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1 Introduction

The term jigsaw puzzle refers to a puzzle of assembling shaped pieces by tiling

them together to form a picture [FG64]. Material reconstruction of discovered an-

cient artefacts is a special case of a jigsaw puzzle, where some of the pieces might

be damaged or missing [WC08]. The reconstruction process of these artefacts is

still mainly done manually [Paj13], and as such it is a potent �eld of research for

computer-assisted problem solving.

Fully automated solution to the problem can probably not be achieved from solely

pictorial data, because the new �ndings have to be veri�ed with the help of the

original fragments [Paj13]. Therefore, the approach in this thesis will be done in a

semi-automated manner, in which the program forms preliminary suggestions that

are then validated by human experts. This kind of semi-automated solving process

will help the researchers as it is very likely for a human to miss relevant matching

pieces in a huge pictorial data set.

2 Working Methods

The thesis will be made in collaboration with Dr. Jutta Jokiranta from the Academy

of Finland Centre of Excellence Changes in Sacred Texts and Traditions. The col-

laborative nature of the thesis is also a major motivation for the thesis to be written

in English. There are researchers outside of Finland working on reconstruction of

scrolls, and that is why opening up the results of this study might prove useful for

them as well.

The thesis consists of two separate parts: algorithms for solving the problem and

implementation of a graphical user interface. The main focus will be on the technical

side of the thesis such as �nding suitable algorithms and optimizing them for the

speci�c task at hand. Likewise, the algorithmic solving process is also split into two

separate tasks. First, the program has to sort the fragment pieces into groups based

on how well they resemble each other, in other words, how likely the pieces are to

be located near each other. A proper similarity measure needs to be de�ned for the

resemblance between fragment pieces, and as such is an important subtask in the

thesis project. The data will be obtained from open databases and Dr. Jokiranta.

The second task involves making the actual suggestion for a reconstruction.

The GUI (Graphical User Interface) is there to provide means for the researchers to
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utilize these tools in their research. This piece of software will be developed using

standard agile methodologies that are prevalent in the IT industry. This will help

to maximize the usability and usefulness of the software for the scientists that are

going to be using it in their research.

3 Reconstruction Process

Thousands of fragments from various artefacts are found from excavation sites world-

wide. These objects play a big role in trying to reconstruct history. However, man-

ual assembly of these artefacts is laborious and digital assistance is a rarity at least

when it comes to the Dead Sea scrolls. To further complicate things some fragments

are found together with other fragments that might not even belong to the same

manuscript. Digital processing of these fragments would speed up the process by

being able to go through the pieces much faster. Also a program might even be able

to suggest pairings that scientists hadn't even considered before. With the help of

a computer we could aid the classi�cation process and at the same time get noti�-

cations for possible misclassi�cations in the already manually classi�ed datasets.

3.1 Traditional Reconstruction

In 1990 Stegemann [Ste90] shared his 12-step method for reconstructing scrolls.

The �rst step involved gathering all fragments, that are from the top or bottom of a

column, of a scroll. Then all fragments that exhibit signs of a right or left margin of

a column, sewing seams or column to column transitions are to be gathered. Third,

all the places with uninscribed drylines, vacat-lines or transitional devices in the

text should be noted. Next information in the edition about the location of the

beginning of the text as well as which other fragments were found in the vicinity

and their location compared to the fragment in question are searched. Then all

the pieces will be gone through looking for similar features or shapes of recurring

damage. At this point a de�nition for an average width or limit for the columns is

attempted. After this also an estimate for the number of lines in each column can

be produced. At this point to ease the reconstruction the roll up direction of scroll

needs to be con�rmed or otherwise both directions have to be tested. By looking at

the overall appearance of the pieces we can try to subgroup pieces that seems more

similar to each other than the rest. Another way to aid placing pieces to speci�c
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parts of the scroll is to look for di�erences in distances between lines, heights of

letters, traces of the pen and the �ow of ink. Then starting from the larger pieces

and groups of similar fragments all parts of the scroll are assembled to their places.

Finally, a schematic drawing of the scroll is prepared from the evidence supported

by the remains.

In the same publications Stegemann also shares his method for �nding fragments

with similar shapes. First two photocopies are created from a printed edition of the

fragments. Then the edges, gaps and breaks are sharpened on those photocopies

with a pencil. Finally similar shapes are sought after by placing the copies on top

of each other in front of a light source and moving the copies around.

As can be seen from the two introduced methods, the reconstruction process con-

tains many manual steps that could be aided with digital automation. According

to Stegemann reconstructing around 12 columns may take several weeks and fur-

ther publication as well as writing work can additionally take several months. The

amount of this process takes can be reduced by digitally looking for similar shapes,

clustering the fragments to groups and �nding matching parallel texts, the latter

of which is not as bene�cial when it comes to Qumran scrolls, because about half

of the �ndings represent previously unknown manuscripts and the ordering of the

passages cannot be assumed to be the same as in the parallel texts [Ste90].

3.2 Related Work

The process of reconstructing ancient manuscript is related to that of solving a jigsaw

puzzle. Freeman and Garder [FG64] in 1964 were the �rst to introduce the problem

of digitally solving a jigsaw puzzle. Their main focus was to propose techniques

for solving apictorial puzzle where only the shape of the object counted. All the

way to recent years many have followed suite to further research aspects of digitally

solving jigsaw puzzles such as in [RB82, WSKL88, CFF98, GMB02, DD07, NDH08].

Wolfson et al. [WSKL88] proposed combinatorial optimization and curve matching

to solve the problem. Goldberg et al. [GMB02] used a similar approach but extended

the solution to cover pieces with more than four neighbours and to enable solving

bigger puzzles. After much research in trying to �nd an e�cient solution to the

problem, Erik Demaine and Martin Demaine [DD07] showed that solving a jigsaw

puzzle is a NP-complete problem.

In 1998 Chung et al. [CFF98] introduced a pictorial variant for jigsaw puzzles where
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the image features of puzzle pieces are also taken into account in addition to shape

information. They also described three new algorithms solving this variation on

the puzzle, namely TSP&K best-based, TSP&AP-based and AP-based algorithms.

Nielsen et al. [NDH08] proved that it is possible to produce a solution solely based on

image information by using an edge matching approach. Further studies expanded

the image based solutions to include surface texture and picture based reconstruc-

tions.

Research in the �eld has also been applied to reconstruct documents that have been

torn or shredded. A global approach to assembling shredded documents was pro-

posed by Zhu et al. [ZZH08]. Curve matching ambiguities were handled in their case

by adding a de�nition for neighbouring match compatibility. The need for putting

together hand torn documents have also been raised in the �eld of forensics, where

Justino et al. [JOF06] demonstrated the feasibility of a simple multifeature match-

ing scheme. SVM classi�ers were introduced to �nd corresponding points between

fragments by Richter et al. [RRCL13]. Their solution uses both curvature and im-

age features to solve the puzzles while also retaining good results when some pieces

were removed randomly from the set. Cao et al. [CLY10] backed up the importance

of merging shape and appearance information. Their scheme incorporated the pos-

sibility for material loss in the pieces which is highly relevant as well in a scroll

reconstruction process.

Some work has already been done to solve the problems researchers face when dealing

with reconstruction of ancient artefacts. Projects in [CWA+01, PPE+02, KTN+06]

represent real-world applications for restoring pots, wall paintings and marble con-

structs. In the �eld of two-dimensional ancient artefact reconstruction, curve match-

ing based works in [dGLS02, MK03] represent the state-of-the-art. Kleber and Sab-

latnig [KS09] have published a survey summarizing relevant techniques used in the

�eld of object reconstructions. Research on restoration of scrolls, made out of more

transient material such as parchment or leather, are under-represented.

4 Jigsaw Puzzles

Jigsaw puzzle refers to a pattern recognition problem, where the end goal is to

assemble a single �nished puzzle with the help of shape and pictorial information

of the puzzle pieces. The core di�culties arising in trying to digitally solve the

problem can be summed up into three points: puzzle piece description, rotation and
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matching of the pieces and evaluation of the found matches [FG64]. How do we

represent the puzzle pieces digitally in order to be able to solve the puzzle? Which

features are important enough to keep? Which kept features indicate a good match

between puzzle pieces and what do we do if along the way we notice that an incorrect

pairing was made in the beginning?

In a traditional jigsaw puzzle we do not get any prior information about the ori-

entation of the pieces and it is also assumed that the pieces can be reconstructed

into a single structure without any gaps between the pieces [FG64]. The puzzles

don't necessarily have to only have one correct solution, but puzzle uniqueness is

generally the norm. Commercially sold jigsaw puzzle are a good example of this.

Most of them contain no missing pieces and once opened the pieces could be found

in any arbitrary orientation. Also in most of the cases the pieces can be formed into

a single unique solution.

In addition to aspects of jigsaw puzzles already mentioned, Freeman and Garder [FG64]

explain another key characteristic called radiality. Radiality refers to the kinds of

interior or exterior junctions possible between the puzzle pieces. A junction of three

boundary lines in a piece is called a triradial junction. Whereas in the case of a

junction with four boundary lines, we refer to a quadradial junction and so on.

4.1 Puzzle variations

Through modi�cation of the core characteristics of jigsaw puzzles multiple variations

of the problem can be created to make it easier or harder. Just by simply removing

all pictorial information from the equation the problem becomes harder to solve,

because we have to solve it solely by relying on the shape information [FG64].

Jigsaw puzzles with this kind of modi�cation are known as apictorial jigsaw puzzles,

which were the main focus of the original introduction by Freeman and Garder as

well as other research in the �eld until Chung et al. [CFF98] added their pictorial

solver into the mix. This versatility in breaking some of the rules to create di�erent

problems is what allows jigsaw puzzles to be applied to multiple domains such as

historical restorations.

For certain jigsaw puzzles we might have prior domain speci�c knowledge. In those

situations it might be worthwhile to exploit the information to make the problem

easier than to resort to more general approaches. For example all of our puzzle

pieces might contain text that indicates the correct orientation for the said pieces.
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Such puzzles are called oriented puzzles and they simplify the work by allowing most

of the rotation related aspects to be ignored during matchmaking. Simplicity could

as well be obtained from knowing how many neighbours any given piece might have,

the radiality distribution of the kinds of junctions that can occur between pieces or

their exterior boundary geometry.

4.2 Dead Sea Scrolls as a Jigsaw Puzzle

By observing the types of object we are dealing with the Qumran scrolls, we can

de�ne which jigsaw puzzle rules apply to them. According to Stegemann [Ste90]

most Qumran fragments are from scrolls, mostly of leather or papyrus, that were

rolled without a protective handling stick leaving the inner and outer layers exposed

to wear. These scrolls have been mainly damaged by decay over time, by animals

and also by human intervention.

Because they were once scrolls written in a certain order, we know that our puzzles

have one unique correct solution. However, because of the damage they have suf-

fered, some pieces might be missing and full assembly might thus be unreachable.

In fact so many pieces might be missing that the problem essentially becomes one

of solving multiple separate jigsaw puzzles. We also cannot make any assumptions

about the orientation or shapes of the pieces. Once assembled there is a possibility

for the pieces to have gaps between them or even pieces that share no boundary

with any of its neighbours.

Pictorial information is particularly bene�cial in the reconstruction process. Espe-

cially colour changes in the material can give us a clue about the layer and location

on the rolled up scroll in which these fragments originally existed [Ste90]. Even

though there are inscribed passages written on pieces of fragments, we cannot ex-

pand this property to all of the pieces to make assumptions about their orientation

solely on the basis of this.

To summarize, the Qumran scrolls can be reduced to a problem of solving an unique

two-dimensional pictorial multiple-connected disjoint-area jigsaw puzzle with an ir-

regular and unknown exterior boundary, and missing pieces. A puzzle the pieces of

which are arbitrarily shaped, sized and oriented. During an assembly process the

puzzle might divert into a problem of assembling multiple puzzles. From here on

whenever the terms jigsaw puzzle or puzzle are mentioned they refer to this speci�c

variant unless otherwise mentioned.
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5 Preprocessing of Puzzle Pieces

Images to computers are just a stream of ones and zeroes that don't carry any

meaning. We have to provide the computer necessary information about the data

in order to be able to complete the task to be computed. To digitally solve a jigsaw

puzzle we too have to re�ne our data into a suitable input for further computing.

The preprocessing stage consists of three parts. The �rst step involves extracting

edge information from the image that will be used as an input for the next step.

The second step uses the input given to detect contours in the image. Lastly we will

prune the contour points to simplify our dataset while also trying to avoid losing

any important curve features.

The �rst two steps are needed to turn image data into a form that can be used to

infer the relationships between the puzzle pieces. Provided that we have in�nite

amount of time or arbitrarily fast computers the last step is not necessary. As those

assumptions never apply in reality we need to be able to reduce the problem space

to cut down on the time complexity of the solution.

5.1 Edge Detection

Given an image we would like to �nd the contours in it, but before we can do that

some preprocessing is needed so that we can give the result of that preprocessing

as an input to the next step in the pipeline. For simple images performing a bi-

nary threshold is su�cient. For more demanding images, where binary threshold

is not applicable, we will describe a method for extracting edges with Canny edge

detection.

John Canny [Can86] describes three criteria relevant to an edge detectors perfor-

mance: 1) a low error rate, 2) good localization and 3) single response to one edge.

In the �rst criterion we seek to �nd a low probability for not marking real edge points

and likewise a low probability of accidentally marking false edge points. With the

localization criterion we are ensuring that the responses of the operator be in the

vicinity of the real edge's center. Multiple responses to a single edge might occur

and they are not handled properly by the �rst two criteria so we need to add a third

that considers these extra edges erroneous.

Canny edge detection operates in the following manner. First a Gaussian �lter, the

width of which varies given the situation, is applied to smooth the image in order to
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remove noise. Then we obtain intensity gradients of the image with an operator such

as the one described by Prewitt [Pre70]. This is done by convolving an image given

as input with a symmetric two-dimensional Gaussian operator. By di�erentiating

the result normal to the edge direction, we are able to obtain a horizontal and a

vertical mask. There is no need to di�erentiate in any additional directions, because

the direction of the gradient can be computed solely from these two masks. To

provide better results sampling can be done along the edge direction at multiple

orientations, the output of which will be joined to form a single mask. Noisy output

from these directional masks will be suppressed if the variance is above a squared-

error measure. Lastly hysteresis thresholding is used to decide which edges to keep.

It is di�cult to choose a single threshold with a high chance of properly marking

real edges while at the same time having a low probability of marking noise as edges.

Instead of a single threshold two separate thresholds, a low and a high, will be used.

Any parts of a contour that fall under the low threshold we immediately discard and

those that rise above the high threshold we automatically mark as edges. Points that

belong to the same connected contour segment as those marked also get included

provided that they are also located above the low threshold.

Canny edge doesn't guarantee any ordering for the outputted edge map, but later

parts of our preprocessing pipeline require that the input is ordered. This can

be solved by either ordering the outputted edge map or converting it to a binary

threshold such as in [RRCL13].

5.2 Contour Extraction

To extract contours from the binary segmentation mask obtained from the process

described in the previous section a border following scheme by Suzuki and Abe[SK85]

will be used. The algorithm they present is able to extract a topological structure

from the binary input by following found border starting points during a raster scan.

In case we are only interested about the overall shape of an object and want to ignore

the internal structure of it, Suzuki and Abe also explain a sligthly modi�ed version

of the algorithm which only follows the outermost borders of an image. Contours

extracted from the image will be represented by a set of pixels Pi.
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5.3 Pruning the Data

Having extracted the contour features, we are still not quite ready to proceed to

the actual stage of piece assembly. The data that we obtained in the previous step

contains redundant data and thus requires some pruning. Finding a solution for a

jigsaw puzzle in general is a NP-complete problem as shown by Demain et al. [DD07]

and as such it is justi�able to spend some computing power upfront to reduce the

running time in the later steps.

The main goal of the pruning is to select a subset of the contour points to form

a caricature or simpli�cation of the original line. In case of a straight line, this is

relatively easy. For example, let's say we are given three points of a line for reduction.

We could choose the �rst and last point of the line to represent it without losing any

representative accuracy. Things get trickier once we introduce curves and irregular

line shapes, which points should we choose? We don't want to use too simplistic

approaches like deleting every nth point on the line, because we might lose interesting

line features. To solve this problem we have opted to use the Douglas-Peucker line

simpli�cation algorithm [DP73].

Pseudocode for the Douglas-Peucker algorithm is shown in Algorithm 1 and as an

input it takes a list of points, P, to be reduced and a threshold ε. The algorithm works

by selecting points from original line to be included in the caricature and discards the

redundant points. The �rst and the last point of the line are automatically included

and for the rest of the points residing between these end points, we calculate their

perpendicular distance to the line and �nd the point with the maximum distance

from the line. We compare this maximum distance to the ε threshold and in case the

distance is greater we know that the line contains points that can't be discarded so we

recursively call to simplify lines from the starting point to maxd(P ) and maxd(P )

to the last point, where maxd(P ) is the point with the maximum perpendicular

distance to the line. In the case where the threshold is bigger we know that we can

safely discard all points expect the �rst and the last one. As output we will receive

a new list of points containing only selected points which are within interesting line

features according to the given threshold.
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Algorithm 1 Douglas-Peucker Algorithm (P, ε) [DP73]

Initialize dmax, imax = 0

end = P.length

for 2 to P.length - 1 do

distance = perpendicularDistance(P [i], Line(P [1], P [end])

if distance > dmax then

imax = i

dmax = distance

end if

end for

if dmax > ε then

RetList1[ ] = Douglas-Peucker(P[1 to imax], ε)

RetList2[ ] = Douglas-Peucker[P[imax to end], ε)

RetList[ ] = RetList1[1 to RetList1.length-1] + RetList2[ ]

else

RetList[ ] = new List[P [i], P [end]]

end if

return RetList[ ]

6 Assembling the Pieces

This section seeks to solve the three points mentioned in section 4, namely de�ning

digital description for puzzle pieces, problems of matching and rotating fragments

as well as evaluation for the resulting matches. First a general approach for dig-

itally solving jigsaw puzzles is introduced. After which feature-based and elastic

model based curve matching strategies are explained. Usage of feature-based curve

matching is illustrated by going through how it can be utilized to assemble shredded

documents in [RRCL13]. Regarding the elastic model based curve matching, two

di�erent approaches to reconstructing ancient artefacts are shown.

6.1 General Approach

Generally approaches to solving 2d jigsaw puzzles can be divided into two parts:

de�ning local pairwise similarity and global arrangement of pieces. In the �rst

part we have a set of fragments F with each fragment being represented as some

feature vector Fi. In case of a pictorial puzzle we could denote a fragment as a
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Figure 1: General pipeline for an assembly process.

support vector Fi = {Si, Ii}, where Si is set of support points and Ii is image of

the fragment given as an input. For a pair of fragment Fj and Fk we seek to �nd

some similarity measure, attained through comparing their feature vectors, to �nd

potential matches. Fragments which are found to have similar matching features will

be marked as mating candidates. Based on the matings we can attempt a global

reconstruction by joining the pieces together and appending more pieces to the

joined object before we either run out of pieces or possible matches. It is important

to detect errorneous matings early to reduce the assembly time as the cost increases

with each step required to correct them [FG64]. These steps combined with the

previously mentioned image preprocessing form a full pipeline for a general digital

solver which is visualized in �gure 1.

The problem at hand doesn't scale well when the number of puzzle pieces to match

increases. While smaller puzzles might be brute forced, the number of orientations

the pieces can be in combined with the number of matchings to be checked makes

an exhaustive search method an infeasible solution for the problem. Most solutions

therefore opt to use orientation-invariant features to compare matchings. In such

a case, �nding the best match between two fragments for a collection of N frag-

ments requires θ(L2N2) operations, where L is the number of sample points in a

fragment [dGLS02].

6.2 Shredded Documents

Richter et. al. [RRCL13] make use of a feature curve based method for piecing

back together documents that have been shredded by hand. While often matching

is done based on outer borders, in some cases we cannot resort to these kinds of
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strategies, because torn documents may contain fragments with partially overlapping

parts [KS09]. This could occur for example during ripping of a paper that causes

diagonal tear between pieces instead of a straight clean separation. In such a case

the front- and backside of a particular area would be split into two or more separate

fragments. The fragment description for the method described by Richter et. al. is

de�ned as a support point s with 5 feature descriptions: line segment length, inner

angle, shape of the content, colour histogram around the point's circular region and

colour layering. With these features, instead of trying to match each support points

of a fragment against those of another, a subset of support points that are likely to

�t together are consider in the pairing process.

Pairwise a�nity between support points is determined separately for each of the fea-

tures. After a dissimilarity measure is calculated between each of the support point

pairs for each feature, these measurements are concatenated into a single dissimi-

larity vector ds
i
p,s

j
q = [dk(s

i
p, s

j
q)], k = 1...5 ∈ <5. These features could be modi�ed

or additional ones introduces, but the resulting features should respect the rotation

invariance property. However, it should be noted that number of combinations for

pairing each support point grows quadratically in the number of support points of

the respective fragments. The authors had an annotated dataset, containing true

and false pairings, which they used to train a support vector machine to root out false

matches from the list of possible candidates. This is done by assigning alignment

scores, which correspond to our believed correctness, for the pairings with respect

to coincident border, relative intersection, geometric and content-based information

constraints.

The global puzzle solving algorithm works by creating a graph for the document

and outputting a set of alignments for each fragment and a spanning tree for the

graph described by an edge set Ê. In the document graph, vertices correspond to

fragments and the edges are de�ned as the alignments between those fragments.

At the start of the algorithm each fragment is considered a cluster on its own.

Iteratively these clusters are joined by choosing the best alignment between any pair

of clusters given by â = argmax
i<j

âij. After each joining edge weights are updated.

This process is repeated until only a single cluster remains. A more detailed look on

the di�erent steps can be found in algorithm 2. The authors mention that outliers in

the approach come mainly from pages that are of an uniform colour and contain little

to no information in their content. The process doesn't work when too many pieces

are removed or if the problem becomes disconnected and as such stopping criteria

need to be de�ned for these kinds of occasions. While some prior good candidate
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pairs might turn out to be false pairing during the iterative weight recalculation, the

presented algorithm does not contain a backtracking procedure in the case of early

occurring errors.

6.3 Ancient Documents

We will now switch our focus on two state-of-the-art methods for solving the two-

dimensional ancient artefact reconstruction problem. These solutions also di�er

from the previously shown feature based curve matching by using a method referred

by McBride and Kimia [MK03] as elastic based curve matching. According to them

feature based methods su�er from a drawback of having hard time dealing with

fragment overlapping and distinguishing between close ambiguous matches. Elastic

curve matching seeks to resolve this issue by allowing dynamic one to many map-

pings between support points of a pair of fragments instead of being limited to one

to one correspondences. Both of these methods solve the problem in an apicto-

rial way. However, as multi-scale matching in itself is agnostic about the nature

of the samples, features like colour and thickness of the material can also be aug-

mented with the boundary information [dGLS02]. Di�erences in the two approaches

are mainly found in their feature description, performance evaluation for pairings,

correct match detection and global puzzle assembly process.

6.3.1 Generic Solver

We will �rst take a look at the method by Leitão and Stol� [dGLS02] whose multi-

scale matching method reduces the operations, needed for �nding the best match

between two fragments for a collection ofN fragments, from θ(L2N2) to θ(N2LlogL).

As the piece description they use a curvature graph with points representing local

curvature features denoted by κ(t). Uniform width between these points is deter-

mined by a sampling step δ depending on the level of detail we are interested in.

Pairwise a�nity in their approach is computed by summing together Y 2(a, b; r, s), a

term for measuring total di�erence between two line segments, and Z2(r, s), a term

for penalizing highly irregular pairs. In these terms a and b are de�ned as vectors

of sample points for the two line segments. By (r, s) the authors mean a pairing

correspondence between two samples ark and bsk , for each value of k ∈ {0, ..., p}.
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Algorithm 2 [RRCL13]

STEP 1: Initialization. Initially at time t=0, each fragment Fi is considered a

cluster by itself, i.e., ci = {Fi} and C(0) = {c0, c1, ..., c|V |}. Each edge of the docu-

ment graph is weighted according to its alignment score and each Qi is initialized

as an empty sequence of alignments. Also, Ê is an empty set of edges.

STEP 2: Combining Clusters. Let t be the current iteration. In order to �nd

the best alignment â between any pair of clusters, we simply determine the edge

with the largest weight that connects two distinct clusters. Let e be this edge

and, without loss of generality, let it connect clusters ci and cj, i < j. We add e

to the spanning tree: Ê = Ê ∪ {e}. We combine both clusters into ĉi = ci ∪ cj
by aligning their fragments according to â. As only fragments of cluster ci are

aligned in this step, we append â to their sequence of alignments, i.e., ∀kFk ∈ ci
: append â to Qk. We obtain the set of clusters for iteration t by replacing the

clusters that were combined, i.e., C(t) = Ct−1

ci∪cj ∪ ĉi. Since we reduce the number

of clusters by one during each iteration, the algorithm terminates after iteration

t = |V | − 1.

STEP 3: Removing Unpromising Alignments. To speed up the computation

during the remaining iterations, we aim to reduce the number of alignments to

be considered. For this purpose we apply two heuristics that remove any pair of

support points from ĉi that became obsolete due to alignment â. First, we disable

support points along coincident border of the new cluster. Intuitively, aligning

another fragment to one of these points naturally produces high intersections.

Second, we remove all pairs of support points which are evidently incorrect due

to their clearly insu�cient alignment score.

STEP 4: Updating Edges. As mentioned before, combining two clusters provides

additional evidence about the document at hand. Therefore the weight of all

edges originating from the combined cluster ĉi need to be updated.

STEP 5: Return. After |V | − 1 iterations we accumulate the sequence of a�ne

transformations for each fragment Fi into Q̂i.
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The term Y 2(a, b; r, s) itself is acquired from

Y 2(a, b; r, s) =
1

4

p−1∑
k=0

(εk + εk+1)(τk+1 − τk). (1)

whereas the irregularity penalizing term is given by

Z2(r, s) =
ζ2

2

p−1∑
k=0

|(rk+1 − rk)− (sk+1 − sk)|. (2)

Combined together they form a quadratic dissimilarity measure for the pair to be

considered

S2(a, b; r, s) = Y 2(a, b; r, s) + Z2(r, s), (3)

After having obtained pairwise dissimilarity measures, we still need a way to evaluate

their performance and choose the most likely ones to be correct. In other words

we are seeking for a pairing (r∗, s∗), which minimizes S2. Separation to false and

possibly true pairings in done in a binary fashion by considering the result of

4∗(a, b) = S2
∗(a, b)− ξ2((m+ n)/2− nmin). (4)

When 4∗(a, b) < 0 a candidate pair (a, b) is marked as true and false otherwise.

E�ectiveness of this approach depends on constant variables ξ, ζ and nmin, the values

of which should be empirically experimented on to �t the data of the fragments to

be matched.

Typically global puzzle solving processes are presented, but Leitão and Stol� opt to

focus on producing a set of initial pairing candidates. As an input their algorithm,

shown in algorithm 3, takes raw fragment outlines C = {C0, ...CN − 1}, minimum
sampling step δ, the minimum length Lmin for reliable matching, constant variables

ξ(k), ζ(k), and n
(k)
min, for each scale k and a corner blurring factor α. At the end a set

of possibly true candidates are outputted. The main idea of is to calculate initial

samples on a coarse scale, then keep only the good results, and repeat while re�ning

these candidates on �ner levels of detail. In order to �nd the pair that minimizes S2,

the problem is formulated as �nding the minimum cost path in a acyclic directed

graph G and solved with a variation of the dynamic programming algorithm.

6.3.2 Domain Speci�c Solver

McBride and Kimia's [MK03] solution builds on top of the techniques introduced

in the last section. However, instead of focusing on a generic solution, the authors
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take advantage of the dominance of triradial junctions appearing in archaeological

puzzles. These triple junctions appear in the form of "T" and "Y" junctions, "Y"

junctions being the less common one [MK03].

In their method pairwise a�nity is computed by looking at possibly matching sub-

boundaries while also incorporating a solution for the partial curve selection problem.

Complexity is reduced by using a multi-scale technique similar to that of [dGLS02].

Partial curve matching is started from corners and the end points are dynamically

determined from alignment-based elastic curve-matching. The end points are deter-

mined by keeping two factors in mind: sub-contour similarity and as long reach for

sub-contours as possible. Curve matching energy, sum of stretching and bending

energies, is increased by extending the match. This is why shorter matches will be

rated better to their longer counterparts. Extending has been balanced by making

extensions contribute negatively if in the end results the curves are locally similar,

and positively in the case of local dissimilarity in the curves. Matching is done in

multiple granularities. The �ner levels are restricted to those pairings with a high

enough rank to warrant further re�nement in re-evaluating the measurement of sim-

ilarity. Using least-squares a suitable alignment between the points, gained through

curve matching, can be attained. Finally a cost factor with three parts is evaluated

for the matching: 1) distance measure between the points 2) length measure of the

arc for the common boundary and 3) measure of boundary complexity. The longer

and more complex the boundary, the higher is our con�dence for the correctness

of the match. As a �nal result of matching every pair of fragments, a list of adja-

cency candidates with measures of a�nity is outputted. Final cost for pairings are

calculated by combining these measures:

Ctotal = λ1 ∗ Cdistance + λ2 ∗
√
Clength + λ3 ∗

√
Cdiagnostic. (5)

This matching a�nity measure tries to overcome two main issues in the pairings: 1)

poor results for damaged, very short or �at boundaries, and 2) high-ranked matches

that are similar by chance.

Global assembly is approached with a best-�rst strategy by using both local pairing

information and a global con�dence measure. Possible errors during assembly are

handled by computing multiple solutions simultaneously and memorizing k di�erent

arrangements at each stage instead of backtracking a procedure. The approach

relies heavily on simplifying the problem with domain speci�c assumptions for the

the kinds of junctions and the way the matching typically occur between the pieces.
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The solution is started by ordering the pairings by rank and selecting the best

alternative �rst as the initial step. After this step more constraints are introduced

as the proposed solution expands. First of all only fragments that connect to the

existing object are considered. Using these added features, a global con�dence

measure is created, which will tell us how good the �nal solution is. Fragments

forming triple junctions contribute strongly to the global con�dence, because they

are statistically more likely to be correct. The strategy moves from best-�rst to

best-global-�rst, which means that the fragment being added that contributes to

the best result for global con�dence will be added to the solution next.

Instead of backtracking, beam search is used to deal with the possible errors that

might occur during the assembling process. This technique picks the k top matches,

which combined with the already placed pieces, form states. For each of the states

we �nd Y fragments to match with the best-global-�rst strategy. Then we order the

states and keep only the X best. This process is rinsed and repeated. A con�dence

threshold is added for additional pruning of the search space and it also serves as a

stopping condition.

In this section we saw how the fragments could be described digitally. We also went

through two di�erent pairwise a�nity measures used in ceramic tile reconstruction.

Leitão and Stol� [dGLS02] provided a way for �nding a set of possible matching

candidates. This step was enhanced by a description for a global assembly attempt

by McBride and Kimia [MK03] given the candidates as an input.

7 Overview of the Reconstruction Tool

A tool for assisting researchers, working with the reconstruction of The Dead Sea

Scrolls, in the �eld of theology was created as a by-product of this thesis. The

focus in the development of the program was to automate some of the manual steps

introduced in section 3.1 as well as to test the viability of applying curve matching

techniques in scroll reconstruction process. The program's graphical user interface

implementation was done with the help of the Qt library , and the image processing

and computer vision side utilized the openCV project.
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Algorithm 3 Multi-scale matching [dGLS02]

\\ Multi-scale �ltering

C(0) < −C; k < −1; δ(1) < −δ
while δ(k) <= Lmin − 8αδ(k) do

Filter and re-sample the curves C(k−1) with step δ(k), producing C(k).

k < −k + 1; δ(k) ← 2δ(k−1).

end while

Set K ← k − 1

\\ Initial matching
Delete any non-fracture segments from the curves C(k)

Determine the initial candidate set R(k) among the curves C(K).

\\ Re�nement and pruning

for k = K,K − 1, ..., 1 do

Re�ne the raw candidates R(k), obtaining a new set S(k).

Remove from S(k) all candidates with positive discriminant 4∗.
For each pair of curves, collect all the corresponding candidates in S(k), retain

only the 2k−1 candidates with smallest (most negative) 4∗, and discard the rest.

Merge any overlapping candidates among those remaining in S(k).

Map the candidates S(k) from the curves C(k) to the curves C(k−1), obtaining

the raw candidates R(k−1).

end for

Re�ne R(0), obtaining the �nal candidate set S.
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Figure 2: Screenshot showing a manual pairwise comparison being performed with

the program.

7.1 Features

The �nished program contains several features which seeks to ease the amount man-

ual work the researchers had to previously perform manually. The whole preprocess-

ing pipeline from section 5 was implemented with the added bene�t of being able to

dynamically adjust di�erent thresholds, constants and algorithms for contour detec-

tion. Imported images can be dragged and dropped into an assembly canvas where

potential solutions for the puzzle and pairing between pieces can be experimented.

Visual aid is supported with colour repainting, line drawing and ruler features as

well. Collaboration and sharing of ideas with other researchers can be done, albeit

in a rudimentary fashion, by using exporting of images assembled on the canvas or

sending program project �les. During development, the project �les proved to be

essential when replicating and �xing bugs. A screenshot of the program in question

are shown in �gure 2. Lastly, a simple automated puzzle solver was attempted.

7.2 Fragment Pairing and Assembly Model

Due to time constraints, the viability of curve matching techniques applied to Qum-

ran artefacts was tested with the simple feature vector description and global puzzle

solving strategy by Justion et. al. [JOF06]. In this section we will focus solely on
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the description of the details of the feature vector and global assembly process used.

Section 8 will be covering the results of the �ndings as well as a proposal for a

domain speci�c take on the problem.

The support points in the method by Justino et. al. [JOF06] include information

about the vertex index, distances to next and previous support points, x and y

coordinates of the point, and the angle between the line segments spanning from

the current point to the next and previous ones. Together these form a feature vector

for a support point. The pairing evaluation is a simple weight value Wmatch. The

weights are calculated by checking whether one or both of any given support points'

lengths to a neighbouring support point line up with that of another fragments one.

If both of the neighbours distance from point si of a fragment Fi are roughly equally

as far away as point's sj neighbours from fragment Fj, then 5 points will be added to

the matching similarity Wmatch provided that the angle features of si and sj sum up

to roughly 360◦. Likewise if only one of the neighbours line up from each point and

the angles agree, 1 point will be added to the similarity. Length of the perimeter

from these matches are taken into account by adding 2 additional points if a matched

contour spans over more than 1/5 of the fragments perimeter or 1 additional points

when over 1/10 of the perimeter is covered. The authors explain that these points

were determined through empirical experimentation.

Now that the pairwise a�nity is de�ned we continue to explain the global solution

process. Similar to that of [RRCL13] we start with each fragment being considered

as its own group. All the matchings are calculated between the �rst fragment F1

and all the fragments Fi in the range from 2 to n, where n is the total number of

fragments. The pair with the overall best matching will be merged into a single

fragment. This process will be then repeated by trying to pair each of the fragments

with the joined object, until only one fully merged fragment remains or no match-

ing candidates are found. It is apparent from the algorithm description that as a

result we might get complete, partial or empty pairing solutions for our problem.

Additional details for this algorithm are provided in algorithm 4.

8 Results

The dataset, used for experimenting the reconstruction method introduced during

the overview of the reconstruction tool, was created from an rectangular image that

has been manually split into 16 arbitrarily shaped pieces. The whole image with
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Algorithm 4 Global search [JOF06]

D = {F1, F2, ..., Fn}
repeat

best = NULL

for i = 2ton do

Compute all possible Wmatching for F1 and Fi

if if there is a Wmatching > 0 then

best = i that maximizes Wmatching

end if

end for

if best 6= NULL then

Fnew = F1 ∪ Fbest

Remove F1 and Fbest from D.

Insert Fnew into D

n = n− 1

end if

until n = 1 or best 6= NULL

return Fnew

puzzle piece boundaries is represented in �gure 3.

At �rst our experiments yielded no results. No suitable match for fragment F1 was

found and the algorithm hit a stopping criterion. Once this piece was excluded

or the process started with another fragment as the �rst one, a solution suggestion

formed out of most of the puzzle pieces was outputted. Pairing seems to have a slight

tendency to favour long matches where the angle α of each individual fragment is

close to 180◦. Some of these straight matches were false matches that just happened

to agree on the features, but the algorithm has no way of making distinctions between

these kinds of spurious pairings and real ones.

To improve the global search algorithm, multiple solutions from di�erent starting

points could be run in parallel to alleviate the issues we had early on. Since the

algorithm has no mechanism for correcting errors during reconstruction and back-

tracking can become complex and computationally expensive, this simple approach

from McBride and Kimia [MK03] increases fault tolerance and quality of results by

allowing to pick the solution with the best measured con�dence for being correct.

Another thing that could be adopted from McBride and Kimia is a notion of bound-

ary complexity for the point awarding rule set. In essence, without at least these
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Figure 3: Correct solution for our rectangular shaped test puzzle.

Figure 4: Side by side comparison of image results from original contour extraction

and after applying line simpli�cation. As is apparent from the simpli�ed image on

the right, no important curvature features have been lost in this process. Contour

extraction for all the 16 pieces produced a total of 14076 support points. With the

Douglas-Peucker algorithm we were able to reduce this amount to just 314 points.
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Figure 5: Example of a spurious result. The darker straight lines represent the

suggested matching sub-contours.

changes given the poor performance on our dataset with simpli�ed contours, which

still retain all the relevant features, this approach will not be viable in ancient docu-

ment reconstruction with more evident decay. The algorithm was not tested on the

ancient scrolls, because the puzzle pieces turned out to be too sparsily populated.

As such, a list of pairing suggestions outputted by the algorithm would have solely

contained false correspondences. Even with the changes or the approaches from

section 6.3 it is questionable if these general approaches would fare much better.

Therefore, like in [MK03] we propose a domain speci�c process for reconstructing

Dead Sea Scrolls. The unique traits exhibited in Qumran scrolls can be exploited to

aid in disjoint puzzle solving. The following approach concentrates in global piece

arranging while omitting an exact description for puzzle piece features. However,

it is assumed that such features contains information about inner, outer and hole

borders and pictorial information including colour.

8.1 Domain Speci�c Solution

Recurring similar shapes of damage, occurring through out the di�erent puzzle pieces

from several layers of the scroll, are the key to our approach. The width of these

damage patterns increase towards the outer layers and likewise decrease the more
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towards the inner layer the fragments reside, because they have been preserved in a

rolled up state. This change can be precisely measured in all of the larger Qumran

scrolls by 2πr provided that we know the material, thickness and tightness of the

wrap of the scroll needed to determine the radius r [Ste90]. The digital solving

process can additionally be aided by providing constraints with evidence from the

data for column width, overall scroll length and direction of the rolling.

At the start of the process to reduce the search space, a clustering of pieces that

might belong to the same column can be attempted by comparing pictorial in-

formation: letter heights, color, etc. Next pairwise evaluation of fragments is

done, but instead of looking for similar complementing boundaries we are look-

ing for identical patterns of di�ering widths from the contours. Exhaustive search is

sidestepped by grouping, suggested in [KS09], and multi-scale matching as was done

in [dGLS02, MK03]. First of all, pairwise checks don't have to be done between

pieces belonging to the same cluster, because they belong to the same layer. The

recurring shapes that we are interested in only appear in pieces belonging to other

clusters. Unfortunately, we still have to compare pieces that remained unassigned

to any cluster against all other pieces. Second, evaluation is done from a coarse to

�ner level of detail. Expensive computation for clearly poor matches are avoided

early on.

After obtaining similarity measures for all the possible fragment sub-contour pairs,

the di�erent clusters can be ordered according to their position in the scroll based

on the widths of the damage patterns found in the pieces. On top of that we get

an approximated placement for all the pieces from di�erent clusters with matching

patterns, because these pieces must lie in the same position relative to each other.

Additional pictorial information, like margins, in even one of the fragments in these

groups might enable exact placement for the whole group of fragments with similar

wear. While it is unlikely that a complete assembly solution will be reached with

this kind of manner, the process carries intrinsic value for the researchers in the

�eld, because some of the manual tasks that would have had to been done anyway

are now automated. In addition, our process can be combined with the other global

assembly algorithms described in this thesis by considering each of the column or

page wise clusters as separate puzzles.
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9 Conclusion

In this thesis we showed how techniques to digitally solve two-dimensional jigsaw

puzzles have been successfully harnessed to reconstruct shredded documents and

ancient artefacts. One approach was explained for hand shredded documents and

two approaches for objects with tile like characteristics. Despite the successes in

these �elds we showed the limited usability in employing these techniques to the

Dead Sea scrolls due to material deterioration and the disjoint nature the damage

tends to cause to the puzzles.

We proposed a new take on digitally solving domain speci�c puzzles that contain

recurring damage patterns in the material. Exhaustive search can be sidestepped

through clustering of puzzle pieces prior to global assembly attempts. Pairing pro-

cess can be skipped for pieces that belong to the same group and placement hints

are searched by �nding similar recurring patterns from pieces in other groups. The

length of those damage patterns tell us the relative position of the fragment in the

scroll thanks to the way these scrolls have been damaged while being preserved in

a rolled up state. This method can be used in conjunction with other assembly

processes such as the curve matching methods described in section 6.

While we did not implement this proposed new strategy, manual labour for the re-

searcher in the �eld is alleviated with the program that was created together with

this thesis. The program is capable of extracting contours for easy pairwise in-

spection of fragments and providing a workspace for manually experimenting with

di�erent possible puzzle solutions. These solutions can then be shared in an inter-

active format to other researchers in the �eld.

More emphasis for digitally solving disjoint puzzles is needed in future research. The

viability of the methods proposed in this thesis should also be tested in practice.

Restoration and reconstruction of ancient objects is an important part for historical

reconstructions and progress will remain slow while most of the tasks are done in a

manual, laborious and time intensive manner.
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