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ABSTRACT

Neurodegenerative diseases are characterized by the progressive loss of structure and function of
neurons, but the underlying mechanisms for this are largely unknown. Disturbed cell signaling and
protein metabolism as well as mitochondrial dysfunctions are thought to be involved in several
neurodegenerative diseases. Mitochondria are the major source of energy in the cell, and they also
regulate cell death. In brain, neurons are highly dependent on oxidative energy metabolism.
Mitochondrial dysfunctions cause oxidative stress with an excess production of reactive oxygen species
(ROS). In neurodegenerative diseases such as Parkinson’s disease (PD), ROS are thought to contribute
to the loss of dopaminergic neurons in substantia nigra pars compacta (SNpc), which leads to dopamine
depletion in striatum. Peroxisome proliferator-activated receptor 7y coactivator-la (PGC-la) is a
transcriptional co-activator that regulates mitochondrial biogenesis, ROS defense and respiration. The
lack of PGC-1la has been shown to increase the sensitivity of neurons to oxidative stress and brain
injuries.

In this study we show that increasing the expression of PGC-1a protects against toxin-induced oxidative
stress in dopaminergic neurons. We show that PGC-1a expression in dopaminergic neurons can be
modulated by resveratrol (RSV), fibroblast growth factor 21 (FGF21) and peroxisome proliferator-
activated receptor Y (PPARY) that are known to regulate metabolism in other tissues. The increase in
PGC-1a expression and activation was linked to metabolic changes mimicing low energy levels in the
cell, and an increase in SIRT1, a metabolic regulator sensing changes in energy levels. PGC-1a
activation was further associated with an increase in mitochondrial respiration and antioxidant levels
suggesting that the neuroprotective effect of PGC-1a was due to an improved capacity to combat
oxidative stress. These results show that regulation of metabolism by PGC-1a activators could be a
useful tool to prevent neurodegeneration in PD.

In addition to modulating PGC-1a, RSV was also found to increase the expression of dopamine
transporter (DAT) in dopaminergic neurons of female mice. The increase in the level of DAT increases
the uptake of dopamine, further indicating that RSV has beneficial effects in dopaminergic neurons. By
affecting DAT, RSV also contributes to maintaining functional neurons, as a decline in DAT has been
associated with degeneration of dopaminergic neurons. This effect on DAT expression was mediated by
estrogen receptors, indicating that the effect of RSV differs between genders that should be considered
if RSV is used as therapy for patients with PD.



1. INTRODUCTION

Mitochondria are considered to be the powerhouse of cells by providing most of the energy required for
cellular functions. A common feature in ageing and age-related diseases such as neurodegenerative
diseases is the failure of maintaining bioenergetics homeostasis, and mitochondrial dysfunction is
strongly linked to the pathogenesis of neurodegenerative diseases. Under normal conditions
mitochondria produce reactive oxygen species (ROS) as a product of the respiratory chain. ROS function
as signaling molecules in the cell, and the cell has antioxidant mechanisms to prevent an excess
production of ROS. Mitochondrial dysfunction leads to an excess production of ROS giving rise to
oxidative stress, a situation where the normal antioxidant defense system can not combat the excess
ROS produced in the cell. This leads to a situation where ROS can react with cellular macromolecules
such as DNA, lipids and proteins, and cause damage to these molecules.

Parkinson’s disease (PD) is an adult-onset neurodegenerative disease with the main age of onset being
55 years. The disease is characterized by progressive loss of dopaminergic neurons from substantia nigra
pars compacta (SNpc) and the projections in striatum. The onset of the disease is gradual and motor
symptoms are developed when 50-60% of the dopaminergic neurons are degenerated.

In PD, oxidative stress is thought to contribute to the pathogenesis of the disease. Oxidized
macromolecules have been found in brain in post-mortem studies of patients with PD, and as well as
accumulation of metals in substantia nigra, contributing to the production of ROS. The neurotransmitter
dopamine can also contribute to the production of ROS in neurons when it is not stored in vesicles
highlighting the importance of proper uptake and storage of dopamine in the cells.

Mitochondrial dysfunction has been implicated to have an important role in the pathogenesis of PD.
Several genes that are linked to PD are involved in regulating mitochondrial function and quality control,
and animal models with toxins blocking complex I in the respiratory chain mimics the symptoms of PD.
Therefore, it would be of importance to be able to regulate mitochondrial quality control and function
in the attempt to prevent dopaminergic neuron degeneration.

Peroxisome proliferator-activated receptor y coactivator-la (PGC-la) is a major regulator of
mitochondrial biogenesis, respration and antioxidant defense. The expression of PGC-la has been
shown to be down-regulated in patients with PD and animal studies have shown that PGC-1a knock out
increases neuron sensitivity to oxidative stress, revealing PGC-1a as a potential therapeutic target for
PD. It would be of importance to be able to regulate the expression of PGC-1a in the brain, since a slight
increase in PGC-1a expression has been shown to be beneficial for neuronal survival, whereas a high
overexpression has turned out to be harmful for neurons as shown in animals. Metabolic regulators
known to affect PGC-1a in other tissues such as liver, adipose tissue and muscle might also have similar
effects in the brain.

In this work, I have used compounds known to regulate metabolism in other tissues to study the possible
neuroprotective effect in dopaminergic neurons. By treating cells with resveratrol (RSV), fibroblast
growth factor 21 (FGF21) or the peroxisome proliferator-activated receptor y (PPARY) agonist GW1929
the expression and activation of PGC-1a was increased and the mitochondrial function was improved
in dopaminergic neurons. RSV also increased the expression of dopamine transporter (DAT) which
could improve the dopamine uptake, and thereby improve the function of dopaminergic neurons. These
results reveal potential compounds that could improve the survival of dopaminergic neurons by helping
to combat oxidative stress and maintaining the dopamine uptake in dopaminergic neurons.



2. REVIEW OF LITERATURE
2.1. Mitochondrial structure and biogenesis

2.1.1. Evolution of mitochondria

Mitochondria are membrane bound organelles that are found in all eukaryotic cells and they are essential
for life by producing the energy required for maintaining cellular processes (Duchen 2004). According
to the endosymbiont hypothesis that was described in 1970 by Lynn Margulis, mitochondria evolved
from a bacterial progenitor via symbiosis with an eukaryotic host cell (Margulis 1970). To support this
theory, mitochondria contain its own DNA (mtDNA) which is maternally inherited (Duchen 2004).
Mitochondrial DNA content has been reduced throughout evolution by gene transfer to the nucleus that
encodes the majority of the mitochondrial proteins (Nunnari & Suomalainen 2012). By analyzing
mitochondrial gene sequences the origin of mitochondria has been suggested to be related to the a-
division of the Proteobacteria (Yang et al. 1985).

The endosymbiotic model has two different theories for the origin of the mitochondria, the archezoan
scenario where the host was a hypothetical amitochondrial eukaryote, an archezoan, and the
symbiogenesis scenario where the uptake of an o-Proteobacterium by an archaeal cell led to the
formation of the mitochondria. The question that has been raised is whether mitochondria originated
after the eukaryotic cell arose as assumed in the archezoan scenario or if the mitochondria had its origin
at the same time as the formation of the eukaryotic cell as assumed in the symbiogenesis theory (Gray
2012).

2.1.2. Mitochondrial structure and dynamics

Mitochondria are double membrane organelles where the outer mitochondrial membrane (OMM)
surrounds the inner mitochondrial membrane (IMM). The space between the two membranes is referred
to as the intermembrane space (IMS) and the space surrounded by the IMM is called the mitochondrial
matrix. The mitochondrial structure is shown in figure 1. The IMM is folded into cristac where a variety
of mitochondrial membrane-bound enzyme systems such as the respiratory chain can be found (Duchen
2004, McBride et al. 2006).

Mitochondria are comprised of over 1000 proteins and the composition varies between tissue-specific
needs (Friedman & Nunnari 2014). In humans, mtDNA is a circle of 16.6 kb double stranded DNA
encoding for 13 proteins that all are components of the respiratory chain. In addition, mtDNA encodes
for 24 other genes, two rRNAs and 22 tRNAs, that are needed for the synthesis of the 13 proteins in the
respiratory chain. This is only a fraction of the proteins needed for mitochondrial function, and the
majority of proteins required to build the mitochondrion are encoded by the nucleus (Gray et al. 1999,
Duchen 2004, Olsen et al. 2015). Most of the nuclear encoded proteins are synthesized at ribosomes and
targeted to mitochondria (Endo & Yamano 2010). In the OMM, translocases of the outer membrane
(TOM) are responsible for the import of proteins to the mitochondria. Only unfolded proteins can be
imported, and TOM acts together with cytosolic chaperones to allow transport of proteins to the IMS
(Hood et al. 2003, Endo & Yamano 2010). At the IMM, translocases of the inner membrane (TIM)
facilitates the movement of proteins to the matrix. The translocation of proteins across IMM is also
dependent on a source of energy and a membrane potential to function properly (Hood et al. 2003).



Figure 1. Mitochondrial structure. Electron microscope (EM) capture of mitochondria in dopaminergic neuron
shows the different structures in mitochondria. Magnification 5000X. OMM, outer mitochondrial membrane; IMM,
inner mitochondrial membrane; cristae, folding of IMM; matrix, space surrounded by IMM.

Mitochondria are dynamic organelles that form networks that constantly undergo fission and fusion that
affects the organelle size, number and shape (Itoh et al. 2013). The morphology of mitochondria varies
between different cell types (Scorrano 2013). The changes in mitochondrial shape affect cellular
functions such as Ca®" signaling, generation of reactive oxygen species (ROS), neuronal plasticity and
life span (Campello & Scorrano 2010, Scorrano 2013). Under normal conditions, mitochondrial fusion
and fission are in balance. Fusion is needed for the distribution of different metabolites, proteins and
mtDNA and the maintenance of electrical and biochemical connectivity. Fission is needed for cell
division and mitochondrial quality control by elimination of damaged mitochondria (Kluge et al. 2013).

An increase in fusion and /or decrease in fission help to overcome low levels of stress such as starvation
where fission is inhibited to protect the cell from mitophagy, whereas a decrease in fusion and/or
increase in fission is observed during high levels of stress (van der Bliek et al. 2013). Loss of fusion can
give rise to mitochondrial dysfunction, which might be caused by an impaired exchange of matricial
material between mitochondria (Scorrano 2013). The fusion/fission machinery also affects
mitochondrial shape which determines cellular fate during autophagy. Elongated mitochondria are
protected from autophagic degradation, have more cristae and are capable of maintaining adenosine
triphosphate (ATP) production and cell viability (Gomes et al. 2011). The fusion of the OMM is
regulated by the two transmembrane GTPases mitofusin-1 (Mfnl) and mitofusin-2 (Mfn2) and the
fusion of the IMM is regulated by optic atrophy protein 1 (Opal). Mitochondrial fission on the other
hand is mediated by dynamin-related protein 1 (Drpl) and fission 1 (Fis1) (Kluge et al. 2013).

Mitochondria are targeted for degradation by the recruitment of Parkin by phosphate and tensin homolog
(PTEN) -induced putative kinase-1 (PINK1) to the mitochondria with low membrane potential to initiate
the mitophagy of damaged mitochondria (Matsuda et al. 2010, Vives-Bauza & Przedborski 2011).
PINKI is rapidly degraded under steady-state conditions in a mitochondrial membrane potential-
dependent manner, where loss of membrane potential stabilizes PINK1 mitochondrial accumulation
(Matsuda et al. 2010). Mutations in PINK 1 affect the translocation of Parkin to the mitochondria, leading
to accumulation of damaged mitochondria in cells which may contribute to disease pathogenesis in
mitochondria related diseases (Geisler et al. 2010).

PINK1 has also been shown to regulate mitochondrial dynamics, although the results are controversial.
In rat dopaminergic neuronal cells, the overall effect of PINK1 overexpression promotes mitochondrial
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fusion by reducing the levels of the fission proteins Drp1 and Fis1 and increasing the levels of the fusion
protein Mfn2, whereas mutant PINK1 increases mitochondrial fission (Cui et al. 2010). Contrary to
these findings, in rat hippocampal neurons the overexpression of PINK1 and Parkin results in increased
mitochondria number and smaller mitochondrial size suggesting an increase in fission, whereas
inactivation of PINK1 results in elongated mitochondria (Yu et al. 2011). This indicates that PINK1 and
Parkin have a role in mitochondrial dynamics, but the effect varies between cell types.

2.1.3. Mitochondrial biogenesis

Mitochondrial biogenesis is a complex process that requires a coordinated transcription of both nuclear
and mitochondrial genes (Hock & Kralli 2009). The mitochondrial content in a cell depends on the
balance between mitochondrial biogenesis and mitophagy (Kluge et al. 2013). The biogenesis requires
both replication and transcription of mtDNA as well as import of proteins and lipids to the existing
mitochondrial reticulum (Puigserver & Spiegelman 2003, Hock & Kralli 2009, Kluge et al. 2013). The
mitochondrial mass and function is regulated by nuclear-encoded factors in response to energy and
growth demands (Scarpulla 2002). Some of the mitochondrial proteins are expressed in a tissue-specific
manner, suggesting that some of the mitochondrial proteome is dedicated to specialized functions
(Mootha et al. 2003).

The transcription of mitochondrial genes is under the regulation of a network of nuclear DNA-binding
transcription factors that can be activated in response to physiological changes (Hock & Kralli 2009).
Two transcription factors, nuclear respiratory factor 1 (NRF1) and nuclear respiratory factor 2 (NRF2)
also called GA binding protein (GAPB) can bind to promoter regions of a wide variety of mitochondrial
genes encoded by the nucleus, e.g. B-ATP synthase, cytochrome ¢, cytochrome ¢ oxidase subunit IV,
and mitochondrial transcription factor A (TFAM) among others (Evans & Scarpulla 1990, Virbasius et
al. 1993). NRF1 activates the expression of components from the respiratory chain, mitochondrial
ribosomal proteins, mitochondrial transporters and expression of mtDNA replication and expression
(Scarpulla 2008). NRF?2 also affects the expression of mitochondrial respiratory chain components and
mtDNA replication (Scarpulla 2008).

TFAM is a nucleus-encoded transcription factor that translocates to the mitochondria and binds to the
promoter region of mitochondrial genes (Scarpulla 2008). TFAM together with the mitochondrial
transcription factor B (mtTFB) isoforms TFB1M and TFB2M regulate the transcription and replication
of mtDNA thereby regulating the transcription of essential subunits of the respiratory chain (Gleyzer et
al. 2005, Scarpulla 2008).

TFAM and NRF1 are known to be regulated by peroxisome proliferator-activated receptor y coactivator
la (PGC-1a) (Wu et al. 1999). PGC-1a not only influences the transcription of NRF1, but it also
coactivates its transcriptional activity (Wu et al. 1999, Puigserver & Spiegelman 2003). Activation of
PGC-1a in response to changes in cellular energy levels and environmental changes increases the
transcription of NRF1 and TFAM leading to increased mitochondrial biogenesis. This makes PGC-1a
an important link between environmental or metabolic stimuli and mitochondrial biogenesis and
respiration (Puigserver & Spiegelman 2003, Fernandez-Marcos & Auwerx 2011, Kluge et al. 2013).

Other nuclear transcription factors regulating mitochondrial protein expression are peroxisome

proliferator activated receptors (PPAR) and estrogen related receptors (ERR). The PPARs affects

mitochondrial uncoupling protein expression and genes involved in fatty acid oxidation, whereas the

ERRs affects the transcription of genes that are involved in fatty acid oxidation, components of the

respiratory chain and tricarboxylic acid cycle (TCA) cycle, mitochondrial dynamics and oxidative stress

defense (Scarpulla 2002, Scarpulla 2008, Hock & Kralli 2009). Estrogen related receptor o (ERRa) has
8



also been suggested to be involved in the regulation of genes involved in the respiratory chain (Scarpulla
2011). Genes that are involved in the regulation of mitochondrial biogenesis are shown in figure 2.

PGC-la
NRF1 NRF2 ) ERRa ) PPAR
TFAM
L J
OXPHOS Fatty acid
mtDNA subunits TCA cycle oxidation

l

Mitochondrial biogenesis

U
AP ——

Figure 2. Genes involved in mitochondrial biogenesis. The figure is modified from (Komen & Thorburn 2014).
PGC-1a, Peroxisome proliferator-activated receptor y coactivator-1a; NRF, Nuclear respiratory factor; ERRa,
Estrogen related receptor «; PPAR, Peroxisome proliferator-activated receptor; TFAM, Mitochondrial
transcription factor A; mtDNA, mitochondrial DNA; TCAcycle, tricarboxylic acid cycle.

2.1.4. Mitochondrial function

Mitochondria are essential for living organisms by providing the energy required for cellular processes
by conversion of nutrients to adenosine triphosphate (ATP) (Duchen 2004). Mitochondria are also
involved in other cellular functions such as apoptosis, regulation of calcium and iron homeostasis,

synthesis of metabolites, B-oxidation of fatty acids and in heme and phospholipid synthesis
(Westermann 2010, Osellame et al. 2012, Scorrano 2013).

In apoptosis, cytochrome c is released from the mitochondrial IMS and it binds to apoptotic protease
activating factor 1 (Apaf-1) and activates procaspase 9. This in turn activates caspase 3 and initiates the
apoptotic pathway in the cell (Duchen 2004). Mitochondria are involved in iron homeostasis by
synthesizing heme and hosting the synthesis of iron-sulphur (Fe-S) clusters which are components of
hemoglobin and also found in the respiratory chain (Stehling & Lill 2013). Mitochondria regulate
calcium homeostasis by Ca*" uptake from the cytoplasm. Mitochondrial Ca®* can stimulate ATP
production, trigger the opening of the mitochondrial permeability transition pore and activate the cell
death cascade. In neurons, mitochondrial Ca*" uptake is involved in the control of neurotransmitter
release (Abeti & Abramov 2015). Mitochondria generate reactive oxygen species (ROS) as a byproduct
from the respiratory chain. The production of ROS is essential for cell signaling, but an excess
production is harmful for the cell by causing damage to cellular componens such as proteins and DNA
(Duchen 2004).

Mitochondrial dysfunction is associated with a large amount of inherited disorders and it is also
implicated to be involved in several common pathologies from neurodegenerative diseases to cancer,
cardiomyopathies, metabolic syndrome and obesity (Ylikallio & Suomalainen 2012, Nunnari &
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Suomalainen 2012, Scorrano 2013). The increase in ROS production by mitochondria during ageing has
been suggested to be the driving force behind ageing (Lane et al. 2015).

2.2. Mitochondrial energy production

2.2.1. Mitochondria as energy sensors

Energy homeostasis requires a controlled regulation of energy intake, storage and expenditure (Canto
& Auwerx 2009). Mitochondria act as key regulators of energy homeostasis in the cell, where an
increase in the need for energy is met by an increase in mitochondrial mass and oxidative
phosphorylation to generate ATP (Duchen 2004). The NAD*/NADH ratio, AMP/ATP ratio and acetyl-
coenzyme A (acetyl-CoA) levels signal mitochondrial activity in the cell, which is recognized by various
transcription factors, hormones, nuclear receptors and kinases (Lettieri Barbato et al. 2012).

Key sensors of cellular energy status are AMP-activated protein kinase (AMPK) and sirtuin 1 (SIRT1).
AMPK is activated in response to an increase in the AMP/ATP ratio and acts by phosphorylating a
variety of target genes and upregulating catabolic pathways such as gluconeogenesis, autophagy and
oxidative phosphorylation and inhibiting anabolic pathways such as cell growth and differentiation
(Nunnari & Suomalainen 2012). SIRT1 senses the NAD*/NADH ratio, and in response to elevated
NAD" levels regulates the mitochondrial mass and oxidative phosphorylation via PGC-1a, (Ng et al.
2015). AMPK indirectly modulates the activity of SIRT1 by regulating the NAD/NADH ratio (Canto
& Auwerx 2009, Canto et al. 2009). During high nutritional load, high levels of ATP and NADH switch
the metabolic balance towards lipid and glycogen storage, downregulation of mitochondrial biogenesis
and an increase in the glycolytic ATP production (Nunnari & Suomalainen 2012). The mitochondrial
energy production is summarized in figure 3.

2.2.1. Tricarboxylic acid cycle and respiratory chain

Mitochondria produce energy by generating ATP in an oxygen-dependent manner. The mitochondria
can use sugars, fat and proteins to produce ATP by degrading the products to acetyl-CoA via different
enzymatic systems (Ryan & Hoogenraad 2007). Sugars undergo glycolysis in the cytosol generating
pyruvate that can enter the mitochondria and be converted to acetyl-CoA, fats are converted to acetyl-
CoA by B-oxidation in the mitochondria and proteins can be converted by various systems to pyruvate,
acetyl-CoA or directly to citric acid cycle intermediates (Osellame et al. 2012).

In the citric acid cycle, also called tricarboxylic acid (TCA) cycle or Krebs cycle, acetyl-CoA is
transferred to oxaloacetate forming a six-carbon molecule of citrate. In a series of enzymatic steps,
citrate is oxidized back to oxaloacetate, generating two molecules of CO» and passing electrons to the
cofactors nicotinamide adenine dinucleotide (NADH) and flavin adenine dinucleotide (FADH>). The
oxaloacetate can be used for another round of the TCA cycle, and the generated electrons in the form of
NADH and FADHj; are transferred to the respiratory chain (Osellame et al. 2012). Intermediates from
the TCA cycle can be converted to amino acids and the neurotransmitters glutamate and y-aminobutyric
acid (GABA) (Nunnari & Suomalainen 2012).

The respiratory chain, also called the electron transport chain, consists of 4 multisubunit protein
complexes (complex I-1V) located in the IMM, and the two diffusible factors cytochrome ¢ and
coenzyme Q10 that function as electron shuttles within the IMS. Although the mtDNA encodes 13
subunits of the respiratory chain which are core constituents of the respiratory chain complexes I-IV,

10



the majority of the subunits of the respiratory chain are encoded by the nucleus (Osellame et al. 2012,
Galluzzi et al. 2012, Friedman & Nunnari 2014, Komen & Thorburn 2014).

The respiratory chain pumps protons from the matrix to the IMS, creating an electrochemical gradient
that is used to drive the ATP-synthase /complex V that drives the phosphorylation of adenosine
diphosphate (ADP) to generate ATP (Galluzzi et al. 2012). NADH from the TCA cycle donates two
electrons to complex I of the respiratory chain, also called NADH: ubiquinone oxidoreductase or NADH
dehydrogenase, and NADH is oxidized to NAD". Complex I is a L-shaped protein consisting of 45
subunits with a hydrophobic domain embedded into the IMM and a hydrophilic arm towards the matrix
which functions as the binding site for NADH (Efremov et al. 2010). The electrons are passed to
coenzyme Q via a series of Fe-S clusters, and linked to the electron transfer from NADH, four protons
are passed from the matrix to the IMS. Complex II, also called succinate: ubiquinone oxidoreductase or
succinate dehydrogenase, is the enzyme that reduces FAD to FADH, in the TCA cycle and is also a part
of the respiratory chain. Complex II is located in the IMM and contains FAD as the prosthetic group.
The complex transfers electrons to coenzyme Q, but no protons are pumped in this complex to the IMS
(Lancaster & Kroger 2000).

Coenzyme Q can freely diffuse in the IMM and electrons from coenzyme Q are transferred to
cytochrome ¢ reductase or to complex III that passes the electrons to cytochrome c. Two protons that
are obtained from the oxidation of coenzyme Q are transferred to IMS and an additional two protons are
translocated from the matrix to the IMS (Crofts 2004). At complex IV or cytochrome ¢ oxidase, four
electrons passed through the chain are donated by four molecules of cytochrome c to the enzyme’s
iron/copper containing active site and two molecules of H,O are generated from one O» molecule. At
this complex an additional four protons are pumped from the matrix to the IMS (Belevich et al. 2006,
Vilhjalmsdottir et al. 2015).

The electrochemical gradient generated by proton pumping from the matrix to the IMS is used to drive
complex V or ATP-synthase, which drives the phosphorylation of ADP to ATP. The enzyme consists
of two domains, the Fo domain that spans the IMM and the F; domain facing the matrix. Complex V
acts as a rotary molecular motor, where protons flow down the electrochemical gradient through the Fo
domain causing the rotation of the F; domain where ADP and phosphate binds, inducing the formation
of ATP and thereby completing the energy production by oxidative phosphorylation. Each turn of the
rotor produces 3 molecules of ATP and it is estimated that 3 to 5 protons are required for each molecule
of ATP. In addition to generating ATP, the electrochemical potential generated by the respiratory chain
is used for other mitochondrial functions, such as buffering Ca*" through uptake by a uniporter in the
IMM and mitochondrial protein import (Osellame et al. 2012, Friedman & Nunnari 2014).
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Figure 3. Mitochondrial energy production. The TCA cycle uses Acetyl-CoA from glucose and fatty acids to
generate NADH by electron transfer to NAD™ via a series of different enzymatic steps. NADH is converted to
NAD" by complex I in the respiratory chain by electron transfer. In the respiratory chain, H" is pumped to the IMS
creating a proton gradient that is used to drive Complex V and generate ATP from ADP and P;. Figure modified
from (Osellame et al. 2012). NADH Nicotinamine dinucleotide; Q, Coenxyme Q; Cyto c, cytochrome c;IMS,
intermembrane space.

2.3. Free radical generation

Free radicals are defined as molecules containing one or more unpaired electrons in atomic or molecular
orbitals, which usually causes the free radical to be highly reactive. Free radicals derived from oxygen
are the most important class of radicals in living organisms (Valko et al. 2007). Molecular oxygen (O2)
itself is not a highly reactive molecule (Bartosz 2009), but it can form the highly reactive superoxide
anion radical (O;") by the addition of one electron. Free radicals containing oxygen, also called ROS,
are products formed in normal cell metabolism. Low levels of ROS have beneficial effects in the cell
and they are involved in cellular signaling pathways such as adaption to hypoxia, regulation of
autophagy, immunity and ageing (Sena & Chandel 2012). An overproduction of ROS leads to oxidative
stress that causes damage to cellular components such as DNA, proteins and lipids (Valko et al. 2007).
The level of ROS is thought to increase during ageing (Payne & Chinnery 2015), and ROS has been
suggested to contribute to diseases that are linked to mitochondrial dysfunction, among them
neurodegenerative diseases such as Parkinson’s disease (PD) (Nunnari & Suomalainen 2012).

Mitochondria are the main source of ROS production in the cell (Bartosz 2009). Seven sites in
mammalian mitochondria are known to produce O,” (Brand 2010), but the main sites where
mitochondria generates O™ are complex I and complex III in the respiratory chain, although there is an
increasing amount of evidence that the main source of O™ production is complex I, where the oxidation
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of NADH provides electrons for the reduction of O> (McLennan & Degli Esposti 2000, Kussmaul &
Hirst 2006, Hirst et al. 2008). The rate of O," generation is dependent on the concentration of O, and
potential electron donors such as NADH (Kussmaul & Hirst 2006, Murphy 2009).

0" can be transformed into other free radicals via enzymatic reactions that convert O,™ into H,O,, by
reacting with nitric oxide (NO) to form peroxynitrite (ONOO") or hydroxyl radicals ("OH) by the
Fenton reaction in the presence of iron:

Fe*" +H,0, — Fe*" +OH™ +'OH (Fenton reaction)

(Walling et al. 1975, Lipinski 2011, Kotiadis et al. 2014). Oxidative stress occurs at conditions where
ROS are generated at a higher level than the defense system can neutralize ROS. These conditions occur
when there is a disturbance in the equilibrium of prooxidant/antioxidant reactions, leading to damage
on other cellular components that react with the excess ROS that is produced (Valko et al. 2007, Kotiadis
et al. 2014). When mitochondria are respiring normally, the amount of O,™ formed from complex I is
low, but inhibition of complex I by cellular damage, mutations, environmental toxins or by buildup of
NADH levels by low ATP demand increases the production of O, (Lambert & Brand 2004, Murphy
2009).

2.4. Antioxidants

ROS production is a normal event in the cell, and cells have a mechanism for handling ROS produced
during normal respiration. Antioxidants are molecules that prevent ROS from reacting with other
cellular components by transferring electrons from ROS (Oyewole & Birch-Machin 2015). Antioxidants
can be grouped into 2 major categories, endogenous and exogenous antioxidants, both being widely
distributed in the body (Oyewole & Birch-Machin 2015). The endogenous antioxidants are synthesized
in the body and consist of enzymes such as superoxide dismutase (SOD), glutathione peroxidase (GPx),
peroxiredoxins (Prx) and catalase as well as nonenzymatic molecules such as a-tocopherol (vitamin E)
glutathione and bilirubin (Dringen 2000, Engin 2009, Jansen & Daiber 2012), whereas exogenous
antioxidants are obtained from the diet and include polyphenols, carotenoids, flavonoids and vitamins
such as ascorbic acid (vitamin C) and retinoids (vitamin A) (Peng et al. 2014, Amara et al. 2015). The
exogenous compounds are naturally occurring molecules that are capable of redox cycling (Amara et al.
2015). Polyphenols are the most abundant naturally occurring antioxidants in the diet, with the main
sources being fruits, tea, coffee and red wine (Scalbert et al. 2005).

Antioxidant enzymes can eliminate ROS by converting ROS to less reactive molecules (Sena & Chandel
2012). In the cell, SOD converts O™ to H2O- (Kotiadis et al. 2014). There are three types of SOD in the
cell; SOD1 (CuZnSOD) is located in the cytoplasm (Crapo et al. 1992), SOD2 (MnSOD) is in the
mitochondrial matrix (Karnati et al. 2013) and SOD3 (ECSOD) is found in the extracellular matrix
(Fattman et al. 2003). In mammalian cells, SOD2 is the essential O,” detoxifying enzyme found in
mitochondria (Candas & Li 2014), even though cytochrome ¢ has also been shown to be able to detoxify
0, (Korshunov et al. 1999, Andreyev et al. 2005). PGC-1a has been shown to have an important role
in regulating the transcription of SOD2 (Valle et al. 2005, Lu et al. 2010).

The H>O> that is generated by SOD can be further converted to H,O by enzymes such as Prx, GPx and
catalase (Andreyev et al. 2015). Catalase is one of the most efficient enzymes converting H>O to H,O
and O; and it is mainly found in the peroxisome (Kirkman & Gaetani 2007). The expression of catalase
is low in the brain, and it may not be of importance in ROS defence, but in the liver catalase has an
important role in ROS defense (Salvi et al. 2007).
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Another mechanism to convert H,O; to H2O is by GPx (Sena & Chandel 2012). GPx converts H>O; to
H>O by redox cycling where the reduced form accepts an electron from H,0,. The oxidized form of GPx
then transfers an electron to reduced glutathione (GSH) to form the oxidized glutathione (GSSH) that
can be converted back to its reduced form GSH by glutathione reductase (GR). GSH is an important
antioxidant in the brain (Dringen 2000), and overexpression of GPx has been shown to protect neurons
against oxidative stress (Dringen 2000, Wang et al. 2003, Smeyne & Smeyne 2013).

Prx are a family of thiol peroxidases that scavenge peroxides in the cell by converting H,O» to H>O by
redox cycling (Cox et al. 2009). In mammals, Prx1, 2 and 6 are found in the cytoplasm, Prx4 in the
endoplasmic reticulum, Prx5 in several different parts of the cell including peroxisomes and
mitochondria, and Prx3 is located in the mitochondria (Cox et al. 2009). Prx3 has been suggested to be
the major mitochondrial H,O, scavenging enzyme (Cox et al. 2009) and it is estimated to be the target
for up to 90% of the H,O, produced in the mitochondrial matrix, whereas GPx1 contributes to the
removal of approximately 9% of the H>O- and other enzymes for 1% of the H,O, produced (Andreyev
et al. 2005, Cox et al. 2009).

The mitochondrial Prx activity is dependent on redox cycling of thioredoxin 2 (Trx2), where the
oxidized form of Prx is reduced by Trx2 and the oxidized form of Trx2 is reduced by thioredoxin
reductase 2 (TrxR2) in a NADPH- dependent manner (Arner & Holmgren 2000, Arner 2009). Different
Trx isoforms are found in most organisms, and mitochondria have its own Trx system that works
independently of the cytosolic system (Arner & Holmgren 2000). Trx2 and TrxR2 are found in the
mitochondrial matrix in nearly all mammalian cells with a higher expression in cells with higher
metabolic activity such as skeletal muscle, heart and brain (Spyrou et al. 1997, Rybnikova et al. 2000,
Rohrbach et al. 2006). Trx2 has been shown to be under the transcriptional regulation of PGC-1a (Lu et
al. 2010). Figure 4 summarizes the production of ROS and the reactions of the major antioxidant
enzymes that occur in the cell.

H,0
Prx-O Trx-R
- >< - >Ter2‘
T Px-R ( Trx-O

catalase —— | H,O

02"1‘ er— 02'-

‘OH+tOH" | ——— | H,0

Figure 4. ROS formation and antioxidant enzymes. ROS can be produced when O, reacts with a free ¢ to form
0,". SOD2 can convert O, to H>Os that is further processed by redox reactions to generate H>O. Figure modified
from (Kotiadis et al. 2014). SOD2, superoxide dismutase2; Prx-O, Peroxiredoxin oxidized; Prx-R, Peroxiredoxin
reduced; Trx-O, Thioredoxin oxidixed; Trx-R, thioredoxin reduced; TrxR2, thioredoxin reductase 2; GPx-O,
glutathione peroxidase oxidized, GPx-R glutathione peroxidase reduced; GSSH glutathione oxidized; GSH,
glutathione reduced; GR, glutathione reductase.
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2.5. Peroxisome proliferator-activated receptor-y coactivator-1a (PGC-1a)
expression and function

Peroxisome proliferator-activated receptor-y coactivator la (PGC-1a) is a key player in the regulation
of energy metabolism in the cell, and it was first cloned from brown adipose tissue (BAT) as a cold-
inducible coactivator of the nuclear receptors peroxisome proliferator-activated receptor-y (PPARy) and
thyroid hormone receptor (Puigserver et al. 1998). PGC-1a is a member of the PGC-1 family together
with Peroxisome proliferator-activated receptor-y coactivator 18 RPGC-1B) and PGC-1-related
coactivator (PRC). All of these family members share a high sequence homology in the N- and C-
terminus with a transcriptional activation domain containing the hormone receptor interacting motif
(LXXLL) in the N-terminus and a RNA-binding motif and serine-arginine rich domain in the C-terminus
(Puigserver & Spiegelman 2003). The PGC-1a gene PPARGCI1A is localized on chromosome 4p15.1-
2 (Esterbauer et al. 1999).

The PGC-1a gene contains 13 exons and this gene encodes a protein of 798 amino acids with a molecular
mass of 91 kDa (Esterbauer et al. 1999, Popov et al. 2015). The promoter of this canonical isoform of
PGC-1a contains two transcription initiation sites 90 and 119 bp upstream of the transcription initiation
codon ATG (Esterbauer et al. 1999). Alternative tissue-specific isoforms of PGC-1a have been shown
to exist in muscle, liver and brain (Miura et al. 2008, Yoshioka et al. 2009, Felder et al. 2011, Soyal et
al. 2012). In addition, a truncated form of PGC-1a (NT-PGC-1a) with a molecular weight of 35-38 kDa
has been shown to exist in muscle, mouse brain and human heart (Zhang et al. 2009, Popov et al. 2015).

In addition to being a coactivator of PPARs and thyroid hormone receptors, PGC-1a has been found to
directly co-activate other transcription factors, including glucocorticoid receptors, estrogen receptors
(ER) and ERR and nonnuclear receptor transcription factors such as myocyte enhancer factor-2 (MEF2)
and the family of forkhead O-box (FOXO) transcription factors (Canto & Auwerx 2009, Fernandez-
Marcos & Auwerx 2011). A coactivator enhances the rate of transcription by interacting with
transcription factors, but does not itself bind to DNA sequences. Coactivators usually exist as
multiprotein complexes that contain proteins that mediate docking of transcription factors and others
that mediate functions necessary for transcription (Puigserver & Spiegelman 2003). PGC-1a forms a
complex with proteins that contain histone acetyl transferase activity, such as cyclic AMP (cAMP)
response element (CRE) binding protein (CREB)-binding protein (CBP/p300) and steroid receptor
coactivator-1 (SRC-1), as well as RNA binding polymerase II (Puigserver et al. 1999). This binding of
CBP/p300 or SRC-1 to PGC-1a depends on the docking of transcription factors such as PPAR or NRF-
1 to PGC-1a (Puigserver et al. 1999), suggesting that PGC-1a is activated when a transcription factor
binds and induces a conformational change that can recruit SRC-1 and CBP/p300 to the complex
(Puigserver & Spiegelman 2003).

PGC-1a has been found to be highly expressed in tissues with high energy requirements, such as BAT,
heart, skeletal muscle, kidney, and brain, and is induced in conditions that require energy, such as cold,
fasting and exercise (Puigserver et al. 1998, Esterbauer et al. 1999, Handschin & Spiegelman 2006,
Canto & Auwerx 2009). Many genes that are linked to lipid oxidation and mitochondrial metabolism
are under the control of PGC-1a, and PGC-1a increases mitochondrial biogenesis and respiration rates
as well as the uptake and utilization of substrates for energy production (Canto & Auwerx 2009).

In adipose tissue, PGC-1a is involved both in the regulation of adaptive thermogenesis in BAT by

inducing the expression of uncoupling protein-1 (UCP1) and in the adipocyte cell fate decision

(Puigserver et al. 1998, Puigserver & Spiegelman 2003). In addition to BAT, skeletal muscle can also

participate in cold-induced adaptive thermogenesis by mitochondrial uncoupling where the uncoupling

is mediated by uncoupling protein-2 (UCP2) and uncoupling protein-3 (UCP3) (Wu et al. 1999, Wijers
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et al. 2008, van den Berg et al. 2011). Figure 5 shows mitochondrial functions that are regulated by
PGC-la.

Enhanced mitochondrial biogenesis is essential for adaptive thermogenesis, and the core function of
PGC-10 has been suggested to be regulation of mitochondrial biogenesis (Puigserver & Spiegelman
2003, Handschin & Spiegelman 2006). PGC-1a has been shown to strongly induce the expression of
genes involved in mitochondrial biogenesis, such as NRF-1, NRF-2 and TFAM (Wu et al. 1999,
Puigserver & Spiegelman 2003). In addition to mitochondrial biogenesis PGC-la also regulates
mitochondrial function by regulating oxidative phosphorylation by increasing ATP synthetase and the
cytochrome ¢ oxidase subunits COX II and COXIV (Puigserver et al. 1998, Wu et al. 1999). PGC-1a. is
also involved in the antioxidant defense by regulating the expression of antioxidant enzymes such as
SOD2 and Trx2 (Valle et al. 2005, St-Pierre et al. 2006, Lu et al. 2010, Austin & St-Pierre 2012).

In the liver, PGC-1a is activated in response to glucagon during fasting (Fernandez-Marcos & Auwerx
2011) and it regulates hepatic gluconeogenesis by increasing the expression of enzymes involved in
gluconeogenesis (Yoon et al. 2001). PGC-1a deficiency has been shown to cause defects in hepatic
glucose production, although no alteration in PGC-1a-regulated genes involved in gluconeogenesis were
observed (Burgess et al. 2006). PGC-1a is strongly linked to obesity and type 2 diabetes due to its ability
to regulate cellular metabolism, and it has been shown to improve insulin sensitivity by increasing the
expression of the insulin sensitive glucose transporter glucose transporter 4 (GLUT4) (Michael et al.
2001, Soyal et al. 2000).

In the brain, PGC-1a is expressed in several regions, including the olfactory bulb, cerebral cortex,
hippocampus, striatum and substantia nigra (SN) (Tritos et al. 2003). PGC-1a has a role in neuronal
development and function by affecting synaptic formation and maintenance (Cheng et al. 2012) as well
as in neuroprotection by upregulating the expression of antioxidant enzymes (St-Pierre et al. 2006) and
reducing inflammation (Nijland et al. 2014). PGC-1a has been implicated to have an important role in
neurodegenerative diseases such as PD, Huntington’s disease (HD), Alzheimer’s disease (AD),
amyotrophic lateral sclerosis (ALS) and in ischemic or excitotoxic insults (Cui et al. 2006, Qin et al.
2009, Zheng et al. 2010, Clark et al. 2011, Zhao et al. 2011, Puddifoot et al. 2012). In patients with PD,
PGC-10 has been shown to be downregulated (Zheng et al. 2010, Eschbach et al. 2015) and a
downregulation of PGC-1a has been shown to correlate with an increase in a-synuclein aggregation and
a higher vulnerability of dopaminergic neurons to a-synuclein oligomerization in mice (Eschbach et al.
2015, Ciron et al. 2015). Also, brain specific isoforms of PGC-1a has been found in human brain,
suggesting an important role of PGC-1a in neuronal function and neuroprotection (Soyal et al. 2012).

Trx2

' } Antioxidants

PGC-1a) —>¢ NRF1 )—  TFAM
= - Biogenesis

% o, — QRE2
} Fatty acid oxidation

Figure 5. Mitochondrial functions regulated by PGC-la. Figure modified form (Scarpulla 2011). PGC-1a,
peroxisome proliferator-activated receptor y coactivator-1o; Trx2, thioredoxin 2; SOD2, superoxid dismutase 2;
NRF, nuclear respiratory factor; ERR, estrogen related receptor; PPAR, peroxisome proliferator-activated receptor;
TFAM, mitochondrial transcription factor A.
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2.5.1. Regulation of PGC-1a gene expression

The transcription of PGC-1a can be regulated by a variety of mechanisms that vary between different
tissues. The level of PGC-1a is tightly regulated and influenced by both environmental signals such as
cold, fasting and physical activity, and cell-specific signals such as growth factors, hormonal signaling
and cell energy levels (Houten & Auwerx 2004, Handschin & Spiegelman 2006, Fernandez-Marcos &
Auwerx 2011, Lindholm et al. 2012). Figure 6 shows the regulation of PGC-1a gene expression.

These signals can activate different transcription factors that regulate the expression level of PGC-1a in
the cell. At the PGC-1a promoter, the transcription factors CREB and activating transcription factor 2
(ATF2) binds to the CRE site, MEF2 binds to the MEF2 site and FOXO1 binds to the insulin response
sequence (IRS), and all of these transcription factors enhance the transcription of PGC-1a (Puigserver
& Spiegelman 2003, Fernandez-Marcos & Auwerx 2011).

In the muscle, PGC-lo expression is regulated by Ca®/calmodulin dependent protein kinase IV
(CaMKIV) that activates CREB which binds to CRE, and p38 mitogen-activated protein kinase (p38
MAPK) that can activate MEF2 or ATF2. MEF?2 can also be activated by calcineurin A (CnA) in muscle
(Handschin et al. 2003, Fernandez-Marcos & Auwerx 2011). AMPK is also thought to increase the
expression of PGC-1a in muscle, although the mechanisms are unclear. In addition, insulin signaling
seems to be able to regulate PGC-1a expression in muscle (Fernandez-Marcos & Auwerx 2011). In
BAT, an increase in cAMP by the sympathetic nervous system via -adrenergic receptors activates
protein kinase A (PKA) that in turn can activate CREB (Fernandez-Marcos & Auwerx 2011). In the
liver, CREB is activated in response to glucagon that signals via cAMP (Herzig et al. 2001, Fernandez-
Marcos & Auwerx 2011). In white adipose tissue (WAT), PGC-1a can also regulate its own transcription
by coactivating the binding of PPARy to its promotor region in PGC-1a (Hondares et al. 2006), and
PGC-1a can bind to MEF?2 to regulate the expression in an auto-regulatory loop (Handschin et al. 2003).

In the brain, the transcription of PGC-1a can be repressed by Parkin interacting substrate (PARIS), a
substrate for the E3 ubiquitin ligase Parkin (Shin et al. 2011). Loss of Parkin function increases the
accumulation of PARIS, leading to a downregulation of PGC-1a expression (Shin et al. 2011, Castillo-
Quan 2011). Overexpression of PARIS leads to a decrease in mitochondrial biogenesis and a decline in
the mitochondrial pool in the cell (Stevens et al. 2015).
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\ /
CaMKIV / PKA
L MEF2 FOXO1 > ATF2 CREB o
MEF2 - o —> PGC-la
ot rs2" “IRs1

Figure 6. Regulation of PGC-1a transcription. Figure modified from (Fernandez-Marcos & Auwerx 2011). Akt,
Protein Kinase B/Akt; p38MAPK, p38 mitogen-activated protein kinase; f3-AR, B-adrenergic receptor; CaMKIV,
Ca?"/calmodulin dependent protein kinase IV; PKA, protein kinase A; MEF2, myocyte enhancer factor 2; FOXO1,
forkhead O-box; IRS, insulin response sequence ; ATF2, activating transcription factor 2; CREB, cyclic AMP
response element binding protein; CRE, cyclic AMP response element; PGC-1a, peroxisome proliferator-activated
receptor y coactivator-1o.
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2.5.2. Regulation of Cyclic AMP response element-binding protein (CREB)

Cyclic AMP response element (CRE)-binding protein (CREB) is a transcription factor regulating the
transcription of a wide variety of genes. It is one of the most widely expressed transcription factors and
the first transcription factor that was shown to be regulated by phosphorylation (Mayr & Montminy
2001, Lonze & Ginty 2002). In brain, CREB is involved in the regulation of learning and memory,
anxiety, neuronal plasticity, growth and survival, development of the nervous system and in
neurodegeneration by regulating specific gene expression in response to external stimuli (Johannessen
et al. 2004). CREB mediates the response to caloric restriction in neurons (Fusco et al. 2012) and PGC-
la expression has been shown to be regulated by CREB in patients with AD (Sheng et al. 2012). CREB
has also been shown to be involved in the neuroprotection in the 6-hydroxydopamine model of PD
(Chalovich et al. 2006, Ahmed et al. 2013).

CREB belongs to the CREB family transcription factors together with cAMP response element
modulator (CREM) and activating transcription factor 1 (ATF1). There is a high degree of similarity
between these transcription factors and they can all bind to the same cis-regulatory element CRE. In the
brain, there are a wide variety of genes that contains CRE sequences, including growth factors and genes
involved in neurotransmission, gene transcription and cellular metabolism (Mayr & Montminy 2001,
Lonze & Ginty 2002). Recruitment of the co-activators CREB-binding protein (CBP) and p300 after
phosphorylation of CREB at serine 133 strongly enhances CREB-dependent transcription (Johannessen
et al. 2004). CREB can also be phosphorylated at other serine residues, and it has been shown to be
phosphorylated at Ser98, Ser108, Ser111, Ser114, Ser117, Ser121, Ser129, Ser142, Ser143 and Ser156
having various effects on CREB activated transcription (Johannessen et al. 2004).

The activation of CREB in response to external stimuli can be mediated by the second messengers cAMP
or Ca** (Lonze & Ginty 2002, Paramanik & Thakur 2013). CREB can also be activated by other
pathways in response to growth factor signaling via receptor tyrosine kinase signaling or in response to
stress, such as the p38MAPK pathway, the ERK pathway and PI3-kinase/Akt signaling (Lonze & Ginty
2002). An increase in intracellular Ca®" causes Ca*" to bind to calmodulin (CaM) that can further activate
CaMKI, CaMKII and CaMKIV that all can phosphorylate CREB, although CaMKIV is the most
important Ca**-activated CREB kinase (Lonze & Ginty 2002).

Several protein phosphatases regulate phosphorylation of CREB either by directly dephosphorylating
CREB or by controlling the enzymatic activity of CREB kinases (Johannessen et al. 2004). During
fasting, an increase in glucagon leads to an increase in cAMP and activation of CREB with an induction
of the gluconeogenetic program via PGC-1a (Herzig et al. 2001).

The phosphorylation of CREB at Ser133 was originally shown to be mediated by activated PKA in
response to increased cAMP levels in the cell (Gonzalez & Montminy 1989). cAMP levels rise in cells
in response to adenylyl cyclase (AC) activity which is regulated by G protein coupled receptors (GPCR).
Arise in cAMP levels causes a conformational change of PKA and activates PKA (Lonze & Ginty 2002,
Kamenetsky et al. 2006, Steegborn 2014). AC is the enzyme that synthesizes cAMP from ATP in the
cell (Kamenetsky et al. 2006). There are nine transmembrane isoforms of AC that are directly activated
by G proteins to generate cAMP. In addition, cAMP can also be generated by the soluble AC that is
regulated by bicarbonate and Ca*" (Hanoune & Defer 2001, Kamenetsky et al. 2006). The expression of
different isoforms of AC varies depending on the tissue, with all nine transmembrane isoforms found in
the brain (Simonds 1999).
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2.5.3. Regulation of PGC-1a activity

The level of PGC-1a is tightly regulated in the cells in response to changes in energy levels (Handschin
& Spiegelman 2006). An increase in the expression of PGC-1la is associated with improvement in
metabolic function and has been shown to have beneficial effects in tissues with high metabolic rate
such as liver, muscle and brain (Handschin & Spiegelman 2006). Overexpression of PGC-1a in high
quantities has been reported to have unfavorable effects in brain by decreasing cell viability in
dopaminergic neurons (Ciron et al. 2012) and muscle by decreasing insulin sensitivity (Choi et al. 2008).
This highlights the importance to tightly regulate the expression of PGC-1a to maintain its beneficial
effects on metabolism (Lindholm et al. 2012).

The regulation of PGC-1a activity is mediated by its expression level but also by posttranslational
modifications such as phosphorylation, acetylation, ubiquitination, methylation and GlcNAcylation.
The posttranslational modifications affect the activity and stability of the protein or the interaction of
PGC-1a with other proteins such as the repressor pl60MBP (Canto & Auwerx 2009, Fernandez-Marcos
& Auwerx 2011).

PGC-1a can be phosphorylated by AMPK, p38 MAPK and Akt at different sites (Fernandez-Marcos &
Auwerx 2011). In addition to regulating the phosphorylation of PGC-10, AMPK can also induce PGC-
la transcription (Jager et al. 2007). The phosphorylation by AMPK increases the activity of PGC-1a
(Jager et al. 2007), whereas phosphorylation by Akt inhibits PGC-1a activity in response to insulin (Li
et al. 2007). The phosphorylation by p38 MAPK increases PGC-1a activity by increasing protein
stability and disrupting the interaction between PGC-la and its repressor pl60MBP in muscle
(Puigserver et al. 2003). The activation of p38 MAPK has also been shown to increase the transcription
of PGC-1a (Knutti et al. 2001).

Acetylation of PGC-10 also regulates the activity of the protein. The acyltransferase GCNS5 can acetylate
PGC-1a and inhibit its activity (Lerin et al. 2006), whereas the histone deacetylase SIRT1 deacetylates
PGC-10 and increases its activity (Rodgers et al. 2005, Rodgers et al. 2008). Both GCNS5 and SIRT1 act
as energy sensors in the cell, and therefore the energy demands of the cell affect the activity of PGC-1a
(Fernandez-Marcos & Auwerx 2011). GCNS is induced by caloric excess (Coste et al. 2008) whereas
SIRT1 is activated at low energy levels (Houtkooper et al. 2010). The regulation of PGC-1a acetylation
is shown in figure 7.

Ubiquitination of PGC-10a by the E3 ubiquitin ligase Skp1/Cullin/F-box-cell division control 4 (SCF4*)
leads to proteasomal degradation, thereby reducing the expression of the protein (Olson et al. 2008).
The methylation of PGC-1a by the protein arginine methyltransferase 1 (PRMT1) on the other hand
enhances PGC-la transcription (Teyssier et al. 2005). PGC-lo has also been shown to be
GlcNAcetylated by O-linked N-acetylglucosamine transferase (OGT), which leads to the stabilization
of PGC-1a (Housley et al. 2009, Ruan et al. 2012).
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Figure 7. PGC-1a regulation by high and low energy levels. Figure modified from (Fernandez-Marcos & Auwerx
2011). AMPK, AMP activated protein kinase; SIRT1, Sirtuinl; PGC-1a, peroxisome proliferator-activated
receptor y coactivator-1a.

2.5.4. Sirtuins

Mammalian Sirtuin family members are proteins with key roles in whole-body metabolic homeostasis
and longevity (Canto & Auwerx 2012, Guarente 2013). The Sirtuin family consists of seven paralogs,
SIRT1-SIRT7, that differ in their subcellular localizations as well as in their enzymatic activities (Canto
& Auwerx 2012). The localization of the different SIRT paralogs differs in the cell. SIRT1 is usually
nuclear, although it can be cytoplasmic in some cell types, SIRT2 is localized in the cytoplasm, SIRT3,
SIRT4 and SIRTS are mitochondrial proteins and SIRT6 and SIRT7 are nuclear (Alcain & Villalba 2009,
Canto & Auwerx 2012). The function also differs between the different paralogs, SIRT1 and SIRTS are
deacetylases, SIRT4 is a mono-ADP-ribosyl transferase, SIRT2, SIRT3 and SIRT6 show both activities
and SIRT?7 is thought to act as a deacetylase (Canto & Auwerx 2012).

2.5.4.1. SIRT1

SIRT1 activity changes in response to changes in energy requirements and is increased in situations of
energy or nutrient stress (Canto & Auwerx 2012). SIRT1 is the mammalian ortholog of the yeast silent
information regulator 2 (Sir2) that was first discovered as a regulator of lifespan (Canto & Auwerx 2012),
and it is a NAD" dependent class III histone deacetylase (Imai et al. 2000, Blander & Guarente 2004).
SIRT1 affects mitochondrial biogenesis and function by regulating the activity of PGC-1a (Rodgers et
al. 2005, Gerhart-Hines et al. 2007). SIRT1 has been implicated as a potential therapeutic target in
neurodegenerative diseases because of its ability to sense metabolic changes in the cell (Outeiro et al.
2008, Ng et al. 2015).

SIRT1 is expressed in response to nutrient availability (Rodgers et al. 2005). The transcription of SIRT1
can be regulated by CREB (Noriega et al. 2011, Fusco et al. 2012) and p53 depending on nutrient
availability (Kanfi et al. 2008). SIRT1 expression is induced by caloric restriction in different tissues
including brain, but the changes in SIRT1 expression during caloric restriction are tissue specific (Cohen
et al. 2004, Chen et al. 2008). SIRT1 can for example in response to caloric restriction activate fat
mobilization by repressing genes controlled by PPARY that mediate fat storage in the cell (Picard et al.
2004).
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During caloric restriction, NADH levels are decreased yielding an increase in the NAD'/NADH ratio,
and changes in NAD" levels act as a metabolic sensor leading to an increase in SIRT1 activation (Lin et
al. 2004, Houtkooper et al. 2010, Canto & Auwerx 2012). AMPK can also increase NAD™ levels by
enhancing fatty acid oxidation and thereby increase SIRT1 activity (Canto et al. 2009).

NAD" biosynthesis starts from the essential amino acid L-tryptophan but NAD" can also be synthesized
from other precursors that are taken up from the diet, such as nicotinic acid (NA), nicotinamide (NAM)
and nicotinamide ribosine (NR) (Houtkooper et al. 2010). The rate-limiting enzyme in the biosynthesis
of NAD" is NAM phosphoribosyltransferase enzyme (Nampt) that catalyzes the conversion of NAM to
NAM mononucleotide (NMN) (Revollo et al. 2004). The expression of Nampt is regulated by nutrient
restriction and cell stress, and Nampt levels as well as NAD" levels are increased during fasting (Yang
et al. 2007), providing NAD" for SIRT1 activity. At states of excess energy, NAM inhibits both Sir2
and SIRT1 in vitro (Bitterman et al. 2002).

SIRT1 can also be pharmacologically activated. RSV is the most potent naturally occurring SIRT1
activator but also other plant polyphenols that share structural similarity with RSV can activate SIRT1
(Alcain & Villalba 2009). Other small molecular compounds structurally unrelated to RSV has also been
shown to activate SIRT1 with similar effects on mitochondrial function (Villalba & Alcain 2012).

2.6. Resveratrol

Resveratrol (3,4’,5-trihydroxystilbene, RSV) is a naturally occurring compound with antioxidant and
anti-inflammatory properties that can be found in the skin of grapes and in red wine (Baur & Sinclair
2006, Sun et al. 2010). RSV is thought to be able to prevent or slow down the progression of several
different diseases, such as cancer (Jang et al. 1997), cardiovascular disease (Meng et al. 2014) and
metabolic syndrome (Mendez-del Villar et al. 2014).

RSV has been shown to be able to cross the blood-brain barrier (Wang et al. 2002) and in brain RSV is
thought to have a protective effect in several different neurodegenerative disorders such as ischemia,
PD, AD and ALS (Sun et al. 2010). In the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and
6-hydroxydopamine (6-OHDA) animal models of PD, RSV has been shown to have a protective effect
against striatal dopaminergic neuron degeneration which might be mediated by the antioxidant capacity
of RSV (Blanchet et al. 2008, Khan et al. 2010). RSV has also been reported to have neuroprotective
effects in excitotoxicity, after brain injury and in ischemia (Baur & Sinclair 2006, Ates et al. 2007, Della-
Morte et al. 2009).

The antioxidant effect of RSV is thought to be due to its properties as a scavenger of ROS (Leonard et
al. 2003). RSV has also been shown to increase the expression of mitochondrial antioxidants and thereby
reducing oxidative stress in cells (Fukui et al. 2010, Kairisalo et al. 2011).

The mechanism of action for RSV is still unclear, but RSV mimics caloric restriction in obese humans
(Timmers et al. 2011). In line with this, RSV has been shown to activate SIRT1 (Howitz et al. 2003,
Lagouge et al. 2006) and increase the activity of PGC-1a and its downstream genes such as NRF-1,
TFAM, UCP3 and UCP1, thus increasing mitochondrial function (Lagouge et al. 2006).

The structure of RSV is related to the synthetic estrogen diethylstilbestrol, and RSV has been suggested
to be an ER agonist (Gehm et al. 1997, de la Lastra & Villegas 2007) that can bind to both ERo and ERf3
(Bowers et al. 2000). The neuroprotective effect of RSV in ischemia could be mediated by the activation
of ER (Saleh et al. 2013).
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2.7. Fibroblast growth factors

Fibroblast growth factors (FGF) are a family of growth factors that are essential for embryonic
development and metabolic regulation. Human FGF family consisits of 22 members having intracrine,
paracrine or endocrine functions depending on the FGF (Itoh & Ornitz 2011). Of the FGFs, FGF20 has
been implicated to have a neuroprotective role in PD (Lindholm et al. 2015).

2.7.1. Fibroblast growth factor 21

Fibroblast growth factor 21 (FGF21) is a multifunctional metabolic regulator that belongs to the
fibroblast growth factor 19 subfamily together with FGF19 and FGF23. It was first found to be expressed
in the liver (Nishimura et al. 2000) and later reported to be expressed also in WAT (Muise et al. 2008),
BAT (Hondares et al. 2011), muscle (Izumiya et al. 2008) and pancreas (Johnson et al. 2009). Lacking
the heparin-binding domain that binds the protein to the extracellular matrix, FGF21 can function as an
endocrine hormone entering the circulation (Goetz et al. 2007). In the liver, FGF21 expression is induced
by PPARa during prolonged fasting (Galman et al. 2008) whereas in adipose tissue, FGF21 expression
is induced by PPARy (Muise et al. 2008). In the heart, FGF21 expression was recently shown to be
under the influence of the SIRT1 pathway (Planavila et al. 2015).

FGFs signal through the FGF receptor tyrosine kinase family that has four members, FGFR1-FGFR4.
In addition, there are splice variants for FGFR1, FGFR2 and FGFR3 encoded b and ¢, depending on the
isoform (Kuro-o 2008). FGF21 signals through the FGFR1c, 2c or 3c but fails to directly act with the
FGF receptors and requires the single transmembrane protein BKlotho as a cofactor for signaling
(Kharitonenkov et al. 2005, Ogawa et al. 2007).

FGF21 has been shown to be involved in the regulation of blood glucose levels, uptake of glucose in
adipocytes and regulation of body weight in rodents (Kharitonenkov et al. 2005, Badman et al. 2009,
Chau et al. 2010). Overexpression of FGF21 has been shown to extend lifespan in mice (Zhang et al.
2012). In addition, FGF21 has been linked to increased thermogenic activity (Hondares et al. 2010) and
it has been shown to increase the expression of mitochondrial genes and enhance mitochondrial function
in adipocytes (Chau et al. 2010).

The increase in mitochondrial function in adipocytes is mediated by activation of the AMPK-SIRT1-
PGC-10 pathway by increasing the concentration of NAD" (Chau et al. 2010). In the liver, FGF21 also
require PGC-1a for lipid metabolism (Potthoff et al. 2009). FGF21 can phosphorylate CREB in adipose
tissue, which contributes to an increase in PGC-1a expression (Wu et al. 2011), although there are also
studies indicating that FGF21 does not increase the expression of PGC-la but affects it via
posttranslational modifications (Fisher et al. 2012). Elevated levels of FGF21 in serum have been
suggested to be a biomarker of mitochondrial disease in humans (Suomalainen et al. 2011, Crooks et al.
2014)

FGF21 has been implicated to be a starvation hormone due to its effects on glucose and lipid metabolism
(Canto & Auwerx 2012, Woo et al. 2013) but elevated levels of FGF21 are found in humans with
metabolic syndrome (Zhang et al. 2008, Cuevas-Ramos et al. 2010), indicating that there is a possible
FGF21 resistance (Fisher et al. 2010).

FGF21 has not been studied extensively in the brain. It is known to pass the blood-brain barrier by
simple diffusion in physiologically relevant concentrations (Hsuchou et al. 2007, Liang et al. 2014), and
FGF21 has a neuroprotective effect against excitotoxicity injury in primary neurons (Leng et al. 2015).
It has also recently been shown to have a neuroprotective effect in hippocampal neurons in ageing mice
by increasing the activity of antioxidant enzymes and thereby reducing ROS (Yu et al. 2015).
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2.8. Peroxisome proliferator activated receptors (PPAR)

Peroxisome proliferator activated receptors (PPAR) are involved in the regulation of genes that regulate
adipogenesis, lipid metabolism, maintenance of metabolism and inflammation. They belong to the
nuclear receptor superfamily of ligand inducible transcription factors, and three PPARs are found in
mammals, PPARa, PPARP/S and PPARy. PPARSs regulate transcription by binding to PPAR-responsive
regulatory elements as heterodimers together with retinoid X receptors (RXR) (Ahmadian et al. 2013).

After ligand binding, the PPARs undergo conformational changes to allow the recruitment of co-
activator proteins (Yki-Jarvinen 2004). PGC-1a is a co-activator that binds upon activation to PPAR to
promote gene transcription (Puigserver et al. 1998). PPARs can regulate gene transcription either by
transactivation that is DNA-dependent and involves binding to PPAR response elements of target genes
or by transrepression that interferes with other transcription factor pathways in a DNA-independent
manner (Yki-Jarvinen 2004).

The function and tissue distribution of the different PPARs differs in vivo. PPAR« is expressed in the
liver, heart and BAT where it functions as an activator of fatty acid oxidation pathways, whereas
PPARP/S is expressed in many tissues and has a crucial role in key metabolic tissues such as the liver,
skeletal muscle and heart where it affects the fatty acid oxidation, and PPARYy is highly expressed in
adipose tissue where it regulates adipogenesis and functions as a modulator of whole-body lipid
metabolism and insulin sensitivity (Abbott 2009, Ahmadian et al. 2013, Corona & Duchen 2015).
Studies in knock out animals revealed PPARY to be important for the formation of adipose tissue (Barak
et al. 1999). In addition to adipose tissue, PPARY is also expressed in the gastrointestinal tract, kidney,
heart placenta, pancreas and brain (Dubois et al. 2000, Abbott 2009).

2.8.1. Peroxisome proliferator activated receptor y (PPARY)

Two different isoforms of PPARy has been found, PPARy1 and PPARYy2, which differ in size by 30
amino acids in the N-terminus (Tontonoz & Spiegelman 2008). PPARy1 is expressed in a variety of
tissues, but the expression of PPARY?2 is restricted to adipose tissue, although the expression of PPARYy2
can be induced in other tissue by a high fat diet (Vidal-Puig et al. 1996, Ahmadian et al. 2013).

Natural ligands for PPARYy are unsaturated fatty acids, eicosanoids, oxidized phospholipids and
nitroalkenes. The prostaglandin 15-deoxy-delta-12,14-prostaglandin J, (15d-PGJ,) is the most potent
and the most commonly used naturally occurring ligand for PPARy. Upon ligand binding, the
conformational change allows co-activators such as PGC-1la to bind and induce the transcription of
genes (Heneka & Landreth 2007, Chen et al. 2012, Corona & Duchen 2015).

The activity of PPARy can be regulated by posttranslational modifications such as phosphorylation,
SUMOylation, ubiquitination, GlcNAcylation or acetylation (Choi et al. 2014). Phosphorylation of
PPARy can either increase or decrease the activity depending on which site is phosphorylated and by
which signaling mechanism is involved (Choi et al. 2014). SUMOylation decreases the activity of
PPARYy and interestingly, FGF21 can decrease the SUMOylation of PPARy and thereby increase the
transcriptional activity of PPARy (Dutchak et al. 2012). Acetylation decreases the activity of PPARYy
and deacetylation of PPARy by SIRT1 can promote browning of WAT (Qiang et al. 2012).
GlcNAcylation is thought to decrease the transcription activity of PPARy (Ji et al. 2012), and
ubigqitination induces degradation of PPARy (Hauser et al. 2000).

In brain, PPARY has been found to be expressed in several different cell types such as neurons, astrocytes,
microglia and oligodendrocytes (Bernardo et al. 2000, Moreno et al. 2004, Bernardo et al. 2009). By
activating PPARy with different ligands, some beneficial effects preventing neurodegeneration has been
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observed. This has been thought to be due to the ability to reduce neuroinflammation (Schintu et al.
2009, Swanson et al. 2011) and some agonists has been shown to influence the expression of anti- and
proinflammatory cytokines in microglia (Pisanu et al. 2014). To further support the neuroprotective
effect of PPARYy in brain, treatment with PPARy antagonists has been shown to cause neuronal loss,
indicating the importance of PPARY in neuronal survival (Martin et al. 2012)

In addition to the ability to reduce neuroinflammation, PPARY agonists have also been shown to be
protective in the MPTP mouse model of PD by increasing the levels of antioxidant enzymes and
decreasing the amount of ROS (Martin et al. 2012) and by decreasing neuroinflammation (Carta et al.
2011). Other studies have also shown that by activating PPARY, the mitochondrial function has
improved in neuroblastoma cells (Corona et al. 2014, Chiang et al. 2014).

Thiazolidinediones (TZD) are PPARy agonists that increase insulin sensitivity and reduce free fatty
acids and triglycerides in the blood (Yki-Jarvinen 2004). TZD have been used in type 2 diabetes therapy
because of their beneficial effects on blood glucose and lipid content (Yki-Jarvinen 2004), and TZD can
also act by directly affecting mitochondria (Feinstein et al. 2005). Of the TZD, Troglitazone was the
first to be developed, but it has been withdrawn from the market because of hepatotoxicity (Yki-Jarvinen
2004). Rosiglitazone and Pioglitazone were also developed for use as type 2 diabetes drugs, but
Rosiglitazone has been withdrawn form market because of its adverse side effects and possible
involvement in heart failure, leaving Pioglitazone as the only available drug, although it does also have
potentially dangerous side effects (Consoli & Formoso 2013).

Of the TZDs, Pioglitazone has been shown to cross the blood-brain barrier (Chang et al. 2015), but there
is a debate whether Rosiglitazone does cross the blood-brain barrier or not (Landreth et al. 2008). Both
Rosiglitazone and Pioglitazone have been suggested to have a role in preventing neurodegeneration in
AD, but the results for Rosiglitazone are controversial. In animal models of PD, treatment with TZD
has been shown to have beneficial effects on neuroinflammation (Patrone et al. 2014).

In the attempt to reduce the negative effects of TZD, other PPARYy agonists have been developed, such
as N-(2-Benzoylphenyl)-L-tyrosine linked PPARY agonists, F12016, N-acetylfarnesylcysteine, T2384,
LT175 and the antibiotic ionomycin, and they have been found to have similar effects on adipogenesis,
insulin sensitivity and blood glucose level (Henke et al. 1998, Li et al. 2008, Bhalla et al. 2011, Zheng
et al. 2013, Gilardi et al. 2014, Liu et al. 2015). The PPARY agonist MDG548 has also been shown to
be neuroprotective by reducing neuroinflammation and increasing ROS defense in the MPTP model
(Lecca et al. 2015).

N-(2-Benzoylphenyl)-L-tyrosine linked PPARYy agonists were synthesized and tested for their ability to
bind PPARYy in in vitro assays, and some structurally novel PPARY agonists were identified. Of these
compounds, N-(2-Benzoylphenyl)-O-[2-(methyl-2-pyridinylamino)ethyl]-L-tyrosine hydrate (GW1929)
was found to be a potent selective PPARy agonist (Henke et al. 1998).

GW1929 was shown to have the same effect on blood glucose levels, free fatty acid and triglyceride
levels and glycosylated hemoglobin levels as well as the whole body insulin sensitivity than
Troglitazone in Zucker diabetic fatty rats (Brown et al. 1999). GW1929 was found to have a higher
potency and higher selectivity to bind to PPARy when compared to the TZD Troglitazone, and when
comparing the serum concentration of the drugs, GW1929 was more potent to reduce blood glucose
levels than Troglitazone (Brown et al. 1999). Although L-tyrosine-based PPARY ligands have a higher
potency to bind and activate PPARY, this does not translate into an improved antidiabetic efficacy
compared with the TZD (Picard & Auwerx 2002).

In brain, GW1929 has been shown to have a protective effect in ischemia-reperfusion. This protective

effect is thought to be because of its ability to reduce inflammation in the brain (Kaundal & Sharma
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2011, Kaundal & Sharma 2011). GW1929 has also been shown to protect against apoptosis in primary
neocortical cells (Wojtowicz et al. 2014).

2.9. Estrogen receptor

The steroid hormone estrogen mediates its function via the estrogen receptor o (ERa) and estrogen
receptor B (ERP) that are nuclear receptors involved in the regulation of many physiological processes
in humans, such as cell growth, reproduction and development (Tcherepanova et al. 2000, Jia et al.
2015). 17p-estradiol (E2) is the most potent ER ligand produced in the body, but the E2 metabolites
estrone and estriol have also been found to be weak agonists for ER (Heldring et al. 2007). In addition
to being a ligand for ERa and ER, estrogen can also signal via the G-protein coupled estrogen receptor
(GPER/GPR30) by non-genomic mechanisms (Kim et al. 2015). Abnormal function of the ERs can lead
to the development of a variety of different diseases, including cancer, metabolic and cardiovascular
diseses, neurodegeneration and inflammation (Jia et al. 2015).

ERa is mainly expressed in the uterus, ovary, breast, kidney, bone, WAT and liver whereas ER is found
in the ovary, central nervous system, cardiovascular system, lung, male reproductive organs, prostate,
colon, kidney and the immune system (Jia et al. 2015). In brain, both ERa and ERp are expressed in
adult rat with ER -containing cells being more widely spread throughout the brain than those expressing
ERa, but the expression pattern varies between gender and species (Kalita et al. 2005, Heldring et al.
2007).

E2 is the main endogenous ligand for ER, but in addition to estrogens, environmental contaminants such
as pesticides, xenoestrogens, polycyclic aromatic hydrocarbons and phthalates show affinity for the ER
(Bolger et al. 1998). Also phytoestrogens such as RSV (Gehm et al. 1997, de la Lastra & Villegas 2007)
that are found in plants have biologically relevant estrogenic action in humans (Heldring et al. 2007).
ER signaling can be blocked with either pure antagonists or by blocking estrogen synthesis. Tamoxifen
can act either as an ER agonist or antagonist depending on tissue (Krishnan et al. 2000, Jordan 2003),
whereas ICI 182 780 (fulvestrant) is a pure ER antagonist that binds and inhibits ER and also promotes
the degradation of the receptor (Van Den Bemd et al. 1999, Howell et al. 2000, Marsaud et al. 2003).

E2 has been shown to have beneficial effects in metabolic dysfunction and oxidative stress (Ahmed &
Hassanein 2012, Mauvais-Jarvis et al. 2013, Paterni et al. 2014). E2 has also been implicated to affect
mitochondrial biogenesis and decrease oxidative stress via GPR30 in cardiac muscle (Sbert-Roig et al.
2016). PGC-1a has been shown to be a coregulator of ER, further indicating the involvement of ER in
metabolic regulation (Tcherepanova et al. 2000).

ER has been implicated to have a role in neurodegeneration. ER has been shown to be protective by
mediating anti-inflammatory, antioxidant and neurotrophic effects (Lee et al. 2014). In AD, women have
a higher incidence than men, and the decline in estrogen levels are thought to have a role in the disease,
as the activation of ER is thought to protect agains amyloid  accumulation (Lee et al. 2014, Paterni et
al. 2014). PD is more common in men than women, implicating a neuroprotective role of estrogen in
the disease (Al Sweidi et al. 2012), and neuroprotective effects of E2 has been observed in the MPTP
and 6-hydroxydopamine models of PD (Callier et al. 2002, Ramirez et al. 2003, Murray et al. 2003, Liu
& Dluzen 2007). E2 has also been shown to enhance dopamine (DA) synthesis (Sarvari et al. 2014) and
to modulate both DA receptors and dopamine transporter (DAT) (Morissette & Di Paolo 1993, Bosse et
al. 1997, Landry et al. 2002). The changes in DAT and DA receptor density did not change the mRNA
levels, suggesting a non-genomic activity of E2 (Le Saux et al. 2006, Al Sweidi et al. 2012). In line with
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this, recent studies implicate that the neuroprotective effect of E2 could be mediated by GPR30 (Bessa
et al. 2015).

2.10. Mitochondria in neurodegeneration

Neurons have a high energy requirement in order to function correctly (Lin & Beal 2006). Even though
the brain in an adult human represents about 2% of the total body weight, it consumes about 20% of the
oxygen and calories that are consumed by the body (Raichle & Gusnard 2002). Energy consumption of
the brain depends on glucose and its complete oxidation in mitochondria via TCA cycle and electron
transport chain (Albarracin et al. 2012). In neurons, mitochondria produce not only ATP to meet the
energy requirements, but also TCA intermediates that serve as building blocks in the synthesis of the
neurotransmitters glutamate and GABA (Lettieri Barbato et al. 2012). Mitochondria can also control
neurotransmitter release by modulating the flux of Ca®* (Nunnari & Suomalainen 2012, Abeti &
Abramov 2015). The regulation of mitochondrial dynamics, biogenesis and mitophagy is needed to
maintain mitochondrial function in the cell and are crucial for functional recovery of neurons after injury
(Hagberg et al. 2014).

Mitochondrial dysfunction is implicated to have a role in the pathogenesis of several neurodegenerative
diseases, but it is debated whether mitochondrial dysfunction and oxidative stress are involved in the
onset of neurodegenerative diseases or if they are consequences of neurodegeneration (Mancuso et al.
2006). Mitochondrial dysfunction with failure to maintain energy levels and oxidative stress has been
implicated to have a role in PD, AD, HD and multiple sclerosis (MS) as well as in ALS (McCoy &
Cookson 2012, Guedes-Dias et al. 2015, Grimm et al. 2015, Haider 2015, Palomo & Manfredi 2015).

Mitochondrial dysfunction is strongly linked to PD where mutations in genes involved in mitochondrial
function are linked to the pathogenesis of the disease. Patients have also been reported to have a decrease
in complex I function in the respiratory chain and an increase in ROS production as well as an imbalance
in Ca® homeostasis, an increase in mtDNA damage and impaired mitochondrial quality control (McCoy
& Cookson 2012, Ryan et al. 2015).

In AD, oxidative stress is observed already at early stages of the disease. The production of Amyloid 3
plaques has been suggested to be enhanced by mitochondrial ROS production, and Amyloid § can induce
oxidative stress, neuroinflammation and disturbed Ca>" homeostasis which contributes to neuronal death.
Amyloid  has also been suggested to disturb mitochondrial dynamics resulting in an increase in
fragmented mitochondria (Grimm et al. 2015).

In HD, mutant Huntingtin (mHtt) causes excitotoxicity, synaptic dysfunction, defects in intracellular
transport, autophagy and mitochondrial dysfunction. mHtt is suggested to have direct interactions with
mitochondria giving rise to impaired Ca®" homeostasis, disrupted trafficking and fragmented
mitochondria and impaired mitophagy. mHtt is also thought to repress the transcription of PGC-1a,
further linking mitochondrial dysfunction to the pathogenesis of the disease (Guedes-Dias et al. 2015).

In ALS, mutations in SOD1 are found in 20% of the familial cases, strongly linking changes in the
antioxidant defence and ROS to the progression of the disease. Accumulation of abnormal mitochondria
has been observed in patients with ALS, and mitochondrial quality control is thought to be involved in
the pathogenesis of the disease. In ALS, the mitochondrial dysfunction contributes to defective
bioenergetics as well as changes in Ca®*" homeostasis and altered mitochondrial morphology and
impaired trafficking (Palomo & Manfredi 2015).

In patients with MS, oxidized DNA, lipid and protein molecules are found in the active MS lesions, and
mitochondrial dysfunction is thought to contribute to the loss of myelin sheets by increasing ROS
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production. Other sources of ROS are inflammation-induced production of ROS and free iron from
myelin sheets. Also, a high ratio of mtDNA mutations are observed in patients with MS, further
contributing to the loss of energy production and an increase in ROS in these patients (Haider 2015).

2.11. Parkinson’s disease

Parkinson’s disease (PD) is the second most prevalent neurodegenerative disorder after AD with a
prevalence of about 1% in people over 60 years of age (de Lau & Breteler 2006). The disease was first
described by James Parkinson in 1817 in An Essay on the Shaking Palsy where he described it as a
movement disorder (Parkinson 1817). The disease got its name “Parkinson’s disease” later by Jean-
Martin Charcot (Goetz 2011).

PD is an adult-onset neurodegenerative disease with the mean age of onset being 55 years and the
incidence increases with age from being 20/100 000 to 120/100 000 at age 70 (Dauer & Przedborski
2003). 95% of the cases are sporadic with a non-genetic cause and 5% are considered being familial or
genetically inherited (Fitzgerald & Plun-Favreau 2008). The incidence is about 1.5 times higher in men
than women (Twelves et al. 2003, Wooten et al. 2004).

The main neuropathological finding is the loss of dopaminergic neurons in substantia nigra pars
compacta (SNpc) and the projections to striatum, together with the presence of insoluble protein
inclusions called Lewy bodies (Dauer & Przedborski 2003, Wirdefeldt et al. 2011). The Lewy bodies
are proposed to first affect the lower brain stem or olfactory nucleus and from there spread throughout
the brain, which allows the pathology of the brain to be classified into different stages called Braak
stages (Braak et al. 2003). The onset of the disease is gradual and the earliest symptoms might be
unnoticed or misinterpreted for a long time (Lees et al. 2009). Clinical symptoms are resting tremors,
rigidity, bradykinesia and postural problems, although the symptoms vary between patients (Kansara et
al. 2013, Thenganatt & Jankovic 2014). The diagnosis of PD is usually clinical, and an autopsy is needed
for confirmation of the disease, since no validated biomarkers are currently available (Miller &
O'Callaghan 2015). At the time that symptoms develop approximately 50-60% of the dopaminergic
neurons in SN are lost and about 80-85% of the dopamine content in striatum is depleted (Wirdefeldt et
al. 2011). Non-motor symptoms that are suggested to be linked to PD include sleep disturbances,
olfactory dysfunction, neurobehavioral disturbances, constipation and other autonomic dysfunction (Wu
et al. 2011). Different subtypes of PD have been identified, including young-onset PD, late-onset PD,
postural instability and gait difficulty PD and tremor-dominant PD (Thenganatt & Jankovic 2014).

The etiology of PD is complex, and it is thought to involve both genetic and environmental factors
(Wirdefeldt et al. 2011). Ageing is a major risk factor for developing neurodegenerative diseases
(Rodriguez et al. 2015), but other risk factors such as head trauma (Harris et al. 2013), toxicant exposure
(de Lau & Breteler 2006), mitochondrial dysfunction (Schapira 2007, Schapira 2008), oxidative stress
(Segura-Aguilar et al. 2014, Blesa et al. 2015), type 2 diabetes, (Hu et al. 2007, Cereda et al. 2011,
Cereda et al. 2013), obesity (Hu et al. 2006) and accumulation of transition metals such as copper and
iron in SN that cause oxidative damage (Di Monte 2003) are linked to PD. Neuroinflammation is also a
possible cause of PD, with activated microglia contributing to the pathogenesis (Pisanu et al. 2014), and
a-synuclein aggregation and dysfunction of protein degradation are other possible causes of PD
(Spillantini et al. 1997, Malkus et al. 2009). Recent studies also suggest the involvement of the gut in
PD development (Derkinderen et al. 2014, Holmqvist et al. 2014, Scheperjans et al. 2015).
Neuroprotective factors that are linked to PD is lifelong high estrogen exposure (Lees et al. 2009, Gatto
et al. 2014), cigarette smoking, caffeine (Di Monte 2003, Lees et al. 2009) and the use of nonsteroidal
anti-inflammatory drugs (NSAID) (Chen et al. 2003). Several different genetic mutations have been
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linked to PD, among them mutations in a-synuclein, PINK1, Parkin, Leucine-rich repeat kinase 2
(LRRK?2), protein deglycase DJ1 (DJ1) and ATPase type 13A2 (ATP13A2) (Fitzgerald & Plun-Favreau
2008). Figure 8 shows a summary of potential causes of PD.

2.11.1. Parkinson’s disease therapies

The currently available medical treatment targets motor symptoms. Standard therapies include the
administration of the dopamine precursor levodopa (L-DOPA) together with a dopadecarboxylase
inhibitor and a catechol-O-methyltransferase inhibitor to prevent degradation of DA (Obeso et al. 2010).
L-DOPA is effective in reducing motor symptoms (Fahn & Parkinson Study Group 2005) but dyskinesia
has been reported to be a side effect of the treatment, affecting the quality of life (Chapuis et al. 2005,
Cenci 2014). Other therapies include administration of DA agonists, monoamine oxidase B (MAO B)
inhibitors, anticholinergics and antiglutamatergics or deep brain stimulation (Obeso et al. 2010). The
medical treatment of patients with PD usually starts when motor symptoms occur, but at this stage a
significant amount of neurons has already been lost. Therefore it would be of importance to find
biomarkers to be able to detect the disease and start the treatment earlier (Kansara et al. 2013). Clinical
trials have shown that the quality of life can be improved with early diagnosis combined with exercise
and appropriate therapy to treat motor symptoms as well as non-motor symptoms of PD (Jankovic &
Poewe 2012).

Several different approaches has been used to try to develop new drugs for treatment of PD targeting
mitochondrial dysfunction, endoplasmatic reticulum stress, protein aggregation and neuroinflammation
as well as the use of neurotrophic factors and neuropeptides (Lindholm et al. 2015). Antidiabetic drugs
have been shown to affect metabolism in the brain, as well as neuroinflammation and neuron
regeneration (Patrone et al. 2014). Naturally occurring polyphenols such as RSV has neuroprotective
effects by reducing oxidative stress (Sun et al. 2010), and neuropeptides such as pituarity adenylate
cyclase-activating peptide (PACAP) has been shown to have neurotrophic effects and protect against
neuroinflammation (Takei et al. 1998, Delgado et al. 2003, Makela et al. 2010).

Growth factors including FGF, paletelet-derived growth factor (PDGF) and vascular endothelial growth
factors (VEGF) have also been implicated to have a protective role in dopaminergic neuron degeneration
by promoting cell survival and neurogenesis as shown in animal models. These growth factors could
potentially have a role in the treatment of PD because of their ability to influence cell survival in PD
(Lindholm et al. 2015).

Neurotrophic factors have been studied as potential candidates for treatment of patients with PD because
of their ability to slow down the progress of symptoms of PD in in vivo models and they also show both
neuroprotective and neurorestorative properties (Voutilainen et al. 2015, Domanskyi et al. 2015). Of the
neurotrophic factors, the glial cell-line derived neurotrophic factor (GDNF) and neurturin (NRTN) are
the most studies ones and phase II clinical studies have been done, but GDNF did not show any clinical
benefit and NRTN showed only modest benefit which may be due to the very limited diffusion of the
proteins in the brain (Voutilainen et al. 2015). Cerebral dopamine neurotrophic factor (CDNF) and
mesencephalic astrocyte-derived neurotrophic factor (MANF) diffuse better in brain tissue than GDNF
(Domanskyi et al. 2015) and they have been shown to be neuroprotective by regulating endoplasmic
reticulum stress and the unfolded protein response inside the cell, and promote dopaminergic neuron
survival by acting on plasma membrane receptors. They have also been shown to have neuroprotective
effects in toxin induced animal models of PD (Lindholm & Saarma 2010).

28



2.11.2. Molecular mechanisms in Parkinson’s disease pathology

A number of different intracellular pathways have been implicated to contribute to the pathogenesis of
PD, but no single pathway has been able to explain the range of pathologies found in the brain of PD
patients (Winslow & Rubinsztein 2011). Molecular mechanisms underlying the cause of PD include
mitochondrial dysfunction, oxidative stress, Lewy body formation, endoplasmic reticulum stress,
impaired protein degradation and neuroinflammation (Malkus et al. 2009, Lindholm et al. 2015). Many
correlations have been established that oxidative stress is an underlying cause of PD, although
conclusive proof for this theory is lacking (Malkus et al. 2009). This theory is however supported by the
finding of an increased amount of oxidized proteins, lipids and DNA in post-mortem brain of PD patients
compared to age-matched disease-free subjects (Jenner & Olanow 1996).

Oxidative reactions derived from the production of ROS can induce both the formation of protein
inclusions and neurodegeneration, both being hallmarks of PD pathology (Malkus et al. 2009). An
increase in the rate of ROS production together with a decline in the efficiency of antioxidants to remove
ROS contribute to oxidation of cellular biomolecules such as proteins, lipids and DNA (Malkus et al.
2009). Protein degradation, lipid turnover and DNA repair serve as protective mechanisms to sustain
cellular homeostasis by repairing or removing oxidized biomolecules (Malkus et al. 2009).

Protein degradation serves as a defense mechanism against accumulation of toxic proteins which can
interfere with normal cellular function and viability (Betarbet et al. 2005). The ubiquitin-proteasome
system (UPS) and the autophagy-lysosome pathway (ALP) are the two major pathways responsible for
protein degradation in the cell (Rubinsztein 2006). Blocking of UPS and ALP pathways shows an
increase in the accumulation of a-synuclein aggregates in cells, indicating that protein degradation may
have an important role in PD pathology (Wang et al. 2015).

The UPS is the main pathway for short-lived protein degradation in the cytosol and nucleus and for
misfolded proteins in the endoplasmic rerticulum that accumulate during endoplasmic reticulum stress
(Ross & Pickart 2004, Rubinsztein 2006), and it is a pathway for detoxification of damaged proteins by
targeting them for degradation in the proteasome (Betarbet et al. 2005). Autophagy is induced in the cell
during conditions of stress, such as starvation (Rubinsztein 2006). Autophagy has an impact on several
pathways that have been implicated to be involved in neurodegeneration, as it is a pathway of protein
degradation as well as a way for disposal of dysfunctional mitochondria (Winslow et al. 2010).
Dysfunction of the UPS contributes to protein aggregation and increased levels of ROS in the cell
(Winslow & Rubinsztein 2011).

Neuroinflammation has been linked to the pathogenesis of PD with activated microglia in the SN
contributing to the loss of dopaminergic neurons. Activated microglia contribute to neuroinflammation
by secreting pro-inflammatory cytokines such as interleukin-1f, interferon-y and tumor necrosis factor
o (TNFa) (Ouchi et al. 2009). It has been suggested that aggregated a-synuclein contributes to the
activation of microglia in dopaminergic neurons, further implicating the role of neuroinflammation in
PD (Zhang et al. 2005). Microglia might therefore be a potential therapeutic target in PD which could
be modulated by neuropeptides such as PACAP or neurotrophic factors (Lindholm et al. 2015).

2.11.3. Genes involved in Parkinson’s disease

The finding of the first mutations responsible for PD showed that PD can be inherited (Polymeropoulos
et al. 1996), and further studies showed that mutations in other genes also were linked to the disease,
showing that PD is a genetically heterogeneous disease (Klein & Westenberger 2012). In addition to
causing the inherited form of PD, genetic mutations also contribute to 3-5% of the sporadic cases of the
disease (Klein & Westenberger 2012). The well validated genes linked to PD are listed in table 1.
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Of the well validated genes linked to PD, mutations in Parkin, PINK1 and DJ-1 are responsible of the
majority of autosomal recessive early-onset cases of PD (van der Merwe et al. 2015). Mutations in o-
synuclein and LRRK2 are found in the autosomal dominantly inherited form of PD (Sundal et al. 2012).

Locus Gene Function Disorder Inheritance

PARKI, SNCA Involved in synaptic vesicle ~ Early onset PD Autosomal dominant;

PARK4 formation sporadic

PARK2 parkin E3ligase Juvenile and early onset PD  Autosomal recessive;
sporadic

PARK6 PINK1 Mitochondrial kinase Early onset PD Autosomal recessive

PARK7 DIJ-1 Involved in oxidative stress Early onset PD Autosomal recessive

response

PARKS LRRK1 Protein kinase Late onset PD Autosomal dominant;
sporadic

PARK9 ATP13A2 P-type transport ATPase Kufor-Rakeb syndrome Autosomal recessive

Table 1. Well validated genes involved in PD. Modified from (Lesage & Brice 2009, Schulte & Gasser 2011, Klein
& Westenberger 2012, Lesage & Brice 2012). SNCA, a-synuclein; PINK1, PTEN induced putative kinase 1; DJ-
1,Protein deglycase DJ-1; LRRK2, Leucine rich repeat kinase 2; ATP13A2, ATPase Type 13A2.

Mutations in Parkin are responsible of the majority of the juvenile cases of PD (Lesage & Brice 2012).
Parkin is an E3 ubiquitin ligase and the identification of loss of function of this gene strongly implicates
the involvement of the UPS in the pathogenesis of PD (Rubinsztein 2006, Malkus et al. 2009). Parkin
also affects mitochondrial biogenesis by enhancing TFAM mediated transcription (Kuroda et al. 2006)
as well as cellular energy metabolism (Periquet et al. 2005), and in Parkin-mutant cells the mitochondrial
complex I activity has been shown to be reduced (Mortiboys et al. 2008).

Mutations in PINK1 are the second most common genetic cause of PD (Lesage & Brice 2012). PINK1
is a mitochondrial-associated protein that phosphorylates mitochondrial proteins in response to cellular
stress and thereby protects against mitochondrial dysfunction and apoptosis (Valente et al. 2004). PINK1
also has a role in autophagy by enhancing the basal and starvation-induced autophagy (Michiorri et al.
2010). Interestingly, PINK1 and Parkin function in a common pathway where PINK1 phosphorylates
Parkin that is recruited to mitochondria for mitophagy (Deas et al. 2011). This suggests that
mitochondrial quality control is of importance in the pathology of PD (Vives-Bauza & Przedborski
2011). Also, DJ-1 affects the mitochondrial quality control by interacting with the PINK1/Parkin
pathway in response to ROS (Joselin et al. 2012), and DJ-1 deficiency shows mitochondrial defects
contributing to oxidative stress-induced cellular death (Irrcher et al. 2010).

Mutations in a-synuclein have been implicated as a cause of PD (Polymeropoulos et al. 1997) and a-
synuclein has been shown to be the main component in Lewy bodies, the pathological hallmark for PD
(Spillantini et al. 1997, Mezey et al. 1998). Mutations and multiplications of a-synuclein contribute to
a dominantly inherited PD (Polymeropoulos et al. 1997, Singleton et al. 2003). a-synuclein can form
oligomers, fibrils and large aggregates in response to overexpression, exposure to changes in pH,
oxidative stress and by interacting with DA (Gallegos et al. 2015). Mitochondrial function has been
shown to be disrupted by the interaction of a-synuclein with the mitochondria, giving rise to cytochrome
¢ release, alterations in cellular Ca®" levels, an increase in ROS and a decrease in mitochondrial
membrane potential (Parihar et al. 2008, Parihar et al. 2009). a-synuclein has also been suggested to be
a transcriptional modulator of PGC-1a, thereby affecting mitochondrial function (Siddiqui et al. 2012).
The potential use of o-synuclein as a biomarker for PD has been implicated, and an increase in
phosphorylated a-synuclein/ a-synuclein ratio in cerebrospinal fluid has been found to correlate with
PD (Stewart et al. 2015).

Mutations in LRRK?2 are the most common genetic cause of late-onset PD (Zimprich et al. 2004, Paisan-
Ruiz et al. 2013). LRRK2 is a multifunction protein with kinase activity (Ryan et al. 2015), and
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mutations in LRRK2 have been shown to affect immune system cells, autophagy, trafficking of vesicles,
intracellular Ca®" levels, as well as a-synuclein phosphorylation (Cherra et al. 2013, Orenstein et al.
2013, Esteves et al. 2014). LRRK2 also affects mitochondrial function by regulating fusion/fission and
mitophagy (Ramonet et al. 2011, Cherra et al. 2013, Ryan et al. 2015).

Mutations in ATP13A2 have been suggested to be the cause of Kufor-Rakeb syndrome, a form of
autosomal recessive parkinsonism (Ramirez et al. 2006). ATP13A2 is expressed mainly in the brain
(Ramirez et al. 2006, Yang & Xu 2014) where it regulates lysosomal function (van Veen et al. 2014).
Loss of function mutations have been shown to result in accumulation of a-synuclein in neurons
(Usenovic et al. 2012), but also affecting the mitochondrial quality control, resulting in increased
oxidative stress (Gusdon et al. 2012, Grunewald et al. 2012).

In addition to the well-verified genes linked to PD, there are also other putative genes that have been
linked to PD (Lesage & Brice 2009, Klein & Westenberger 2012). Using genome wide association
studies, additional genes have been found to be associated with PD (Lesage & Brice 2012). The putative
genes linked to PD are listed in table 2.

Locus Gene Function Disorder Inheritance

PARK 3 Unknown Unknown Late onset PD Autosomal dominant

PARKS UCHLI Ubiquitin-protein hydrolase Late onset PD Autosomal dominant

PARKI10 Unknown Unknown Late onset PD Unclear

PARKI11 GIGYF2 Involved in cellular insulin and  Late onset PD Autosomal dominant
insulin-like ~ growth  factor
response

PARKI12 Unknown Unknown Late onset PD Risk factor

PARK13 Omi/HTRA2  Mitochondrial-targeted serine Late onset PD Autosomal dominant or
protease risk factor

PARK14 PLA2G6 A2 Phospholipase Early onset dystonia- Autosomal recessive

parkinsonism

PARKI15 FBXO7 Component of the E3 ubiquitin ~ Early onset parkinsonian-  Autosomal recessive
protein ligase complex pyramidal syndrome

PARKI16 Unknown Unknown Late onset PD Risk factor

PARK17 VPS35 Component of the retrograde Late onset PD Autosomal dominant
cargo-selective complex

PARK18 EIF4Gl Component of eIF4F complex Late onset PD Autosomal dominant
involved in the recruitment of
mRNA to the ribosome

GBA Beta-glucocerebrosidase Early onset PD Risk factor

Table 2. Putative genes linked to PD. Modified from (Lesage & Brice 2009, Schulte & Gasser 2011, Klein &
Westenberger 2012, Lesage & Brice 2012). UCHLI, ubiquitin carboxyl-terminal esterase L1; GIGYF2, GBR10
interacting GYF protein 2; Omi/HTRA2, serine protease HTRA2, mitochondrial; PLA2G6, phospholipase A2,
group VI; FBXO7, F-Box protein 7; VPS35, Vacuolar protein sorting-associated protein 35; EIF4G1, Eukaryotic
translation initiation factor 4 gammal; GBA, beta-glucocerebrosidase.

2.11.4. Role of mitochondria in Parkinson’s disease

Mitochondria have a central role in age-related neurodegenerative diseases, and mitochondrial
dysfunction is a common theme in these diseases. Many of the genes associated to the pathogenesis of
PD are also implicated to have a role in the mitochondrial function (Lin & Beal 2006). An impaired
energy metabolism and redox homeostasis are considered hallmarks of brain ageing, and therefore the
mitochondrial energy-transducing capacity is important to maintain neuronal function (Yin et al. 2014).
It is possible that the DA neurons that are lost in PD have specific energy requirements, which supports
the involvement of mitochondria in the pathogenesis of PD (McCoy & Cookson 2012, Pissadaki &
Bolam 2013). Midbrain neurons have also been shown to produce more H»O, in response to complex |
inhibition by rotenone, suggesting a higher vulnerability of these neurons to complex I dysfunction
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(Sanders et al. 2014). The mitochondrial mass differs between different neuronal types, and it has been
shown to be low in DA neurons in SN, which might contribute to the increased vulnerability of these
neurons (Liang et al. 2007). The genetic causes of PD are also strongly related to mitochondrial
dysfunction, with all well validated genes influencing the mitochondrial function in DA neurons (Ryan
et al. 2015). A meta-analysis done with patients with PD shows a decrease in the expression of PGC-1a
and mitochondrial genes. This data further supports the involvement of mitochondria in the pathogenesis
of PD (Zheng et al. 2010). Studies in mice shows that knocking out TFAM can give rise to PD-like
symptoms, further supporting the importance of mitochondria in PD (Ekstrand et al. 2007).

Oxidative stress due to an increase in the generation of ROS by mitochondrial dysfunction, DA
metabolism and neuroinflammation is closely related to the pathogenesis of PD (Hwang 2013). Studies
of post-mortem brain samples from patients with sporadic PD indicate that ROS are important in the
development of the disease (Jenner & Olanow 1996). The mitochondrial electron transport chain
generates most of the ROS (95-98%) produced in the cell during aerobic metabolism (Albarracin et al.
2012). The ROS production has been shown to have a correlation with the risk of developing
neurodegenerative diseases. Studies of certain continent-specific clusters of polymorphism termed
mtDNA haplogroups have revealed that partial uncoupling of mitochondria is linked to an increased
longevity and a decreased risk of neurodegeneration, partially by reduced ROS production (Tanaka
2002). Mitochondrial dysfunction is also linked to sporadic PD, the inhibition of complex I in the
respiratory chain is a central cause of sporadic PD by increasing ROS production, causing a-synuclein
aggregation, inhibition of the proteasome and causing neurons to be vulnerable to glutamate
excitotoxicity (Dawson & Dawson 2003, Hashimoto et al. 2003).

2.11.5. Generation of reactive oxygen species in dopaminergic neurons

ROS are generated as a byproduct in complex I of the respiratory chain, and under normal conditions
the cell’s defense mechanisms can take care of the excess ROS produced in the cell (Murphy 2009).
ROS are also needed for cellular mechanisms such as metabolic adaption, immune cell activation and
autophagy (Sena & Chandel 2012). ROS can also be generated by other mechanisms, such as DA
degradation (Guillot & Miller 2009, Dias et al. 2013) and by the Fenton reaction, where iron (Fe) and
H>0: generates the highly reactive ‘OH (Walling et al. 1975, Lipinski 2011, Kotiadis et al. 2014).

Neurons are dependent on iron as a cofactor for some enzymes involved in regulation of metabolism,
the electron transport chain and in the synthesis of neurotransmitters (Moos & Morgan 2004). An excess
of iron in neurons might contribute to the production of ROS, and in patients with PD the concentration
of iron in SN has been found to be higher than in controls, which could lead to neurodegeneration in PD
(Oakley et al. 2007, Dashtipour et al. 2015). In a Fenton reaction, iron and H,O, have also been found
to stimulate the aggregation of a-synuclein, further contributing to the pathogenesis of PD (Hashimoto
et al. 1999).

Environmental factors contribute to PD (de Lau & Breteler 2006) and exposure to heavy metals such as
iron, manganese, copper, lead or zink can lead to a generation of ROS in the brain (Lai et al. 2002). The
drug MPTP and the herbicide paraquat as well as the pesticide rotenone are mitochondrial complex I
inhibitors, contributing to the production of ROS in dopaminergic neurons that is associated with PD
(Betarbet et al. 2000).
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2.11.6. Dopamine synthesis and degradation
Dopamine (DA) is a neurotransmitter that controls many functions, such as movement, cognition, mood
and reward (Vaughan & Foster 2013). DA is synthesized in the cytosol from the amino acid tyrosine in
two steps; first tyrosine is hydroxylated to L-DOPA by tyrosine hydroxylase (TH) in a reaction that
requires oxygen, and in the second step, L-DOPA is decarboxylated to form DA by aromatic amino acid
decarboxylase (AADC) (Segura-Aguilar et al. 2014).

TH is the rate limiting enzyme in the synthesis of the catecholamines DA, epinephrine and
norepinephrine, catalyzing the transformation of tyrosine to L-DOPA (Daubner et al. 2011). TH is
activated by phosphorylation at four different Serine residues by a variety of protein kinases (Dunkley
et al. 2004) and TH catalyses the hydroxylation of tyrosine to L-DOP A together with tetrahydrobiopterin
(BH4), O, and Fe** (Dunkley et al. 2004). DA, epinephrine and norepinephrine are all able to inhibit
TH activity (Daubner et al. 2011) and overexpression of soluble a-synuclein has been shown to reduce
the activity of TH in vitro, suggesting that the loss of soluble a-synuclein could contribute to increased
synthesis of DA and its metabolites (Perez et al. 2002).

The synthesized DA is immediately taken up into monoaminergic synaptic vesicles by vesicular
monaomine transporter 2 (VMAT?2) that is localized in the membranes of the vesicles (Segura-Aguilar
et al. 2014). The uptake of DA into vesicles prevents the accumulation of DA in the cytosol as well as
the oxidation of DA into dopamine o-quinone in a reaction that generates superoxide radicals (Guillot
& Miller 2009, Dias et al. 2013). The o-quinone formed can be further oxidized and the products formed
can affect cellular processes that are linked to PD. These processes include mitochondrial dysfunction
by interfering with complex I and III in respiratory chain and the oxidative phosphorylation in complex
V, stabilizing protofibril formation of a-synuclein, preventing the function of DJ-1, affecting protein
degradation by interfering with the proteasome system and by inducing oxidative stress (Segura-Aguilar
et al. 2014). DA oxidation also leads to the formation of neuromelanin, a dark pigment that is composed
of a melanic structure bound to peptides and lipids (Segura-Aguilar et al. 2014), and high levels of
neuromelanin in SN is linked to an excess of DA in the cytosol (Zucca et al. 2014).

Upon stimulation, DA is released into the intersynaptic space to interact with postsynaptic DA receptors.
DA clearance from the intersynaptic cleft is mediated by DAT that is localized in the membrane of
dopaminergic neurons (Segura-Aguilar et al. 2014). The reuptake of DA is another source of cytosolic
DA that is also stored in vesicles by VMAT?2 (Segura-Aguilar et al. 2014).

In the cytosol, DA can be degraded by deamination by the enzyme monoamine oxidase (MAO) to form
3.4-dihydroxyphenylacetaldehyde, NH3 and H,O,. In a second step, aldehyde dehydrogenase forms 3,4-
dihydroxyphenylacetic acid (DOPAC) in a reaction that requires NAD" (Segura-Aguilar et al. 2014).
Two different isoforms of MAO are found in brain, MAO A is mainly expressed in catecholaminergic
neurons (Thorpe et al. 1987) and MAO B is found in serotonergic and histaminergic neurons, astrocytes
and radial glia (Kumar & Andersen 2004). MAO are found at the outer membranes of mitochondria in
neurons and glial cells and they are the primary enzymes involved in the degradation of biogenic amines
such as catecholamines in the brain, thereby influencing the concentration of neurotransmitter amines
(Kumar & Andersen 2004). Inhibition of MAO B is used as a therapeutic approach to restore DA in
neurons in patients with PD, both as monotherapy and in combination with L-DOPA (Robakis & Fahn
2015). The catalysis of substrate by MAO B gives rise to H,O, contributing to oxidative stress in the
cells (Kumar & Andersen 2004). MAO B also catalyzes the formation of 1-methyl-4-phenylpyridinium
(MPP") from MPTP, and therefore it has an important role in the MPTP-induced degeneration of
dopaminergic neurons (Heikkila et al. 1984).

DA can also be degraded by catechol-ortho-methyltransferase (COMT) that methylates DA to yield 3-
methoxytyramine (3-MT). The same enzymes that degrade DA then further processes 3-MT by
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oxidative deamination by MAO to yield 3-methoxy-4-hydroxyphenylacetaldehyde that is further
oxidized by aldehyde dehydrogenase to yield homovanillic acid (HVA). COMT can also catalyze the
formation of HVA from DOPAC (Segura-Aguilar et al. 2014).

Neurotoxins have been implicated to affect DA flux in the cell. Rotenone seems to affect the DA
compartmentalization whereas paraquat is associated with DA breakdown into metabolites (Qi et al.
2014). MPP" in turn seems to affect the MAO activity and increasing the level of DA in the cytosol
(Choi et al. 2015).

2.11.6.1. Dopamine transporter

Dopamine transporter (DAT) is a plasma membrane glycoprotein that translocates released DA from
the extracellular space into the presynaptic neuron (Vaughan & Foster 2013) and thereby terminates the
action of DA on the DA receptors (Miller et al. 1999). Once inside the cell, DA is immediately packed
into vesicles by VMAT?2 (Vaughan & Foster 2013). The overall transport capacity of DAT depends on
its surface density which is regulated by posttranslational modifications (Vaughan & Foster 2013). The
expression levels decrease with age (Salvatore et al. 2003, Cruz-Muros et al. 2009), and in patients with
PD, the expression of both DAT and VMAT?2 has been found to be reduced (Harrington et al. 1996).

The transcription of DAT has been suggested to be regulated by the nuclear receptors Nurrl and ERRy
(Sacchetti et al. 2001, Lim et al. 2015). The expression level of the protein has been shown not to
correlate with mRNA levels, indicating that there is a translational regulation of protein expression
(Gonzalez-Hernandez et al. 2004). Posttranslational modifications are also important for protein
function, and DAT activity has been shown to be dependent on its glycosylation status with the
glycosylated form being more efficient in DA transport (Li et al. 2004). The expression pattern of
glycosylated DAT in the human brain shows a correlation with neuron degeneration (Afonso-Oramas et
al. 2009). DAT activity can also be modulated by other posttranslational modifications, binding partner
interactions and by cholesterol and membrane raft association to allow neurons to modulate the uptake
by DAT (Vaughan & Foster 2013). The posttranslational modifications include phosphorylation,
palmityolation and ubiquitination (Vaughan & Foster 2013). Interestingly, a-synuclein can interact with
DAT, reducing dopamine uptake (Wersinger & Sidhu 2003).

Many toxic substances are substrates for DAT because of the resemblance with DA, and therefore toxic
substances can accumulate in dopaminergic neurons (Miller et al. 1999). The neurotoxin MPTP that has
been converted to MPP* by MAO B in glial cells can be transported into dopaminergic neurons by DAT
(Bove & Perier 2012). DAT is required for MPTP toxicity, as mice lacking DAT do not show any
alteration in dopaminergic neuron viability in MPTP treated or untreated mice (Gainetdinov et al. 1997),
while mice over-expression DAT are highly sensitive to MPTP treatment (Masoud et al. 2015). There
is also a correlation with DAT expression and the cellular damage caused by MPTP (Sanghera et al.
1997), although the uptake of MPTP into vesicles by VMAT?2 is also of importance in combating MPTP-
induced neurotoxicity (Gainetdinov et al. 1998).

Since DAT is exclusively found in dopaminergic neurons, it serves a good marker for dopaminergic
neurons (Miller et al. 1999) and in vivo, DAT imaging is a potentially useful marker for nigrostriatal
dopaminergic neuron degeneration (Kraemmer et al. 2014). It seems that DAT is of importance in
dopaminergic cell survival, although an increase in DA uptake by DAT can lead to oxidative stress and
neuronal loss in neurons that routinely handle DA (Masoud et al. 2015).
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Figure 8. Summary of causes of Parkinson’s disease. Modified from (Lotharius & Brundin 2002, Malkus et al.
2009, Blesa et al. 2015).

2.11.7. Animal models of Parkinson’s disease

Animal models are used as tools to study the pathogenesis of PD in order to increase the knowledge of
molecular mechanisms leading to the degeneration of dopaminergic neurons (Blesa & Przedborski
2014). Animal models have been able to replicate almost all the hallmarks of PD including oxidative
stress and dopaminergic neuron degeneration, and have been useful for testing new strategies for
neuroprotection or neuroregeneration (Blesa et al. 2012).

The currently existing animal models can be divided into two main groups, toxic and genetic models
(Blesa et al. 2012, Blesa & Przedborski 2014). The neurotoxins MPTP, 6-OHDA, rotenone and paraquat
cause irreversible symptoms of PD and share the common feature of causing dopaminergic neuron
degeneration and oxidative stress. Of these, MPTP and 6-OHDA are the most commonly used (Blesa et
al. 2012, Blesa & Przedborski 2014). Inhibitors of the ubiquitin-proteasome system and autophagy such
as Lactacystin and MG-132 also mimic symptoms of PD in rodents (Xie et al. 2010).

The genetic models include mutations in genes linked to PD such as a-synuclein, LRRK2, PINKI,
Parkin, DJ-1 and ATP13A2. The genetic models may simulate the mechanisms underlying the familial
form of PD better, but there are often phenotypes that are quite different than the human conditions
(Blesa & Przedborski 2014). The MitoPark mouse model with TFAM knocked out in DAT expressing
neurons has also been shown to be a useful tool in PD showing symptoms that develop slowly with age
(Ekstrand et al. 2007, Galter et al. 2010).

2.11.7.1. The 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)

The 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) model is a widely used model to study PD
(Meredith & Rademacher 2011, Blesa & Przedborski 2014). MPTP was discovered in 1983 as a by-
product in the attempt to synthesize the synthetic heroin analog 1-methyl-4-phenyl-4-propionpiperidine
(MPPP). MPTP is a lipophilic molecule that can cross the blood-brain barrier, producing irreversible
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symptoms of PD in humans including all the characteristic symptoms such as tremor and rigidity
(Ballard et al. 1985), although MPTP treatment of monkeys did give rise to increased a-synulcein levels
but not Lewy body formation (Halliday et al. 2009). MPTP has been used to model PD in several
different species, and the most common are mouse and monkey, although the choice of mouse strain
should be done carefully as different mouse strains react differently to the MPTP treatment (Bove &
Perier 2012). Interestingly, rats have been shown to be resistant to MPTP treatment (Chiueh et al. 1984).

MPTP is metabolized to the actual toxin MPP" in a two-step reaction in glial cells containing MAO B
that converts MPTP to 1-methyl-4-phenyl-2,3,dihydropyridinium (MPDP). MPDP is further oxidized
to MPP" and released to the extracellular space from where it enters the dopaminergic neurons via DAT,
making the dopaminergic neurons vulnerable to MPP" (Smeyne & Jackson-Lewis 2005, Meredith &
Rademacher 2011, Bove & Perier 2012). Once inside the dopaminergic neuron, MPP* can accumulate
in synaptic vesicles via the vesicular monoamine VMAT?2 (Speciale et al. 1998) or in the mitochondrial
matrix by diffusion through the IMM where it acts by inhibiting complex I in the respiratory chain
(Smeyne & Jackson-Lewis 2005) as shown in figure 9.

The loss of dopaminergic neurons after exposure to MPP™ is thought to be due to an increase in ROS
production (Cleeter et al. 1992, Lotharius & O'Malley 2000, Obata et al. 2001). Both the inhibition of
complex I by MPP" and the accumulation of MPP" into vesicles contribute to the increase in ROS
production. Complex I inhibition reduces the energy production in dopaminergic neurons and generates
an excess production of ROS (Cleeter et al. 1992, Wu et al. 2003), whereas MPP" accumulation in
vesicles causes displacement of DA from the vesicles to the cytoplasm or the extracellular space where
it can undergo oxidation and produce ROS (Lotharius & O'Malley 2000, Obata et al. 2001).

2.11.7.2. The rotenone model

Rotenone has been used as a model for PD in rat (Betarbet et al. 2000) and in mice (Pan-Montojo et al.
2010). Rotenone is commonly used as a pesticide and because it is a hydrophobic compound it can pass
cell membranes easily (Talpade et al. 2000, Betarbet et al. 2000). Rotenone treatment induces symptoms
of PD such as loss of motor function and degeneration of dopaminergic neurons in SN (Blesa et al.
2012), and it can give rise to a-synuclein accumulation and Lewy body formation in long-term treatment
with a low dose in rat and mice (Betarbet et al. 2000, Pan-Montojo et al. 2010).

Rotenone causes dopaminergic neuron degradation by blocking complex I in the mitochondrial
respiratory chain (Betarbet et al. 2000) and increases the production of ROS (Radad et al. 2006) (figure
9). Although rotenone is not specific for dopaminergic neurons, these neurons are highly sensitive to
rotenone toxicity (Ahmadi et al. 2003). The oxidative damage caused by complex I inhibition is thought
to contribute to cell death in rotenone-treated dopaminergic neurons (Testa et al. 2005) rather than ATP
depletion (Betarbet et al. 2000, Sherer et al. 2003). Also, DA could contribute to cell degeneration in
rotenone treated dopaminergic neurons by increasing the production of ROS in the cell (Sakka et al.
2003, Sai et al. 2008). The antioxidant a-tocopherol has been shown to protect dopaminergic neurons
against rotenone-induced cell degeneration, further supporting the theory that rotenone-induced cell
degeneration is due to an increase in ROS (Sherer et al. 2003).
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Figure 9. Mechanism of action of the neurotoxins MPTP and rotenone in PD. Modified from (Bove & Perier 2012).
MPTP, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine; MPP*,  l-methyl-4-phenylpyridinium; MAO B,
monoamine oxidase B; DAT,dopamine transporter; VMAT2, vesicular monoamine transporter 2; DA, dopamine;
ROS, reactive oxygen species.
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3. AIMS OF THE STUDY

The overall aim of the study was to investigate the neuroprotective effects of PGC-1a during oxidative
stress in dopaminergic neurons. The aim was also to search for compounds that could affect the
expression of PGC-1a and be beneficial for dopaminergic neuron function and survival by modulating
mitochondrial function. Compounds that are known to regulate metabolism in other tissues were used
as potential candidates in the search for regulators of PGC-1a expression and activation in dopaminergic
neurons.

The specific aims were:

1) To clarify the neuroprotective effect of overexpressing PGC-la in mouse nigrostriatal
dopaminergic neurons against MPTP induced cell death.

1) To clarify the neuroprotective effect of resveratrol in dopaminergic neurons in vivo and in
vitro.

110) To clarify the effect of FGF21 on PGC-1a expression and mitochondrial function in human
dopaminergic neurons.

V) To study the mechanism of the regulation of PGC-1a expression by the PPARY agonist
GW1929 and the effect on mitochondrial function in human dopaminergic neurons.
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4. MATERIALS AND METHODS

4.1. Animal experiments (I, II)

All animal experiments were approved by the local ethical committee and accomplished in accordance
with the European Communities Council Directive (86/609/EEC). Adult male and female C57BL/6
mice were obtained from local stocks. Female mice were used independently of estrous cycle (II).

Generation of PGC-1o. transgenic mice:

To generate PGC-1a transgenic (TG) mice (I) the PGC-1a. cDNA with a Flag-tag was cloned into the
Thy1.2 expression cassette with the Thy1.2 promoter driving the PGC-1a transgene expression in brain
neurons. The transgenic mice were generated at the Uppsala Transgenic Facilities at Uppsala University,
Sweden using standard techniques. The genetic background of the mice was CBA x C57BL/6 and they
were backcrossed to C57BL/6 for several generations to produce stable PGC-1a transgenic mouse lines.
Controls were obtained from the same breeding.

Drug treatments:

MPTP treatment. The MPTP treatment was done by injecting three times 14 mg/kg MPTP
intraperitoneally (i.p.) at the time points 0 h, 1.5 h and 3 h. A fourth injection using 7 mg/kg MPTP was
given at the time point 4.5 h (I).

RSV treatment: 20 mg/kg RSV was first dissolved in 50% DMSO/50% ethanol, and then diluted in
saline to a final volume of 0.2 ml and injected i.p. Mice receiving cotreatment with RSV and MPTP
were pretreated with RSV 30 min before first MPTP injection (I). Additional treatments with RSV were
done 12 h, 24 h, 48 h and 72 h after the first MPTP treatment, and mice were sacrificed 7 days after the
first MPTP injection. Mice receiving RSV treatment for the analysis of DAT expression were injected
daily with 20 mg/kg RSV i.p. for four days. Brains were collected eight days after the first injection (II).

Tamoxifen treatment: 1 mg/kg Tamoxifen dissolved in ethanol and diluted in sesame oil to the volume
50 pl was injected subcutaneously (s.c.). When mice were cotreated with Tamoxifen and RSV, they
were pretreated with Tamoxifen for 1.5h followed by the RSV treatment. The treatment was done for
four following days, and the mice were sacrificed 8 days after the first treatment (II).

ICI 182,780 treatment: 2 mg/kg, ICI 182, 780 was injected s.c. Mice receiving co-treatment with RSV
were pretreated with ICI 182,780 followed by RSV treatment after 1.5 h. The treatment was repeated
for four following days, and the brains were collected 8 days after the first treatment (II).

4.2. Cell cultures (I-1V)
Cell types used in this work are listed in table 3:

Cell type Origin Publication
MESC2.10 human 0, 111, IV
SN4741 mouse LI

PC6.3 rat I

Primary glial cells rat it

Huh7 human it

Table 3. List of cell types used in experiments.
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Human MESC2.10 cells

Human mesencephalon neuronal precursor cells (MESC2.10) were cultured in poly-lysine (Sigma)
coated flasks in proliferation medium containing Dulbecco's Modified Eagle Medium (DMEM)/F12
medium (Gibco) supplemented with B27 (Gibco), penicillin-streptomycin and human basic FGF
(Peprotech). For differentiation, cells were plated on poly-lysine and laminin (Sigma)-coated plates in
proliferation medium with a change to differentiation medium containing DMEM/F12, B27, penicillin-
streptomycin and 1 pg/ml tetracyclin (Sigma) the following day. Cells were differentiated 5 days before
treatment and fresh medium was added every second day.

Mouse SN4741 cells

Mouse SN4741 dopaminergic cells were cultured in DMEM containing phenol red in the presence of
10% fetal calf serum and penicillin-streptomycin. One day before experiments, the medium was changed
to DMEM supplemented with B27 for experiments with estrogen receptor. Cells were treated with 10
uM RSV and 1 pM 17f-estradiol alone or in combination with 2 uM ICI 182,780 to inhibit ER.

Rat primary glial cells

Rat primary glial cells were prepared from postnatal day 1-2 brain cortex by dissociating and washing
the tissue by centrifugation. Cells were resuspended in DMEM/F 12 containing 10% fetal calf serum and
penicillin-streptomycin and cultured for up to three weeks with an addition of medium two times a week.
Cells were lysed for Western blot analysis.

Human Huh?7 cells
Human Huh7 hepatic cells were cultured in Minimum Essential Medium (MEM) supplemented with
10% fetal calf serum and penicillin-streptomycin. Cells were lysed for Western blot analysis.

Rat PC6.3 cells
Rat PC6.3 cells were cultured in RPMI-1600 medium supplemented with 5% fetal calf serum and 10%
horse serum, 100 mM Na-glutamine and penicillin-streptomycin.

4.3. Western blotting (I-IV)

MESC2.10 cells or tissue from mouse brain was washed with ice-cold phosphate buffered saline (PBS)
and lysed in RIPA buffer (150 mM NacCl, 1% NP-40, 0.25% sodium deoxycholate, | mM EDTA and
50 mM Tris-HC1 pH=7.4 ) with an addition of 1% sodium dodecyl sulfate (SDS) and protease inhibitor
cocktail (Roche). 30 pg of protein was run on SDS-PAGE, transferred to nitrocellulose membrane and
blocked in 5% nonfat milk- TBS- 0.1% Tween 20 (TBS-T) for 1 h in room temperature (RT). The
primary antibody was diluted in 5% nonfat milk- TBS-T and added to the membrane overnight in +4°C.
The following day the membrane was washed three times with TBS-T and the appropriate HRP
conjugated secondary antibody was added for 1 h at RT. Primary antibodies are listed in table 4.
Densitometric analysis was done using ImagelJ software.

4.4. Immunoprecipitation (I, III, IV)

Immunoprecipitation was done using Protein G agarose for MESC2.10 cells and Sepharose A for
SN4741 cells. Cells were lysed in RIPA buffer supplemented with protease inhibitor cocktail. The
lysates were prepurified with Protein G agarose (Roche) or Sepharose A and incubated with 2 pg of
PGC-10 antibody over night. 50 pl of Sepahrose A was added for 2 h or 50 pl of Protein G agarose was
added for 6 h to bind immune complexes. Beads were washed three times with RIPA buffer. The beads
were boiled and proteins subjected to immunoblotting using anti-acetylated lysine or anti-PGC-1a
antibodies.
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4.5. Immunocytochemistry (IV)

Differentiated cells were fixed with 4% paraformaldehyde (PFA), 20 min RT and blocked for 1 h using
5% BSA in PBS/0.1% Triton-X100 (PBS-Tx). Anti-DAT (1:200, Novus Biologicals) was added and
the cells were incubated o/n at +4°C. The following day, cells were washed with PBS-T and secondary
Alexa 594 fluorescent antibody (1:500, Invitrogen) was added for 1h at RT. The cells were washed and
mounted with Mowiol mounting media (Sigma). Images were captured using fluorescent microscope
Leica DM4500B.

Target protein ~ Method  Publication Supplier Dilution Species
nr
Acetylated lysine WB 11, IV Cell Signaling Technology 1:1000 Mouse
Catalase WB I Abcam 1:500 Rabbit
COX 1V WB 11, III Abcam 1:2000 Mouse
DAT WB, IHC LI Santa Cruz Biotechnology 1:100-1:200 THC, Rat
1:800 WB
DAT WB, ICC LIV Novus Biologicals 1:500 WB Rabbit
1:200 ICC
DYKDDDDK Tag  WB, IHC I Cell Signaling Technology 1:1000 WB Rabbit
FGF21 WB I Novus biologicals 1:2000 Rabbit
HO-1 WB 1T Stressgen 1:500
Nampt/PBEF WB 111 Abcam 1:1000 Rabbit
NeuN THC I Chemicon 1:300 Mouse
NRF1 WB I Molecular probes 1:1000 Rabbit
NRF1 WB v Abcam 1:1000 Rabbit
PGC-la WB, IP 111, IV Calbiochem 1:1000-1:2000 Mouse
PGC-la WB I Cell Signaling Technology 1:1000 Rabbit
SIRT1 WB I, IV Cell Signaling Technology 1:1000 Mouse
SIRT1 WB I Abcam 1:2000 Goat
SOD1 WB I Santa Cruz Biotechnology 1:5000 Rabbit
SOD2 WB 1L, 111, IV AbFrontier 1:5000-1:30000 Mouse
TFAM WB 11, IvV Abcam 1:1000 Rabbit
TH WB, IHC LI Chemicon 1:1000 THC, 1:2000
WB
Trx2 WB 11, 11T AbFrontier 1:1000 Rabbit
XIAP WB I BD Bioscience 1:5000 Mouse
B-Actin WB 11, 11, IV Sigma 1:2000-1:5000 Rabbit
B-Actin WB 1 Santa Cruz Biotechnology 1:6000 Rabbit
TH IHC 1I Covance Mouse
TH WB,IHC, I, 11, IV Cell Signaling Technology 1:1000 WB Rabbit
ICC 1: 500 IHC
1:500 ICC
p-CREB (Ser133) WB v Cell Signaling Technology 1:1000 Rabbit
CREB WB v Cell Signaling Technology 1:1000 Rabbit

Table 4. Antibodies with dilutions used in experiments.

4.6. Immunohistochemistry (I, II)

Frozen sections:

Brains were fixed in 4% PFA in PBS for three days and immersed in 10% sucrose solution for one day
and 20% sucrose for an additional day. Brains were then frozen in cooled isopentane. 20 pm thick
sections were washed in PBS followed by treatment with 0.4% hydrogen peroxidase in PBS for 20 min.
The sections were washed in PBS and blocked in 5% BSA-PBS-Tx for 10 min. Primary antibody was
added and incubated over night at +4°C. The following day the sections were washed and incubated
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with biotinylated secondary antibody for 1 h, RT followed by 1 h incubation with a streptavidin
horseradish peroxidase-complex. After washing in PBS and 0.1 M Tris-HCI buffer pH=7.4 for 10 min,
the reaction was developed using 2.5% 3,3-diaminobenzidine and 0.04% hydrogen peroxide. The
reaction was stopped with 0.1 M Tris-HCI, dehydrated and mounted. The quantification of fiber
densities was done using Image] software.

Paraffin embedded sections:

Paraffin embedded sections were dewaxed using xylene and rehydrated in decreasing ethanol
concentrations and water. Sections were boiled in 10 mM citrate, pH=6, for antigen retrieval and blocked
in 5% BSA- PBS-Tx 1 h, RT and incubated with primary antibody over night at +4°C. The sections
were washed and the appropriate secondary fluorescent antibody Alexa 488 or Alexa 594 (Invitrogen)
was added for 1 h, RT followed by counterstaining with Hoechst 33342 and mounting. The images were
captured using fluorescent microscope Leica DM4500B. Primary antibodies used are listed in Table 4.

4.7. Cell viability (11, IV)

Mouse SN4741 cells were incubated in 96-well plates and treated with 400 uM or 800 uM of MPP" in
the absence or presence of 5 or 10 uM RSV for 48 h (I) or differentiated MESC2.10 cells were
pretreaterd with 1 pM GW1929 for 24 h followed by 100 uM H»O, treatment for an additional 24 h (IV).
Cell viability was determined using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide
(MTT) assay by adding MTT solution to the cells for 2 h at +37°C. The medium was removed and the
dye absorbed by the cells was dissolved in isopropanol containing 40 mM HCIL. The absorbance was
measured at 560 nm using Labsystems Multiscan MS Version 3.0 spectrophotometer.

4.8. Luciferase assay (II-1V)

Cells were transfected with 0.5pg of PGC-1a promoter constructs linked to luciferase reporter. Three
different constructs were used, the intact PGC-1a promoter (PGC) or constructs with mutations in the
CRE site (PGCACRE) or the MEF site (PGCAMEF) of the promoter. The pGL3 basic promoter was
used as control. Cells were transfected using Transfectin reagent (Biorad) for SN4741 cells and PC6.3
cells (I) and Fugene HD Transfection Reagent (Promega) for MESC2.10 cells (111, IV). 0.02 pug of
Renilla luciferase pRL-TK was co-transfected to control transfection efficiency. 24 h after transfection
cells were stimulated with RSV for an additional 24 h (I) or cells were differentiated for 2 days followed
by 24 h treatment with 50 ng/ml FGF21 (III) or 1pM GW1929 (IV). Cells were lysed in Passive lysis
buffer and luciferase activity was measures using Dual-Luciferase reporter Assay (Promega) according
to manufacturer’s protocol using GLOMAX 20/20 luminometer (Promega). The values for firefly
luciferase were normalized to Renilla.

4.9. Quantitative PCR (I-IV)

Total RNA was extracted using Lipid tissue RNeasy kit for brain tissue or RNeasy kit for cells
(QIAGEN). 0.5ug RNA was used for cDNA synthesis using SuperScript VILO ¢cDNA synthesis kit
(Invitrogen) and the product was diluted 1:5. 2 pl of cDNA was used for the analysis together with 200
nM of'the forward and reverse primers. Quantitative -PCR amplification was performed using Sybrgreen
(Applied Biosystems) and the AbiPrism 700 Sequence detector (I, II) or SYBR Green Master Mix
(Roche) and the Light Cycler 480 II instrument (Roche) (III, IV). The cycling conditions were
denaturation at 95 °C for 10 min followed by 40 cycles of denaturation at 95 °C for 10 s, annealing at
60 °C for 30 s and extension at 72 °C for 45 s. All samples were run in triplicates. Melting curve analysis
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was done to ensure single product amplification. Treshold cycle (Ct) values were calculated using the
default second derivate maximum method which is built in the Light Cycler 480 II instrument. The
gene expression ratio was calculated using the 2*“ method. Primers used are listed in Table 5. f-Actin
was used as an internal control gene.

4.10. Mitochondrial DNA copy number (III, IV)

DNA was isolated from differentiated MESC2.10 cells using QIAamp DNA Mini Kit (QIAGEN)
according to manufacturer’s protocol. Quantitative PCR was done using 1X SYBR Green Mastermix
(Roche) with an addition of Sng DNA and 200 nmol/l of forward and reverse primers for NADH
dehydrogenase subunit 1(ND1) gene for mtDNA and human globulin (HGB) gene for nuclear DNA
content. Quantitative PCR amplification was performed using Light Cycler 480 II instrument (Roche)
with the thermal cycling conditions were 95 °C for 10 min followed by 40 cycles at 95 °C for 15 s and
60 °C for 1 min. Each sample was run in triplicates and water was used as negative control. Primers
used are listed in Table 5.

Gene Forward primer Reverse primer Publication
nr
DAT 5-CCAGCTACAACAAGTTCACCAA-3’ 5"-AGAAGCTCGTCAGGGAGTTG-3" I
SOD2 5-GACCCATTGCAAGGAACAA-3’ 5-GTAGTAAGCGTGCTCCCACAC-3" I
ND-1 5-CCTAAAACCCGCCACATCT-3" 5-GAGCGATGGTGAGAGCTA AGGT-3" 1II
HGB 5-GTGCACCTGACTCCTGAGAGA-3’ 5'-CCTTGATACCAACCTGCCCAG-3" 1T
B-Actin  5’-TCC TTC CTG GGC ATG GAG-3’ 5’-GAT GTC CAC GTC ACA CTT CA-3’ v
SIRT1 5’-TAA TTC CAA GTT CCA TAC C-3’ 5’-ATT CAC ACA CTA ACC TAT-3’ v
PGC-la  5’-CAA ACC AAC AAC TTT ATC TCT 5’-ACA CTT AAG GTG CGT TCA ATA v
TCC-3° GTC-3’
ADCY6 5°-CCT CCATTG CCA ACT TCT CT-3’ 5’- CGC TCC TCG CTG ATA ATC TC-3’ v

Table 5. Primer sequences.

4.11. Isolation of mitochondria and measurement of respiratory control (I)

Brain tissue from wild-type C57B1/6J and PGC-la TG mice were minced into pieces in isolation
medium (10mM Hepes-K pH=7.4, 1 mM EGTA and sufficient sucrose to obtain an osmolarity of 300
mOsm). The samples were homogenized and centrifuged at 800 g for 8 min. To obtain a mitochondrial
pellet, the supernatant was centrifugated 2 times at 10,000 g for 10 min and the pellet containing
mitochondria was suspended in 300 pl of isolation medium. Mitochondria were used for measurements
within 4 h from isolation.

To measure the mitochondrial respiration mitochondria were suspended in a medium containing 125
mM KCl, 10 mM Hepes-K pH=7.4,2 mM MgCl, 1 mM Piand 100 pM EGTA. To start the respiration
10 mM malate and 10 mM glutamate or 10 mM succinate were added. The respiratory control ratio was
determined by addition of ADP. Mitochondrial respiration was measured using a Clark-type electrode
(Yellow Springs Instruments, USA).

The mitochondrial membrane potential was measured by adding 0.5 uM of the fluorescent dye
tetramethylrhodamine (TMRM) to the measurement medium and using a Cary Eclipse Fluorescence
Spectrophotometer (Varian, USA). The excitation was set at 550 nm and emission at 575 nm.
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4.12. Relative oxygen consumption analysis (III, IV)

MESC?2.10 cells were plated on Seahorse XFe 96-well plates and differentiated for 5 days before
stimulation with FGF21 50 ng/ml (IIT) or 1 pM GW1929 (IV) for 24 h. The medium was changed to
non-buffered DMEM pH=7.4 for 1 h prior to measurement and cells were incubated in a non CO;
supplemented incubator.

XF cell mito stress kit (Seahorse Bioscience) was used for analysis of oxygen consumption with a
Seahorse XFe96 analyzer (Seahorse Bioscience) with an addition of 1 pM Oligomycin, 0.8-1 uM
Carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone (FCCP) and 1 uM Rotenone and Antimycin A.
3x3 min cycles were run for every measurement before adding the following compound. Values were
normalized to the protein content of the wells.

4.13. NAD'/NADH assay (IIT)

Differentiated MESC2.10 cells were stimulated with FGF21 50 ng/ml for 24 h prior to measurement of
NAD/NADH levels using NAD/NADH assay (Abcam) according to manufacturer’s protocol. The
absorbance was measured using Multiscan MS Version 3.0 spectrophotometer at 450 nm.

4.14. ROS measurements (I)

SN4741 cells were treated with 100 uM MPP™ or 5-10 uM RSV for 24 h followed by a loading of the
cells with 10 uM dihydroethidium (DHE) for 15 min. Cells were centrifugated at 1500 rpm for 3 min
and suspended in PBS. The levels of ROS were measured immediately using fluorescence-activated cell
sorter Aria (FACS; BD Biosciences). The number of DHE-positive cells was measured with excitation
at 488 nm and emission at 595 nm.

4.15. Electron microscopy and mitochondrial density analysis (I1I)

Differentiated MESC 2.10 cells were stimulated for 24 h and fixed with 2.5% glutaraldehyde in PBS for
1 h RT and washed two times 1 h with H,O. Postfixation was done using 1% osmiumtetroxide. Thin
sections were stained with lead citrate and uranyl acetate and the sections were viewed using Jeol JEM-
1400 transmission electron microscope (Jeol Ltd., Tokyo, Japan) equipped with Gatan Orius SC 1000B
bottom mounted CCD-camera (Gatan Inc., USA). Mitochondria were manually marked and the relative
surface area was calculated using ImageJ software.

4.16. High-pressure liquid chromatograpy (HPLC) (I)

DA and DOPAC concentrations were determined in mouse striatal tissue. Mouse striatal tissue was
dissected and immediately frozen. The samples were homogenized in 0.5 ml homogenization solution
containing 0.2 M HCIO4 supplemented with an antioxidant solution containing oxalic acid, acetic acid
and L-cysteine in ratio 6:1. Samples were centrifuged at 20 800g for 35min at 4°C, the supernatant was
transferred to 0.5 ml Vivaspin® filter concentrators (Vivascience AG, Hannover, Germany) and
centrifuged at 8600 g for 35 min at +4°C. The filtrate was measured by HPLC with electrochemical
detection.

A Spherisorbl ODS23 Im, 4.6 3 100 mm? column (Waters, Milford, MA) was used and kept at 50°C
with a column heater (Croco-Cil, Bordeaux, France). The mobile phase consisted of 0.1 M NaH>POs,
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350 mg/1 octane sulfonic acid, 3.5-5% methanol and 450 mg/l EDTA. pH was set to 2.7 using H3POs.
A pump (ESA Model 582 Solvent Delivery Module; ESA, Chelmsford, MA) equipped with a pulse
damper (SSI LP-21, Scientific Systems, State College, PA) provided a flow rate of 1 ml/min. The filtrate
(60 pl) was injected into chromatographic system with a CMA/200 autoinjector (CMA, Stockholm,
Sweden). The detection of dopamine and DOPAC was done using ESA® CoulArray Electrode Array
Detector and the concentrations were calculated using CoulArray® for windows software® (ESA,
Chelmsford, MA). The concentrations were calculated as pg/g of tissue.

4.17. cAMP measurements (IV)

MESC 2.10 cells were plated on 24-well plates and differentiated for 2 days before treatment with
GW1929 for 3 h or Forskolin for 30 min prior to the measurement of cAMP levels. cAMP measurements
were done using cAMP GLo assay (Promega) according to manufacturer’s protocol, but without
phosphodiesterase inhibitors in the induction media. The luminescence was measured using Glomax 96
microplate luminometer (Promega).

4.18. Statistical analysis (I-IV)

All experiments were performed at least three times. Statistical analysis was done using Student’s t-test
when comparing two groups and one-way ANOVA followed by Bonferroni’s post hoc test when
comparing three or more groups. A p value p<0,05 was considered statistically significant.
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5. RESULTS AND DISCUSSION

5.1. Involvement of PGC-1a in neuroprotection in the MPTP mouse model of
Parkinson’s disease

5.1.2. Characterization of PGC-1a transgenic mice

Mitochondrial dysfunction and oxidative stress have been linked to neurodegenerative diseases
including PD (Lin & Beal 2006). PGC-1a is considered a master regulator of mitochondrial function
(Puigserver & Spiegelman 2003, Canto & Auwerx 2009) and PGC-1a knock out mice have been shown
to be vulnerable to oxidative stress induced by MPTP treatment as well as excitotoxicity (St-Pierre et al.
2006). Exercise has been shown to have a neuroprotective effect in the MPTP model (Zigmond &
Smeyne 2014), and PGC-1a is known to be activated during exercise (Canto & Auwerx 2009),
suggesting that PGC-1a might be involved in the neuroprotection against MPTP induced cell death. We
wanted to study the possible neuroprotective effect of PGC-1a overexpression in dopaminergic neurons.
A TG mouse was generated overexpressing Flag tagged PGC-10 under the control of the Thy-1 promoter
to drive expression in neurons (Caroni 1997) to study the possible neuroprotective effect of PGC-1a in
Vivo.

Phenotypic analysis of the mice showed that PGC-1a expression was increased in the nigrostriatal
system in TG mice when compared to wildtype (WT) mice (I/Fig.1B) and immunostaining using anti-
Flag antibody showed that the TH-positive dopaminergic neurons in SN expressed Flag-PGC-1a in TG
mice but was not present in WT mice (I/Fig 1C), further confirming that the generation of the TG mouse
strain was successful. As PGC-1a has been shown to influence the expression of mitochondrial
antioxidants to combat oxidative stress (St-Pierre et al. 2006), the levels of mitochondrial proteins were
analyzed. Immunoblotting of SN revealed an increase in the antioxidant enzymes SOD2 and Trx2 in TG
mice compared to WT and an elevated level of COX IV was also observed in TG mice compared to WT,
indicating an increase in mitochondrial function in TG mice (I/Fig 1E). The increase in protein levels
was due to an increase in gene transcription, as shown for SOD2 and COX IV using quantitative PCR
(I/Fig 1D). Our data shows that an overexpression of PGC-1a leads to changes in gene expression for
mitochondrial genes in SN.

5.1.3. PGC-1a transgenic mice are protected against MPTP-induced dopaminergic
neuron degeneration

To study the possible neuroprotective effect of PGC-1a overexpression we treated mice with the
neurotoxin MPTP. Treatment of WT mice with MPTP is known to reduce the number of TH-positive
neurons in the SN (Thomas & Beal 2007) and this was also the case in our study. In PGC-1a TG mice
however, treatment with MPTP did not significantly reduce the amount of TH-positive cells, indicating
a neuroprotective effect of PGC-1a overexpression (I/Fig 2A,B). The number of NeuN positive cells
did not alter in TG mice after MPTP treatment (I/Fig 2C), while MPTP treatment did decrease the
number of NeuN positive cells in WT (I/Fig 5D), further supporting neuroprotective effect of PGC-1a
in MPTP-treated mice.

TH levels in striatum were analyzed in two separate TG mouse lines with similar expression of PGC-
lo. Immunoblots showed a decrease of TH in WT but not in the TG mouse lines after MPTP treatment,
and similar results were obtained with both TG mouse lines. Measuring the levels of DA and the
metabolite DOPAC in WT and TG mice after MPTP treatment showed that MPTP treatment decreased
the striatal concentration of DA and DOPAC in WT mice as expected (Heikkila et al. 1984). The
reduction in DA and DOPAC levels by MPTP treatment were smaller in TG mice, indicating that TG
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mice were significantly more resistant to MPTP treatment (I/Fig 3A,B). These results show that
overexpression of PGC-1a prevents changes in DA and DOPAC in striatum showing a beneficial effect
on the functional state of the nigrostriatal system.

Our results show that the TG expression of PGC-1a protects dopaminergic neurons against MPTP-
induced cell degeneration (figure 10). This data is further supported by studies showing the beneficial
effect of PGC-1a in cell stress (St-Pierre et al. 2006, Lu et al. 2010, Makela et al. 2016). A meta-analysis
of PD patients showed decreased levels of PGC-1a and its downstream genes, indicating that PGC-1a
is involved in the pathogenesis of the disease and might serve as a possible target for early intervention
in PD (Zheng et al. 2010).

The currently available toxin-induced animal models of PD cause an acute degeneration of
dopaminergic neurons. This does not mimic the development of the disease in patients where a slow
degeneration of the dopaminergic neurons is observed. The use of the MPTP model of PD does however
mimic the symptoms of PD (Ballard et al. 1985), but of the currently available models the MPTP model
is useful to study potential neuroprotective mechanisms.

PGC-TG

Vehicle

Figure 10. Immunostaining of TH-positive cells in SN of TG and WT mice. MPTP treatment showed a smaller
decrease in TH-positive cells in TG mice compared to control, indicating that PGC-1a has a neuroprotective effect
in these cells. Snc, substantia nigra; WT, wildtype; PGC-TG, PGC-1a transgenic; MPTP, 1-methyl-4-phenyl-
1,2,3,6-tetrahydropyridine.

5.1.4. Mitochondrial respiration is increased in isolated brain mitochondria from PGC-

la transgenic mice

PGC-1a regulates the expression of mitochondrial genes, including proteins of the respiratory chain
(Puigserver et al. 1998, Wu et al. 1999). It has previously been shown that overexpression of PGC-1a
in cultured neurons increased the mitochondrial capacity and protected cells against mitochondrial loss
(Wareski et al. 2009). We isolated mitochondria from the brains of TG and WT mice. Measurements of
mitochondrial oxygen consumption showed an increase in the respiratory control rate in mitochondria
from TG mice compared to mitochondria from WT mice, indicating that mitochondria from TG mice
have a higher ATP production capacity than mitochondria from WT mice. The relatively small
difference in respiratory control rate might be due to the fact that mitochondria were isolated from whole
brain, whereas the TG expression of PGC-1a is driven by the neuron-specific Thyl promoter (Caroni
1997), leading to a relatively small level of overexpression of PGC-1a. Therefore it would be of interest
to isolate neurons from these mice and analyze the respiratory capacity of neuronal mitochondria in
vitro.

PGC-1la has previously been shown to mainly localize in GABAergic neurons with only weak
expression in midbrain (Cowell et al. 2007). Immunostaining with Flag-antibody did show a co-
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localization of PGC-la and TH in SN (I/Fig 1C) in TG mice revealing an overexpression in
dopaminergic neurons. It is possible that endogenous PGC-1a levels in dopaminergic neurons are too
low to be neuroprotective but higher levels of PGC-1a can have neuroprotective effects, although an
extensive overexpression of PGC-1a in rat brain has been shown to be harmful for neuronal survival
(Ciron et al. 2012). Since PGC-1a increases the mitochondrial respiration, it may be possible that an
extensive overexpression of PGC-1a gives rise to an increase in ROS generated by the respiratory chain
(Lindholm et al. 2012).

5.2. Resveratrol has neuroprotective effects in dopaminergic neurons in vivo

5.2.1. Resveratrol protects against MPTP-induced cell death in dopaminergic neurons
PGC-1a can be regulated by posttranslational modifications such as deacetylation by SIRT1 (Rodgers
et al. 2005, Rodgers et al. 2008). RSV is a naturally occurring polyphenol (Baur & Sinclair 2006, Sun
et al. 2010) that can activate SIRT1 and PGC-1a (Lagouge et al. 2006). RSV has previously been shown
to have neuroprotective effects in dopaminergic neurons in different systems (Okawara et al. 2007, Chao
et al. 2008, Blanchet et al. 2008) as well as in glutamate excitotoxicity, after brain trauma and ischemia
(Baur & Sinclair 2006, Ates et al. 2007, Della-Morte et al. 2009). We were interested in the
neuroprotective effects of RSV and analyzed the effect of RSV in mice treated with MPTP as described
in the methods section. The treatment scheme is shown in figure 11.
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Figure 11. Treatment scheme of MPTP and RSV injections to C57BL6 mice.

In WT mice, treatment with MPTP showed a decrease in the number of TH-positive cells in SN
compared to vehicle treated mice (I/Fig SA). This reduction of TH-positive cells was partly counteracted
when mice were co-treated with RSV (20 mg/kg) (I/Fig 5B,C). The number of NeuN positive cells in
SN corresponded to the number of TH-positive cells, showing that RSV was largely neuroprotective
after MPTP treatment (I/Fig 5D). Similar results were obtained in striatum when TH and DAT levels
were analyzed, although the protective effect of RSV was not as high in striatum as observed in SN
(I/Fig SE-H). These results shows that RSV has a neuroprotective effect in DA neurons in SN and it also
partially protects against MPTP-induced neurodegeneration in striatum of mice, which is in line with
previous studies (Okawara et al. 2007, Chao et al. 2008, Blanchet et al. 2008). The mechanism of action
for RSV in the brain is not known, and the difference in the protective effect between SN and striatum
might be because RSV affects cell bodies and nerve terminals differently, although this needs to be
studied.

In line with the data obtained from TG mice, we also observed an increase in SOD2 and Trx2 levels in
RSV-treated mice (I/Fig 51J), indicating that RSV may reduce oxidative stress by increasing
antioxidants. RSV has been shown to increase the expression of mitochondrial antioxidants in vitro
(Kairisalo et al. 2011), and RSV is also known to affect PGC-1a (Lagouge et al. 2006). Since PGC-1a
regulates the expression of mitochondrial antioxidants (Austin & St-Pierre 2012), the neuroprotective
effect of RSV could be mediated by affecting PGC-1a expression.
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5.2.2. Mechanisms of resveratrol-mediated neuroprotective effects

To study the mechanism of RSV action, we used cultured dopaminergic SN4714 cells. In line with the
data obtained from mice, treatment of these cells with 400 uM and 800 uM MPP" showed a decrease in
cell viability which was counteracted by co-treatment with 5 uM or 10 uM of RSV (I/Fig 6A). MPP"is
known to produce ROS by inhibiting complex I in the respiratory chain (Smeyne & Jackson-Lewis
2005). In line with this, we observed an increase in ROS production when cells were treated with 100pM
MPP". Treatment with 5 uM or 10 uM RSV was able to decrease the production of ROS in these cells
(I/Fig 6B).

As the decrease in oxidative stress in RSV-treated cells may be due to an increase in antioxidant enzymes,
we measured the protein levels of SOD2 and Trx2. In line with the data obtained from RSV-treated mice,
RSV-treated cells showed an elevated protein level of both SOD2 and Trx2 compared to untreated cells
(I/Fig 6C,D). Both SOD2 and Trx2 have been shown to be regulated by NF«B signaling that can be
induced by X-chromosome linked inhibitory apoptosis protein (XIAP) (Kairisalo et al. 2011). We did
not observe any changes in XIAP in RSV-treated cells (I/Fig 6F) or in SODI, catalase or heme
oxygenase (HO-1) which are reported to combat oxidative stress and located in the cytoplasm,
peroxisome and endoplasmatic reticulum (Crapo et al. 1992, Stocker & Perrella 2006, Kirkman &
Gaetani 2007). This suggests that the effect of RSV is on mitochondrial function that could be mediated
by PGC-1a as both SOD2 and Trx2 are target genes for PGC-1o.

An increase in SIRT1 was also observed in RSV-treated cells (I/Fig 6C,D) and RSV was able to reduce
the degree of acetylation of PGC-1a, showing an activation of PGC-1a by RSV treatment (I/Fig 6E).
SIRT1 responds to metabolic changes in the cell (Canto & Auwerx 2012). SIRT1 activation has been
shown to be neuroprotective in AD and ALS models (Qin et al. 2006, Kim et al. 2007), and an increase
in SIRT1 expression could also be neuroprotective in PD. SIRT1 is a NAD'-dependent deacetylase
(Imai et al. 2000), and caloric restriction increases SIRT1 activity by increasing NAD" levels (Cohen et
al. 2004, Lin et al. 2004, Houtkooper et al. 2010). RSV has been shown to affect AMPK levels in neurons
(Dasgupta & Milbrandt 2007), and AMPK can increase NAD" levels by fatty acid oxidation (Canto et
al. 2009). RSV could activate SIRT1 via AMPK and NAD", but this remains to be studied.

The finding that RSV increases PGC-1a levels (I/Fig 6C,D) raised the question if there is also an effect
on PGC-1a gene transcription. We used PGC-1a promoter constructs linked to a luciferase reporter
gene and data showed that the gene activity was enhanced by 80% in SN4741 cells treated with 10uM
RSV (I/Fig 7A). Treating neuronal PC6.3 cells with different concentrations of RSV also showed that
the gene activity was enhanced in a dose dependent manner (I/Fig 7B). When using PGC-1a promoter
constructs with mutations in the MEF site or in the CRE site, the increase in gene activity by RSV
treatment was abolished (I/Fig 7A). This shows that the PGC-1a gene activity in neuronal cells is
enhanced by RSV and involves the binding of various transcription factors to the promoter.

Taken together, our data show that RSV could be a potential candidate to target the SIRT1/PGC-1a
system with a neuroprotective effect in patients with PD. Our results show that RSV can increase both
the level and activation of PGC-1a in dopaminergic cells, leading to an increase in antioxidant enzymes
and the capacity to combat oxidative stress. The results are summarized in figure 12. The cellular
mechanisms how RSV affects PGC-1o transcription remains to be clarified, as the transcription can be
affected by multiple pathways (Handschin et al. 2003, Fernandez-Marcos & Auwerx 2011). RSV has
been reported to affect CREB and ATF2 (Thiel & Rossler 2016) as well as MEF2 pathways (Gracia-
Sancho et al. 2010), all of which may be involved in the transcriptional activation of PGC-1a. The use
of RSV as a therapeutic agent would also require careful analysis of its kinetics and biological actions
in humans.
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Figure 12. Summary figure. RSV increases PGC-la transcription and activation, leading to an improved
mitochondrial function and cell viability. RSV, resveratrol; PGC-1a, peroxisome proliferator-activated receptor y
coactivator-1a; SIRT1, Sirtuinl; Trx2, thioredoxin2; SOD2, superoxide dismutase 2; NRF1, nuclear respiratory
factor1l; TFAM, mitochondrial transcription factor A.

5.2.3. Resveratrol treatment enhances DAT protein levels in striatum of female mice
While studying the neuroprotective effect of RSV on MPTP-treated mice (I), we observed that DAT
levels were increased in striatum after RSV treatment in female but not male mice. Mice were treated
with RSV (20mg/kg i.p.) for four days and tissue was analyzed 8 days after the first RSV injection. Data
shows that RSV significantly increased DAT levels in striatum of female mice compared to vehicle
treated female mice, as shown by immunoblotting of tissue samples (II/Fig 1A). Multiple bands of DAT
appeared on the blot which might represent glycosylated forms of DAT (Li et al. 2004), although this
was not further analyzed. Quantification of immunohistochemical stainings showed a significant
increase in DAT levels in female mice after RSV treatment compared to vehicle treated female mice
(II/Fig 2A,B), further verifying the observed increase in DAT levels in female mice. When analyzing
tissue samples from male mice, we found that RSV did not increase DAT levels is striatum of male mice
as compared to male controls (II/Fig 1B). The expression levels of DAT in untreated female and male
mice did not differ (II/Fig 1C), showing that the basal level was the same in both genders.

ER have been shown to be present in rat brain (Shughrue et al. 1997, Laflamme et al. 1998, Zhang et al.
2002, Creutz & Kritzer 2002). The striking structural similarity of RSV and the synthetic estrogen
diethylstilbestrol (Gehm et al. 1997), and studies showing that RSV could act as an ER agonist binding
to both ERa and ER3 (Gehm et al. 1997, Bowers et al. 2000, Mueller et al. 2004, Wu et al. 2008, Robb
& Stuart 2011) suggest that RSV might mediate its effect via ER.

DAT levels were not significantly increased when measured immediately after the last RSV treatment
in female mice (II/Fig 1D). This suggests that RSV could mediate the effect by activating non-genomic
ER pathways such as mitogen activated protein kinase (MAPK) signaling (Klinge et al. 2005) and
phosphatidylinositol-3-kinase (PI3K) signaling (Pozo-Guisado et al. 2004). TH levels did not change in
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striatum after RSV treatment when analyzed by immunoblotting (II/Fig 1E), indicating that the effect
was on DAT levels and not a change in DA neuron content.

5.2.4. The effect of resveratrol on DAT expression is mediated by estrogen receptors
To confirm that RSV mediated the effect on DAT via ER, we used ICI 182, 780, a selective antagonist
for ERa and ERB (Van Den Bemd et al. 1999, Howell et al. 2000). Female mice were pretreated with
ICI 182, 780 (2 mg/kg s.c.) followed by RSV treatment (20 mg/kg i.p.) 1.5h later for four days, and
mice were sacrificed 8 days after the first treatment. Pretreatment with ICI 182, 780 blocked the effect
of RSV on DAT levels in striatum. ICI 182, 780 alone did not affect DAT levels in striatum compared
to control (II/Fig 3A). This shows that ER are involved in the up-regulation of DAT after treatment with
RSV (figure 13), but the data did not reveal whether RSV acts via ERa or ER.

The finding that RSV increases the level of DAT in female mice is in line with previous studies showing
that estrogen can increase the expression of DAT in mice (Jourdain et al. 2005) and that ovariectomy
modulated the level of DAT in rat brain (Bosse et al. 1997). Estrogen has been shown to affect DAT
activity in vitro by binding to ERa (Watson et al. 2006), and in postmenopausal women estrogen
replacement therapy increased DAT levels (Gardiner et al. 2004). A decline in DAT levels is related to
PD (Harrington et al. 1996), and a recent study demonstrated that among PD patients, women had a
higher DAT activity in striatum than men (Lee et al. 2015), indicating a possible role of ER in the
regulation of DAT levels. Also, the lower incidence of PD in women (Twelves et al. 2003, Wooten et
al. 2004) indicates that ER could have a role in preventing neurodegeneration by maintaining DA neuron
function. The lack of ER increases the vulnerability to MPTP treatment in mice (Al-Sweidi et al. 2011)
and RSV has been shown to protect against MPTP-induced cell death via both ERa and ERf (Saleh et
al. 2013), indicating an important role for RSV in PD, possibly by restoring the uptake capacity of DA
to maintain neuronal function and prevent ROS generation.

Tamoxifen can function as an ER antagonist or agonist, depending on the tissue that is targeted
(Krishnan et al. 2000, Jordan 2003). Tamoxifen has been shown to be able to mimic the effect of
estradiol by increasing DAT levels in striatum of ovarectomized rat (Le Saux & Di Paolo 2006). Because
of its possible effects on ER, we used tamoxifen to further study the involvement of ER in the regulation
of DAT in mice. Female mice were pretreated with tamoxifen (1 mg/kg s.c.) followed by RSV treatment
(20 mg/kg i.p.) 1.5h later for four days. Mice were sacrificed 8 days after the first treatment. One group
received tamoxifen only, one group received RSV only and one were injected with vehicle. Surprisingly,
tamoxifen did not change the levels of DAT in striatum compared to vehicle as shown by WB,
suggesting no agonist effect of tamoxifen (II/fig 3B). Tamoxifen treatment did not counteract the
increase of DAT in RSV-treated mice either, suggesting no antagonist effect of tamoxifen (II/Fig 3B).
Opposite to our expectations, our results showed that tamoxifen alone or in combination with RSV did
not have any effect on DAT levels in striatum of female mice. This may be due to different methods for
analyzing DAT expression or that tamoxifen has different effects in different species.

ERo/B DAT

Figure 13. Resveratrol (RSV) increases Dopamine transporter (DAT) expression by action on Estrogen receptor
o/B (ER o/p).

RSV
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5.2.5. Resveratrol increases DAT expression in cell cultures

RSV was also able to increase the level of DAT in vitro. We used both mouse SN4741 dopaminergic
cells and human MESC2.10 cells from embryonic ventral midbrain that were differentiated to
dopaminergic cells. DAT levels were increased in mouse SN4741 cells after 10 uM RSV treatment.
Treatment with 1 uM E2 also showed an increase in DAT in these cells, although the effect was smaller,
while pretreatment with ICI 182, 780 blocked the effect of RSV on DAT shown by WB (II/Fig 4A).
Similar results were obtained with MESC2.10 cells (II/Fig 4B). We also observed that the mRNA levels
were increased in differentiated MESC 2.10 cells after a 16 h treatment with 10 uM RSV, indicating
that RSV increases DAT gene expression (II/Fig 4C). Taken together, these results are in line with the
data obtained from our in vivo results and further indicate involvement of ER in the regulation of DAT
levels after RSV treatment.

The mechanism how RSV mediates the effect on DAT remains to be studied. RSV may activate non-
genomic pathways as has been previously reported for estrogen and other phytoestrogens (Pedram et al.
2002, Beyer et al. 2002, Jeng et al. 2009), or it may be a direct interaction with the ERs ERa, ERP or
with the membrane receptor GPR30 (Maggiolini & Picard 2010). Here we did not address the issue of
DAT activation by an increase in protein glycosylation (Li et al. 2004). This would also be of interest
to study to clarify whether RSV acts by increasing the expression levels but also by affecting the
glycosylation and thereby the activation of DAT.

Our data shows that RSV mediates functions in DA neurons to combat oxidative stress which could be
beneficial for the treatment of PD, not only by affecting the expression of PGC-1a. By regulating the
expression of DAT, RSV can affect DA levels in the synaptic cleft as DAT is the key mediator of DA
uptake (Gainetdinov & Caron 2003). DA uptake and storage in vesicles is of importance since DA can
contribute to the production of ROS in the cell (Guillot & Miller 2009, Dias et al. 2013). Oxidative
stress can affect DA uptake (Berman et al. 1996) and as RSV can combat ROS production as a scavenger
(Leonard et al. 2003) and by increasing PGC-1a-mediated antioxidant levels (I) it is possible that RSV
not only affect the expression of DAT but also the activity.

5.3. FGF21 induces the expression of PGC-1a and enhances mitochondrial function in
human dopaminergic neurons

5.3.1. FGF21 increases the expression and activity of PGC-1a

FGF21 is a growth factor that functions as a metabolic regulator by affecting glucose and lipid
metabolism, and it has been shown to increase the expression of mitochondrial genes and enhance
mitochondrial function in adipocytes (Kharitonenkov et al. 2005, Badman et al. 2009, Chau et al. 2010).
PGC-lo is a master regulator of mitochondrial function by regulating the gene expression of
mitochondrial genes (Houten & Auwerx 2004, Lin et al. 2005), and FGF21 has been shown to increase
the expression of PGC-1a in adipose tissue (Wu et al. 2011). Other studies did not show any change in
PGC-1a expression levels in adipocytes after FGF21 treatment, but an increase was observed in the
expression of genes regulated by PGC-1a, suggesting that FGF21 has an impact on posttranslational
modifications of PGC-1o (Fisher et al. 2012). The effect of FGF21 in brain has not been extensively
studied, but there are recent studies showing that FGF21 has a neuroprotective effect against excitotoxic
injury in primary neurons and in ageing (Leng et al. 2015, Yu et al. 2015). Since mitochondrial
dysfunction has been strongly linked to neurodegenerative diseases (Mancuso et al. 2006) we wanted to
study the possible effect of FGF21 on PGC-1a and mitochondrial function in dopaminergic neurons.

In this study, we used human MESC2.10 cells from embryonal midbrain. These cells were differentiated

to dopaminergic neurons in culture as described in (Lotharius et al. 2002). WB analysis of cells
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differentiated for six days showed expression of both TH and DAT which are considered to be markers
of dopaminergic neurons (III/Fig 1A). The expression levels of TH and DAT did not differ between
untreated cells and cells treated with FGF21, and no morphological changes were observed either
between treated and untreated cells.

The expression level of PGC-1a was analyzed by immunoblotting after 24 h treatment of differentiated
cells with 50 ng/ml FGF21. Data shows that FGF21 significantly increases the expression level of PGC-
la (III/Fig 1B). These results are in line with findings in adipose tissue (Wu et al. 2011). We were
interested to see if the increase in PGC-1a protein level was due to an increase in gene expression. To
study this, we used a PGC-1a promoter linked to a luciferase reporter gene. Treatment with FGF21 50
ng/ml for 24 h increased the activity of the PGC promoter but not the pGL3-basic promoter that was
used as control (III/Fig 1C). Quantitative PCR also confirmed an increase in mRNA levels of PGC-1a
after treatment with FGF21 for 24 h (data not shown). FGF21 has been shown to increase the
transcription of PGC-la by phosphorylating CREB (Wu et al. 2011). Our results show that the
transcription of PGC-1a was increased in cells treated with FGF21, although we did not further study
the mechanism behind this. It is possible that CREB mediates the elevated levels of PGC-1a gene
transcription, but this remains to be studied.

As FGF21 has been implicated to have a role in posttranslational modification of PGC-1a (Fisher et al.
2012), we wanted to see if treatment of differentiated cells with FGF21 also had an impact on the activity
of PGC-1a. To analyze whether there was an increase in the activity of PGC-1a the acetylation of the
protein was analyzed by immunoprecipitation. Our results show that the degree of acetylation was
reduced in cells treated with FGF21 for 24 h compared to untreated cells indicating a higher activity of
the protein (III/Fig 1D). Our data indicatse that FGF21 has a similar effect in adipocytes and in
dopaminergic neurons in culture where treatment with FGF21 for 24 h increases both the expression
and activity of PGC-1a.

5.3.2. FGF21 increases NAD" levels and SIRT1 expression

Posttranslational modifications of PGC-1a are known to modulate the activity of the protein (Houten &
Auwerx 2004). Deacetylation by SIRT1 is a known posttranslational modification affecting PGC-1a
activity (Rodgers et al. 2005, Rodgers et al. 2008, Fernandez-Marcos & Auwerx 2011) and FGF21 has
been shown to affect the AMPK-SIRT1-PGC-1a pathway in adipocytes (Chau et al. 2010). As our
results show that PGC-1a is deacetylated when treated with FGF21, it was of interest to see if the
expression of SIRT1 was affected after treatment with FGF21. Data show that protein levels of SIRT1
was elevated in FGF21-treated dopaminergic neurons (III/Fig2A).

SIRTI is a NAD" dependent deacetylase (Imai et al. 2000), and therefore we were interested to see if
there are changes in NAD" levels in FGF21-treated cells. NAD" levels are crucial in the control of
metabolic reactions (Yang et al. 2007), and SIRT1 functions as an energy sensor of the cell mediating
cellular responses to changes in energy requirements (Houtkooper et al. 2010, Canto & Auwerx 2012).
Nampt is the rate limiting enzyme in NAD ‘synthesis, and it has been previously shown to be regulated
by nutrient deprivation (Revollo et al. 2004, Yang et al. 2006, Yang et al. 2007). In liver, FGF21 is
induced by prolonged fasting (Galman et al. 2008) and overexpression of FGF21 has been shown to
increase longevity (Zhang et al. 2012). This suggests that FGF21 might have a role in regulating NAD "
levels that influence the activity of SIRT1.

We observed that there was an increase in Nampt in FGF21-treated cells after 24 h of stimulation
compared to untreated cells (III/Fig 2B). Analysis of the NAD"/NADH ratio also showed that NAD"
levels were elevated after FGF21 treatment (III/Fig 2C). These data suggests that FGF21 can modulate
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the activity of SIRT1 by affecting Nampt and NAD" levels. By pretreating cells with the SIRT1 inhibitor
NAM (20 uM) the effect of FGF21 on the acetylation of PGC-1a was counteracted, and NAM alone did
increase the degree of acetylation of PGC-1a as expected (III/Fig 2D). Taken together, these data
suggests that FGF21 influences the Nampt/SIRT1 pathway which leads to an activation of PGC-1a in
these cells (figure 14).

5.3.3. FGF21 increases the levels of mitochondrial antioxidants

Activation of PGC-1a affects the expression of a variety of different genes, among these mitochondrial
antioxidants (St-Pierre et al. 2006). We showed in the TG mice overexpressing PGC-1la that the
expression of mitochondrial antioxidants were increased in SN of these animals (I). Therefore we
wanted to see if treatment with FGF21 was able to increase the expression of antioxidants in these cells.
In line with recent reports from heart muscle (Planavila et al. 2015) our results showed that both SOD2
and Trx2 were significantly upregulated after 24 h FGF21 treatment, suggesting that FGF21 via PGC-
la could increase antioxidants in these cells (III/Fig 3A-C). This indicates that FGF21 could have a
neuroprotective effect against oxidative stress in dopaminergic neurons by increasing the expression of
antioxidants.

5.3.4. FGF21 stimulates mitochondrial respiratory capacity but not copy number

To see if FGF21 had an effect on mitochondrial function in addition to the increase in antioxidant
defense, we wanted to analyze the effect of FGF21 on mitochondrial respiratory capacity. The
respiratory capacity was analyzed using Seahorse XFe”® and the obtained data showed an increase in the
basal respiration as well as a higher maximal respiratory capacity compared to untreated cells (I1I/Fig
4A,B). These data indicates that FGF21 not only increases the antioxidant defense, but also the
mitochondrial respiratory capacity. The improved respiratory capacity was most likely due to the
activation of the SIRT1/PGC-1o pathway in a similar manner that has been observed in muscle cells
(Gerhart-Hines et al. 2007).

PGC-1a is known to regulate mitochondrial biogenesis (Wu et al. 1999, Puigserver & Spiegelman 2003),
and we wanted to see if there was an increase in the amount of mitochondria in the cells. TFAM and
COX IV were used as a mitochondrial markers. Immunoblotting did not show any changes in the levels
of these proteins after treatment with FGF21 compared to control (III/Fig 4C) suggesting that there were
no changes in mitochondrial copy number. To further confirm that there were no change in copy number,
we analyzed the ratio between mtDNA and nuclear DNA by quantitative PCR as well as the morphology
of mitochondria using electron microscopy and measured the relative area of mitochondria. Data
obtained showed no change in the ratio of mtDNA to nuclear DNA between treated and untreated cells
(IIl/Fig 4D), indicating an equal number of organelles in FGF21-treated and untreated cells. The relative
mitochondrial areas showed no difference either (III/Fig 4 E,F). These data indicate that the increase in
mitochondrial efficacy is not related to an increase in the number of mitochondria in the cells. It is
possible that changes in mitochondrial quality control and mitophagy might contribute to maintaining a
stable level of functional mitochondria, but this remains to be studied.
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Figure 14. Summary figure. FGF21 increases PGC-1a expression and activation which improves mitochondrial
function in dopaminergic neurons. FGF21, fibroblast growth factor 21; Nampt, Nicotinamide phosphoribosyl
transferase NAD", Nicotinamine dinucleotide, oxidized form; SIRT1, sirtuinl; PGC-1a, peroxisome proliferator-
activated receptor y coactivator-1o; SOD2, superoxide dismutase 2; Trx2, thioredoxin2.

5.3.5. FGF21 is expressed in brain

The expression of FGF21 in the brain has not been extensively studied. It is known that members of the
FGF family are expressed in the central nervous system, and FGFs are thought to have important
functions during development but also in the mature brain (Mudo et al. 2009, Itoh & Ornitz 2011). To
study whether FGF21 is present in the brain, we performed immunoblotting from tissue samples from
different regions of mouse brain. Our results showed that FGF21 was detected in different brain regions,
including SN and striatum. Also, in vitro analysis of primary glial cultures from neonatal rat brain did
show an expression of FGF21 in these cells. Human hepatocyte Huh7 cell line was used as a positive
control for FGF21 expression as FGF21 is known to be expressed in hepatocytes (Nishimura et al. 2000).
This data suggests that glial cells can produce FGF21 in vitro, but it requires further studies to determine
which cells express FGF21 in the brain.

FGF21 has been shown to pass the blood brain barrier (Hsuchou et al. 2007), and it is possible that
FGF21 could be synthesized in the liver and exert its effect on neurons by entering the brain by crossing
the blood brain barrier. It is of great interest to see whether FGF21 could also be expressed in the brain,
and there contribute to sensing the energy requirements of the cells and regulate metabolism. It would
also be of importance to study the localization of the receptors that mediate FGF21 signaling in the brain.
B-Klotho is known to be required as a cofactor for FGF21 signaling (Suzuki et al. 2008, Kharitonenkov
et al. 2008) and analysis of the localization of FGF receptors and fKlotho by in situ hybridization and
immunohistochemistry might reveal the target cells in FGF21 signaling in the brain.

The ability of FGF21 to enhance the mitochondrial respiratory capacity and altering gene expression
pathways regulated by PGC-1a in dopaminergic neurons suggests that FGF21 may be of value in
neuroprotection in PD. It would be of interest to determine which cells express FGF21 in the brain and
also study the potential benefits of FGF21 in different neurological diseases.
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5.4. The PPARY agonist GW1929 affects PGC-1a expression via cAMP-PKA-CREB
pathway and improves mitochondrial function in human dopaminergic neurons

5.4.1. PPARy agonist GW1929 increases the protein level and activity of PGC-1a
PPARYy is a transcription factor that regulates genes involved in glucose and lipid metabolism (Chen et
al. 2012, Ahmadian et al. 2013). PPARy agonists are used in treatment of type 2 diabetes due to their
ability to increase insulin sensitivity and regulate cellular metabolism (Yki-Jarvinen 2004). PPARYy
agonists have also been shown to be neuroprotective in both rotenone-induced and MPTP-induced
mouse models of PD by increasing antioxidants and reducing ROS in the brain (Martin et al. 2012,
Aleshin & Reiser 2013, Corona et al. 2014, Mounsey et al. 2015). PGC-1a was first described as a
coactivator of PPARYy in adipose tissue (Puigserver et al. 1998), and later the PGC-10 gene has been
shown to be a direct target of TZD in BAT and WAT (Hondares et al. 2006).

In the search for compounds that could act as PGC-1a activators in neurons PPARY agonists might be
of importance. As TZD has been reported to have severe side effects (Consoli & Formoso 2013), we
used a non-TZD compound GW1929 as PPARy agonist to study the effect on PGC-1a and the
underlying mechanism for PGC-la expression. In this study, we used MESC2.10 cells that were
differentiated to dopaminergic neurons. Treatment with 1 uM GW1929 did not alter the expression of
DAT or TH in cells that were differentiated for 6 days (IV/Fig 1A,B).

Treatment with GW1929 for 24 h showed an increase in PGC-1a levels in a concentration dependent
manner (IV/Fig 1B,C). GW1929 was also able to activate PGC-1a as shown by the reduction in
acetylation (IV/Fig 1D,E). This shows that GW1929 is able to increase the expression and activation of
PGC-1a in these cells. The results are in line with previous studies showing that the TZD Rosiglitazone
can increase the expression of PGC-la (Corona et al. 2014). SIRT1 levels were also increased in
GW1929 treated cells (IV/Fig 1F,G), indicating that SIRT1 activates PGC-1a.

5.4.2. GW1929 increases the transcription of PGC-1a via CRE

The effect of GW1929 on PGC-1a transcription was studied using quantitative PCR and the results
showed an increase in PGC-1la levels in cells treated with 1 pM GW1929 for 24h after 6 days of
differentiation (IV/Fig 2A,B). It is possible that GW1929 acts directly on PGC-1a transcription by
binding to the PPAR site in the promoter (Hondares et al. 2006), but our results suggest that GW1929
increases the transcription of PGC-1a by activating CREB. PGC-1a promoter activity measurements
with cells differentiated for 2 days prior to GW1929 treatment showed that the activity was increased in
GW1929-treated cells when employing the wildtype PGC-1a promoter linked to luciferase reporter gene,
but not with the PGC-1a promoter with a mutation in the CRE site (IV/Fig 2C). This suggests that
GW1929 stimulates the expression of PGC-1a via the CRE sequence in the promoter. CREB has been
shown to increase the expression of SIRT1 (Noriega et al. 2011, Fusco et al. 2012), and we also observed
an increase in SIRT1 mRNA levels in GW1929-treated cells (IV/Fig 2A,B). This further indicates a
possible CREB activation in GW1929 treated cells.

5.4.3. GW1929 activates the cAMP-PKA-CREB pathway

The strong indication of the involvement of CREB in the regulation of PGC-1a expression gave rise to

the question if GW1929 could affect the phosphorylation of CREB. Data showed that addition of

GW1929 increased the phosphorylation of CREB after 0.5 h reaching a peak at 3 h (IV/Fig 3A,B). Co-

treatment with the PKA inhibitor H89 blocked the phosphorylation of CREB (IV/Fig 3C,D) as well as

the level of PGC-1a (IV/Fig 3E,F), suggesting involvement of the CREB pathway in the regulation of
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PGC-1a expression that is in line with previous studies (Handschin et al. 2003, Fusco et al. 2012).
Measurement of cAMP levels revealed a small but significant increase in GW1929-treated cells
compared to control (IV/Fig 3G) suggesting that the cAMP-PKA pathway is involved in the
phosphorylation of CREB. The increase in cAMP level after GW1929 treatment showed a delay
compared to forskolin treatment, suggesting that the effect could be mediated by changes in protein
levels in the cell. The cAMP level is known to be increased by the activity of ACs (Lonze & Ginty 2002,
Kamenetsky et al. 2006, Steegborn 2014) and co-treatment with the AC inhibitor SQ22536 reduced the
level of CREB phosphorylation in cells treated with GW1929 (IV/Fig LJ), suggesting that AC is
increasing the level of cAMP that acts as a CREB activator via PKA.

The AC6 isoform was recently shown to be induced by the PPARy-activator Rosiglitazone (Desch et al.
2010). Treating the cells with GW1929 did increase mRNA levels of AC6 (IV/Fig 3H). These results
suggest that AC6 expression may contribute to the effect of GW1929 on cAMP levels, but further studies
are required to confirm this. It is also possible that other AC subunits have PPARY binding sites, but this
is not known.

The finding that GW1929 can increase cAMP levels and induce the transcription of PGC-1la is of
importance for neuroprotection in dopaminergic neurons. The increase in cAMP levels has been
suggested to mimic caloric restriction by direct binding of cAMP to SIRT 1, which increases the activity
of SIRT1(Wang et al. 2015), further suggesting an important role of cAMP in neuroprotection by
contributing to the activation of PGC-1a and increased mitochondrial function.

5.4.4. GW1929 increases mitochondrial biogenesis and respiration

In line with data obtained from our TG mice (I), we observed an increase in mitochondrial biogenesis
in GW1929-treated cells. The levels of NRF1 (IV/Fig 4A,B) and TFAM (IV/Fig 4C,D), two major
transcription factors regulating biogenesis (Wu et al. 1999), were increased in cells treated with GW 1929
compared to untreated cells. GW1929 also increased the mtDNA copy number (IV/Fig 4E), further
showing an effect on mitochondrial biogenesis. These results are in line with results showing that PPARy
agonists does promote mitochondrial biogenesis in non-neuronal cells (Bogacka et al. 2005, Rong et al.
2007, Rong et al. 2011). The increase in mitochondrial biogenesis is most likely due to an increase in
PGC-1a expression and activation, but further studies with inhibitors or silencing of PGC-1a would be
needed to confirm this.

To study whether the increase in mitochondrial copy number improved the mitochondrial efficacy
mitochondrial respiration in differentiated cells was analyzed. Treatment with GW1929 for 24 h did
show an increase in the basal respiration compared to untreated cells (IV/Fig 4F,G), but the change in
maximal respiratory capacity and the spare respiratory capacity was not statistically significant. The
increase in basal respiration indicates that there is an increase in the bioenergetic capacity of these cells.
The increase could be due to the increase in mitochondrial copy number, or PGC-1a might increase the
expression of some specific proteins in the respiratory chain and thereby increase the efficiency of the
respiratory chain. This issue was not studied here, but PGC-1a is known to increase the expression of
components of the respiratory chain (Wu et al. 1999).

5.4.5. GW1929 increases mitochondrial antioxidants and protects against oxidative

stress

We have previously shown that PGC-1a increases the expression of the mitochondrial antioxidants

SOD2 and Trx2 (I, III). PPARY activation has also been shown to be neuroprotective in the MPTP model

of PD by increasing the level of antioxidants (Martin et al. 2012). In line with this, treatment of
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differentiated cells with GW1929 for 24 h did increase the expression of both SOD2 and Trx2 (IV/Fig
A-D). To further study possible effects to combat oxidative stress in dopaminergic neurons, we treated
cells with H,O» or the complex I inhibitor rotenone that induces the production of ROS (Radad et al.
2006). GW1929-treated cells were more resistant to both H»O, and rotenone-induced cell death
compared to controls (IV/Fig 5E,F), suggesting that GW1929 can be neuroprotective by upregulating
the expression of antioxidant enzymes to combat oxidative stress.

PGC-1a-deleted mice have been shown to be vulnerable to oxidative stress (St-Pierre et al. 2006), and
treatment with PPARY agonists could have a protective role in neurodegenerative diseases by affecting
the expression and activation of PGC-1a and enhancing mitochondrial function and antioxidant defense
in dopaminergic neurons. A summary is shown in figure 15. These data are supported by findings
showing that compounds used for treatment of type 2 diabetes, such as TZD, have neuroprotective
potential in neurodegenerative diseases (Patrone et al. 2014), and the PPARY agonists have been shown
to have beneficial effects in treatment of PD (Aviles-Olmos et al. 2013, Carta & Simuni 2015).
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Figure 15. Summary figure. PPARY increases cAMP levels and affects PGC-1a expression via CREB to enhance
mitochondrial function and protect against oxidative stress. cCAMP, cyclic AMP; AC6, adenylyl cyclase 6; PKA,
protein kinase A; CREB, cyclic AMP response element binding protein; PPARY, peroxisome proliferator-activated
recepror v; PGC-1a, peroxisome proliferator-activated recepror y coactivator-la; SIRT1, sirtuinl; NRF1, nuclear
respiratory factor1; TFAM, mitochondrial transcription factor A, SOD2, suoeroxide dismutase2, Trx2, thioredoxin
2.
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6. CONCLUSIONS AND FUTURE PROSPECTS

The aim of this work was to clarify the possible beneficial effects of PGC-1a in dopaminergic neurons
and to search for compounds that could act as PGC-1a activators in these cells. In this work, we show
that transgenic expression of PGC-1a has a neuroprotective effect on MPTP-induced dopaminergic
neuron death in mice. This may be due to the increase in mitochondrial respiratory capacity and
antioxidant enzymes that was observed in PGC-1a TG mice. Regulating the expression and activation
of PGC-1a could serve as a useful tool in preventing degeneration of dopaminergic neurons in PD.
However, the increase in PGC-1a needs to be carefully controlled, since a high overexpression has been
shown to contribute to cell death.

Compounds that are able enhance the expression of PGC-1a in dopaminergic neurons would be of
interest in the development of therapies for patients with PD. We showed that RSV was able to mimic
the effect of PGC-1a overexpression in mice treated with MPTP. The beneficial effect of RSV on
neuronal survival was thought to be mediated by PGC-1a, as treatment of neuronal cells with RSV was
able to increase the expression and activation of PGC-1a as well as increase the expression of proteins
that are known to be regulated by PGC-1a.

RSV was also capable of increasing the expression of DAT in female but not male mice, suggesting that
the effect could be mediated by ER. The same effect on DAT expression was observed in cells treated
with estrogen, indicating that ER might serve as mediators of DAT expression. By increasing the
expression of DAT the reuptake of DA in cells is more efficient and this could prevent DA to be involved
in the production of ROS, but also help maintain the cognitive functions of the patient. The decline in
DAT levels is related to PD, and by increasing the expression of DAT RSV might not only protect
against oxidative stress but also improve dopaminergic neuron viability by maintaining the function of
the neurons. If using RSV as a therapeutic compound in PD, it should be taken into account that the
neuroprotective effect of RSV might differ depending on the gender of the patient as we here show that
DAT expression is mediated by ER.

We also observed that FGF21 is able to regulate the expression of PGC-1a, as well as the activation of
PGC-1o, by affecting SIRT1 expression and the NAD'/NADH ratio in dopaminergic neurons, and
thereby improve mitochondrial function and antioxidant defense in these cells. This implies that
therapies affecting the level of FGF21 might serve as a treatment for patients with PD and other
neurodegenerative diseases. FGF21 did not affect the mitochondrial biogenesis, but the protective effect
could be due to the increase in antioxidant defense. The lack of increase in mitochondrial biogenesis
might also be due to an increase in mitochondrial quality control, but this remains to be studied.

Mitochondrial function and PGC-1a expression was also improved by activating PPARy with the non-
thiazolidinedione ligand GW1929. GW1929 was able to increase the level of cAMP and activate the
PKA-CREB pathway, leading to an increased PGC-1a expression. GW1929 was also able to increase
the expression of SIRT 1. This might be due to the activation of CREB, although it remains to be clarified.
The increase in PGC-1o expression and activation in DA neurons treated with GW1929 showed an
increase in the expression of antioxidant enzymes, and ROS-induced cell degeneration was also reduced
in GW1929-treated cells compared to control.

PPARy and FGF21 have been shown to be regulating each other in adipose tissue. It could be of interest
to study if there would be an additive effect by treating dopaminergic neurons with both compounds
simultaneously. The positive effect of these metabolic regulators on dopaminergic neuron survival
shows that drugs used in metabolic diseases, such as type 2 diabetes drugs, might also have a role in
preventing the progression of PD and other neurodegenerative diseases.
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Taken together, the results show that PGC-1a has neuroprotective effects in toxin-induced models of
PD and the PGC-1a activators have beneficial effects in dopaminergic cell survival. It is, however, of
importance to find biomarkers for early intervention in the progress of the disease. At the state when
motor symptoms are visible the majority of dopaminergic neurons are already degenerated. If the
diagnosis could be done at an earlier stage, it could be possible that treatments targeting mitochondrial
dysfunction and oxidative stress would be beneficial for the patient. Different ways of fine-tuning the
antioxidant defense and preventing the formation of ROS is of importance in preventing the pathology
of PD to proceed. Compounds that are able to regulate the expression of PGC-1a in dopaminergic
neurons might have an important role in the development of therapies to combat the loss of dopaminergic
neurons in patients with PD.
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