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The semi-distributed, dynamic INCA-N model was used to simulate the behaviour of dis-
solved inorganic nitrogen (DIN) in two Finnish research catchments. Parameter sensitivity 
and model structural uncertainty were analysed using generalized sensitivity analysis. The 
Mustajoki catchment is a forested upstream catchment, while the Savijoki catchment rep-
resents intensively cultivated lowlands. In general, there were more influential parameters 
in Savijoki than Mustajoki. Model results were sensitive to N-transformation rates, vegeta-
tion dynamics, and soil and river hydrology. Values of the sensitive parameters were based 
on long-term measurements covering both warm and cold years. The highest measured 
DIN concentrations fell between minimum and maximum values estimated during the 
uncertainty analysis. The lowest measured concentrations fell outside these bounds, sug-
gesting that some retention processes may be missing from the current model structure. 
The lowest concentrations occurred mainly during low flow periods; so effects on total 
loads were small.

Introduction

Improved computational resources and geo-
graphical information technology have enabled 
the development of complex distributed models 
to evaluate hydrological and nutrient processes 
on a catchment scale. As catchments are het-
erogeneous and hydrological processes are non-

linear, the use of these models has raised several 
questions concerning parameterization and cali-
bration with important practical consequences 
for nutrient management (Beven and Binley 
1992, Beven 2001, Blöschl and Grayson 2002, 
Vrugt et al. 2005).

Even if validation tests against independent 
data show that a model can perform tasks for 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Helsingin yliopiston digitaalinen arkisto

https://core.ac.uk/display/146448459?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


374 Rankinen et al. • Boreal env. res. vol. 18

which it is intended, the model may be right 
for the wrong reasons. For example, errors in 
model structure can be compensated by errors in 
parameter values. The sources of uncertainty in 
modelling are commonly divided into categories 
related to model structure, parameter values and 
measured data (e.g. Ewen et al. 2006, Mantovan 
and Todini 2006).

Walker et al. (2003) characterized model 
uncertainty using criteria related to bound-
ary conditions and problem formulation. Input 
uncertainty includes errors in input data sets 
like land-use maps, and driving forces like cli-
mate data. Structural uncertainty arises from 
the manner in which the conceptual structure of 
the model reflects reality, either in the current 
situation or future evolution of the system. Tech-
nical uncertainty arises from computer imple-
mentation of the model. Parameter uncertainty is 
related to parameter values, which may be uni-
versal constants e.g. π, or are unknown and must 
be calibrated by comparing the modelled output 
with observations. Model outcome uncertainty is 
thus the accumulated uncertainty caused by the 
previous factors. It is also called prediction error 
as it is the discrepancy between the measured 
value of an outcome and the model prediction.

A model with a simple structure does not 
often make the best use of available data but 
can sometimes be calibrated to correspond with 
observations. Conversely, a model with several 
parameters may be tuned to fit the calibration 
data but prediction error can still be dominated 
by parameter uncertainty (Walker et al. 2003). 
This problem is known as model over-parame-
terization (Refsgaard 1997, Beven 2001, Blöschl 
and Grayson 2002). Further, many models and 
many parameter combinations may give equally 
good fits to data, indicating that it is not possible 
to find a single optimal parameter set, an issue 
Beven and Binley (1992) refer to as equifinality.

Sensitivity and uncertainty analyses are pri-
marily concerned with addressing the manner 
in which model outputs are affected by variabil-
ity in parameters and input values. Sensitivity 
analysis (Hamby 1994) is the identification of 
parameters that predominately control the model 
behaviour, whereas uncertainty analysis relates 
prediction errors to uncertainties in model struc-
ture, parameters and input data. Good modelling 

practice requires that modellers provide an eval-
uation of the confidence in the model, possibly 
assessing the uncertainties associated with the 
modelling process and with the outcome of the 
model itself. Several guidelines for modelling or 
impact assessment prescribe sensitivity analysis 
as a tool to ensure the quality of the modelling or 
assessment (e.g. Refsgaard and Henriksen 2004, 
Refsgaard et al. 2005).

There are several different methods of per-
forming sensitivity and uncertainty analysis. 
These methods vary from technically simple 
ones like stakeholder involvement to detailed 
statistical methods (e.g. Gallagher and Doherty 
2007, Refsgaard et al. 2007). Parameter uncer-
tainty can be assessed by local and global meth-
ods. In the simplest form of local sensitivity 
analysis, one parameter value is changed at a 
time while all other parameters are fixed. This 
method detects the net effect of a single param-
eter on model output. Global sensitivity analy-
sis accounts for the whole range of possible 
parameter variations and for parameter inter-
actions. In this method sensitivity indices are 
evaluated while varying all other factors. To 
conduct global sensitivity analysis for non-linear 
models advanced analytical methods including 
Generalized Sensitivity Analysis (GSA; Spear 
1970, Spear and Hornberger 1980), Monte-Carlo 
analysis (Beven and Binley 1992, McIntyre et 
al. 2005, Rankinen et al. 2006, Futter et al. 2007 
inter alia) or the Fourier amplitude sensitivity 
test (Saltelli et al. 1999) should be used. For 
example, Global Sensitivity Analysis based on 
the Fourier amplitude sensitivity test allows the 
contribution of each input factor to the output’s 
variance. Different methods based directly on 
the Bayesian approach (Vrugt et al. 2003a, Vrugt 
et al. 2003b, Liu et al. 2008) or Bayesian think-
ing like GLUE (The Generalized Likelihood 
Uncertainty Estimation; Beven and Binley 1992, 
Rankinen et al. 2006) are both widely used and 
discussed (Mantovan and Todini 2006, Xiong 
and O’Connor 2008).

In recent years, different sensitivity and 
uncertainty analyses have been applied to dis-
tributed or semi-distributed hydrological and 
nutrient leaching models. Muleta and Nicklow 
(2005) reduced the number of parameters in an 
application of the SWAT (Soil and Water Assess-



Boreal env. res. vol. 18 • Sensitivity and uncertainty analysis of the INCA-N model 375

ment Tool) model by using GLUE to constrain 
stream flow and sediment concentration vari-
ables. Stream flow prediction was rather consist-
ent but sediment yield prediction was highly 
uncertain. In an extensive regionalized sensitiv-
ity analysis of an INCA-N model application to 
a groundwater-dominated catchment, McIntyre 
et al. (2005) found that the model was generally 
insensitive to land-phase parameters, but very 
sensitive to groundwater and in-river parameters. 
They concluded that soil and groundwater nutri-
ent and flow data are needed to reduce uncer-
tainty in initial conditions, residence times and 
nitrogen (N) transformation parameters. Using 
GLUE, Rankinen et al. (2006) showed that equi-
finality of INCA-N simulations can be reduced 
by adding soft data (literature review of results 
from field studies of inorganic N leaching, veg-
etation N uptake and N mineralisation in soil) 
into the normal calibration method. A similar 
approach to assessing parameter sensitivity to 
the one presented in this study has been used 
previously (Futter et al. 2009a, 2009b) where the 
importance of hydrological, N-transformation 
and plant-growth related parameters in control-
ling INCA-N model output was shown.

One of the most important questions in envi-
ronmental policy today is controlling agricul-
tural nutrient loading. National and international 
water protection targets aim at reduction in nutri-
ent loading to surface waters (in tonnes or per-
cents per year) or lowering in-stream concentra-
tions of nutrients (e.g. EEC 1991, Ministry of the 
Environment 2007, HELCOM 2011.

In the Euro-limpacs EU project (Kernan et 
al. 2010) the semi-distributed dynamic INCA-N 
(Integrated Nutrients from Catchments — Nitro-
gen) model (Whitehead et al. 1998, Wade et 
al. 2002, Wade 2004) was applied to two small 
catchments with an intention of simulating DIN 
(Dissolved Inorganic Nitrogen) loads under dif-
ferent scenarios of climate and land use change 
and agricultural practices. These study catch-
ments represent typical land use and soil types in 
Finland. As especially climate change might lead 
to conditions outside the situation in which the 
model was calibrated, both parameter sensitivity 
and model structure were analysed in this study. 
The objectives were (1) to describe controls on 
DIN leaching from Finnish catchments; (2) to 
determine whether there are any processes miss-
ing in the current INCA-N model structure, and 
(3) to assess what additional data could improve 
simulations. In this study GSA (Spear 1970, 
Spear and Hornberger 1980) was used.

Material and methods

Study catchments

The INCA-N model was applied to two small 
catchments (Fig. 1 and Table 1) which represent 
typical land use and soil types in Finland. The 
Mustajoki catchment is a forest-covered head-
water catchment (78 km2, 103–180 m a.s.l.) in a 
drainage basin of Pääjärvi in southern Finland. 
The Savijoki catchment (15 km2, 50–70 m a.s.l.) 

Helsinki

0 3 61.5 km 0 6 123 km

Fig. 1. locations of the study catchments in Finland. savijoki on the left and mustajoki on the right. light grey: 
fields, medium grey: forests, dark grey: scattered settlements.
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represents intensively cultivated areas in south-
western Finland. Both catchments are located 
in the southern boreal vegetation zone. During 
winter, precipitation usually falls as snow and 
the soils are frozen. However, in Savijoki win-
ters are somewhat milder than in Mustajoki.

There are no point sources of nutrients in 
the catchments, and the areas are sparsely popu-
lated. The main human influences are agriculture 
and forestry. Agriculture in Mustajoki is mainly 
cereal cultivation with a low proportion of sugar 
beets. In Savijoki, agricultural fields cover 39% 
of the catchment area and the rest is mainly 
forest and semi-natural. Main crops are spring 
cereals, which cover 23% of the catchment area 
(Table 1).

The INCA-N model

The INCA-N (Integrated Nutrients from Catch-
ments — Nitrogen) model (Whitehead et al. 
1998, Wade et al. 2002, Wade 2004) is a process-
based and semi-distributed model that integrates 
hydrology, catchment and river N processes to 
simulate flow and daily concentrations of NO3-N 
and NH4-N in the river system. It has been tested 
in many European catchments with different 
ecosystems and used for e.g. scenario analyses 
investigating the impacts of deposition, climate 
and land-use changes on N dynamics on the 
catchment scale (e.g. Wade et al. 2004, Rankinen 
et al. 2006, Kernan et al. 2010).

Hydrological input in both catchments con-
sisted of daily time series of hydrologically 
effective rainfall (HER), soil moisture deficit 
(SMD), air temperature and precipitation. Catch-
ment hydrology was modelled with a three-box 
approach, including reservoirs of water in the 
reactive soil zone and deeper groundwater zone 
together with surface runoff. HER is the input 

to the soil water storage, driving water flow and 
N fluxes through the catchment system. Flows 
from the different zones are controlled by time 
constants, representing residence time in the 
reservoirs. Calculation of river flow is based on 
mass balance of flow and a multi-reach descrip-
tion of the river system (Whitehead et al. 1998).

A catchment can be divided into sub-catch-
ments. INCA-N simulates key terrestrial N proc-
esses (nitrification, denitrification, mineralisa-
tion, immobilisation, N fixation and N uptake) in 
six land-use classes. Fertilisers and N deposition 
constitute the N inputs to the land-use units. Rate 
coefficients of N processes are temperature- and 
moisture-dependent. N processes in the river 
include nitrification and denitrification. Soil tem-
perature was calculated with an empirical func-
tion from the ambient air temperature. The depth 
of the snow cover was calculated by a simple 
degree-day model.

The INCA-N model setup for the 
catchments

The hydrological input data were derived from 
the Watershed Simulation and Forecast System 
(WSFS, Vehviläinen 1994). The soil types were 
based on 25 ¥ 25 m grid cells from the data of 
the Finnish Geological Survey. The land-use 
data were based on CORINE 2000 data at the 
same resolution. The detailed crop distribution 
for the Mustajoki catchment was based on an 
unpublished survey done by local agricultural 
advisers. The crop distribution and agricultural 
management data for the Savijoki catchment 
were obtained from the Survey of Finnish Agri-
Environmental Programme (Mattila et al. 2007).

The INCA-N model was calibrated against 
the discharge nitrate-N (NO3-N) and ammo-
nium-N (NH4-N) concentrations measured at the 

Table 1. characteristics of the study catchments.

catchment area annual annual land use (%) soils (%)
 (km2) runoff mean  
  (mm) temp. (°c) agriculture Fallow Forest till sand and silt clay rocks

mustajoki 78 234 4.5 13 19 68 68 11 1 20
savijoki 15 369 5.2 39 3 61 51 0 49 0
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catchment outlets. The INCA-N parameters were 
adjusted to improve the fit between the simu-
lated and measured discharge and stream water 
DIN concentrations. Simulated annual terrestrial 
inorganic N process fluxes were compared with 
values reported in the literature or other small-
catchment studies (Rankinen et al. 2006). Snow 
dynamics was simulated by calibrating modelled 
snow water equivalents (SWE) against measured 
areal average values in the catchments. SWE is 
the average amount of water existing as snow 
(i.e. the mass of snow per unit area). It is deter-
mined by snow course measurements, which 
consist of a line laid out on a drainage area along 
which the snow is sampled at definite distances. 
Sampling occurs at appropriate times to deter-
mine snow depth, water equivalent and density.

The highest N concentrations in discharge 
from forest catchments are typically recorded 
just before snowmelt (Lepistö et al. 1995, Arhe-
imer et al. 1996). During winter, inorganic N 
is accumulated in soil under the snow pack 
(Rankinen et al. 2004). After that, N is diluted 
due to the larger volume of meltwater. Uptake of 
N by natural vegetation starts at the same time, 
further lowering concentrations. However, high 
N-concentration values in autumn are typical 
in agricultural catchments, where agricultural 
practices, such as fertiliser or manure application 
and ploughing, can cause short-term N leaching 
during autumn rains.

The INCA-N model has previously been 
applied to Mustajoki (Bärlund et al. 2009) and 
Savijoki (Granlund et al. 2004). In general 
INCA-N simulations reproduced the seasonal 
pattern of runoff and DIN concentrations in 
both catchments. In this study, the models were 
re-calibrated for the period 1995–2004 to allow 
for comparison of model behaviour and sensitiv-
ity, and uncertainty analysis in similar climatic 
conditions.

Sensitivity/uncertainty analysis

In this study, the generalized sensitivity analy-
sis of Spear (1970) and Spear and Hornberger 
(1980) was used. The method was applied in 
two stages as described by Futter et al. (2007). 
First, a set of Monte Carlo simulations with 

Latin hypercube sampling of different parameter 
combinations was performed in which param-
eter values were sampled from a rectangular 
distribution. Parameter sets were divided into 
behavioural and non-behavioural runs based on 
the goodness-of-fit value between observations 
and simulations. Second, a non-parametric Kol-
mogorov-Smirnov (KS) test (e.g. Zar 1999) was 
used to evaluate the difference in distribution of 
parameter values between sets of behavioural 
and non-behavioural model runs. In the analyses 
presented here, the KS statistic was used to test 
whether or not the distribution of behavioural 
parameter values deviated significantly from rec-
tangular. The degree to which the distribution of 
values in the behavioural parameter set deviated 
from rectangular was interpreted as a measure 
of parameter sensitivity. Both site-specific and 
overall sensitivity analyses were performed. In 
the site-specific version, the calibrated parameter 
sets were used in the analysis, while in the gen-
eral one a single parameter set covered the total 
range of parameter values of both catchments.

The starting point of the Monte Carlo sim-
ulations was the model application calibrated 
against measured discharge and NO3-N concen-
trations. NO3-N is the dominating N fraction 
in both rivers. In the site-specific sensitivity 
analyses, the parameters were allowed to vary by 
either (i) ±20% of the calibrated value, or (ii) the 
range between minimum and maximum meas-
ured values. Growth start day and fertilization 
addition day were fixed when these were applied 
as a part of an external time series (e.g. grass 
with multiple growing and fertilization periods), 
but were allowed to vary when the values were 
specified in the model parameter file (e.g. veg-
etation growth periods for natural vegetation 
such as forest and fallow). During Monte Carlo 
simulations, 250 iterations of a Latin hypercube 
with 20 divisions were produced for a total of 
5000 simulations.

Parameter sets for the overall sensitivity 
analysis were defined in the following manner. 
In-stream and sub-catchment parameters were 
fixed at their best value from manual calibra-
tions. Individual fertilizer time series and growth 
periods were used for each catchment. Only ter-
restrial N-process, vegetation uptake and snow 
cover parameters were allowed to vary. The 
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lower bound for the parameter space was defined 
as 10% lower than the minimum value from 
the Mustajoki and Savijoki calibrations. The 
upper bound was defined as 10% higher than 
the maximum value from the two calibrations. 
The parameter space was sampled in an identi-
cal manner for both the Mustajoki and Savijoki 
overall sensitivity analyses. In each case, 10 000 
simulations were performed. The 100 parameter 
sets giving the best correlation between meas-
ured and modelled NO3-N and NH4-N for Musta-
joki and Savijoki were used to identify sensitive 
parameters.

Next, a non-parametric KS test was used to 
evaluate differences in parameter values between 
behavioural and non-behavioural model runs. 
This test was used to compare the distribution 
of values in behavioural model runs with those 
in non-behavioural runs. The KS test requires 
continuous distributions but does not set any 
requirements for the shape of the distribution. 
This allows the detection of differences in both 
shape and location of the distribution. The KS 
test is based on the maximum difference (D) 
between cumulative measured frequencies (S1 
and S2):

 D = supx|S1(x) – S2(x)| (1)

The maximum deviation D can then be used as 
a test quantity. The reference value Dα (Eq. 2) 
depends on the significance level α via Kα, 
where n1 and n2 are the numbers of behavioural 
and non-behavioural runs, respectively.

  (2)

Outputs from the Monte Carlo simulations 
include a list of input parameters ranked by the D 
value and uncertainty bounds (mean, minimum, 
maximum and quartiles) for predicted values 
from behavioural runs. Uncertainty bounds for 
daily values were calculated from the population 
of modelled values for that day. Because multi-
ple statistical tests were performed, it was neces-
sary to adjust estimates of statistical significance. 
Thus, analysis was restricted to parameters with 
a Bonferroni-adjusted α (Futter et al. 2009a, 
2009b) equal to or greater than 0.15 (nominal α 
≈ 0.02).

Results and discussion

Sensitivity analysis, general approach

The INCA-N model was successfully calibrated 
for both sites for the period 1995–2004. For 
Mustajoki, the Nash-Sutcliffe (NS) efficiency 
(Nash and Sutcliffe 1970) for simulated and 
measured discharge was 0.756; r2 was 0.342 for 
NO3-N and 0.355 for NH4-N. In the Savijoki 
application, the NS efficiency for simulated and 
measured discharge was 0.872; r2 was 0.317 for 
NO3-N and 0.003 for NH4-N. r2 values are influ-
enced by the fact that in reality farmers follow 
individual crop rotations but in modelling long-
term average land-use allocation was used.

Model sensitivity was assessed separately 
for NO3-N and NH4-N concentrations in the 
discharge from each catchment. Thus, it was 
possible to explore differences in parameter sen-
sitivity for the two determinants. Threshold cor-
relations of between 0.33 and 0.34 were obtained 
for behavioural model runs simulating NO3-N 
for Mustajoki and Savijoki and NH4-N for Mus-
tajoki (Table 2). Simulation of NH4-N concen-
tration for Savijoki was more problematic, the 
behavioral correlation threshold was approxi-
mately 0.06.

The model performance when simulating 
both NO3-N and NH4-N concentrations in Savi-
joki and Mustajoki was sensitive to the estimated 
ammonium mineralisation rate in at least one 
land-cover class (Table 2). NO3-N in Savijoki 
was more sensitive to parameters for spring 
cereal (mainly barley) and grass land-cover 
types while in Mustajoki, it was most sensitive 
to parameters from the forest land-cover type. 
Mustajoki and Savijoki have similar fractions 
of forest cover (68% vs. 61%) but there is more 
spring cereal (23%) in Savijoki than in Musta-
joki (7%). It was not possible to get appropriate 
simulations of NH4-N for Savijoki. NH4-N in 
Mustajoki was sensitive to both mineralisation 
and immobilisation rates in forest, fallow and 
grass land-cover types.

Simulations of both NO3-N and NH4-N for 
Mustajoki and simulations of NH4-N for Savijoki 
were sensitive to the ammonium immobilisa-
tion rates in the forest land-cover type. This was 
because the initial Mustajoki parameter set simu-



Boreal env. res. vol. 18 • Sensitivity and uncertainty analysis of the INCA-N model 379

lated no immobilisation while the Savijoki initial 
parameter set included the immobilisation rate of 
0.75 m d–1. The median behavioural value for the 
ammonium immobilisation rate was close to 0 for 
behavioural simulations in all cases (Table 2).

As we did not include timing or amount of 
fertilizer application in the sensitivity analysis, 
the most important N input in the sensitivity anal-
ysis was the rate at which inorganic N is produced 
during mineralisation of the soil organic-N pool. 
This is described as a simple temperature- and 
soil-moisture-limited linear decay (kg ha–1 day–1) 
from an unlimited pool of soil organic-N. Reten-
tion processes (immobilisation, denitrification 
and vegetation uptake) were described by first 
order kinetics (1/day) and they were also limited 
by soil temperature and moisture. As first order 
kinetics depends on the input storage, these reten-
tion processes effectively limit the highest simu-
lated concentrations. This has a significant effect 
on the r2 values as the goodness of fit depends 
on how well the relatively few high observations 
are simulated. Further, very little measured data 
about immobilisation rates exist since most field 
studies report net mineralisation (gross minerali-
sation minus immobilisation).

Sensitivity analysis, site specific 
approach

In general, there were more influential param-
eters in the INCA-N model application to Savi-
joki (agricultural) than to Mustajoki (forest). 
In both applications, the number of influential 
parameters ranked by the test value D was about 
10% of the total. The Mustajoki application 
seems to be more dominated by a few param-
eters but in the Savijoki application there were 
several equally influential parameters (Fig. 2). 
The parameter combinations based on the mini-
mum and maximum parameter values led to 
simulated N process fluxes which covered the 
range of measured losses from the study fields, 
including individual years with exceptionally 
high or low losses (Table 3). However, the 
simulated fluxes in Table 3 represent long-term 
averages, and therefore some process fluxes (e.g. 
N leaching from sugar beet in Mustajoki, range 
9–109) may be unrealistic.

The most influential parameters are listed in 
Table 4. The nominal α-values must be adjusted 
for multiple comparisons. A modified Bonferroni 
correction was employed in which the nominal 
α for the nth highest KS test value was tested 
against p = 0.05n (Futter et al. 2009a, 2009b). 
In both model applications, most of the influ-
ential parameters ( padjusted < 0.001) were related 
to temperature-dependent N processes; these 
parameters range between 1 and 5. The base 
temperature varied between 10 and 35 °C, which 
corresponds to the temperature range of activity 
of psychrofilic and mesofilic microorganisms 
(e.g. Salkinoja-Salonen 2000).

In the Mustajoki catchment, the simulated 
discharge NO3-N concentration was most sen-
sitive to parameters defining N cycling in the 
forest land-use class. Sensitivity in the Mustajoki 
application was also dominated by river flow 
velocity parameters a and b, which define the 
shape and level of the exponential equation used 
to calculate flow velocity from discharge. Nitro-
gen leaching from forests is low due to ‘closed’ 
internal N cycle. High N uptake by vegetation 

Table 2. sensitive model parameters in the ensem-
ble of behavioural parameter sets (top 100) from the 
general sensitivity analysis where the same param-
eter range was used for both mustajoki and savijoki 
simulations. coefficients of determination (r 2) indicate 
thresholds for behavioural simulations. medians are the 
median parameter value for behavioural simulations.

catchment Process parameter median

Mustajoki
 no3-n (r 2 = 0.34)
 Forest ammonium immobilisation 0.0001
 Forest ammonium mineralisation 0.44
 Fallow ammonium mineralisation 0.51
 nh4-n (r 2 = 0.343)
 Forest ammonium immobilisation 0.02
 Forest ammonium mineralisation 0.21
 Fallow ammonium mineralisation 0.53
 Grass ammonium mineralisation 0.88
Savijoki
 no3-n (r 2 = 0.33)
 spring cereal Denitrification 0.00082
 spring cereal ammonium mineralisation 0.62
 Grass ammonium mineralisation 0.64
 nh4-n (r 2 = 0.062)
 Forest ammonium immobilisation 0.0001
 Forest ammonium mineralisation 0.3
 Fallow Denitrification 0.0034
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Fig. 2. D values of the 
ranked parameters in 
savijoki and mustajoki 
inca-n model applica-
tions.

Table 3. Process loads in the mustajoki and savijoki catchments calculated with the minimum (“min”) and maximum 
(“max”) parameter sets in the monte carlo simulations.

land use n mineralisation n uptake n leaching
in catchment (kg ha–1 a–1) (kg ha–1 a–1) (kg ha–1 a–1)
   
 min max min max min max

Mustajoki
 Barley 3 77 77 126 27 35
 sugar beet 7 230 173 175 9 109
 Grass 7 251 191 262 9 26
 Fallow 4 126 11 40 6 15
 Forest 1 42 9 36 5 7
Savijoki
 spring cereal 3 84 83 93 7 48
 Winter cereal 3 84 103 119 10 54
 Grass 2 56 181 201 7 23
 Fallow 2 49 5 41 4 9
 Forest 3 67 5 32 2 3
 oilseed 3 84 92 102 7 48

is covered mainly by N mineralisation from soil 
organic matter because anthropogenic N inputs 
were very low. The starting date of the growing 
period varies widely. For example the growing 
period started by 15 April in 1990 but not until 6 
May in 1997 (Finnish Meteorological Institute).

In the Savijoki application, the six most sig-
nificant parameters were related to N processes 
in the land-use class ‘Spring cereals’. This is the 
most common fertilized crop-type in the catch-
ment, covering 23% of the catchment area. Cere-
als were assumed to have an intensive N cycle 
with a high mineralisation rate, N uptake and 

leaching during the study period. Most Finnish 
farmers have participated in agricultural support 
schemes since 1995 (when Finland joined the 
EU) and have adopted environmentally sound 
management practices. However, conservation 
tillage practices have only recently become more 
common (Mattila et al. 2007). Three of the sensi-
tive ‘Spring cereal’ parameters were related to N 
process-rate temperature dependence.

Initial DIN concentrations in groundwater 
or soil water influence both model applications. 
These values were calibrated against meas-
ured initial values in river water, and literature 



Boreal env. res. vol. 18 • Sensitivity and uncertainty analysis of the INCA-N model 381

values of typical concentrations in ground water. 
In practice, their influence disappeared very 
quickly after starting the simulation, although 
aberrant values might have caused anomalies at 
the beginning of the simulation.

Uncertainty analysis

Uncertainty analysis was used to study the struc-
ture of the INCA-N model and to see how well it 
explains measured NO3-N concentrations in river 
water. In both rivers, discharge was dominated by 
a spring snow-melt peak. Low-flow periods occur 
typically in summer or mid-winter. In general, 
measured NO3-N concentrations in the rivers 
reflect land use. In the forest-covered Mustajoki 
catchment, the NO3-N concentrations were low 
and the peaks did not exceed 5 mg l–1. NO3-N 
concentrations were lowest in the summer and 
rose throughout the winter so that the highest 
concentration occured just before snow melt. In 
the agricultural Savijoki catchment, the high-
est NO3-N concentration peaks were close to 
15 mg l–1. The uncertainty analysis indicated that 
there was a risk of exceeding the Nitrates Direc-
tive limit for the NO3

– concentration (50 mg l–1) 
in the Savijoki water. Seasonal behaviour in Savi-
joki was not as clear as in Mustajoki, and the 

highest concentrations (> 5 mg l–1) occured in 
autumn (October–November) rather than in early 
spring. Concentrations were lowest in both rivers 
during the growing season.

The highest, but not the lowest, measured 
NO3-N concentrations fell between the minimum 
and maximum uncertainty bounds in both model 
applications (Fig. 3). In the Mustajoki applica-
tion, concentrations were underestimated, e.g. in 
winter 2002–2003. This period was exception-
ally dry and the INCA-N model failed to cor-
rectly simulate low discharge, possibly because 
the input HER values were too low. As there was 
no leaching through the soil column, simulated 
concentrations did not rise. Simulated discharge 
is controlled by the input time series of HER and 
thus it did not vary much in the uncertainty anal-
ysis. Parameter values affect mainly the reces-
sion part and the height of the peaks.

In several years, the lowest measured NO3-N 
concentrations in the Savijoki fell outside the 
uncertainty bounds during the growing period. 
This is easily seen during early summer (April–
June) when measured values are commonly 
below the minimum bound. This may indicate 
that one or more biological retention processes, 
for example retention in the riparian zone, are 
missing in the current model structure. Moreo-
ver, riverine plant uptake is not included.

Table 4. most influential parameters in the individual catchment applications; nominal α of all the parameters is 
< 0.001.

catchment Parameter D

Mustajoki Forest mineralisation response to 10° change in temperature 0.551
 river flow b 0.369
 Forest growth start day 0.362
 Fallow mineralisation response to 10° change in temperature 0.283
 Base flow index 0.265
 Forest ratio of total to available water in soil 0.172
 river flow a 0.164
 initial groundwater no3-n concentration 0.162
 Forest mineralisation base temperature response 0.161
Savijoki spring cereal mineralisation base temperature response 0.439
 spring cereal denitrification base temperature response 0.381
 spring cereal max. nitrogen uptake rate 0.353
 spring cereal ratio of total to available water in soil 0.275
 spring cereal soil reactive zone time constant 0.268
 spring cereal denitrification response to a 10° change in temperature 0.253
 Grass soil water flow initial condition 0.204
 Forest immobilisation response to a 10° change in temperature 0.189
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As lowest stream DIN concentrations occur 
mainly during low flow periods, the effect on total 
load is small. The measured daily NO3-N loads 
fell in between simulated minimum and maxi-
mum loads (Fig. 4). In the Mustajoki applica-
tion, measured loads were close to the minimum 
simulated values, and the maximum simulated 
values overestimated the load. In the Savijoki 
application, measured loads were in between the 
simulated maximum and minimum loads.

Effect of different parameter 
combinations on descriptions of 
terrestrial processes and river N export

The effect of two parameter combinations ‘Best’ 
and ‘Worst’ (highest and lowest accepted r2) on 
modelled terrestrial N processes were also ana-
lysed. Fertilization levels of different crops were 
not changed and anthropogenic deposition was 
at a low level, so the main change happened in 
soil N processing.

In both catchments, the simulated minimum 
and maximum uptakes of different crops were 
representative of the measured annual values 
for these crops in Finland (Tike 2009). Further, 

leaching losses of main crops (spring cereals 
and grass) were relatively close to the meas-
ured values obtained from the literature. ‘Best’ 
case N leaching was overestimated (‘Grass’ in 
Mustajoki and ‘Barley’ in Savijoki). The largest 
differences between the simulated and meas-
ured annual loads were in mineralisation, which 
was underestimated in ‘Grass’ in Mustajoki and 
‘Barley’ in Savijoki. In the Mustajoki applica-
tion, the simulated N losses from forests were 
higher than the literature values. Because a large 
fraction of the catchment is covered by forest, 
the N losses were generally low. The measured 
values were based on small catchment studies 
in northern Finland, and leaching in southern 
Finland in more fertile areas with higher atmos-
pheric deposition. On the other hand, in forest 
catchments there are usually peatlands at the 
outlet, and retention in these areas may be high.

Synthesis concerning scenario 
simulations

In this study, we analysed only the effect of 
parameter values on sensitivity and uncertainty. 
We did not include the effect of error or uncer-

Fig. 3. measured and sim-
ulated mean no3-n con-
centrations with simulated 
maximum and minimum 
uncertainty bounds for 
the (a) mustajoki and (b) 
savijoki.
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tainty in input values. The credibility of climate 
change simulations may be primarily depend-
ent on hydrological input values, i.e. how well 
future temperature and precipitation is predicted. 
Another question is how land use, crops, etc. will 
vary due to climate change.

Climate change scenarios predict that in Fin-
land by 2100 the mean annual air temperature 
and precipitation will increase by 3–7 °C and 
13%–26%, respectively. Such changes in input 
values may alter the internal behaviour of the 
system (model structural uncertainty). Most of 
the climate change scenarios predict increase 
in temperature and precipitation especially in 
winter (Ruosteenoja and Jylhä 2007). Previous 
studies have shown that this would have a clear 
effect on discharge in such a way that current 

snow-melting peak in spring would level off to 
more even runoff throughout the winter, espe-
cially in southern Finland where the annual max-
imum flood typically occurs in spring and early 
summer (March−June) (Veijalainen et al. 2010).

Interestingly, in site-specific applications the 
temperature dependencies of N processes seem 
to be more important than process rates by 
themselves. Temperature dependency parameters 
are commonly described by the Q10 equation 
(Bunnel et al. 1977), which represents the factor 
by which the rate of a reaction increases for 
every 10 °C rise in temperature. In the sensitivity 
analysis, default values were allowed to change 
over a range which corresponds to activity tem-
peratures of mesofilic and psychrophilic micro-
organisms. A small increase of soil temperature 
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Fig. 4. simulated mini-
mum and maximum river 
no3-n daily loads plotted 
against measured daily 
loads for (a) mustajoki and 
(b) savijoki inca-n model 
applications. the lines 
indicates measured loads 
plotted as 1:1, assuming 
perfect model fit. Four 
lowest simulations are 
removed from b.
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may not change this behaviour but the decay is 
more dependent on the quality of organic matter 
than temperature dependency of microorganisms 
(Vanhala et al. 2008). Thus the Q10 equation 
calibrated against water quality parameters and 
reaction rates in current climate can be assumed 
to be valid in future climate as well. Soil mois-
ture parameters are clearly less important than 
those of soil temperature as regulating factors in 
the model. Soil moisture deficit is given as input 
time series to the model and thus the direct effect 
is not included in the analysis.

Uncertainty analysis showed that the highest 
DIN concentrations are simulated by both model 
applications but not all of the lower ones in the 
Savijoki catchment. Most of these low concen-
trations occur during growing season, so possibly 
one or more retention process is missing (model 
structural uncertainty). Such processes may be 
important in an agriculturally-loaded river with 
intensive biological activities. River flow veloc-
ity played a large role in the uncertainty analysis 
presented here. In model calibrations, the simu-
lated velocity corresponded well to the measured 
one close to the river banks rather than in the 
centre of the river. Therefore, it can be suggested 
that riparian-zone processes are partly modelled 
to occur in the river. A similar conclusion was 
reached during GLUE analysis of an INCA-N 
application to a large forest-covered river basin 
in northern Finland (Rankinen et al. 2006). This 
conclusion seems not to depend on the analysis 
method, the size of the catchment, or land use in 
the catchment. The other critical situation during 
low-flow periods occurs when, due to potentially 
erroneous input data, the hydrological sub-model 
underestimates runoff and there is no N leaching 
from terrestrial areas.

As the lowest DIN concentrations occur 
mainly during low flow periods, their effect on 
total load is small. Thus INCA-N can be used in 
scenario simulations when the interpretation of 
results is based on loads. This approach is espe-
cially important for mitigation of agricultural 
nutrient loading to water bodies, as targeted by 
different national and international water protec-
tion policies (e.g. EEC 1991, EEC 1992, WFD 
2000, Ministry of the Environment 2007).

When effect of climate change on concentra-
tion levels is the question of interest, it should 

be kept in mind that INCA-N may overesti-
mate concentrations during the growing season. 
Retention processes in a riparian zone and river 
should be added in case the detailed modelling 
of N concentrations of the discharge is intended. 
However, our analysis showed that high NO3-N 
concentrations, which are the major concern of 
the Nitrates Directive (EEC 1991), are satisfac-
torily modelled by INCA-N.

When the model was calibrated only against 
measured NO3-N concentrations in river water, 
even a good calibration against NO3-N concentra-
tion in river (in terms of the r2 value) could result 
in overestimating process loads due to over- or 
underestimated leaching from one or more land 
use classes. Thus when calibrating the model, 
also information about annual N process loads 
should be included. This was also an effective 
method to reduce equifinality in a study by Rank-
inen et al. (2006). Interestingly, for site-specific 
applications the INCA-N model tends to under- 
rather than overestimate mineralisation process 
loads. In general, the INCA-N model is sensitive 
to retention processes (vegetation uptake, denitri-
fication and immobilisation). Nitrogen immobili-
sation fluxes are seldom reported in the literature; 
any information concerning annual gross miner-
alisation and immobilisation would improve the 
reliability of simulations.

Conclusions

We used INCA-N to simulate inorganic N loads 
in two catchments in Finland. Our results show 
that the model was able to reproduce seasonal 
patters in concentrations and loads. However, 
the model performed poorly during low-flow 
periods as it either under- or overestimated the 
N concentrations. This may be a result of overly-
simplistic process representations (i.e. the plant 
N uptake routines are not sensitive to soil mois-
ture, in-soil processes may not respond linearly 
to soil moisture deficits and the representation of 
in-stream denitrification may need refinement). 
It is possible that the model should include in-
stream N uptake and an explicit representation of 
the riparian zone. INCA-N results are sensitive 
to N-transformation rates, vegetation dynamics 
and descriptions of hydrological processes in soil 
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and river. The overall sensitivity analysis showed 
that despite of the dominant land use type (forest 
vs. agricultural) parameters that control nitro-
gen mineralisation and retention (immobilisation 
and denitrification) processes are important for 
model performance. The site-specific sensitivity 
analysis revealed the differences between the 
catchments and ecosystem types.

Simulated loads and concentrations from 
INCA-N modelling can be used to evaluate pol-
icy-relevant scenarios which aim to reduce nutri-
ent loads. Better hydrological input data and on-
going water-quality and discharge monitoring, 
especially during winter, are needed to improve 
model projections under a changing climate.
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