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Abbreviations and symbols

CTE CarbonTracker-Europe data assimilation system
DYPTOP Dynamical Peatland Model Based on TOPMODEL
ECMWF European Centre for Medium-range Weather Forecasts
EnKF Ensemble Kalman Filter
EnSRF Ensemble square root Filter
ERA-Interim European Reanalysis climate data
GHG Greenhouse Gas
GOSAT Greenhouse Gases Observing Satellite
KF Kalman Filter
LPJG Lund-Potsdam-Jena General Ecosystem Simulator
LPX-Bern Land surface Processes and eXchanges process model
NOAA National Oceanic and Atmospheric Administration
NOAA/ESRL NOAA’s Earth System Research Laboratory
TCCON Total Carbon Column Observing Network
WDCGG World Data Centre for Greenhouse Gases
WHyMe Wetland Hydrology and Methane Dynamic Global Vegetation Model

d.o.f. degree of freedom
pdf probability density function

x ∈ RN a state vector
y ∈ RS an observation vector
P ∈ RN×N a model error covariance matrix
R ∈ RS×S an observation error covariance matrix
Q background error covariance matrix
H observation operator
M state dynamical model
X−1 inverse of a matrix X
XT transpose of a matrix X
p(x) pdf of a random variable x
p(x|y) conditional pdf of a random variable x given y
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1 Introduction

Bayesian inverse modelling is a powerful method to make inferences about certain states
or parameters based on some observed data, which has been applied to real-life problems
in a wide range of scientific fields, including physics, meteorology and environmental
sciences, to name a few. The method is based on probability theories, and offers a
possibility to study highly ill-posed problems that involve non-linear systems with a
large number of states or parameters to be estimated.

The aim of the Bayesian inverse modelling is to estimate a probability density function
(pdf) of variables of interest conditional on the observations. There are two popular
algorithms to derive such estimates; variational methods that are based on numerical
iterations, and other methods that are based on filtering theory. One of the most used
filtering method is the Kalman filter (KF), which derives a maximum likelihood esti-
mator of the pdf of our interest, first introduced by Rudolf E. Kalman (Kalman, 1960).
Although this gives the optimal estimate for linear systems, the linearity assumption
limits its application to real-life problems because they often involve non-linear systems.
In addition, KF is computationally demanding for high dimension systems where the
number of parameters is large.

One alternative to KF was introduced by Evensen (1994), which is a Monte Carlo
approximation for KF, called an ensemble Kalman filter (EnKF). In EnKF, the pdf
of interest is approximated with a limited number of random samples, reducing the
computational demand for high dimensional cases, and the assumption of linearity is
not required. The EnKF is therefore applicable in various real-life problems which
involve complicated non-linear systems, such as numerical weather prediction (Buehner
et al., 2016; Rabier, 2005; Lorenc, 2003), oceanography (Park and Kaneko, 2000; Echevin
et al., 2000; Keppenne and Rienecker, 2003) and atmospheric physics (Peters et al., 2005;
Bruhwiler et al., 2014). In addition, those applications are often very high dimensional,
on the global scale in the horizontal, vertical and temporal dimensions, where KF would
not be appropriate.

Estimation of greenhouse gas (GHG) budgets, which requires temporally evolving high
resolution estimates and involves non-linear climate systems, is not an exception here.
Historically, GHG fluxes have been estimated using process-based models, where the
fluxes are estimated based on biogeochemical and physical theories. Those process-
based models and reported statistics based inventories have been useful in estimating
GHG fluxes from various source and sink processes. However, those process-based
models target certain types of processes, such as biogenic, anthropogenic and oceanic,
but do not take all processes into account to give the “whole picture”.

The Bayesian atmospheric GHG inverse models, on the other hand, aim to estimate
the budgets which are the aggregated burden from both sources and sinks. Although
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inverse models have difficulties in giving detailed estimates for each processes, they have
the possibility to give more accurate total budgets, which are constrained by measured
atmospheric GHG concentrations. The inverse modelling of GHG budget based on the
variational method have been developed for various applications (Houweling et al., 1999,
2014; Bergamaschi et al., 2005, 2009; Bousquet et al., 2011). In addition, Bruhwiler et al.
(2005) developed a KF based system in an application for global carbon dioxide (CO2)
budget estimates, which was further improved to an EnKF based system by Peters et al.
(2005) (called CarbonTracker). The CarbonTracker system is now developed for various
applications for regional and global GHG budget estimates (Peters et al., 2007, 2010;
van der Laan-Luijkx et al., 2015, 2017; Zhang et al., 2014), including methane (CH4)
(Bruhwiler et al., 2014, and those presented in this thesis) and sulphur hexafluoride
(SF6) (van der Veen, 2013).

CH4 is the second most important greenhouse gas after CO2, strongly influenced by
anthropogenic activities, such as fossil fuel use, agriculture, and landfills (Myhre et al.,
2013). In addition, natural sources, such as wetlands and peatlands, contribute sig-
nificantly to the global and regional CH4 budget, with a strong temporal and spatial
variability (Myhre et al., 2013). Atmospheric CH4 concentrations have more than dou-
bled since pre-industorial times, and continue to increase even today. In addition, the
mechanisms behind the atmospheric CH4 growth in the 21st century are still not fully
understood (Heimann, 2011), where recent studies point out that the anthropogenic
sources (Saunois et al., 2016a), biospheric sources (Dlugokencky et al., 2011; Schwietzke
et al., 2016) and sinks processes (Ghosh et al., 2015; Montzka et al., 2011) could all be
contributing.

In this thesis, an EnKF based data assimilation system, CarbonTracker Europe-CH4

(CTE-CH4), is further developed, and the method and applications of the system to
estimate regional and global CH4 budgets are presented. This development aims to
give further insight into the global and regional CH4 budgets for the the 21st century,
which would then increase understanding about the reasons for the recent-year atmo-
spheric CH4 growth. The thesis specifically looked at CH4 emissions of the largest
contributors: anthropogenic and natural biospheric sources. The magnitude, spatial
distribution and interannual and seasonal variability of those sources still have high
uncertainty, especially on regional and country-scales. Therefore, the system was devel-
oped to give regional and grid-wise CH4 flux estimates, where the anthropogenic and
natural biospheric sources are optimised simultaneously.

In Paper I, the sensitivity of one site in northern Finland to regional CH4 budget was
examined, where the site was found to be essential for constraining regional biospheric
emissions. In Paper II, the global and regional CH4 budgets for 2000-2012 were ex-
amined in detail. The estimated emission trend suggested a possible increase in the
anthropogenic emissions from northern temperate and tropical regions after 2007. The
results were evaluated with various observations, including in-situ and aircraft CH4 ob-
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servations, and satellite- and ground-based dry-air total column CH4 retrievals. The
evaluation showed a good performance of the model in general, but found that a faster
vertical mixing scheme in atmospheric transport model gives better agreement with
the observations than a slower vertical mixing scheme. In Paper III, the European
CH4 budgets were examined from an ensemble of seven inversion systems assimilat-
ing newly harmonised observational sets from Europe. The estimated total European
budget showed no strong trend, and the estimates were close to each other despite the
differences in the modelling systems. However, it was also shown that the estimates were
sensitive to atmospheric transport, and the differences in the background concentrations
could possibly explain part of the discrepancies. In Paper IV, a country-scale budget
for Finland, driven by grid-based inversion was evaluated. Although the country-scale
budget was still sensitive to the priors and observations assimilated, the example showed
that the model is applicable not only for estimating the global budget, but also for the
regional budgets.

11



2 Bayesian inverse modelling

2.1 Bayes’ formula

Bayes’ formula is a fundamental tool in statistics and in Bayesian inverse modelling in
particular, where an unknown parameter θ or state x is inferred from observed data y.
The relation between those can be written as

y = H(θ, x) + ε, (2.1)

where H is a measurement function (also called the observation operator) which trans-
forms state space to observation space, and ε is an error term. In the case of state
estimation, our interest is a probability density function (pdf) of the variable x given
the observation y, p(x|y). From the Bayesian probability theory,

p(x|y) = p(y|x)p(x)
p(y)

, (2.2)

where p(x) is a pdf of the state of interest, and p(y) is a pdf of the observed data,
and p(y|x) is a conditional pdf of the observations given the state, called a likelihood
function. The conditional pdf p(x|y) is often called a posterior pdf, and p(x) a prior
pdf. Note that the words “posterior” and “prior” will refer to the pdf of the state to
be estimated, but also of “a priori” or “a posteriori” fluxes in this thesis. Note that the
interest in the optimization could also be the parameter θ, with a known model state
x, but this thesis will be devoted only to state optimization, where θ is omitted from
the equation (2.1).

2.2 Cost function

Let x ∈ RN be a vector in a state space. Typically, the pdf p(x) is written as

p(x) ∝ exp
�
− 1

2
(x− xp)P−1(x− xp)

�
, (2.3)

where P ∈ RN×N is an error covariance matrix in the state space, and xp is a vector of
prior states. Similarly, let y ∈ RS be a vector in a observation space, and the conditional
pdf p(y|x) is typically written as

p(y|x) ∝ exp
�
− 1

2
(y −H(x))R−1(y −H(x))

�
, (2.4)

where R ∈ RS×S is an error covariance matrix in the observation space, H: RN →
RS converts the state space to the observation space. In many real-life applications,
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the observation and the state spaces are often different. In the case of GHG flux
inversion, for example, the observations are atmospheric concentrations and the states
are fluxes.

From the Bayes’ theorem and probability theory of joint distribution, the posterior pdf
p(x|y) is proportional to the product of (2.3) and (2.4):

p(x|y) ∝ p(y|x)p(x) ∝ exp
�
− 1

2
J (x)

�
, (2.5)

where the cost function J (x) is:

J (x) = (x− xp)TP−1(x− xp) + (y −H(x))TR−1(y −H(x)). (2.6)

The equation assumes that all error terms are Gaussian. Note that the posterior pdf is
at its maximum when the cost function is minimised.

2.3 Kalman filter

Kalman filtering (KF; Kalman, 1960) provides an optimal least-square solution of the
cost function for linear operational cases. A general filtering formula consists of a pair
of equations for the states and observations:

�
xk = M(xk−1) + η, η ∼ N(0,Q)

yk = H(xk) + ε, ε ∼ N(0,R),
(2.7)

where xk and yk are a state and observation vectors for a discrete time step k, M:
RN → RN is a dynamical model that describes evolution of the states in time, η and
ε are random errors of the states and observations respectively, Q ∈ RN×N is the
background error covariance matrix, and R ∈ RS×S is a observation operator error
covariance matrix.

KF is a sequential data assimilation system that consists of two phases: prediction and
analysis (update). In the prediction phase, the posterior state and its covariance are
moved forward in time based on posterior states from a previous time step before new
observations are provided:

xp
k = Mxa

k−1 (2.8)

P p
k = MP a

k−1M
T +Q, (2.9)

where M is a linearlised dynamical model, xp
k and P p

k are prior (p) states and its
error covariance matrix at time k, xa

k−1 and P a
k−1 are posterior (a) states and its error

covariance matrix at time k − 1.
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Once a set of observations are provided, the prior state and its covariance are updated
based on the prior states and covariance, provided from the prediction phase, using the
Kalman filtering formulae:

xa
k = xp

k +Gk(y −H(xp
k)),

P a
k = (I −GkH)P p

k .
(2.10)

Here I is an identity matrix, H is a linearised observation operator, and the matrix Gk

is called Kalman gain matrix:

Gk = P p
kH

T (HP p
kH

T +R)−1. (2.11)

2.4 Ensemble Kalman filter

Problems of KF are a linearity assumption in the system and computational cost in
the systems with large number of unknowns. In many real-life applications, including
atmospheric inversions, the systems are often non-linear, and linearlisation of the dy-
namical model M and observation operator H may not be possible. In such systems,
the predicted state and covariance, and the Kalman gain matrix cannot be calculated
explicitly.

Let x = (x1, ...,xL) be a set of L random samples (ensemble) of the states, drawn from
a known pdf, e.g. N(0, 1). In ensemble Kalman filter (EnKF; Evensen, 1994, 2003), the
sample covariance P = XXT is calculated from the ensemble:

X = (x− x)/
√
L− 1, (2.12)

where, x is a vector of the ensemble sample means. Based on the law of large numbers,
the sample covariance becomes the full covariance as L → ∞, and the error due to
sampling decreases proportional to 1/

√
L. The larger the size of ensemble is, therefore,

the better the posterior error covariance is represented, and one should avoid using
too small ensemble sizes (van Leeuwen, 1999; Houtekamer and Mitchell, 1998). It is
often chosen considering the balance of the representation error and the computational
cost.

EnKF is useful for systems where state dimension is large because the computational
costs depends on ensemble size, rather than the number of parameters. In the global at-
mospheric inversion, the state dimension depends on horizontal (latitude and longitude)
resolution, and even at 1◦×1◦ resolution, the dimension of P becomes 64800 × 64800,
which makes the Kalman gain calculation computationally demanding even with today’s
computational resources.
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The prediction and analysis can then be calculated for each ensemble members indepen-
dently, where the predicted states are represented based on the dynamical model:

xp
l = M(xa

l ) + ηl, (2.13)

from which the matrix P p is formed. Due to the nature of EnKF, the variance of the
posterior ensemble decreases from the prior, and therefore, the randomisation by the
background error ηl plays an important role in avoiding the variance of the ensemble
to converge to unrealistically small values.

Various dynamical model M can be applied, but only a simple averaging for the mean
states is applied in this thesis following Peters et al. (2007) (see Section 4.1 for details).
A choice of dynamical model for the mean is rather straightforward, but not for the
covariance because problems such as under- or overestimation of the sample variance,
and severe decreases in the degree of freedom could easily occur. In those cases, an
additional method is required to inflate or deflate the sample deviation and to regain
a sufficient degree of freedom in the covariance matrix. In atmospheric inversion sys-
tems, constructing an appropriate dynamical model for sample covariance matrix can
be challenging, and this method is not applied in this thesis.

For the analysis phase, we need realisations of the observationsH(xp
l ) from the ensemble.

The analysis phase then becomes:

xa
l = xp

l +G(y −H(xp
l ) + εl). (2.14)

Here, it is important to treat the observations as random variables by adding the ob-
servation errors εl and generating randomised observations for each ensemble member
(Evensen, 2003).

In the model presented in this thesis, the states x to be optimised are scaling factors
for global CH4 flux fields, where “prior” knowledge of CH4 fluxes were obtained from
process-based models. The dimension of the state vector at single time t is not high-
dimensional for Papers I, II and III, as CH4 fluxes were optimised regionally. However,
for Papers IV, the dimension is increased substantially by optimising CH4 fluxes on
1◦×1◦ scale over Europe. The dynamical model M is close to the identity matrix I,
the observations y are the measurements of atmospheric CH4 concentrations, and the
observation operator H is a highly non-linear atmospheric chemistry transport model
(see Section 4 for detailed description).

2.5 Ensemble square root filter

One of the problems in the traditional EnKF is so called “inbreeding” problem, where
the same ensemble is used to calculate the Kalman gain and update the states. This

15



creates a systematic underestimation in the analysis error covariance matrix P a and
leads to filter divergence, unless the observations for each ensemble member are treated
as random variables (Houtekamer and Mitchell, 1998; Burgers et al., 1998).

Whitaker and Hamill (2002) introduced an alternative filtering approach (the ensemble
square root filter; EnSRF), where the observation perturbation in (2.14) is not needed,
but the analysis error covariance is still properly estimated assuming that the observa-
tions are uncorrelated.

In EnSRF, the matrices HPHT and PHT needed for the Kalman gain calculation
(2.11) are represented from the ensembles (Whitaker and Hamill, 2002):

HP pHT ≈ 1

L− 1
(H(x�

1), ...,H(x�
L)) · (H(x�

1), ...,H(x�
L))

T (2.15)

P pHT ≈ 1

L− 1
(x�

1, ...,x
�
L) · (H(x�

1), ...,H(x�
L))

T , (2.16)

where x�
l = xl − x are sample deviations.

While EnKF uses the same gain to update the mean states and the sample deviations,
EnSRF employs a scaled gain for the sample deviations. In EnSRF, the mean states are
updated in the same way as the traditional EnKF, i.e. the following equation (2.14),
and the sample deviations x�

l are updated as:

x�a
l = x�p

l + G̃(y −H(x�p
l )), (2.17)

where the revised gain G̃ is

G̃ = αG

α =

�
1 +

�
R

HP pHT +R

�−1

.
(2.18)

In EnSRF, each individual observations are processed sequentially one at a time, and
therefore, R and HP pHT are scalars and α is simply a constant.

Although this is an efficient algorithm, the calculation of H(x�b
l ) by reapplying the ob-

servation operator H is computationally expensive in atmospheric inversion. Therefore,
the modelled realisation of the observations yet to be assimilated H(xk)m is updated
following Peters et al. (2005). From the mean states,

H(xa
k)m = H(xp

k)m +HmG(yk −H(xp
k), (2.19)

and from the deviations,

H(x�a
k)m = H(x�p

k)m +HmG̃(H(x�p
k). (2.20)
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Figure 1: Representation of fixed-lag filtering with a lag length of 5. The state vectors x(k),
x(k + 1) and x(k + 2) are joint state vectors at time k, k + 1 and k + 2, containing five state
vectors illustrated in boxes. State vectors in grey and light blue boxes are priors xp which are
used to calculate posterior states xa. The red posterior states are the final results, while the
yellow posterior states are inferred to next time step as priors illustrated in grey. The time
series shows states to be optimised (red line), and observation sets (dots). At time (k + 1), the
new observations at k + lag (green diamond) are assimilated, i.e. the observation sets up to the
final lag (green circles) have been assimilated.

2.6 Fixed-lag filtering

In the traditional KF, the states xk only depend on observations up to time k, i.e.
the posterior pdf to be estimated is p(xk|y1, ...,yk). However, it is known that the
smoothed estimates which take future observations into account are more accurate for
intermediate times (van Leeuwen and Evensen, 1996; Evensen and van Leeuwen, 2000;
Evensen, 2003). In this thesis, a fixed-lag filtering is applied following Peters et al.
(2005), where the state vector that contains future time steps is estimated.

Let y1:K = (y1, ...,yK) be all available observations and x1:K = (x1, ...,xK) be the
states to be optimised at discrete times k ∈ [1, K]. The prediction and analysis are
done based on equations (2.8) and (2.10), but the state vector to be optimised contains
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future states:
x(k) = xk:k+τ , (2.21)

where τ is called assimilation window or lag length and defines a length of time window
up to which the observations have influence over, and the observations used to update
are

y(k) =

�
yk:k+τ for k = 0

yk+τ for k > 0
(2.22)

Then, the state vector x(k+1) contains state vectors from time k+1, ..., k+1+τ , where
xk+1+τ is a new state, and others (xk+1, ..., xk+τ ) are those inferred from the previous
time step. The analysis equation for k > 0 can be written as:




(xa
k)τ
...

(xa
k+τ )1


 =




(xp
k)τ
...

(xp
k+τ )1


+Gk+τ (yk+τ −H(xp

k+τ )). (2.23)

The “intermediate” states (xa
k+1)τ−1, ..., (x

a
k+τ )1 at time k+1, ..., k+τ are those updated

τ −1, ..., 1 times (Fig. 1), respectively, but not the final result. For each state, updating
is done τ times, and therefore only (xa

k)τ is the final result at time (k). The prior state
(xp

k+τ )1 is the first initial state, which is used to calculate the posterior state (xa
k+τ )1.

The intermediate prior states are those inferred from previous time steps (Fig. 1),
i.e. 


(xp

k)τ
...

(xp
k+τ−1)2


 =




(xa
k)τ−1
...

(xa
k+τ−1)1


 . (2.24)

In another words, the posterior states (xa
k)τ−1, ..., (x

a
k+τ−1)1 in x(k) is considered as

“prior” in x(k + 1). In this thesis, this approach is considered as filtering rather than
smoothing because the backward calculus, required for proper smoothing, is not ap-
plied.
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Figure 2: Global average surface atmospheric CH4 concentration and its growth rate. Data
source: https://www.esrl.noaa.gov/gmd/.

3 CH4 balance and atmospheric concentrations in the 21st
century

3.1 Atmospheric CH4

Methane (CH4) is an important greenhouse gas (GHG), which is directly influenced
by anthropogenic emissions and its atmospheric concentrations have increased substan-
tially in recent centuries. The global mean atmospheric CH4 increased from about 700
ppb in pre-industrial times to 1843 ppb in 2016, and continues to increase even to-
day. The effective radiative forcing of CH4 since pre-industrial times to 2016 is +0.507
± 0.05 W m−2 (update of Hofmann et al. (2006), https://www.esrl.noaa.gov/gmd/
aggi/aggi.html). The growth rate (GR) of atmospheric CH4 varies interannually due
to interannual variability in the CH4 fluxes and atmospheric sinks, but the highest
GR measured before the 21st century was 14.33 ppb yr−1 in 1991, while the lowest
was 2.25 ppb yr−1 in 1996 (NOAA: globally averaged marine surface annual mean,
https://www.esrl.noaa.gov/gmd/ccgg/trends ch4/) (Fig. 2).

One of the issues of interest about the 21st century atmospheric CH4 is its GR. Following
years of a steady period during 1999-2006, when the atmospheric CH4 stayed around
1771–1774 ppb, the atmospheric CH4 started to increase again in 2007 with a GR of
about 5 ppb yr−1 or even higher (Dlugokencky et al., 2011) (Fig. 2), suggesting that
a significant change has occurred in the global CH4 budget. The average GR during
2007-2016 was 7.08 ppb yr−1, which is even higher than that of the 1990s (6.34 ppb
yr−1). The mechanisms behind this growth are still not sufficiently explained, and
various potential reasons have been discussed (Heimann, 2011). Saunois et al. (2016a)
examined the GR from an ensemble of various process-based and inverse models, which
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showed a significant increase in the anthropogenic sources. Dlugokencky et al. (2011)
found that the increase in the atmospheric CH4 growth corresponds to a decrease in
13δC-CH4 isotopic signals especially in the Tropics, suggesting a potential increase in
biogenic sources. Assuming fossil fuel based anthropogenic CH4 emissions to be smaller
than those estimated by earlier studies (Schwietzke et al., 2016), the increase could
potentially be caused by agricultural CH4 emissions (Saunois et al., 2016b). In addition,
a change in OH concentrations could also cause changes in atmospheric CH4 growth
(Ghosh et al., 2015; Dalsøren et al., 2016), and the OH concentrations were estimated
to have decreased after 2005 (Montzka et al., 2011).

CH4 is a reactive chemical compound, which is removed by the hydroxyl (OH) radical,
chlorine (Cl) and electronically excited atomic oxygen (O(1D)) in the atmosphere.

CH4 + OH CH3 + H2O

CH4 + Cl CH3 + HCl

CH4 + O(1D) CH3 + OH

(3.1)

The CH4 removal due to chemical reaction with tropospheric OH is the largest CH4

sink, which is about 90% of the total sink. Other chemical reactions are small sinks,
but important in stratospheric chemistry. Due to these removals, emitted CH4 is esti-
mated to stay in the troposphere only for about 9 years. The OH concentrations vary
seasonally, as OH is produced through photodissociation of ozone.

O3 + sunlight O2 + O(1D)

O(1D) + H2O 2OH
(3.2)

Therefore, the removal by OH is the highest during summers, in the upper troposphere
and the Tropics, where solar radiation is intense and water vapour concentrations are
high. On the other hand, the OH concentrations are low during winters, and lower in
the northern and southern high latitudes then in the Tropics.

The spatial distribution of atmospheric CH4 depends on several factors: emissions,
sinks and transport. Atmospheric CH4 is high in the troposphere where the surface
emissions of CH4 are transported to the atmosphere and mixed well, but much lower in
the stratosphere (Fig. 3(a)). The vertical distribution of the CH4 concentrations show
that CH4 decreases above the tropopause with a much faster rate than below it (Fig.
3(a)). In addition, the atmospheric CH4 is higher in the Northern Hemisphere (NH)
than in the Southern Hemisphere (SH) (Fig. 3(b)). This is mainly due to emission
distribution; most of the CH4 sources are located in the NH and the Tropics, and much
less in the SH. The seasonal cycle of the atmospheric CH4 shows high concentrations
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(a) (b)

Figure 3: Atmospheric CH4 concentration distributions. (a) Vertical profile of zonal mean
atmospheric CH4, and (b) Lower troposphere (lowest 5 levels, approximately >850 hPa) zonal
mean atmospheric CH4 over a year.

during winter and low concentrations in the summer, which is mainly driven by the
atmospheric sink (Fig. 3(b)).

3.2 Global and regional CH4 budgets

Average annual global CH4 emission for 2000–2012 is assumed to be about 526–582
Tg CH4 yr−1 based on an ensemble of several inverse models (Saunois et al., 2016a;
Kirschke et al., 2013). The largest source of CH4 is anthropogenic emissions, such as
fugitive emissions from solid fuels, leaks from gas extraction and distribution, agricul-
ture, landfills and waste water management, which in total account for more than half
of the global total emissions (Saunois et al., 2016a; Kirschke et al., 2013; Ciais et al.,
2013). The anthropogenic emissions have an increasing trend that is closely related to
economical and population growth. Although the seasonal cycle of global anthropogenic
emissions is assumed to be small, the emissions from agriculture, especially from rice
cultivation, have a strong seasonal cycle depending on the rice growing seasons. The
emissions from oil and gas could also have seasonal cycles e.g. in northern countries,
where emissions from heating are possibly high during winter. The spatial pattern or
regional budgets therefore differ between continents and countries (Fig. 5), and also
depends on the policies applied and available energy sources.

The second largest source is natural biospheric emissions from wetlands and peatlands,
which accounts for about 30% of global total emissions (Saunois et al., 2016a; Kirschke
et al., 2013). The natural biospheric GHG emissions are very sensitive to climate con-
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Figure 4: Sources (red) and sinks (blue) of CH4. The width of the arrows approximately il-
lustrates the relative magnitude of the fluxes (filled) and their uncertainty (non-filled). a) solid
fuels, oil and gas extraction and distribution b) landfills and waste management c) agriculture d)
termites e) wetlands, peatlands and fresh water f) permafrost and CH4 hydrates g) open ocean h)
natural geological i) biomass burning j) forests and dry mineral soils k) atmospheric chemistry.

ditions, and therefore, it is important to understand the feedbacks and interactions
of those ecosystems with atmosphere (Heimann and Reichstein, 2008). In the natural
biogenic ecosystems, CH4 is produced as a result of micro organic (methanogen) respi-
ration. In anaerobic conditions, methanogens use oxygen to grow, and produce CH4 as
a result (methanogenesis). This process also applies to biogenic anthropogenic sources,
such as those from rice paddies, livestock herbivores (cows, sheep, deer, etc) and waste
treatment, where methanogens are active in paddy sediments, digestive systems and
waste matter. In addition, special methanogens live in termites. The CH4 emissions
from termites are not significantly large in the global budget (about 5-10%), but are
important for the regional budget (Jamali et al., 2013; Khalil et al., 1990; Jamali et al.,
2011). In wetlands and peatlands, CH4 is produced in the soil sediments, and emitted
mainly by diffusion through the surface water layer, ebullition from the soil layer, and
transport through the aerenchyma in plant stems. The natural biospheric CH4 emissions
from wetlands and peatlands are highly sensitive to water table depth, precipitation and
soil temperature which affect the activity level of methanogens. In general, the higher
the soil temperature is, the more CH4 is emitted. This creates a clear seasonal cycle
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Figure 5: Global CH4 emission distributions of prior anthropogenic (top), and prior natural
(wetlands and peatlands, fire, termites and ocean) (bottom) sources from CTE-CH4 in the unit
of [10−8mol m−2 s−1].

in the natural biospheric emission that is high during summer and low in winter. In
addition, the hydrology such as the water table depth and soil moisture also affect the
seasonal cycle in methane emissions. However, not only the meteorological conditions,
but also the soil properties such as amount of nutrients and carbon, and vegetation
types also influence the situation on, and therefore, the actual seasonal cycle and its
amplitude have a high interannual and spatial variability. A large area of wetlands is
located in the Tropics and there are peatlands in the northern Boreal regions (Fig. 5).
Peatlands are assumed to store about one fifth of global terrestrial carbon (Ciais et al.,
2013), which could possibly expand with global warming (Walter et al., 2006; McGuire
et al., 2012; Johansson et al., 2006).

Other than wetlands and peatlands, similar micro organic processes also occur in lake
bottoms. Although the magnitude of contribution from inland water emissions is still
uncertain, they could have a significant contribution globally and especially in the north-
ern high latitudes (Thonat et al., 2017; Walter et al., 2006), where about 40% of the
total area of inland waters is located. In addition, the upland mineral soils and forests
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contribute to natural biospheric CH4 budget, where in general wet mineral soils are
often a net source of CH4, and dry soils and forests are a net sink (Yavitt et al., 1990;
Guckland et al., 2009; Dutaur and Verchot, 2007; Lohila et al., 2016). In dry soils, the
methanogenesis is often exceeded by oxidation in methanotrophy (microbial consump-
tion), where a significant percentage of the CH4 produced in soils and sediments could
be consumed (Conrad, 1996).

Other natural sources, such as natural biomass burning and geological sources are minor
sources of the global CH4 budget, but are significant in regional and seasonal budgets.
The natural biomass burning occurs in ecosystems such as forests, savannas, grasslands
and peatland during dry seasons. The emissions are therefore high during summer
around the Tropics, where large areas of forests and savannas are located, but contri-
butions are also made by temperate and boreal forests. The CH4 emissions from forest
fires have significant interannual variability, and the annual CH4 emission varies from 11
to 20 Tg CH4 yr−1 (during 2000-2014; Giglio et al., 2013). Natural geological sources,
such as volcanic eruptions, can occasionally be significant sources of CH4. The emis-
sion source is often local, but the emitted CH4 spreads regionally and globally in the
atmosphere though specific transport patterns, that affect the atmospheric CH4 levels
in the short (hours) and long (several years) term. For example, the Mount Pinatubo
eruption in 1991 resulted in an increase in CH4 GR shortly after the event, but the
long-term effect was a decrease in the GR due to depletion of the stratospheric ozone
(Bândă et al., 2013).

Unlike CO2, the ocean is a minor contributor to the CH4 budget because CH4 emitted
from the sea sediments is mostly oxidised before it reaches the atmosphere. However,
the Arctic ocean could become a larger source of CH4, as significant amounts of CH4

hydrates are located in the sea sediments (Kvenvolden, 1988). CH4 emissions from
the Arctic sea are sensitive to climate change because the increase in the Arctic sea
temperature could directly affect destabilisation of the CH4 hydrates (Biastoch et al.,
2011) and the extent of sea-ice. As the Arctic ocean is shallower than other open
oceans, the oxidative water depth is shallow, and the CH4 release from the hydrates
due to warming could directly affect the CH4 emissions to the atmosphere. The extent
of sea-ice is decreasing due to global warming, which could also release CH4 that would
otherwise be trapped in the ice (Kort et al., 2012).

3.3 Modelling of CH4 budget

Modelling is necessary in order to understand global or regional CH4 budgets, as spatial
coverage of direct flux measurements is limited. The global and regional budgets can be
estimated by various models that can mainly be put into two categories: inventories or
process-based models that derive flux estimates based on process-related theories of each
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source, and data-driven atmospheric inverse models that infer emission estimates from
atmospheric concentration observations. Although this thesis focuses on the inverse
models, the estimates from inventories and process-based models are often used as prior
fluxes in the inverse models, and therefore, it is important to understand the basic
mechanisms in both models.

For the estimation of anthropogenic emissions, information such as regional statistics
from counties, states and municipalities, together with population and other known
spatial distributions can be used. The country statistics such as fossil fuels, gas and
oil production and use, amount of landfill and waste water, and livestock population
are often used as emission scaling factors to convert each metric to amounts of GHG
emissions. The country GHG emission statistics are then reported to the United Nations
Framework Convention on Climate Change (UNFCCC), for example. The country
statistics can be distributed with some suitable information on spatial distribution to
derive grid-based estimates. For example, the landfill and waste water distribution
can be derived using population distribution and information about the location of
treatment plants. The livestock statistics can be distributed with the animal density
map or agriculture distribution map. Although information from developed countries
is often reliable, the information from developing countries is often missing or has high
uncertainty.

The process-based models are useful in estimating natural emissions. Information on
meteorological and climate conditions, soil and vegetation types and conditions, and
their distributions are used to estimate CH4 emissions by modelling biogeochemical
processes and transport in the soil and water layers. It is important to note that the
regional estimates from process-based models could differ significantly between models
(Bohn et al., 2015). One important factor that affects the CH4 emission estimates is the
extent of wetlands and peatlands. Those models use either prescribed or dynamically
estimated distribution of those extents, which are used to scale the emission in each
grid cell.

A simple way of estimating ocean emissions is by calculating the product of gas transfer
velocity, gas solubility and pressure differences in the sea and atmosphere. Although
the spatial distribution of ocean emissions is not accurately known, its contribution to
total global budget is small that it will not bring significant additional uncertainty in
global estimates.

However, the process-based models are not designed to have a closed global budget.
Because their interest is only in a part of the emission sources or sinks, the other
sources and sinks that contribute to the global budget are not considered. Therefore,
this can create a large range of the emission estimates (Saunois et al., 2016a), which
could be unrealistic when associated with other source information, i.e. the estimated
atmospheric CH4 concentrations from those emissions may not agree with the observed
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levels.

Here, the atmospheric inverse models become useful. Although they cannot estimate
processes separately as in the process-based models, the inverse models can take several
sources and sinks into account at once. This results in global budget that is better closed,
where the range of estimates between the models are smaller than those estimated from
process-based models (Saunois et al., 2016a; Kirschke et al., 2013). Atmospheric inverse
models often use estimates from inventories and process-based models and constrain
total budget using atmospheric concentration measurements. The information such as
spatial distribution, seasonal cycle, interannual variability, trend, and the magnitude of
the emission from the inventories and process-based model could be provided to inverse
models. The mathematics behind the inverse models is based on Bayesian probability
theory, as explained in Section 2.1–2.2. A traditional way of solving the cost function is
called the variational method (e.g. 4DVAR; Houweling et al., 1999, 2014; Bergamaschi
et al., 2005, 2009; Bousquet et al., 2011), where the derivative of the cost function is
calculated based on the numerical minimisation method. Another method is statistical
filtering (Peters et al., 2005; Bruhwiler et al., 2005, 2014; Chen and Prinn, 2006), which
is applied in this thesis (Section 2.3–2.4), where the maximum estimator of the cost func-
tion is estimated based on probability theories. Both methods have been found to derive
similar flux estimates, although temporal correlation was better resolved in 4DVAR and
computational efficiency was better in the EnFK-based model (Babenhauserheide et al.,
2015).

In the inverse models, the choices of optimization resolution (temporal and horizontal),
prior state covariance, observation error covariance, ensemble size in the ensemble filter-
ing, all affect the results (Peters et al., 2005; Babenhauserheide et al., 2015). Further-
more, the inputs such as prior fluxes and the observations affect the results (Houweling
et al., 2014). Although inversions should ideally give the same emission estimates re-
gardless of the prior fluxes, the results are still affected by the choice especially in regions
where observation constrains are not enough (Bergamaschi et al., 2005). Although high
optimization resolution often helps to better close the budget and to resolve spatial dis-
tributions (Bergamaschi et al., 2015), the prior flux estimates are especially important in
regions where observation constraints are weak. In addition, their spatial distributions
directly affect the results in regional-based optimization.

Since it is important to produce realistic atmospheric CH4 at observed times and places,
atmospheric inverse models are often associated with atmospheric transport models
(ATMs), which are used as the observation operator H. The ATM calculates atmo-
spheric states and gas concentrations based on physical theories, constrained by mete-
orological inputs. The atmospheric sink is often taken into account through ATMs in
the inverse models by either using prescribed removal rate, or calculating the removal
rate dynamically. Note that despite its importance, the spatial distribution and inter-
annual variation of the atmospheric sink have high uncertainties. There exits a variety
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of ATMs, and the inversion estimates can vary up to 150% in the regional level by
using different ATMs (Locatelli et al., 2013). The differences are associated with model
parameterisation, horizontal, vertical and temporal resolution, and meteorological con-
straints.
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4 CarbonTracker Europe-CH4

CarbonTracker Europe-CH4 (CTE-CH4) is the main inverse modelling tool used in
Paper I, II and IV, and it contributed to the model comparison study in Paper III.
The model is based on ensemble Kalman fixed-lag filtering, developed to make inference
over global and regional CH4 budgets by assimilating atmospheric CH4 concentration
observations.

4.1 State optimization in CTE-CH4

In CTE-CH4, the state to be optimised x is a scaling factor for first guess (prior) flux
estimates F p:

f(x, F p) = x× F p, (4.1)

and the cost function (2.6) becomes:

J(x) = (x− x�)TP−1(x− x�) + (y −H(f(x,F p)))TR−1(y −H(f(x,F p)))), (4.2)

where y is a set of atmospheric CH4 observations, the observation operator H is an
ATM which transforms the flux estimates to the observation space. CTE-CH4 is also a
time evolving model, where CH4 fluxes are optimised sequentially at weekly resolution,
with a lag of 5 weeks as the default (see Section 4.1.1 for the sensitivity to lag length).
Note that although scaling factors x are the states to be optimized, we discuss the
actual fluxes, i.e. f(x,F p), in terms of CH4 emissions.

As discussed in Section 3.3, large uncertainty in CH4 flux estimates is associated with to
two major sources: anthropogenic and natural. Those source distributions and temporal
variability are challenging to understand accurately due to limited coverage of obser-
vations and information. CTE-CH4 is therefore designed to optimise the two sources
simultaneously. Since spatial distribution of the two sources can be found from inven-
tories and process-based models, the two sources were optimised region-wise based on
modified TransCom regions (mTC) and a terrestrial land-ecosystem type (LET) map
(e.g. Fig. 3 and 4 in Paper I). The original TransCom regions consist of terrestrial
and ocean regions used in the TransCom project (http://transcom.project.asu.edu/).
The LET region in CTE-CH4 is first defined based on soil types used in process-based
models. The LET soil type definitions include e.g. peatland, land with mineral soil and
inundated land (wetland). The LET also contains “anthropogenic” land, such as cities
and rice fields. In the case of Paper II, the number of mTCs (NmTC) is 20 and the
number of LET (NLET) is 5, and the total number of optimization regions in theory
is Nall = NmTC × NLET = 100. However, the actual number of optimization regions
was Nall = 62 because not all mTCs contained all LETs. This region-wise optimization
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generally works, but as shown in Paper III, the spatial distribution very much de-
pends on the prior estimates, and may not be able to resolve the emission distribution
well. Therefore, in Paper IV, Europe was further divided into grid-based optimiza-
tion regions. Paper IV showed that the grid-based inversion works well for regions
where the observation network is dense. The state vector in CTE-CH4 then becomes
x = (xanth,xbio), where

F a
total(k, r) = xaanth(k, r)× F p

anth(k, r) + xabio(k, r)× F p
bio(k, r)

+ F p
fire(k, r) + F p

termites(k, r) + F p
ocean(k, r).

(4.3)

Here, x(k, r) denotes a scaling factor at time (week) k and region (or grid) r for an-
thropogenic (anth) and biospheric (bio) emissions, F a is optimised regional (or grid)
total emissions, and F p is the prior emission estimated from inventories and process
models.

CTE-CH4 applies a simple dynamical model for the mean states following Peters et al.
(2007) by taking averages of previously updated states:

xp
k = (xa

k−1 + xa
k−2 + I)/3.0, for t ≤ 2. (4.4)

The identity matrix I is added to regularise the prior around 1, such that if no informa-
tion is obtained from the observations, the scaling factor equals one and thus the flux
remains as the prior. Note that this dynamical model is not applied to the ensemble
deviations, and new deviations are randomly drawn at each time step (2.13).

The ensemble of the prior deviations x�p
k is drawn from a normal distribution, N(0,Q).

The matrix Q is a background error covariance matrix that defines prior state variance
and spatial correlation between the optimization regions. Note that in EnKF, the prior
error covariance P p is built from the ensemble of the samples xp

k = xp
k + x�p

k.

Q =

�
Qanth 0
0 Qbio

�
, (4.5)

where Qanth and Qbio are the covariance matrices for anthropogenic and biospheric
emissions, respectively, and those emissions are assumed to be uncorrelated in space.
The diagonals of Q represent variance, and the off-diagonals representing spatial corre-
lation between optimization regions are defined based on the great circle distance dr1,r2
between the two regions (r1, r2):

qr1,r2 = qr1 × exp(−dr1,r2/Λ), (4.6)

where qr1 is a diagonal element (prior uncertainty) for region r1, and Λ is a pre-defined
spatial correlation length. The correlation length Λ could be chosen based on the
horizontal resolution of the atmospheric transport model, and the distances between
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observations. In CTE-CH4, where the coarsest horizontal resolution in TM5 ATM
is 6◦×4◦, the correlation length is chosen to be 500 km over land, and 900 km over
ocean (distance between two centres of TM5 grids at the Equator is approximately
670 km). However, as discussed in Paper IV, a shorter correlation length would be
more appropriate for grid-based inversions with a dense observation network because
too long correlation length makes it difficult to resolve local fluxes from the multiple
observations.

The definition of the background error covariance matrix Q is somewhat arbitrary and
subjective, and those used in the papers presented in this thesis differ slightly in each
study. In Paper II, the effect of the covariance matrix is briefly studied by comparing
results using a diagonal matrix and another matrix including off-diagonals. As shown in
Paper II the structure of the prior covariance does not affect the mean estimates much,
but the uncertainty estimates are significantly reduced when an informative covariance
matrix with off-diagonals is used. This is also shown in Paper IV, where Qanth is
assumed to be a diagonal matrix and Qbio contains off-diagonal elements. There, the
resulting uncertainty reduction (1− (σposterior)2/(σprior)2, i.e. a relative variance reduc-
tion from prior to posterior) is much higher in biospheric emission estimates.

An important development in this study was the ability to differentiate scaling factors
for anthropogenic and natural sources through inverse modelling. The atmospheric CH4

observations capture joint CH4 signals from all sources and sinks. Although trajectories
can differentiate major source signals captured in each observations, it is not possible to
distinguish between all signals separately in the observations. In CTE-CH4, the scaling
factors for anthropogenic and natural sources are separated by optimization regions.
One approach is to optimise either anthropogenic or biospheric fluxes per optimization
region (A1). Here, anthropogenic emissions are optimised if the LET is e.g. either
anthropogenic, rice, water, or ocean, and biospheric fluxes are optimised elsewhere.
Another approach is to optimise both sources per region (A2), employed in part of
Papers II and IV. In this approach, two different maps were used for anthropogenic
and biospheric emissions. Here, it is important not to use exactly the same map for
both sources, in order not to introduce additional ill-posedness in the system. In Paper
II, inversions using both approaches were compared, which showed an improvement in
agreement with the observations using approach A2. However, it was also shown that
the flux estimates may be influenced too strongly by the observations, resulting in
unrealistic interannual variability in some regional flux estimates. Therefore, in Paper
IV, a combination of the two approaches were used: A2 is applied over Europe, which is
our focus region that has a dense observation network with high quality measurements,
and A1 elsewhere globally.
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(a) (b)

Figure 6: Performance of CTE-CH4. (a) degrees of freedom in covariance matrix using different
ensemble sizes. (b) flux estimates with ensemble size of 20 (E20) and 500 (E500) using different
random samples.

4.1.1 Ensemble size and lag length

The ensemble size is an important factor in EnKF when it comes to stabilising the
results. As studied in Paper II, using small ensemble size that only gives few degrees
of freedom (d.o.f.) in the optimization may misrepresent the posterior distribution, and
the optimised results become sensitive to the random samples. In CTE-CH4, the d.o.f.,
calculated from the singular values vi of matrix Xa,
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increased towards an equilibrium, and around 250 or larger would be a sufficient size of
ensemble (Fig. 6). Note that an informative covariance including off-diagonals is used,
and therefore, the d.o.f. is smaller than the state vector length (number of optimization
regions). The weekly emissions also show that the estimates are more stable with
larger ensemble sizes (Fig. 6). Paper II showed that using large enough ensemble size
is especially important in regions with sparse observation networks. Based on these
analysis, CTE-CH4 uses 500 ensemble members as the default.

The lag length can be chosen based on physical parameters, such as the trajectories
of atmospheric CH4 between the observational sites. From the previous studies, e.g.
Bergamaschi et al. (2005) and Bruhwiler et al. (2014), where the same transport model
is used, the lag length of 5 weeks is found to be appropriate in most of the cases.
However, as shown in Babenhauserheide et al. (2015), longer a lag length would be more
appropriate for the Tropics, where the observation network is sparse, and southern high
latitudes, where local sources are low and need longer transport time for the source
signals to reach the observation locations. In Paper II, the effect of lag length was
studied by using 5 and 12 weeks, but due to the short study period (half a year), the
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effect was not clear.

4.2 Atmospheric transport model

In many atmospheric inverse models, an atmospheric chemistry transport model (ACTM)
is used as an observation operator in the cost function (2.6), which links the flux esti-
mates to atmospheric concentration observations. In CTE-CH4, the TM5 global ACTM
is employed (Krol et al., 2005). TM5 is an off-line Euclidean model, where the atmo-
spheric GHG concentration is calculated for each grid box, conserving the atmospheric
mass. The off-line mode uses meteorological constrains from pre-calculated 3-hourly
ECMWF ERA-Interim meteorological fields.

TM5 has the ability to zoom over a part of the globe, and CTE-CH4 uses a 1◦×1◦

zoom over Europe (21◦W–45◦E, 24◦N–74◦N), framed by an 3◦×2◦ inter-mediate region
(36◦W–54◦E, 2◦N–82◦N), and 6◦×4◦ globally. The spatial resolution of the ACTM is
independent of model states, i.e. it is mathematically possible to estimate fluxes in
smaller spatial resolutions than that of the ACTM. However, the spatial resolution is
important in resolving atmospheric states well, and therefore, the flux optimization
resolution is often chosen based on that of ACTM. In Paper IV, 1◦×1◦ grid-based
optimization is applied over Europe, which is the smallest optimization resolution in
CTE-CH4. For the vertical resolution, 25 layers were used, where there are 19-20
layers in the troposphere and 5-6 in the stratosphere. Although stratospheric CH4 has
less importance than that of the troposphere in resolving atmospheric CH4 at surface
observational sites, overestimation of the stratospheric CH4 in the model was found
when the vertical profiles were compared against aircraft observations, especially in the
estimates using the G2000 convection scheme (Paper II, Fig. 4). However, increasing
the vertical resolution can improve the vertical profile in the stratosphere.

The parameterisation of convection is important in resolving inter-hemispheric ex-
change. The two convection schemes in TM5 are examined in Paper II by applying
Tiedtke (1989) (hereafter T1989) and Gregory et al. (2000) (hereafter G2000) convection
schemes. The two versions differ mainly in vertical mixing in the troposphere, where
G2000 produces a faster mixing compared to T1989. Therefore, atmospheric CH4 at
the surface using G2000 is smaller in the Northern Hemisphere, and inter hemispheric
exchange times are faster than using the T1989 scheme. Paper II showed that the
dry air total column-averaged CH4 mole fractions (XCH4) better matched the satellite
and ground based retrievals when the G2000 scheme with the faster vertical mixing was
used. The XCH4 seasonal cycle, especially around the Tropics, showed two peaks, one
of which was only captured in the inversions using the G2000 scheme.

The atmospheric sink of CH4 due to oxidation by OH, Cl and O(1D) is taken into
account in TM5. The reaction rate coefficient κ of each compound j is calculated based
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on the Arrhenius equation:

κj = A× exp(−βj/RT ), (4.7)

where A is a pre-exponential factor, ζj is the Activation energy [J mol−1] of the com-
pound j, R is the universal gas constant [J K−1 mol−1], and T is the absolute air
temperature [K]. The reaction rate between two compounds j and j� is

λj,j� = κ[Cj ][Cj� ], (4.8)

where [Cj ] is atmospheric concentration of a compound j. The total removal rate λtotal
for CH4 then becomes

λtotal = λOH,CH4 + λCl,CH4 + λO(1D),CH4

= (κOH[COH] + κCl[CCl] + κO(1D)[CO(1D)])[CCH4 ].
(4.9)

In TM5, the monthly atmospheric OH concentration distribution, [COH], is estimated
from methyl chloroform (Huijnen et al., 2010; Brühl and Crutzen, 1993)), and pre-
calculated reaction rates with Cl and O(1D), are derived from a 2D photochemical Max-
Planck-Institute (MPI) model (Bergamaschi et al., 2005). The interannual variability
of atmospheric sink is not taken into account, or optimised by CTE-CH4. However,
as discussed in Paper II, changes in OH concentration could be one reason for the
flattening of atmospheric CH4 growth during 1999-2006 and the subsequent growth
thereafter. Therefore, the increasing rate in CTE-CH4 emission estimates could be
overestimated.

4.3 Prior fluxes

In this context, prior refer to first guess estimates of CH4 fluxes F p, rather than prior
states (scaling factors) to be optimised. In CTE-CH4, fluxes from five sources are taken
into account: anthropogenic, biospheric (e.g. wetlands and peatlands), fire, termites and
ocean (see also Section 4.1). For the annual prior anthropogenic emissions, F p

anth, the es-
timates from EDGAR v4.2 FT2010 inventory (edgar.jrc.ec.europa.eu/overview.php?v=
42FT2010) were used. The inventory accounts for emissions from energy manufacturing
and transportation, residential emissions, road transportation, non-road transportation
such as ships and aircraft, fugitive from solid, oil and gas production and distribution,
agriculture (enteric fermentation, manure management, and agricultural soils), land-
fills (solid waste disposal and waste water). Among those, the emission from fugitive,
oil and gas, and agriculture are the major sources, accounting for about 70% of total
anthropogenic emissions. The inventory uses national statistics, mainly from UNFCC,
which are distributed spatially according to e.g. population distribution and livestock
distribution.
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For the monthly prior natural biospheric emissions, F p
bio, the flux estimates from several

process-based models were used to account for sources from wetlands, peatlands and
mineral soils, and the small sink to dry soils. In Paper I, the estimates from LPJ-
GUESS-WHyMe (LPJG-WHyMe) (Smith et al., 2001; Wania et al., 2009; McGuire
et al., 2012), were used, where a possible overestimation in the estimate over Eurasian
boreal region was found. In Papers II and III, the estimates from LPX-Bern v1.0
(Spahni et al., 2013) were used. Paper II showed that the global total was well in
line with inversion estimates, but suggested redistribution of the emissions by reducing
estimates over the northern high latitudes, and increasing over the Tropics. In addition,
Paper III showed a possible overestimation in the seasonal amplitude of the LPJG-
WHyMe and LPX-Bern v1.0 estimates, where inversion estimates using CTE-CH4 and
other models showed smaller amplitudes. In Paper IV, LPX-Bern DYPTOP (Stocker
et al., 2014) estimates were used in addition to LPJG-WHyMe and LPX-Bern v1.0
estimates. The comparison showed that the differences in wetland and peatland extent
and parameterisation of dependencies to climate drivers result in significant differences
in their regional flux estimates. Not only the magnitude, but also interannual variability
and seasonal cycle differed significantly between the process-based models (Paper IV,
Fig. 4).

For the monthly prior fluxes for large-scale fire (F p
fire), including biomass burning,

the estimates from Global Fire Emissions Database (GFED; Randerson et al., 2012;
van der Werf et al., 2010; Giglio et al., 2013) were used. The data accounts for nat-
ural fire emissions from savanna, grassland, shrubland, boreal forest, temperate for-
est and peatland. In addition, anthropogenic biomass burning emissions from defor-
estation, degradation and agricultural waste are taken into account. The fire emis-
sions were estimated using source-specific burned area distribution maps and modelled
source-specific processes. For annual termites emissions (F p

termite), estimates from Ito
and Inatomi (2012) were used, where the termite emissions were estimated based on
biome-specific termite biomass density and emission factors from Fraser et al. (1986),
with the interannual variability introduced using a historical land cover map (Hurtt
et al., 2006). Monthly ocean prior fluxes (F p

ocean) were estimated based on ECMWF
ERA-Interim meteorology, zonally averaged saturation ratios from Bates et al. (1996),
and the zonal monthly mean dry-air CH4 mixing ratios from GLOBALVIEW-CH4

(www.esrl.noaa.gov/gmd/ccgg/globalview/ch4/ch4 intro.html) (Paper I).

For all the prior fluxes, the spatial distribution is unified to 1◦×1◦ resolution to match
TM5 resolution, and the last available yearly estimates were used for extensive years.
For example, the EDGAR inventory has data up to 2010, and the 2010 data was used
for 2011-2014 in Paper IV.
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4.4 Atmospheric concentration observations

The global atmospheric CH4 concentration observations made by NOAA/ESRL and
other global networks and institutions were collected mainly from the World Data Centre
for Greenhouse Gas (WDCGG; http://ds.data.jma.go.jp/gmd/wdcgg/). The observa-
tion set contains measurements from discrete and continuous air samples. The discrete
air samples are collected approximately once a week, and the reported continuous mea-
surements are averaged to hourly resolution. The observations were filtered according
to each contributor’s flags before assimilation. Observations having high measurement
errors or those strongly influenced by local sources were filtered out. In addition, hourly
values were further averaged to daily using values from 12:00–16:00 local time (LT). Ex-
ceptions were high altitude sites, where day time observations are often influenced by
convection from e.g. a foot of a mountain. For those sites, well-mixed air is better
captured during night, and therefore, daily means were calculated from 00:00–04:00
LT values. The daily averages were used because the atmospheric transport model
uncertainty for daily averages are lower than for the hourly values.

The observation uncertainty was assumed independent in space and time, and the vari-
ance (diagonals of matrix R) was estimated based on site location. Note that the obser-
vation uncertainty is an aggregated uncertainty of measurement and transport model
errors. The transport model errors are often larger than the measurement errors, and it
is estimated for each site by running the ACTM in the forward mode. The differences
between model and observed values (detrended residuals) could be used to determine
the transport model error, separated from emission uncertainty. The observation error
for CTE-CH4 is mainly based on the previous study by Bruhwiler et al. (2014) who
used a similar inversion system and ACTM. The observational sites were categorised
into 5-6 types, where observation uncertainty varied from 4.5 ppb to 75 ppb. This ob-
servation uncertainties are aggregated values of measurement errors and the transport
model errors.

Several sets of observations were examined using CTE-CH4. In Paper I, NOAA/ESRL
global observations were assimilated, and the significance of the Pallas observations was
examined by comparing estimates with and without the Pallas observations. The study
showed the significance of the Pallas observations, which resulted in smaller regional
mean biospheric flux estimates while assimilating the Pallas observations, and the es-
timated posterior atmospheric CH4 better matched the observed values especially in
summer. In Paper II, the effect of two Asian sites were examined by changing obser-
vation uncertainty of the sites from 15 ppb to 1000 ppb (i.e. almost no influence in the
optimization). In the paper, those sites were found to be especially effective in reduc-
ing anthropogenic emissions over Asia, which led to unrealistic interannual variability
of the regional anthropogenic emissions during 2000-2012. It was also shown that the
influence of those observations was stronger when both anthropogenic and biospheric
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emissions were optimised per region (i.e. A2 approach; see also Section 4.1). Those
results highlighted the importance of pre-filtering before assimilation, and assigning ap-
propriate observation error. In Paper III, four different sets of quality-controlled and
harmonised observations from the Integrated non-CO2 Greenhouse gas Observing Sys-
tem (InGOS) project were used to evaluate the range in the flux estimates over Europe.
The results showed that the range of the flux estimates due to differences in the assimi-
lated observation sets is small when the atmospheric mixing is well resolved. In Paper
IV, similar sets of global observations as in Paper II were used, but the number of
sites for Finland and surrounding regions was extended significantly. In addition, the
effect of two urban sites was examined by comparing estimates with and without those
sites. The results showed a significant reduction in anthropogenic emission estimates
over southern Finland by assimilating the urban observations.

4.5 Uncertainty estimates

One of the biggest issues in atmospheric inversion is the estimation of uncertainties.
Although there are some ways to estimate such uncertainties, the prior uncertainties
would not be estimated correctly and fully. Therefore, the model users must be aware of
the limitations related to the construction and estimation of those uncertainties.

4.5.1 Prior flux uncertainty

In CTE-CH4, the prior uncertainty (diagonals of prior covariance P b) is defined in
respect to the percentage of the prior fluxes. One problem in using such uncertainty is
that the prior uncertainty depends on magnitude of the prior flux estimate. Although
prior uncertainty should be large enough to allow scaling factors to change, the prior
uncertainty tends to be underestimated when prior fluxes are small. This problem
was addressed in Paper IV, where the prior uncertainty for the biospheric fluxes over
southern Finland, defined as 80% of the prior fluxes, was possibly underestimated. Due
to the too small uncertainty, the inversion could not increase the biospheric fluxes, and
anthropogenic fluxes were increased instead to compensate the budget. On the other
hand, when prior uncertainty was large enough, the inversion estimates became close
to each other regardless of the prior fluxes.

4.5.2 Observation operator uncertainty

The uncertainty of the observation operator H is an ATM uncertainty in resolving
atmospheric CH4. This consists of errors from model parameterisation, meteorology
and resolution errors. Locatelli et al. (2013) showed that the standard deviation in
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the estimated concentrations over a year could differ by about 100 ppb (≈6%), and
the spread of the inferred fluxes could reach up to 150% of the prior fluxes. Locatelli
et al. (2013) also pointed out that the driving meteorology is one of key factors, which
results in similar estimates when similar meteorological fields are used. In addition,
a finer model resolution in all dimensions tends to result in better estimates. The
model parameterisation for vertical convection is discussed in Paper II, where two
TM5 convection schemes were compared. The estimated concentrations showed a better
agreement with the observations when the faster vertical mixing scheme was applied,
where RMSE with the observations improved by more than 10 ppb in the prior (Paper
II, Fig. 2). In addition, the observation operator errors are likely to be spatially and
temporally correlated. However, such spatial correlation is difficult to assess, as resolved
atmospheric CH4 also depends on flux distribution.

37



5 Application of CTE-CH4

5.1 Global CH4 budget

The estimation and evaluation of the global CH4 budget using CTE-CH4 are discussed
mainly in Paper II, and briefly in Paper IV. In those studies, weekly CH4 fluxes
were estimated with 500 ensemble members, drawn from a normal distribution, with a
smoothing lag of 5 weeks. The annual mean global total CH4 emission for 2000-2006 was
estimated to be 507–509 Tg CH4 yr

−1, with an uncertainty range of 45–62 Tg CH4 yr
−1,

which increased to 526-528±44-61 Tg CH4 yr−1 for 2007-2012 (Paper II). A similar
increase was also found in Paper IV, where global total emission increased from 510±73
to 540±84 Tg CH4 yr−1 during 2004-2014. Although the model parameterisation, prior
fluxes and observation sets assimilated differ in those studies, the global total is very well
preserved, and in line with previous studies, e.g. Bousquet et al. (2006) and Fraser et al.
(2013), indicating the adequacy of the CTE-CH4 system for use in inversion studies.
Paper II showed that the increase in the anthropogenic emission was the possible cause,
which increased 15–27 Tg CH4 yr−1 between 2000–2006 and 2007–2012. However, the
trend in biospheric emissions was not clear as the estimates were sensitive to model
parameterisation and observation sets to be assimilated.

The uncertainty was successfully reduced from the prior to posterior in both studies,
as expected. The uncertainty reduction for global total emission estimates was about
50% (Paper II). The uncertainty reduction is often larger when spatial correlation is
included in the prior uncertainty, the number of observations assimilated is large and the
observation network is dense. However, it is hard to conclude whether the uncertainty
ranges are realistic, and the estimates with smaller uncertainties are not necessary more
realistic. The uncertainty estimates may be over- or underestimated since they also
depend on the uncertainty estimates on the prior and observation covariance matrices,
which are somewhat arbitrary. The range of estimates from an ensemble of models may
be more appropriate. Estimates of global total budget from the different inverse models
agree with each other within 10%, regardless of the inversion models (Saunois et al.,
2016a).

5.2 Regional CH4 budget

It is important to understand the regional CH4 balance because the distribution of
anthropogenic and natural emissions differ in each region due to economy, politics,
climate, soil properties and vegetation properties, to mention a few. Those processes are
often strongly connected, and they all influence the atmospheric CH4 burden. Therefore,
global inverse models have the advantage that regional budgets can be estimated within
a well-constrained global budget.
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Regional CH4 balances are discussed globally in detail in Paper II, with a focus on
Europe in Papers I and III, and for Finland in Paper IV. In Paper II, the regional
budgets were found to be sensitive to the number of parameters optimised, atmospheric
transport and observations. Using the faster vertical mixing in TM5, the NH emission
estimates lowered by about 10 Tg CH4 yr

−1 and the estimates for the SH increased by a
similar amount compared to the slower vertical mixing scheme. The model parameter-
isation, whether to optimise both or either of anthropogenic and biospheric fluxes per
optimization region (approach A1 and S2), had an influence on the regional source di-
vision between anthropogenic and biospheric emissions, and their trends. For example,
the 2000–2006 biospheric emissions for the Asian temperate region were significantly
lower when the A2 approach, with larger number of parameters, was used compared
to the estimates using the A1 approach (see Section 4.1 and Table 6 in Paper II).
In addition, the biospheric emission increase in the Asian temperate region was much
stronger using the A2 approach. This was due to too strong influence from two Asian
sites (discussed also in Section 4.4).

Europe was one of the main interests in this study. The estimated total emissions
over Europe (including parts of western Russia) ranged between 47–60±10–13 Tg CH4

yr−1 (Papers I and II), and 20–30 Tg CH4 yr−1 for EU-28 countries (10th and 90th
percentiles from seven inversions; Paper III). In Papers II and III, the estimates
showed no significant trend in total emission for Europe, suggesting that Europe is
possibly not contributing to the increase in the atmospheric CH4 concentrations. In
addition, both papers addressed the uncertainty in the biospheric emission estimates,
especially for northern Europe. The studies suggested a possible overestimation in
the prior fluxes from the LPJG-WHyMe and LPX-Bern v1.0 process-based models, in
magnitude (Papers I and II) and seasonal amplitude (Paper III). This was further
examined in depth in Paper IV, which showed the inversion estimates to be in between
those two process-based models and the LPX-Bern DYPTOP, supporting the findings
from the previous studies.

5.3 Model evaluation

The atmospheric inverse model was developed to solve a real-life problem without a
known solution. Therefore, it is not possible to validate our results, but they can only
be evaluated through comparison with sets of observations and other models.

5.3.1 In-situ atmospheric observations

In the evaluation with in-situ atmospheric observations, there are two sets of observa-
tions we could use. One is of assimilated (model dependent) observations, which is used
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to derive the posterior fluxes, and another is of non-assimilated (model independent)
observations, which is not used in the inversion. The model dependent observations
are useful for assessing general model performance, such as the quality of inversion and
transport. The posterior atmospheric CH4 often does not match the observations per-
fectly due to the limited number of parameters and a complicated non-linear system
in the observation operator, and the d.o.f. in the data assimilation system is not large
enough to match individual observations perfectly. The model independent in-situ ob-
servations are useful in assessing a potential model bias for locations and times that are
not directly constrained by the closest observations.

In general, CTE-CH4 is able to reproduce observations at assimilated sites well, but the
bias in the latitudinal gradient and the seasonal cycle is still seen (Fig. 2 in Paper II).
This could be due to transport model error, but also indicates that the inversion did not
resolve the spatial and temporal discrepancies well enough. In addition, the model has
difficulties reproducing CH4 with high local influence, mainly due to spatial resolution
error in the transport model. In Paper I, the model independent continuous observa-
tions from Pallas were used for evaluation. However, the discrete observations from the
same site were assimilated, i.e. the observations were not considered to be fully inde-
pendent. Nevertheless, the continuous observations showed that the atmospheric CH4

values in summer were often lower than those observed without assimilating the Pallas
discrete observations, indicating a possible underestimation in the resulting biospheric
fluxes in northern Europe. In Paper III, both model dependent and independent in-
situ observations were used for evaluation, where posterior atmospheric CH4 showed a
moderate to high correlation (0.5 to 0.79) with the observations. In Paper IV, model
dependent in-situ observations were used for evaluation, not only to assess the model
performance, but also the adequacy of the observations to be used in the inversion.
The evaluation showed relatively high correlation (>0.75) at all Fennoscandian sites.
However, since some bias remained at all sites, it was suspected that a shorter spatial
correlation length in the prior covariance would be more appropriate.

5.3.2 Aircraft measurements

Altitude information provided by aircraft profiles is useful in understanding atmospheric
CH4 in general, but also specifically those for vertical transport. Regular profiling
aircraft data operated within the European CarboEurope project at Orléans (France),
Bialystok (Poland), Hegyhatsal (Hungary) and Griffin (UK) during 2006–2012, and an
aircraft campaign performed within the Infrastructure for Measurement of the European
Carbon Cycle (IMECC) project (Geibel et al., 2012) were used for model independent
evaluation in Papers II and III.

The estimated CH4 profile showed an improvement from the prior, and the agreement
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with the observations were good at locations where surface CH4 is well resolved, at
Griffin, for example (Paper II). The comparison with background CH4 derived from
TM5 showed that the low vertical gradient at Griffin indicates the regional emission
signals from Europe have limited influence on atmospheric CH4 at Griffin (Paper III).
This suggests that the emissions and transport are possibly well resolved to match
background atmospheric CH4 and emission magnitude. However, the bias in the ver-
tical profile was larger at the sites where influence from the local sources is high. At
those sites, the agreement with surface observations was often also poor, suggesting the
emission estimates are not well constrained (Paper II, III). In addition, the IMECC
profile showed that the estimated CH4 burden in general matched the observations well,
but a negative bias was found in the upper troposphere (Paper II). This was better
captured when the faster vertical mixing scheme was used, but the fast vertical mixing
scheme introduced a greater positive bias in the stratosphere (Paper II, Fig. 4).

5.3.3 Satellite and ground based retrievals

Satellite-based remote sensing retrievals have a much larger spatial coverage than in-
situ or aircraft observations, providing useful information on the spatial distributions of
atmospheric CH4 on global scale. The satellite retrievals are not a direct measure of CH4

concentrations, but those inferred from incoming light spectra of atmospheric columns.
Therefore, the information about the CH4 burden for a specific altitude derived from
satellite retrievals has high uncertainty, and the dry air total column-averaged CH4

mole fraction (XCH4) is more adequate for the evaluation. In this thesis, the XCH4

retrievals from the Total Carbon Column Observing Network (TCCON) (Papers I
and II), and the TANSO-FTS instrument on board the Greenhouse gases Observing
Satellite (GOSAT) spacecraft (Kuze et al., 2009) were used (Paper II). The TCCON
consists of ground-based stationally sites, measuring the same quantity as the satellite-
based instruments, and their retrievals are used to validate the satellite-based retrievals.
Although GOSAT provides larger spatial information than any in-situ measurements,
it is argued that the retrieved XCH4 has some bias on latitudinal gradient (Yoshida
et al., 2013), and therefore, it is important to use both sets in model evaluation to avoid
possible misinterpretation.

The posterior XCH4 (derived from TM5 with posterior fluxes) showed a small nega-
tive bias, but good agreements on trend and seasonal cycle with TCCON XCH4 in the
NH (Paper II). However, the posterior XCH4 has a significant negative bias in the
SH compared to both TCCON and GOSAT XCH4 (Paper II). The possible under-
estimation of tropical emissions is discussed, this was about 10–20 Tg CH4 yr−1 lower
than inversion estimates by e.g. Houweling et al., 2014. The XCH4 estimates were not
significantly sensitive to small differences in surface flux estimates (Papers I and II),
but strongly affected by the convection schemes in TM5. The negative bias in the SH

41



and the agreement with retrievals in the tropical seasonal cycle significantly improved
when the faster vertical mixing scheme was used (Paper II), which indicated a possible
underestimation of emissions for the Tropics and northern-latitude temperate regions
derived with the T1989 scheme.

5.3.4 In-situ flux observations

The flux estimates can be evaluated with in-situ flux observations, such as those from
chamber and eddy covariance (EC) measurements. The comparison with site-level mea-
surements can be challenging, as model resolution is often much larger than the mea-
surements spatial representativity. This is because CH4 fluxes are highly heterogeneous
in space (Frolking and Crill, 1994; Moore et al., 1994), which means they can differ
significantly within a few metres (Moore et al., 1998), and therefore, the site-level flux
measurements may not be representative of averaged or aggregated modelled fluxes
over a model grid cell. Nevertheless, the in-situ fluxes measured at several locations,
and EC measurements which could be representative of a few hundred kilometres, have
been extensively studied over the northern latitude Boreal regions, and some general
information can be used for evaluation.

In Paper II, the 2006–2007 interannual variability of the biospheric flux estimates for
north American and European boreal regions was compared to previously published
in-situ flux observations from Moore et al. (2011); Drewer et al. (2010) and Jackowicz-
Korczyński et al. (2010). The analysis showed that the interannual variability in the
posterior fluxes agreed with the measurements better than the prior, supporting ade-
quacy of inversion results that are driven by the atmospheric concentration observations.
In Paper IV, the regional biospheric fluxes for northern and southern Finland were
compared to EC observations from two peatlands in Finland: Lompolojänkkä and Si-
ikaneva. The interannual variability in the Lompolojänkkä EC measurements showed
that the flux estimates in the LPJG-WHyMe and LPX-Bern v1.0 are possibly overesti-
mated, and the fluxes estimated by the LPX-Bern DYPTOP and CTE-CH4 are more
reasonable. In addition, the Siikaneva EC measurements suggested that the seasonal
cycle in the posterior anthropogenic fluxes is possibly unrealistic, and the increase in
the summer fluxes is probably of biospheric origin.

5.4 Limitation of CTE-CH4

5.4.1 Separation of emission sources

One limitation of CTE-CH4 is that the separation of emission sources are still uncertain
in regions where both anthropogenic and biospheric emissions are equally large, or the
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emission ratio is incorrectly described in the prior fluxes. Since CTE-CH4 is based on
mathematical optimization, which do not optimise fluxes based on physical parameters,
the weight of the sources can only be decided by the pre-defined background error
covariance matrix Q. When prior uncertainty is equally large, the source division is
driven simply to find the mathematically optimal cost function. Paper II showed
that it was difficult to revert the emission ratio in the prior with the inversion. The
anthropogenic emission estimates in Africa were larger than the biospheric emission
estimates, and increased during 2000-2012 in Paper II. On the other hand, Bruhwiler
et al. (2014) showed an increase in biospheric emission estimates that were larger than
the anthropogenic emission estimates in their study. Although both studies used similar
optimization methods, the differences in the prior fluxes led to opposite source division
in the posterior and the differences in the trends. Paper IV addressed a possibly
unrealistic increase in posterior anthropogenic emissions during summer in southern
Finland, although the signal in the observed atmospheric CH4 is possibly of biospheric
origin. This was mainly due to underestimation in the prior uncertainty for biospheric
fluxes, which were smaller than those of the anthropogenic emissions.

In addition, the system could create physically incorrect fluxes, such as negative an-
thropogenic emissions. The prior state is assumed to be normally distributed, and the
prior ensemble is drawn from the normal distribution with a mean of 1 and variance
e.g. of 0.8. This could give negative prior state samples with probability of ∼0.13,
which is insignificant. Other distributions, such as a truncated normal distribution or
transfromation to the log-normal distribution (Kemp et al., 2014), could be used to
make prior state samples strictly positive. However, due to normality assumption in
states and observations, it is not possible to avoid having negative scaling factors in the
current setup.

5.4.2 Dynamical model for prediction

Another limitation is the lack of a dynamical modelM in predicting the state covariance
matrix (2.8). Although flux estimates from a week to another are related through
physical and chemical processes, which are included through prior flux estimates and
the transport model, their scaling factors (except for the mean states) are assumed
to be uncorrelated in time, and therefore, the posterior flux estimates still have large
fluctuations between weeks. Increasing the ensemble size helps (Fig. 6), but some
of the instantaneous changes in fluxes could be unrealistic and possibly resulted from
overfitting the observations. Therefore, only annual and monthly estimates have been
reported in the papers presented here, although fluxes were optimised weekly.
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6 Summary and concluding remarks

This thesis presented the application of an ensemble Kalman filter data assimilation
system, CTE-CH4, to a real-life problem of global and regional CH4 flux estimations.
The analysis showed that consistent and reliable estimates of global and regional CH4

budgets were obtained with a large enough ensemble size, appropriate prior error covari-
ance, and good observations, which agreed well with a variety of model dependent and
independent observations. CTE-CH4 identified the significant contribution from the
tropical and extra tropical anthropogenic emissions to the increase in the global CH4

budget after 2007, which could possibly be a cause of the increase in atmospheric CH4

GR after 2007. In addition, CTE-CH4 was able to give further understanding to the re-
gional CH4 budgets; Europe as a whole and Finland were found to have an insignificant
or negative influence on the atmospheric CH4 growth in the 21st century.

However, the evaluation also addressed several problems in the system. The somewhat
subjective prior covariance matrix could limit the inversion to change fluxes from the
prior, and the inversion results still depended on the choice of prior fluxes and transport
model. In addition, two major limitations of the CTE-CH4 model were addressed:
(1) uncertainty in anthropogenic and biospheric source division, and (2) incomplete
temporal evolution due to the lack of a dynamical model for covariance matrix.

A better source separation could be achieved by using isotopic information. The iso-
topic signal of 13δC (13C/12C ratio in CH4) differs by source processes, and could be
used to separate biogenic, fossil-origin and geological sources. Global measurements
of the isotopic signals for about two decades are already available for the inversion
through NOAA and the University of Colorado. Such development will give further un-
derstanding of the recent atmospheric CH4 growth. Furthermore, the next generations
of satellites such as GOSAT-2 would be able to provide distribution of 13δC signal on
global scale, which could be used for evaluation or assimilation.

Improving the dynamical model to predict covariance matrices, and thus passing infor-
mation on to sample deviations is challenging. A similar averaging as used for mean
estimates could be applied, but it would require deflation/inflation as variance in the
ensemble tends to shrink too quickly, and a way to regain sufficient d.o.f. in the states
could be required with some additional tuning. However, smoother estimates for the
deviations could be obtained by using e.g. temporally correlated random samples (the
hidden Markov model) or using the adaptive Kalman filter. When a better temporal
correlation is introduced, it would be possible to provide the estimates with shorter
temporal scale, such as weekly. This would then give further opportunity to study
short-temporal scale changes in CH4 fluxes, such as during spring thaw and autumn
freezing.

In addition, the estimates driven by CTE-CH4 could be applied to regional inverse
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models and evaluation of inventories and process-based models, as partly shown in
this thesis. The regional inverse models, based on the regional transport model, often
has advantage that the fluxes can be resolved in fine resolution on a specific domain.
However, these often need “background” atmospheric concentration fields, from which
backward trajectories outside of the domain are calculated. Since CTE-CH4 is a global
model, constrained by global atmospheric observations, such information can be pro-
vided for the regional inverse models to obtain flux estimates consistent with CTE-CH4,
but optimised in finer resolution. For the evaluation of inventories and process-based
models, a similar study can be done for other inventories, models, and regions than
those presented here, which could possibly lead to better estimates globally.
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T. R.: Decadal vegetation changes in a northern peatland, greenhouse gas fluxes and net radiative
forcing, Global Change Biology, 12, 2352–2369, doi:10.1111/j.1365-2486.2006.01267.x, 2006.

Kalman, R. E.: A new approach to linear filtering and prediction problems, Journal of basic Engineering,
82, 35–45, 1960.

Kemp, S., Scholze, M., Ziehn, T., and Kaminski, T.: Limiting the parameter space in the Car-
bon Cycle Data Assimilation System (CCDAS), Geosci. Model Dev., 7, 1609–1619, doi:10.5194/
gmd-7-1609-2014, 2014.

Keppenne, C. L. and Rienecker, M. M.: Assimilation of temperature into an isopycnal ocean general
circulation model using a parallel ensemble Kalman filter, Journal of Marine Systems, 40, 363–380,
doi:10.1016/S0924-7963(03)00025-3, 2003.

Khalil, M. a. K., Rasmussen, R. A., French, J. R. J., and Holt, J. A.: The influence of termites on
atmospheric trace gases: CH4, CO2, CHCl3, N2O, CO, H2, and light hydrocarbons, J. Geophys.
Res., 95, 3619–3634, doi:10.1029/JD095iD04p03619, 1990.

Kirschke, S., Bousquet, P., Ciais, P., Saunois, M., Canadell, J. G., Dlugokencky, E. J., Bergamaschi, P.,
Bergmann, D., Blake, D. R., Bruhwiler, L., Cameron-Smith, P., Castaldi, S., Chevallier, F., Feng,
L., Fraser, A., Heimann, M., Hodson, E. L., Houweling, S., Josse, B., Fraser, P. J., Krummel, P. B.,
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