 4. So we
conclude that the number of ideals dominates the input size precisely when
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Table 5.4: Running times (in CPU hours) and memory usage (in MB) of
the practical scheme (⌈m/2⌉ ∗ ⌊m/2⌋)1 with 2 ≤ m ≤ 26 and n = 26.

m p Space Time m p Space Time

0 0 21248 1.01 14 1 331 32.51
2 1 15936 1.13 15 1 248 43.97
3 1 13280 1.41 16 1 166 64.35
4 1 9296 1.75 17 1 124 87.79
5 1 7304 2.13 18 1 83 129.65
6 1 4980 2.80 19 1 62 171.93
7 1 3818 3.57 20 1 41 256.61
8 1 2573 4.96 21 1 31 342.92
9 1 1950 6.88 22 1 21 489.88
10 1 1307 9.06 23 1 16 638.48
11 1 986 12.15 24 1 10 976.50
12 1 659 17.43 25 1 8 1444.53
13 1 495 24.31 26 1 5 2600.15

Table 5.5: Running times (in CPU hours) and memory usage (in MB) of
the pairwise scheme (1 ∗ 1)p with 1 ≤ p ≤ 13 and n = 26.

m p Space Time m p Space Time

0 0 21248 1.01 2 7 2836 12.79
2 1 15936 1.13 2 8 2127 20.25
2 2 11952 1.48 2 9 1595 32.36
2 3 8964 2.09 2 10 1197 51.66
2 4 6723 3.19 2 11 897 78.96
2 5 5042 4.97 2 12 673 126.52
2 6 3782 7.90 2 13 505 198.88

k ≤ 3. Now, recall that the bounds in Corollary 5.20 guarantee this only
for k ≤ 2, indicating that the analytical bounds are not tight but slightly
too pessimistic. Table 5.6 also shows, perhaps somewhat surprisingly, that
even if the input size for k = 5 is more than 3 times the input size for
k = 4, the total running time less than doubles. This can be explained
by the fact that the respective increase in the tail accesses, from 46,520 to
160,260, does not yet pay off, since the number of computation steps that
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Figure 5.4: Empirical and analytical time and space requirements of the
pairwise scheme and the practical scheme, for n = 26 nodes; see text for a
more detailed description.

are not related to the input (nor the maximum indegree) appears to be as
large as 358, 300. For larger k, the running time will grow about linearly
with the number of tail accesses.

5.4.3 Scalability beyond Partial Orders

The results presented in the previous section show that the partial order ap-
proach allows one the learn networks of little more than 30 nodes. Although
this is an improvement compared to the standard dynamic programming,
the scalability of the partial order approach is rather limited. Next, we dis-
cuss the ways to solve the structure discovery problems when the number
of nodes is large.

The weakness of the presented dynamic programming algorithms is that
the time requirement in the best-case equals to the time requirement in the
worst-case. This is due to the fact that they do not take advantage of
the structure of the data. However, it is often unnecessary to go explicitly
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Table 5.6: Characteristics of the practical scheme (10 ∗ 10)1 with n = 20
nodes, for varying maximum indegree k. Columns: Input size = the number
of parent sets per node, Regular accesses = the number of accesses to input
when the parent set is an ideal, Tail accesses = the number of accesses to
input when the parent set is in the tail of an ideal, Total time = the running
time in hours. Regular and tail accesses are presented per partial order.

k Input size Regular accesses Tail accesses Total time

1 20 210 90 2.4
2 191 1020 1350 2.5
3 1160 3060 9840 2.8
4 5036 6420 46500 4.3
5 16664 10200 160260 8.5
6 43796 13140 429480 18.3
7 94184 14700 932160 35.5
8 169766 15240 1687530 60.4

through the whole search space. Therefore, one way to improve the scala-
bility of the structure discovery is to make use of the inner structure of the
data whenever possible.

Recently, there have been attempts to improve the scalability of the
dynamic programming approach using the A∗ search in the subset lattice
[73, 112]. Although the A∗ search procedure often speeds up the com-
putation, this approach does not seem to yield substantial improvements
in scalability. Other approaches like linear programming [21] and branch-
and-bound [24] have been used to find optimal networks on about 60 nodes;
thorough evaluations on the capabilities of these approaches are so far miss-
ing. Here the running time can be greatly influenced by the data. For
example, the running time of the branch-and-bound method skyrockets if
one uses BDeu score with a large equivalent sample size.

In this thesis we have considered exact algorithms only. Nevertheless,
one can improve scalability of the structure discovery in Bayesian networks
by employing approximation algorithms and heuristics. Here, exact algo-
rithms can be used as components of approximation algorithms and heuris-
tics. For example, one could apply the partial order approach to develop
more efficient MCMC for approximating the posterior probabilities of struc-
tural features. Many modern MCMC algorithms [32, 39] sample linear or-
ders and compute the posterior probability conditional to the linear order.
If one samples partial orders instead of linear orders, the size of the sample
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space can be decreased, since we need to consider only the partial orders
in an exact cover. Simultaneously, one could compute the posterior condi-
tional to a partial order in essentially the same time as for a linear order
given that the partial order in question has a sufficiently small number of
ideals. This is due to the fact that the computation of the posterior con-
ditional to the linear order still requires evaluating the zeta transform at
some points. It is worth pointing out that, in fact, this kind of heuristic
algorithm has been implemented in a recent paper; see Niinimäki et al.
[77].

One factor that limits scalability of all score-based algorithms is the
need to compute (or store) local scores. If one has n nodes and a node can
have at most k parents, the total number of local scores is n

∑k
i=0

(

n−1
i

)

.
When n grows, this number becomes a limiting factor. For example, setting
n = 200 and k = 5 yields almost 500 billion local scores. Thus, for data sets
consisting of hundreds of nodes, one has to resort to local search methods.



Chapter 6

Learning Ancestor Relations

So far we have implicitly assumed complete data, or in other words, that all
relevant nodes are observed. In practice, however, this is often not the case.
Thus, we investigate how the unobserved nodes affect structure discovery.

As mentioned earlier, there are two approaches to structure discov-
ery in Bayesian networks: constraint-based and score-based. While the
constraint-based methods are not particularly suitable for importing prior
knowledge, using the data efficiently or handling nonidentifiability, they
have, however, given rise to a profound theory for dealing with unobserved
variables. The best known algorithms that identify unobserved nodes are
IC∗ [84, 85] and FCI [100, 101]. The score-based methods [19, 47], par-
ticularly Bayesian ones [39, 65], on the other hand, excel in flexibility
and efficiency. However, a principled treatment of unobserved nodes is
computationally infeasible and the handling of unobserved nodes in prac-
tice is limited to some score-based heuristics for finding unobserved nodes
[28, 29, 31, 38]. Therefore, the unobserved nodes are often ignored alto-
gether: one either refuses to make any conclusions, especially causal ones,
about the DAG, or one makes conclusions with unquantified risk of erro-
neous claims.

Motivated by these issues, we study in this chapter the potential of
Bayesian averaging in learning of structural features on observed nodes only.
As the score-based methods are supposed to model the data without unob-
served variables, it is crucial to know what kind of features can be reliably
learned from observational data, even when there are unobserved nodes at
work. To this end, we investigate ancestor relations, that is, the existence
of a directed path between two nodes (see Definition 2.5).

The idea of studying ancestor relations is not new. Spirtes et al. [101]
investigated the prospects of learning ancestor relations using FCI algo-
rithm in a small case study. Their results suggest that reliable learning of

93
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ancestor relations is possible in the presence of unobserved nodes; however,
direct comparison to Bayesian averaging is not reasonable, as the predic-
tions by FCI are unquantified and predictions are not necessarily made for
all pairs of nodes. Later, Friedman and Koller [39] studied ancestor rela-
tions using the Bayesian approach under the assumption of no unobserved
variables. They sampled DAGs (via node orderings) from their posterior
distribution using a well-known Markov chain Monte Carlo simulation1 and
the posterior probabilities of ancestor relations, also called path features,
are estimated based on the sampled DAGs; based on the posterior prob-
abilities, the ancestor relation is either claimed to hold or not to hold,
potentially depending on the relative costs of making incorrect positive or
negative claims.

Next, in Section 6.1 we continue the development of Bayesian algorithms
and present an exact Bayesian averaging algorithm for computing posterior
probabilities of ancestor relations. Then in Section 6.2 we report results
from empirical tests.

6.1 Computation

Recall the ancestor relation problem (Definition 2.5). To present the an-
cestor relation problem formally, let f(A) be an indicator for the ancestor
relation that returns 1 if there is a directed path from the source node s
to the target node t in A and 0 otherwise. We use the shorthand notation
s; t to denote the event f(A) = 1. The goal is to compute the posterior
probability of the ancestor relation, that is, Pr(s; t|D). Now assuming
an order-modular prior on A and a decomposable likelihood score, we have

Pr(s; t,D) =
∑

A

f(A)Pr(D|A)Pr(A)

=
∑

A

f(A)
∏

v∈N

Pr(Dv|DAv , Av)
∑

L⊇A

Pr(A,L)

=
∑

A

f(A)
∏

v∈N

Pr(Dv|DAv , Av)
∑

L⊇A

∏

v∈N

ρv(Lv)qv(Av)

=
∑

A

∑

L⊇A

f(A)
∏

v∈N

[

Pr(Dv|DAv , Av)qv(Av)ρv(Lv)
]

=
∑

L

∑

A⊆L

f(A)
∏

v∈N

[

Pr(Dv|DAv , Av)qv(Av)ρv(Lv)
]

.

1For more about Markov chain Monte Carlo (MCMC) methods, see, for example,
Gilks et al. [44].
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The difference compared to the equation (2.3) is that the indicator f(A)
does not factorize and therefore the straightforward dynamic programming
algorithm from Section 2.3.2 does not apply here. Next, we modify the
dynamic programming algorithm to solve the ancestor relations problem.

The idea of the algorithm is to compute for every node subset S its
contribution to the target probability, Pr(s; t,D), assuming the nodes in
S are the first |S| nodes in the linear order L; the contribution is over all
DAGs on the node set S. The key difference to the dynamic programming
algorithms in Sections 2.3.1 and 2.3.2 is that, aside from the node set S,
we need to keep a handle on the nodes in S that are descendants of the
source node s. To this end, define a set T ⊆ S such that t ∈ T if and only
if s is an ancestor of t or t = s. Thus, every DAG on S determines exactly
one such set T ⊆ S.

Furthermore, for sets S ⊆ N and T ⊆ S and a linear order LS ⊆ S × S
on S, we use the shorthand

A(LS , S, T ) = {AS ⊆ LS : ∀v ∈ S (s;v in AS iff v ∈ T ) } .

In words, A(LS , S, T ) contains a particular DAG AS on S if and only if AS

is compatible with LS and AS contains a path from s to every node v ∈ T ,
and not to any other node in S. For fixed S and LS , the sets A(LS , S, T )
parametrized by T partition the space of DAGs on N compatible with LS .
Figure 6.1 shows an example that illustrates the partitioning of the sets of
DAGs by A(LS , S, T ).

The dynamic programming algorithm will compute a function gs(S, T ),
defined for all S ⊆ N and T ⊆ S by

gs(S, T ) =
∑

LS

∑

AS∈A(LS ,S,T )

∏

v∈S

ρv(Lv)βv(Av) ,

where the outer summation is over all linear orders LS on S. Intuitively,
gs(S, T ) is the sum of p(A,D,L) over all DAGs AS and linear orders L,
with AS ⊆ L, such that S are the first nodes in the order L and there is a
path from s to v ∈ S in AS if and only if v ∈ T . That the values gs(S, T )
are sufficient for computing the target quantity p(s; t,D) is shown by the
following result.

Lemma 6.1

p(s; t,D) =
∑

T :s,t∈T

gs(N,T ) .
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s u v

s u v
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s u v

s u v
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Figure 6.1: DAGs on node set S = {s, u, v} compatible with linear or-
der LS = {ss, su, sv, uu, uv, vv} partitioned according to A(LS , S, T ) given
source node s. (a) T = {s}, (b) T = {s, u}, (c) T = {s, v}, and (d)
T = {s, u, v}.

Proof. The definitions directly yield

p(s; t,D) =
∑

L

∑

A⊆L
s; t in A

∏

v∈N

ρv(Lv)βv(Av) ,

the outer summation being over all linear orders L on N .
We next break the inner summation into two nested summations by

observing that the sets A(L,N, T ), for s, t ∈ T , form a partition of the set
A(L) = {A ⊆ L : s; t in A}: indeed, each DAG A ∈ A(L) determines
precisely one node set T such that A contains a path from s to v for the
nodes in v ∈ T and no paths from s to any other nodes. Thus we have

p(s; t,D) =
∑

L

∑

T :s,t∈T

∑

A∈A(L,S,T )

∏

v∈N

ρv(Lv)βv(Av)

=
∑

T :s,t∈T

∑

L

∑

A∈A(L,S,T )

∏

v∈N

ρv(Lv)βv(Av)

=
∑

T :s,t∈T

gs(N,T ) .

This completes the proof.
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From the algorithmic point of view, the pair (S, T ) is sufficient for en-
abling a factorization of the sum over the AS into independent sums over
the parent sets Av, for v ∈ S. Indeed, we have the following recurrence.

Lemma 6.2

gs(S, T ) = 1 for S = ∅ and T = ∅ ,
gs(S, T ) = 0 for s ∈ T and (s ∈ S or T 6= ∅) ,
gs(S, T ) =

∑

v∈S

gs(S \ {v}, T \ {v})ρv(S \ {v})ᾱv(S, T ) otherwise,

where

ᾱv(S, T ) =















∑

Av⊆S\{v}
Av∩T 6=∅

βv(Av) if v ∈ T , v 6= s,

∑

Av⊆(S\{v})\T

βv(Av) if v ∈ S \ T or v = s.

Proof. Proof is by straightforward induction on the size of S. First, observe
that the sum over LS in the definition of gs(S, T ) breaks into a double-
summation, in which the outer summation is over the last node v ∈ S in
the order LS and the inner summation is over all linear orders, LS\{v}, on
the remaining nodes S \ {v}. Second, observe that the summation over
AS ∈ A(LS , S, T ) breaks into a double-summation, in which the outer
summation is over the DAGs AS\{v} ∈ A

(

LS\{v}, S \ {v}, T \ {v}
)

and
the inner summation is over the parent sets Av ⊆ S \ {v} satisfying the
requirement that (a) if there is no path from s to v, that is, v /∈ T , then
there must be no path from s to u for any parent u ∈ Av of v, and (b) if
there exists a path from s to v, that is, v ∈ T , then there must exist a path
from s to u for at least one parent u of v.

Figure 6.2 illustrates the requirements on choosing parent sets for the
node v in the last equation in Lemma 6.2. In Figure 6.2(a) v ∈ T meaning
that it is required that there is a path from s to v. Now, we can choose
any parent set for v as long as at least one of the parents is in T . On the
other hand, in Figure 6.2(b) v /∈ T , and thus it is required that there is no
path from s to v. Now, we have to choose the parents of v from S \ T .

The evaluation of the values gs(S, T ) using the recurrence is complicated
by the fact that the inner summation, ᾱv(S, T ), is over exponentially many
sets Av and, furthermore, there is a condition that depends not only on the
set S but the set T . Fortunately, the inner summation can be precomputed
for each v ∈ N and S ∈ N \ {v}. Indeed, if v /∈ T , then the sum is over all
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Figure 6.2: Choosing parent sets for a node v ∈ S when (a) v ∈ T and (b)
v /∈ T .

subsets Av of (S \ {v}) \T ; if v ∈ T , then the sum is over all the remaining
subsets of S \ {v}. Thus, it suffices to precompute the zeta transform

αv(U) =
∑

Av⊆U

βv(Av)

for all U ⊆ N \ {v}. The sums ᾱv(S, T ) for the cases v /∈ T and v ∈ T
are then obtained as αv((S \ {v}) \ T ) and αv(S \ {v})−αv((S \ {v}) \ T ),
respectively. Recall from Section 2.3.2 that the zeta transform of βv can be
computed, given βv, by the fast zeta transform algorithm in O(n2n) time
and O(2n) space.

After computing the probability Pr(s; t,D) we get the posterior prob-
ability Pr(s; t|D) by normalizing, that is,

Pr(s; t|D) = Pr(s; t,D)/Pr(D).

The probability Pr(D) can be computed using the recurrence (2.7) in Sec-
tion 2.3.2 with a trivial indicator function.

The following theorem summarizes the time and space bounds of the
algorithm.

Theorem 6.3 Given the local scores Pr(Dv|DAv , Av) for all v and Av ⊆
N \ {v}, the ancestor relation problem for any pair s; t, s, t ∈ N can
be solved in O(n3n) time and O(3n) space. Further, the ancestor relation
problem for all n(n− 1) pairs s; t, s, t ∈ N can be solved in O(n23n) time
and O(3n) space.

Proof. Let us consider the computation of the posterior probability of one
ancestor relation. The precomputation of the inner sum requires n zeta
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transforms and thus takes O(n22n) time and O(n2n) space. The value
of gs(S, T ) is computed and stored for

∑n
i=0

(

n
i

)

2i = 3n set pairs (S, T );
the identity holds by the binomial theorem, see the equation (A.1) in Ap-
pendix A. Given the precomputations, each (S, T ) requires O(n) time.
Finally, the posterior probability for s; t is obtained by summing the val-
ues gs(N,T ) over O(2n) sets {t} ⊆ T ⊆ N . Thus the total time requirement
is O(n3n) and the space requirement O(3n).

The posterior probabilities for a fixed source node s and all different
target nodes t can be computed as above with the exception that the last
step is repeated n− 1 times. Thus the time and space requirement stay at
O(n3n) and O(3n), respectively. For computing the posterior probabilities
for all pairs, it suffices to repeat the previous procedure for each possible
source node s, that is, n times. The time requirement is, thus, O(n23n)
and the space requirement O(3n).

6.2 Empirical Results

Now we study how learning ancestor relations performs in practice. Our
approach is to generate data from a Bayesian network, called the ground
truth, and compare the learned arcs and ancestor relations to the ground
truth. Obviously, the learning performance is not expected to be perfect:
when there are unobserved nodes at work, we easily learn arcs that are not
present in the ground truth; this happens especially when an unobserved
node is a common parent of two nodes that are not connected by an arc;
namely, the two nodes are marginally dependent, and thus, in absence of
the common parent, it is likely that we learn an arc between them, a false
positive.

On the other hand, we may expect that much of the structure can
be learned even in the presence of unobserved nodes. For example, if an
unobserved node has exactly one child and one parent in the ground truth,
both observed, then it is likely that the two arcs through the unobserved
node in the middle will be just contracted to a single arc, which encodes a
correct ancestor relation. We call the graph obtained from the ground truth
by such contractions—that is, by connecting each parent of an unobserved
node to every child of the node—the shrunken ground truth. The shrunken
ground truth captures the ancestor relations of the ground truth: if a node
s is an ancestor of a node t in the ground truth it is an ancestor of t in the
shrunken ground truth as well. Likewise, if s is not an ancestor of t in the
ground truth, it will not be an ancestor of t in the shrunken ground truth,
either. Thus, the shrunken ground truth will serve as the representation of
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the true ancestor relations of the underlying Bayesian network.

The algorithm of Section 6.1 for Bayesian learning of ancestor rela-
tions was implemented in Matlab. The experiments discussed next were
conducted using the well-known BDeu (Bayesian Dirichlet equivalence uni-
form) score [13, 47] with the equivalent sample size of 1, a uniform prior
over linear orders on the nodes, and a uniform prior over parent sets of size
at most a user-defined bound, which was set to 6.

To illustrate the challenges that are faced while learning ancestor rela-
tions, a case-study is presented in the following section. Then, the statis-
tical efficiency of learning ancestor relations is investigated by conducting
a simulation study in Section 6.2.2. Finally, results on real life data are
presented in Section 6.2.3.

6.2.1 Challenges of Learning Ancestor Relations

It is instructive to examine some representative challenges that we face
when learning ancestor relations and arcs. We consider a Bayesian network
whose DAG is shown in Figure 6.3(a). All 14 variables are binary. The
parameters of the network, that is, the probability of a node taking the value
1 given a particular value combination of its parents was drawn uniformly
at random from the range [0, 1] for each node and value combination of
its parents. We generated 10, 000 samples from the Bayesian network and
learned ancestor relations from the data. Note that there are 16 arcs and 39
ancestor–descendant pairs in the ground truth. The DAG has quite a large
Markov equivalence class, 140 graphs in total, and so one cannot expect to
deduce ancestor relations from a single MAP DAG reliably.

For clarity of presentation, the findings are discussed mainly in terms
of arcs instead of ancestor relations. Figure 6.3(b) shows arcs that are
assigned a posterior probability of 0.5 or larger. Suppose we claim every
arc or ancestor relation with probability 0.5 or larger to be present. Then,
in total there are 12 true positive arcs, 4 false positive arcs, 20 true positive
ancestor relations, and 4 false positive ancestor relations. Inspection reveals
that the ancestor relation errors are due to a few flipped arcs. For example,
in the ground truth there is a path from node 1 to eight different nodes.
Thus, flipping the arc from 1 to 2 causes one false positive and eight false
negative ancestor relations. While arc errors are rather independent, one
flipped arc can lead to numerous ancestor relation errors, as seen earlier. It
should also be noted that arc flips that are prone to cause a larger number
of ancestor relation errors are also more probable, namely, an arc is easily
flipped when it does not break or create any v-structure, which is typically
the case when one of the nodes is a source node in the ground truth.
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(a) (b)

(c) (d) (e)

Figure 6.3: Graphs. (a) The ground truth, from which 10, 000 samples were
generated. (b) Arcs with posterior probability at least 0.5. The arrow-
heads >, �, and ◮ indicate that the probability is in the interval (0.5, 0.8],
(0.8, 0.99], or (0.99, 1], respectively. (c) The shrunken ground truth when
nodes 1, 4, 7, and 11 are not observed. (d) Arcs with posterior probability
at least 0.5 when nodes 1, 4, 7, and 11 are not observed. (e) A partially
directed graph learned using the FCI algorithm when nodes 1, 4, 7, and 11
are not observed.
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The presence of unobserved nodes leads to claiming arcs between nodes
that are only marginally dependent. Discarding nodes 1, 4, 7, and 11 leads
to the shrunken ground truth shown in Figure 6.3(c). In Figure 6.3(d)
we see a DAG constructed from the arcs with probability 0.5 or larger.
Node 1 does not have children, so its disappearance should not affect the
structure among the rest of the nodes. However, the removal of nodes 4,
7, and 11 affects the rest of the nodes: For instance, node 11 is a common
cause of nodes 13 and 14, and so an arc appears between nodes 13 and 14.
Also, nodes 5 and 6, which are parents of node 7 in the ground truth, have
become parents of node 10, a child of node 7 in the ground truth. Similarly,
the removal of node 4 also leads to appearance of some direct arcs from
its parents to its children. After discarding the unobserved nodes, the
shrunken ground truth contains 14 arcs and 18 ancestor relations. The
algorithm finds 8 true positive arcs, 6 false positive arcs, 11 true positive
ancestor relations, and 7 false positive ancestor relations. This suggests
that ancestor relations can sometimes be learned as well as individual arcs.

For comparison, also a partial ancestral graph (PAG) [87] was learned
from the data with unobserved nodes using the fast causal inference (FCI)
algorithm [100], which is designed for causal discovery with unobserved
variables. The output PAG is shown in Figure 6.3(e). An arc marked
with two arrowheads indicates that the algorithm claims the two nodes
have a common (unobserved) cause; the symbol ◦ is a wildcard, indicating
that there can be an arrowhead or there is no arrowhead. The results are
generally in good agreement with the ground truth. The FCI algorithm is
able to detect the unobserved parent of nodes 12 and 13. However, it is
not sure whether there is an unobserved parent between nodes 13 and 14,
and it is unable to detect the unobserved parent between nodes 12 and 14.
It also finds an unobserved parent between nodes 8 and 9, which is not in
agreement with the ground truth. As the wildcards assigned by the FCI
algorithm do not quantify the uncertainty about the associated arcs, but
the algorithm is ignorant regarding some ancestor relations, the algorithm
may loose statistical power in detecting such relations; this issue will be
further examined and discussed in the next section.

6.2.2 A Simulation Study

Synthetic data consisting of one hundred Bayesian networks on 14 binary
nodes and maximum indegree 4, each with 10, 000 data points were obtained
as follows.

1. Draw a linear order L on the node set {1, 2, . . . , 14} uniformly at
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random (u.a.r.).

2. For each node v independently:

(a) let dv be the number of predecessors of v in L;

(b) draw the number of parents of v, denoted as nv, from
{0, 1, . . . ,min{4, dv}} u.a.r.;

(c) draw the nv parents of v from the predecessors of v in L u.a.r.;

(d) for each value configuration of the parents: draw the probability
of a sample getting the value 1 from the uniform distribution on
range [0, 1].

3. Draw 10, 000 samples independently from the Bayesian network.

From each data set 24 subsets were generated by discarding ℓ =
0, 2, 4, 6, 8, 10 randomly picked nodes and the associated data, and by in-
cluding the first m = 100, 500, 2000, 10000 data points.

Bayesian averaging was applied to each data set and the performance
of learning arcs and ancestor relations is summarized by ROC curves in
Figure 6.4. The ROC curve is obtained by setting a threshold for the
posterior probability (of arcs or ancestor relations), and every time the
posterior probability exceeds the threshold, we claim the respective arc or
ancestor relation is present. Comparing these claims to the arc and ancestor
relations that actually hold in the (shrunken) ground truth, we obtain true
positives (TP) and false positives (FP) rates. By varying the threshold the
pairs of these rates form a ROC curve, which shows the learning power (TP
rate) as a function of the FP rate. The running times of the algorithm for
10, 12, and 14 observed nodes were roughly 3 minutes, 40 minutes, and 8
hours, respectively.

As expected, the more data one has, the easier it is to learn both an-
cestor relations and arcs. Likewise, the task becomes harder as the number
of unobserved nodes grows. Note that Koivisto [62] has studied learning
undirected edges with no unobserved nodes with data generated by a pro-
cedure that is similar to the one presented here. The results presented in
Figure 6.4 for undirected graphs with no unobserved nodes are in good
agreement with Koivisto’s results. The results (Figure 6.4) also suggest
that the power of learning directed and undirected arcs is about the same,
however, the power of learning ancestor relations being slightly smaller.

The Bayesian averaging approach was then compared to deducing struc-
tural features from a single MAP DAG. Two ways to pick a MAP DAG
were considered: an optimistic and a random approach. In the optimistic
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Figure 6.4: ROC curves. The data contain (a) 100, (b) 500, (c) 2000 or (d)
10, 000 samples over 14 nodes. The straight red line is the curve obtained
by random guessing. The data-generating graphs contained on average 23.7
arcs and the shrunken ground truths on average 19.7, 15.9, 11.1, 7.0, and
3.3 arcs for 12, 10, 8, 6, and 4 observed nodes, respectively.
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approach, one chooses a member of the Markov equivalence class of a MAP
DAG that yields the largest true positives rate, and uses its true and false
positives rates. This approach is arguably unrealistic in practice but serves
as an upper bound for any approach based on a single MAP DAG. In
the random approach, the true and false positives rates over all DAGs in
the Markov equivalence class of a MAP DAG are averaged; the averaged
rates correspond to the respective expectations if one picks such a DAG
at random. The true and false positives rates for these two approached
are shown in Tables 6.1 and 6.2; column “diff.” shows the difference be-
tween the true positives rates of the MAP DAG approach and the Bayesian
averaging approach (the false positives rate being matched, of course); a
negative value indicates that the Bayesian averaging approach is more pow-
erful. Figures 6.5 and 6.6 illustrate the differences between the true positive
rates.
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Figure 6.5: The differences in true positive rates between various methods
and full Bayesian averaging for ancestor relations. The negative values
imply that full Bayesian averaging is more powerful.

The results suggest that the random MAP DAG approach performs sig-
nificantly worse than Bayesian averaging. On the other hand, the optimistic
MAP DAG approach sometimes performs better than Bayesian averaging,
especially when the data are abundant and there are many unobserved
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Table 6.1: Comparison of TP and FP rates for ancestor relations

Opt. MAP DAG Rand. MAP DAG Arcs > 0.5 FCI

m ℓ TP FP diff. TP FP diff. TP FP diff. TP FP diff.

100 0 0.41 0.19 -0.09 0.37 0.21 -0.14 0.20 0.04 -0.01 0.002 0.000 0.002
100 2 0.35 0.16 -0.07 0.30 0.18 -0.14 0.17 0.03 -0.01 0.001 0.000 -0.001
100 4 0.34 0.11 0.01 0.27 0.14 -0.11 0.16 0.03 -0.01 0.002 0.000 0.002
100 6 0.34 0.08 0.07 0.24 0.12 -0.08 0.15 0.03 -0.00 0.002 0.000 0.002
100 8 0.36 0.05 0.19 0.23 0.09 -0.01 0.12 0.03 0.00 0.003 0.000 0.003
100 10 0.31 0.04 0.16 0.17 0.09 -0.06 0.12 0.02 0.01 0.000 0.000 0.000
500 0 0.65 0.10 -0.04 0.61 0.13 -0.12 0.58 0.04 0.01 0.014 0.002 -0.218
500 2 0.61 0.11 -0.02 0.54 0.14 -0.13 0.50 0.05 0.01 0.014 0.002 -0.143
500 4 0.53 0.11 0.01 0.45 0.14 -0.12 0.42 0.06 0.02 0.010 0.001 -0.073
500 6 0.50 0.10 0.06 0.40 0.14 -0.11 0.35 0.06 -0.01 0.011 0.000 -0.028
500 8 0.48 0.07 0.19 0.33 0.12 -0.10 0.27 0.06 0.00 0.014 0.000 0.014
500 10 0.51 0.05 0.26 0.32 0.12 -0.10 0.27 0.06 -0.02 0.005 0.000 0.005
2000 0 0.84 0.06 0.02 0.78 0.08 -0.08 0.78 0.05 0.01 0.048 0.004 -0.482
2000 2 0.76 0.10 0.02 0.70 0.12 -0.09 0.69 0.07 0.02 0.047 0.005 -0.329
2000 4 0.67 0.12 0.01 0.60 0.15 -0.11 0.60 0.09 0.02 0.041 0.007 -0.217
2000 6 0.64 0.12 0.06 0.54 0.16 -0.10 0.51 0.09 0.01 0.037 0.004 -0.090
2000 8 0.59 0.12 0.14 0.45 0.17 -0.09 0.40 0.10 -0.00 0.020 0.002 -0.033
2000 10 0.69 0.07 0.36 0.44 0.18 -0.18 0.41 0.09 0.07 0.005 0.000 0.005
10 000 0 0.93 0.02 0.07 0.86 0.06 -0.06 0.87 0.02 0.00 0.129 0.011 -0.660
10 000 2 0.86 0.08 0.06 0.79 0.11 -0.08 0.79 0.07 -0.00 0.121 0.010 -0.410
10 000 4 0.80 0.11 0.07 0.70 0.15 -0.11 0.70 0.09 0.01 0.100 0.015 -0.326
10 000 6 0.73 0.13 0.11 0.62 0.18 -0.10 0.60 0.13 0.00 0.086 0.010 -0.199
10 000 8 0.72 0.14 0.19 0.57 0.20 -0.09 0.54 0.14 0.02 0.037 0.006 -0.125
10 000 10 0.84 0.09 0.38 0.57 0.21 -0.11 0.54 0.14 -0.03 0.014 0.002 -0.025
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Table 6.2: Comparison of TP and FP rates for arcs

Opt. MAP DAG Rand. MAP DAG Arcs > 0.5 FCI

m ℓ TP FP diff. TP FP diff. TP FP diff. TP FP diff.

100 0 0.34 0.05 -0.05 0.31 0.06 -0.10 0.26 0.03 0.00 0.003 0.000 0.003
100 2 0.30 0.06 -0.04 0.26 0.06 -0.11 0.22 0.02 0.00 0.002 0.000 -0.001
100 4 0.28 0.05 0.01 0.23 0.06 -0.08 0.18 0.02 0.00 0.003 0.000 0.003
100 6 0.28 0.04 0.05 0.21 0.06 -0.06 0.16 0.03 0.00 0.002 0.000 0.002
100 8 0.30 0.03 0.15 0.20 0.06 -0.02 0.13 0.03 0.00 0.003 0.000 0.003
100 10 0.31 0.03 0.15 0.18 0.07 -0.05 0.14 0.03 0.00 0.000 0.000 0.000
500 0 0.64 0.03 -0.03 0.60 0.03 -0.09 0.62 0.02 0.00 0.023 0.001 -0.273
500 2 0.55 0.03 0.00 0.50 0.04 -0.09 0.52 0.03 0.00 0.020 0.002 -0.153
500 4 0.46 0.04 0.02 0.41 0.05 -0.09 0.42 0.03 0.00 0.014 0.001 -0.076
500 6 0.42 0.04 0.06 0.34 0.06 -0.08 0.35 0.04 0.00 0.012 0.000 -0.026
500 8 0.42 0.04 0.18 0.30 0.07 -0.04 0.28 0.05 0.00 0.016 0.000 0.016
500 10 0.49 0.04 0.28 0.32 0.08 -0.08 0.30 0.07 0.00 0.005 0.000 0.005
2000 0 0.83 0.02 0.03 0.78 0.02 -0.06 0.81 0.02 0.00 0.075 0.003 -0.511
2000 2 0.71 0.03 0.02 0.66 0.04 -0.06 0.69 0.03 0.00 0.067 0.003 -0.319
2000 4 0.60 0.05 0.00 0.55 0.06 -0.08 0.59 0.04 0.00 0.054 0.005 -0.206
2000 6 0.55 0.05 0.05 0.47 0.07 -0.07 0.50 0.06 0.00 0.042 0.004 -0.088
2000 8 0.51 0.07 0.16 0.40 0.10 -0.05 0.41 0.08 0.00 0.023 0.002 -0.029
2000 10 0.65 0.06 0.33 0.43 0.12 -0.09 0.44 0.10 0.00 0.005 0.000 0.005
10 000 0 0.93 0.01 0.08 0.87 0.02 -0.04 0.89 0.01 0.00 0.173 0.006 -0.672
10 000 2 0.83 0.03 0.07 0.77 0.04 -0.05 0.80 0.03 0.00 0.146 0.006 -0.395
10 000 4 0.75 0.05 0.08 0.67 0.06 -0.06 0.70 0.05 0.00 0.111 0.011 -0.304
10 000 6 0.67 0.07 0.09 0.58 0.09 -0.06 0.61 0.08 0.00 0.090 0.009 -0.190
10 000 8 0.64 0.09 0.15 0.52 0.12 -0.04 0.54 0.11 0.00 0.040 0.006 -0.118
10 000 10 0.79 0.08 0.34 0.56 0.15 -0.09 0.58 0.14 0.00 0.015 0.002 -0.027
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Figure 6.6: The differences in true positive rates between various methods
and full Bayesian averaging for arcs. The negative values imply that full
Bayesian averaging is more powerful.

nodes.

Furthermore, Bayesian averaging was compared to deducing ancestor
relations from the arc probabilities. For this purpose, a graph was con-
structed to consist of the arcs whose posterior probability was larger than
0.5, that is, the arc is more likely to be present than absent, and the ances-
tor relations were deduced from this graph. The results (Tables 6.1 and 6.2,
Figures 6.5 and 6.6) show that the performance of deducing ancestor rela-
tions from arcs does not differ significantly from learning ancestor relations
directly.

The aforementioned approach was further compared to direct learning
of ancestor relations. To this end, it was assumed that only the ancestor
relations whose probability is more than 0.5 exist. The ancestor relation
predictions for deducing the ancestor relations from arcs and the direct
computation of ancestor relations were cross-tabulated; see Table 6.3. Ta-
ble 6.3 shows the average number of the node pairs for which either both
methods, only deducing from arc probabilities, only the direct computation
of ancestor relation probabilities or neither method claims an ancestor rela-
tion to be present. Table 6.3 also shows the probability that the claim made
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by the direct computation is correct; “.” denotes that no claims falling into
the particular category were made. Most of the time, both methods make
the same predictions. Whenever the predictions differ, the prediction by
direct computation is usually slightly more probable to be correct. Also
notice that the two methods follow each other closely with larger datasets.

Table 6.3: Ancestor Relations predicted by arcs and direct computation

Pred. Ancestor Relations Corr. Pred. by Dir. Comp.

m ℓ both arcs direct none both arcs direct none

100 0 13.6 1.1 1.8 165.5 0.61 0.64 0.50 0.79
100 2 8.3 0.4 0.9 122.4 0.63 0.59 0.61 0.79
100 4 5.3 0.3 0.5 84.0 0.63 0.52 0.59 0.78
100 6 3.1 0.2 0.2 52.5 0.62 0.56 0.57 0.78
100 8 1.4 0.1 0.0 28.4 0.59 0.25 1.00 0.77
100 10 0.6 0.0 0.0 11.4 0.68 . 1.00 0.77
500 0 30.5 0.5 1.3 149.7 0.82 0.48 0.53 0.88
500 2 20.7 0.4 0.6 110.2 0.76 0.77 0.48 0.86
500 4 12.7 0.5 0.6 76.3 0.70 0.65 0.35 0.84
500 6 7.0 0.2 0.3 48.5 0.66 0.81 0.63 0.82
500 8 3.3 0.1 0.1 26.5 0.61 0.56 0.45 0.79
500 10 1.3 0.0 0.0 10.6 0.60 0.33 . 0.79
2000 0 39.7 0.2 0.4 141.8 0.85 0.82 0.39 0.93
2000 2 28.4 0.2 0.4 103.0 0.76 0.55 0.61 0.91
2000 4 18.6 0.2 0.4 70.8 0.69 0.47 0.30 0.88
2000 6 10.6 0.2 0.3 44.9 0.64 0.70 0.47 0.86
2000 8 5.2 0.1 0.1 24.6 0.58 0.89 0.54 0.82
2000 10 2.0 0.1 0.1 9.9 0.61 0.25 0.60 0.82
10000 0 40.9 0.1 0.4 140.7 0.92 0.60 0.61 0.96
10000 2 31.2 0.2 0.3 100.3 0.79 0.78 0.32 0.94
10000 4 21.6 0.1 0.2 68.0 0.71 0.60 0.36 0.91
10000 6 13.3 0.2 0.2 42.3 0.60 0.68 0.53 0.88
10000 8 7.2 0.0 0.1 22.7 0.57 0.75 0.44 0.85
10000 10 2.8 0.0 0.0 9.1 0.58 0.67 0.00 0.84

Bayesian averaging was also compared to the fast causal inference (FCI)
method [100]; see Tables 6.1 and 6.2. It is quite challenging to make a fair
comparison because FCI outputs a partial ancestral graph (PAG) that can-
not be directly compared to a DAG. It was decided to ignore the wildcard
arcs and claim only arcs and ancestor relations that FCI is sure about; this
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follows the approach of Spirtes et al. [101]. The results (Tables 6.1 and
6.2, Figures 6.5 and 6.6) show that FCI is very conservative: it does not
make many mistakes but it often answers “don’t know”. This results in a
relatively low statistical power of discovering arcs and ancestor relations,
sometimes significantly lower than that of the Bayesian averaging approach
(at matched FP rates).

One should notice, though, that FCI can discover unobserved nodes
with some success. However, usually the unobserved nodes that FCI
“finds,” do not seem to match the ones in the ground truth. For exam-
ple, when the sample size is 2000 and there are no unobserved nodes, FCI
finds on average 6.0 unobserved nodes. And when there are two unob-
served nodes, only 11% of the “found” 4.8 unobserved nodes match the
ground truth. In general, as the number of unobserved nodes increases,
the number of found unobserved nodes decreases, but the percentage of
correctly detected unobserved nodes increases; for example, when there are
8 unobserved nodes 54% of the claimed 0.7 unobserved nodes are correct.

6.2.3 Real Life Data

The Bayesian averaging algorithm was tested on two real-life datasets found
from the UCI machine learning repository [37]: Adult (15 variables, 32,561
samples) and Housing (14 variables, 506 samples). All continuous vari-
ables were discretized to binary variables using the median as the cutpoint.
Furthermore, in the Adult dataset the variable “native-country”, which
had 40 distinct values, was transformed to a binary variable where 0 corre-
sponded to value “USA” and 1 to all other values. For both datasets, the
maximum indegree was set to be 4. Figures 6.7 and 6.8 show the graphs
deduced from the arc probabilities.

Here, one does not know the ground truth and thus one has to resort to
other comparisons. The goal was to investigate whether learning ancestor
relations uncovers some information that cannot be obtained simply by
analyzing the arc probabilities. To this end, ancestor relations were deduced
both from the ancestor relations probabilities and the arc probabilities. For
Adult, there are 210 potential ancestor relations. Both methods imply the
presence of the same 79 ancestor relations. For Housing the methods are
in almost as good agreement as for the Adult. For 71 ordered pairs, both
methods claim that an ancestor relation is present and for 110 pairs that
an ancestor relation is not present. There is, however, one node pair, ZN
and RAD, for which deducing from arcs suggests that there is no ancestor
relation while deducing from ancestor probabilities claims the opposite.
This discrepancy is, however, due to the arbitrariness of the threshold:
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Figure 6.7: The Adult data. Arcs with posterior probability at least 0.5.
The arrowheads >, �, and ◮ indicate that the probability is in the interval
(0.5, 0.8], (0.8, 0.99], or (0.99, 1], respectively. INC = income, AGE = age,
WORK = work class, FNL = fnlwgt, ED = education, ED-N = education-
num, MAR = marital status, OCC = occupation, REL = relationship,
RACE = race, SEX = sex, CAP-G = capital gain, CAP-L = capital loss,
HPW = hours per week, NAT = native country.

the posterior probability of an arc from ZN to RAD was 0.49 while the
probability of an ancestor relation ZN;RAD was 0.53. The experiments
on real data suggest that the exact learning of the ancestor relations does
not provide significant value added compared to deducing ancestor relations
from arc probabilities.
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Figure 6.8: The Housing data. Arcs with posterior probability at least
0.5. The arrowheads >, �, and ◮ indicate that the probability is in the
interval (0.5, 0.8], (0.8, 0.99], or (0.99, 1], respectively. CRIM = per capita
crime rate by town, ZN = proportion of residential land zoned for lots
over 25,000 sq.ft., INDUS = proportion of non-retail business acres per
town, CHAS = Charles River dummy variable (= 1 if tract bounds river;
0 otherwise), NOX = nitric oxides concentration (parts per 10 million),
RM = average number of rooms per dwelling, AGE = proportion of owner-
occupied units built prior to 1940, DIS = weighted distances to five Boston
employment centres, RAD = index of accessibility to radial highways, TAX
= full-value property-tax rate per $10,000, PTRATIO = pupil-teacher ratio
by town, B = 1000(Bk − 0.63)2 where Bk is the proportion of blacks by
town, LSTAT = lower status of the population, MEDV = Median value of
owner-occupied homes in $1000’s.



Chapter 7

Discussion

This thesis concerned two areas of structure discovery in Bayesian networks:
space–time tradeoffs and learning ancestor relations. For space–time trade-
offs we introduced a variety of algorithmic schemes which yield varying
time and space requirements for solving permutation problems in general
and the Osd and Fp problems in particular. A summary of the time and
space bounds of the schemes presented in this thesis is shown in Figure 7.1.
The main contribution, the partial order approach, applies to the space
range between polynomial space1 and O∗(2n). Especially, it applies to the
space range that is most interesting in practical implementations, namely
the space requirement between O∗(2n/2) and O∗(2n). To analyze the ef-
ficiency of the presented schemes, we introduced the time–space product.
Time–space products less than 4 are considered good as they imply that
whenever the space requirement is halved the time requirement less than
doubles. We have shown that when the available space is at least O∗(2n/2),
one can always (in theory) use schemes with time–space product less than
4. Although we did not present any scheme that works with space less than
O∗(2n/2) and has a time–space product less than 4, it seems that this can
be achieved straightforwardly by combining the divide-and-conquer scheme
with partial order schemes. This is, however, not particularly interesting
because such schemes are infeasible in practice due to their large time re-
quirements.

The motivation of the space–time tradeoffs comes from practical needs
for solving large problem instances while guaranteeing that an optimum
will be found. The presented algorithmic schemes address these issues in
two ways. First, they reduce space, which is often the bottleneck, and

1Polynomial space is achieved with a POF that consists of the reorderings of a linear
order.
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Figure 7.1: Comparison of time and space requirements of algorithmic
schemes.

thus enable solving larger problem instances. Second, they can be easily
parallelized which can be a serious advantage as large computer clusters
with thousands of cores are becoming more common.

The results on space–time tradeoffs seem promising. However, this
is not the end of the story as there are interesting open questions. For
example, the partial order family which is optimal with respect to time–
space product is not known. In Conjecture 5.17 we proposed that the 13∗13
scheme is optimal, however, proving or disproving this conjecture seems to
be a cumbersome task.

It is worth noting that sometimes the phenomenon to be modeled has
an inherent partial order and the modeler knows this partial order (or a
part of it). This kind of precedence order is often known when dealing with,
for example, causal discovery or time series. In such a case one needs to run
the dynamic programming algorithm only for that particular partial order,
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thus saving both space and time, possibly significantly. In other words, the
partial order approach generalizes the basic dynamic programming algo-
rithm to fully exploit given precedence constraints, if any.

The previous observation concerning the partial order approach moti-
vates the following research question about structure discovery in Bayesian
networks. Sometimes it may be desired that the DAG obeys some struc-
tural constraint. For example, one may want the DAG to be compatible
with some partial order as mentioned above. On the other hand, one may
want to learn a sparse graph and thus limit the number of arcs. Further, one
may want to guarantee that one is able to perform inference in the Bayesian
network fast in the worst case, and thus bound the treewidth of the DAG
by some constant2. The question is how the addition of constraints affects
the running time.

As mentioned above, any constraint on the order of the nodes makes the
problem easier to solve. However, in general adding more constraints does
not necessarily make a problem easier to solve. For example, if one wants
to learn a sparse graph, that is, a graph with at most s arcs, for some fixed
s, one can modify the dynamic programming algorithm and keep track of
the best network for each possible arc count. This increases both the time
and the space requirement by a factor polynomial in n. On the other hand,
in the case where one restricts the search space to consist of the DAGs that
have treewidth3 at most t for some constant t the effect on the running
time remains unclear; currently algorithms for this problem are heuristics
[30]. As both Treewidth and Osd are permutation problems, one might
hope to be able to bundle these two problems together and solve them
by dynamic programming. However, straightforward combinations seem to
fail and it is an open question whether this variant can be solved in, say,
O∗(2n) time.

Recall that solving the Osd, Fp, and ancestor relation problem requires
considering of a superexponential number of DAGs. However, modularity
assumptions allow us to solve these problems significantly faster. Thus,
this thesis serves as an example, how hard problems can be made easier
(but not necessarily easy) by exploiting the modularity of the problem. In
the Osd and Fp problems, we made several modularity and independence

2The exact inference in Bayesian networks with unbounded treewidth is not possible
in polynomial time in the worst case, unless the exponential time hypothesis (ETH)
fails [67]. Also the time requirement of some common inference algorithms like variable
elimination is lower bounded by a factor exponential with respect to treewidth.

3The treewidth of a DAG equals to the treewidth of its moralized graph. The moral-
ized graph of a DAG A is obtained by taking the skeleton of A and adding an edge (if
such an edge does not already exist) between nodes that have a common child in A.



116 7 Discussion

assumptions, which enabled us to formulate the problems as permutation
problems and thus allowed us to use dynamic programming across only the
2n subsets of the elements. However, here just assuming that something is
modular is not enough: one needs to assume the right kind of modularity.
To see this, consider the structure prior in the Osd and Fp problems. In
Osd we assumed a modular structure prior. By contrast, in Fp we assumed
an order-modular structure prior. However, if the modularity assumptions
are reversed, that is, one assumes an order-modular prior for Osd and a
modular prior for Fp, both problems seem to become more difficult as the
fastest known algorithm for Fp with a modular prior runs in O(3n) time
[105] and solving Osd with an order-modular prior seems to be a compli-
cated task. In ancestor relations problem we made the same assumptions as
in Fp. However, ancestor relations are not modular features and thus the
ancestor relation problem seems inherently harder than Fp; the Bayesian
averaging algorithm for ancestor relation problem runs in O(3n) time. This
further exemplifies how modularity enables faster computation.

The study of learning ancestor relations was motivated by the need
for structural features that are preserved when there are unobserved nodes
in play. Here, we assumed that the arcs of a DAG represent the direct
causal relations between nodes. We developed an algorithm for comput-
ing posterior probabilities of ancestor relations. As far as we know, this
is the first non-trivial exact algorithm to compute posterior probabilities
of nonmodular features. Our experiments show that the Bayesian model
averaging approach outperforms the obvious rivals: deducing the ancestor
relations from a MAP DAG and a constraint-based FCI algorithm [101].
The Bayesian averaging algorithm has, however, a big disadvantage com-
pared to the competitors: time consumption. The O(3n) time requirement
makes the Bayesian averaging algorithm infeasible for data sets with more
than 20 variables and therefore limits the practical usefulness of the al-
gorithm. Luckily, partial Bayesian averaging, that is, first inferring arcs
based on their marginal posterior probabilities and then deducing ancestor
relations from the so-constructed graph, seems to perform almost as good
as full Bayesian averaging. Therefore, one could resort to partial Bayesian
averaging whenever full Bayesian averaging takes too much time. This
finding suggests that the arc probabilities convey almost all the informa-
tion relevant for learning ancestor relations. Although some may say that
the competitiveness of partial Bayesian averaging undermines the useful-
ness of the comparatively slow full Bayesian averaging algorithm, it should
be noted that the insight about partial Bayesian averaging was achieved
because we were able to compute the exact ancestor relation probabilities.
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An obvious target for an improvement in learning ancestor relations
is to decrease the time requirement. Besides that, accommodating our
algorithm to handle priors that are not order-modular would be desirable.
For the empirical point of view it would be interesting to see how well
some existing score-based heuristics [29] for discovering unobserved nodes
perform in terms of learning ancestor relations.
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Appendix A

Elementary Mathematical Facts

In this appendix, we present well-known mathematical facts that are used
throughout the thesis.

Binomial Theorem

The binomial theorem whose discovery is attributed to Isaac Newton [60,
p. 57–58] states that

n
∑

i=0

(

n

i

)

xiyn−i = (x+ y)n

for n ≥ 0.
Especially, setting x = 2 and y = 1, yields

n
∑

i=0

(

n

i

)

2i = 3n. (A.1)

Upper Bounds for Binomial Coefficients

Consider the central binomial coefficient
(

2n
n

)

for n ≥ 1. We have
(

2n

n

)

=
2n(2n− 1) · · · 2 · 1

n(n− 1) · · · 2 · 1 · n(n− 1) · · · 2 · 1

= 2n
(2n− 1)(2n− 3) · · · 3 · 1

n(n− 1) · · · 2 · 1

= 22n
(2n− 1)(2n− 3) · · · 3 · 1

2n(2n− 2) · · · 4 · 2
≤ 22n−1. (A.2)
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The binary entropy function is defined as

H(p) = −
(

p log p+ (1− p) log(1− p)
)

,

if 0 < p < 1 and H(p) = 0 if p = 0 or p = 1; see Figure A.1. It holds (see,
for example, Cormen et al. [20, p.1097–1098]) that

(

n

pn

)

≤ 2H(p)n.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

p

H
(p

)

Figure A.1: The binary entropy function.

For p ≤ 1/2 actually a stronger result holds. It is well-known (for a
proof, we refer the reader to Flum and Grohe [34, p. 427]) that

pn
∑

i=0

(

n

i

)

≤ 2H(p)n. (A.3)



TIETOJENKÄSITTELYTIETEEN LAITOS DEPARTMENT OF COMPUTER SCIENCE
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A-2004-7 M. Kääriäinen: Learning Small Trees and Graphs that Generalize. 45+49 pp. (Ph.D.
Thesis)

A-2004-8 T. Kivioja: Computational Tools for a Novel Transcriptional Profiling Method. 98
pp. (Ph.D. Thesis)

A-2004-9 H. Tamm: On Minimality and Size Reduction of One-Tape and Multitape Finite
Automata. 80 pp. (Ph.D. Thesis)
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