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Biological populations arise, develop and evolve under a series of well-studied laws and fairly regular
mechanisms. Population genetics is a field of science, that aims to study and model these laws and
the genetic composition and diversity of populations of various types of species and life. At best,
population genetic models can be of use in verifying past events of a population and eventually
reconstructing unknown population histories in light of multidisciplinary evidence. An example
case of this is the research concerning human population prehistory of Finland.

Population simulations are a sub-branch of the rapidly developing field of bioinformatics and can be
divided into two pipelines: forward-in-time and backward-in-time (coalescent). The methodologies
enable in silico testing of the development of genetic composition of individuals in a well-defined
population. This thesis focuses on the forward-in-time approach. Multiple pieces of software exist
today for forward population simulations, and simuPOP [http://simupop.sourceforge.net] probably
is the single most flexible one of them. Being able to incorporate transmission of genomes and arbi-
trary individual information between generations, simuPOP has potential applications even beyond
population genetics. However, simuPOP tends to use an enormous amount of computer random
access memory when simulating large population sizes.

This thesis introduces three approaches to improve the throughput of simuPOP. These are i) intro-
ducing scripting guidelines, ii) approximating a complex simulation using the inbuilt biallelic mode
of simuPOP and iii) changes in the source code of simuPOP that would enable improved throughput.
A previous simuPOP script designed to simulate past demographic events of Finnish population
history is used as an example. A batch of 100 simulation runs is run on three versions of the
previous script: standard, modified and biallelic. As compared to the standard mode, the modified
simulation script performs marginally faster. Despite doubling the user time of a single simulation
run, the biallelic approximation method proves to consume three times less random access memory
still being compatible from the population genetic point of view. This suggests that built-in support
for the biallelic approximation could be a valuable supplement to simuPOP.

Evidently, simuPOP can be applied to very complex forward population simulations. The use of in-
dividual information fields enables the user to set up arbitrary simulation scenarios. Data structure
changes at source code level are likely to improve throughput even further. Besides introducing
improvements and guidelines to the simulation workflow, this thesis is a standalone case study
concerning the use and development of a bioinformatics software. Furthermore, an individual de-
velopment version of simuPOP called simuPOP-rev is founded with the goal of implementing the
source code changes suggested in this thesis.
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1 Introduction

Bioinformatics in a very broad sense could be described as the science of processing
data from biological objects, such as DNA or amino acid sequences. The structure
and chemical properties of DNA were discovered already in the 1950’s [WC1953].
Further studies eventually developed into the central dogma of molecular biology
describing how the information within DNA is processed leading from transcription
into a ready protein. Bioinformatics saw a significant rise during the 1990’s together
with the development of ever improving practical methods for obtaining biologi-
cal data from model species, especially next-generation sequencing. More recently,
bioinformatics has highly benefited from the development of high-throughput com-
puters. Bioinformatics has several sub-branches and this thesis briefly introduces
some main ones of them: population genetics, DNA sequencing, systems biology
and genomics. Special emphasis of this thesis is on population genetics, more ac-
curately computer-aided population simulation methods, while other topics such as
RNA sequencing, proteomics or microbial ecology bioinformatics are left out of the
scope of this study.

Computer simulations and modelling are used extensively in bioinformatics, at least
in the sub-branches of population genetics and systems biology. Generally speaking,
computer simulations can be utilized on almost any field of science to test different
empirical hypotheses or to look for potential solutions to different problems. While
being unable to provide absolute proof for the validity of a specific simulation sce-
nario, simulation approaches often are a convenient, cost-effective and repeatable
method for distinguishing between likely and unlikely scenarios. Great care should
be put on whether a simulation model is valid and worth the resources invested to
the development of the model [Sar2005].

Population genetic computer simulation refers to modelling a part of a genome (or
sometimes the entire genome) of a studied species with a simulation software based
on well-defined mathematical and statistical models. The software applied should
implement at least basic population genetic features such as populations, individ-
uals with genomes, demographics, migration between populations and mutation.
Considering population genetic simulations, two main approaches are the coalescent
(backward-in-time) method and the forward-in-time method. The vast domain of
simulation software currently available can be roughly divided into the two above-
mentioned categories. Along with the sheer quantity of simulation software available,
different input and output file formats are even more abundant. There is a clear



2

need for a common, more general file format to unify the shattered field of data
input and output [Exc2006]. While this thesis does not directly aim to improve
the situation, unified data format is one of the major future aspects of simulation
software developers. More generally, population genetic simulation methods have
provided both academic and everyday users a way to simulate population histories
where they would be unreachable by other means. Especially prehistories of popu-
lations, meaning the completely undocumented portions of the population histories,
become tractable with this methodology.

A population genetic simulation environment called simuPOP [Pen2005] has proven
to be a flexible and well-maintained simulation tool for simulating human population
history scenarios in Finland [Heg2010, Sun2010, Sun2013]. Research concerning the
prehistory of Finland is a good example case of applying multidisciplinary evidence
to get a wider perspective on the study subject.

Basic population genetic features, such as genomes, individuals, populations, migra-
tion and mutation have been implemented in simuPOP, and it is possible to simulate
populations of any living organism. In essence, simuPOP is a collection of Python
programming language [Ros2011] modules that users import into their simulation
program script. On one hand, consequences are that a fairly confident level of skill in
Python programming from users is required. On the other hand, free use of Python
enables the user to incorporate arbitrary mathematical models into the simulation
run limited only by the application programming interface of the language. Evi-
dently, simuPOP is the most versatile population simulation tool available, at least
when concerning forward population simulations (see Section 2.3.2). A review of
various population simulation approaches and tools is given in Section 2.3.

There are three main objectives in this thesis: i) to introduce scripting guidelines
for efficient use of simuPOP, ii) investigate the feasibility of using simuPOP’s bial-
lelic mode as a viable approximation for the standard multi-allelic mode, and iii) to
introduce changes in the source code of simuPOP to improve memory-loading espe-
cially in the multi-allelic mode. To achieve the latter, an independent development
version of simuPOP called simuPOP-rev is introduced. Moreover, as a Finnish popu-
lation genetic scenario is used as an example, the simulation results are evaluated in
the light of present-day understanding of the genetic composition of Finnish human
population.

This thesis is structured as follows: Section 2 will review a selected set of literature
concerning bioinformatics in general as well as population genetics and population
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genetic simulation methods. Previous simulation approaches concerning population
history of Finland are also presented. Section 3 will introduce in detail the methods
and materials used in this thesis in order to achieve the abovementioned objectives.
Section 4 will present the main results of the applied methods. Finally, the results
of this thesis and future work concerning the presented topics are discussed in detail
in Section 5.

2 Literature review

It had been imagined already in the first half of the 1900’s that a chemical compound
called deoxyribonucleic acid (DNA) is the physical entity that encodes biological in-
formation. James Watson and Francis Crick then together with Rosalind Franklin
discovered the structure of DNA from X-ray diffraction images in 1953 [WC1953].
The study of this structure and its behavior within the cells eventually led to the
development of the framework of protein synthesis, i.e. that the biological informa-
tion within DNA is used as a recipe for a protein through processes of transcription
into ribonucleic acid (RNA) and translation of it. The information is encoded in the
sequential order of the four nucleotide bases: adenine (A), cytosine (C), guanine (G)
and thymine (T). Thymine is replaced by uracil (U) in the case of RNA. Systematic
(usually computer-aided) storage, retrieving and analysis of the information stored
in DNA and its derivatives is at the heart of bioinformatics, which is a rather novel
field of computational science. The framework of protein synthesis is commonly
known as the central dogma of molecular biology [Cri1970, Sha2009].

Bioinformatics applications started blooming as quickly developing DNA sequence
extraction and storage methods began overwhelming the computational methods of
the time for analyzing the data. Bioinformaticians can aid the increased need for
efficient data analysis techniques by designing better methods and algorithms for
processing the abundant data. These methods often are incorporated into bioinfor-
matics software. The field of different applications and file formats in bioinformatics
appears abundant, complex and shattered [Exc2006].

In living organisms, all species tend to form populations mainly for better chances of
producing offspring and survival. It is of interest to study populations to understand
their dynamics. Regarding population simulations, various simulation software are
available to users. A forward population simulation environment called simuPOP

[Pen2005] has gained publicity during recent years. The software is under active
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development and new release versions are published as often as every 5 months.

The computational developments presented in this thesis are introduced alongside
a brief look at the human population history of Finland, a suitable case study. How
ancient Finland was actually populated after the after the Vistula Ice Age remains a
question of debate. Evidence from archaeology indicates that there has been human
activity for at least 11,000 years beginning almost immediately after the retreat of
the glacial ice [Pes2010, Tal2010]. Moreover, there has been debate as to whether
hominid inhabitation existed already before the Vistula Ice Age, more than 100,000
years ago. These inhabitants would have had to be ancestors of modern humans,
most likely Neanderthals (Homo neanderthalensis). This rather bold assumption
may be supported by latest evidence from Susiluola ([Mag1998, Pur2004]) (literally
translated as wolf cave) in Karijoki, western Finland.

The forward population genetic simulation environment simuPOP has been imple-
mented using programming language C++ [Str2000] and has an open source code.
While the contribution of the main developers has concentrated on adding new func-
tionalities based on user demand, less attention has been paid to technical issues
such as memory efficiency and data structures. With an open source code, program
developers (and any computer user for that matter) have access to the code. As the
code is distributed under a General Public License (GPL), developers are allowed
to distribute individual and modified versions of the software on the condition that
they endorse the GPL license. The author of this thesis has done exactly this and
started an individual version of the software called simuPOP-rev in order to control
the source code level changes suggested in this thesis.

2.1 Bioinformatics - a rapidly developing field of science

Bioinformatics as a science is rather novel. The field saw its rise as information
produced by quickly developing DNA sequencing methods and the extensive deposi-
tion of new biological sequence data into various databases began overwhelming the
methods for efficiently analyzing the data [Tui2005]. Bioinformaticians can aid the
need for efficient data analysis techniques by providing algorithms for processing the
incredibly abundant data. There are many sub-branches within what can be called
bioinformatics. This section briefly presents some main ones of these.

Population genetics is the study of genetic properties of populations, such as
population size and genetic diversity within a population. These properties can be
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studied by taking genetic samples from populations and analyzing e.g. haplotype
content and diversity in the population. Population simulation tools are a cost-
efficient approach in case repeated sampling and analysis is needed. This sub-branch
of bioinformatics along with different simulation methods will be discussed in greater
detail in Section 2.2.

DNA sequencing is a field specialized in production, application and use of devices
that are capable of approximating an enumeration of the partial or whole genome
of a species. For example, the human (Homo sapiens) genome contains more than
three billion base pairs. With DNA sequencing methods, it has been possible to
roughly sort all these base pairs into a single reference genome. This is the case
for the genomes of many other species too. DNA sequencing theory constitutes the
fundamental ideas and problems of DNA sequencing. Bioinformaticians typically
develop and apply algorithms that solve these problems as efficiently as possible.
Along with ever developing sequencing methods, the development of algorithms
and computer processor technology will allow for sequencing of the most complex
genomes.

Systems biology is concerned with understanding and modelling biological systems
such as different pathways in metabolism or disease developments. The ambitious
goal of systems biology is the complete definition and modelling of all possible biolog-
ical systems. Moreover, efficient algorithms are essential for modelling the virtually
unlimited number of biological systems.

Genomics is a discipline in genetics, though closely related to bioinformatics, and
is concerned with the study of the function and structure of arbitrary genomes.
Various databases are maintained to enable continuous updates and integration of
new data.

To sum up, bioinformatics is a field of science that brings together computer scien-
tists, biologists and experts from other fields to join the multidisciplinary effort of
studying, modelling and understanding different structures and mechanisms of life.
Unfortunately, the scope of a Master’s thesis cannot be broad enough to present each
individual sub-branch of bioinformatics in detail. An extensive outlook (in Finnish)
into core bioinformatics methods has been published by the Finnish IT Center for
Science (CSC) [Tui2005].
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2.2 Population genetics

Population genetics developed alongside with the discovery of DNA as the physical
natural entity that encodes biological information. The profile of inherited material
within a population is strongly varied depending on the living conditions of a species.
Through population genetic analyses it has become clear that properties such as
effective and actual population sizes, individual fitness and subpopulation division
have a significant effect on the genetic diversity of populations.

Population bottleneck is one of the key concepts of population genetics. In a
narrow sense, a population bottleneck means that the number of individuals in a
population becomes very small and remains there for some time. In a more broad
sense, defining exactly how small the population should be or how long should the
population size remain at that number to actually consitute a bottleneck is required
when using the concept. This usually depends on the species and the population’s
interactions with the environment. Population bottlenecks are usually preceded by
a distinct decline in population size and are followed by either population expansion
or, in some cases, extinction. An example illustration of population bottlenecks is
given in Figure 1.

Founder effect actually is an instance of a population bottleneck and basically
means the genetic effect that the small number of individuals can have in a founding
population. A founder effect is illustrated in Figure 1.

Genetic drift is another population genetic phenomenon that often has a dramatic
effect on the genetic composition of a population, especially if the population is
recently founded. Despite being initially very diverse in different genes, after a rela-
tively small amount of generations have passed, the population may have lost more
than half of its initial diversity. This effect is enhanced if the population is isolated
and there is no gene flow or migration into the population from outside. Genetic
drift often occurs in demographic events known as range expansions [Ray2009]. The
first phase of a range expansion essentially is a founder effect.
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Figure 1: A simplified example population model illustrating population bottlenecks
and a founder effect. The width of the cylinder represents population size at a given
time. Coloured spheres represent individuals with a specific allele indicated by
the color of the sphere. In this specific example, genetic drift causes the yellow
allele to become almost extinct in the final population. Migration between the split
populations is likely to occur - at least in case of human populations.

2.3 Population genetic simulation approaches and tools

Computer simulations are used in various fields of science mostly for their great
cost-efficiency compared to other methods. Consider, for example, a genetic study
where authentic genetic data is gathered by taking biological samples. If samples
become destroyed or otherwise affected by, for example, contaminated instruments
(not unfamiliar in laboratories) [Gra1996, Doi2004], one will need to collect a clean
set of new samples. In case the damage is irreparable, the cost of collecting samples
and processing them in laboratory conditions could be intolerable and funding for
repeated sampling may not always be available.

There are many population simulators available today: coalescent simulators like
simcoal and BayesSSC [Exc2000] (http://cmpg.unibe.ch/software/simcoal) and for-
ward simulators like IM [Nie2001] or EASYPOP [Bal2001] to mention a few. The
main focus of this thesis is on a forward population simulator simuPOP [Pen2005] and
multiple ways to improve the throughput of this simulator are introduced. simuPOP
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proves to be a very flexible forward population simulator and, in case sufficient
computing power is available, allows for arbitrarily complex simulations without the
need for source code changes present in many other software [Pen2005].

2.3.1 Coalescent simulators

Coalescent simulators are population simulators based on the serial coalescent and
are very often based on Bayesian methods. This is usually implemented in the form
of approximate Bayesian computing (ABC) [Bea2002]. The common feature of co-
alescent simulators is that the simulation proceeds backwards in time, beginning
from present day and then proceeding generation by generation back towards the
common ancestor of a sample. The Bayesian methodology is applied when prior
probability distributions are assigned to population genetic events such as gradients
in population sizes or time points of founder effects. Moreover, models of evolution-
ary change (mutation) are applied separately to the entire simulated genealogy in
some instances [Exc2000].

2.3.2 Forward simulators

Forward simulators provide a rather different approach to population simulations.
In forward simulation, a starting population is usually initialized and a starting time
point set. The simulation then proceeds forward-in-time, hence the name forward
simulation, until some pre-defined endpoint or other conditions for ending the sim-
ulation are met. Various statistics of interest can be tracked during the simulation,
such as population size, migration and mutation events. Forward simulations are
very useful for sorting out the most likely scenarios for the history of a population.
For this thesis, simuPOP [Pen2005] serves as a prime example of a forward simulator.

simuPOP is used through a programming (scripting) language called Python
[Ros2011]. Thanks to this feature, the user can set up different forward simula-
tion scenarios ranging from very simple to immensely complex, theoretically limited
only by the application programming inteface of Python. The simulated species can
be anything from bacteria to plants to human, as the genomes of the individuals
are defined in detail before the start of the simulation. A flowchart illustrating the
workflow of simuPOP is shown in Figure 2.
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Figure 2: A flowchart illustrating the basic workflow of simuPOP. Image: Sundell
et al. 2010 [Sun2010].

2.3.3 Summarizing statistics of interest

Tools for calculating various summary statistics of interest are usually built-in in
population simulators. In the case of forward simulators, these statistics of interest
are, for instance, population size at time t, number of haplotypes in the population
and genetic diversity of the population. In case autosomes are also simulated, it is
possible to calculate a statistic known as linkage disequilibrium (LD).

Population size at time t is one of the very basic statistics of population genetics.
It is the absolute number of individuals in a population. The effects of population
size to the genetic diversity of a population can be drastic, especially if the size
remains very small for prolonged periods of time.

Number of haplotypes in a population or a subpopulation is descriptive of the
individual level genetic diversity in the population. The closer the number of hap-
lotypes in the population is to the actual population size, the more diverse the
population is. This statistic can be easily calculated in simuPOP and other popula-
tion simulators. The statistic for the number of haplotypes is noted in this thesis by
letter A, indicating the same statistic as in a study of actual Finnish genetic data
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[Pal2009].

Genetic diversity (also haplotype diversity) of a population or subpopulation is
indicative of the similarity of individuals within the population. There are many
ways of computing genetic diversity, one of the most common being the formula by
Masatoshi Nei [Nei1973], in which the genetic diversity Ĥ of a population is defined
as:

Ĥ = n(1−
a∑

i=1

xi)/(n− 1) , (1)

where n is the number of individuals in the population, a is the total number of
haplotypes in the population and xi is the frequency of the i -th haplotype. This
formula also is known as Nei’s gene diversity. Whenever using the concept genetic
diversity in this thesis, the mathematical rationale within will be defined by this
formula.

Effective population size of a population is a distinct measure the definition of
which depends strongly on the application. It describes the number of individuals
in a population that are actively contributing to the transmission of genomes from
their generation to their offspring by reproduction. Typically, this size (noted as
Ne) is much smaller than the actual population size N. A good review of the var-
ious factors affecting the definition of the statistic is given in a recent publication
[Cha2009]. In this thesis, effective population size Ne refers to the statistic defined
in an evolutionary human genetics source book [Job2013]:

Ne =
1

1
T

∑T
i=1

1
Ni

, (2)

where Ni is the actual number of individuals in the i -th subpopulation and T is the
total number of subpopulations. This means that, as population sizes never remain
constant, Ne is the harmonic mean of subpopulation sizes as these population sizes
vary through generations. Moreover, it is intuitive that the statistic tends to be
dominated by a subpopulation that enters a narrow bottleneck.

Linkage disequilibrium is a population statistic calculated from autosomes. It
portrays the disparity of random and non-random linkage between alleles. Auto-
somes were not simulated in the original simulation studies [Sun2010, Sun2013] and
also were not simulated in any of the simulations presented in this thesis.

Hardy-Weinberg equilibrium is a theorem that states that frequencies of alleles
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in a population should remain constant from generation to generation in case no
evolutionary influences, such as mating, selection , mutation, gene flow or genetic
drift, are affecting the population.

F-ST also known as the fixation index in a population is one of the so called F-
statistics that describe the deviation of the observed population’s genetic profile
as compared to the expected profile (essentially the Hardy-Weinberg equilibrium).
Computation of the statistic usually involves a series of pairwise comparisons be-
tween subpopulations. If F-ST between two subpopulations is small, the allele fre-
quencies between the subpopulations are close to one another. The statistic may
also be calculated for the total population. A detailed introduction to the statistic
is given in a recent survey article [Hol2009].

Despite all the statistics above can be monitored during a simulation, also in simuPOP,
the test simulations in this thesis make use of the three former statistics (population
size, number of haplotypes and genetic diversity) due to the following facts. First,
the original studies [Heg2010, Sun2010, Sun2013] to which this thesis compares its
results used the same statistics. Effective population size Ne was computed in the
results of the most recent of the studies [Sun2013] but only after the actual simu-
lation. Second, autosomes were not simulated in the original studies, thus making
at least the linkage disequilibrium statistic incomparable with the original studies
and also out of the scope of this study. Third, the computing of the four latter
statistics would have only brought along additional complexity to the computations
and performance analysis from the viewpoint of this thesis. A detailed discussion
on the choice of these statistics for this thesis is given in Section 3 and Section 5.

2.3.4 Output and file format compatibility

Concerning file format compatibility of bioinformatics in general, various bioinfor-
matics software and their interplay is discussed in a recent review [Exc2006]. The
opinions put forward in the article clearly point out the need for a common file format
that would unify the shattered field of bioinformatics software and the respective
output formats. As for simuPOP, the software already has inherent support for mul-
tiple file formats and powerful population genetics computer programs (Figure 3).
A data exchange method for Arlequin software [Sta2001] would be quite straightfor-
ward to implement and would make a notable increase in the co-operation between
the programs. Moreover, support for Arlequin would literally place simuPOP in the
center of the interplay chart of a wide range of different bioinformatics software
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[Exc2006].

Figure 3: A chart showing simuPOP data exchange relations. The colored ovals
represent software and the rectangles represent file formats. Export support for
Arlequin is not inherently available in simuPOP, but the sample script referenced
in this thesis does have a working export method.

2.4 Current capabilities and limitations of simuPOP

The simulation tool simuPOP [Pen2005] utilized in this study is likely to experience
extensive use in future studies. Therefore, it is feasible to explore some of the
limitations of simuPOP to detect boundaries of what can be simulated in the first
place. In the development of simuPOP, most recent attention from the computational
point of view has been paid in simulating long DNA sequences. The main issue often
is the extensive use of computer random access memory (RAM) in computations
that include millions of individuals with a detailed genome. simuPOP currently has
support for multiallelic and biallelic simulation scenarios, but doesn’t have direct
support for binary mode optimizations on the scale presented in this thesis (see
Section 3.4.2). Later versions of simuPOP (since release 1.0.8) offer a new method for
simulating long DNA sequences but the method still is very limited in its approach.

simuPOP also is somewhat notorious for its steep learning curve in everyday use,
where sufficient skill in Python programming is required. This and some other
minor issues of simuPOP are pointed out in a recent Master’s thesis [Heg2010] but
not further discussed here.

When considering genetic simulation of large populations, the inbuilt memory allo-
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cation of simuPOP becomes a problem, as the random access memory of the computer
running the simulation quickly becomes overwhelmed by large population sizes and
detailed genomes of individuals. The desirable future developments would be to
reduce the memory load of storing individual genomes and allow greater population
sizes in the simulation with individuals still having a detailed genome to simulate.

2.5 Methods for sequence data storage and retrieval

simuPOP is only one example of a software that by default stores everything it needs
in random access memory in runtime. It is intuitive that for instance individual
genomes may not be needed at hand all the time. Memory could be saved if the
individual genomes could be stored outside random access memory or compressed
temporarily and still quickly accessed when needed.

Storage and retrieval of a large collection of highly similar sequences has been studied
in the past. University of Helsinki Department of Computer Science recently had
a research group known as SuDS (Succinct Data Structures) for investigating these
applications (http://www.cs.helsinki.fi/group/suds). In an example publication, a
data structure known as the suffix tree is applied to storage of 36 repetitive sequences
covering a total of 409 megabases of DNA sequence [Mak2010].

The payoff of suffix trees is that retrieval of information from the tree is fast: Desired
information (a sequence) can be searched from the tree based on key values (suffixes)
stored in the nodes. As areas of the search space can be identified based on the key
values, parts of the tree where the search is guaranteed not to find the sequence
can be excluded. The major overhead of suffix trees is the actual construction of
the data structure from a collection of strings. An efficient, more accurately linear-
time, algorithm for building suffix trees was developed in the University of Helsinki
Department of Computer Science by Esko Ukkonen in the early 1990’s [Ukk1992].

While suffix trees appear to have many advantages, the basic implementation of a
suffix tree does not save any space. Actually, storing a sequence of length n consisting
of characters A, C, G and T in a suffix tree takes O(n log n) bits of space [Val2007].
To improve the situation, compressing the sequcences stored in the suffix tree is one
solution. A string processing method known as self-indexing [Mak2007] can achieve
this, and the compression is promised to only have a polylogarithmic slowdown on
the retrieval operations while still allowing for random access to the contents of the
tree [Mak2010]. In practice, a method called Burrows-Wheeler transform [Bur1994]



14

is used to sort sequences in a collection into a format where they would be more
amenable to compression. More accurately, similar elements (characters) in the
sequences are placed closer to one another in the transformed order of the elements
[Mak2007].

The overheads and limitations presented here do not concern only population ge-
netic simulations, but almost every application where a collection of strings needs
to be stored and compressed. Examples other than population simulations include
genome alignment [Kur2004] and metabolic network reduction algorithms in path-
way analysis [Zen2010].

2.6 A brief look into prehistory of Finland

This thesis uses a recently developed population simulation scenario concerning
Finnish population history as an example case for investigating the throughput of
simuPOP [Sun2010, Sun2013]. This was done in order to compare the results of
different configurations of simuPOP against published summary statistics and to
assure that the methods introduced in this thesis do not affect these statistics. For
clarity, the geographical location of Finland is illustrated in Figure 4.

Figure 4: Reference map showing location of Finland (black) in northern Europe.
Modern country borders as depicted in this map obviously have not existed before
the historical times and have formed into their present state only very recently.
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Finland has been inhabited for at least 10,000 years. The era 10,000 years ago is
known in human prehistory as the Stone Age named after the most used material in
the artifacts used by man at that time. The Stone Age is classically further divided
into the Mesolithic (Early Stone Age, circa 11,000-6,000 years ago) and the Neolithic
(Late Stone Age, circa 6,000-3,000 years ago) and is succeeded by the Early Metal
Period (Bronze Age). The oldest radiocarbon dated evidence of human activity is
from Joensuu in eastern Finland, a piece of a mammal bone which evidently has been
burned in a fireplace [Pes2010]. The Ristola dwelling site in Lahti also is very old,
though not radiocarbon dated. Another interesting site is Kristinestad, Finland: the
so called Susiluola (literally translated as wolf cave) [Mag1998, Pur2004] in Karijoki.
The wolf cave is the oldest human inhabitation site found in Northern Europe. There
has been some debate as to whether human inhabitation existed in the wolf cave
already before the Ice Age, more than 100,000 years ago, but this hypothesis lacks
undisputed evidence at the time of writing.

Radiocarbon dated materials have provided information that indicate a population
peak period in the Neolithic period, and before the Early Metal Period, the pop-
ulation appears to enter a decline [Tal2010]. The actual reasons for this decline
are unknown. Deteriorating climate, wars, famine and an epidemic are all plausi-
ble reasons and are discussed in detail in the first of the cited papers of Finnish
population history simulation [Sun2010] and references therein. A population bot-
tleneck succeeding the decline also appears likely and may be one explanation for
the lowered genetic diversity discovered in the Finnish population of modern day
[Saj1996, Pal2009]. Reliable census population sizes concerning the Finnish popula-
tion are available from 18th century onward and the total population first exceeded
one million in the late 1800’s [Ker2001]. Today the Finnish population totals to
about 5,4 million individuals.

An isolate population consisting of northern and western Europeans has earlier been
simulated as an isolate with simuPOP [PaK2011], although the individuals could not
be directly associated with those originating from Finland. The actual population
of Finland has also been simulated in in recent studies with simuPOP: Known cen-
sus sizes were used in the simulation concerning the so called Savonian expansion in
Finland applying also significant historical information such as small-scale migration
habits of individuals in Finland of the past [Heg2010]. Next, the entire population
history (circa 11,000 years) was simulated in [Sun2010] and further improved in
[Sun2013]. In the latter three studies, the settings of population demography were
based directly on the archaeological backround presented in this section. Conse-
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quently, the scenario used in the simulations presented in this thesis is also based on
the most recent publications [Sun2010, Sun2013] and is further discussed in Section
3.3.

3 Materials and methods

The main improvements to the workflow of simuPOP presented in this thesis are
restricted to forward-in-time simulation of long sequences of DNA that consist from
the four nucleotide bases (A, C, G and T). The improvements do not apply to other
representations of the genome such as Y-chromosomal microsatellites or multi-allelic
loci, though those were simulated in the original studies [Sun2010, Sun2013] and are
also simulated here to replicate the memory loading as accurately as possible.

As this thesis investigates the performance of a software, allocation of external com-
puter resources was needed. Testcases in a mere single tabletop or laptop computer
environment might very well have been insufficient to test some of the real limi-
tations of simulations with simuPOP. The Department of Computer Science of the
University of Helsinki has recently acquired a high-throughput computer cluster now
named as ukko. Login access to ukko is free for students and staff of the department,
and the machine was extensively used in the testing, analysis and replication of the
simulations described in this thesis.

The overview of the three methodological approaches to improve throughput of
simuPOP are shown in Figure 5.
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Figure 5: Overview of the three methods of this thesis to improve throughput of
simuPOP.

3.1 Computing resources

ukko cluster of the Helsinki University Department of Computer Science was used
extensively in testing the simulation scripts and software packages needed for pro-
filing and performance testing. The system has a 64-bit GNU/Linux as operating
system. The batch simulation runs and actual development of simuPOP-rev were
also performed on the ukko cluster. Each login node of ukko has 16 Intel R© Xeon R©
E5540 (2.53 GHz) processors available. As simuPOP has no support for paralleliza-
tion, a single simulation run used exactly one of these processors. The core of
simuPOP was checked for memory leaks using a software called Valgrind [Sew2005].

The latest release version of simuPOP (1.1.1) was downloaded and compiled from
its Subversion repository in Sourceforge (http://www.sourceforge.net). In essence,
this version was forked and the development versions of this fork are now designated
as simuPOP-rev. The downloading instructions of simuPOP-rev are available online
(http://simupop-rev.sourceforge.net).
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3.2 Performance analysis

A built-in wall clock implementation of simuPOP as well as the central processing unit
time (user time) console output command time were used to measure computing
times. An openly available Python module called guppy, especially its heapy mem-
ory profiler [Nil2006], was used for the assessment of the memory loading. Moreover,
the output of Unix command top was directed into a file in the final generation of
each simulation run (details in Section 3.3.3). The command reports many real-
time statistics such as CPU use and random access memory resident set sizes for
processes. The computing times were set to measure the time elapsed to simulate
from starting population to final population, or from generation 0 to generation
1,100 (details in Section 3.3.3). Time spent in calculating the statistics of interest
after the actual population simulation were excluded from the performance anal-
ysis as the calculation here was largely user-defined and not a feature of simuPOP
itself. The memory loading was set to measure the size of objects in memory when
population size reaches 1 million (1,000,000) individuals.

In order to gain unbiased performance measurements, the actual wall clock simula-
tion times (seconds) and memory loading (gigabytes) of the simulation were recorded
from a set of 100 independent simulation replicates. The arithmetic averages and
medians of the wall clock and user times were then computed and illustrated as
boxplots where applicable.

3.3 Sample simuPOP script: Prehistory of Finland

The demographic outline used in the simulations of this thesis is based on the ar-
chaeological background introduced in Section 2.6. Many fixed events in the scenario
such as population bottlenecks are based on genetic evidence [Saj1996] and evidence
from radiocarbon dated archaeological artefacts [Tal2010], and are further supported
by recent simulation studies that were done with simuPOP [Sun2010, Sun2013]. In
the more recent of the studies [Sun2013], 24 different simulation scenarios were run.
Regarding the scope of this thesis, a single simulation scenario labeled "E1" in the
previous study was selected for simulations presented here. The characteristics of
the E1 scenario include migration between subpopulations, external migration into
the main population from neighbouring populations (details in Section 3.3.2) as well
as a bottleneck size of 1,000 individuals at the narrowest point. It also was one of
the scenarios that produced population genetic statistics closer to those observed
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in authentic genetic data in the previous study [Sun2013]. An illustration of the
general demographic model is given in Figure 6.

Figure 6: The general demographic model in the simulations performed in this thesis.
The model corresponds to a specific scenario (E1) of a previous simulation study
[Sun2013]. Subpopulation division is not visible in this illustration. BP = years
Before Present.

The model simulation period begins at 11,000 years BP (=Before Present). The
simulation period ends at 0 years BP, a time that roughly equals present day. The
simulation proceeded in steps of 10 years. Thus, one whole simulation consisted of
1,100 steps in total. The simulation was repeated 100 times in all test runs, and
statistics of interest (see Section 2.3.3) were then calculated after each simulation
run. Concerning internal hierarchy of populations, Masatoshi Nei has pointed out
that it is crucial to take population subdivision into account in population genetic
analysis [Nei1973]. Thus, the main population was divided into several subpopula-
tions as described in the following subsections.

3.3.1 Finnish population

The Finnish population was initialized with 1,000 individuals (500 males and 500 fe-
males) distributed evenly in two subpopulations: Saami and Other Finland (marked
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as "Muu Suomi"). As it is currently impossible to accurately predict the actual ge-
netic composition of the ancient individuals of the starting population, the initial
values of the genomes were selected from a set of haplotypes listed in a Finnish pop-
ulation genetic study of actual genetic data [Hed2007], and corresponded with the
previous academic estimates used in both previous simulation studies of the entire
Finnish population prehistory [Sun2010, Sun2013].

3.3.2 Neighbouring populations

Migration of random individuals was added from three neighbouring populations of
constant size: archaic European, archaic Scandinavian and Saami. The constant
sizes for these populations were 50,000, 25,000 and 5,000 respectively. The com-
positions of the neighbouring populations were an exact match to those used in
the previous simulation studies [Sun2010, Sun2013]. The neighbouring populations
were simulated before the actual simulation run to act as static pools from which
migrating individuals were then sampled. Unfortunately, it is out of reach for the
current version of simuPOP to be able to simulate large background populations in
runtime aside with the sizeable and growing Finnish main population.

3.3.3 Timeline of simulation

The simulation starts at 11,000 years before present time (BP). Two population
bottlenecks were placed into the simulation, one at 4,100-3,800 BP and a second
one at 1,500-1,300 BP. These bottlenecks are archaeologically justified and corre-
spond with the simulation timeline of a previous study [Sun2010]. 1,000 years after
the start of the simulation (on step 100), the Muu Suomi subpopulation is split
into two: North-East subpopulation and South-East subpopulation. This enables
subpopulation-specific migration from the neighbouring populations. The same sub-
population structure was also used in the most recent simulations of Finnish prehis-
tory [Sun2013].

3.3.4 Simulation operators and parameters

The simulated populations were age-structured meaning that the generations over-
lapped. Female individuals had mating age from 20 to 40 years of age, and male
individuals had mating age from 20 to 60. Moreover, the maximum age for an in-
dividual was 60 (6 simulation steps). In the actual simulation, the age information
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was directly encoded into the individual information fields of individuals, one of the
most powerful and flexible features of simuPOP (details discussed in Section 5.6).

Mating of individuals was set to be random, following the mating scheme used in
previous simulations. The number of offspring for the two individuals chosen for
mating is a random variable that follows a zero-truncated Poisson distribution with
expected value of two (λ=2). A general mortality rate of 0.15 in every 10 years was
introduced.

A mutation rate µ of 5.12× 10−6 per site per simulation step was used for the sim-
ulated 631 bp (= base pair) mitochondrial DNA segment. This is the same as used
in the previous studies [Sun2010, Sun2013], and is an arithmetic average of values
based on literature on the subject [Hey2001, Sig2000]. Mitochondrial DNA was
chosen as the simulated marker in the previous studies as a great deal of literature
on the subject was available and, more importantly, because mitochondrial DNA is
virtually free of recombination making it a more stable genetic marker. The muta-
tion model used was that developed by Motoo Kimura [Kim1980], where transitions
(nucleotide mutations A ↔ G and C ↔ T) are κ times as probable as transversions
(other nucleotide mutations). Here, κ was fixed to value 0.5, apparently a standard
default value for this mutator [Pen2005], and the same value as used in the previous
studies mentioned above. The mutation matrix for the simulation is given in Table
1.

A C G T -
A - µ/4 κµ/4 µ/4 0
C µ/4 - µ/4 κµ/4 0
G κµ/4 µ/4 - µ/4 0
T µ/4 κµ/4 µ/4 - 0
- 0 0 0 0 1

Table 1: Mutation matrix applied in multi-allelic simulation modes. Here,
µ=5.12× 10−6 and κ=0.5 .

The mutation matrix in Table 1 apparently accounts for deletions in the sequences
input to the mutator but deletions have zero probability of mutating further and no
new deletions are introduced (see last column and last row in Table 1).

In order to maintain comparability of the computational load in the simulation,
Y-chromosomal microsatellites incorporated in the original studies were also simu-
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lated here. A respective mutation rate of 7× 10−4 was used for the Y-chromosomal
microsatellites [Kay2001] with a standard stepwise mutation model [Oht1973].

Migration between the subpopulations was also added with rates corresponding to
internal migration of a patrilocal society. This means that migration probability is
significantly higher for females than males. Gender-specific migration rates between
subpopulations were deemed appropriate in a previous simulation study [Heg2010].
According to the estimate, it is 10 times more likely for female individuals than
male individuals to migrate from one subpopulation to another. Moreover, it is
assumed to be 10 times more likely for an individual to migrate to a neighboring
subpopulation than to a subpopulation located farther away. The migration rates
are presented in Table 2.

Migrate to male female
neighbouring 0.03 0.3

farther 0 0.03

Table 2: Migration rates for individuals into neighbouring and farther subpopula-
tions during simulation.

The population genetic statistics calculated from the simulated data were i) pop-
ulation size, ii) number of haplotypes and iii) genetic diversity. Population size
was fixed according to the general demographic model (see Figure 6 on Page 19)
and was not further analyzed. The number of haplotypes and genetic diversity
were calculated for the 631 bp of simulated mitochondrial DNA as the average of
10 random samples from the final (present day) population with a sample size of
N=832. The sample size is an exact match to that used in a recent publication con-
cerning the analysis of actual genetic data from Finnish subpopulations [Pal2009].
For the mitochondrion, the statistics reported in this thesis are the same as in that
publication.

3.4 Methods for improving throughput of simuPOP

This thesis introduces three different ways to improve throughput of simuPOP (see
Figure 5 on Page 16). These are discussed in detail in Sections 3.4.1, 3.4.2 and 3.4.3.
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3.4.1 Scripting guidelines through performance analysis

Python programming language [Ros2011] is used as an interface language for oper-
ating simuPOP. A sample Python script for running the previously published sim-
ulations [Sun2013] was used. More accurately, the simulation scenario E1 of the
previous publication was used in all simulations presented in this thesis. The sce-
nario corresponds to that presented in Figure 6 in Section 3.3.3.

The simulation script was first inspected and critical parts of the code were evalu-
ated. A performance analysis simulation set of 100 runs was then batched on the
ukko cluster of Helsinki University’s Department of Computer Science. Based on
evaluating the script, the standard script was then modified by manually adding a
memory management procedure known as garbage collection in each of the 1,100
simulation steps. In practice, this was done by importing the standard Python
module for memory management:

import gc

The garbage collection was implemented by adding a simple Python subroutine
that was called by the simulator in each generation just before the mating phase
(see Figure 2 in Section 2.3.2) of the population:

def garbageCollect(pop):

gc.collect()

return True

Another 100 simulation runs were also batched with these settings. In addition, a
further 100 simulation runs were batched on the ukko cluster using the biallelic (see
Section 3.4.2) version of the simulation script. The modified versions of the script
are available and can be obtained by contacting the author of this thesis.

3.4.2 Using simuPOP biallelic mode as an approximation

For more simple simulation scenarios, simuPOP has available a biallelic mode that
utilizes binary vectors and bitwise operations instead of the 32-bit unsigned integer
vectors used in default multi-allelic mode. In spite this mode is primarily designed
to distinguish between segregating and preserved sites in a simulated genome, it
may offer an alternative to approximate the multi-allelic mode while saving memory
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on the same. In order to repeat the original simulation scenario introduced in 3.3,
some major changes had to be introduced to the sample script. Most importantly,
the representation of individual genomes was changed so that a single allele is rep-
resented by 2 one-bit fields (with value 1 or 0). The biallelic representations of the
four nucleotide bases A, C, G and T are given in Table 3. Figure 7 illustrates how
this configuration looks like inside the simulator.

Base Biallelic representation
A 00
C 01
G 10
T 11

Table 3: Nucleotide base representations in the biallelic mode.

Actually, the exact coding of the nucleotide bases in the biallelic mode in Table 3
is irrelevant. This is due to the fact that the built-in mutator of simuPOP cannot
identify the index (location within the genome) of the allele that is targeted for
mutation [Pen2005]. Thus, should a mutation happen, point mutations of the two
binary components of a single base in the biallelic mode are independent of one
another by design. In a probabilistic sense, this produces the same amount of
possible outcomes of a mutation event irrespective of which exact coding of the
bases is used.
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Figure 7: An illustration of the changes introduced into genomic representations of
a single individual within the simulator when changing from the standard (4-allelic)
mode to the biallelic mode. The rectangles outline the representation of a single
nucleotide base.

Furthermore, the mutation model for the standard 4-allelic mode (see Table 1 in
Section 3.3.4) obviously would not hold after the changes to the genome represen-
tation (Figure 7). This was resolved by introducing a modification where single
nucleotide mutations of the standard 4-allelic mode are covered by a simplified mu-
tation matrix. Without specifying which exact mutation happens, the probability
that some mutation happens was interpreted as the sum of mutation probabilities
of the standard 4-allelic mode (see any row of Table 1 in Section 3.3.4):

µ/4 + µ/4 + κµ/4 = (µ+ µ+ κµ)/4 = (κ+ 2)µ/4 . (3)

Finally, the mutation rate for the biallelic mode was divided by two, as a single allele
now is represented by two (binary) alleles (see Figure 7):

((κ+ 2)µ/4)/2 = (κ+ 2)µ/8 . (4)

This sets the probability of some mutation taking place exactly the same as in the
standard 4-allelic mode. The mutation matrix applied in running the biallelic mode
is shown in Table 4.
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0 1
0 - (κ+2)µ/8
1 (κ+2)µ/8 -

Table 4: Nucleotide base mutation matrix applied in the biallelic mode.

The simuPOP script written in Python for running the biallelic mode with these
modifications is available and can be obtained by contacting the author of this
thesis.

3.4.3 Changes in the source code of simuPOP

An independent development version of simuPOP now called simuPOP-rev was
founded. The original aim of this was to direct the development of the simulation
software towards resolving computer memory issues rather than solving population
genetics issues. As the software license of simuPOP (General Public License) dic-
tates, simuPOP-rev is also released under the very same license. The source code of
simuPOP-rev is freely downloadable at http://simupop-rev.sourceforge.net (Figure
8).

Figure 8: A screenshot of current simuPOP-rev index page online.

In previous simulation studies with simupop [Sun2010, Sun2013], the neighbour-
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ing populations were implemented as static pools (see Section 3.3.2) from where
migrators were randomly picked and added to the main population. Should the
simulated population be considerably larger than 1,000,000 individuals, the simula-
tion process would be indefinitely lengthened and, at least in an everyday tabletop
or laptop environment, would quickly eat up all memory of the computer running
the simulation.

At the time of writing this thesis, the development of simuPOP-rev is still in a
very early stage. The future directions and ultimate goals of this development are
discussed in Section 5.4.3.

4 Results

This section presents the results of the multiple methods applied in this thesis. A
data visualization entity known as boxplot was chosen as the illustration method for
many of the results in following subsections. The boxplots in this thesis follow the
standard boxplot format: the box represents the limits of the first and the third
quartile of the sample set values. The line inside the box depicts the median value
of the sample set. The whiskers depict the limits of the 1,5 times interquartile range
of the sample set at both ends. Small circles in the plot area are interpreted as mild
outliers and stars as severe outliers.

While this section rather strictly pertains to reporting the results, an analysis of the
results and general discussion follows in Section 5.

4.1 Performance analysis

The Valgrind [Sew2005] check of the simuPOP core did not indicate any potential
memory leaks. The heapy memory profile browser screenshot of a single simulation
run using the standard mode is shown in Figure 9 .
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Figure 9: Screenshot of the heapy memory profile browser showing a single simula-
tion run showing memory allocation over the 1,100 steps of simulation.

Using the built-in tools of simuPOP and exporting the outputs of system commands
top and time, two statistics concerning performance of the software were recorded:
computing time (both wall clock time and user time) and random access memory
loading. The observed values for the computing times are given in Figure 10 and
Figure 11.
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Figure 10: A boxplot of wall clock times (in seconds) observed in 100 runs of dif-
ferent simulation modes. The 3600 seconds (= 1 hour) reference line was added for
visualization purposes.
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Figure 11: A boxplot of user times (in seconds) observed in 100 runs of different
simulation modes. The 3600 CPU seconds (= 1 CPU hour) reference line was added
for visualization purposes.

The observed values for memory loading are reported both in the output of top
command as measured in final population (see Table 5) and in the maximum resident
set size meaning the maximum memory load a single simulation process experiences
during its lifetime (see Figure 12). Concerning memory loading, only average values
are reported here for the top command output due to the extremely low variance of
the values (Table 5).

Standard Modified Biallelic
2.90 GB 2.90 GB 0.95 GB

Table 5: Average random access memory resident set sizes for different simulation
modes in final generation (population size circa 1,000,000 individuals). GB = giga-
bytes.

Maximum resident set sizes during simulation runs are shown in Figure 12.
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Figure 12: A boxplot of maximum random access memory resident set sizes observed
in 100 runs of different simulation modes. The 10 GB reference line was added for
visualization purposes (GB = gigabytes).

4.2 Using simuPOP biallelic mode as an approximation

Population genetic statistics introduced in Section 2.3.3 were calculated in the 100
performance analysis runs with both the standard mode and modified mode. A
batch of 100 runs where the biallelic mode configuration (see Section 3.4.2) was also
applied. Each of the simulation replicates were run on one node of the ukko cluster
thus using three nodes in total.

4.2.1 Population genetic statistics

Population genetic statistics including the biallelic mode approximation described
in Section 3.4.2 are shown below in Figure 13 and Figure 14.
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Figure 13: A boxplot of observed simulated number of mitochondrial haplotypes
in final population in 100 simulation replicates. The aborted runs of standard and
biallelic mode were omitted from the samples. Values of a single simulation run
are computed as arithmetic averages of 10 independent samples (N=832). The
horizontal line showing the value observed in genetic data [Pal2009] was added for
reference.
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Figure 14: A boxplot of observed simulated mitochondrial genetic diversity in final
population in 100 simulation replicates. The aborted runs of standard and biallelic
mode were omitted from the samples. Values of a single simulation run are computed
as arithmetic averages of 10 independent samples (N=832). The horizontal line
showing the value observed in genetic data [Pal2009] was added for reference.

4.3 Changes in the source code of simuPOP

No actual major source code changes could be implemented within the scope of this
thesis. However, an individual development version of simuPOP called simuPOP-rev

was founded and is available for download at http://simupop-rev.sourceforge.net .
simuPOP-rev will serve as a workbench for implementing the source code changes
discussed in Section 5.4.3.
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5 Discussion

Simulating populations of large and random quantities is computationally challeng-
ing. simuPOP will take the user to the very limits of computing in the sense that
arbitrarily large simulations are possible, but with a sizeable enough population no
computer can finish the work due to memory loading. A million individuals may
well be enough to accurately simulate Finnish human population, but applications
where an even larger population is simulated, such as human population of the
whole Europe or a population of another species with inherently large population
sizes (plants, bacteria), memory loading definitely becomes an issue.

Remembering the three methods of improving throughput of simuPOP presented in
the previous sections (see Figure 15), this section discusses the selected methods
and results and concludes with an outlook to future work. In addition, more elab-
orate ways to change the default random access memory storage of individuals are
discussed in this section.

Figure 15: Overview of the three methods of this thesis to improve throughput of
simuPOP.

5.1 Overall performance of simuPOP

The simuPOP population simulation environment stores individual genomes and
other individual information into the random access memory (RAM) in runtime.
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With a detailed and large genome in the simulation, the simulated population size
may be limited into an infeasibly low number, especially when considering simula-
tions of human populations. Evidently, care should be put on how to use simuPOP

so that the memory available is used efficiently.

5.2 Simulation results

It is evident that the level of performance of simuPOP varies a lot depending on
the mode in which the simulation is run (see Section 4.1). In general, the default
multiallelic mode appears to be the fastest mode available as measured by both
the wall clock time and user time, though reserving a threefold amount of random
access memory as compared to the basic biallelic mode. However, swiftness of a
single simulation run is greatly reduced when the simulation is run on the biallelic
mode (see Figures 11 and 10 in Section 4.1). It would thus appear that the standard
mode of simuPOP already is quite well optimized for speed.

By simply changing the simuPOP running mode from multi-allelic to biallelic without
other changes introduced in this thesis would cause an approximation too rough to
be compared with the standard mode. Evidently, all four nucleotide bases A, C, G
and T are present in vast quantities in hypervariable regions of the mitochondrion.
This diversity cannot be captured with only a single bit representing an allele. This
was also apparent from the resulting population genetic statistics of a small batch
of crude test runs not documented in this thesis.

However, applying the biallelic mode configured as described in Section 3.4.2 results
very similar population genetic statistics as compared to the standard and modified
modes (see Figures 13 and 14 in Section 4.2.1). The strength of this approach
definitely is that although major changes to the actual sample simulation script
were needed and an approximation of the mutation model was required, there was
no need to modify the actual source code level mechanism that implements the
nucleotide mutations. Thus, efficient population simulations can be implemented
with the current release version of simuPOP.

The most important payoff of running the biallelic mode approximation is the re-
duced use of random access memory during a single simulation run. The biallelic
mode consistently uses three times less random access memory during a single sim-
ulation run, as evidenced by Table 5 and Figure 12 in Section 4.1.

Finally, a notable amount of outliers were identified in the computing times in all
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three of the simulation modes (see Figures 10 and 11 in Section 4.1). A single
simulation run apparently aborted in both standard and biallelic modes resulting
in the two lower-than-usual instances of user times (Figure 11) in the respective
modes. The outliers are not visible in the wall clock times (Figure 10) as the runs
aborted well before reaching the final generation where the wall clock was set to
stop. Thus, the times were never recorded. Moreover, all three simulation modes
had one run out of 100 replicates that took almost double the time than rest of the
computing times sample set (see Figures 10 and 11 in Section 4.1). Where population
genetic statistics were produced, the results of the outlier runs were included in the
population genetic analysis. Obviously, the two aborted runs did not produce these
statistics and were omitted from the calculation of the statistics (see Figures 13 and
14 in Section 4.2.1). As expected, the aborted runs also were visible in the memory
loading measurement results, where two simulation instances (one in standard and
one in biallelic mode) showed a lower-than-normal memory loading (see Figure 12
in Section 4.1).

While the methods used in this thesis (see Section 3) were unable to diagnose the
exact source of the outlier simulation times or the reasons why some runs aborted,
the author of this thesis is aware of a certain level of random behaviour when us-
ing simuPOP in supercomputer environment: A small amount of aborted runs was
constantly observed while running the simulations reported in the original studies
[Sun2010, Sun2013]. In the studies this was compensated by performing additional
simulation runs.

5.3 Validity of the simulation model

Validity of a computer simulation model depends on many things, beginning from
software and hardware used to the most minuscule factors that might affect the
outcome of the simulation. Admittedly, no computer simulation model should be
developed without implementing verification and validation (V & V) on the model.
V & V lays basis on the development, iteration and later also backtracking of the
model. Sargent [Sar2005] has suggested a collection of approaches to systematically
perform V & V. At this point of the development the model that implements the
scripting guidelines and approximations introduced in this thesis should be consid-
ered as the first version or zero version. Where applicable, the following development
versions will then be predisposed to meticulous V & V.

Another topic to discuss is the validity of the demographic scenario presented in
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investigating population history of Finland (see section 3.3). Whether the current
genetic composition of Finns is the result of population demographic events such
as bottlenecks, founder effects, prolonged isolation and/or genetic drift may be un-
der debate. Nevertheless, the archaeological justification for significant population
fluctuations during the early history of Finns cannot be disputed, as discussed in
[Sun2008].

The population genetic statistics from the simulations performed in this thesis (see
Figures 13 and 14 in Section 4.2.1) are quite far away from those observed in actual
genetic data [Pal2009]. This deviation also was observed for the simulated portion
of mitochondrial DNA in the original studies [Sun2010, Sun2013]. However, only
a single population demographic scenario was studied in this thesis. Moreover, the
original studies show that certain simulation scenarios are indeed closer to the ob-
served values than others. A good interpretation of the results distinguishes between
those sets of simulation parameters that yield the deviating outcomes. In case some
scenario appears closer to real world than others, one should already have a good
idea of why it is closer. Consequently, even if some simulation model produced ex-
actly the observed genetic profile, simulation results never should be considered as
absolute proof that the scenario is completely correct. The admittedly basic popu-
lation genetic statistics reported in this thesis (see Section 3.3.4) also capture only
a portion of the diversity in the population under investigation.

It is the author of this thesis’ opinion that forward population simulations are a very
feasible way of simulating Finnish population history. So far, the approach using
simuPOP and previous work with it cited extensively in this thesis are the most
well documented ones. Still, other approaches, for instance the serial coalescent
introduced in section 2.3.1, to this kind of simulation are encouraged.

5.4 Improving throughput of simuPOP

simuPOP [Pen2005] has open source code and the software is under constant de-
velopment. New versions of the software are released in intervals of approximately
five months. This has given this author a great opportunity to contribute to the
development of the software. This author has been in regular correspondence with
the actual developers and the user community and many new features have been
added to the software based on the experiences and needs expressed.

It is evident from the performance analysis that simulating a considerable amount
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of DNA sequences of even 600 base pairs in length with simuPOP currently requires
an intolerably large amount of computer memory (see Figure 12 and Table 5 in
Section 4.1). Evidently, the extensive use of memory is caused by simuPOP storing
the individual genomes and other information in random access memory. No actual
memory leaks were found in the Valgrind [Sew2005] check of simuPOP core. However,
Valgrind does not reveal data structure deficiencies. The memory profile produced
by the heapy memory profiler (see Figure 9) was also inconclusive as to which lower
level elements require the most memory (see Section 5.4.3).

5.4.1 Scripting guidelines through performance analysis

It was evident from the performance analysis that regular manual garbage collection
has no meaningful effect on the memory use of simuPOP (see Table 5 and Figure 12
in Section 4.1). According to Figures 10 and 11 in Section 4.1 however, the garbage
collection reduces the variance of both wall clock time and user time. Also the
overall distribution and median value of elapsed simulation times appear notably
lower as compared to the standard mode (Figures 10 and 11) in the 100 simulation
replicates. Thus, introducing manual garbage collection in the simulation run at
each generation just before the mating phase of the generation does have an effect
on simulation times and may at best speed up overall running times, especially with
a very large amount of simulation replicates. It should be considered remarkable
that this was achieved with only very small changes into the actual simulation script
(see Section 3.4.1).

5.4.2 Using simuPOP biallelic mode as an approximation

Through the suggested changes into the mutation model (see section 3.4.2), the bial-
lelic mode approximation of the genome actually produces very similar population
genetic statistics as compared to the standard multiallelic mode (see Figures 13 and
14 in Section 4.2.1). Thus, at least for simulating a sequence of DNA represented by
the four bases A, T, C and G, the biallelic mode approximation is a viable alternative
with a notable reduction in memory use. Moreover, the inbuilt method in simuPOP

that implements the actual point mutations (see Section 3.3.4) does not need to be
changed at all for the approximation to work. A setback of the biallelic mode is that
the computing times of a single simulation run are almost doubled as compared to
the other simulation modes (see Figures 10 and 11 in Section 4.1). Nevertheless, the



39

apparently linear reduction in memory use clearly is a notable payoff, especially in
large-scale simulations of massively large populations.

5.4.3 Changes in the source code of simuPOP

The current release version of simuPOP supports allele coding for 1-bit, 8-bit and
32-bit fields [Pen2005]. Thus, there is no direct support for the biallelic mode as
described in this thesis, although the mode could be implemented here by modifying
the simulation script with the methods presented in Section 3.4.2 and illustrated in
Figure 7. Evidently, the biallelic configuration results in a consistently threefold
reduction in memory use at least for the simulation scenario presented in this thesis
(see Section 4.1). Consequently, source code level changes in simuPOP to support
the biallelic configuration would be highly recommended.

The heapy memory profile of the simulation run clearly shows that Python data
structures known as list reserve more memory than any other data structure (see
Figure 9 in Section 4.1). While the rather low memory loading values observed for
the data structure list are not of great concern in this simulation instance, this
behaviour should be noted and controlled when designing simulation scenarios with
large population sizes. Moreover, heapy only shows allocated Python objects in
the profile and not the lower level C/C++ [Str2000] objects. This is why the total
memory use in Figure 9 is much smaller as compared to the memory usage measured
in the performance analysis (see Figure 12 and Table 5 in Section 4.1).

Memory allocation system of simuPOP could also be changed to use general-purpose
and region-based allocators called reaps [Ber2002], that in some instances are more
efficient than even custom implementations of memory allocation.

Another tempting approach would be to see whether storing entire populations
into a database during simulation and retrieving individual information from there
when needed would improve throughput of simuPOP. Python does have built-in
support for databases via a method known as shelving [Ros2011]. Database storage
of genomes and individual information would solve the random access memory issues
of massive population simulations. Main concern of this approach is that despite
reduced memory use, the actual simulation run may become overly slow.

Finally, a new data structure for storing genomes may be improve memory-efficiency.
This is another possible direction to consider for future source code changes. A
compressed suffix tree based approach [Mak2010] outlined in Section 2.5 may fasten
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retrieval of individual information and speed up a population genetic simulation.
This would especially suit population genetic simulation scenarios where the di-
versity within the collection of the simulated sequences would be very low, and
mutations and recombination could be considered as rare events.

In a hypothetical example of the compressed suffix tree approach, consider a collec-
tion of million sequences of text, 500,000 of which are labeled sequence1 and are
identical to one another, and the residual 500,000 sequences are labeled sequence2

and also are identical to one another. A representation of the collection could look
like this:

{sequence1, sequence1, sequence1, sequence1, sequence1, ...

sequence2, sequence2, sequence2, sequence2, sequence2, ...}

with both of the sequences repeated 500,000 times. In contrast, the compressed
suffix tree approach would eventually represent (and replace) the whole sequence
collection as:

{500,000 x sequence1, 500,000 x sequence2}

This is a format that contains all the essential information of the collection. Al-
though the presented example is an extreme one, an application where data is rep-
resented even in a remotely similar manner than this is likely to experience major
improvements in space (in essence, memory) consumption with the compressed suffix
tree approach.

The downside of the approach is that in practice, the memory use may actually
increase, although the allocated memory would then be used to perform informa-
tion retrieval operations more efficiently [Val2007]. The polylogarithmic slowdown
feature [Mak2010] of the compressed suffix tree approach further suggests that com-
pressed data structures may be a promising general direction of source code level
development.

The author of this thesis has been in regular correspondence with the developers of
simuPOP. They have unofficially suggested that instead of storing individual genomes
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the users could be directed to storing only locations of mutations in the genome
instead of the whole genome. Indeed, simuPOP release version 1.1.1 contains a
module that can implement this. However, applying the module would require
more elaborate changes to the genomes of individuals than what is presented in this
thesis. Furthermore, simulating genome segments that have a high mutation rate
such as the hypervariable regions of the mitochondrion would hardly benefit from
this approach.

5.5 Simulating Finnish population with neighbouring popu-

lations

The short-term goal of simulations concerning the population history of Finland
would be to simulate the neighbouring populations in runtime instead of static pools
of migration (see Section 3.3.2) and to see how that changes the memory loading and
results. So far, the population size limit due to individual genomes stored directly
in random access memory has prevented this. The biallelic mode approximation
intoduced in Section 3.4.2 and discussed earlier in this section may be the first step
towards this kind of simulation, at least for the timespan where the population sizes
remain relatively small. Still, simuPOP-rev will declare the goal of making real-time
simulation of neighbouring populations possible also with population sizes exceeding
1,000,000 individuals.

5.6 Advanced use of individual information fields

The support of simuPOP for individual information other than genomic representa-
tions is one of the most powerful features of the simuPOP software. The previous
simulations [Sun2010, Sun2013] as well as the simulations run in this thesis make
an example of this by encoding age of individuals into the information fields (for
details, see Section 3.3.4). Potentially any information concerning the simulated in-
dividuals can be encoded into these fields in the form of basic data types: integers,
floating point numbers and characters. The information can then be processed and
manipulated over the course of the simulation limited only by the interface of the
scripting language Python. Python can be considered as a very expressive, easy-to-
learn and easy-to-read programming language [Ros2011]. Many simulation software
other than simuPOP would require source code level changes to be able to incorpo-
rate information in the same manner [Pen2005]. It is here where the flexibility of
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simuPOP becomes apparent. simuPOP definitely seems to be a more general piece of
population simulation software with potential applications even beyond population
genetics. simuPOP-rev also is bound to greatly benefit from this feature and will
make extensive use of it during the development.

5.7 Conclusions and future work

This thesis presented a review of literature and basic methods concerning in silico
population genetic simulations, especially those of human populations. Multiple
methods of improving one of the forward-in-time population simulators, simuPOP,
were suggested and some of them were even implemented in practice and tested.
As some of the improvements were deemed to require source code level changes, an
independent development version of the simulator called simuPOP-rev was founded
as a workbench for these changes.

Evidently, simuPOP is a suitable piece of software for very complex population sim-
ulations. Parallelizing the workflow of simuPOP, despite introducing a whole new
field of problems on the same, would bring the power of supercomputing within the
grasp of the simulation efforts presented. Especially the biallelic mode would greatly
benefit from parallelization as more time-consuming simulation runs could then be
run in parallel in multiple nodes of a computer cluster. simuPOP-rev will make an
attempt towards this kind of development. The ukko cluster of the Department of
Computer Science has proven itself to be a suitable testbed for testing the simulator.

Meanwhile, the development of simuPOP-rev will go on, and the author of this thesis
has been recently inspecting the possibility to plug in a Python module for integrat-
ing the enhanced simuPOP-rev with a piece of animation software for visualization
purposes. This addition would also bring the user interface of the simulator closer
to potential users. Individual information fields are used extensively in this part of
the development.

Answering the need for a more general file format not only in population genetic
simulations, but also in the whole field of bioinformatics is another project that a
prominent software developer could undertake. Evidently, some converter applica-
tions already exist [Exc2006], but must be kept up to date meticulously to keep pace
with the growing number of bioinformatics software.

Improvements introduced in the future by simuPOP-rev enable more extensive sim-
ulation of populations without compromising the well-documented user interface of
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the original version of simuPOP. Being a simulation framework that inherently en-
ables incorporation of data from very different disciplines via individual information
fields, the enhanced simuPOP-rev also encourages multidisciplinary simulation en-
terprises in the scientific community. Moreover, the lines of development presented
in this thesis are likely to ever improve troughput of population genetic simulations
of various species in life.
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